WO2018151097A1 - 拡散素子 - Google Patents
拡散素子 Download PDFInfo
- Publication number
- WO2018151097A1 WO2018151097A1 PCT/JP2018/004889 JP2018004889W WO2018151097A1 WO 2018151097 A1 WO2018151097 A1 WO 2018151097A1 JP 2018004889 W JP2018004889 W JP 2018004889W WO 2018151097 A1 WO2018151097 A1 WO 2018151097A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shape
- lattice
- diffusing element
- unit graphic
- rectangle
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000012938 design process Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000010606 normalization Methods 0.000 description 3
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0221—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
Definitions
- the present invention relates to a diffusing element that diffuses light emitted from a light source.
- a diffusing element that diffuses light emitted from a light source is used (for example, Patent Document 1).
- a diffusing element in which a plurality of identical shapes are combined may be used, for example, a microlens array.
- the overall shape of the diffusing element is not smooth, for example, when the mold for the diffusing element is manufactured, it becomes difficult to process the mold. Therefore, the overall shape of the diffusing element is preferably smooth.
- the convex part and the concave part of the diffusing element have the same shape and are arranged at a constant period, the light beams that have passed through the diffusing element interfere with each other to generate diffraction, and the intensity on the irradiated surface is uniform. It is not preferable. Therefore, it is conceivable to vary the arrangement and shape of the convex and concave portions. However, such processing complicates the design and manufacturing process.
- An object of the present invention is to provide a diffusing element that can control the diffusion angle of diffused light, has a smooth shape as a whole, does not cause diffraction, and has a simple design and manufacturing process. It is to be.
- An area in the unit figure, As the boundary, When When The overall shape of the diffusing element is z f (x, y), and the coordinates of the center of any unit figure are As Meet.
- the diffusing element according to this aspect can control the diffusion angle of the diffused light, has a smooth shape as a whole, and has a simple manufacturing process.
- the planar lattice is a rectangular lattice
- the unit graphic has a side having a length s in the x direction and a side having a length t in the y direction.
- the number indicating the position of the rectangle in the x and y directions is m and n, It is.
- An area in the unit figure, As the boundary, When When The overall shape of the diffusing element is z f (x, y), and the coordinates of the center of any unit figure are The coordinates of the center of the unit graphic adjacent to the arbitrary unit graphic As Meet.
- the diffusing element according to this aspect can control the diffusion angle of the diffused light, has a smooth shape as a whole, and has a simple manufacturing process. Furthermore, by using a shape obtained by combining the same shapes having different signs, the intensity on the irradiation surface by the diffused light can be made more uniform.
- the planar lattice is a rectangular lattice
- the unit graphic has a side having a length s in the x direction and a side having a length t in the y direction.
- the number indicating the position of the rectangle in the x and y directions is m and n, It is.
- the diffusing element according to the third aspect of the present invention is configured such that each vertex of each unit graphic is randomly shifted within a predetermined range in the xy plane with respect to the shape of any one of the diffusing elements described above,
- the value of f (x, y) corresponding to the second point in the reference unit graphic corresponding to an arbitrary first point in each convex polygon formed by the shifted vertex from the graphic Is a diffusion element whose shape is determined by a function having a value corresponding to the first point.
- the diffusion element of this aspect diffraction due to the periodic structure does not occur, and the illuminance distribution on the irradiated surface can be made more uniform.
- ⁇ 1 is a positive constant smaller than 1 and ⁇ 2 is a positive constant larger than 1.
- This is a diffusing element whose shape is determined by a function in which the value of the function is randomly changed in the range of ⁇ 1 times to ⁇ 2 times.
- the diffusion element of this aspect diffraction due to the periodic structure does not occur, and the illuminance distribution on the irradiated surface can be made more uniform.
- FIG. 6 is a flow diagram illustrating a method of varying the spacing between adjacent convex portions or adjacent concave portions. It is a figure which shows the predetermined range which moves the lattice point on xy plane, and a lattice point. It is a figure which shows the position of the point corresponding to each lattice point after moving each lattice point. It is a figure which shows the convex quadrangle formed by the point after making it move. It is a figure which shows the convex rectangle and reference
- FIG. 1 is a diagram for explaining the shape of a diffusing element according to an embodiment of the present invention.
- a rectangular lattice having an interval s in the x direction and an interval t in the y direction is defined.
- One of the rectangles having a side length s in the x direction and a side length t in the y direction is defined as a reference rectangle.
- the position in the x direction of the rectangle is represented by number m
- the position in the y direction is represented by number n.
- the shape of the reference rectangle is represented by g (x, y).
- the origin of the (x, y) coordinates is the center of the reference rectangle.
- the area within the rectangle of reference S, Is the boundary, that is, the side of the reference rectangle, the following relationship is established.
- G (x, y) is a smooth function over the entire area. Further, it is preferably symmetrical with respect to the X axis and the y axis passing through the center of the region, having one extreme value, and the x and y coordinates of the extreme value coincide with the x and y coordinates of the center of the region.
- the mold for the diffusion element When the entire shape of the diffusion element is smooth, for example, when the mold for the diffusion element is manufactured, the mold can be easily processed.
- FIG. 2 is a diagram showing the shapes of h 1 (x) and h 2 (y).
- the horizontal axis in FIG. 2 represents the x axis or the y axis, and the vertical axis in FIG. 2 represents h 1 (x) or h 2 (y).
- the shapes of h 1 (x) and h 2 (y) are determined so that the intensity on the surface irradiated with the diffused light is as uniform as possible.
- the lattice points are indicated by black dots, and the center of the rectangle is indicated by white dots.
- the center of the reference rectangle is the origin (0, 0).
- a convex portion is formed in a region including a white dot
- a concave portion is formed in a region including a black dot.
- the horizontal axis in FIG. 4 represents x-axis coordinates or y-axis coordinates, and the vertical axis in FIG. 4 represents z-axis coordinates.
- the horizontal axis of FIG. 5 represents the x-axis coordinate or the y-axis coordinate with (0.15, 0.3) as the origin, and the vertical axis coordinate of FIG. 5 represents z.
- the convex part and the concave part of the diffusing element have the same shape and are arranged at a constant period, the light beams that have passed through the diffusing element interfere with each other to generate diffraction, and the intensity on the irradiated surface is uniform. It is not preferable. Therefore, in order to make the intensity of the diffused light on the irradiation surface as uniform as possible, the distance between adjacent convex parts or adjacent concave parts, or the height of convex parts or concave parts is set. It can be considered to be scattered.
- FIG. 6 is a flowchart showing a method of varying the interval between adjacent convex portions or adjacent concave portions.
- FIG. 7 to 10 are diagrams for explaining a method of varying the interval between adjacent convex portions or adjacent concave portions shown in FIG.
- step S1010 of FIG. 6 each lattice point on the xy plane is randomly moved within a predetermined range.
- FIG. 7 is a diagram showing lattice points on the xy plane and a predetermined range in which the lattice points are moved.
- the predetermined range is an ellipse whose axis in the x-axis direction is ⁇ ⁇ s and whose length in the y-axis direction is ⁇ ⁇ t.
- the values of ⁇ and ⁇ are preferably in the range of 0.1 to 0.4.
- Each lattice point is moved within an ellipse corresponding to the lattice point.
- Each lattice point is moved so that the relative positions of the lattice points after the movement are uniformly distributed within the ellipse.
- the range in which each grid point is moved may be a predetermined range around each grid point. That is, the lattice points may be moved so that the relative positions of the lattice points after the movement are uniformly distributed within the predetermined range.
- FIG. 8 is a diagram showing the positions of the points corresponding to the respective lattice points after the respective lattice points are moved.
- step S1020 in FIG. 6 a projection matrix from the reference rectangle to the convex quadrangle formed by the moved grid points is obtained.
- the predetermined range around each of the lattice points described above needs to be determined so that the figure formed by the moved lattice points becomes a convex quadrangle (generally, a convex polygon). .
- FIG. 9 is a diagram showing a convex quadrangle formed by the points after being moved.
- the coordinates (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4) of the vertex of the convex rectangle are the origin of the coordinates corresponding to the lower left vertex of the rectangular vertex before moving Define as (0,0).
- FIG. 10 is a diagram showing a rectangle obtained by normalizing the convex rectangle formed by the moved point and the reference rectangle.
- the standardized rectangle is a square in which the lower left vertex is located at the origin and the lengths of the sides in the x-axis direction and the y-axis direction are 1.
- A32 ⁇ (X4-X2) * (Y1-Y3)-(Y4-Y2) * (X1-X3) ⁇ / ⁇ (Y4-Y2) * (X4-X3)-(X4-X2) * (Y4- Y3) ⁇
- the projection matrix A projects an arbitrary point (X ′, Y ′) in the standardized rectangle to an arbitrary point (X, Y) in the convex rectangle.
- step S1030 of FIG. 6 an inverse matrix A ⁇ 1 of the projection matrix A is obtained.
- step S1040 of FIG. 6 the second point (X ′, Y ′) in the normalized rectangle corresponding to the arbitrary first point (X, Y) in the convex rectangle by the inverse matrix A ⁇ 1 is obtained.
- step S1050 of FIG. 6 the value of the normalization function f ′ (x, y) corresponding to the second point (X ′, Y ′) is obtained.
- the normalization function f ′ (x, y) is the region of x: ( ⁇ 0.3,0.3), y: ( ⁇ 0.6,0.6) of f (x, y): x: (0,1) , y: A function normalized to (0,1).
- step S1060 of FIG. 6 the value of the normalization function f ′ (x, y) corresponding to the second point (X ′, Y ′) is set as the value corresponding to the first point (X, Y).
- the function f ′′ (x, y) is a smooth function like the function f (x, y).
- a rectangle obtained by normalizing the reference rectangle was used to obtain the value of the function f ′′ (x, y) corresponding to the convex quadrangular point formed by the moved point.
- the reference rectangle may be used as it is.
- the shape of the diffusing element corresponding to the quadrangle is determined. Even if a plurality of rectangles having the same shape are deformed by varying the positions of the grid points, a diffusing element having a smooth shape can be obtained.
- the diffusion angle (half angle) in the x-axis direction is 12 degrees
- the diffusion angle (half angle) in the y-axis direction is 8.8 degrees.
- the diffusion angle (half angle) in the x-axis direction is 12 degrees
- the diffusion angle (half angle) in the y-axis direction is 8.8 degrees.
- the light intensity and the illuminance on the irradiated surface are represented by shading, and the white portion has high illuminance. Comparing FIG. 11 and FIG. 12, the illuminance distribution in FIG. 12 is more uniform than the illuminance distribution in FIG.
- FIG. 13 is a diagram for explaining the diffusion angle of the light beam diffused by the diffusing element.
- the diffusing element it is assumed that light traveling in the z-axis direction described with reference to FIGS. 4 and 5 is diffused.
- the distance from the point where the light beam passes on the surface of the diffusing element to the z-axis is l, and the incident angle of the light beam and the emission angle from the surface are ⁇ 1 and ⁇ 2 , respectively.
- n be the refractive index of R
- R be the radius of curvature of the surface at that point.
- the diffusion angle that is, the angle formed by the light beam that has passed through the diffusion element and the z-axis is ⁇
- the following relationship is established when ⁇ 1 and ⁇ 2 are sufficiently small. From the above relationship, the following equation is derived.
- l be, for example, the length of a quarter of the length of the convex portion in FIG. 4, and let R be the average value of the radius of curvature, and substituting these values into the above equation yields the diffusion angle.
- the diffusion angle is determined by the shape of the diffusing element.
- the diffusing element of the above embodiment has a shape based on a rectangular lattice.
- a shape using a planar lattice including a rhombus lattice, a hexagonal lattice, a square lattice, and a parallel lattice may be used instead of the rectangular lattice.
- S is an area in a unit graphic, With the boundary, that is, the side of the unit graphic, the following relationship is satisfied.
- the unit figure is deformed by varying the lattice points within a predetermined range, and the function f '' (x, y) is obtained for the deformed unit figure, and the function f '
- the shape of the diffusing element corresponding to the deformed unit graphic can be determined by '(x, y)'.
- the height of the shape corresponding to the unit graphic can be varied randomly.
- a lattice shape may be formed on a curved surface including a spherical surface and an aspherical surface.
- the present invention can be applied by projecting a plane lattice onto a curved surface.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
拡散された光線の拡散角度を制御することが可能で、全体として滑らかな形状を有し、設計及び製造プロセスが簡単な拡散素子を提供する。(x,y)面上の平面格子の基準の単位図形の中心を原点とし滑らかな形状を有する関数をz=g(x,y)、Sを該単位図形内の領域、∂Sをその境界、拡散素子の全体の形状をz=f(x,y)、任意の単位図形の中心の座標を(xk,yk)として、以下の関係を満たす拡散素子。
Description
本発明は、光源から射出された光を拡散させる拡散素子に関する。
種々の応用分野において、光源から射出された光を拡散させる拡散素子が使用されている(たとえば、特許文献1)。
拡散素子において、拡散された光線の拡散角度を制御するために、たとえば、マイクロレンズアレイのように、複数個の同一の形状を組み合わせた拡散素子が使用される場合がある。このような場合に、拡散素子の全体の形状が滑らかでないと、たとえば、拡散素子用の金型を製造する際に金型の加工が困難となる。したがって、拡散素子の全体の形状はなめらかであるのが好ましい。
また、拡散素子の凸の部分及び凹の部分が同じ形状であり、一定の周期で配置されていると、拡散素子を通過した光線が互いに干渉して回折が生じ、照射面における強度が一様ではなくなり好ましくない。そこで、凸の部分及び凹の部分の配置や形状をばらつかせることが考えられる。しかし、そのような処理は設計及び製造プロセスを複雑にする。
このように、拡散された光線の拡散角度を制御することが可能で、全体として滑らかな形状を有し、回折を生じることがなく、しかも、設計及び製造プロセスが簡単な拡散素子は開発されていない。
したがって、拡散された光線の拡散角度を制御することが可能で、全体として滑らかな形状を有し、回折を生じることがなく、しかも、製造プロセスが簡単な拡散素子ニーズがある。本発明の課題は、拡散された光線の拡散角度を制御することが可能で、全体として滑らかな形状を有し、回折を生じることがなく、しかも、設計及び製造プロセスが簡単な拡散素子を提供することである。
本発明の第1の態様による拡散素子は、(x,y)面上の平面格子の基準の単位図形の中心を原点とし滑らかな形状を有する関数をz=g(x,y)として、Sを該単位図形内の領域、
をその境界として、
のとき
のとき
であり、拡散素子の全体の形状をz=f(x,y)、任意の単位図形の中心の座標を
として、
を満たす。
本態様による拡散素子は、拡散された光線の拡散角度を制御することが可能で、全体として滑らかな形状を有し、製造プロセスが簡単である。
本発明の第1の態様の第1の実施形態による拡散素子は、該平面格子が矩形格子であり、該単位図形がx方向の長さsの辺、及びy方向の長さtの辺を有する矩形であり、x、y方向の矩形の位置を示す番号をm、nとして、
である。
本発明の第2の態様による拡散素子は、(x,y)面上の平面格子の基準の単位図形の中心を原点とし滑らかな形状を有する関数をz=g(x,y)として、Sを該単位図形内の領域、
をその境界として、
のとき
のとき
であり、拡散素子の全体の形状をz=f(x,y)、任意の単位図形の中心の座標を
該任意の単位図形に隣接する単位図形の中心の座標を
として、
を満たす。
本態様による拡散素子は、拡散された光線の拡散角度を制御することが可能で、全体として滑らかな形状を有し、製造プロセスが簡単である。さらに、互いに符号の異なる同一の形状を組み合わせた形状を使用することによって、拡散された光による照射面における強度をより一様にすることができる。
本発明の第2の態様の第1の実施形態による拡散素子は、該平面格子が矩形格子であり、該単位図形がx方向の長さsの辺、及びy方向の長さtの辺を有する矩形であり、x、y方向の矩形の位置を示す番号をm、nとして、
である。
本発明の第3の態様による拡散素子は、上記のいずれかの拡散素子の形状に対して、それぞれの単位図形のそれぞれの頂点を、xy面内において所定の範囲でランダムにずらし、基準の単位図形から、ずらした後の頂点によって形成されるそれぞれの凸多角形内の任意の第1の点に対応する該基準の単位図形内の第2の点に対応するf(x,y)の値を第1の点に対応する値とする関数によって形状を定めた拡散素子である。
本態様の拡散素子によれば、周期的な構造に起因する回折を生じることがなく、照射面における照度分布をより一様にすることができる。
本発明の第4の態様による拡散素子は、上記のいずれかの拡散素子の形状に対して、γ1を1より小さい正の定数、γ2を1より大きい正の定数として、それぞれの領域ごとに、関数の値を、γ1倍からγ2倍の範囲でランダムに変化させた関数によって形状を定めた拡散素子である。
本態様の拡散素子によれば、周期的な構造に起因する回折を生じることがなく、照射面における照度分布をより一様にすることができる。
図1は、本発明の一実施形態の拡散素子の形状を説明するための図である。(x,y)面上において、x方向の間隔s、y方向の間隔tの矩形格子を定める。x方向の辺の長さs、y方向の辺の長さtの矩形の一つを基準の矩形とする。矩形のx方向の位置を番号mで表し、y方向の位置を番号nで表す。基準の矩形はm=0及びn=0で表す。基準の矩形における形状をg(x,y)で表す。(x,y)座標の原点は基準の矩形の中心とする。Sを基準の矩形内の領域、
をその境界、すなわち基準の矩形の辺とすると、以下の関係が成立する。
のとき
のとき
g(x,y)は領域全体で滑らかな関数である。さらに、領域の中心を通るX軸、及びy軸に関して対称であり、極値が一つであり、極値のx、y座標が、領域の中心のx、y座標と一致するのが好ましい。
拡散素子の全体の形状をz=f(x,y)として、z=f(x,y)は以下の式で表せる。
全体の形状z=f(x,y)は、格子の各矩形の中心に配置したg(x,y)と同一の形状
及び各格子点に配置したg(x,y)の符号を反転させた形状
を組み合わせた形状である。このように、互いに符号の異なる同一の形状を組み合わせた形状を使用するのは、拡散角の比較的大きな形状の領域を増加させることによって、拡散された光による照射面における強度をより一様にするためである。全体の形状z=f(x,y)は、滑らかな関数である。
拡散素子の全体の形状が滑らかであると、たとえば、拡散素子用の金型を製造する際に、金型の加工が容易になる。
図2は、h1(x)及びh2(y)の形状を示す図である。図2の横軸は、x軸またはy軸を表し、図2の縦軸はh1(x)またはh2(y)を表す。h1(x)及びh2(y)の形状は、拡散された光による照射面における強度ができるだけ一様になるように定められている。
図3は、全体の形状z=f(x,y)を説明するための図である。図3において、格子点を黒い点で示し、矩形の中心を白い点で示す。基準の矩形の中心を原点(0,0)とする。
図3において、点線で示した菱形の辺に相当する部分はz=0となる。点線で囲まれたひし形のうち、白い点を含む領域には凸部が形成され、黒い点を含む領域には凹部が形成される。
図4は、全体の形状z=f(x,y)のうち、凸の部分に対応するz = f(x,0)及びz = f(0,y)を示す図である。図4の横軸はx軸座標またはy軸座標を表し、図4の縦軸はz軸座標を表す。
図5は、全体の形状z=f(x,y)のうち、凹の部分に対応するz = f(x,0.3)及びz = f(0.15,y)を示す図である。図5の横軸は(0.15,0.3)を原点としたx軸座標またはy軸座標を表し、図5の縦軸座標はzを表す。
ところで、拡散素子の凸の部分及び凹の部分が同じ形状であり、一定の周期で配置されていると、拡散素子を通過した光線が互いに干渉して回折が生じ、照射面における強度が一様ではなくなり好ましくない。そこで、拡散された光による照射面における強度をできるだけ一様にするように、隣接する凸の部分、または隣接する凹の部分の間の間隔、または凸の部分、または凹の部分の高さをばらつかせることが考えられる。
図6は、隣接する凸の部分、または隣接する凹の部分の間の間隔をばらつかせる方法を示す流れ図である。
図7乃至図10は、図6に示した、隣接する凸の部分、または隣接する凹の部分の間の間隔をばらつかせる方法を説明するための図である。
図6のステップS1010において、xy面上のそれぞれの格子点を所定の範囲でランダムに移動させる。
図7は、xy面上の格子点、及び格子点を移動させる所定の範囲を示す図である。該所定の範囲は、一例として、x軸方向の軸の長さがα・sであり、y軸方向の長さがβ・tである楕円である。α及びβの値は、0.1から0.4の範囲であるのが好ましい。それぞれの格子点を、該格子点に対応する楕円内で移動させる。移動させた後の格子点の、楕円内の相対的な位置が楕円内において一様に分布するようにそれぞれの格子点を移動させる。一般的に、それぞれの格子点を移動させる範囲は、それぞれの格子点の周囲の所定の範囲であってよい。すなわち、移動させた後の格子点の、所定の範囲内の相対的な位置が所定の範囲において一様に分布するようにそれぞれの格子点を移動させてもよい。
図8は、それぞれの格子点を移動させた後のそれぞれの格子点に対応する点の位置を示す図である。
図6のステップS1020において、基準の矩形から、移動させた後の格子点によって形成される凸四角形への射影行列を求める。ここで、上記のそれぞれの格子点の周囲の所定の範囲は、移動させた後の格子点によって形成される図形が凸四角形(一般的には、凸多角形)となるように定める必要がある。
図9は、移動させた後の点によって形成される凸四角形を示す図である。凸四角形の頂点の座標(X1,Y1)、(X2,Y2)、(X3,Y3)及び(X4,Y4)は、移動させる前の矩形の頂点の内、左下の頂点に対応する座標を原点(0,0)として定義する。
図10は、移動させた後の点によって形成される凸四角形及び基準の矩形を規格化した矩形を示す図である。規格化した矩形は、一例として、左下の頂点が原点に位置し、x軸方向及びy軸方向の辺の長さが1の正方形である。
規格化した矩形から、移動させた後の格子点によって形成される凸四角形への射影行列Aの一例は、以下のとおりである。
A13 = X1
A23 = Y1
A31 = {(X4-X3)*(Y1-Y2)-(Y4-Y3)*(X1-X2)}/{(Y4-Y3)*(X4-X2)-(X4-X3)*(Y4-Y2)}
A32 = {(X4-X2)*(Y1-Y3)-(Y4-Y2)*(X1-X3)}/{(Y4-Y2)*(X4-X3)-(X4-X2)*(Y4-Y3)}
A11 = (A31+1)*X2-X1
A12 = (A32+1)*X3-X1
A21 = (A31+1)*Y2-Y1
A22 = (A32+1)*Y3-Y1
A33 = 1
A13 = X1
A23 = Y1
A31 = {(X4-X3)*(Y1-Y2)-(Y4-Y3)*(X1-X2)}/{(Y4-Y3)*(X4-X2)-(X4-X3)*(Y4-Y2)}
A32 = {(X4-X2)*(Y1-Y3)-(Y4-Y2)*(X1-X3)}/{(Y4-Y2)*(X4-X3)-(X4-X2)*(Y4-Y3)}
A11 = (A31+1)*X2-X1
A12 = (A32+1)*X3-X1
A21 = (A31+1)*Y2-Y1
A22 = (A32+1)*Y3-Y1
A33 = 1
射影行列Aによって、規格化した矩形内の任意の点(X’,Y’)が、凸四角形内の任意の点(X,Y)に射影される。
規格化した矩形の頂点は、上記の射影行列Aによって、たとえば、
X’=0,Y’=0は、X=X1,Y=Y1、
X’=1,Y’=0は、X=X2,Y=Y2
へ射影される。
X’=0,Y’=0は、X=X1,Y=Y1、
X’=1,Y’=0は、X=X2,Y=Y2
へ射影される。
図6のステップS1030において、射影行列Aの逆行列A-1を求める。
図6のステップS1050において、第2の点(X’,Y’)に対応する規格化関数f’(x,y)の値を求める。ここで、規格化関数f’(x,y)とは、f(x,y)のx:(-0.3,0.3),y:(-0.6,0.6)の領域をx:(0,1),y:(0,1)に規格化した関数である。
図6のステップS1060において、第2の点(X’,Y’)に対応する規格化関数f’(x,y)の値を、第1の点(X,Y)に対応する値とする関数f’’(x,y)を求める。関数f’’(x,y)は、関数f(x,y)と同様になめらかな関数である。
上記において、移動させた後の点によって形成される凸四角形の点に対応する関数f’’(x,y)の値を求めるのに、基準の矩形を規格化した矩形を使用した。他の実施形態として、基準の矩形をそのまま使用してもよい。
図6のステップS1070において、関数z = f’’(x,y)によって、頂点の座標が(X1,Y1)、(X2,Y2)、(X3,Y3)及び(X4,Y4)である凸四角形に対応する拡散素子の形状を定める。格子点の位置をばらつかせて同一の形状を有する複数の矩形を、種々の形状を有する凸四角形に変形しても滑らかな形状を有する拡散素子を得ることができる。
図6のステップS1080において、それぞれの凸四角形に対応する形状の高さをランダムにばらつかせる。形状の高さは、関数z = f’’(x,y)の値を0.7倍から1.3倍の範囲で一様にばらつかせるのが好ましい。
上記のように形状を定めることにより、周期的な構造に起因する回折の影響を減少させ、拡散された光による照射面における強度をより一様にすることができる。
図11は、格子点の位置、及び高さをばらつかせていないz = f(x,y)の形状を有する拡散素子にxy面に垂直な平行光を入射することによって得られる光の強度分布を示す図である。x軸方向の拡散角度(半角)は12度であり、y軸方向の拡散角度(半角)は8.8度である。
図12は、格子点の位置、及び高さをばらつかせたz = f’’(x,y)の形状を有する拡散素子にxy面に垂直な平行光を入射することによって得られる光の強度分布を示す図である。x軸方向の拡散角度(半角)は12度であり、y軸方向の拡散角度(半角)は8.8度である。
図11及び図12において光の強度、照射面における照度は濃淡で表され、白い箇所は照度が高い。図11と図12とを比較すると、図12における照度分布は、図11における照度分布よりも一様である。
図13は、拡散素子によって拡散される光線の拡散角を説明するための図である。拡散素子において、図4及び図5で説明したz軸方向に進行する光が拡散されるとする。拡散素子の面上で光線が通過する点からz軸までの距離をlとし、光線の該面への入射角及び該面からの出射角を、それぞれθ1及びθ2とし、拡散素子の材料の屈折率をnとし、該点における面の曲率半径をRとする。拡散角、すなわち、拡散素子を通過した光線がz軸となす角度をθとすると、θ1及びθ2が十分に小さい場合に、以下の関係が成立する。
上記の関係から、以下の式が導かれる。
ここで、lを、たとえば図4における凸の部分の長さの四分の一の長さとし、Rを曲率半径の平均値として、これらの値を上記の式に代入すると拡散角が求まる。このように、拡散角は拡散素子の形状によって定まる。
上記の実施例の拡散素子は、矩形格子を基準とした形状を有する。他の実施形態として、矩形格子の代わりに、菱形格子、六角格子、正方格子、平行体格子を含む平面格子を使用した形状としてもよい。その場合に、関数z=g(x,y)は、たとえば、菱形、正六角形など平面格子を構成する単位図形の中心を原点とし、z軸に関して軸対称で滑らかな形状を含む形状としてもよい。さらに、z軸上に単一の極値を有する形状としてもよい。該形状は、Sを単位図形内の領域、
をその境界、すなわち単位図形の辺として、以下の関係を満たす。
のとき
のとき
この実施形態の場合にも、矩形格子の実施例の場合と同様に、拡散素子の全体の形状をz=f(x,y)として、任意の単位図形の中心の座標を
該任意の単位図形に隣接する単位図形の中心の座標を
で表すと、
で表せる形状が得られる。
また、矩形格子の場合と同様に、格子点を所定の範囲でばらつかせることにより、単位図形を変形させ、変形させた単位図形について関数f’’(x,y)を求め、関数f’’(x,y)によって、変形させた単位図形に対応する拡散素子の形状を定めることができる。さらに、単位図形に対応する形状の高さをランダムにばらつかせることができる。
このように、矩形格子の代わりに、菱形格子、六角格子、正方格子、平行体格子を使用した場合にも、周期的な構造に起因する回折の影響を減少させ、拡散された光による照射面における強度をより一様にすることができる。
また、球面及び非球面を含む曲面上に格子形状を形成してもよい。その場合に、平面格子を曲面上に射影することにより本発明を適用できる。
Claims (6)
- 請求項1から4のいずれかに記載の形状に対して、それぞれの単位図形のそれぞれの頂点を、xy面内において所定の範囲でランダムにずらし、基準の単位図形から、ずらした後の頂点によって形成されるそれぞれの凸多角形内の任意の第1の点に対応する該基準の単位図形内の第2の点に対応するf(x,y)の値を第1の点に対応する値とする関数によって形状を定めた拡散素子。
- 請求項1から5のいずれかに記載の形状に対して、γ1を1より小さい正の定数、γ2を1より大きい正の定数として、それぞれの領域ごとに、関数の値を、γ1倍からγ2倍の範囲でランダムに変化させた関数によって形状を定めた拡散素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018532331A JPWO2018151097A1 (ja) | 2017-02-15 | 2018-02-13 | 拡散素子 |
US16/531,214 US11327206B2 (en) | 2017-02-15 | 2019-08-05 | Diffuser |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762459257P | 2017-02-15 | 2017-02-15 | |
US62/459,257 | 2017-02-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/531,214 Continuation-In-Part US11327206B2 (en) | 2017-02-15 | 2019-08-05 | Diffuser |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018151097A1 true WO2018151097A1 (ja) | 2018-08-23 |
Family
ID=63169846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004889 WO2018151097A1 (ja) | 2017-02-15 | 2018-02-13 | 拡散素子 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11327206B2 (ja) |
JP (1) | JPWO2018151097A1 (ja) |
WO (1) | WO2018151097A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112558204A (zh) * | 2019-09-26 | 2021-03-26 | 纳卢克斯株式会社 | 扩散元件 |
WO2021079923A1 (ja) * | 2019-10-25 | 2021-04-29 | デクセリアルズ株式会社 | 拡散板、表示装置、投影装置及び照明装置 |
JP2021071721A (ja) * | 2019-10-25 | 2021-05-06 | デクセリアルズ株式会社 | 拡散板、表示装置、投影装置及び照明装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114690520B (zh) * | 2020-12-29 | 2024-04-12 | 宁波舜宇车载光学技术有限公司 | 一种发射端及其制备方法 |
US12163658B2 (en) | 2022-08-01 | 2024-12-10 | Viavi Solutions Inc. | Source-matched diffuser for low speckle illumination |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007116671A1 (ja) * | 2006-03-30 | 2007-10-18 | Kimoto Co., Ltd. | 表面凹凸の作製方法 |
JP2008003234A (ja) * | 2006-06-21 | 2008-01-10 | Fujifilm Corp | 光学シート及びその製造方法 |
JP2012051175A (ja) * | 2010-08-31 | 2012-03-15 | Sumitomo Chemical Co Ltd | 防眩フィルムの製造方法および防眩フィルム作製のための金型の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6352359B1 (en) | 1998-08-25 | 2002-03-05 | Physical Optics Corporation | Vehicle light assembly including a diffuser surface structure |
JP2006066868A (ja) * | 2004-03-23 | 2006-03-09 | Toyoda Gosei Co Ltd | 固体素子および固体素子デバイス |
WO2007032469A1 (ja) * | 2005-09-15 | 2007-03-22 | Zeon Corporation | 直下型バックライト装置 |
US7955531B1 (en) * | 2006-04-26 | 2011-06-07 | Rohm And Haas Electronic Materials Llc | Patterned light extraction sheet and method of making same |
JP2011053496A (ja) * | 2009-09-02 | 2011-03-17 | Sony Corp | 光学素子およびその製造方法、ならびに原盤の製造方法 |
KR101234975B1 (ko) * | 2009-09-11 | 2013-02-20 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | 점광원용 광확산판 및 직하형 점광원 백라이트 장치 |
KR101426448B1 (ko) * | 2012-11-09 | 2014-08-05 | 주식회사 엘엠에스 | 나노 복합체, 이를 포함하는 광학 부재 및 백라이트 유닛 |
JP6343937B2 (ja) * | 2014-01-10 | 2018-06-20 | デクセリアルズ株式会社 | 反射防止構造体及びその設計方法 |
EP3130947B1 (en) * | 2014-04-11 | 2019-10-02 | Kuraray Co., Ltd. | Method for designing light diffusion pattern, method for manufacturing light diffusion plate, and light diffusion plate |
JP6458804B2 (ja) * | 2014-08-04 | 2019-01-30 | Agc株式会社 | 透光性構造体 |
CN106796311B (zh) * | 2014-09-30 | 2019-12-13 | 株式会社可乐丽 | 扩散板及扩散板的制造方法 |
EP3270193A4 (en) * | 2015-03-12 | 2018-10-24 | Kuraray Co., Ltd. | Diffusion plate |
US10571692B2 (en) * | 2016-03-02 | 2020-02-25 | Facebook Technologies, Llc | Field curvature corrected display |
-
2018
- 2018-02-13 WO PCT/JP2018/004889 patent/WO2018151097A1/ja active Application Filing
- 2018-02-13 JP JP2018532331A patent/JPWO2018151097A1/ja active Pending
-
2019
- 2019-08-05 US US16/531,214 patent/US11327206B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007116671A1 (ja) * | 2006-03-30 | 2007-10-18 | Kimoto Co., Ltd. | 表面凹凸の作製方法 |
JP2008003234A (ja) * | 2006-06-21 | 2008-01-10 | Fujifilm Corp | 光学シート及びその製造方法 |
JP2012051175A (ja) * | 2010-08-31 | 2012-03-15 | Sumitomo Chemical Co Ltd | 防眩フィルムの製造方法および防眩フィルム作製のための金型の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112558204A (zh) * | 2019-09-26 | 2021-03-26 | 纳卢克斯株式会社 | 扩散元件 |
CN112558204B (zh) * | 2019-09-26 | 2023-07-14 | 纳卢克斯株式会社 | 扩散元件 |
JP7541336B2 (ja) | 2019-09-26 | 2024-08-28 | ナルックス株式会社 | 拡散素子 |
WO2021079923A1 (ja) * | 2019-10-25 | 2021-04-29 | デクセリアルズ株式会社 | 拡散板、表示装置、投影装置及び照明装置 |
JP2021071721A (ja) * | 2019-10-25 | 2021-05-06 | デクセリアルズ株式会社 | 拡散板、表示装置、投影装置及び照明装置 |
CN114556168A (zh) * | 2019-10-25 | 2022-05-27 | 迪睿合株式会社 | 扩散板、显示装置、投影装置以及照明装置 |
Also Published As
Publication number | Publication date |
---|---|
US11327206B2 (en) | 2022-05-10 |
JPWO2018151097A1 (ja) | 2019-02-21 |
US20190353831A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018151097A1 (ja) | 拡散素子 | |
US10599022B2 (en) | Diffuser plate, display device, projection device, and lighting device | |
CN100510809C (zh) | 用于光束成形和均匀化的随机微透镜阵列 | |
JP6186679B2 (ja) | 照明光学系、計測装置及びそれに用いられる回折光学素子 | |
US10859735B2 (en) | Diffuser plate, display device, projection device, and lighting device | |
US20100208467A1 (en) | Free-form reflector array transforming a collimated beam into prescribed illumination | |
CN101349858B (zh) | 屏幕 | |
WO2016035607A1 (ja) | 画像表示装置 | |
US20120236269A1 (en) | Display device | |
US12092840B2 (en) | Diffractive optical element, projection device, and measuring device | |
JPWO2015182619A1 (ja) | マイクロレンズアレイ及びマイクロレンズアレイを含む光学系 | |
WO2018123466A1 (ja) | 光学体、拡散板、表示装置、投影装置及び照明装置 | |
JP2017054017A (ja) | 拡散板及び該拡散板を備えた撮像装置 | |
US10830411B2 (en) | LED light source guiding device | |
JP2021056503A (ja) | 拡散素子 | |
JP2021076637A (ja) | マイクロレンズアレイ、投影型画像表示装置、マイクロレンズアレイの設計方法及びマイクロレンズアレイの製造方法 | |
JP2016191839A (ja) | 光学素子、投影装置および計測装置 | |
WO2022097576A1 (ja) | 拡散素子及び拡散素子を含む光学系 | |
TWI642976B (zh) | 自由曲面照明系統 | |
CN114543007B (zh) | 照明装置 | |
CN216310418U (zh) | 投射星空效果的衍射光学元件、光学投影装置以及车辆 | |
EP2416063A1 (en) | Axisymmetric reflector with faceted structure based on the gold number | |
JPWO2022097576A5 (ja) | ||
CN211554499U (zh) | 光源系统 | |
WO2022107772A1 (ja) | マイクロアレイ型拡散板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018532331 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18754021 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18754021 Country of ref document: EP Kind code of ref document: A1 |