WO2018150987A1 - 太陽電池モジュール - Google Patents
太陽電池モジュール Download PDFInfo
- Publication number
- WO2018150987A1 WO2018150987A1 PCT/JP2018/004303 JP2018004303W WO2018150987A1 WO 2018150987 A1 WO2018150987 A1 WO 2018150987A1 JP 2018004303 W JP2018004303 W JP 2018004303W WO 2018150987 A1 WO2018150987 A1 WO 2018150987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- cell module
- back surface
- terminal box
- protection member
- Prior art date
Links
- 239000000463 material Substances 0.000 claims description 44
- 230000002093 peripheral effect Effects 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 230000001681 protective effect Effects 0.000 abstract description 11
- 238000004382 potting Methods 0.000 description 24
- 239000000945 filler Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000007704 transition Effects 0.000 description 12
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000003566 sealing material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/80—Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
- H10F19/85—Protective back sheets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- This disclosure relates to a solar cell module.
- the solar cell module a plurality of solar cells are protected by a front surface side protective member disposed on the side on which light is mainly incident and a back surface side protective member disposed on the side opposite to the front side.
- a slit is provided in the back surface side protection member, and a terminal box is attached.
- a solar cell module is provided with the output wiring which takes out the electric power produced
- the output wiring is electrically connected to the terminal in the terminal box after passing through the slit.
- the electric power from the solar cell module is taken out to the outside by two power supply wires electrically connected to the terminals of the terminal box.
- the terminal box when the terminal box is attached to the back surface side protection member, for example, the terminal box is positioned on the back surface side protection member using a jig. Then, the periphery of the terminal box on the rear surface side protection member side is covered with a potting material made of silicon resin or the like, and further, as described in Patent Document 1, the terminal box is filled with the potting material.
- a potting material made of silicon resin or the like
- a terminal box but a general metal fitting etc. may be attached to the back surface side protection member of a solar cell module, it is preferable if these back surface parts can be attached to a back surface side protection member with sufficient position accuracy.
- an object of the present disclosure is to provide a solar cell module capable of attaching a back surface component to the back surface side protection member with high positional accuracy.
- the solar cell module according to the present disclosure includes a plurality of solar cells, a surface-side protection member provided on a light receiving side on which light mainly enters the plurality of solar cells, and a plurality of solar cells.
- the solar cell module according to the present disclosure includes a plurality of solar cells, a surface-side protection member provided on a light receiving side on which light mainly enters the plurality of solar cells, and a plurality of solar cells.
- a back surface side protection member provided on the side opposite to the light receiving side, and the back surface side protection member includes a protrusion on the back surface opposite to the plurality of solar battery cells and contacts the protrusion.
- the back part is provided.
- the back surface side protective member is provided with a protruding portion that protrudes on the side opposite to the light receiving side and contacts the back surface component attached to the back surface side of the back surface side protective member. Therefore, since the back surface component can be positioned by the protruding portion, the back surface component can be attached to the back surface side protection member with high positional accuracy.
- FIG. 3A It is a schematic cross section corresponding to FIG. 3A in the solar cell module of the modification of 1st Embodiment. It is a schematic cross section corresponding to FIG. 3A in the solar cell module of 2nd Embodiment. It is a schematic cross section corresponding to Drawing 3B in the solar cell module of a 2nd embodiment. It is a schematic cross section when the solar cell module of 3rd Embodiment is cut
- the side on which sunlight is mainly incident (over 50% to 100%) is defined as the light receiving side (front side), and the side opposite to the front side is defined as the back side.
- the X direction is a string extending direction described below and represents a column direction.
- the Y direction is a direction orthogonal to the X direction, and is an arrangement direction of strings arranged in a plurality of examples.
- the Z direction is the height direction of the solar cell module. As shown in FIGS. 2A and 2B below, the solar cell module of the present disclosure is curved. In this specification, the height direction of the solar cell module is defined as a vertical direction when the back side of the solar cell module is placed on a horizontal plane.
- the curved shape convex to the light receiving side is, for example, a curved shape convex to the light receiving side as a whole, but a curved shape with a part of a flat plate shape or a concave shape to the light receiving side.
- a curved shape that is a shape is included.
- both the front surface side protection member and the back surface side protection member may have a curved shape convex on the light receiving side, and only one of the front surface side protection member and the back surface side protection member receives light.
- the curved shape may be convex to the side.
- both the front surface side protection member and the back surface side protection member may be a flat plate shape that is not curved, and at least one of the front surface side protection member and the back surface side protection member is the light receiving side.
- a concave curved shape may be used.
- FIG. 1 is a schematic diagram showing the back side of the solar cell module 10 according to the first embodiment of the present disclosure.
- 2A is a schematic diagram when the solar cell module 10 is viewed from the direction indicated by the arrow A in FIG. 1
- FIG. 2B is a view when the solar cell module 10 is viewed from the direction indicated by the arrow B in FIG.
- FIG. 3A is a schematic cross-sectional view when the peripheral region of the terminal box 60 of the solar cell module 10 is cut by a cut surface including the X direction and the Z direction
- FIG. 3B illustrates the structure in the vicinity of the terminal box 60.
- It is a schematic cross section for doing. 2A and 2B the solar cell modules 10, 110, 210, and 310 of the present disclosure are curved. However, the solar cell modules 10, 110, 210, and 310 are approximately shown in a flat plate shape in the drawings of FIG. 3A and subsequent drawings showing local portions in the X direction of the solar cell modules 10, 110, 210, and 310.
- the solar cell module 10 has a substantially rectangular shape in plan view, and includes a terminal box 60 as an example of a back part on the back side in the Z direction.
- the solar cell module 10 is curved so that the light receiving side is convex
- the surface-side protection member 2 (see FIG. 3A) of the solar cell module 10 is convex so that the light receiving side is convex. It is curved.
- the back surface side protection member 3 (refer FIG. 3A) of the solar cell module 10 is also curved so that the light-receiving side may be convex.
- the center portion in the X direction and the center portion in the Y direction on the light receiving surface are located closest to the light receiving side in the Z direction.
- the solar cell module 10 includes a plurality of solar cells 1, a front surface side protection member 2, a back surface side protection member 3, a wiring material 4, and a sealing material that are made of a translucent material. 5 is provided.
- the solar battery cell 1 is made of a crystalline semiconductor made of, for example, single crystal silicon or polycrystalline silicon.
- the solar battery cell 1 has, for example, an n-type region and a p-type region, and a junction for generating an electric field for carrier separation is provided at an interface portion between the n-type region and the p-type region.
- the upper surface of the photovoltaic cell 1 has a substantially square shape, for example, it is not restricted to this.
- any known structure may be used, and any shape may be used.
- the surface-side protection member 2 is made of a translucent material, and is made of a translucent resin material such as translucent plastic.
- the surface side protection member 2 is provided on the light receiving side where light mainly enters the plurality of solar cells 1 and protects the front side of the solar cell module 10.
- the back surface side protection member 3 is provided in the opposite side to the said light reception side with respect to the several photovoltaic cell 1, for example, is comprised with a resin material etc.
- the back surface side protection member 3 may be translucent or non-translucent.
- the wiring member 4 electrically connects the electrode on the light receiving surface side of one solar cell 1 and the electrode on the back surface side of the other solar cell 1 in two solar cells 1 adjacent in the X direction.
- the wiring member 4 is attached to each electrode with an adhesive or the like.
- the wiring member 4 is preferably composed of, for example, a thin copper foil and solder plated on the surface of the copper foil, but may be composed of any other conductor.
- the sealing material 5 is filled between the front surface side protection member 2 and the back surface side protection member 3, and seals the plurality of solar cells 1 between the front surface side protection member 2 and the back surface side protection member 3.
- the sealing material 5 includes a front filler 5a and a back filler 5b, and the front filler 5a is disposed between the surface-side protection member 2 and the solar battery cell 1 whereas the back filler 5b. Is disposed between the solar battery cell 1 and the back surface side protection member 3.
- the front filler 5a is made of a material having excellent translucency
- the back filler 5b is made of a transparent or colored filler.
- the front filler 5a is made of a transparent filler
- the back filler 5b is made of a white filler that reflects light efficiently.
- the sealing material 5 includes the front filler 5a having excellent translucency and the back filler 5b having excellent light reflecting properties, the light utilization efficiency is improved.
- the sealing material may not be composed of two layers of the front filler and the back filler, and may be composed of only one layer. Alternatively, the sealing material may be composed of three or more layers of filler.
- the front filler 5a and the back filler 5b are laminated by being laminated by a laminating process performed at a temperature of about 100 to 160 ° C., for example.
- the front filler 5a is laminated on the front surface side protective member 2, and then the solar battery cell 1 and the wiring material 4 are placed thereon, and the back filler 5b and the back side protective member 3 are laminated thereon. Pressurize while heating and integrate.
- the plurality of solar cells 1 are arranged in a matrix.
- Two or more photovoltaic cells 1 arranged on the same straight line along the X direction are connected in series by a wiring member 4.
- the two or more solar cells 1 and the wiring member 4 connecting the two or more solar cells 1 in series constitute a string 55.
- the solar cell module 10 further includes a plurality of transition wiring members 30 extending in the Y direction.
- the solar cells 1 at one end of the X direction are connected in series using the cross wiring member 30, and all the solar cells 1 are connected in series.
- the solar cells 1a arranged on one side in the X direction and one side in the Y direction are arranged on the highest potential side.
- the solar cells 1b arranged on one side in the X direction and the other side in the Y direction are arranged on the lowest potential side.
- the solar cell 1a is disposed on the lowest potential side, and the solar cell 1b is disposed on the highest potential side.
- the case where the solar battery cell 1a is disposed on the highest potential side and the solar battery cell 1b is disposed on the lowest potential side will be described as an example.
- the plurality of transition wiring members 30 extending in the Y direction include five one-side transition wiring members 31 disposed on one side of the solar cell module 10 in the X direction (upper side in the drawing of FIG. 1).
- Each of the plurality of one-side crossover wiring members 31 constitutes an output wiring and is electrically connected to the diode terminal of the terminal box 60.
- the five one-side crossover wiring members 31 are arranged at intervals. Of the five one-side transition wiring members 31a, 31b, 31c, 31d, 31e, three one-side transition wiring members 31b, 31c, 31d also have a function of connecting two adjacent strings 55 in series.
- the one-side transition wiring member 31a is disposed on the rightmost side in the Y direction and is electrically connected to the high potential side of the string 55 on the highest potential side, and the one side transition wiring member 31b is from the right in the Y direction. It is arranged in the second column and is electrically connected to the lowest potential side of the second highest potential string 55.
- the one-side crossover wiring member 31c is arranged in the fourth column from the right in the Y direction and is electrically connected to the lowest potential side of the fourth highest potential string 55.
- the one-side crossover wiring member 31d is arranged in the sixth column from the right in the Y direction and is electrically connected to the lowest potential side of the sixth highest potential string 55.
- the one-side crossover wiring member 31e is arranged in the eighth column from the right in the Y direction and is electrically connected to the lowest potential side of the string 55 having the lowest potential.
- the terminal box 60 is attached to the back surface of the back surface side protection member 3.
- the back surface side protection member 3 is provided with one notch (not shown) as an example of a hole.
- each of the one-side transition wiring members 31a to 31e is electrically connected to each one-side transition wiring member 31a to 31e and is connected to the corresponding diode in the terminal box 60 via the wiring member passing through the cut. Electrically connected to the terminal.
- the back surface side protection member may be provided with a plurality of through holes instead of one cut, and each connection wiring may pass through any of the through holes. Between the diode terminals in the terminal box 60, bypass diodes 51a to 51d (existing in the terminal box 60 and not actually visible) are provided for suppressing the output decrease.
- the amount of power generated by the solar cell 1 may be reduced and heat may be generated.
- the bypass diodes 51a to 51d By providing the bypass diodes 51a to 51d, the two strings 55 connected in series including the solar cells 1 whose power generation amount has been reduced are short-circuited by the bypass diodes 51a to 51d. As a result, almost no current flows through the two strings 55, and damage to the solar battery cell 1 due to heat generation is suppressed.
- the electric power from the solar cell module 10 is taken out by the two power supply wiring members 61 and 62 electrically connected to the terminals of the terminal box 60. In FIG.
- the wiring member 35 passes through the notch 37 provided on the back surface side protection member 3 and the hole 38 provided on the back surface side protection member 3 side of the terminal box 60 and is connected to the diode terminal 51 in the terminal box 60. Is done.
- FIG. 3A only one one-side transition wiring member 31 is shown for easy understanding of the connection structure using the one-side transition wiring member 31.
- the back surface side protection member 3 includes a protruding portion 50, and the protruding portion 50 protrudes on the opposite side to the light receiving side and contacts the side surface 60b of the terminal box 60.
- the inner peripheral surface 50 a of the protrusion 50 has a shape corresponding to the outer peripheral surface 60 a on the back surface side protection member 3 side of the terminal box 60, and the protrusion 50 surrounds the periphery of the terminal box 60 over the entire periphery.
- the protrusion 50 constitutes an outer annular portion that surrounds the entire periphery of the terminal box 60.
- the outer peripheral surface 60a of the terminal box 60 is press-fitted without a gap in a state having a tightening margin on the inner peripheral surface 50a of the protruding portion 50. As a result, the outer peripheral surface 60 a of the terminal box 60 is positioned with high accuracy by the inner peripheral surface 50 a of the protruding portion 50.
- FIG. 4A is a schematic cross-sectional view corresponding to FIG. 3A in the solar cell module 510 of the reference example
- FIG. 4B is a schematic cross-sectional view corresponding to FIG. 3B in the solar cell module 510.
- the solar cell module 510 of the reference example is different from the solar cell module 10 in the following three points. That is, in the solar cell module 510, the back surface side protection member 503 does not have a protruding portion that protrudes on the side opposite to the light receiving side. Further, the solar cell module 510 has an annular potting material 530 made of silicon resin or the like around the solar cell module 510 side of the terminal box 560, and the terminal box 560 is an annular potting material 530 and is a back surface side protective member. 503 is attached. Further, the solar cell module 510 is filled with a potting material 531 made of silicon resin or the like in the terminal box 560.
- the terminal box 560 is disposed in the solar cell module 510 as follows, for example. Referring to FIG. 4B, first, in the terminal box 560, the main body portion 560a other than the lid portion 560b is brought into contact with the back surface of the back surface side protection member 503 with a jig (not shown) and positioned. After that, the potting material 530 is disposed so as to surround the periphery of the back side protection member 503 side of the terminal box 560, the jig is removed, and an electronic component such as a diode is electrically connected in the main body 560a of the terminal box 560. To do.
- the inside of the main body 560 a of the terminal box 560 is filled with the potting material 531, the lid 560 b is attached to the main body 560 a, and the attachment of the terminal box 560 to the back surface side protection member 503 is completed.
- a jig is required when positioning the terminal box 560 on the back surface of the back surface side protection member 503. Therefore, positioning of the back surface side protection member 503 with respect to the back surface is not easy.
- the potting material 530 is disposed so as to surround the periphery of the terminal box 560 on the back surface side protection member 503 side.
- the dew condensation water or the like generated on the back surface side protection member 503 side is indicated by an arrow D in FIG. And enters the terminal box 560 through the gap. Therefore, even if the inside of the terminal box 560 is filled with the potting material 531 and condensed water or the like passes through the gap portion, it is necessary to prevent the electronic components in the terminal box 560 from coming into contact with moisture and deteriorating.
- filling the potting material 531 into the terminal box 560 becomes indispensable, the material cost of the potting material 531 increases, and the manufacturing cost of the solar cell module 510 increases.
- the terminal box 560 is easy to move, and the terminal box 560 may be displaced until the potting material 531 is cured.
- the solar cell module 10 of the first embodiment is provided on the plurality of solar cells 1 and the light receiving side on which light mainly enters the plurality of solar cells 1 so that the light receiving side is convex.
- the surface-side protection member 2 is curved.
- the solar cell module 10 is provided with the back surface side protection member 3 which is provided in the opposite side to the light-receiving side with respect to the several photovoltaic cell 1, and curves so that the several photovoltaic cell 1 side may become convex.
- the terminal box 60 is attached to the back surface 15 on the back surface 15 opposite to the plurality of solar battery cells 1 in the back surface side protection member 3, a protruding portion 50 that comes into contact with the terminal box 60 is provided. ing.
- the mounting position of the terminal box 60 can be positioned without using a jig at the time of manufacture by the protruding portion 50 protruding to the side opposite to the light receiving side in the back surface side protection member 3. Further, after the terminal box 60 is attached, the movement of the terminal box 60 can be suppressed. Therefore, the terminal box 60 can be easily attached to the back surface side protection member 3 in a short time. In addition, the formed solar cell module 10 tends to be of high quality.
- the back surface part may be the terminal box 60, and the protrusion 50 may contact at least a part of the side surface of the terminal box 60.
- an outer annular portion surrounded by the protruding portion 50 may be included around the entire circumference of the terminal box 60.
- the outer peripheral surface 60a of the terminal box 60 can be press-fitted without gaps in a state where the inner peripheral surface 50a of the protruding portion 50 has a tightening margin. Therefore, the outer peripheral surface 60a of the terminal box 60 can be positioned remarkably easily and accurately only by the inner peripheral surface 50a of the protruding portion 50 without using a jig. Furthermore, since the annular protrusion 50 can prevent dew condensation water or the like from entering the gap between the terminal box 60 and the back surface side protection member 3 in the entire area around the terminal box 60, the dew condensation water or the like can enter the terminal box 60. There is no intrusion.
- the electronic components in the terminal box 60 do not deteriorate due to contact with the dew condensation water or the like outside the terminal box 60, it is not necessary to fill the terminal box 60 with a potting material. As a result, the material cost of the potting material can be reduced. Moreover, the attachment time of the terminal box 60 with respect to the back surface side protection member 3 can also be reduced, and the cycle time of manufacture of the solar cell module 10 can also be shortened.
- the potting material may be arranged on the entire circumference around the terminal box 60 or a part in the circumferential direction so as to cover the contact portion between the terminal box 60 and the annular projecting portion 50. May be reliably prevented from entering the terminal box 60.
- the protrusion 150 may protrude from the back surface side protection member 103 in the form shown in FIG. Further, the protruding portion 150 may surround a portion of the side surface of the terminal box 60 on the back surface side protection member 103 side over the entire circumference. Then, the end surface 150 a on the front end side of the protruding portion 150 may be smoothly connected to the edge of the back surface 115 of the back surface side protection member 103, and a concave guide with a small thickness may be provided on the back surface side protection member 103. Then, the terminal box 60 may be accurately positioned on the back surface side protection member 103 by press-fitting the terminal box 60 into the concave guide.
- the end surface 150 a on the front end side of the protrusion 150 is smoothly connected to the edge of the back surface 115 of the back surface protection member 103. Therefore, for example, by providing a concave guide in a resin material such as CFRP (carbon fiber reinforced resin) by press molding or the like, the annular protrusion 150 can be formed on the back surface side protection member 103 easily and inexpensively. Therefore, the terminal box 60 can be accurately positioned on the back surface side protection member 103 at low cost.
- CFRP carbon fiber reinforced resin
- the protrusion 50 is annular and the protrusion 50 covers the entire circumference of the terminal box 60 has been described.
- the protrusion may be disposed only in a part of the terminal box in the circumferential direction, or may contact the side surface of the terminal box 60 only in a part of the circumferential direction around the terminal box.
- solar cell modules are often used in a state where the back surface of the solar cell module is not parallel to the horizontal plane. Therefore, the terminal box attached to the back surface of the solar cell module is inclined with respect to the horizontal plane.
- the edge part located in the downward side in the installed solar cell module does not need to be covered with a protrusion part.
- the protrusions may be spaced apart from only the four corners of the terminal box, and the terminal box may be positioned using only the protrusions at the four corners.
- a protrusion part may be arrange
- FIG. 6A is a schematic cross-sectional view corresponding to FIG. 3A in the solar cell module 210 of the second embodiment
- FIG. 6B is a schematic cross-sectional view corresponding to FIG. 3B in the solar cell module 210.
- descriptions of the same operational effects and modifications as those in the first embodiment are omitted, and the same configurations as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment. Description is omitted.
- the solar cell module 210 has a hole 38 in the bottom plate portion 68 of the terminal box 60, and the electric power generated by the solar battery cell 1 passes through the wiring member 35 that passes through the hole 38. It is transmitted to the diode terminal 51. Further, in the solar cell module 210, the outer peripheral surface 250 a of the annular projecting portion 250 that projects to the opposite side of the light receiving side in the back surface side protection member 203 extends along the inner peripheral surface 38 a of the hole portion 38 over the entire circumference. And is fitted into the inner peripheral surface 38a. The wiring member 35 passes through a hole 239 provided on the radially inner side of the annular protrusion 250.
- the protrusion 250 constitutes an inner annular portion that is disposed on the inner peripheral surface 38a of the hole portion 38 so as to extend along the entire inner peripheral surface 38a and is fitted into the inner peripheral surface 38a.
- the outer peripheral surface 250a of the protruding portion 250 is press-fitted without a gap in a state of having a tightening margin on the inner peripheral surface 38a of the hole portion 38 of the terminal box 60.
- the inner peripheral surface 38 a of the terminal box 60 is positioned by the outer peripheral surface 250 a of the protrusion 250.
- the back part is the terminal box 60.
- generated by the several photovoltaic cell 1 to the diode terminal 51 in the terminal box 60 passes in the bottom part by the side of the back surface side protection member 203 of the terminal box 60.
- the protrusion 250 includes an inner annular portion that is disposed along the inner peripheral surface 38a of the hole 38 along the entire circumference and is fitted into the inner peripheral surface 38a.
- the inner peripheral surface 38a of the hole portion 38 of the terminal box 60 can be press-fitted without gaps with the outer peripheral surface 250a of the protruding portion 250 having a tightening margin. Therefore, the terminal box 60 can be easily and accurately positioned only by the outer peripheral surface 250a of the protrusion 250 without using a jig.
- the inner peripheral surface 38 a of the hole 38 of the terminal box 60 is covered with the outer peripheral surface 250 a of the protruding portion 250 over the entire periphery. Therefore, even if condensed water or the like enters the gap between the terminal box 60 and the back surface side protection member 203 in the direction indicated by the arrow E in FIG. 6B, the condensed water or the like is prevented from passing through the hole 38 by the protruding portion 250.
- the dew condensation water or the like does not enter the terminal box 60. Therefore, since the electronic components in the terminal box 60 do not deteriorate due to contact with the dew condensation water or the like outside the terminal box 60, it is not necessary to fill the terminal box 60 with a potting material. As a result, the material cost of the potting material can be reduced. In addition, the time for attaching the terminal box 60 to the back surface side protection member 203 can be reduced, and the cycle time for manufacturing the solar cell module 210 can be shortened.
- the positioning of the terminal box 60 with high accuracy and the penetration of the condensed water and the like into the terminal box 60 can be achieved simply by disposing the protruding portion 250 so as to cover the entire inner peripheral surface 38a of the hole 38. Can be prevented. Therefore, in comparison with the first embodiment, since the region where the protrusion 250 is provided can be reduced, the manufacturing cost can be reduced and the manufacturing cycle time can be easily shortened.
- FIG. 7A is a schematic cross-sectional view when the solar cell module 310 of the third embodiment is cut along a cut surface including the X direction and the Z direction
- FIG. 7B shows the solar cell module 410 of the fourth embodiment. It is a schematic cross section when it cut
- the protruding portion 350 that protrudes from the back surface side protection member 303 to the back side and positions the terminal box 60 overlaps the solar cell 301 when viewed from the height direction.
- the protruding portion 450 that protrudes from the back surface side protection member 403 to the back side and positions the terminal box 60 is formed in the solar cell 401 when viewed from the height direction. Do not overlap.
- the back surface side protective member of the solar cell module is provided with a protruding portion that protrudes on the side opposite to the light receiving side, a portion that is excessively compressed at the time of lamination or a location where the pressure is insufficient occurs, There is a risk that bubbles may occur.
- the laminated component parts in the solar cell module are heated and the laminated component parts are compressed. Therefore, as shown by arrows F, G, H, and I in FIGS. 7A and 7B, in the back surface side protection members 303 and 403, the locations where the protrusions 350 and 450 are provided are compared with other locations. , The compression pressure increases and, in some cases, excessive pressure.
- the protrusion 450 does not overlap the solar cell 401 when viewed from the height direction.
- the solar cell module 410 is less likely to be applied to the solar cell 401 than the solar cell module 310 in which the protruding portion 350 overlaps the solar cell 301, and the solar cell 401 is damaged. Hateful.
- the solar cell module 410 is less likely to act on the solar cell 401 than the solar cell module 310, bubbles are less likely to be generated in the solar cell module 410.
- a resin material having translucency is exemplified as the material for the front surface side protection member and the back surface side protection member. Since the resin material is light and easy to process, there are many advantages in manufacturing, but a light-transmitting inorganic material such as glass can also be used.
- the back part is the terminal box 60
- the back part is not limited to this. It may be a general metal fitting for hanging other members on the back surface side protection member, and includes a general metal fitting in a protruding portion provided on the back surface side protection member and protruding to the side opposite to the light receiving side. A desired component or the like may be accurately positioned on the back surface side protection member.
- the solar cell module 10,110,210,310,410 demonstrated the case where it did not have a flame
- the entire solar cell module has a curved shape, but the solar cell module may have a flat rectangular shape.
- the solar cell module is often installed with being inclined with respect to a horizontal plane. Therefore, by adopting the configuration of the above embodiment and the modified example, it is possible not only to easily attach the back part, but also to prevent moisture from entering the terminal box when the back part is a terminal box.
- a new embodiment may be configured by combining two or more of the configurations described in the first to fourth embodiments and all the modified examples.
- the protrusion may include the annular protrusion 50 described in the first embodiment and the annular protrusion 250 described in the second embodiment.
- a protrusion part may also contain the protrusion part 150 of the modification demonstrated in FIG. 5, and the protrusion part 250 demonstrated in 2nd Embodiment.
- the protrusions of the first embodiment, the second embodiment, and the modification described in FIG. 5 do not have to overlap the solar battery cells when viewed from the height direction. Moreover, when providing a protrusion part in the circumference
Landscapes
- Photovoltaic Devices (AREA)
Abstract
太陽電池モジュール10が、複数の太陽電池セル1、複数の太陽電池セル1に対して光が主に入射する受光側に設けられた表面側保護部材2、及び複数の太陽電池セル1に対して受光側とは反対側に設けられた裏面側保護部材3を備えるようにする。裏面側保護部材3が、複数の太陽電池セル1側とは反対側の裏面に突出部50を備えるようにする。端子ボックス60を突出部50に接触するように設ける。
Description
本開示は、太陽電池モジュールに関する。
太陽電池モジュールでは、複数の太陽電池セルが、光が主に入射する側に配設される表面側保護部材と、表側とは反対側に配設される裏面側保護部材とで保護される。裏面側保護部材には、スリットが設けられ、端子ボックスが取り付けられる。太陽電池モジュールは、複数の太陽電池セルで生成された電力を裏面側保護部材の外側に取り出す出力配線を備える。当該出力配線は、上記スリットを通過した後、端子ボックス内の端子に電気的に接続される。太陽電池モジュールからの電力は、端子ボックスの端子に電気的に接続された2つの電力供給配線によって外部に取り出される。
太陽電池モジュールにおいて、裏面側保護部材に端子ボックスを取り付ける際には、例えば、治具を用いて端子ボックスを裏面側保護部材に位置決めする。そして、端子ボックスの裏面側保護部材側の周囲をシリコン樹脂等で構成されるポッティング材で覆い、更に、特許文献1に記載されているように、端子ボックス内にポッティング材を充填する。このようにして、端子ボックスを裏面側保護部材に取り付けると共に、ポッティング材で端子ボックス内の電子部品が水に接触することを防止し、電子部品が水との接触で劣化することを防止する。
太陽電池モジュールの裏面側保護部材には、端子ボックスに限らず、一般的な金具等が取り付けられることがあるが、裏面側保護部材にこれらの裏面部品を位置精度良く取り付けできると好ましい。
そこで、本開示の目的は、裏面側保護部材に裏面部品を位置精度良く取り付けできる太陽電池モジュールを提供することにある。
本開示に係る太陽電池モジュールは、複数の太陽電池セルと、複数の太陽電池セルに対して光が主に入射する受光側に設けられた表面側保護部材と、複数の太陽電池セルに対して受光側とは反対側に設けられた裏面側保護部材と、を備え、表面側保護部材は、透光性を有する樹脂材料からなり、裏面側保護部材は、複数の太陽電池セル側とは反対側の裏面に突出部を備え、突出部に接触するように裏面部品が設けられている、太陽電池モジュールである。
また、本開示に係る太陽電池モジュールは、複数の太陽電池セルと、複数の太陽電池セルに対して光が主に入射する受光側に設けられた表面側保護部材と、複数の太陽電池セルに対して受光側とは反対側に設けられた裏面側保護部材と、を備え、裏面側保護部材は、複数の太陽電池セル側とは反対側の裏面に突出部を備え、突出部に接触するように裏面部品が設けられている。
本開示に係る太陽電池モジュールによれば、受光側とは反対側に突出して裏面側保護部材の裏面側に取り付けられる裏面部品に接触する突出部が、裏面側保護部材に設けられる。したがって、突出部で裏面部品を位置決めできるので、裏面側保護部材に裏面部品を位置精度良く取り付けできる。
以下に、本開示に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。
また、以下の説明では、太陽電池モジュールにおいて、太陽光が主に入射(50%超過~100%)する側を受光側(表側)とし、表側とは反対側を裏側とする。
また、以下の説明及び図面の記載において、X方向は、以下で説明するストリングの延在方向であり、列方向を表す。また、Y方向は、X方向に直交する方向であり、複例に配設されたストリングの並び方向である。また、Z方向は、太陽電池モジュールの高さ方向である。以下の図2A,図2Bで示すように、本開示の太陽電池モジュールは、湾曲している。本明細書では、太陽電池モジュールの高さ方向を、太陽電池モジュールの裏側を水平面に載置したときの鉛直方向として定義する。
また、本明細書で、受光側に凸の湾曲形状といった場合、全てが受光側に凸の湾曲形状である場合が含まれるのは勿論、全体的に受光側に凸の湾曲形状が含まれるものとする。そして、受光側に凸の湾曲形状には、例えば、全体的に受光側に凸の湾曲形状であるが、一部の形状が平板形状である湾曲形状や一部の形状が受光側に凹の形状である湾曲形状が含まれるものとする。なお、本開示の太陽電池モジュールでは、表面側保護部材と裏面側保護部材の両方が、受光側に凸の湾曲形状でもよく、表面側保護部材と裏面側保護部材のうちの一方のみが、受光側に凸の湾曲形状でもよい。又は、本開示の太陽電池モジュールでは、表面側保護部材と裏面側保護部材の両方が、湾曲していない平板形状でもよく、表面側保護部材と裏面側保護部材のうちの少なくとも一方が、受光側に凹の湾曲形状でもよい。
また、本明細書において、「略~」との記載は、「略同一」を例に挙げて説明すると、完全に同一はもとより実質的に同一と認められるものを含む意図である。また、「第1の部材上に第2の部材を設ける」等の記載は、特に限定を付さない限り、第1及び第2の部材が直接接触して設けられる場合のみを意図しない。この記載は、第1及び第2の部材の間に他の部材が存在する場合を含むものである。
図1は、本開示の第1実施形態に係る太陽電池モジュール10の裏側を示す模式図である。また、図2Aは、太陽電池モジュール10を図1に矢印Aで示す方向から見たときの模式図であり、図2Bは、太陽電池モジュール10を図1に矢印Bで示す方向から見たときの模式図である。また、図3Aは、太陽電池モジュール10の端子ボックス60周辺領域を、X方向及びZ方向を含む切断面で切断したときの模式断面図であり、図3Bは、端子ボックス60付近の構造を説明するための模式断面図である。なお、図2A,図2Bで説明するように、本開示の太陽電池モジュール10,110,210,310は湾曲している。しかし、太陽電池モジュール10,110,210,310のX方向の局所的な一部を示す図3A以下の図では、太陽電池モジュール10,110,210,310を近似的に平板状に示す。
図1に示すように、太陽電池モジュール10は、平面視において略矩形の形状を有し、Z方向の裏側に裏面部品の一例としての端子ボックス60を備える。図2A,図2Bに示すように、太陽電池モジュール10は、受光側が凸になるように湾曲し、太陽電池モジュール10の表面側保護部材2(図3A参照)は、受光側が凸になるように湾曲している。また、太陽電池モジュール10の裏面側保護部材3(図3A参照)も、受光側が凸になるように湾曲している。図2A,図2Bに示すように、太陽電池モジュール10では、受光面におけるX方向の中央部及びY方向の中央部が、最もZ方向受光側に位置している。
図3Aに示すように、太陽電池モジュール10は、複数の太陽電池セル1、透光性を有する材料で構成される表面側保護部材2、裏面側保護部材3、配線材4、及び封止材5を備える。
太陽電池セル1は、例えば、単結晶シリコンや多結晶シリコン等で構成される結晶系半導体からなる。太陽電池セル1は、例えば、n型領域とp型領域を有し、n型領域とp型領域の界面部分には、キャリア分離用の電界を生成するための接合部が設けられる。太陽電池セル1の上面は、例えば、略正方形の形状を有するが、これに限らない。太陽電池セル1として、公知の如何なる構造のものを用いてもよく、如何なる形状のものを用いてもよい。
表面側保護部材2は透光性を有する材料からなり、透光性を有する樹樹脂材料、例えば透光性プラスチック等で構成される。表面側保護部材2は、複数の太陽電池セル1に対して光が主に入射する受光側に設けられ、太陽電池モジュール10の表側を保護する。また、裏面側保護部材3は、複数の太陽電池セル1に対して上記受光側とは反対側に設けられ、例えば樹脂材料等で構成される。裏面側保護部材3は、透光性であってもよく、非透光性であってもよい。
配線材4は、X方向に隣り合う2つの太陽電池セル1における一方の太陽電池セル1の受光面側の電極と、他方の太陽電池セル1の裏面側の電極とを電気的に接続する。配線材4は、各電極に接着剤等で取り付けられる。配線材4は、例えば、薄板状の銅箔と、銅箔の表面にメッキされた半田とで好適に構成されるが、それ以外の如何なる導体で構成されてもよい。
封止材5は、表面側保護部材2と裏面側保護部材3との間に充填され、複数の太陽電池セル1を表面側保護部材2と裏面側保護部材3との間に封止する。封止材5は、表充填材5aと、裏充填材5bとを含み、表充填材5aが表面側保護部材2と太陽電池セル1との間に配置されるのに対し、裏充填材5bは太陽電池セル1と裏面側保護部材3との間に配置される。表充填材5aは、透光性に優れる材質で構成され、裏充填材5bは、透明または着色された充填材で構成される。例えば、表充填材5aは、透明の充填材で構成され、裏充填材5bは、光を効率的に反射する白色の充填材で構成される。封止材5が、透光性に優れる表充填材5aと、光を反射する性質に優れる裏充填材5bとを含むので、光の利用効率が向上する。なお、封止材は、表充填材と、裏充填材の2層で構成されなくてもよく、1つのみの層で構成されてもよい。又は、封止材は、3層以上の充填材で構成されてもよい。
表充填材5aと裏充填材5bは、例えば、100~160℃程度の温度で実行されるラミネート加工で貼り合わされて積層される。例えば、表面側保護部材2に表充填材5aを積層し、その後、太陽電池セル1および配線材4を載置し、その上に裏充填材5b、裏面側保護部材3を積層し、この状態で加熱しながら加圧して、一体化する。なお、裏面側保護部材3上に、裏充填材5b、太陽電池セル1および配線材4、表充填材5a、表面側保護部材2を積層して、加熱しながら加圧してもよい。
再度、図1を参照して、複数の太陽電池セル1は、マトリクス状配置される。X方向に沿って同一の直線上に配置された2以上の太陽電池セル1は、配線材4によって直列に接続される。当該2以上の太陽電池セル1と、その2以上の太陽電池セル1を直列に接続する配線材4とは、ストリング55を構成する。
太陽電池モジュール10は、更にY方向に延在する複数の渡り配線材30を有する。Y方向に隣り合う2つのストリング55においてX方向片側の端にある太陽電池セル1同士が渡り配線材30を用いて直列に接続され、全ての太陽電池セル1が直列に接続される。その結果、例えば、X方向の一方側かつY方向の一方側(紙面における最も上側かつ右側)に配設される太陽電池セル1aが最も高電位側に配設される。また、X方向の一方側かつY方向の他方側(紙面における最も上側かつ左側)に配設される太陽電池セル1bが最も低電位側に配設される。なお、太陽電池セル1の極性によっては、太陽電池セル1aが最も低電位側に配設され、太陽電池セル1bが最も高電位側に配設される。以下、太陽電池セル1aが最も高電位側に配設され、太陽電池セル1bが最も低電位側に配設される場合を例に説明を行う。
Y方向に延在する複数の渡り配線材30には、太陽電池モジュール10のX方向一方側(図1の紙面における上側)に配設される5つの一方側渡り配線材31が含まれる。複数の一方側渡り配線材31の夫々は、出力配線を構成し、端子ボックス60のダイオード端子に電気的に接続される。5つの一方側渡り配線材31は、互いに間隔をおいて配置される。5つの一方側渡り配線材31a,31b,31c,31d,31eのうちの3つの一方側渡り配線材31b,31c,31dは、隣り合う2つのストリング55を直列に接続する機能も有する。一方側渡り配線材31aは、Y方向で最も右側に配設されて最も高電位側にあるストリング55の高電位側に電気的に接続され、一方側渡り配線材31bは、Y方向で右から2列目に配設されて2番目に高電位のストリング55の最も低電位側に電気的に接続される。また、一方側渡り配線材31cは、Y方向で右から4列目に配設されて4番目に高電位のストリング55の最も低電位側に電気的に接続される。また、一方側渡り配線材31dは、Y方向で右から6列目に配設されて6番目に高電位のストリング55の最も低電位側に電気的に接続される。また、一方側渡り配線材31eは、Y方向で右から8列目に配設されて最も低い電位のストリング55の最も低電位側に電気的に接続される。
端子ボックス60は、裏面側保護部材3の裏面に取り付けられる。裏面側保護部材3には、孔部の一例としての図示しない1つの切込みが設けられる。図示しないが、一方側渡り配線材31a~31eの夫々は、各一方側渡り配線材31a~31eに電気的に接続されて上記切込みを通過する配線材を介して端子ボックス60内の対応するダイオード端子に電気的に接続される。なお、裏面側保護部材に、1つの切り込みの代わりに複数の貫通孔を設けて、各接続配線を、いずれかの貫通孔を通過させる構成でもよい。端子ボックス60内のダイオード端子間には、出力低下を抑制するためのバイパスダイオード51a~51d(端子ボックス60内に存在し、実際には視認できない)が設けられる。落ち葉等の遮光物が特定の太陽電池セル1を覆うと、その太陽電池セル1の発電量が低下して発熱する恐れがある。バイパスダイオード51a~51dを設けることで発電量が低下した太陽電池セル1を含んで直列に接続された2つのストリング55が、バイパスダイオード51a~51dによって短絡される。その結果、当該2つのストリング55に電流が略流れなくなり、発熱による太陽電池セル1の損傷が抑制される。太陽電池モジュール10からの電力は、端子ボックス60の端子に電気的に接続された2つの電力供給配線材61,62によって外部に取り出される。図3Aには、X方向一方側の太陽電池セル1が、配線材4、一方側渡り配線材31、及び配線材35を介して端子ボックス60内のダイオード端子51に電気的に接続される様子が図示されている。配線材35は、裏面側保護部材3に設けられた切欠37と、端子ボックス60の裏面側保護部材3側に設けられた孔部38を通過して、端子ボックス60内のダイオード端子51に接続される。なお、図3Aでは、一方側渡り配線材31を用いた接続構造を分かり易く説明するため、1つの一方側渡り配線材31のみが図示されている。
図3Bに示すように、裏面側保護部材3は突出部50を含み、突出部50は、受光側とは反対側に突出して端子ボックス60の側面60bに接触する。突出部50の内周面50aは、端子ボックス60の裏面側保護部材3側の外周面60aに対応する形状を有し、突出部50は、端子ボックス60の周囲を全周に亘って取り囲む。突出部50は、端子ボックス60の周囲を全周に亘って取り囲む外側環状部を構成する。端子ボックス60の外周面60aは、突出部50の内周面50aに締め代を有した状態で隙間なく圧入される。その結果、端子ボックス60の外周面60aは、突出部50の内周面50aで精度良く位置決めされる。
図4Aは、参考例の太陽電池モジュール510における図3Aに対応する模式断面図であり、図4Bは、太陽電池モジュール510における図3Bに対応する模式断面図である。次に、図3A~図4Bを用いて、参考例の太陽電池モジュール510に対する第1実施形態の太陽電池モジュール10の優位性について説明する。
図4A,図4Bを参照して、参考例の太陽電池モジュール510は、次の3つの点で太陽電池モジュール10と異なる。すなわち、太陽電池モジュール510は、裏面側保護部材503が、受光側とは反対側に突出する突出部を有さない。また、太陽電池モジュール510は、端子ボックス560の太陽電池モジュール510側の周囲にシリコン樹脂等で構成される環状のポッティング材530を有し、端子ボックス560が環状のポッティング材530で裏面側保護部材503に取り付けられる。また、太陽電池モジュール510は、端子ボックス560内がシリコン樹脂等で構成されるポッティング材531で充填される。
端子ボックス560は、例えば、次のように太陽電池モジュール510に配設される。図4Bを参照して、先ず、端子ボックス560において蓋部560b以外の本体部560aを図示しない治具で裏面側保護部材503の裏面に接触させて位置決めする。その後、ポッティング材530を端子ボックス560の裏面側保護部材503側の周囲を取り囲むように配置し、上記治具を取り外し、端子ボックス560の本体部560a内でダイオード等の電子部品を電気的に接続する。最後に、端子ボックス560の本体部560a内をポッティング材531で充填し、本体部560aに蓋部560bを取り付け、裏面側保護部材503への端子ボックス560の取り付けを完了する。
参考例の端子ボックス560では、端子ボックス560を裏面側保護部材503の裏面に位置決めする際、治具が必要になる。したがって、裏面側保護部材503の裏面に対する位置決めが容易でない。
また、ポッティング材530が端子ボックス560の裏面側保護部材503側の周囲を取り囲むように配設される。しかし、端子ボックス560と裏面側保護部材503との間にポッティング材530で塞がれない隙間部分が生じると、裏面側保護部材503側で生じた結露水等が図4Bに矢印Dで示す方向に当該隙間部分を通過して端子ボックス560内に浸入する。したがって、端子ボックス560内をポッティング材531で充填し、結露水等が当該隙間部分を通過しても、端子ボックス560内の電子部品が水分に接触して劣化しないようにする必要がある。その結果、端子ボックス560内へのポッティング材531の充填が必要不可欠となって、ポッティング材531の材料費が増大し、太陽電池モジュール510の製造コストが大きくなる。
更には、端子ボックス560内に充填するポッティング材531が硬化するまでの時間も必要になる。したがって、裏面側保護部材503への端子ボックス560の取り付けに要する時間を削減しにくい。また、端子ボックス560が動き易く、ポッティング材531が硬化するまでの間に端子ボックス560が位置ずれを起こす恐れがある。
これに対し、第1実施形態の太陽電池モジュール10は、複数の太陽電池セル1と、複数の太陽電池セル1に対して光が主に入射する受光側に設けられ、受光側が凸になるように湾曲する表面側保護部材2を備える。また、太陽電池モジュール10は、複数の太陽電池セル1に対して受光側とは反対側に設けられ、複数の太陽電池セル1側が凸になるように湾曲する裏面側保護部材3を備える。また、裏面側保護部材3における複数の太陽電池セル1側とは反対側の裏面15に、その裏面15に端子ボックス60が取り付けられた場合にその端子ボックス60に接触する突出部50が設けられている。
したがって、裏面側保護部材3において受光側とは反対側に突出する突出部50によって、製造時に、治具を用いることなく端子ボックス60の取り付け位置を位置決めできる。また、端子ボックス60の取り付け後には、端子ボックス60の移動を抑制できる。よって、裏面側保護部材3に端子ボックス60を短時間で容易に取り付けできる。加えて、形成される太陽電池モジュール10が高品質なものになり易い。
また、本実施形態のように、裏面部品が、端子ボックス60であり、突出部50が、端子ボックス60の側面の少なくとも一部に接触してもよい。
この場合、結露水等が、裏面側保護部材3の裏面を伝って、突出部50における端子ボックス60との接触箇所に到達しても、端子ボックス60の外側において、突出部50によって、結露水等が端子ボックス60と裏面側保護部材3の隙間に浸入することを抑制できる。よって、結露水等が端子ボックス60内に浸入しにくくなり、端子ボックス60内の電子部品の水分による劣化を抑制できる。
更には、本実施形態のように、端子ボックス60の周囲を全周に亘って、突出部50が取り囲む外側環状部を含んでもよい。
この場合、端子ボックス60及び外側環状部の寸法の調整によって、端子ボックス60の外周面60aを、突出部50の内周面50aに締め代を有した状態で隙間なく圧入できる。したがって、端子ボックス60の外周面60aを、治具を用いずに突出部50の内周面50aのみで格段に容易かつ精度良く位置決めできる。更には、環状の突出部50で端子ボックス60の周囲の全領域で結露水等が端子ボックス60と裏面側保護部材3の隙間に浸入することを防止できるので、結露水等が端子ボックス60内に浸入することがない。よって、端子ボックス60内の電子部品が端子ボックス60外の結露水等に接触して劣化することがないため、端子ボックス60内にポッティング材を充填する必要がない。その結果、ポッティング材の材料費を低減できる。また、裏面側保護部材3に対する端子ボックス60の取り付け時間も削減でき、太陽電池モジュール10の製造のサイクルタイムも短くできる。
なお、第1実施形態では、ポッティング材を端子ボックス60の周囲に配置しない場合について説明した。しかし、端子ボックス60と環状の突出部50の接触部を覆うようにポッティング材を端子ボックス60の周囲の全周、又は周方向の一部に配置してもよく、端子ボックス60の外側の水分が端子ボックス60内に浸入することを確実に防止してもよい。
また、環状の突出部50が畝状の突起であって、当該畝状の突起である突出部50によって、端子ボックス60が位置決めされる場合について説明した。しかし、図5に示すような形態で、突出部150が裏面側保護部材103から突出してもよい。また、突出部150が、端子ボックス60の側面の裏面側保護部材103側の部分を全周に亘って取り囲んでもよい。そして、突出部150の先端側の端面150aが、裏面側保護部材103の裏面115の縁部に滑らかにつながってもよく、裏面側保護部材103に肉厚が小さい凹ガイドを設けてもよい。そして、凹ガイドに端子ボックス60を圧入することによって端子ボックス60を裏面側保護部材103に精度良く位置決めしてもよい。
この変形例によれば、突出部150の先端側の端面150aが、裏面側保護部材103の裏面115の縁部に滑らかにつながる。したがって、例えば、CFRP(炭素繊維強化樹脂)等の樹脂材にプレス成形等で凹ガイドを設けることで、裏面側保護部材103に簡単安価に環状の突出部150を形成できる。よって、簡単安価に端子ボックス60を裏面側保護部材103に精度良く位置決めできる。
また、突出部50が環状であり、突出部50で端子ボックス60の全周を覆う場合について説明した。しかし、突出部は端子ボックスの周方向の一部のみに配置されてもよく、端子ボックスの周囲における周方向の一部の領域のみで端子ボックス60の側面に接触してもよい。例えば、太陽電池モジュールは、太陽電池モジュールの裏面が水平面に対して平行ではない状態で使用されることが多い。従って、太陽電池モジュールの裏面に取り付けられた端子ボックスは、水平面に対して傾斜した状態となる。雨水や結露水は、重力によって裏面側保護部材を高い位置から低い位置に流動し易いので、水平面に対して傾斜して取り付けられている端子ボックスにおいては、周のうち、より高い位置において結露水等の水分が端子ボックスに浸入しやすい。従って、設置された太陽電池モジュールにおいて下方側に位置する縁部を突出部で覆わなくてもよい。ただし、この場合、太陽電池モジュールにおいて突出部で覆われない下方側縁部がポッティング材で覆われると好ましい。又は、突出部を、端子ボックスの四隅のみに離間配置して、四隅の突出部だけで端子ボックスの位置決めを行ってもよい。
なお、端子ボックスの周方向の一部のみに突出部を配置する場合、突出部は、端子ボックスの周方向のいずれの部分に配設されてもよい。この場合においても、端子ボックスの周囲において突出部で囲まれない箇所は、ポッティング材で覆われると好ましいが、必ずしもポッティング材で覆われていなくてもよい。
又は、裏面側保護部材において受光側とは反対側に突出する突出部は、端子ボックスの側面以外の箇所に接触してもよい。次に、図6を用いて、突出部250が、端子ボックス60の側面以外の箇所に接触する場合について説明する。図6Aは、第2実施形態の太陽電池モジュール210における図3Aに対応する模式断面図であり、図6Bは、太陽電池モジュール210における図3Bに対応する模式断面図である。なお、第2実施形態は、第1実施形態と同一の作用効果及び変形例についての記載を省略し、第1実施形態と同一の構成については、第1実施形態と同一の参照番号を付して、説明を省略する。
図6Bに示すように、太陽電池モジュール210は、端子ボックス60の底板部68に孔部38を有し、太陽電池セル1が発電した電力が、孔部38を通過する配線材35を介してダイオード端子51に伝送される。また、太陽電池モジュール210では、裏面側保護部材203において受光側とは反対側に突出する環状の突出部250の外周面250aが、孔部38の内周面38aに全周に亘って沿うように配設されて内周面38aに嵌め込まれる。配線材35は、環状の突出部250の径方向内方に設けられる孔部239を通過する。
突出部250は、孔部38の内周面38aの内側に当該内周面38aに全周に亘って沿うように配設されて内周面38aに嵌め込まれる内側環状部を構成する。突出部250の外周面250aは、端子ボックス60の孔部38の内周面38aに締め代を有した状態で隙間なく圧入される。その結果、端子ボックス60の内周面38aが、突出部250の外周面250aで位置決めされる。
第2実施形態によれば、裏面部品が、端子ボックス60である。また、端子ボックス60の裏面側保護部材203側の底部には、複数の太陽電池セル1で生成された電力を端子ボックス60内のダイオード端子51に伝送する配線材35が通過する孔部38が設けられる。また、突出部250は、孔部38の内周面38aに全周に亘って沿うように配設されて内周面38aに嵌め込まれる内側環状部を含む。
したがって、端子ボックス60及び内側環状部の寸法の調整によって、端子ボックス60の孔部38の内周面38aを、突出部250の外周面250aに締め代を有した状態で隙間なく圧入できる。よって、端子ボックス60を、治具を用いずに突出部250の外周面250aのみで容易かつ精度良く位置決めできる。
また、端子ボックス60の孔部38の内周面38aが突出部250の外周面250aで全周に亘って覆われる。したがって、結露水等が、図6Bに矢印Eで示す方向に端子ボックス60と裏面側保護部材203の隙間に浸入しても、突出部250で結露水等が孔部38を通過することを防止でき、結露水等が端子ボックス60内に浸入することがない。よって、端子ボックス60内の電子部品が端子ボックス60外の結露水等に接触して劣化することがないため、端子ボックス60内にポッティング材を充填する必要がない。その結果、ポッティング材の材料費を低減できる。また、裏面側保護部材203に対する端子ボックス60の取り付け時間も削減でき、太陽電池モジュール210の製造のサイクルタイムも短くできる。
更には、突出部250を、孔部38の内周面38aを全周に亘って覆うように配置するだけで、端子ボックス60の精度良い位置決め、及び結露水等の端子ボックス60内へ浸入を防止できる。よって、第1実施形態との比較において、突出部250を設ける領域を低減できるので、製造コストを低減でき、製造のサイクルタイムも短縮し易い。
次に、図7を用いて、太陽電池セルに対する突出部の相対位置と、セル割れや気泡の発生との関係について説明する。図7Aは、第3実施形態の太陽電池モジュール310を、X方向及びZ方向を含む切断面で切断したときの模式断面図であり、図7Bは、第4実施形態の太陽電池モジュール410を、X方向及びZ方向を含む切断面で切断したときの模式断面図である。
図7Aに示すように、太陽電池モジュール310では、裏面側保護部材303から裏側に突出して端子ボックス60を位置決めする突出部350が、高さ方向から見たとき太陽電池セル301に重なる。これに対し、図7Bに示すように、太陽電池モジュール410では、裏面側保護部材403から裏側に突出して端子ボックス60を位置決めする突出部450が、高さ方向から見たとき太陽電池セル401に重ならない。
太陽電池モジュールの裏面側保護部材に受光側とは反対側に突出する突出部を設けた場合、ラミネート時に過剰に圧縮される箇所や、圧力が不足する箇所が発生し、太陽電池セルの割れや、気泡の発生が起こる虞がある。
詳しくは、ラミネート時には、太陽電池モジュールにおいて積層された構成部品が加熱されると共に、上記積層された構成部品が圧縮される。そのため、図7A,図7Bに矢印F,G,H,Iで示すように、裏面側保護部材303,403において、突出部350,450が設けられた箇所は、それ以外の箇所との比較において、圧縮圧力が大きくなり、場合によっては過剰圧力になる。
第4実施形態の太陽電池モジュール410は、高さ方向から見たとき、突出部450が太陽電池セル401に重ならない。その結果、太陽電池モジュール410は、高さ方向から見たとき突出部350が太陽電池セル301に重なる太陽電池モジュール310よりも、太陽電池セル401に力がかかりにくく、太陽電池セル401が損傷しにくい。また、太陽電池モジュール310よりも、太陽電池モジュール410の方が、太陽電池セル401に大きな圧力が作用しにくので、太陽電池モジュール410内に気泡も生じにくくなる。
尚、本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。
例えば、上記実施形態及び変形例では、表面側保護部材及び裏面側保護部材の材料としていずれも透光性のある樹脂材料を例示している。樹脂材料は軽量でかつ加工が容易であるため製造上の利点が多いが、ガラス等の透光性無機材料を用いることもできる。
例えば、上記実施形態及び変形例では、裏面部品が、端子ボックス60である場合について説明した。しかし、裏面部品はこれに限定されない。裏面側保護部材に他の部材をぶら下げるための一般的な金具等であってもよく、裏面側保護部材に設けられて受光側とは反対側に突出する突出部で、一般的な金具を含む所望の部品等を裏面側保護部材に精度良く位置決めしてもよい。
また、図1に示すように、太陽電池モジュール10,110,210,310,410が、フレームを有さない場合について説明したが、太陽電池モジュールは、周囲にフレームが存在してもよい。
また、上記実施形態及び変形例では、太陽電池モジュールの全体が湾曲した形状であるが、太陽電池モジュールは平面の矩形状のものであってもよい。太陽電池モジュールは、水平面に対して傾けて設置されることが多い。そのため、上記実施形態及び変形例の構成とすることによって、裏面部品の取り付けを容易にできることはもとより、裏面部品が端子ボックスである場合には端子ボックス内部への水分侵入防止の効果も得られる。
また、実施例の冒頭で説明したが、上記第1乃至第4実施形態、及び全ての変形例で説明した構成のうちの2つ以上の構成を組み合わせて、新たな実施形態を構成してもよい。例えば、突出部は、第1実施形態で説明した環状の突出部50と、第2実施形態で説明した環状の突出部250とを含んでもよい。又は、突出部は、図5で説明した、変形例の突出部150と、第2実施形態で説明した突出部250とを含んでもよい。
また、第1実施形態や、第2実施形態や、図5で説明した変形例の突出部は、高さ方向から見たとき太陽電池セルに重ならなくてもよい。また、端子ボックスの周囲の一部に突出部を設ける場合、その突出部及び端子ボックスが、高さ方向から見たとき太陽電池セルに重ならなくてもよい。又は、端子ボックスの周囲の一部に突出部を設ける場合、高さ方向から見たとき、その突出部が太陽電池セルに重ならない一方、端子ボックスが太陽電池セルに重なる部分を有してもよい。この場合、太陽電池モジュールのX方向の寸法を小さくできて好ましい。
1,301,401 太陽電池セル、 2 表面側保護部材、 3,103,203,303,403 裏面側保護部材、 10,110,210,310,410 太陽電池モジュール、 35 配線材、 38 端子ボックスの孔部、 38a 端子ボックスの孔部の内周面、 50,150,250,350,450 突出部、 51 ダイオード端子、 60 端子ボックス、 60b 端子ボックスの側面、 15,115 裏面側保護部材の裏面、 150a 突出部の先端側の端面、 Z方向 太陽電池モジュールの高さ方向。
Claims (8)
- 複数の太陽電池セルと、
前記複数の太陽電池セルに対して光が主に入射する受光側に設けられた表面側保護部材と、
前記複数の太陽電池セルに対して前記受光側とは反対側に設けられた裏面側保護部材と、を備え、
前記表面側保護部材は、透光性を有する樹脂材料からなり、
前記裏面側保護部材は、前記複数の太陽電池セル側とは反対側の裏面に突出部を備え、前記突出部に接触するように裏面部品が設けられている、太陽電池モジュール。 - 請求項1に記載の太陽電池モジュールにおいて、
前記裏面部品が、端子ボックスであり、
前記突出部が、前記端子ボックスの側面の少なくとも一部に接触する、太陽電池モジュール。 - 請求項2に記載の太陽電池モジュールにおいて、
前記突出部は、前記端子ボックスの周囲を全周に亘って取り囲む外側環状部を含む、太陽電池モジュール。 - 請求項3に記載の太陽電池モジュールにおいて、
前記突出部の先端側の端面が、前記裏面側保護部材の裏面の縁部に滑らかにつながる、太陽電池モジュール。 - 請求項1乃至4のいずれか一つに記載の太陽電池モジュールにおいて、
前記表面側保護部材及び前記裏面側保護部材がいずれも、前記複数の太陽電池セルの受光面側が凸になるように湾曲している、太陽電池モジュール。 - 請求項1乃至5のいずれか1つに記載の太陽電池モジュールにおいて、
前記裏面部品が、端子ボックスであり、
前記端子ボックスの前記裏面側保護部材側の底部には、前記複数の太陽電池セルで生成された電力を前記端子ボックス内のダイオード端子に伝送する配線材が通過する孔部が設けられ、
前記突出部は、前記孔部の内周面の内側に当該内周面に全周に亘って沿うように配設されて前記内周面に嵌め込まれる内側環状部を含む、太陽電池モジュール。 - 請求項1乃至6のいずれか1つに記載の太陽電池モジュールにおいて、
高さ方向から見たとき、前記突出部が前記太陽電池セルに重ならない、太陽電池モジュール。 - 複数の太陽電池セルと、
前記複数の太陽電池セルに対して光が主に入射する受光側に設けられた表面側保護部材と、
前記複数の太陽電池セルに対して前記受光側とは反対側に設けられた裏面側保護部材と、を備え、
前記裏面側保護部材は、前記複数の太陽電池セル側とは反対側の裏面に突出部を備え、前記突出部に接触するように裏面部品が設けられている、太陽電池モジュール。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017028287 | 2017-02-17 | ||
JP2017-028287 | 2017-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018150987A1 true WO2018150987A1 (ja) | 2018-08-23 |
Family
ID=63170292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004303 WO2018150987A1 (ja) | 2017-02-17 | 2018-02-08 | 太陽電池モジュール |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018150987A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000357812A (ja) * | 1999-04-15 | 2000-12-26 | Canon Inc | 太陽電池モジュール及び発電装置 |
JP2001111088A (ja) * | 1999-10-07 | 2001-04-20 | Fuji Electric Co Ltd | 太陽電池モジュールとその設置方法 |
US20020139412A1 (en) * | 2001-03-28 | 2002-10-03 | Klaus Reimer | Cover, constructed as a solar generator, for closing an opening in the bodywork of a vehicle |
-
2018
- 2018-02-08 WO PCT/JP2018/004303 patent/WO2018150987A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000357812A (ja) * | 1999-04-15 | 2000-12-26 | Canon Inc | 太陽電池モジュール及び発電装置 |
JP2001111088A (ja) * | 1999-10-07 | 2001-04-20 | Fuji Electric Co Ltd | 太陽電池モジュールとその設置方法 |
US20020139412A1 (en) * | 2001-03-28 | 2002-10-03 | Klaus Reimer | Cover, constructed as a solar generator, for closing an opening in the bodywork of a vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3279949B1 (en) | Solar cell module | |
KR20120010240A (ko) | 태양전지 모듈 및 태양전지 모듈의 제조 방법 | |
JP4860652B2 (ja) | 太陽電池モジュールおよびその製造方法 | |
JP5598003B2 (ja) | 太陽電池モジュール | |
US20090078301A1 (en) | Solar cell module | |
JPWO2014050087A1 (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
JP2016171299A (ja) | 太陽電池モジュール | |
US20150340527A1 (en) | Solar cell module | |
WO2011024993A1 (ja) | 太陽電池モジュール | |
US20200313017A1 (en) | Solar cell module and solar cell system | |
US20170117428A1 (en) | Flexible Solar Panel Module | |
WO2011024991A1 (ja) | 太陽電池モジュール | |
US20120298189A1 (en) | Terminal box for solar cell module, and solar cell module | |
US20150129012A1 (en) | Photovoltaic apparatus | |
JP2013143529A (ja) | 太陽電池モジュール | |
US9369084B2 (en) | Solar cell module | |
JP2011054662A (ja) | 太陽電池モジュール | |
KR20180105812A (ko) | 태양전지 모듈 | |
JP5601921B2 (ja) | 太陽電池モジュール | |
US20190035963A1 (en) | Solar cell module | |
WO2018150987A1 (ja) | 太陽電池モジュール | |
JPWO2014050078A1 (ja) | 太陽電池モジュール | |
EP3200239B1 (en) | Solar cell module and method for manufacturing solar cell module | |
JP6367669B2 (ja) | 端子ボックスおよびこれを用いた太陽電池モジュール | |
JP2014170763A (ja) | 太陽電池モジュール及び太陽電池実装方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18754380 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18754380 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |