WO2018149008A1 - Amoled像素驱动电路及amoled像素驱动方法 - Google Patents
Amoled像素驱动电路及amoled像素驱动方法 Download PDFInfo
- Publication number
- WO2018149008A1 WO2018149008A1 PCT/CN2017/076767 CN2017076767W WO2018149008A1 WO 2018149008 A1 WO2018149008 A1 WO 2018149008A1 CN 2017076767 W CN2017076767 W CN 2017076767W WO 2018149008 A1 WO2018149008 A1 WO 2018149008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- film transistor
- control signal
- scan control
- electrically connected
- Prior art date
Links
- 229920001621 AMOLED Polymers 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000010409 thin film Substances 0.000 claims abstract description 310
- 239000003990 capacitor Substances 0.000 claims description 22
- 238000005286 illumination Methods 0.000 claims description 13
- 241000750042 Vini Species 0.000 claims description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 6
- 229920005591 polysilicon Polymers 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000010408 film Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 7
- 208000032005 Spinocerebellar ataxia with axonal neuropathy type 2 Diseases 0.000 description 9
- 208000033361 autosomal recessive with axonal neuropathy 2 spinocerebellar ataxia Diseases 0.000 description 9
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
Definitions
- the present invention relates to the field of display technologies, and in particular, to an AMOLED pixel driving circuit and an AMOLED pixel driving method.
- OLED Organic Light Emitting Display
- OLED Organic Light Emitting Display
- the OLED display device can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor (Thin Film Transistor, according to the driving method). TFT) matrix addressing two types.
- the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
- the AMOLED is a current driving device. When a current flows through the organic light emitting diode, the organic light emitting diode emits light, and the luminance of the light is determined by the current flowing through the organic light emitting diode itself. Most existing integrated circuits (ICs) only transmit voltage signals, so the pixel driving circuit of AMOLED needs to complete the task of converting a voltage signal into a current signal.
- the conventional AMOLED pixel driving circuit is usually 2T1C, that is, a structure in which two thin film transistors are added with a capacitor to convert a voltage into a current.
- a conventional 2T1C pixel driving circuit for an AMOLED includes a first P-type thin film transistor T10, a second P-type thin film transistor T20, and a capacitor C, and the first P-type thin film transistor T10.
- the second P-type thin film transistor T20 is a driving thin film transistor
- the capacitor C is a storage capacitor.
- the gate of the first P-type thin film transistor T10 is connected to the scan signal Scan
- the source is connected to the data signal Data
- the drain and the gate of the second P-type thin film transistor T20 and one end of the capacitor C are electrically connected.
- the source of the second P-type thin film transistor T20 is connected to the power supply voltage VDD, the drain is electrically connected to the anode of the organic light-emitting diode D; the cathode of the organic light-emitting diode D is grounded; and the one end of the capacitor C is electrically The drain of the first P-type thin film transistor T10 is connected, and the other end is electrically connected to the source of the second P-type thin film transistor T20.
- the scan signal Scan controls the first P-type thin film transistor T10 to be turned on, and the data signal Data passes through the first P-type thin film transistor T10 to enter the second P-type transistor T20.
- the gate and the capacitor C, and then the first P-type thin film transistor T10 is closed. Due to the storage of the capacitor C, the gate voltage of the second P-type thin film transistor T20 can continue to maintain the data signal voltage, so that the second P-type thin film transistor The T20 is in an on state, and the driving current enters the organic light emitting diode D through the second P-type thin film transistor T20, and drives the organic light emitting diode D to emit light.
- the above-mentioned conventional 2T1C pixel driving circuit for AMOLED is sensitive to the threshold voltage drift of the driving thin film transistor.
- the threshold voltage of the driving thin film transistor drifts, the current flowing through the organic light emitting diode changes greatly, resulting in the light emission of the organic light emitting diode. Unstable, uneven brightness, greatly affecting the display of the picture.
- a compensation circuit is required for each pixel, and compensation means that the threshold voltage of the driving thin film transistor in each pixel must be compensated so that the current flowing through the organic light emitting diode becomes independent of the threshold voltage.
- An object of the present invention is to provide an AMOLED pixel driving circuit capable of effectively compensating for a threshold voltage of a driving thin film transistor, stabilizing a current flowing through the organic light emitting diode, ensuring uniform brightness of the organic light emitting diode, and improving a display effect of the screen.
- the object of the present invention is to provide an AMOLED pixel driving method capable of effectively compensating the threshold voltage of a driving thin film transistor, solving the problem of unstable current flowing through the organic light emitting diode caused by threshold voltage drift, and making the organic light emitting diode The brightness of the light is uniform, which improves the display of the picture.
- the present invention provides an AMOLED pixel driving circuit, including: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a capacitor, And organic light emitting diodes;
- the gate of the first thin film transistor is electrically connected to the first node, the source is connected to the power supply high voltage, and the drain is electrically connected to the source of the fourth thin film transistor;
- the gate of the second thin film transistor is connected to the first scan control signal, the source is electrically connected to the first node, and the drain is electrically connected to the source of the fourth thin film transistor;
- the gate of the third thin film transistor is connected to the second scan control signal, the source is electrically connected to the second node, and the drain is electrically connected to the first node;
- the gate of the fourth thin film transistor is connected to the third scan control signal, the source is electrically connected to the drain of the second thin film transistor and the drain of the first thin film transistor, and the drain is electrically connected to the anode of the organic light emitting diode ;
- the gate of the fifth thin film transistor is connected to the third scan control signal, the source is electrically connected to the second node, and the drain is connected to the initialization voltage;
- the gate of the sixth thin film transistor is connected to the third scan control signal, and the source is connected to the data signal. No. The drain is electrically connected to the second node;
- One end of the capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
- the cathode of the organic light emitting diode is connected to a power supply low voltage
- the sixth thin film transistor is an N-type thin film transistor, and the first, second, third, fourth, and fifth thin film transistors are all P-type thin film transistors.
- the first scan control signal, the second scan control signal, and the third scan control signal are combined to sequentially correspond to an initialization phase, a potential storage phase, and a display illumination phase, and control the organic light emitting diode in an initialization phase.
- the potential storage phase does not emit light.
- the third scan control signal provides a high potential
- the second scan control signal provides a low potential
- the first scan control signal provides a high potential
- the third scan control signal provides a high potential
- the second scan control signal provides a high potential
- the first scan control signal provides a low potential
- the third scan control signal provides a low potential
- the second scan control signal provides a high potential
- the first scan control signal provides a high potential
- the first scan control signal, the second scan control signal, and the third scan control signal are both provided by an external timing controller.
- the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors .
- the invention also provides an AMOLED pixel driving method, comprising the following steps:
- Step S1 providing an AMOLED pixel driving circuit
- the AMOLED pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a capacitor, and an organic light emitting diode;
- the gate of the first thin film transistor is electrically connected to the first node, the source is connected to the power supply high voltage, and the drain is electrically connected to the source of the fourth thin film transistor;
- the gate of the second thin film transistor is connected to the first scan control signal, the source is electrically connected to the first node, and the drain is electrically connected to the source of the fourth thin film transistor;
- the gate of the third thin film transistor is connected to the second scan control signal, the source is electrically connected to the second node, and the drain is electrically connected to the first node;
- the gate of the fourth thin film transistor is connected to the third scan control signal, the source is electrically connected to the drain of the second thin film transistor and the drain of the first thin film transistor, and the drain is electrically connected to the anode of the organic light emitting diode ;
- the gate of the fifth thin film transistor is connected to the third scan control signal, and the source is electrically connected to a second node, the drain is connected to the initialization voltage;
- the gate of the sixth thin film transistor is connected to the third scan control signal, the source is connected to the data signal, and the drain is electrically connected to the second node;
- One end of the capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
- the cathode of the organic light emitting diode is connected to a power supply low voltage
- the sixth thin film transistor is an N-type thin film transistor, and the first, second, third, fourth, and fifth thin film transistors are all P-type thin film transistors;
- Step S2 entering an initialization phase
- the third scan control signal provides a high potential, the sixth thin film transistor is turned on, the fourth and fifth thin film transistors are turned off, the second scan control signal provides a low potential, and the third thin film transistor is turned on, the first scan
- the control signal provides a high potential, the second thin film transistor is turned off, and the data signal charges the first and second nodes such that the voltages of the first and second nodes are equal to the voltage of the data signal, and the organic light emitting diode does not emit light;
- Step S3 entering a potential storage phase
- the third scan control signal provides a high potential
- the sixth thin film transistor is turned on
- the fourth and fifth thin film transistors are turned off
- the second scan control signal provides a high potential
- the third thin film transistor is turned off
- the first scan control signal Providing a low potential
- the second thin film transistor is turned on
- the voltage of the second node is still equal to the voltage of the data signal
- Step S4 entering a display illumination phase
- the third scan control signal provides a low potential
- the sixth thin film transistor is turned off
- the fourth and fifth thin film transistors are turned on
- the second scan control signal is supplied with a high potential
- the third thin film transistor is turned off
- the first A scan control signal provides a high potential
- the second thin film transistor is turned off
- the voltage of the second node becomes an initialization voltage
- the first node voltage becomes Vs - Vth + Vini - Vdata, wherein Vdata is the voltage of the data signal
- organic The light emitting diode emits light, and the current flowing through the organic light emitting diode is independent of the threshold voltage of the first thin film transistor.
- the first scan control signal, the second scan control signal, and the third scan control signal are both provided by an external timing controller.
- the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors .
- the present invention also provides an AMOLED pixel driving circuit, comprising: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a capacitor, and an organic light emitting diode;
- the gate of the first thin film transistor is electrically connected to the first node, the source is connected to the power supply high voltage, and the drain is electrically connected to the source of the fourth thin film transistor;
- the gate of the second thin film transistor is connected to the first scan control signal, the source is electrically connected to the first node, and the drain is electrically connected to the source of the fourth thin film transistor;
- the gate of the third thin film transistor is connected to the second scan control signal, the source is electrically connected to the second node, and the drain is electrically connected to the first node;
- the gate of the fourth thin film transistor is connected to the third scan control signal, the source is electrically connected to the drain of the second thin film transistor and the drain of the first thin film transistor, and the drain is electrically connected to the anode of the organic light emitting diode ;
- the gate of the fifth thin film transistor is connected to the third scan control signal, the source is electrically connected to the second node, and the drain is connected to the initialization voltage;
- the gate of the sixth thin film transistor is connected to the third scan control signal, the source is connected to the data signal, and the drain is electrically connected to the second node;
- One end of the capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
- the cathode of the organic light emitting diode is connected to a power supply low voltage
- the sixth thin film transistor is an N-type thin film transistor, and the first, second, third, fourth, and fifth thin film transistors are all P-type thin film transistors;
- the first scan control signal, the second scan control signal, and the third scan control signal are combined to sequentially correspond to an initialization phase, a potential storage phase, and a display illumination phase, and control the organic light emitting diode to be The initialization phase and the potential storage phase do not emit light;
- the first scan control signal, the second scan control signal, and the third scan control signal are all provided by an external timing controller.
- the invention provides an AMOLED pixel driving circuit, which adopts a pixel driving circuit of a 6T1C structure and is matched with a specific driving timing, and can effectively compensate a threshold voltage of a driving thin film transistor to flow through an organic light emitting diode.
- the current is stable, ensuring uniform brightness of the organic light emitting diode, improving the display effect of the picture, and enabling the organic light emitting diode to emit light only during the display illumination period, avoiding unnecessary light emission of the organic light emitting diode and reducing power consumption.
- the invention also provides an AMOLED pixel driving method, which can effectively compensate the threshold voltage of the driving thin film transistor, solve the problem that the current flowing through the organic light emitting diode is unstable due to the threshold voltage drift, and make the light emitting brightness of the organic light emitting diode uniform. Improve the display of the screen.
- FIG. 1 is a circuit diagram of a conventional 2T1C structure AMOLED pixel driving circuit
- FIG. 2 is a circuit diagram of an AMOLED pixel driving circuit of the present invention.
- FIG. 3 is a timing diagram of an AMOLED pixel driving circuit of the present invention.
- FIG. 4 is a flow chart of a method for driving an AMOLED pixel according to the present invention.
- the present invention provides an AMOLED pixel driving circuit, including: a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a fourth thin film transistor T4, a fifth thin film transistor T5, and a sixth thin film.
- each component is: the gate of the first thin film transistor T1 is electrically connected to the first node G, the source is connected to the power supply high voltage OVDD, and the drain is electrically connected to the source of the fourth thin film transistor T4.
- the gate of the second thin film transistor T2 is connected to the first scan control signal Scan1, the source is electrically connected to the first node G, and the drain is electrically connected to the source of the fourth thin film transistor T4, the third
- the gate of the thin film transistor T3 is connected to the second scan control signal Scan2, the source is electrically connected to the second node N, the drain is electrically connected to the first node G, and the gate of the fourth thin film transistor T4 is connected to the gate.
- the third scan control signal Scan3 is electrically connected to the drain of the second thin film transistor T2 and the drain of the first thin film transistor T1, and the drain is electrically connected to the anode of the organic light emitting diode D, and the fifth thin film transistor T5
- the gate is connected to the third scan control signal Scan3
- the source is electrically connected to the second node N
- the drain is connected to the initialization voltage Vini
- the gate of the sixth thin film transistor T6 is connected to the third scan control signal Scan3.
- Source access data signal Data drain Connected to the second node N, one end of the capacitor C1 is electrically connected to the first node G, the other end is electrically connected to the second node N, the access to power low voltage cathode OVSS organic light emitting diode D.
- the sixth thin film transistor T6 is an N-type thin film transistor, and the first, second, third, fourth, and fifth thin film transistors T1, T2, T3, T4, and T5 are all P-type films. Transistor.
- the first thin film transistor T1 is a driving thin film transistor for driving the organic light emitting diode D to emit light
- the AMOLED pixel driving circuit can compensate the driving thin film transistor. That is, the threshold voltage of the first thin film transistor T1.
- the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, the fourth thin film transistor T4, the fifth thin film transistor T5, and the sixth thin film transistor T6 are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, Or an amorphous silicon thin film transistor.
- the first scan control signal Scan1, the second scan control signal Scan2, and the third scan control signal Scan3 are all provided by an external timing controller.
- the first scan control signal Scan1, the second scan control signal Scan2, and the third scan control signal Scan3 are combined, and sequentially correspond to an initialization phase 1, a potential storage phase 2, and a display.
- the third scan control signal Scan3 provides a high potential
- the sixth thin film transistor T6 is turned on
- the fourth and fifth thin film transistors T4, T5 are turned off
- the second scan control signal Scan2 is provided low.
- a potential the third thin film transistor T3 is turned on
- the first scan control signal Scan1 provides a high potential
- the second thin film transistor T2 is turned off;
- the data signal Data charges the first and second nodes G, N, so that The voltages of the first and second nodes G and N are equal to the voltage of the data signal Data, and the organic light emitting diode D does not emit light;
- the third scan control signal Scan3 provides a high potential
- the sixth thin film transistor T6 is turned on
- the fourth and fifth thin film transistors T4, T5 are turned off
- the second scan control signal Scan2 is provided.
- High potential the third thin film transistor T3 is turned off
- the first scan control signal Scan1 provides a low potential
- the second thin film transistor T2 is turned on; at this time, the voltage of the second node N is still equal to the voltage of the data signal Data, and the power supply is high.
- the third scan control signal Scan3 provides a low potential
- the sixth thin film transistor T6 is turned off
- the fourth and fifth thin film transistors T4, T5 are turned on
- the second scan control signal Scan2 is provided.
- High potential the third thin film transistor T3 is turned off
- the first scan control signal Scan1 provides a high potential
- the second thin film transistor T2 is turned off; at this time, the voltage of the second node N becomes the initialization voltage Vini, the first node G
- the voltage becomes Vs ⁇ Vth+Vini ⁇ Vdata, where Vdata is the voltage of the data signal Data, and the voltage difference between the source of the first thin film transistor T1 and the first node G is also the source gate voltage of the first thin film transistor T1.
- a P-type thin film transistor is used as a formula for a current flowing through the organic light emitting diode when driving the thin film transistor:
- I K(Vsg-Vth) 2 ;
- I is a current flowing through the organic light emitting diode D
- K is a structural parameter of the driving thin film transistor, that is, the first thin film transistor T1
- Vsg is a source gate voltage difference of the driving thin film transistor, that is, the first thin film transistor T1.
- the K value is relatively stable, so that the current flowing through the organic light emitting diode D when the organic light emitting diode D emits light is independent of the threshold voltage of the first thin film transistor T1, and can solve the threshold voltage drift caused by the driving thin film transistor.
- the problem that the current flowing through the organic light emitting diode is unstable makes the light emitting brightness of the organic light emitting diode uniform, and the display effect of the screen is improved, and the organic light emitting diode D does not emit light in the initialization phase 1 and the potential storage phase 2, and organic light emission can be avoided.
- the unnecessary light of the diode D is unstable.
- the present invention further provides an AMOLED pixel driving method, including the following steps:
- Step S1 providing an AMOLED pixel driving circuit using the 6T1C structure as shown in FIG. 2, and the circuit is not repeatedly described herein;
- Step S2 entering initialization phase 1;
- the third scan control signal Scan3 provides a high potential
- the sixth thin film transistor T6 is turned on
- the fourth and fifth thin film transistors T4, T5 are turned off
- the second scan control signal Scan2 is supplied with a low potential
- the third thin film The transistor T3 is turned on
- the first scan control signal Scan1 provides a high potential
- the second thin film transistor T2 is turned off
- the data signal Data charges the first and second nodes G, N, so that the first and second nodes G, N
- the voltage is equal to the voltage of the data signal Data, and the organic light emitting diode D does not emit light;
- Step S3 entering the potential storage phase 2;
- the third scan control signal Scan3 provides a high potential
- the sixth thin film transistor T6 is turned on
- the fourth and fifth thin film transistors T4, T5 are turned off
- the second scan control signal Scan2 is supplied with a high potential
- the third thin film transistor T3 is turned off.
- the first scan control signal Scan1 provides a low potential
- the second thin film transistor T2 is turned on
- the voltage of the second node N is still equal to the voltage of the data signal Data
- Step S4 entering the display illumination stage 3;
- the third scan control signal Scan3 provides a low potential, the sixth thin film transistor T6 is turned off, the fourth and fifth thin film transistors T4, T5 are turned on, and the second scan control signal Scan2 is supplied with a high potential, the third thin film The transistor T3 is turned off, the first scan control signal Scan1 is supplied with a high potential, the second thin film transistor T2 is turned off, and the voltage of the second node N is initialized.
- the voltage of the first node G becomes Vs - Vth + Vini - Vdata, where Vdata is the voltage of the data signal Data, and the voltage between the source of the first thin film transistor T1 and the first node G is also the first thin film transistor
- the source gate voltage difference of T1 becomes Vdata - Vini + Vth, and the organic light emitting diode D emits light.
- a P-type thin film transistor is used as a formula for a current flowing through an organic light emitting diode when driving a thin film transistor:
- I K(Vsg-Vth) 2 ;
- I is a current flowing through the organic light emitting diode D
- K is a structural parameter of the driving thin film transistor, that is, the first thin film transistor T1
- Vsg is a source gate voltage difference of the driving thin film transistor, that is, the first thin film transistor T1.
- the K value is relatively stable, so that the current flowing through the organic light emitting diode D when the organic light emitting diode D emits light is independent of the threshold voltage of the first thin film transistor T1, and can solve the threshold voltage drift of the driving thin film transistor.
- the problem that the current flowing through the organic light emitting diode is unstable is uniform, so that the light emission brightness of the organic light emitting diode is uniform, and the display effect of the screen is improved.
- the present invention provides an AMOLED pixel driving circuit that uses a pixel driving circuit of a 6T1C structure and is matched with a specific driving timing to effectively compensate a threshold voltage of a driving thin film transistor to cause a current flowing through the organic light emitting diode. Stable, ensuring uniform brightness of the organic light-emitting diode, improving the display effect of the picture, and enabling the organic light-emitting diode to emit light only during the display illumination period, avoiding unnecessary light emission of the organic light-emitting diode and reducing power consumption.
- the invention also provides an AMOLED pixel driving method, which can effectively compensate the threshold voltage of the driving thin film transistor, solve the problem that the current flowing through the organic light emitting diode is unstable due to the threshold voltage drift, and make the light emitting brightness of the organic light emitting diode uniform. Improve the display of the screen.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
Abstract
一种AMOLED像素驱动电路及AMOLED像素驱动方法。AMOLED像素驱动电路采用6T1C结构的像素驱动电路并搭配有特定的驱动时序,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,保证有机发光二极管的发光亮度均匀,改善画面的显示效果,并能够使有机发光二极管仅在显示发光阶段发光,避免有机发光二极管的不必要发光,降低耗电量。
Description
本发明涉及显示技术领域,尤其涉及一种AMOLED像素驱动电路及AMOLED像素驱动方法。
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED是电流驱动器件,当有电流流过有机发光二极管时,有机发光二极管发光,且发光亮度由流过有机发光二极管自身的电流决定。大部分已有的集成电路(Integrated Circuit,IC)都只传输电压信号,故AMOLED的像素驱动电路需要完成将电压信号转变为电流信号的任务。传统的AMOLED像素驱动电路通常为2T1C,即两个薄膜晶体管加一个电容的结构,将电压变换为电流。
如图1所示,传统的用于AMOLED的2T1C像素驱动电路,包括一第一P型薄膜晶体管T10、一第二P型薄膜晶体管T20、及一电容C,所述第一P型薄膜晶体管T10为开关薄膜晶体管,所述第二P型薄膜晶体管T20为驱动薄膜晶体管,所述电容C为存储电容。具体地,所述第一P型薄膜晶体管T10的栅极接入扫描信号Scan,源极接入数据信号Data,漏极与第二P型薄膜晶体管T20的栅极、及电容C的一端电性连接;所述第二P型薄膜晶体管T20的源极接入电源电压VDD,漏极电性连接有机发光二级管D的阳极;有机发光二级管D的阴极接地;电容C的一端电性连接第一P型薄膜晶体管T10的漏极,另一端电性连接第二P型薄膜晶体管T20的源极。AMOLED显示时,扫描信号Scan控制第一P型薄膜晶体管T10打开,数据信号Data经过第一P型薄膜晶体管T10进入到第二P型膜晶体管T20
的栅极及电容C,然后第一P型薄膜晶体管T10闭合,由于电容C的存储作用,第二P型薄膜晶体管T20的栅极电压仍可继续保持数据信号电压,使得第二P型薄膜晶体管T20处于导通状态,驱动电流通过第二P型薄膜晶体管T20进入有机发光二级管D,驱动有机发光二级管D发光。
上述传统的用于AMOLED的2T1C像素驱动电路对驱动薄膜晶体管的阈值电压漂移很敏感,随着驱动薄膜晶体管的阈值电压漂移,流过有机发光二极管的电流变化很大,导致有机发光二极管的发光很不稳定、亮度很不均匀,极大地影响画面的显示效果。要解决上述问题需对每一个像素加补偿电路,补偿意味着必须对每一个像素中的驱动薄膜晶体管的阈值电压进行补偿,使流过有机发光二级管的电流变得与阈值电压无关。
发明内容
本发明的目的在于提供一种AMOLED像素驱动电路,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,保证有机发光二极管的发光亮度均匀,改善画面的显示效果。
本发明的目的还在于提供一种AMOLED像素驱动方法,能够对驱动薄膜晶体管的阈值电压进行有效补偿,解决由阈值电压漂移导致的流过有机发光二极管的电流不稳定的问题,使有机发光二极管的发光亮度均匀,改善画面的显示效果。
为实现上述目的,本发明提供了一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容、及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极接入电源高电压,漏极电性连接于第四薄膜晶体管的源极;
所述第二薄膜晶体管的栅极接入第一扫描控制信号,源极电性连接于第一节点,漏极电性连接于第四薄膜晶体管的源极;
所述第三薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第二节点,漏极电性连接于第一节点;
所述第四薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二薄膜晶体管的漏极及第一薄膜晶体管的漏极,漏极电性连接于有机发光二极管的阳极;
所述第五薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二节点,漏极接入初始化电压;
所述第六薄膜晶体管的栅极接入第三扫描控制信号,源极接入数据信
号,漏极电性连接于第二节点;
所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阴极接入电源低电压;
所述第六薄膜晶体管为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管均为P型薄膜晶体管。
所述第一扫描控制信号、第二扫描控制信号、以及第三扫描控制信号相组合,先后对应于一初始化阶段、一电位存储阶段、及显示发光阶段,并控制所述有机发光二极管在初始化阶段及电位存储阶段不发光。
在所述初始化阶段,所述第三扫描控制信号提供高电位,所述第二扫描控制信号提供低电位,第一扫描控制信号提供高电位;
在所述电位存储阶段,所述第三扫描控制信号提供高电位,所述第二扫描控制信号提供高电位,第一扫描控制信号提供低电位;
在所述显示发光阶段,所述第三扫描控制信号提供低电位,所述第二扫描控制信号提供高电位,第一扫描控制信号提供高电位。
所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤S1、提供一AMOLED像素驱动电路;
所述AMOLED像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容、及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极接入电源高电压,漏极电性连接于第四薄膜晶体管的源极;
所述第二薄膜晶体管的栅极接入第一扫描控制信号,源极电性连接于第一节点,漏极电性连接于第四薄膜晶体管的源极;
所述第三薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第二节点,漏极电性连接于第一节点;
所述第四薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二薄膜晶体管的漏极及第一薄膜晶体管的漏极,漏极电性连接于有机发光二极管的阳极;
所述第五薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于
第二节点,漏极接入初始化电压;
所述第六薄膜晶体管的栅极接入第三扫描控制信号,源极接入数据信号,漏极电性连接于第二节点;
所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阴极接入电源低电压;
所述第六薄膜晶体管为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管均为P型薄膜晶体管;
步骤S2、进入初始化阶段;
所述第三扫描控制信号提供高电位,所述第六薄膜晶体管打开,第四及第五薄膜晶体管关闭,所述第二扫描控制信号提供低电位,所述第三薄膜晶体管打开,第一扫描控制信号提供高电位,所述第二薄膜晶体管关闭,数据信号对第一及第二节点充电,使得所述第一及第二节点的电压均等于数据信号的电压,有机发光二极管不发光;
步骤S3、进入电位存储阶段;
所述第三扫描控制信号提供高电位,所述第六薄膜晶体管打开,第四及第五薄膜晶体管关闭,所述第二扫描控制信号提供高电位,第三薄膜晶体管关闭,第一扫描控制信号提供低电位,所述第二薄膜晶体管打开,第二节点的电压仍然等于数据信号的电压,电源高电压不断对第一节点充电直至Vg=Vs-Vth,其中,Vs为第一薄膜晶体管的源极电压,Vg为第一节点的电压,Vth为第一薄膜晶体管的阈值电压;
步骤S4、进入显示发光阶段;
所述第三扫描控制信号提供低电位,所述第六薄膜晶体管关闭,第四及第五薄膜晶体管打开,所述第二扫描控制信号提供高电位,所述第三薄膜晶体管关闭,所述第一扫描控制信号提供高电位,所述第二薄膜晶体管关闭,第二节点的电压变为初始化电压,第一节点电压变为Vs–Vth+Vini–Vdata,其中,Vdata为数据信号的电压,有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关。
所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
本发明还提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、
第六薄膜晶体管、电容、及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极接入电源高电压,漏极电性连接于第四薄膜晶体管的源极;
所述第二薄膜晶体管的栅极接入第一扫描控制信号,源极电性连接于第一节点,漏极电性连接于第四薄膜晶体管的源极;
所述第三薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第二节点,漏极电性连接于第一节点;
所述第四薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二薄膜晶体管的漏极及第一薄膜晶体管的漏极,漏极电性连接于有机发光二极管的阳极;
所述第五薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二节点,漏极接入初始化电压;
所述第六薄膜晶体管的栅极接入第三扫描控制信号,源极接入数据信号,漏极电性连接于第二节点;
所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阴极接入电源低电压;
所述第六薄膜晶体管为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管均为P型薄膜晶体管;
其中,所述第一扫描控制信号、第二扫描控制信号、以及第三扫描控制信号相组合,先后对应于一初始化阶段、一电位存储阶段、及显示发光阶段,并控制所述有机发光二极管在初始化阶段及电位存储阶段不发光;
其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
本发明的有益效果:本发明提供了一种AMOLED像素驱动电路,其采用6T1C结构的像素驱动电路并搭配有特定的驱动时序,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,保证有机发光二极管的发光亮度均匀,改善画面的显示效果,并能够使有机发光二极管仅在显示发光阶段发光,避免有机发光二极管的不必要发光,降低耗电量。本发明还提供一种AMOLED像素驱动方法,能够对驱动薄膜晶体管的阈值电压进行有效补偿,解决由阈值电压漂移导致的流过有机发光二极管的电流不稳定的问题,使有机发光二极管的发光亮度均匀,改善画面的显示效果。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的2T1C结构的AMOLED像素驱动电路的电路图;
图2为本发明的AMOLED像素驱动电路的电路图;
图3为本发明的AMOLED像素驱动电路的时序图;
图4为本发明的AMOLED像素驱动方法的流程图。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2,本发明提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、第五薄膜晶体管T5、第六薄膜晶体管T6、电容C1、及有机发光二极管D;
具体各元件的连接方式为:所述第一薄膜晶体管T1的栅极电性连接于第一节点G,源极接入电源高电压OVDD,漏极电性连接于第四薄膜晶体管T4的源极,所述第二薄膜晶体管T2的栅极接入第一扫描控制信号Scan1,源极电性连接于第一节点G,漏极电性连接于第四薄膜晶体管T4的源极,所述第三薄膜晶体管T3的栅极接入第二扫描控制信号Scan2,源极电性连接于第二节点N,漏极电性连接于第一节点G,所述第四薄膜晶体管T4的栅极接入第三扫描控制信号Scan3,源极电性连接于第二薄膜晶体管T2的漏极及第一薄膜晶体管T1的漏极,漏极电性连接于有机发光二极管D的阳极,所述第五薄膜晶体管T5的栅极接入第三扫描控制信号Scan3,源极电性连接于第二节点N,漏极接入初始化电压Vini,所述第六薄膜晶体管T6的栅极接入第三扫描控制信号Scan3,源极接入数据信号Data,漏极电性连接于第二节点N,所述电容C1的一端电性连接于第一节点G,另一端电性连接于第二节点N,所述有机发光二极管D的阴极接入电源低电压OVSS。
需要说明的是,所述第六薄膜晶体管T6为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管T1、T2、T3、T4、T5均为P型薄膜晶体管。
具体地,所述第一薄膜晶体管T1为驱动薄膜晶体管,用于驱动有机发光二极管D发光,所述AMOLED像素驱动电路能够补偿驱动薄膜晶体管
即第一薄膜晶体管T1的阈值电压。所述第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、第五薄膜晶体管T5、第六薄膜晶体管T6均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。所述第一扫描控制信号Scan1、第二扫描控制信号Scan2、以及第三扫描控制信号Scan3均通过外部时序控制器提供。
进一步地,请参阅图3,所述第一扫描控制信号Scan1、第二扫描控制信号Scan2、以及第三扫描控制信号Scan3相组合,先后对应于一初始化阶段1、一电位存储阶段2、及显示发光阶段3;
在所述初始化阶段1,所述第三扫描控制信号Scan3提供高电位,所述第六薄膜晶体管T6打开,第四及第五薄膜晶体管T4、T5关闭,所述第二扫描控制信号Scan2提供低电位,所述第三薄膜晶体管T3打开,第一扫描控制信号Scan1提供高电位,所述第二薄膜晶体管T2关闭;此时,数据信号Data对第一及第二节点G、N充电,使得所述第一及第二节点G、N的电压均等于数据信号Data的电压,有机发光二极管D不发光;
在所述电位存储阶段2,所述第三扫描控制信号Scan3提供高电位,所述第六薄膜晶体管T6打开,第四及第五薄膜晶体管T4、T5关闭,所述第二扫描控制信号Scan2提供高电位,所述第三薄膜晶体管T3关闭,第一扫描控制信号Scan1提供低电位,所述第二薄膜晶体管T2打开;此时,第二节点N的电压仍然等于数据信号Data的电压,电源高电压OVDD不断对第一节点G充电直至第一薄膜晶体管T1的源极与第一节点G之间的电压差也即第一薄膜晶体管T1的源栅极电压差等于第一薄膜晶体管T1的阈值电压,也即Vg=Vs-Vth,其中Vs为第一薄膜晶体管T1的源极电压,Vg为第一节点G的电压,Vth为第一薄膜晶体管T1的阈值电压,所述第一薄膜晶体管T1的源极电压等于电源高电压OVDD。
在所述显示发光阶段3,所述第三扫描控制信号Scan3提供低电位,所述第六薄膜晶体管T6关闭,第四及第五薄膜晶体管T4、T5打开,所述第二扫描控制信号Scan2提供高电位,所述第三薄膜晶体管T3关闭,第一扫描控制信号Scan1提供高电位,所述第二薄膜晶体管T2关闭;此时,第二节点N的电压变为初始化电压Vini,第一节点G电压变为Vs–Vth+Vini–Vdata,其中,Vdata为数据信号Data的电压,第一薄膜晶体管T1源极与第一节点G之间的电压差也即第一薄膜晶体管T1的源栅极电压差变为Vdata–Vini+Vth,有机发光二极管D发光,根据现有技术中利用P型薄膜晶体管作为驱动薄膜晶体管时流经有机发光二极管的电流的公式:
I=K(Vsg-Vth)2;
其中,I为流经有机发光二极管D的电流,K为驱动薄膜晶体管也即第一薄膜晶体管T1的结构参数,Vsg为驱动薄膜晶体管也即第一薄膜晶体管T1的源栅极电压差,而此时第一薄膜晶体管T1的源栅极电压差为Vdata–Vini+Vth,因此I=K(Vsg-Vth)2=K(Vdata–Vini+Vth-Vth)2=K(Vdata–Vini)2,对于相同结构的薄膜晶体管,K值相对稳定,从而有机发光二极管D发光时流经所述有机发光二极管D的电流与第一薄膜晶体管T1的阈值电压无关,能够解决由驱动薄膜晶体管阈值电压漂移导致的流过有机发光二极管的电流不稳定的问题,使有机发光二极管的发光亮度均匀,改善画面的显示效果,且在初始化阶段1和电位存储阶段2有机发光二极管D均不发光,能够避免有机发光二极管D的不必要发光。
请参阅图4,并同时参阅图3,本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤S1、提供一上述如图2所示的采用6T1C结构的AMOLED像素驱动电路,此处不再对该电路进行重复描述;
步骤S2、进入初始化阶段1;
所述第三扫描控制信号Scan3提供高电位,所述第六薄膜晶体管T6打开,第四及第五薄膜晶体管T4、T5关闭,所述第二扫描控制信号Scan2提供低电位,所述第三薄膜晶体管T3打开,第一扫描控制信号Scan1提供高电位,所述第二薄膜晶体管T2关闭,数据信号Data对第一及第二节点G、N充电,使得所述第一及第二节点G、N的电压均等于数据信号Data的电压,有机发光二极管D不发光;
步骤S3、进入电位存储阶段2;
所述第三扫描控制信号Scan3提供高电位,所述第六薄膜晶体管T6打开,第四及第五薄膜晶体管T4、T5关闭,所述第二扫描控制信号Scan2提供高电位,第三薄膜晶体管T3关闭,第一扫描控制信号Scan1提供低电位,所述第二薄膜晶体管T2打开,第二节点N的电压仍然等于数据信号Data的电压,电源高电压OVDD不断对第一节点G充电直至Vg=Vs-Vth,其中,Vs为第一薄膜晶体管T1的源极电压,Vg为第一节点G的电压,Vth为第一薄膜晶体管T1的阈值电压;
步骤S4、进入显示发光阶段3;
所述第三扫描控制信号Scan3提供低电位,所述第六薄膜晶体管T6关闭,第四及第五薄膜晶体管T4、T5打开,所述第二扫描控制信号Scan2提供高电位,所述第三薄膜晶体管T3关闭,所述第一扫描控制信号Scan1提供高电位,所述第二薄膜晶体管T2关闭,第二节点N的电压变为初始化电
压Vini,第一节点G电压变为Vs–Vth+Vini–Vdata,其中,Vdata为数据信号Data的电压,第一薄膜晶体管T1源极与第一节点G之间的电压也即第一薄膜晶体管T1的源栅极电压差变为Vdata–Vini+Vth,有机发光二极管D发光。
需要说明的是,根据现有技术采用P型薄膜晶体管作为驱动薄膜晶体管时流经有机发光二极管的电流的公式:
I=K(Vsg-Vth)2;
其中,I为流经有机发光二极管D的电流,K为驱动薄膜晶体管也即第一薄膜晶体管T1的结构参数,Vsg为驱动薄膜晶体管也即第一薄膜晶体管T1的源栅极电压差,而此时第一薄膜晶体管T1的源栅极电压差为Vdata–Vini+Vth,因此I=K(Vsg-Vth)2=K(Vdata–Vini+Vth-Vth)2=K(Vdata–Vini)2,对于相同结构的薄膜晶体管,K值相对稳定,从而有机发光二极管D发光时流经所述有机发光二极管D的电流与第一薄膜晶体管T1的阈值电压无关,能够解决由驱动薄膜晶体管的阈值电压漂移导致的流过有机发光二极管的电流不稳定的问题,使有机发光二极管的发光亮度均匀,改善画面的显示效果。
综上所述,本发明提供了一种AMOLED像素驱动电路,其采用6T1C结构的像素驱动电路并搭配有特定的驱动时序,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,保证有机发光二极管的发光亮度均匀,改善画面的显示效果,并能够使有机发光二极管仅在显示发光阶段发光,避免有机发光二极管的不必要发光,降低耗电量。本发明还提供一种AMOLED像素驱动方法,能够对驱动薄膜晶体管的阈值电压进行有效补偿,解决由阈值电压漂移导致的流过有机发光二极管的电流不稳定的问题,使有机发光二极管的发光亮度均匀,改善画面的显示效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。
Claims (11)
- 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容、及有机发光二极管;所述第一薄膜晶体管的栅极电性连接于第一节点,源极接入电源高电压,漏极电性连接于第四薄膜晶体管的源极;所述第二薄膜晶体管的栅极接入第一扫描控制信号,源极电性连接于第一节点,漏极电性连接于第四薄膜晶体管的源极;所述第三薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第二节点,漏极电性连接于第一节点;所述第四薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二薄膜晶体管的漏极及第一薄膜晶体管的漏极,漏极电性连接于有机发光二极管的阳极;所述第五薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二节点,漏极接入初始化电压;所述第六薄膜晶体管的栅极接入第三扫描控制信号,源极接入数据信号,漏极电性连接于第二节点;所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;所述有机发光二极管的阴极接入电源低电压;所述第六薄膜晶体管为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管均为P型薄膜晶体管。
- 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一扫描控制信号、第二扫描控制信号、以及第三扫描控制信号相组合,先后对应于一初始化阶段、一电位存储阶段、及显示发光阶段,并控制所述有机发光二极管在初始化阶段及电位存储阶段不发光。
- 如权利要求2所述的AMOLED像素驱动电路,其中,在所述初始化阶段,所述第三扫描控制信号提供高电位,所述第二扫描控制信号提供低电位,第一扫描控制信号提供高电位;在所述电位存储阶段,所述第三扫描控制信号提供高电位,所述第二扫描控制信号提供高电位,第一扫描控制信号提供低电位;在所述显示发光阶段,所述第三扫描控制信号提供低电位,所述第二扫描控制信号提供高电位,第一扫描控制信号提供高电位。
- 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
- 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
- 一种AMOLED像素驱动方法,包括如下步骤:步骤S1、提供一AMOLED像素驱动电路;所述AMOLED像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容、及有机发光二极管;所述第一薄膜晶体管的栅极电性连接于第一节点,源极接入电源高电压,漏极电性连接于第四薄膜晶体管的源极;所述第二薄膜晶体管的栅极接入第一扫描控制信号,源极电性连接于第一节点,漏极电性连接于第四薄膜晶体管的源极;所述第三薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第二节点,漏极电性连接于第一节点;所述第四薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二薄膜晶体管的漏极及第一薄膜晶体管的漏极,漏极电性连接于有机发光二极管的阳极;所述第五薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二节点,漏极接入初始化电压;所述第六薄膜晶体管的栅极接入第三扫描控制信号,源极接入数据信号,漏极电性连接于第二节点;所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;所述有机发光二极管的阴极接入电源低电压;所述第六薄膜晶体管为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管均为P型薄膜晶体管;步骤S2、进入初始化阶段;所述第三扫描控制信号提供高电位,所述第六薄膜晶体管打开,第四及第五薄膜晶体管关闭,所述第二扫描控制信号提供低电位,所述第三薄膜晶体管打开,第一扫描控制信号提供高电位,所述第二薄膜晶体管关闭,数据信号对第一及第二节点充电,使得所述第一及第二节点的电压均等于 数据信号的电压,有机发光二极管不发光;步骤S3、进入电位存储阶段;所述第三扫描控制信号提供高电位,所述第六薄膜晶体管打开,第四及第五薄膜晶体管关闭,所述第二扫描控制信号提供高电位,第三薄膜晶体管关闭,第一扫描控制信号提供低电位,所述第二薄膜晶体管打开,第二节点的电压仍然等于数据信号的电压,电源高电压不断对第一节点充电直至Vg=Vs-Vth,其中,Vs为第一薄膜晶体管的源极电压,Vg为第一节点的电压,Vth为第一薄膜晶体管的阈值电压;步骤S4、进入显示发光阶段;所述第三扫描控制信号提供低电位,所述第六薄膜晶体管关闭,第四及第五薄膜晶体管打开,所述第二扫描控制信号提供高电位,所述第三薄膜晶体管关闭,所述第一扫描控制信号提供高电位,所述第二薄膜晶体管关闭,第二节点的电压变为初始化电压,第一节点电压变为Vs–Vth+Vini–Vdata,其中,Vdata为数据信号的电压,有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关。
- 如权利要求6所述的AMOLED像素驱动方法,其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
- 如权利要求6所述的AMOLED像素驱动方法,其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
- 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、电容、及有机发光二极管;所述第一薄膜晶体管的栅极电性连接于第一节点,源极接入电源高电压,漏极电性连接于第四薄膜晶体管的源极;所述第二薄膜晶体管的栅极接入第一扫描控制信号,源极电性连接于第一节点,漏极电性连接于第四薄膜晶体管的源极;所述第三薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第二节点,漏极电性连接于第一节点;所述第四薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二薄膜晶体管的漏极及第一薄膜晶体管的漏极,漏极电性连接于有机发光二极管的阳极;所述第五薄膜晶体管的栅极接入第三扫描控制信号,源极电性连接于第二节点,漏极接入初始化电压;所述第六薄膜晶体管的栅极接入第三扫描控制信号,源极接入数据信号,漏极电性连接于第二节点;所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;所述有机发光二极管的阴极接入电源低电压;所述第六薄膜晶体管为N型薄膜晶体管,所述第一、第二、第三、第四及第五薄膜晶体管均为P型薄膜晶体管;其中,所述第一扫描控制信号、第二扫描控制信号、以及第三扫描控制信号相组合,先后对应于一初始化阶段、一电位存储阶段、及显示发光阶段,并控制所述有机发光二极管在初始化阶段及电位存储阶段不发光;其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
- 如权利要求9所述的AMOLED像素驱动电路,其中,在所述初始化阶段,所述第三扫描控制信号提供高电位,所述第二扫描控制信号提供低电位,第一扫描控制信号提供高电位;在所述电位存储阶段,所述第三扫描控制信号提供高电位,所述第二扫描控制信号提供高电位,第一扫描控制信号提供低电位;在所述显示发光阶段,所述第三扫描控制信号提供低电位,所述第二扫描控制信号提供高电位,第一扫描控制信号提供高电位。
- 如权利要求9所述的AMOLED像素驱动电路,其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/514,528 US10074309B2 (en) | 2017-02-14 | 2017-03-15 | AMOLED pixel driving circuit and AMOLED pixel driving method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710079234.3 | 2017-02-14 | ||
CN201710079234.3A CN106782322B (zh) | 2017-02-14 | 2017-02-14 | Amoled像素驱动电路及amoled像素驱动方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018149008A1 true WO2018149008A1 (zh) | 2018-08-23 |
Family
ID=58957054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/076767 WO2018149008A1 (zh) | 2017-02-14 | 2017-03-15 | Amoled像素驱动电路及amoled像素驱动方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106782322B (zh) |
WO (1) | WO2018149008A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106991976A (zh) * | 2017-06-14 | 2017-07-28 | 京东方科技集团股份有限公司 | 像素电路、像素驱动方法和显示装置 |
CN107393476A (zh) * | 2017-08-23 | 2017-11-24 | 深圳市华星光电半导体显示技术有限公司 | 像素驱动电路及其驱动方法 |
US10311794B2 (en) | 2017-08-23 | 2019-06-04 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Pixel driver circuit and driving method thereof |
US10497316B2 (en) | 2017-11-17 | 2019-12-03 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Amoled pixel driving circuit and driving method thereof |
CN107657921B (zh) * | 2017-11-17 | 2019-09-24 | 深圳市华星光电半导体显示技术有限公司 | Amoled像素驱动电路及其驱动方法 |
CN109346012A (zh) * | 2018-12-05 | 2019-02-15 | 深圳市华星光电半导体显示技术有限公司 | 像素驱动电路及显示装置 |
CN109671394A (zh) * | 2019-02-21 | 2019-04-23 | 深圳市华星光电半导体显示技术有限公司 | Oled像素驱动电路和oled显示器 |
CN110619851A (zh) | 2019-09-24 | 2019-12-27 | 京东方科技集团股份有限公司 | 像素电路、驱动方法及显示装置 |
CN111312170A (zh) * | 2019-11-13 | 2020-06-19 | 武汉华星光电半导体显示技术有限公司 | 像素驱动电路及显示装置 |
CN111477172A (zh) * | 2020-05-07 | 2020-07-31 | Tcl华星光电技术有限公司 | 一种像素驱动电路及显示装置 |
CN112837656A (zh) * | 2021-01-11 | 2021-05-25 | 武汉华星光电半导体显示技术有限公司 | 像素驱动电路、显示面板及其驱动方法 |
CN115966178A (zh) * | 2022-12-28 | 2023-04-14 | 惠科股份有限公司 | 像素驱动电路、方法、装置以及显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1964585A (zh) * | 2005-11-09 | 2007-05-16 | 三星Sdi株式会社 | 像素和使用该像素的有机发光显示装置 |
CN102708789A (zh) * | 2011-12-01 | 2012-10-03 | 京东方科技集团股份有限公司 | 像素单元驱动电路和方法、像素单元以及显示装置 |
US20140118328A1 (en) * | 2012-10-25 | 2014-05-01 | Innolux Corporation | Pixel driving circuit of an active-matrix organic light-emitting diode and a method of driving the same |
CN104464641A (zh) * | 2014-12-30 | 2015-03-25 | 昆山国显光电有限公司 | 像素电路及其驱动方法和有源矩阵有机发光显示装置 |
CN104700778A (zh) * | 2015-03-27 | 2015-06-10 | 深圳市华星光电技术有限公司 | Amoled像素驱动电路及像素驱动方法 |
CN205004016U (zh) * | 2015-08-04 | 2016-01-27 | 信利(惠州)智能显示有限公司 | 一种有机发光二极管的驱动电路 |
-
2017
- 2017-02-14 CN CN201710079234.3A patent/CN106782322B/zh active Active
- 2017-03-15 WO PCT/CN2017/076767 patent/WO2018149008A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1964585A (zh) * | 2005-11-09 | 2007-05-16 | 三星Sdi株式会社 | 像素和使用该像素的有机发光显示装置 |
CN102708789A (zh) * | 2011-12-01 | 2012-10-03 | 京东方科技集团股份有限公司 | 像素单元驱动电路和方法、像素单元以及显示装置 |
US20140118328A1 (en) * | 2012-10-25 | 2014-05-01 | Innolux Corporation | Pixel driving circuit of an active-matrix organic light-emitting diode and a method of driving the same |
CN104464641A (zh) * | 2014-12-30 | 2015-03-25 | 昆山国显光电有限公司 | 像素电路及其驱动方法和有源矩阵有机发光显示装置 |
CN104700778A (zh) * | 2015-03-27 | 2015-06-10 | 深圳市华星光电技术有限公司 | Amoled像素驱动电路及像素驱动方法 |
CN205004016U (zh) * | 2015-08-04 | 2016-01-27 | 信利(惠州)智能显示有限公司 | 一种有机发光二极管的驱动电路 |
Also Published As
Publication number | Publication date |
---|---|
CN106782322B (zh) | 2018-05-01 |
CN106782322A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018149008A1 (zh) | Amoled像素驱动电路及amoled像素驱动方法 | |
CN106297662B (zh) | Amoled像素驱动电路及驱动方法 | |
WO2023005621A1 (zh) | 像素电路及其驱动方法、显示面板 | |
KR102176454B1 (ko) | Amoled 픽셀 구동 회로 및 구동 방법 | |
CN110060634B (zh) | 有机发光显示器 | |
WO2018045660A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
CN105185300B (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2018072298A1 (zh) | Amoled像素驱动电路及驱动方法 | |
WO2016145693A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2016119304A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2018068393A1 (zh) | Oled像素混合补偿电路及混合补偿方法 | |
TWI797683B (zh) | 像素及包含該像素的有機發光顯示裝置 | |
WO2016155053A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2016123855A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
CN108777131B (zh) | Amoled像素驱动电路及驱动方法 | |
WO2018045659A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2019037300A1 (zh) | Amoled像素驱动电路 | |
WO2017156826A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
CN106297659A (zh) | 有机发光二极管显示器及其驱动方法以及像素单元 | |
WO2016119305A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
US10497316B2 (en) | Amoled pixel driving circuit and driving method thereof | |
WO2019165650A1 (zh) | Amoled像素驱动电路及驱动方法 | |
WO2017156828A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
US10475385B2 (en) | AMOLED pixel driving circuit and driving method capable of ensuring uniform brightness of the organic light emitting diode and improving the display effect of the pictures | |
US10074309B2 (en) | AMOLED pixel driving circuit and AMOLED pixel driving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15514528 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896892 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17896892 Country of ref document: EP Kind code of ref document: A1 |