+

WO2018148378A1 - Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse - Google Patents

Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse Download PDF

Info

Publication number
WO2018148378A1
WO2018148378A1 PCT/US2018/017379 US2018017379W WO2018148378A1 WO 2018148378 A1 WO2018148378 A1 WO 2018148378A1 US 2018017379 W US2018017379 W US 2018017379W WO 2018148378 A1 WO2018148378 A1 WO 2018148378A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
agent
activity
biomarker
cells
Prior art date
Application number
PCT/US2018/017379
Other languages
English (en)
Inventor
William N. Haining
Robert MANGUSO
Original Assignee
Dana-Farber Cancer Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana-Farber Cancer Institute, Inc. filed Critical Dana-Farber Cancer Institute, Inc.
Publication of WO2018148378A1 publication Critical patent/WO2018148378A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/12Applications; Uses in screening processes in functional genomics, i.e. for the determination of gene function
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Definitions

  • checkpoint blockade does not achieve sustained clinical response in most patients (Tumeh et al. (2014) Nature 515:568- 571; Kelderman et al. (2014) Mol. Oncol. 8:1132-1139; Zaretsky et al. (2016) N. Engl. J. Med. 375:819-829). Additional therapeutic strategies are therefore needed to increase the clinical efficacy of immunotherapy. Moreover, the optimal strategy for combining emerging cancer immunotherapies with checkpoint blockade remains uncertain.
  • Loss-of-function genetic screens have been increasingly used to study the functional consequences of gene deletion on tumor cells (Howard et al. (2016) Functional Genomic Characterization of Cancer Genomes. Cold Spring Harb. Symp. Quant. Biol. (2016); Ebert et al. (2008) Nature 451:335-339; Cowley et al. (2014) Scientific Data l:article number 140035).
  • These approaches include pooled genetic screens using CRISPR-Cas9-mediated genome editing that simultaneously test the role of a large number of genes on tumor cell growth, viability or drug resistance (Wang et al. (2014) Science 343:80-84; Shalem et al. (2014) Science 343:84-87).
  • the present invention is based, at least in part, on the discovery that modifying (e.g. , inhibiting/blocking or promoting one or more biomarkers listed in Table 1, such as one or more kinase signaling inhibitors (e.g., PTPN2 and SOCS1)), in combination with an immunotherapy, results in a synergistic therapeutic benefit for treating cancers that is unexpected given the lack of such benefit observed for the immunotherapy alone.
  • modifying e.g. , inhibiting/blocking or promoting one or more biomarkers listed in Table 1, such as one or more kinase signaling inhibitors (e.g., PTPN2 and SOCS1)
  • a method of treating a subject afflicted with a cancer comprising administering to the subject a therapeutically effective amount of an agent that modifies the copy number, the expression level, and/or the activity of one or more biomarkers listed in Table 1 or a fragment thereof, in combination with an immunotherapy, optionally wheren in the agent inhibits the copy number, the expression level, and/or the activity of one or more biomarkers listed in Table 1 or a fragment thereof, is provided.
  • the agent described herein decreases the copy number, the expression level, and/or the activity of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors , such as tyrosine-protein phosphatase non-receptor type 2 (Ptpn2) and/or Suppressor Of Cytokine Signaling 1 (SOCSl)).
  • one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors , such as tyrosine-protein phosphatase non-receptor type 2 (Ptpn2) and/or Suppressor Of Cytokine Signaling 1 (SOCSl)).
  • Ptpn2 tyrosine-protein phosphatase non-receptor type 2
  • SOCSl Suppressor Of Cytokine Signaling 1
  • the agent selectively decreases the activity of one or more biomarkers in Table 1, such as decreasing the phosphatase activity and/or the substrate binding activity of one or more kinase signaling inhibitors (e.g., Ptpn2 and/or SOCSl).
  • the agent described herein is a small molecule inhibitor, CRISPR single-guide RNA (sgRNA), RNA interfering agent, antisense oligonucleotide, peptide or peptidomimetic inhibitor, aptamer, or intrabody.
  • the RNA interfering agent is a small interfering RNA (siRNA), CRISPR RNA (crRNA), a small hairpin RNA (shRNA), a microRNA (miRNA), or a piwi-interacting RNA (piRNA).
  • the RNA interfering agent is a CRISPR single-guide RNA (sgRNA).
  • the sgRNA comprises a nucleic acid sequence selected from the group consisting of nucleic acid sequence listed in Table 2.
  • the agent described herein comprises an intrabody, or an antigen binding fragment thereof, which specifically binds to the one or more biomarkers in Table 1 and/or a substrate of the one or more biomarkers in Table 1.
  • the intrabody, or antigen binding fragment thereof is murine, chimeric, humanized, composite, or human.
  • the intrabody, or antigen binding fragment thereof is detectably labeled, comprises an effector domain, comprises an Fc domain, and/or is selected from the group consisting of Fv, Fav, F(ab')2, Fab', dsFv, scFv, sc(Fv)2, and diabodies fragments.
  • the intrabody, or antigen binding fragment thereof is conjugated to a cytotoxic agent.
  • the cytotoxic agent is selected from the group consisting of a chemotherapeutic agent, a biologic agent, a toxin, and a radioactive isotope.
  • the agent described herein increases the sensitivity of the cancer cells to an immunotherapy.
  • the immunotherapy and/or a cancer therapy is administered before, after, or concurrently with the agent.
  • the immunotherapy comprises an anti-cancer vaccine and/or virus.
  • the immunotherapy is cell-based.
  • immunotherapy inhibits an immune checkpoint.
  • the immune checkpoint is selected from the group consisting of CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7- H6, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRP, CD47, CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, HHLA2, butyrophilins, IDO, CD39, CD73 and A2aR.
  • the immune checkpoint is selected from the group consisting of PD-1, PD-L1, and PD-L2. In yet another embodiment, the immune checkpoint is PD-1.
  • the one or more biomarker described herein comprises a nucleic acid sequence having at least 95% identity to a nucleic acid sequence listed in Table 1 and/or encodes an amino acid sequence having at least 95% identity to an amino acid sequence listed in Table 1.
  • the one or more biomarker is human, mouse, chimeric, or a fusion.
  • the agent reduces the number of proliferating cells in the cancer and/or reduces the volume or size of a tumor comprising the cancer cells.
  • the agent increases the sensitivity of the cancer to the immunotherapy.
  • the immunotherapy is T-cell-mediated.
  • the agent increases the amount of CD8+ T cells in a tumor comprising the cancer cells.
  • the agent increases the level of MHC-I on the surface of the cancer cells.
  • the anti-cancer function of the agent is dependent on IFNy signaling.
  • the method described herein further comprises administering to the subject at least one additional cancer therapy or regimen.
  • the at least one additional cancer therapy or regimen is administered before, after, or concurrently with the agent and/or the immunotherapy.
  • the agent described herein is administered in a pharmaceutically acceptable formulation.
  • a method of killing cancer cells comprising contacting the cancer cells with an agent that inhibits the copy number, the expression level, and/or the activity of one or more biomarkers listed in Table 1 or a fragment thereof, in combination with an immunotherapy.
  • an agent that inhibits the copy number, the expression level, and/or the activity of one or more biomarkers listed in Table 1 or a fragment thereof, in combination with an immunotherapy.
  • the agent described herein decreases the copy number, the expression level, and/or the activity of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors , such as PTPN2 and SOCS1).
  • the agent selectively decreases activity of one or more biomarkers in Table 1, such as decreasing the phosphatase activity and/or the substrate binding activity of one or more kinase signaling inhibitors.
  • the agent is a small molecule inhibitor, CRISPR single-guide RNA (sgRNA), RNA interfering agent, antisense oligonucleotide, peptide or peptidomimetic inhibitor, aptamer, or intrabody.
  • the RNA interfering agent described herein is a small interfering RNA (siRNA), CRISPR RNA (crRNA), a small hairpin RNA (shRNA), a microRNA (miRNA), or a piwi-interacting RNA (piRNA).
  • the RNA interfering agent is a CRISPR single-guide RNA (sgRNA).
  • the sgRNA comprises a nucleic acid sequence selected from the group consisting of nucleic acid sequence listed in Table 2.
  • the agent described herein comprises an intrabody, or an antigen binding fragment thereof, which specifically binds to the one or more biomarkers in Table 1 and/or a substrate of the one or more biomarkers in Table 1.
  • the intrabody, or antigen binding fragment thereof is murine, chimeric, humanized, composite, or human.
  • the intrabody, or antigen binding fragment thereof is detectably labeled, comprises an effector domain, comprises an Fc domain, and/or is selected from the group consisting of Fv, Fav, F(ab')2, Fab', dsFv, scFv, sc(Fv)2, and diabodies fragments.
  • the intrabody, or antigen binding fragment thereof is conjugated to a cytotoxic agent.
  • the cytotoxic agent is selected from the group consisting of a chemotherapeutic agent, a biologic agent, a toxin, and a radioactive isotope.
  • the agent described herein increases the sensitivity of the cancer cells to an immunotherapy.
  • the cancer cells are contacted with an immunotherapy and/or a cancer therapy before, after, or concurrently with the agent.
  • the immunotherapy comprises an anti-cancer vaccine and/or virus.
  • the immunotherapy is cell-based.
  • the immunotherapy inhibits an immune checkpoint.
  • the immune checkpoint is selected from the group consisting of CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD 160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRP, CD47, CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, HHLA2, butyrophilins, IDO, CD39, CD73 and A2aR.
  • the immune checkpoint is selected from the group consisting of PD-1, PD-L1, and PD-L2. In one embodiment, the immune checkpoint is PD-1.
  • the biomarker described herein comprises a nucleic acid sequence having at least 95% identity to a nucleic acid sequence listed in Table 1 and/or encodes an amino acid sequence having at least 95% identity to an amino acid sequence listed in Table 1.
  • the one or more biomarker is human, mouse, chimeric, or a fusion.
  • the agent described herein reduces the number of proliferating cells in the cancer and/or reduces the volume or size of a tumor comprising the cancer cells. In another embodiment, the agent increases the sensitivity of the cancer to the immunotherapy.
  • the immunotherapy is T-cell-mediated.
  • the agent increases the amount of CD8+ T cells in a tumor comprising the cancer cells.
  • the agent increases the level of MHC-I on the surface of the cancer cells.
  • the anti-cancer function of the agent is dependent on IFNy signaling.
  • the method described herein further comprises administering to the subject at least one additional cancer therapy or regimen.
  • the at least one additional cancer therapy or regimen is administered before, after, or concurrently with the agent and/or the immunotherapy.
  • the agent described herein is administered in a pharmaceutically acceptable formulation.
  • a method of determining whether a subject afflicted with a cancer or at risk for developing a cancer would benefit from inhibiting the copy number, amount, and/or activity of at least one biomarker listed in Table 1 comprising a) obtaining a biological sample from the subject; b) determining the copy number, amount, and/or activity of at least one biomarker listed in Table 1 ; c) determining the copy number, amount, and/or activity of the at least one biomarker in a control; and d) comparing the copy number, amount, and/or activity of the at least one biomarker detected in steps b) and c); wherein the presence of, or a significant increase in, the copy number, amount, and/or activity of, the at least one biomarker listed in Table 1 in the subject sample relative to the control copy number, amount, and/or activity of the at least one biomarker indicates that the subject afflicted with the cancer or at risk for developing the cancer would benefit from inhibiting the copy number,
  • the method described herein further comprises recommending, prescribing, or administering an agent that inhibits the at least one biomarker listed in Table 1 if the cancer is determined to benefit from the agent.
  • the method described herein further comprises administering at least one additional cancer therapy that is administered before, after, or concurrently with the agent.
  • the method described herein further comprises recommending, prescribing, or administering cancer therapy other than an agent that inhibits the at least one biomarker listed in Table 1 if the cancer is determined to not benefit from the agent.
  • the cancer therapy is selected from the group consisting of immunotherapy, targeted therapy, chemotherapy, radiation therapy, hormonal therapy, an anti-cancer vaccine, an anti-cancer virus, and a checkpoint inhibitor.
  • the control sample is determined from a cancerous or non-cancerous sample from either the patient or a member of the same species to which the patient belongs.
  • the control sample comprises cells.
  • a method for predicting the clinical outcome of a subject afflicted with a cancer expressing one or more biomarkers listed in Table 1 or a fragment thereof to treatment with an immunotherapy comprising a) determining the copy number, amount, and/or activity of at least one biomarker listed in Table 1 in a subject sample; b) determining the copy number, amount, and/or activity of the at least one biomarker in a control having a good clinical outcome; and c) comparing the copy number, amount, and/or activity of the at least one biomarker in the subject sample and in the control; wherein the presence of, or a significant increase in, the copy number, amount, and/or activity of, the at least one biomarker listed in Table 1 in the subject sample as compared to the copy number, amount and/or activity in the control, is an indication that the subject has a poor clinical outcome.
  • a method for monitoring the progression of a cancer in a subject wherein the subject is administered a therapeutically effective amount of an agent that inhibits the copy number, amount, and/or activity of at least one biomarker listed in Table 1 and an immunotherapy is provided, the method comprising a) detecting in a subject sample at a first point in time the copy number, amount, and/or activity of at least one biomarker listed in Table 1; b) repeating step a) at a subsequent point in time; and c) comparing the amount or activity of at least one biomarker listed in Table 1 detected in steps a) and b) to monitor the progression of the cancer in the subject.
  • a method of assessing the efficacy of an agent that inhibits the copy number, amount, and/or activity of at least one biomarker listed in Table 1 and an immunotherapy for treating a cancer in a subject comprising a) detecting in a subject sample at a first point in time the copy number, amount, and/or or activity of at least one biomarker listed in Table 1; b) repeating step a) during at least one subsequent point in time after administration of the agent and the immunotherapy; and c) comparing the copy number, amount, and/or activity detected in steps a) and b), wherein the absence of, or a significant decrease in, the copy number, amount, and/or activity of, the at least one biomarker listed in Table 1, in the subsequent sample as compared to the copy number, amount, and/or activity in the sample at the first point in time, indicates that the agent and immunotherapy treats the cancer in the subject.
  • the subject has undergone treatment, completed treatment, and/or is in remission for the cancer.
  • the cancer treatment is selected from the group consisting of immunotherapy, targeted therapy, chemotherapy, radiation therapy, hormonal therapy, an anti-cancer vaccine, an anti-cancer virus, and a checkpoint inhibitor.
  • the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples.
  • the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject.
  • the sample described herein comprises cells, serum,
  • peritumoral tissue, and/or intratumoral tissue obtained from the subject obtained from the subject.
  • intratumoral tissue obtained from the subject.
  • the one or more biomarkers listed in Table 1 comprises Ptpn2 and/or SOCS1.
  • the cancer is responsive to IFNy.
  • the cancer cells are in a parainflamed tumor.
  • the cancer cells produce interferon.
  • the cancer described herein is selected from the group consisting of melanoma, colorectal cancer, gliomas, neuroblastoma, prostate cancer, breast cancer, pancreatic ductal carcinoma, epithelial ovarian cancer, B-CLL, leukemia, B cell lymphoma, and renal cell carcinoma.
  • the cancer is in a subject and the subject is an animal model of the cancer.
  • the animal model is a mouse model.
  • the cancer is in a subject and the subject is a mammal.
  • the mammal is a mouse or a human.
  • the mammal is a human.
  • an agent that inhibits one or more kinase signaling inhibitors in still another aspect, an agent that inhibits one or more kinase signaling inhibitors
  • Such agent e.g., biomarkers in Table I, such as PTPN2 and SOCS1 is provided for treating a cancer in a subject, in combination with an immunotherapy.
  • agent may comprise a small molecule inhibitor, an RNA interfering agent, an antisense oligonucleotide, a peptide or peptidomimetic inhibitor, an aptamer, and/or an intrabody, as described herein.
  • a vector comprising an agent that inhibits one or more kinase signaling inhibitors (e.g., biomarkers in Table 1, such as PTPN2 and SOCS1) for treating a cancer in a subject, in combination with an immunotherapy.
  • a host cell which comprises an agent that inhibits one or more kinase signaling inhibitors (e.g., biomarkers in Table 1, such as PTPN2 and SOCS1) for treating a cancer in a subject, in combination with an immunotherapy, is provided.
  • a host cell which comprises a vector comprising an agent that inhibits one or more kinase signaling inhibitors (e.g., biomarkers in Table 1, such as PTPN2 and SOCS1) for treating a cancer in a subject, in combination with an immunotherapy, is provided.
  • kinase signaling inhibitors e.g., biomarkers in Table 1, such as PTPN2 and SOCS1
  • a device or kit comprising the agent that inhibits one or more kinase signaling inhibitors (e.g., biomarkers in Table 1, such as PTPN2 and SOCS1) for treating a cancer in a subject, in combination with an immunotherapy, is provided.
  • one or more kinase signaling inhibitors e.g., biomarkers in Table 1, such as PTPN2 and SOCS1
  • biomarkers of the present invention such as those listed in Table 1, for which inhibition in combination with an immunotherapy, results in a synergistic therapeutic benefit for treating cancers that is unexpected given the lack of such benefit observed for the immunotherapy alone, certain biomarkers clearly described herein, especially at Table 1, whose promoted expression rather than inhibition in combination with an
  • immunotherapy e.g., identified as being enriched in the sgRNA screen rather than being depleted
  • results in a synergistic therapeutic benefit for treating cancers are readily apparent.
  • any aspect and embodiment described herein and above can use such biomarkers and their promoted expression in diagnostic, prognostic, therapeutic, etc.
  • a method of killing cancer cells comprising contacting the cancer cells with an agent that promotes rather than inhibits the copy number, the expression level, and/or the activity of one or more such biomarkers listed in Table 1 or a fragment thereof, in combination with an immunotherapy, is provided.
  • a method of determining whether a subject afflicted with a cancer or at risk for developing a cancer would benefit from promoting the copy number, amount, and/or activity of such at least one biomarker listed in Table 1 comprising a) obtaining a biological sample from the subject; b) determining the copy number, amount, and/or activity of at least one biomarker listed in Table 1 ; c) determining the copy number, amount, and/or activity of the at least one biomarker in a control; and d) comparing the copy number, amount, and/or activity of the at least one biomarker detected in steps b) and c); wherein the absence of, or a significant decrease in, the copy number, amount, and/or activity of, the at least one biomarker listed in Table 1 in the subject sample relative to the control copy number, amount, and/or activity of the at least one biomarker indicates that the subject afflicted with the cancer or at risk for developing the cancer would benefit from promoting the copy number
  • Figure 1 includes 6 panels, identified as panels A, B, C, D, E, and F, which show that in vivo pooled loss-of-function screening using CRISPR/Cas9 in tumor cells recovers known mediators of immune evasion.
  • Panel A shows a schematic diagram of the in vivo screening system using the B16 transplantable tumor model. Tumor volumes (in mm 3 ) were compared under each condition, averaged for each group at each time point (Panel B, left) or for individual animals on the day of sacrifice (Panel B, right). Bars represent means, while whiskers represent standard deviation.
  • Enrichment analysis was carried out using a hypergeometric test to show functional classes of genes, (from the Gene Ontology Consortium database (GO)) targeted by sgRNAs, that were enriched or depleted in tumors in animals, including animals treated with irradiated tumor cell vaccine (GVAX) and anti- PD-1 antibody and the TCRa "/_ animals (Panel C).
  • GVAX irradiated tumor cell vaccine
  • Panel C TCRa "/_ animals
  • sgRNAs targeting PD-L1 are indicated by the red lines (Panel D, middle). PD-L1 expression is compared among Cas9-expressing B16 tumor cells transfected with one of the four sgRNAs targeting PD-L1 (red) or a control sgRNA (grey) (Panel D, bottom). Similar to Panel D, Panel E shows the depletion of CD47 by its specific sgRNAs (indicated in red (top and middle) and CD47 expression after CRISPR editing with sgRNAs targeting CD47 (bottom).
  • Figure 2 includes 6 panels, identified as panels A, B, C, D, E, and F, which show the performance analysis of the screening in Figure 1.
  • Panel A shows Western blot of B16 cell lysate for Cas9 and ⁇ -ACTIN with or without transduction with a lentiviral vector encoding Cas9.
  • a pie chart shows the fraction of genes targeted in the screening in each of the GO term categories indicated (Panel B).
  • Two-dimensional histograms show the pair- wise distribution of sgR As abundance (averaged for each condition) (Panel C).
  • Figure 3 includes 9 panels, identified as panels A, B, C, D, E, F, G, H, and I, which show that loss of IFNy pathway genes causes resistance to immunotherapy.
  • Panel A shows frequency histogram (top) and collapsed histograms (below) of enrichment or depletion (normalized as z scores) for all sgRNAs in GVAX+ PD-1 blockade-treated mice relative to TCRa _ " mice, as in Figure 1. Red bars indicate the sgRNAs for the genes listed on the left.
  • Schematic diagram of in vivo competitive growth assay using B16 cells is shown for different mice receiving a mixture of tumor cells containing targeting sgRNA or control sgRNA (Panel B).
  • Figure 4 includes 7 panels, identified as panels A, B, C, D, E, and F, which show the deletion of interferon pathway molecules from tumor cells.
  • Panel A shows a Western blot of B16 cell lysate for STAT1 (left) and JAK1 (right) after transfection with the indicated sgRNA and Cas9.
  • ⁇ -ACTIN serves as a loading control.
  • the numbers below the lane indicate the percent expression of the target relative to control sgRNA cells. Same blots were also carried out for Braf/Pten melanoma cells (Panel B).
  • Ifhgrl by B16 cells transfected with the indicated Ifhgr 1 -targeting (red) or control (grey) sgRNA and Cas9 is compared (left) and quantified in mean fluorescence intensity (right) (mean and standard deviation) (Panel C). The same expression was compared for Braf/Pten melanoma cells (Panel D). Expression of Ifhar2 by B16 cells transfected with the indicated Ifnarl- targeting (red) or control (grey) sgRNA and Cas9 is compared (left) and quantified in mean fluorescence intensity (right) (mean and standard deviation) (Panel E).
  • Figure 5 includes 10 panels, identified as panels A, B, C, D, E, F, G, H, I, and J, which show that deletion of Ptpnl sensitizes tumor cells to immunotherapy.
  • Panel A shows frequency histogram (top) and collapsed histogram (below) of enrichment or depletion (normalized as Z scores) for all sgRNAs in GVAX + PD-1 blockade-treated mice relative to TCRa _ " mice, as in previous figures.
  • sgRNAs are indicated in red.
  • Western blot of B 16 cell lysate for PTPN2 and ⁇ -ACTIN after transfections with either control or Ptpn2- targeting sgRNAs is compared (Panel B, left).
  • Ptpn2 transcript abundance was measured by qPCR and is shown in the percentage to control level (mean and standard deviation) (Panel B, right).
  • Representative flow plots show frequencies of Ptpn2 null and control B16 tumor cells in mixture in vitro or in vivo (Panel C, right), compared to the mixture of tumor cells treated with either one of two control sgRNAs (Panel C, left).
  • Figure 6 includes 10 panels, identified as panels A, B, C, D, E, F, G, H, I, and J, which show that Ptpn2 null tumor cells do not have a growth disadvantage in vivo in the absence of T cells or immunotherapy.
  • the corresponding survival analysis for the groups is shown in Panel B.
  • the corresponding survival analyses are shown in Panel H and Panel J, respectively.
  • Figure 7 includes 6 panels, identified as panels A, B, C, D, E, and F, which show that Ptpn2 deficient tumor cells present antigen and stimulate T cells better than wild-type tumor cells.
  • Panel B shows representative images of
  • SIINFEKL-H2K(b) presentation on the surface of Ptpn2 null (red) or control (grey) B16 cells after IFNy stimulation for 72 hours was measured (Panel D, left) and quantified in mean fluorescence intensity (Panel D, right) (mean and standard deviation).
  • Intracellular expression of IFNy and TNF by CD8 + T cells after re-stimulation with Ptpn2 null (red) or control (grey) B16 cells was measured (Panel E, left) and quantified for indicated populations (Panel E, right) (mean and standard deviation).
  • Ptpn2 null (red) or control (grey) B 16 cells were co-cultured with antigen-specific T cells, in the indicated ratio of T cells:tumor cells. The increased cell number after co-culturing was compared and is shown in change in the ratios (log2 normalized fold change) (Panel F). * p ⁇ 0.05; ** p ⁇ 0.01; ***p ⁇ 0.001.
  • Figure 8 includes 4 panels, identified as panels A, B, C, and D, which show that Ptpn2 null tumors have increased effector T cell populations but no other significant differences in immune infiltrates compared with control tumors.
  • Panel A contains representative plots showing the gating strategy used in Panel A of Figure 7. Populations of interest are gated in blue. The number of CD45+ cells per mg of tumor for Ptpn2 null (red) and control (grey) B16 tumors is compared (Panel B) (mean and standard deviation).
  • Figure 9 includes 2 panels, identified as panels A and B, which show that Ptpn2 null tumors show no significant differences in myeloid cell infiltration compared to control tumors. Numbers of myeloid cells per mg of tumor for Ptpn2 null (red) and control (grey) B16 tumors were quantified and compared (Panel B) (mean and standard deviation). Data pooled from 2 independent experiments with a minimum of 8 mice per group. The corresponding gating strategy is shown with representative plots (Panel A) (Broz et al. (2014) Cancer Cell 26: 638-652). Populations of interest are gated in blue.
  • Figure 10 includes 2 panels, identified as panels A and B, which show that Ptpn2 null tumor cells have increased MHC-I expression after IFNy stimulation and have increased sensitivity to costimulation with TNF and IFNy. Expression of MHC-I
  • Panel B shows gene set enrichment analysis showing enrichment of signatures for IFNy, IFNa, and TNFa signaling via NFKB in Ptpn2 null B16 cells after costimulation with TNF and IFNy relative to Ptpn2 null cells stimulated with IFNy alone.
  • Figure 11 includes 9 panels, identified as panels A, B, C, D, E, F, G, H, and I, which show that Ptpn2 deficiency renders tumor cells more sensitive to immunotherapy by increasing sensitivity to IFNy.
  • Western blot show levels of phosphorylated STAT1 after IFNy treatment of control, Ptpn2 null, rescued, or overexpressing B16 cells (Panel A).
  • Principle components analysis of gene expression profiles from Ptpn2 null (closed symbols) or control (open symbols) B16 cells was carried out with or without the cytokine treatment indicated (Panel B). Numbered vectors correspond to the correlation of the gene signatures indicated to the principle component vectors shown.
  • Panel C shows heat map of differentially expressed genes in the IFNy signature in either Ptpn2 null or control B16 cells after treatment with the indicated combinations of cytokines.
  • B16 cells transfected with the indicated sgRNAs or control B16 cells were treated with different cytokines.
  • Panel G shows a diagram of the type I and type II interferon pathway and further shows the targets of Ptpn2. Genetic epistasis in the pathway was tested by transfecting cells with a sgRNA for Ptpn2 (filled red circle) and a sgRNA for a member of the interferon pathway (dashed red line) potentially epistatic to Ptpn2 (Panel G).
  • Representative flow plots show the frequencies of StatllPtpn2 double- null cells and Statl null cells in the conditions indicated (in vitro or in GVAX + PD-1 blockade-treated wild-type mice) (Panel H, right) and the frequencies of Ptpn2 null cells and control cells (Panel H, left).
  • Figure 12 shows that sensitivity to IFNy can be increased using small molecule inhibitors of PTP1B.
  • modulatory regulators of one or more biomarkers in Table I e.g., inhibitors one or more kinase signaling inhibitors, such as PTPN2 and SOCS1
  • PTPN2 and SOCS1 can be used to augment tumor immunity and immunotherapies, such as by increase interferon sensing by tumor cells.
  • the instant disclosure provides at least a method of treating cancers, e.g., those cancer types otherwise not responsive or weakly responsive to immunotherapies, with a combination of a biomarker modulator, such as a negative regulator of PTPN2,_and/or SOCS1, and another immunotherapy.
  • Tyrosine-protein phosphatase non-receptor type 2 is a member of the protein tyrosine phosphatase (PTP) family.
  • PTPN2 dephosphorylates receptor protein tyrosine kinases, including INSR, EGFR, CSFIR, PDGFR, as well as non-receptor protein tyrosine kinases like JAKl, JAK2, JAK3, Src family kinases, STAT1, STAT3, STAT5A, STAT5B and STAT6, either in the nucleus or the cytoplasm (Shuai et al. (2003) Nat. Rev. Immunol. 3:900-911; Wiede et al. (2011) J Clin. Invest.
  • PTPN2 has numerous pleiotropic activties, such as negatively regulating numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis, the particular heretofore unknown and critical effect that PTPN2 exerts on interferon sensing as a gateway regulator of tumor immunity and immunotherapy is surprising.
  • the present invention provides exemplary RNA interfering agents inhibiting one or more biomarkers in Table I, e.g., one or more kinase signaling inhibitors , such as PTPN2 and SOCS1, which may be used in the combination therapy and other methods described herein, such as agents that inhibit the function of one or more biomarkers in Table 1 and/or their ability to interact/bind to their substrates described herein, or by increasing its degradation and/or stability and/or interaction/binding to their inhibitors.
  • one or more kinase signaling inhibitors such as PTPN2 and SOCS1
  • biomarkers in Table I e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1
  • methods of diagnosing, prognosing, and monitoring cancer involving such inhibitor/immunotherapy combination therapies are provided.
  • certain of the one or more biomarkers described herein and especially in Table 1 can be inhibited to promote anti-cancer immunotherapy effects and related cancer diagnostic, prognostic, and monitoring methods and certain other biomarkers described herein and especially in Table 1 can have the opposite modulation to effect similar results (e.g., they can be promoted to promote anti-cancer immunotherapy effects and related cancer diagnostic, prognostic, and monitoring methods).
  • the articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article.
  • an element means one element or more than one element.
  • the term “altered amount” or “altered level” refers to increased or decreased copy number (e.g., germline and/or somatic) of a biomarker nucleic acid, e.g., increased or decreased expression level in a cancer sample, as compared to the expression level or copy number of the biomarker nucleic acid in a control sample.
  • altered amount of a biomarker also includes an increased or decreased protein level of a biomarker protein in a sample, e.g., a cancer sample, as compared to the corresponding protein level in a normal, control sample.
  • an altered amount of a biomarker protein may be determined by detecting posttranslational modification such as methylation status of the marker, which may affect the expression or activity of the biomarker protein.
  • the amount of a biomarker in a subject is "significantly" higher or lower than the normal amount of the biomarker, if the amount of the biomarker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or than that amount.
  • the amount of the biomarker in the subject can be considered “significantly” higher or lower than the normal amount if the amount is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal amount of the biomarker.
  • Such "significance” can also be applied to any other measured parameter described herein, such as for expression, inhibition, cytotoxicity, cell growth, and the like.
  • altered level of expression of a biomarker refers to an expression level or copy number of the biomarker in a test sample, e.g., a sample derived from a patient suffering from cancer, that is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples.
  • a test sample e.g., a sample derived from a patient suffering from cancer
  • a control sample e.g., sample from a healthy subjects not having the associated disease
  • the altered level of expression is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples.
  • a control sample e.g., sample from a healthy subjects not having the associated disease
  • the level of the biomarker refers to the level of the biomarker itself, the level of a modified biomarker (e.g., phosphorylated biomarker), or to the level of a biomarker relative to another measured variable, such as a control (e.g., phosphorylated biomarker relative to an unphosphorylated biomarker).
  • a modified biomarker e.g., phosphorylated biomarker
  • a control e.g., phosphorylated biomarker relative to an unphosphorylated biomarker
  • altered activity of a biomarker refers to an activity of the biomarker which is increased or decreased in a disease state, e.g., in a cancer sample, as compared to the activity of the biomarker in a normal, control sample.
  • Altered activity of the biomarker may be the result of, for example, altered expression of the biomarker, altered protein level of the biomarker, altered structure of the biomarker, or, e.g., an altered interaction with other proteins involved in the same or different pathway as the biomarker or altered interaction with transcriptional activators or inhibitors.
  • altered structure of a biomarker refers to the presence of mutations or allelic variants within a biomarker nucleic acid or protein, e.g., mutations which affect expression or activity of the biomarker nucleic acid or protein, as compared to the normal or wild-type gene or protein.
  • mutations include, but are not limited to substitutions, deletions, or addition mutations. Mutations may be present in the coding or non-coding region of the biomarker nucleic acid.
  • antibody refers to antigen-binding portions adaptable to be expressed within cells as "intracellular antibodies.”
  • intracellular antibodies include single-chain antibodies (scFvs), modification of immunoglobulin VL domains for hyperstability, modification of antibodies to resist the reducing intracellular environment, generating fusion proteins that increase intracellular stability and/or modulate intracellular localization, and the like.
  • Intracellular antibodies can also be introduced and expressed in one or more cells, tissues or organs of a multicellular organism, for example for
  • prophylactic and/or therapeutic purposes e.g., as a gene therapy
  • prophylactic and/or therapeutic purposes e.g., as a gene therapy
  • PCT Pubis. WO 08/020079, WO 94/02610, WO 95/22618, and WO 03/014960; U.S. Pat. No.
  • Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g. humanized, chimeric, etc.). Antibodies may also be fully human.
  • antibodies of the present invention bind specifically or substantially specifically to a biomarker polypeptide or fragment thereof.
  • a monoclonal antibody composition typically displays a single binding affinity for a particular antigen with which it immunoreacts.
  • Antibodies may also be "humanized”, which is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell. For example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences.
  • the humanized antibodies of the present invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs.
  • the term "humanized antibody”, as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
  • the term "assigned score” refers to the numerical value designated for each of the biomarkers after being measured in a patient sample.
  • the assigned score correlates to the absence, presence or inferred amount of the biomarker in the sample.
  • the assigned score can be generated manually (e.g. , by visual inspection) or with the aid of instrumentation for image acquisition and analysis.
  • the assigned score is determined by a qualitative assessment, for example, detection of a fluorescent readout on a graded scale, or quantitative assessment.
  • an "aggregate score” which refers to the combination of assigned scores from a plurality of measured biomarkers, is determined.
  • the aggregate score is a summation of assigned scores.
  • combination of assigned scores involves performing mathematical operations on the assigned scores before combining them into an aggregate score.
  • the aggregate score is also referred to herein as the "predictive score.”
  • biomarker refers to a measurable entity of the present invention that has been determined to be predictive of inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors , such as PTPN2 and/or SOCS1) and
  • Biomarkers can include, without limitation, nucleic acids and proteins, including those shown in the Tables, the Examples, the Figures, and otherwise described herein. As described herein, any relevant characteristic of a biomarker can be used, such as the copy number, amount, activity, location, modification (e.g., phosphorylation), and the like.
  • blocking antibody or an antibody “antagonist” is one which inhibits or reduces at least one biological activity of the antigen(s) it binds.
  • the blocking antibodies or antagonist antibodies or fragments thereof described herein substantially or completely inhibit a given biological activity of the antigen(s).
  • body fluid refers to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g. amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).
  • fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g. amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle,
  • cancer or “tumor” or “hyperproliferative” refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain
  • such cells exhibit such characteristics in part or in full due to the expression and activity of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and/or their related signaling pathways (e.g., PTPN2-regulated signaling pathways, including NF-kappaB signaling pathway, MAP kinase pathway, JAK-STAT signaling pathway, or other signaling pathways involving receptor tyrosine kinases, non-receptor tyrosine kinases, Src family kinases, and/or signal transducer and activator of transcription (STAT) proteins and/or SOCS1- regulated signaling pathways, including e.g.
  • one or more kinase signaling inhibitors such as PTPN2 and SOCS1
  • their related signaling pathways e.g., PTPN2-regulated signaling pathways, including NF-kappaB signaling pathway, MAP kinase pathway, J
  • the cancer cells are capable of responding to interferon because they express functional proteins of the type I interferon signaling pathway and/or type II interferon signaling pathway, such as those shown in panel E of Figure 11.
  • the cancer cells described herein are not sensitive to at least one of immunotherapies.
  • Such insensitivity may be related to the inactivation or decreased activation, compared to control cells (e.g., normal and/or wild-type non-cancer cells, and/or cancer cells without this insensitivity to immunotherapies), of interferon signaling (e.g., IFNy signaling) in such cancer cells and/or other surrounding cells and/or cells localized near to such cancer cells.
  • control cells e.g., normal and/or wild-type non-cancer cells, and/or cancer cells without this insensitivity to immunotherapies
  • interferon signaling e.g., IFNy signaling
  • Such inactivation or decreased activation of interferon signaling may be related to the inhibition of interferon signaling by one or more biomarkers in Table I, e.g., one or more kinase signaling inhibitors, such as PTPN2 and/or SOCSl (e.g., by overexpression and/or gain-of-function of the gene, RNA transcript, and/or protein of such one or more biomarkers in Table 1, and/or by reduced expression and/or loss-of-funciton of endogenous negative regulator(s) of such one or more biomarkers in Table 1).
  • one or more biomarkers in Table I e.g., one or more kinase signaling inhibitors, such as PTPN2 and/or SOCSl (e.g., by overexpression and/or gain-of-function of the gene, RNA transcript, and/or protein of such one or more biomarkers in Table 1, and/or by reduced expression and/or loss-of-funciton of endogenous negative regulator(s) of such
  • the cancer cells are treatable with an agent capable of antagonizing one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and/or SOCSl), such as inhibiting expression and/or function of one or more biomarkers in Table 1, as described herein.
  • an agent capable of antagonizing one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and/or SOCSl), such as inhibiting expression and/or function of one or more biomarkers in Table 1, as described herein.
  • An exemplary agent may relieve the inhibition of interferon (e.g., IFNy) signaling by PTPN2 and/or SOCSl in such cancer cells and/or other cells surrounding or localized near such cancer cells, thus restoring the IFNy signaling and the sensitivity of such cancer cells to
  • the treatment with the agent antagonizing one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCSl
  • IFNy signaling refers to any cell signaling downstream and/or related to the interaction of interferon (e.g., IFNy) and their receptor(s).
  • IFNy cell signaling include, without limitation, the activation of macrophages and/or induction of Class II major histocompatibility complex (MHC) molecule expression, and/or activation of multiple immune effector genes through the Janus kinase (JAK)-STAT signaling pathway ⁇ e.g., through STAT1 transcription factor).
  • MHC major histocompatibility complex
  • JK Janus kinase
  • the receptor specific for IFNy is IFNyR, comprising two chains, namely IFNyRl (also known as the IFNyR alpha chain) and IFNyR2 (also known as the IFNyR beta chain).
  • IFNyRl is the ligand binding receptor and is required but not sufficient for signal transduction, whereas IFNyR2 do not bind IFNy independently but mainly plays a role in IFNy signaling and is generally the limiting factor in IFNy responsiveness.
  • Both IFNyR chains lack intrinsic kinase/phosphatase activity and thus rely on other signaling proteins like Janus-activated kinase 1 (JAK1), JAK2 and signal transducer and activator of transcription 1 (STAT-1) for signal transduction.
  • IFNyR complex in its resting state is a preformed tetramer and upon IFNy association undergoes a conformational change.
  • This conformational change induces the phosphorylation and activation of JAK1, JAK2, and STAT1 which in turn induces genes containing the gamma- interferon activation sequence (GAS) in the promoter.
  • GAS gamma- interferon activation sequence
  • Many IFNy functions are mediated by direct activation of immune effector genes by STAT1, including genes encoding antiviral proteins, microbicidal molecules, phagocytic receptors, chemokines, cytokines, and antigen-presenting molecules.
  • Canonical Jak-STAT signaling mechanisms leading to activation of well-characterized STAT1 target genes have been previously reviewed (Stark (2007) Cytokine Growth Factor Rev., 18:419-423).
  • IFNy function in certain cell contexts (reviewed in van Boxel-Dezaire and Stark, 2007 Curr. Top. Microbiol. Immunol., 316:119- 154 and Gough et ah, 2008 Cytokine Growth Factor Rev., 19:383-394).
  • many key IFNy functions are mediated by cross-regulation of cellular responses to other cytokines and inflammatory factors, such as, at least, tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide.
  • the capacity of IFNy to cross-regulate signaling pathways induced by other endogenous and exogenous factors is less appreciated, and the underlying mechanisms are more recently described. The mechanisms and
  • IFNy signaling can at least promote NK cell activity, increase antigen presentation and lysosome activity of macrophages, activate inducible nitric oxide synthase (iNOS), and induce the production of IgG2a and IgG3 from activated plasma B cells.
  • iNOS inducible nitric oxide synthase
  • IFN-stimulated genes control viral, bacterial, and parasite infection by directly targeting pathways and functions required during pathogen life cycles. Upregulation of chemokines and chemokine receptors enables cell-to-cell communication, whereas negative regulators of signaling help resolve the IFN- induced state and facilitate the return to cellular homeostasis. Additional IFN-stimulated genes encode for proapoptotic proteins, leading to cell death under certain conditions.
  • IFNy signaling include at least activation or inhibition of at least one IFNy responsive genes well known in the art. The detection methods for such activation or inhibitor of IFNy responsive genes are also well known in the art.
  • the cancer cells described herein have defective or at least reduced IFNy signaling, preferably due to inhibition by one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1).
  • one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1.
  • such cancer cells Upon treatment with the antagonizing agent for such one or more biomarkers in Table 1, as described herein, such cancer cells restore IFNy signaling.
  • Such defective, reduced, or restored IFNy signaling can be detected and/or measured through the expression and/or function of IFN-responsive genes, as described herein, using any known method in the art.
  • Cancer cells are often in the form of a tumor, but such cells may exist alone within an animal, or may be a non-tumorigenic cancer cell, such as a leukemia cell.
  • cancer includes premalignant as well as malignant cancers.
  • Cancers include, but are not limited to, B cell cancer, e.g., multiple myeloma, Waldenstrom's macroglobulinemia, the heavy chain diseases, such as, for example, alpha chain disease, gamma chain disease, and mu chain disease, benign monoclonal gammopathy, and immunocytic amyloidosis, melanomas, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematologic tissues, and the like.
  • myxosarcoma liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma,
  • angiosarcoma endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, liver cancer, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, bone cancer, brain tumor, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma,
  • leukemias e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, and heavy chain disease.
  • leukemias e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia);
  • cancers are epithlelial in nature and include but are not limited to, bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer.
  • the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer.
  • the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma.
  • the epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, Brenner, or undifferentiated.
  • the cancer encompasses colorectal cancer (e.g., colorectal carcinoma).
  • colonal cancer as used herein, is meant to include cancer of cells of the intestinal tract below the small intestine (e.g., the large intestine (colon), including the cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, and rectum). Additionally, as used herein, the term “colorectal cancer” is meant to further include cancer of cells of the duodenum and small intestine (jejunum and ileum).
  • Colorectal cancer also includes neoplastic diseases involving proliferation of a single clone of cells of the colon and includes adenocarcinoma and carcinoma of the colon whether in a primary site or metastasized.
  • CRC Colorectal cancer
  • CRC can present with two distinct genomic profiles that have been termed (i) chromosomal instability neoplasia (CIN), characterized by rampant structural and numerical chromosomal aberrations driven in part by telomere dysfunction (Artandi et al. (2000) Nature 406:641-645; Fodde et al. (2001) Nat. Rev. Cancer 1:55-67; Maser and DePinho (2002) Science 297:565-569; Rudolph et al. (2001) Nat. Genet. 28:155-159) and mitotic aberrations (Lengauer et al.
  • CIN chromosomal instability neoplasia
  • microsatellite instability neoplasia characterized by near diploid karyotypes with alterations at the nucleotide level due to mutations in mismatch repair (MMR) genes
  • MMR mismatch repair
  • Germline MMR mutations are highly penetrant lesions which drive the ⁇ phenotype in hereditary nonpolyposis colorectal cancers, accounting for 1-5% of CRC cases (de la Chapelle (2004) Nat. Rev. Cancer 4:769-780; Lynch and de la Chapelle (1999) J Med. Genet. 36:801-818; Umar et al. (2004) Nat. Rev. Cancer 4:153-158). While CIN and ⁇ are mechanistically distinct, their genomic and genetic consequences emphasize the requirement of dominant mutator mechanisms to drive intestinal epithelial cells towards a threshold of oncogenic changes needed for malignant transformation.
  • K-Ras mutations occur early in neoplastic progression and are present in approximately 50% of large adenomas (Fearon and Gruber (2001) Molecular abnormalities in colon and rectal cancer, ed. J. Mendelsohm, P.H., M. Israel, and L. Liotta, W.B. Saunders, Philadelphia).
  • the BRAF serine/threonine kinase and PIK3CA lipid kinase are mutated in 5-18% and 28% of sporadic CRCs, respectively (Samuels et al. (2004) Science 304:554; Davies et al. (2002) Nature 417:949- 954; Rajagopalan et al.
  • the colorectal cancer is micro satellite instable (MSI) colorectal cancer (Llosa et al. (2014) Cancer Disc. CD-14-0863; published online Oct. 30, 2014).
  • MSI represents about 15% of sporadic CRC and about 5-6% of stage IV CRCs.
  • MSI is caused by epigenetic silencing or mutation of DNA mismatch repair genes and typically presents with lower stage disease than microsatellite stable subset (MSS) CRC.
  • MSI highly express immune checkpoints, such as PD-1, PD-L1, CTLA-4, LAG-3, and IDO.
  • the colorectal cancer is MSS CRC.
  • the cancer encompasses melanoma.
  • melanoma as used herein, is generally meant to include cancers that develop from the pigment- containing cells, known as melanocytes, in the basal layer of the epidermis. Melanomas typically occur in the skin but may rarely occur in the mouth, intestines, or eye. In women they most commonly occur on the legs, while in men they are most common on the back. Sometimes they develop from a mole with concerning changes including an increase in size, irregular edges, change in color, itchiness, or skin breakdown. Thus, the term
  • cancer also includes cancers developing from these cells, tissues, and organs.
  • Melanomas are among the most dangerous forms of skin cancer and develop when unrepaired DNA damage to skin cells (most often caused by ultraviolet radiation from sunshine or tanning beds) triggers gene mutations that lead the skin cells to multiply rapidly and form malignant tumors.
  • the primary cause of melanoma is ultraviolet light (UV) exposure in those with low levels of skin pigment.
  • UV ultraviolet light
  • Melanomas often resemble moles; some develop from moles. Those with many moles, a history of affected family members, and who have poor immune function are at greater risk.
  • a number of rare genetic defects such as xeroderma pigmentosum also increase risk (Azoury and Lange, 2014 Surg Clin North Am. 2014 94:945-962).
  • Melanoma can be divided into different types, including, at least, lentigo maligna, lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma, mucosal melanoma, nodular melanoma, polypoid melanoma, desmoplastic melanoma, amelanotic melanoma, soft-tissue melanoma, melanoma with small nevus-like cells, melanoma with features of a Spitz nevus, uveal melanoma, etc. (see James, et al., 2006 Andrews' Diseases of the Skin: clinical Dermatology. Saunders Elsevier, pp. 694-9)
  • Diagnosis is by biopsy of any concerning skin lesion, including, at least, shave (tangential) biopsy, punch biopsy, incisional and excisional biopsies, "optical” biopsies (e.g. , by reflectance confocal microscopy (RCM)), fine needle aspiration (FNA) biopsy, surgical lymph node biopsy, sentinel lymph node biopsy, etc.
  • shave tangential
  • punch biopsy punch biopsy
  • incisional and excisional biopsies e.g. , incisional and excisional biopsies
  • optical biopsies e.g. , by reflectance confocal microscopy (RCM)
  • FNA fine needle aspiration
  • visual inspection may also be used for diagnosis, such as a popular method for the signs and symptoms of melanoma as mnemonic "ABCDE": Asymmetrical skin lesion, Border of the lesion is irregular, Color: melanomas usually have multiple colors, Diameter: moles greater than 6 mm are more likely to be melanomas than smaller moles, and Enlarging: Enlarging or evolving. Another method as the "ugly duckling sign" is also known in the art (Mascara and Mascara, 1998 Arch Dermatol. 134: 1484-1485).
  • Treatment of melanoma includes surgery, chemotherapy (such as temozolomide, dacarbazine (also termed DTIC), etc.), radiation therapy, oncolytic virotherapy (e.g., see Forbes et ah, 2013 Front. Genet. 4:184), and immunotherapy (e.g., interleukin-2 (IL-2), interferon, etc.).
  • Targeted therapies may include: 1) adoptive cell therapy (ACT) using TILs immune cells (tumor infiltrating lymphocytes) isolated from a person's own melanoma tumor). Cells are grown in large numbers in a laboratory and returned to the patient after a treatment that temporarily reduces normal T cells in the patient's body.
  • TIL therapy following
  • lymphodepletion can result in durable complete response in a variety of setups (Besser et ah, 2010 Clin. Cancer Res. 16:2646-2655); and 2) adoptive transfer of genetically altered (expressing T cell receptors (TCRs)) autologous lymphocytes into patient's lymphocytes, where the altered lymphocytes recognize and bind to the surface of melanoma cells and kill them.
  • Other therapies include, at least, B-Raf inhibitors (such as vemurafenib, see
  • coding region refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues
  • noncoding region refers to regions of a nucleotide sequence that are not translated into amino acids ⁇ e.g., 5' and 3' untranslated regions
  • an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds ("base pairing") with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil.
  • base pairing specific hydrogen bonds
  • a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine.
  • a first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region.
  • the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.
  • control refers to any reference standard suitable to provide a comparison to the expression products in the test sample.
  • the control comprises obtaining a "control sample” from which expression product levels are detected and compared to the expression product levels from the test sample.
  • a control sample may comprise any suitable sample, including but not limited to a sample from a control cancer patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue or cells isolated from a subject, such as a normal patient or the cancer patient, cultured primary cells/tissues isolated from a subject such as a normal subject or the cancer patient, adjacent normal cells/tissues obtained from the same organ or body location of the cancer patient, a tissue or cell sample isolated from a normal subject, or a primary cells/tissues obtained from a depository.
  • control may comprise a reference standard expression product level from any suitable source, including but not limited to housekeeping genes, an expression product level range from normal tissue (or other previously analyzed control sample), a previously determined expression product level range within a test sample from a group of patients, or a set of patients with a certain outcome (for example, survival for one, two, three, four years, etc.) or receiving a certain treatment (for example, standard of care cancer therapy).
  • a certain outcome for example, survival for one, two, three, four years, etc.
  • a certain treatment for example, standard of care cancer therapy
  • control samples and reference standard expression product levels can be used in combination as controls in the methods of the present invention.
  • control may comprise normal or non-cancerous cell/tissue sample.
  • control may comprise an expression level for a set of patients, such as a set of cancer patients, or for a set of cancer patients receiving a certain treatment, or for a set of patients with one outcome versus another outcome.
  • the specific expression product level of each patient can be assigned to a percentile level of expression, or expressed as either higher or lower than the mean or average of the reference standard expression level.
  • control may comprise normal cells, cells from patients treated with combination chemotherapy, and cells from patients having benign cancer.
  • control may also comprise a measured value for example, average level of expression of a particular gene in a population compared to the level of expression of a housekeeping gene in the same population.
  • control comprises a ratio transformation of expression product levels, including but not limited to determining a ratio of expression product levels of two genes in the test sample and comparing it to any suitable ratio of the same two genes in a reference standard;
  • control comprises a control sample which is of the same lineage and/or type as the test sample.
  • control may comprise expression product levels grouped as percentiles within or based on a set of patient samples, such as all patients with cancer.
  • a control expression product level is established wherein higher or lower levels of expression product relative to, for instance, a particular percentile, are used as the basis for predicting outcome.
  • a control expression product level is established using expression product levels from cancer control patients with a known outcome, and the expression product levels from the test sample are compared to the control expression product level as the basis for predicting outcome.
  • the methods of the present invention are not limited to use of a specific cut-point in comparing the level of expression product in the test sample to the control.
  • the "copy number" of a biomarker nucleic acid refers to the number of DNA sequences in a cell (e.g. , germline and/or somatic) encoding a particular gene product.
  • germline copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in the normal complement of germline copies in a control (e.g., the normal copy number in germline DNA for the same species as that from which the specific germline DNA and corresponding copy number were determined).
  • Somatic copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in germline DNA of a control (e.g., copy number in germline DNA for the same subject as that from which the somatic DNA and corresponding copy number were determined).
  • the "normal" copy number (e.g., germline and/or somatic) of a biomarker nucleic acid or "normal” level of expression of a biomarker nucleic acid or protein is the activity /level of expression or copy number in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow, from a subject, e.g., a human, not afflicted with cancer, or from a corresponding non-cancerous tissue in the same subject who has cancer.
  • a biological sample e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow
  • costimulate with reference to activated immune cells includes the ability of a costimulatory molecule to provide a second, non-activating receptor mediated signal (a "costimulatory signal") that induces proliferation or effector function.
  • a costimulatory signal can result in cytokine secretion, e.g., in a T cell that has received a T cell-receptor-mediated signal.
  • Immune cells that have received a cell-receptor mediated signal, e.g., via an activating receptor are referred to herein as "activated immune cells.”
  • determining a suitable treatment regimen for the subject is taken to mean the determination of a treatment regimen (i.e., a single therapy or a combination of different therapies that are used for the prevention and/or treatment of the cancer in the subject) for a subject that is started, modified and/or ended based or essentially based or at least partially based on the results of the analysis according to the present invention.
  • a treatment regimen i.e., a single therapy or a combination of different therapies that are used for the prevention and/or treatment of the cancer in the subject
  • a subject that is started, modified and/or ended based or essentially based or at least partially based on the results of the analysis according to the present invention.
  • a treatment regimen i.e., a single therapy or a combination of different therapies that are used for the prevention and/or treatment of the cancer in the subject
  • the determination can, in addition to the results of the analysis according to the present invention, be based on personal characteristics of the subject to be treated. In most cases, the actual determination of the suitable treatment
  • diagnosing cancer includes the use of the methods, systems, and code of the present invention to determine the presence or absence of a cancer or subtype thereof in an individual.
  • the term also includes methods, systems, and code for assessing the level of disease activity in an individual.
  • a molecule is "fixed” or "affixed” to a substrate if it is covalently or non-covalently associated with the substrate such that the substrate can be rinsed with a fluid (e.g. standard saline citrate, pH 7.4) without a substantial fraction of the molecule dissociating from the substrate.
  • a fluid e.g. standard saline citrate, pH 7.4
  • expression signature refers to a group of one or more coordinately expressed biomarkers related to a measured phenotype.
  • the genes, proteins, metabolites, and the like making up this signature may be expressed in a specific cell lineage, stage of differentiation, or during a particular biological response.
  • the biomarkers can reflect biological aspects of the tumors in which they are expressed, such as the cell of origin of the cancer, the nature of the non-malignant cells in the biopsy, and the oncogenic mechanisms responsible for the cancer.
  • Expression data and gene expression levels can be stored on computer readable media, e.g., the computer readable medium used in conjunction with a microarray or chip reading device. Such expression data can be manipulated to generate expression signatures.
  • “Homologous” as used herein refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue.
  • a region having the nucleotide sequence 5'- ATTGCC-3' and a region having the nucleotide sequence 5'-TATGGC-3' share 50% homology.
  • the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.
  • Immune cell refers to cells that play a role in the immune response.
  • Immune cells are of hematopoietic origin, and include lymphocytes, such as B cells and T cells; natural killer cells; myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.
  • immunotherapy refers to any treatment that uses certain parts of a subject's immune system to fight diseases such as cancer.
  • the subject's own immune system is stimulated (or suppressed), with or without administration of one or more agent for that purpose.
  • Immunotherapies that are designed to elicit or amplify an immune response are referred to as “activation immunotherapies.”
  • Immunotherapies that are designed to reduce or suppress an immune response are referred to as “suppression immunotherapies.” Any agent believed to have an immune system effect on the genetically modified transplanted cancer cells can be assayed to determine whether the agent is an immunotherapy and the effect that a given genetic modification has on the modulation of immune response.
  • the immunotherapy is cancer cell-specific.
  • immunotherapy can be "untargeted,” which refers to administration of agents that do not selectively interact with immune system cells, yet modulates immune system function.
  • untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.
  • Immunotherapy is one form of targeted therapy that may comprise, for example, the use of cancer vaccines and/or sensitized antigen presenting cells.
  • an oncolytic virus is a virus that is able to infect and lyse cancer cells, while leaving normal cells unharmed, making them potentially useful in cancer therapy. Replication of oncolytic viruses both facilitates tumor cell destruction and also produces dose amplification at the tumor site. They may also act as vectors for anticancer genes, allowing them to be specifically delivered to the tumor site.
  • the immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g.
  • a monoclonal antibody optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen.
  • a chemotherapeutic agent or toxin for example, anti-VEGF and mTOR inhibitors are known to be effective in treating renal cell carcinoma.
  • Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines.
  • antisense polynucleotides, ribozymes, RNA interference molecules, triple helix polynucleotides and the like can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.
  • Immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g. , administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen). Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix
  • polynucleotides and the like can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.
  • the immunotherapy described herein comprises at least one immunogenic chemotherapies.
  • immunogenic chemotherapy refers to any chemotherapy that has been demonstrated to induce immunogenic cell death, a state that is detectable by the release of one or more damage-associated molecular pattern (DAMP) molecules, including, but not limited to, calreticulin, ATP and HMGB1 (Kroemer et al. (2013), Annu. Rev. Immunol., 31:51-72).
  • DAMP damage-associated molecular pattern
  • Specific representative examples of consensus immunogenic chemotherapies include 5'-fluorouracil, anthracyclines, such as doxorubicin, and platinum drugs, such as oxaliplatin, among others.
  • immunotherapy comprises inhibitors of one or more immune checkpoints.
  • immune checkpoint refers to a group of molecules on the cell surface of CD4+ and/or CD8+ T cells that fine-tune immune responses by down- modulating or inhibiting an anti-tumor immune response.
  • Immune checkpoint proteins are well-known in the art and include, without limitation, CTLA-4, PD-1 , VISTA, B7-H2, B7- H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRP, CD47, CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, HHLA2, butyrophilins, IDO, CD39, CD73 and A2aR (see, for example, WO 2012/177624).
  • CTLA-4 CTLA-4, PD-1 , VISTA, B7-H2, B7- H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD160,
  • the immune checkpoint is PD-1.
  • PD-1 refers to a member of the immunoglobulin gene superfamily that functions as a coinhibitory receptor having PD-L1 and PD-L2 as known ligands.
  • PD-1 was previously identified using a subtraction cloning based approach to select for genes upregulated during TCR-induced activated T cell death.
  • PD-1 is a member of the CD28/CTLA-4 family of molecules based on its ability to bind to PD-L1. Like CTLA-4, PD-1 is rapidly induced on the surface of T- cells in response to anti-CD3 (Agata et al. 25 (1996) Int. Immunol. 8:765).
  • PD-1 is also induced on the surface of B-cells (in response to anti-IgM). PD-1 is also expressed on a subset of thymocytes and myeloid cells (Agata et al. (1996) supra; Nishimura et al. (1996) Int. Immunol. 8:773).
  • PD-1 has an extracellular region containing immunoglobulin superfamily domain, a transmembrane domain, and an intracellular region including an immunoreceptor tyrosine-based inhibitory motif (ITIM) (Ishida et a/. (1992) E BO J. 11:3887; Shinohara et al. (1994) Genomics 23:704; and U.S. Patent 5,698,520) and an immunoreceptor tyrosine-based switch motif (ITSM).
  • ITIM immunoreceptor tyrosine-based inhibitory motif
  • immunoinhibitory receptors which also includes gp49B, PIR-B, and the killer inhibitory receptors (KIRs) (Vivier and Daeron (1997) Immunol. Today 18:286). It is often assumed that the tyrosyl phosphorylated ITIM and ITSM motif of these receptors interacts with SH2-domain containing phosphatases, which leads to inhibitory signals.
  • a subset of these immunoinhibitory receptors bind to MHC polypeptides, for example the KIRs, and CTLA4 binds to B7-1 and B7-2. It has been proposed that there is a phylogenetic relationship between the MHC and B7 genes (Henry et al. (1999) Immunol. Today 20(6):285-8).
  • Nucleic acid and polypeptide sequences of PD-1 orthologs in organisms other than humans are well-known and include, for example, mouse PD-1 (NM_008798.2 and NP_032824.1), rat PD-1 (NM_001106927.1 and NP_001100397.1), dog PD-1 (XM_543338.3 and
  • XP_543338.3 cow PD-1 (NM_001083506.1 and NP_001076975.1), and chicken PD-1 (XM_422723.3 and XP_422723.2).
  • PD-1 polypeptides are inhibitory receptors capable of transmitting an inhibitory signal to an immune cell to thereby inhibit immune cell effector function, or are capable of promoting costimulation ⁇ e.g., by competitive inhibition) of immune cells, e.g., when present in soluble, monomeric form.
  • Preferred PD-1 family members share sequence identity with PD-1 and bind to one or more B7 family members, e.g., B7-1, B7-2, PD-1 ligand, and/or other polypeptides on antigen presenting cells.
  • PD-1 activity includes the ability of a PD-1 polypeptide to modulate an inhibitory signal in an activated immune cell, e.g., by engaging a natural PD-1 ligand on an antigen presenting cell. Modulation of an inhibitory signal in an immune cell results in modulation of proliferation of, and/or cytokine secretion by, an immune cell.
  • PD-1 activity includes the ability of a PD-1 polypeptide to bind its natural ligand(s), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response.
  • PD-1 ligand refers to binding partners of the PD-1 receptor and includes both PD-L1 (Freeman et al. (2000) J Exp. Med. 192:1027-1034) and PD-L2 (Latchman et al. (2001) Nat. Immunol. 2:261). At least two types of human PD-1 ligand polypeptides exist. PD-1 ligand proteins comprise a signal sequence, and an IgV domain, an IgC domain, a transmembrane domain, and a short cytoplasmic tail. Both PD-Ll (See Freeman et al. (2000) for sequence data) and PD-L2 (See Latchman et al. (2001) Nat. Immunol.
  • Both PD-Ll and PD-L2 are expressed in placenta, spleen, lymph nodes, thymus, and heart. Only PD-L2 is expressed in pancreas, lung and liver, while only PD-Ll is expressed in fetal liver. Both PD-1 ligands are upregulated on activated monocytes and dendritic cells, although PD-Ll expression is broader.
  • PD-Ll is known to be constitutively expressed and upregulated to higher levels on murine hematopoietic cells (e.g., T cells, B cells, macrophages, dendritic cells (DCs), and bone marrow-derived mast cells) and non- hematopoietic cells (e.g., endothelial, epithelial, and muscle cells), whereas PD-L2 is inducibly expressed on DCs, macrophages, and bone marrow-derived mast cells (see Butte et al. (2007) Immunity 27: 111).
  • murine hematopoietic cells e.g., T cells, B cells, macrophages, dendritic cells (DCs), and bone marrow-derived mast cells
  • non- hematopoietic cells e.g., endothelial, epithelial, and muscle cells
  • PD-L2 is inducibly expressed on DCs, macrophages, and bone marrow-derived mast
  • PD-1 ligands comprise a family of polypeptides having certain conserved structural and functional features.
  • family when used to refer to proteins or nucleic acid molecules, is intended to mean two or more proteins or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence homology, as defined herein.
  • family members can be naturally or non- naturally occurring and can be from either the same or different species.
  • a family can contain a first protein of human origin, as well as other, distinct proteins of human origin or alternatively, can contain homologues of non-human origin.
  • Members of a family may also have common functional characteristics.
  • PD-1 ligands are members of the B7 family of polypeptides.
  • B7 family or "B7 polypeptides” as used herein includes costimulatory polypeptides that share sequence homology with B7 polypeptides, e.g., with B7-1, B7-2, B7h (Swallow et al. (1999) Immunity 11 :423), and/or PD-1 ligands (e.g., PD-Ll or PD-L2).
  • B7-1 and B7-2 share approximately 26% amino acid sequence identity when compared using the BLAST program at NCBI with the default parameters (Blosum62 matrix with gap penalties set at existence 11 and extension 1 (See the NCBI website).
  • B7 family also includes variants of these polypeptides which are capable of modulating immune cell function.
  • IgV domains and the IgC domains are art-recognized Ig superfamily member domains. These domains correspond to structural units that have distinct folding patterns called Ig folds. Ig folds are comprised of a sandwich of two ⁇ sheets, each consisting of anti-parallel ⁇ strands of 5-10 amino acids with a conserved disulfide bond between the two sheets in most, but not all, IgC domains of Ig, TCR, and MHC molecules share the same types of sequence patterns and are called the CI -set within the Ig superfamily. Other IgC domains fall within other sets. IgV domains also share sequence patterns and are called V set domains. IgV domains are longer than IgC domains and contain an additional pair of ⁇ strands.
  • B7 polypeptides are capable of providing costimulatory or inhibitory signals to immune cells to thereby promote or inhibit immune cell responses.
  • B7 family members that bind to costimulatory receptors increase T cell activation and proliferation, while B7 family members that bind to inhibitory receptors reduce
  • B7 family member may increase or decrease T cell costimulation.
  • PD-1 ligand when bound to a costimulatory receptor, PD-1 ligand can induce costimulation of immune cells or can inhibit immune cell costimulation, e.g., when present in soluble form.
  • PD-1 ligand polypeptides when bound to an inhibitory receptor, can transmit an inhibitory signal to an immune cell.
  • Preferred B7 family members include B7-1, B7-2, B7h, PD-Ll or PD-L2 and soluble fragments or derivatives thereof.
  • B7 family members bind to one or more receptors on an immune cell, e.g., CTLA4, CD28, ICOS, PD-1 and/or other receptors, and, depending on the receptor, have the ability to transmit an inhibitory signal or a costimulatory signal to an immune cell, preferably a T cell.
  • an immune cell e.g., CTLA4, CD28, ICOS, PD-1 and/or other receptors, and, depending on the receptor, have the ability to transmit an inhibitory signal or a costimulatory signal to an immune cell, preferably a T cell.
  • PD-1 ligand activity includes the ability of a PD-1 ligand polypeptide to bind its natural receptor(s) (e.g. PD-1 or B7-1), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response.
  • PD-Ll refers to a specific PD-1 ligand.
  • Two forms of human PD-Ll molecules have been identified.
  • One form is a naturally occurring PD-Ll soluble polypeptide, i.e., having a short hydrophilic domain and no transmembrane domain, and is referred to herein as PD-Ll S (shown in Table 1 as SEQ ID NO: 4).
  • the second form is a cell-associated polypeptide, i.e., having a transmembrane and cytoplasmic domain, referred to herein as PD-Ll M (shown in SEQ ID NO: 6).
  • PD-L1 proteins comprise a signal sequence, and an IgV domain and an IgC domain.
  • the signal sequence of SEQ ID NO: 4 is shown from about amino acid 1 to about amino acid 18.
  • the signal sequence of SEQ ID NO: 6 is shown :from about amino acid 1 to about amino acid 18.
  • the IgV domain of SEQ ID NO: 4 is shown from about amino acid 19 to about amino acid 134 and the IgV domain of SEQ ID NO: 6 is shown from about amino acid 19 to about amino acid 134.
  • the IgC domain of SEQ ID NO: 4 is shown from about amino acid 135 to about amino acid 227 and the IgC domain of SEQ ID NO: 6 is shown from about amino acid 135 to about amino acid 227.
  • the hydrophilic tail of the PD-L1 exemplified in SEQ ID NO: 4 comprises a hydrophilic tail shown from about amino acid 228 to about amino acid 245.
  • the PD-L1 polypeptide exemplified in SEQ ID NO: 6 comprises a
  • transmembrane domain shown from about amino acids 239 to about amino acid 259 of SEQ ID NO: 6 and a cytoplasmic domain shown from about 30 amino acid 260 to about amino acid 290 of SEQ ID NO: 6.
  • nucleic acid and polypeptide sequences of PD-L1 orthologs in organisms other than humans are well-known and include, for example, mouse PD-L1 (NM_021893.3 and NP_068693.1), rat PD-L1 (NM_001191954.1 and
  • NM_001163412.1 and NP_001156884.1 chicken PD-L1 (XM_424811.3 and XP_424811.3).
  • PD-L2 refers to another specific PD-1 ligand.
  • PD-L2 is a B7 family member expressed on various APCs, including dendritic cells, macrophages and bone- marrow derived mast cells (Zhong et al. (2007) Eur. J. Immunol. 37:2405).
  • APC-expressed PD-L2 is able to both inhibit T cell activation through ligation of PD-1 and costimulate T cell activation, through a PD-1 independent mechanism (Shin et al. (2005) J. Exp. Med. 201 : 1531 ).
  • PD-L2 dendritic cell-expressed PD-L2 results in enhanced dendritic cell cytokine expression and survival (Radhakrishnan et al. (2003) J. Immunol. 37:1827; Nguyen et al. (2002) J. Exp. Med. 196:1393).
  • the nucleic acid and amino acid sequences of representative human PD-L2 biomarkers ⁇ e.g., SEQ ID NOs: 7 and 8) are well-known in the art and are also available to the public at the GenBank database under NM_025239.3 and NP_079515.2.
  • PD-L2 proteins are characterized by common structural elements.
  • PD-L2 proteins include at least one or more of the following domains: a signal peptide domain, a transmembrane domain, an IgV domain, an IgC domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain.
  • amino acids 1-19 of SEQ ID NO: 8 comprises a signal sequence.
  • a "signal sequence” or “signal peptide” serves to direct a polypeptide containing such a sequence to a lipid bilayer, and is cleaved in secreted and membrane bound polypeptides and includes a peptide containing about 15 or more amino acids which occurs at the N-terminus of secretory and membrane bound polypeptides and which contains a large number of hydrophobic amino acid residues.
  • a signal sequence contains at least about 10-30 amino acid residues, preferably about 15- 25 amino acid residues, more preferably about 18-20 amino acid residues, and even more preferably about 19 amino acid residues, and has at least about 35-65%, preferably about 38-50%, and more preferably about 40-45% hydrophobic amino acid residues (e.g., valine, leucine, isoleucine or phenylalanine).
  • amino acid residues 220-243 of the native human PD-L2 polypeptide and amino acid residues 201-243 of the mature polypeptide comprise a transmembrane domain.
  • transmembrane domain includes an amino acid sequence of about 15 amino acid residues in length which spans the plasma membrane.
  • a transmembrane domain includes about at least 20, 25, 30, 35, 40, or 45 amino acid residues and spans the plasma membrane.
  • Transmembrane domains are rich in hydrophobic residues, and typically have an alpha-helical structure.
  • at least 50%, 60%, 70%, 80%, 90%, 95% or more of the amino acids of a transmembrane domain are hydrophobic, e.g., leucines, isoleucines, tyrosines, or tryptophans.
  • Transmembrane domains are described in, for example, Zaklakla, W. N. et al. (1996) Annu. Rev. Neurosci. 19: 235-263.
  • amino acid residues 20-120 of the native human PD-L2 polypeptide and amino acid residues 1-101 of the mature polypeptide comprise an IgV domain.
  • Amino acid residues 121- 219 of the native human PD-L2 polypeptide and amino acid residues 102-200 of the mature polypeptide comprise an IgC domain.
  • IgV and IgC domains are recognized in the art as Ig superfamily member domains. These domains correspond to structural units that have distinct folding patterns called Ig folds.
  • Ig folds are comprised of a sandwich of two ⁇ sheets, each consisting of antiparallel (3 strands of 5-10 amino acids with a conserved disulfide bond between the two sheets in most, but not all, domains.
  • IgC domains of Ig, TCR, and MHC molecules share the same types of sequence patterns and are called the CI set within the Ig superfamily. Other IgC domains fall within other sets.
  • IgV domains also share sequence patterns and are called V set domains. IgV domains are longer than C- domains and form an additional pair of strands.
  • amino acid residues 1-219 of the native human PD-L2 polypeptide and amino acid residues 1-200 of the mature polypeptide comprise an extracellular domain.
  • extracellular domain represents the N-terminal amino acids which extend as a tail from the surface of a cell.
  • An extracellular domain of the present invention includes an IgV domain and an IgC domain, and may include a signal peptide domain.
  • amino acid residues 244-273 of the native human PD-L2 polypeptide and amino acid residues 225-273 of the mature polypeptide comprise a cytoplasmic domain.
  • the term "cytoplasmic domain" represents the C-terminal amino acids which extend as a tail into the cytoplasm of a cell.
  • nucleic acid and polypeptide sequences of PD-L2 orthologs in organisms other than humans are well-known and include, for example, mouse PD-L2 (NM_021396.2 and NP_067371.1), rat PD-L2
  • NM_001107582.2 and NP_001101052.2 dog PD-L2
  • dog PD-L2 dog PD-L2
  • cow PD-L2 cow PD-L2
  • XM_586846.5 and XP_586846.3 cow PD-L2
  • chimpanzee PD-L2 XM_001140776.2 and XP_001140776.1
  • PD-L2 refers to an activity exerted by a PD-L2 protein, polypeptide or nucleic acid molecule on a PD-L2 -responsive cell or tissue, or on a PD- L2 polypeptide binding partner, as determined in vivo, or in vitro, according to standard techniques.
  • a PD-L2 activity is a direct activity, such as an association with a PD-L2 binding partner.
  • a "target molecule” or “binding partner” is a molecule with which a PD-L2 polypeptide binds or interacts in nature, such that PD-L2-mediated function is achieved.
  • a PD-L2 target molecule is the receptor RGMb.
  • a PD-L2 activity is an indirect activity, such as a cellular signaling activity mediated by interaction of the PD- L2 polypeptide with its natural binding partner (i.e., physiologically relevant interacting macromolecule involved in an immune function or other biologically relevant function), e.g., RGMb.
  • RGMb physiologically relevant interacting macromolecule involved in an immune function or other biologically relevant function
  • the PD-L2 polypeptides of the present invention can have one or more of the following activities: 1) bind to and/or modulate the activity of the receptor RGMb, PD-1, or other PD-L2 natural binding partners, 2) modulate intra-or intercellular signaling, 3) modulate activation of immune cells, e.g. , T lymphocytes, and 4) modulate the immune response of an organism, e.g., a mouse or human organism.
  • Anti-immune checkpoint therapy refers to the use of agents that inhibit immune checkpoint nucleic acids and/or proteins. Inhibition of one or more immune checkpoints can block or otherwise neutralize inhibitory signaling to thereby upregulate an immune response in order to more efficaciously treat cancer.
  • agents useful for inhibiting immune checkpoints include antibodies, small molecules, peptides, peptidomimetics, natural ligands, and derivatives of natural ligands, that can either bind and/or inactivate or inhibit immune checkpoint proteins, or fragments thereof; as well as R A interference, antisense, nucleic acid aptamers, etc. that can downregulate the expression and/or activity of immune checkpoint nucleic acids, or fragments thereof.
  • agents for upregulating an immune response include antibodies against one or more immune checkpoint proteins block the interaction between the proteins and its natural receptor(s); a non-activating form of one or more immune checkpoint proteins (e.g. , a dominant negative polypeptide); small molecules or peptides that block the interaction between one or more immune checkpoint proteins and its natural receptor(s); fusion proteins (e.g. the
  • agents can directly block the interaction between the one or more immune checkpoints and its natural receptor(s) (e.g., antibodies) to prevent inhibitory signaling and upregulate an immune response.
  • agents can indirectly block the interaction between one or more immune checkpoint proteins and its natural receptor(s) to prevent inhibitory signaling and upregulate an immune response.
  • an immune checkpoint protein ligand such as a stabilized extracellular domain can binding to its receptor to indirectly reduce the effective concentration of the receptor to bind to an appropriate ligand.
  • anti-PD-1 antibodies, anti-PD-Ll antibodies, and/or anti-PD-L2 antibodies are used to inhibit immune checkpoints. These embodiments are also applicable to specific therapy against particular immune checkpoints, such as the PD-1 pathway (e.g., anti-PD-1 pathway therapy, otherwise known as PD-1 pathway inhibitor therapy).
  • Protein tyrosine phosphatases are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins (He et al. (2014) Acta Pharmacol. Sin. 35:1227-1246; Barr et al. (2009) Cell 136:352-363).
  • Protein tyrosine (pTyr) phosphorylation is a common post-translational modification that can create novel recognition motifs for protein interactions and cellular localization, affect protein stability, and regulate enzyme activity. As a consequence, maintaining an appropriate level of protein tyrosine phosphorylation is essential for many cellular functions.
  • Tyrosine-specific protein phosphatases (PTPase; EC 3.1.3.48) catalyze the removal of a phosphate group attached to a tyrosine residue, using a cysteinyl-phosphate enzyme intermediate. These enzymes are key regulatory components in signal transduction pathways (such as the MAP kinase pathway) and cell cycle control, and are important in the control of cell growth, proliferation, differentiation, transformation, and synaptic plasticity (Denu and Dixon (1998) Curr. Opin. Chem. Biol. 2:633-641; Lombroso (2003) Cell. Mol. Life Sci. 60:2465-2482). Together with tyrosine kinases, PTPs regulate the phosphorylation state of many important signaling molecules, such as the MAP kinase family. PTPs are
  • PTPs have been implicated in regulation of many cellular processes, including, but not limited to: cell growth, cellular differentiation, mitotic cycles, oncogenic transformation, receptor endocytosis, etc.
  • the classification of PTPs can be achieved by mechanism or location.
  • PTP activity can be found in four protein families, including: 1) class I PTPs, which is the largest group of PTPs comprising at least 99 members, such as at least 38 classical PTPs (21 receptor tyrosine phosphatase and 17 non-receptor-type PTPs) and 61 VH-l-like or dual-specific (dTyr and dSer/dThr) phosphatases (DSPs) ⁇ e.g., 11 MAPK phosphatases (MPKs), 3 Slingshots, 3 PRLs, 4 CDC14s, 19 atypical DSPs, 5 Phosphatase and tensin homologs (PTENs), and 16 Myotubularins); 2) class II PTP, comprising only one member low-molecular-weight phosphotyrosine phosphatase (LMPTP); 3) class III PTPs, comprising at least CDC25 A, B, and C proteins; and 4) Class IV PTPs, comprising at least E
  • PTPs By cellular location, PTPs can be classified as receptor-like PTPs and non-receptor (intracellular) PTPs.
  • the former are transmembrane receptors that contain PTPase domains.
  • all known receptor PTPases are made up of a variable-length extracellular domain, followed by a transmembrane region and a C-terminal catalytic cytoplasmic domain.
  • Some of the receptor PTPases contain fibronectin type III (FN-III) repeats, immunoglobulin-like domains, MAM domains, or carbonic anhydrase-like domains in their extracellular region.
  • the cytoplasmic region contains two copies of the PTPase domain.
  • PTP signature motif C(X) 5 R
  • All class I, II, and III PTPs carry a highly conserved active site motif C(X) 5 R (PTP signature motif), employ a common catalytic mechanism, and possess a similar core structure made of a central parallel beta-sheet with flanking alpha-helices containing a beta-loop-alpha-loop that encompasses the PTP signature motif (Barford et al. (1998) Annu. Rev. Biophys. Biomol. Struct. 27:133-164).
  • the consensus sequence ( I/V)HCXAGXXR(S/T)G (/. e. , the C(X) 5 R PTP signature motif) contains the catalytically essential Cys and Arg residues.
  • Intracellular PTPs are often modular molecules containing structural motifs such as Src homology 2 (SH2) domains, PEST sequences, and band 4.1 domains on either the N- or C-terminal side of their catalytic domains.
  • SH2 Src homology 2
  • PTPN2 is an enzyme that in humans is encoded by the PTPN2 gene (Brown-Shimer et al. (1990) Proc. Natl. Acad. Sci. USA 87:5148-5152). Epidermal growth factor receptor and the adaptor protein She were reported to be substrates of this PTP, which suggests a role in growth factor-mediated cell signaling. Three alternatively spliced variants of this gene, which encode isoforms differing at their extreme C-termini, have been described. The different C-termini are thought to determine the substrate specificity, as well as the cellular localization of the isoforms. Two highly related but distinctly processed pseudogenes that localize to distinct human chromosomes have been reported.
  • the human PTPN2 gene localizes to chromosome 18pl 1.2-pl 1.3, whereas pseudogenes (gene symbol PTPN2P1 and PTPN2P2) are mapped to chromosomes Iq22-q24 and 13ql2-ql3, respectively.
  • a direct comparison of the specificity of genomic and cDNA probes demonstrated that under identical conditions the genomic probes (containing both exon and intron sequences) readily identified a single specific site of hybridization, whereas the cDNA identified sites of both the gene and its pseudogenes (Johnson et al. (1993) Genomics 16:619-629).
  • Human PTPN2 exists as two forms generated by alternative splicing: a 48-kDa endoplasmic reticulum (ER)-associated form (TC48, 415 amino acid) and a 45-kDa nuclear form (TC45).
  • ER endoplasmic reticulum
  • TC45 45-kDa nuclear form
  • PTPN2 has a protein tryrosine phosphatase catalytic (PTPc) domain, for example, from amino acid residues 5 to 275 of SEQ ID NO: 2.
  • PTPc domain comprises different motifs for various functions, such as substrate binding (amino acid residues 216-222 of SEQ ID NO: 2), endoplasmic reticulum (ER) location (amino acid residues 346-415 of SEQ ID NO: 2), and STX17 interaction (amino acid residues 376-415 of SEQ ID NO: 2, also see Muppirala et al. (2012) Biochim. Biophys. Acta 1823:2109- 2119).
  • Human PTPN2 isoforms include the longest isoform 1 (GenBank database numbers NM_002828.3 and NP_002819.2), and the shorter isoforms 2 (NM_080422.2 and
  • NP 536347.1 which contains an alternate 3' region including a part of the C-terminal coding region, resulting in a shorter and distinct C-terminus, as compared to isoform 1)
  • 3 NM_080423.2 and NP_536348.1; which contains an alternate 3' region including a part of the C-terminal coding region, resulting in a shorter and distinct C-terminus, as compared to isoform 1)
  • 4 NM_001207013.1 and NP_001193942.1; which contains an additional in- frame exon in the middle coding region and an alternate 3' region including a part of the C- terminal coding region, resulting in an additional internal segment and a shorter and distinct C-terminus, as compared to isoform 1)
  • 5 NM_001308287.1 and NP_001295216.1; which differs in the 5' UTR by lacking a portion of the 5' coding region and using an alternative start codon to initiates translation, resulting in a shorter and distinct N-termin
  • Nucleic acid and polypeptide sequences of PTPN2 orthologs in organisms other than humans are well-known and include, for example, chimpanzee ⁇ Pan troglodytes)
  • NP_001120649.1 which represent the longer transcript, and NM_008977.3 and
  • NP_033003.1 which differs in the 3' UTR and has multiple coding region differences, resulting in a distinct C-terminus and is shorter than the isoform encoded by the longer transcript
  • cattle PTPN2 NM_001035431.2 and NP_001030508.1
  • Norway rat Raattus norvegicus
  • chicken PTPN2 NM OOl 199387.1 and NP_001186316.1
  • tropical clawed frog Xenopus tropicalis
  • PTPN2 XM_004915252.3 and XP_004915309.2
  • zebrafish Da io rerio
  • PTPN2 NM_200466.2 and NP_956760.2; and NM_212654.1 and NP_997819.1
  • fruit fly ⁇ Drosophila melanogaster
  • PTPN2 activity includes the ability of a PTPN2 polypeptide (and its fragments, domains, and/or motifs thereof, discussed herein) to bind and catalyze the removal of one or more phosphate groups from one or more its substrates in a cell (e.g., a cancer cell, and/or an immune cell), e.g., by engaging a natural PTPN2 substrate (e.g., INSR, EGFR, CSF1R, PDGFR, JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3, STAT5A, STAT5B, STAT6, etc.) either in the nucleus or the cytoplasm of the cell (Shuai et al.
  • a natural PTPN2 substrate e.g., INSR, EGFR, CSF1R, PDGFR, JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3, STAT5A, STAT5B, ST
  • ⁇ 2 activity includes the ability of a ⁇ 2 polypeptide to bind its natural substrate(s), the ability to modulate dephosphorylation of such substrate(s), and the ability to modulate the immune response through such substrate(s) in ⁇ 2- regulated signaling pathways.
  • ⁇ 2 substrate(s) refers to binding partners of a ⁇ 2 polypeptide
  • binding partners are usually members in PTPN2-regulated signaling pathways, such as INSR, EGFR, CSF1R, PDGFR, JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3, STAT5A, STAT5B, STAT6, etc.
  • INSR refers to a member of gene superfamily that functions as insulin receptors. INSR is also commonly known under the names CD220, HHF5, insulin receptor isoform Long preproprotein, insulin receptor isoform Short preproprotein, and IR.
  • INSR localizing on 19pl3.2, encodes a long protein that may be cleaved into four parts: two alpha subunits and two beta subunits. These subunits work together as a functioning receptor.
  • the alpha subunits stick out from the surface of the cell, while the beta subunits remain inside the cell.
  • the alpha subunits attach (bind) to insulin, which causes the beta subunits to trigger signaling pathways within the cell that influence many cell functions.
  • the INSR gene mutations have been associated with at least Donohue Syndrome, Rabson-Mendenhall Syndrome, and type A insulin resistance syndrome.
  • the nucleic acid and amino acid sequences of a representative human INSR is available to the public at the GenBank database.
  • Human INSR isoforms include the longer isoform 1 (GenBank database numbers NM_000208.3 and NP_000199.2; a.k.a. insulin receptor isoform Long preproprotein) and the shorter isoform 2 (NM_001079817.2 and
  • PTPN2-regulated signaling pathway(s) includes signaling pathways in which PTPN2 (and its fragments, domains, and/or motifs thereof, discussed herein) binds to at least one of its substrate, through which at least one cellular function and/or activity and/or cellular protein profiles is changed.
  • PTPN2 and its fragments, domains, and/or motifs thereof, discussed herein
  • PTPN2 binds to at least one of its substrate, through which at least one cellular function and/or activity and/or cellular protein profiles is changed.
  • PTPN2 and its fragments, domains, and/or motifs thereof, discussed herein
  • PTPN2-regulated signaling pathways include at least NF-kappaB signaling pathway, MAP kinase signaling pathway, Jak-STAT signaling pathway, cytokine signaling pathway, interferon gamma (IFNy) signaling pathway, etc.
  • the PTPN2-regulated signaling pathway is a type I interferon signaling pathway and/or type II interferon signaling pathway, which are summarized in at least Platanias (2005) Nat. Rev. Immunol. 5:375-386.
  • the most studied members of the Type I interferons (IFNs) are the multiple IFNa isotypes and IFN .
  • Type I IFNs are responsible for inducing transcription of a large group of genes which play a role in host resistance to viral infections, as well as activating key components of the innate and adaptive immune systems, including antigen presentation and production of cytokines involved in activation of T cells, B cells, and natural killer cells.
  • Type I IFNs are transcriptionally regulated, and are induced following recognition of pathogen components during infection by various host pattern recognition receptors. Virtually all humans cells are able to synthesize IFNa/ ⁇ , however some cells have a more pronounced ability to produce these cytokines. At least three pathways ⁇ i.e., the RIG-I pathway, the TRJF pathway, and TLR7/8/9-IRF7 pathway) the are involved in producing Type I IFN.
  • Type I IFNs trigger antiviral responses by binding to a common receptor (IFNAR).
  • IFNa/ ⁇ binding to IFNAR stimulates the JAK1-STAT pathway leading to the assembly of the ISGF3 complex which is composed of STAT1-STAT2 dimers and IRF9.
  • ISGF3 binds to IFN-stimulated response elements (ISRE) in the promoters of IFN- stimulated genes to regulate their expression.
  • IRF7 which initiates the transcription of a second wave of Type I IFNs. This autocrine/paracrine feed-back allows Type I IFNs to create an antiviral state in surrounding cells.
  • IFNy is the only type II interferon.
  • IFNy is a noncovalently-linked homodimer. This homodimer binds to the extracellular domain of two IFNyRl/CDl 19 chains, which interact with IFNyR2 to form the functional IFNy receptor complex.
  • the IFNyRl subunits of the receptor complex are associated with Jakl, while the IFNyR2 subunits are associated with Jak2.
  • Activation of Jakl and Jak2 results in phosphorylation of the receptor and subsequent recruitment and phosphorylation of STAT1.
  • STAT1 phosphorylation leads to its homodimerization and nuclear
  • STAT1 homodimers bind to IFNy-activated sequence (GAS) elements in the promoters of target genes to regulate their transcription.
  • GAS IFNy-activated sequence
  • Many of the target genes that are induced by IFNy/STATl signaling are transcription factors that then drive the expression of secondary response genes.
  • IFNy signaling can activate MAPK, PI3K-Akt, and NF-kappa B signaling pathways to regulate the expression of a number of other genes.
  • IFNy signaling plays a key role in host defense by promoting macrophage activation, upregulating the expression of antigen processing and presentation molecules, driving the development and activation of Thl cells, enhancing natural killer cell activity, regulating B cell functions, and inducing the production of chemokines that promote effector cell trafficking to sites of inflammation. While IFNy has historically been known for its cytotoxic, cytostatic, and anti-tumor properties, multiple studies have also suggested that IFNy may also have context-dependent proliferative and pro-tumorigenic effects. For a summary of the Type II interferon signaling pathway, see at least Raza et al. (2008) BMC Sys. Biol. 2:36).
  • IFNy signaling can at least promote NK cell activity, increase antigen presentation and lysosome activity of macrophages, activate inducible nitric oxide synthase (iNOS), and induce the production of IgG2a and IgG3 from activated plasma B cells.
  • iNOS inducible nitric oxide synthase
  • Many IFN-stimulated genes control viral, bacterial, and parasite infection by directly targeting pathways and functions required during pathogen life cycles. The detection methods for such activation or inhibitor of IFNy responsive genes are also well known in the art.
  • the cancer cells described herein have functional IFNy signaling pathway but inactivated or at least reduced activation of IFNy-responsive target genes, probably due to the inhibition by PTPN2.
  • Such cancer cells Upon a treatment with the antagonizing agent for PTPN2, as described herein, such cancer cells restore active IFNy signaling.
  • Such restoration of IFNy signaling can be detected and/or measured through the expression and/or function of IFN-responsive genes, as described herein, using any known method in the art.
  • PTPN2 inhibitor(s) includes any natural or non-natural agent prepared, synthesized, manufactured, and/or purified by human that is capable of reducing, inhibiting, blocking, preventing, and/or that inhibits the ability of a PTPN2 polypeptide (and its fragments, domains, and/or motifs thereof, discussed herein). In one embodiment, such inhibitors may reduce or inhibit the binding/interaction between PTPN2 and its substrates or other binding partners. In another embodiment, such inhibitors may reduce or inhibit the catalytic function of PTPN2 as a phosphatase.
  • inhibitors may increase or promote the turnover rate, reduce or inhibit the expression and/or the stability (e.g., the half-life), and/or change the cellular localization of PTPN2, resulting in at least a decrease in PTPN2 levels and/or activity.
  • Such inhibitors may be any molecule, including but not limited to small molecule compounds, antibodies or intrabodies, RNA interfereing (R Ai) agents (including at least siRNAs, shR As, microRNAs (miRNAs), piwi, and other well-known agents).
  • Smalle molecule inhibitors of PTPN2 are known in the art and include, for example, 4-(aminosulfonyl)-7-fluoro-2,l,3-benzoxadiazole (ABDF; see Hansen et al. (2005) Biochemistry 44(21):7704-7712), imatinib mesylate (STI571; see Shimizu et al. (2004) Exp Hematol. 32(11):1057-1063), PTP inhibitor V (PHPS1, see Kim and Cho (2013) Bull. Korean Chem. Soc. 34:3874-3876), ethyl-3,4-dephospatin or other PTPN2 inhibitors described in the PCT Publ. No.
  • PTP and/or PTPN2 inhibitors e.g., products from EMD Millipore, Billerica, MA, such as anti-PTPN2 antibodies, ursolic acid, sodium orthovanadate, Dephostatin, Phenylarsine Oxide, PTP Inhibitor I, bpV(HOpic), bpV(phen), bpV(bipy), etc.
  • inhibitory nucleotide-related inhibitors such as CRISPR products from OriGene (Rockville, MD) (e.g., gRNA vectors KN202161G1 and KN202161G2),
  • GenScript ® (Piscataway, NJ), or Santa Cruz Biotechnology (Dallas, Texas) (e.g., TC-PTP CRISPR/Cas9 KO Plasmid (h); sc-403071), miRNA products from ViGene Biosciences, inhibitory RNA products from Origene (e.g., siRNA, shRNA, etc.) and ViGene
  • Biosciences e.g., ready-to-package AAV shRNA
  • Methods for developoing PTPN2- specific inhibitors based on its structure can be found in, e.g., Iversen et al. (2001)
  • An exemplary method, without limitation, of analyzing the activity of the PTPN2 inhibitors described herein is to analyze whether such inhibitors are capable of 1) inhibiting the phosphatase function of Ptpn2; and/or 2) restoring IFNy signaling and/or cellular sensitivity to immunotherapy.
  • Methods for detecting the phosphatase function of Ptpn2 are well-known in the art.
  • the phosphorylation of Ptpn2 targets including receptor tyrosine kinases ⁇ e.g.
  • STAT5B, STAT6, etc. can be measured and compared before and after the Ptpn2 inhibitor treatment.
  • SOCS1 suppressor of cytokine signaling 1, also known as JAB or TIP3
  • SSI STAT-induced STAT inhibitor
  • SOCS suppressor of cytokine signalling
  • SSI family members are cytokine-inducible negative regulators of cytokine signaling.
  • the expression of this gene can be induced by a subset of cytokines, including IL2, IL3 erythropoietin (EPO), GM- CSF, and interferon-gamma (IFN- ⁇ ).
  • SOCS1 functions downstream of cytokine receptors, and takes part in a negative feedback loop to attenuate cytokine signaling. Knockout studies in mice suggested the role of SOCS1 as a modulator of IFN- ⁇ action, which is required for normal postnatal growth and survival.
  • SOCS1 is involved in negative regulation of cytokines that signal through the JAK/STAT3 pathway. Through binding to JAKs, SOCS1 inhibits their kinase activity. SOCS1 also suppresses Tec protein-tyrosine activity at least in vitro.
  • SOCS1 is a major regulator of signaling by interleukin 6 (IL6) and leukemia inhibitory factor (LIF). SOCS1 is believed to regulate interferon-gamma mediated sensory neuron survival.
  • IL6 interleukin 6
  • LIF leukemia inhibitory factor
  • SOCS1 is believed to be the substrate recognition component of an ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of target proteins.
  • ECS Elongin BC-CUL2/5-SOCS-box protein
  • SOCS1 also appears to be a negative regulator in IGF1R signaling pathway.
  • Known interaction partners of SOCS1 include, at least, CD117 (De Sepulveda et al. (1999) EMBOJ. 18:904-915), colony stimulating factor 1 receptor (Bourette et al.
  • SOCS1 Choya et al. (1997) J. Biol. Chem. 272:27178-27182).
  • Other predicted binding partners for SOCS1 include, e.g., AXL, FGFR3, INSR, TRIM8, COMMD1, ELOC, ERBB2, RELA, and CUL2.
  • TLR4 Toll-Like Receptor 4
  • IL-2 pathway e.g., growth hormone signaling, IL-2, IL-4 signaling pathway, etc.
  • class I MHC mediated antigen processing and presentation e.g., mmune response interferon ⁇ / ⁇ signaling pathway, Jak-Stat signaling pathway, NF- ⁇ signaling, etc.
  • the nucleic acid and amino acid sequences of a representative human SOCS1 is available to the public at the GenBank database (Gene ID 8651) and is shown in Table 1.
  • GenBank database GenBank database numbers NM_003745.1 and NP_003736.1
  • the domain structure of SOCS1 polypeptide is also well known.
  • human SOCS1 polypeptide has a SH2 domain comprising, e.g., amino acid residue number 79-174 of NP_003736.1, and a SOCS box domain comprising, e.g., amino acid residue number 161-210 of NP_003736.1.
  • KIR kinase inhibitory region
  • ESS extended SH2 subdomain
  • Elongin BC complex e.g., amino acid residue number 173-182 ofNP_003736.1
  • Nucleic acid and polypeptide sequences of SOCS1 orthologs in organisms other than humans are well-known and include, for example, chimpanzee (Pan troglodytes) SOCS1 (XM_016929424.1 and XP_016784913.1), Rhesus monkey SOCS1
  • XP_005622136.1 mouse SOCS1 (NM_001271603.1 and NP 001258532.1, which represent the longer transcript variant 1 , and NM_009896.2 and NP_034026.1 , which represent the shorter transcript variant 2 which differs in the 5' UTR compared to variant 1 but encodes the same protein), cattle SOCS1 (XM 002697964.4 and XP_002698010.1), Norway rat (Rattus norvegicus) SOCS1 (NM_145879.2 and NP_665886.2), chicken SOCS1 (NM_001137648.1 and NP_001131120.1), tropical clawed frog (Xenopus tropicalis) SOCS1 (NM_001011327.1 and NP_001011327.1); and zebrafish (Danio rerio) SOCS1 (NM_001003467.1 and NP_001003467.1).
  • SOCS1 activity includes the ability of a SOCSlpolypeptide (and its fragments, domains, and/or motifs thereof, discussed herein) to bind and exert one or more of its biological functions to one or more its substrates in a cell (e.g., a cancer cell, and/or an immune cell), e.g., by engaging a natural SOCSl substrate (e.g., those cytokine signaling molecues which are negatively regulated by SOCSl) either in the nucleus or the cytoplasm of the cell (Shuai et al. (2003) Nat. Rev. Immunol. 3:900-911; Wiede et al. (2011) J Clin. Invest. 121 :4758-4774).
  • SOCSl activity includes the ability of a
  • SOCSl polypeptide to bind its natural substrate(s), as described herein, the ability to modulate dephosphorylation of such substrate(s), and the ability to modulate the immune response through such substrate(s) in SOCSl -regulated signaling pathways.
  • SOCSl substrate(s) refers to binding partners of a SOCSlpolypeptide (and its fragments, domains, and/or motifs thereof, discussed herein) from which one or more phosphate groups can be removed by the SOCSl polypeptide. Such binding partners are usually members in SOCSl -regulated signaling pathways, as described herein.
  • SOCSl -regulated signaling pathway(s) includes signaling pathways in which SOCSl (and its fragments, domains, and/or motifs thereof, discussed herein) binds to at least one of its substrate, through which at least one cellular function and/or activity and/or cellular protein profiles is changed.
  • signaling pathways include at least those activating SOCSl expression and/or functions after cytokine signaling, downstream of cytokine receptors.
  • signaling pathways include at least those utilized by SOCSl in a negative feedback loop to attenuate cytokine signaling.
  • SOCSl inhibitor(s) includes any natural or non-natural agent prepared, synthesized, manufactured, and/or purified by human that is capable of reducing, inhibiting, blocking, preventing, and/or that inhibits the ability of a SOCSlpolypeptide (and its fragments, domains, and/or motifs thereof, discussed herein). In one embodiment, such inhibitors may reduce or inhibit the binding/interaction between SOCSl and its substrates or other binding partners, as described herein. In another embodiment, such inhibitors may reduce or inhibit the function of SOCSl as a negtaive regulator of cytokine signaling.
  • inhibitors may increase or promote the turnover rate, reduce or inhibit the expression and/or the stability (e.g., the half-life), and/or change the cellular localization of SOCSl, resulting in at least a decrease in SOCSllevels and/or activity.
  • Such inhibitors may be any molecule, including but not limited to small molecule compounds, antibodies or intrabodies, RNA interfereing (RNAi) agents (including at least siRNAs, shRNAs, microRNAs (miRNAs), piwi, and other well-known agents).
  • RNA interfereing agents including at least siRNAs, shRNAs, microRNAs (miRNAs), piwi, and other well-known agents.
  • Such inhibitors may be specific to SOCS1 or also inhibit at least one of other related proteins (e.g.,
  • RNA interference for SOCS1 polypepitdes are well known and commercially available (e.g., human or mouse shRNA products (Cat. # TG309195, TG513972, TF713151, etc.) and siRNA products (Cat # SR305688, SR405596, SR508208, etc.) and CRISPR knockout products (Cat. # KN220847 and KN316454) from Origene (Rockville, MD), siRNA/shRNA products (Cat. # sc-40996 and sc-40997) and human or mouse gene knockout kit via CRISPR (Cat. # sc- sc-419667) from Santa Cruz
  • IFNy-responsive genes e.g., IFNy
  • IFNy signaling e.g., cells containing gene deletion of Statl, Jakl, Ifngrl, or other IFNy-responsive genes as shown in Figure 1 , panel C and
  • FIG. 11 panels B and C in response to TNF, IFNy and/or IFN .
  • cell growth can be measured and compared before and after treatment with inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) with well known techniques, such as an in vitro competition assay.
  • one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1
  • IFNy- pathway deficient cells e.g. , cancer cells
  • an effective inhibitor described herein may ameliorate such growth advantage or cause growth disadvantages, relative to controls.
  • Other readouts for testing the inhibitory function of such inhibitors may include the expression and/or function of IFNy-responsive genes and/or cellular functions.
  • IFNy-responsive genes For example, the activation of Statl, Jakl, Ifngrl, or other IFNy-responsive genes as shown in Figure 1, panel C and Figure 11, panels B and C may be detected and such inhibitors may increase or restore the expression of such responsive genes, such as increased expression of Granzyme B in CCD8+ T cells, MHC-I on tumor cell surface, cytokines (e.g., at least Cxcl9, CxcllO, Cxclll, Ccl5, Tapl, Tapbp, B2m, Cdknla, Casp4, Casp8, Ifit2, Ripkl, and Bakl), etc.
  • cytokines e.g., at least Cxcl9, CxcllO, Cxclll, Ccl5, Tapl, Tapbp, B2m, Cdknla
  • Other readouts on cellular function for such inhibitors may include, e.g., tumor size, responsiveness to immunotherapies, overall survival, antigen presentation, T cell recogniation of tumors, CD8+ T cell and ⁇ + T cell numbers, apoptosis, T cell infiltration into tumors, or other methods taught in the instant disclosure.
  • immune response includes T cell mediated and/or B cell mediated immune responses.
  • exemplary immune responses include T cell responses, e.g., cytokine production and cellular cytotoxicity.
  • immune response includes immune responses that are indirectly effected by T cell activation, e.g., antibody production (humoral responses) and activation of cytokine responsive cells, e.g., macrophages.
  • immunotherapeutic agent can include any molecule, peptide, antibody or other agent which can stimulate a host immune system to generate an immune response to a tumor or cancer in the subject.
  • Various immunotherapeutic agents are useful in the compositions and methods described herein.
  • cancer includes the decrease, limitation, or blockage, of, for example a particular action, function, or interaction.
  • cancer is "inhibited” if at least one symptom of the cancer is alleviated, terminated, slowed, or prevented.
  • cancer is also “inhibited” if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.
  • interaction when referring to an interaction between two molecules, refers to the physical contact (e.g., binding) of the molecules with one another. Generally, such an interaction results in an activity (which produces a biological effect) of one or both of said molecules.
  • isolated protein refers to a protein that is substantially free of other proteins, cellular material, separation medium, and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
  • isolated or purified protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody, polypeptide, peptide or fusion protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
  • substantially free of cellular material includes preparations of a biomarker polypeptide or fragment thereof, in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
  • the language "substantially free of cellular material” includes preparations of a biomarker protein or fragment thereof, having less than about 30% (by dry weight) of non-biomarker protein (also referred to herein as a "contaminating protein”), more preferably less than about 20% of non-biomarker protein, still more preferably less than about 10% of non-biomarker protein, and most preferably less than about 5% non- biomarker protein.
  • non-biomarker protein also referred to herein as a "contaminating protein”
  • polypeptide, peptide or fusion protein or fragment thereof e.g., a biologically active fragment thereof
  • it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.
  • isotype refers to the antibody class (e.g., IgM, IgGl, IgG2C, and the like) that is encoded by heavy chain constant region genes.
  • KD is intended to refer to the dissociation equilibrium constant of a particular antibody-antigen interaction.
  • the binding affinity of antibodies of the disclosed invention may be measured or determined by standard antibody-antigen assays, for example, competitive assays, saturation assays, or standard immunoassays such as ELISA or RIA.
  • kits is any manufacture (e.g. a package or container) comprising at least one reagent, e.g. a probe or small molecule, for specifically detecting and/or affecting the expression of a marker of the present invention.
  • the kit may be promoted, distributed, or sold as a unit for performing the methods of the present invention.
  • the kit may comprise one or more reagents necessary to express a composition useful in the methods of the present invention.
  • the kit may further comprise a reference standard, e.g., a nucleic acid encoding a protein that does not affect or regulate signaling pathways controlling cell growth, division, migration, survival or apoptosis.
  • neoadjuvant therapy refers to a treatment given before the primary treatment.
  • neoadjuvant therapy can include chemotherapy, radiation therapy, and hormone therapy.
  • neoadjuvant therapy can allows patients with large breast cancer to undergo breast-conserving surgery.
  • the "normal" level of expression of a biomarker is the level of expression of the biomarker in cells of a subject, e.g., a human patient, not afflicted with a cancer.
  • An “over- expression” or “significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the
  • a "significantly lower level of expression" of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.
  • a control sample e.g., sample from a healthy subject not having the biomarker associated disease
  • an "over-expression” or “significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.
  • a control sample e.g., sample from a healthy subject not having the biomarker associated disease
  • a "significantly lower level of expression" of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.
  • a control sample e.g., sample from a healthy subject not having the biomarker associated disease
  • pre-determined biomarker amount and/or activity measurement(s) may be a biomarker amount and/or activity measurement(s) used to, by way of example only, evaluate a subject that may be selected for a particular treatment, evaluate a response to a treatment such as inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCSl)/immunotherapy combination therapy, and/or evaluate the disease state.
  • a pre-determined biomarker amount and/or activity measurement(s) may be determined in populations of patients with or without cancer.
  • the pre-determined biomarker amount and/or activity measurement(s) can be a single number, equally applicable to every patient, or the pre-determined biomarker amount and/or activity measurement(s) can vary according to specific subpopulations of patients. Age, weight, height, and other factors of a subject may affect the pre-determined biomarker amount and/or activity measurement(s) of the individual. Furthermore, the pre-determined biomarker amount and/or activity can be determined for each subject individually. In one embodiment, the amounts determined and/or compared in a method described herein are based on absolute measurements. In another embodiment, the amounts determined and/or compared in a method described herein are based on relative measurements, such as ratios (e.g. , serum biomarker normalized to the expression of housekeeping or otherwise generally constant biomarker). The pre-determined biomarker amount and/or activity
  • the pre-determined biomarker amount and/or activity measurement(s) can be obtained from the same or a different human for whom a patient selection is being assessed.
  • the pre-determined biomarker amount and/or activity measurement(s) can be obtained from a previous assessment of the same patient. In such a manner, the progress of the selection of the patient can be monitored over time.
  • the control can be obtained from an assessment of another human or multiple humans, e.g., selected groups of humans, if the subject is a human.
  • the extent of the selection of the human for whom selection is being assessed can be compared to suitable other humans, e.g., other humans who are in a similar situation to the human of interest, such as those suffering from similar or the same condition(s) and/or of the same ethnic group.
  • predictive includes the use of a biomarker nucleic acid and/or protein status, e.g., over- or under- activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy, for determining the likelihood of response of a cancer to inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCSl)/immunotherapy combination therapy (e.g., treatment with a combination of such an inhibitor and an immunotherapy, such as an immune checkpoint inhibitor).
  • a biomarker nucleic acid and/or protein status e.g., over- or under- activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy, for determining the likelihood of response of a cancer to inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as
  • Such predictive use of the biomarker may be confirmed by, e.g., (1) increased or decreased copy number (e.g., by FISH, FISH plus SKY, single-molecule sequencing, e.g., as described in the art at least at J. Biotechnol., 86:289- 301, or qPCR), overexpression or underexpression of a biomarker nucleic acid (e.g., by ISH, Northern Blot, or qPCR), increased or decreased biomarker protein (e.g., by IHC), or increased or decreased activity, e.g., in more than about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, or more of assayed human cancers types or cancer samples; (2) its absolute or relatively modulated presence or absence in a biological sample, e.g., a sample containing tissue, whole blood, serum
  • a human, afflicted with cancer (3) its absolute or relatively modulated presence or absence in clinical subset of patients with cancer (e.g., those responding to a particular inhibitor of one or more biomarkers in Table 1 /immunotherapy combination therapy or those developing resistance thereto).
  • pre-malignant lesions refers to a lesion that, while not cancerous, has potential for becoming cancerous. It also includes the term "pre- malignant disorders” or “potentially malignant disorders.” In particular this refers to a benign, morphologically and/or histologically altered tissue that has a greater than normal risk of malignant transformation, and a disease or a patient's habit that does not necessarily alter the clinical appearance of local tissue but is associated with a greater than normal risk of precancerous lesion or cancer development in that tissue (leukoplakia, erythroplakia, erytroleukoplakia lichen planus (lichenoid reaction) and any lesion or an area which histological examination showed atypia of cells or dysplasia.
  • a metaplasia is a pre-malignant lesion.
  • prevent refers to reducing the probability of developing a disease, disorder, or condition in a subject, who does not have, but is at risk of or susceptible to developing a disease, disorder, or condition.
  • probe refers to any molecule which is capable of selectively binding to a specifically intended target molecule, for example, a nucleotide transcript or protein encoded by or corresponding to a biomarker nucleic acid. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations. For purposes of detection of the target molecule, probes may be specifically designed to be labeled, as described herein. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.
  • prognosis includes a prediction of the probable course and outcome of cancer or the likelihood of recovery from the disease.
  • use of statistical algorithms provides a prognosis of cancer in an individual.
  • the prognosis can be surgery, development of a clinical subtype of cancer (e.g., solid tumors, such as esophageal cancer and gastric cancer), development of one or more clinical factors, or recovery from the disease.
  • an anti-cancer agent such as an inhibitor of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and an immunotherapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant therapy.
  • an anti-cancer agent such as an inhibitor of one or more biomarkers in Table 1 (e
  • Hyperproliferative disorder response may be assessed, for example for efficacy or in a neoadjuvant or adjuvant situation, where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation. Responses may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or in a qualitative fashion like
  • pCR pathological complete response
  • cCR clinical complete remission
  • cPR clinical partial remission
  • cSD clinical stable disease
  • cPD clinical progressive disease
  • assessments of hyperproliferative disorder response may be done early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months.
  • a typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed. This is typically three months after initiation of neoadjuvant therapy.
  • clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR).
  • CBR clinical benefit rate
  • the clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy.
  • the CBR for a particular cancer therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more.
  • Additional criteria for evaluating the response to cancer therapies are related to "survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); "recurrence- free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith).
  • the length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis).
  • criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.
  • a particular cancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any cancer therapy.
  • the outcome measurement may be pathologic response to therapy given in the neoadjuvant setting.
  • outcome measures such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy for which biomarker measurement values are known.
  • the doses administered are standard doses known in the art for cancer therapeutic agents. The period of time for which subjects are monitored can vary.
  • subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months.
  • Biomarker measurement threshold values that correlate to outcome of a cancer therapy can be determined using well-known methods in the art, such as those described in the Examples section.
  • the term "resistance” refers to an acquired or natural resistance of a cancer sample or a mammal to a cancer therapy ( i.e., being nonresponsive to or having reduced or limited response to the therapeutic treatment), such as having a reduced response to a therapeutic treatment by 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2- fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more.
  • the reduction in response can be measured by comparing with the same cancer sample or mammal before the resistance is acquired, or by comparing with a different cancer sample or a mammal that is known to have no resistance to the therapeutic treatment.
  • a typical acquired resistance to chemotherapy is called "multidrug resistance.”
  • the multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms, or it can occur when a mammal is infected with a multi-drug-resistant microorganism or a combination of microorganisms.
  • the term "reverses resistance” means that the use of a second agent in combination with a primary cancer therapy ⁇ e.g., chemotherapeutic or radiation therapy) is able to produce a significant decrease in tumor volume at a level of statistical significance ⁇ e.g., p ⁇ 0.05) when compared to tumor volume of untreated tumor in the circumstance where the primary cancer therapy ⁇ e.g., chemotherapeutic or radiation therapy) alone is unable to produce a statistically significant decrease in tumor volume compared to tumor volume of untreated tumor. This generally applies to tumor volume measurements made at a time when the untreated tumor is growing log rhythmically.
  • response refers to an anti-cancer response, e.g. in the sense of reduction of tumor size or inhibiting tumor growth.
  • the terms can also refer to an improved prognosis, for example, as reflected by an increased time to recurrence, which is the period to first recurrence censoring for second primary cancer as a first event or death without evidence of recurrence, or an increased overall survival, which is the period from treatment to death from any cause.
  • a beneficial endpoint attained when exposed to a stimulus. Alternatively, a negative or detrimental symptom is minimized, mitigated or attenuated on exposure to a stimulus.
  • RNA interference RNA interference
  • RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target biomarker gene of the present invention, or a fragment thereof, short interfering RNA (siRNA), and small molecules which interfere with or inhibit expression of a target biomarker nucleic acid by RNA interference (RNAi).
  • RNA interference is an evolutionally conserved process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target biomarker nucleic acid results in the sequence specific degradation or specific post- transcriptional gene silencing (PTGS) of messenger RNA (mRNA) transcribed from that targeted gene ⁇ see Coburn and Cullen (2002) J Virol. 76:9225), thereby inhibiting expression of the target biomarker nucleic acid.
  • mRNA messenger RNA
  • dsRNA double stranded RNA
  • RNAi is initiated by the dsRNA-specific endonuclease Dicer, which promotes processive cleavage of long dsRNA into double-stranded fragments termed siRNAs.
  • siRNAs are incorporated into a protein complex that recognizes and cleaves target mRNAs.
  • RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target biomarker nucleic acids.
  • inhibiting target biomarker nucleic acid expression includes any decrease in expression or protein activity or level of the target biomarker nucleic acid or protein encoded by the target biomarker nucleic acid.
  • the decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target biomarker nucleic acid or the activity or level of the protein encoded by a target biomarker nucleic acid which has not been targeted by an RNA interfering agent.
  • sample used for detecting or determining the presence or level of at least one biomarker is typically brain tissue, cerebrospinal fluid, whole blood, plasma, serum, saliva, urine, stool ⁇ e.g., feces), tears, and any other bodily fluid ⁇ e.g., as described above under the definition of "body fluids"), or a tissue sample ⁇ e.g. , biopsy) such as a small intestine, colon sample, or surgical resection tissue.
  • the method of the present invention further comprises obtaining the sample from the individual prior to detecting or determining the presence or level of at least one marker in the sample.
  • cancer means to alter cancer cells or tumor cells in a way that allows for more effective treatment of the associated cancer with a cancer therapy (e.g., anti- immune checkpoint, chemotherapeutic, and/or radiation therapy).
  • a cancer therapy e.g., anti- immune checkpoint, chemotherapeutic, and/or radiation therapy.
  • normal cells are not affected to an extent that causes the normal cells to be unduly injured by the therapies.
  • An increased sensitivity or a reduced sensitivity to a therapeutic treatment is measured according to a known method in the art for the particular treatment and methods described herein below, including, but not limited to, cell proliferative assays (Tanigawa N, Kern D H, Kikasa Y, Morton D L, Cancer Res 1982; 42: 2159-2164), cell death assays (Weisenthal L M, Shoemaker R H, Marsden J A, Dill P L, Baker J A, Moran E M, Cancer Res 1984; 94: 161 - 173 ; Weisenthal L M, Lippman M E, Cancer Treat Rep 1985 ; 69: 615-632; Weisenthal L M, In: Kaspers G J L, Pieters R, Twentyman P R, Weisenthal L M, Veerman A J P, eds.
  • the sensitivity or resistance may also be measured in animal by measuring the tumor size reduction over a period of time, for example, 6 month for human and 4-6 weeks for mouse.
  • a composition or a method sensitizes response to a therapeutic treatment if the increase in treatment sensitivity or the reduction in resistance is 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold, 3-fold, 4-fold, 5- fold, 10-fold, 15-fold, 20-fold or more, compared to treatment sensitivity or resistance in the absence of such composition or method.
  • sensitivity or resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician. It is to be understood that any method described herein for enhancing the efficacy of a cancer therapy can be equally applied to methods for sensitizing hyperproliferative or otherwise cancerous cells (e.g., resistant cells) to the cancer therapy.
  • RNA Short interfering RNA
  • small interfering RNA small interfering RNA
  • RNA is defined as an agent which functions to inhibit expression of a target biomarker nucleic acid, e.g., by RNAi.
  • An siRNA may be chemically synthesized, may be produced by in vitro transcription, or may be produced within a host cell.
  • siRNA is a double stranded RNA (dsRNA) molecule of about 15 to about 40 nucleotides in length, preferably about 15 to about 28 nucleotides, more preferably about 19 to about 25 nucleotides in length, and more preferably about 19, 20, 21, or 22 nucleotides in length, and may contain a 3' and/or 5' overhang on each strand having a length of about 0, 1, 2, 3, 4, or 5 nucleotides.
  • dsRNA double stranded RNA
  • the length of the overhang is independent between the two strands, i.e., the length of the overhang on one strand is not dependent on the length of the overhang on the second strand.
  • the siRNA is capable of promoting RNA interference through degradation or specific post-transcriptional gene silencing (PTGS) of the target messenger RNA (mRNA).
  • an siRNA is a small hairpin (also called stem loop) RNA
  • shRNA shRNA
  • these shRNAs are composed of a short (e.g., 19-25 nucleotide) antisense strand, followed by a 5-9 nucleotide loop, and the analogous sense strand.
  • the sense strand may precede the nucleotide loop structure and the antisense strand may follow.
  • These shRNAs may be contained in plasmids, retroviruses, and lentiviruses and expressed from, for example, the pol III U6 promoter, or another promoter (see, e.g., Stewart, et al. (2003) RNA Apr;9(4):493-501 incorporated by reference herein).
  • RNA interfering agents e.g., siRNA molecules
  • RNA interfering agents may be administered to a patient having or at risk for having cancer, to inhibit expression of a biomarker gene which is overexpressed in cancer and thereby treat, prevent, or inhibit cancer in the subject.
  • small molecule is a term of the art and includes molecules that are less than about 1000 molecular weight or less than about 500 molecular weight. In one embodiment, small molecules do not exclusively comprise peptide bonds. In another embodiment, small molecules are not oligomeric. Exemplary small molecule compounds which can be screened for activity include, but are not limited to, peptides,
  • peptidomimetics nucleic acids, carbohydrates, small organic molecules (e.g., polyketides) (Cane et al. (1998) Science 282:63), and natural product extract libraries.
  • the compounds are small, organic non-peptidic compounds.
  • a small molecule is not biosynthetic.
  • binding refers to antibody binding to a predetermined antigen.
  • the antibody binds with an affinity (KD) of approximately less than 10 "7 M, such as approximately less than 10 "8 M, 10 "9 M or 10 "10 M or even lower when determined by surface plasmon resonance (SPR) technology in a BIACORE® assay instrument using an antigen of interest as the analyte and the antibody as the ligand, and binds to the predetermined antigen with an affinity that is at least 1.1 -, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, 3.0-, 3.5-, 4.0-, 4.5-, 5.0-, 6.0-, 7.0-, 8.0-, 9.0-, or 10.0-fold or greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen.
  • a non-specific antigen e.g., BSA, casein
  • an antibody recognizing an antigen and "an antibody specific for an antigen” are used interchangeably herein with the term “an antibody which binds specifically to an antigen.”
  • Selective binding is a relative term refering to the ability of an antibody to discriminate the binding of one antigen over another.
  • subject refers to any healthy animal, mammal or human, or any animal, mammal or human afflicted with a cancer, e.g., brain, lung, ovarian, pancreatic, liver, breast, prostate, and/or colorectal cancers, melanoma, multiple myeloma, and the like.
  • a cancer e.g., brain, lung, ovarian, pancreatic, liver, breast, prostate, and/or colorectal cancers, melanoma, multiple myeloma, and the like.
  • subject is interchangeable with “patient.”
  • survival includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); "recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith).
  • the length of said survival may be calculated by reference to a defined start point (e.g. time of diagnosis or start of treatment) and end point (e.g. death, recurrence or metastasis).
  • criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.
  • the term “synergistic effect” refers to the combined effect of two or more anti- cancer agents (e.g. , inhibitors of one or more biomarkers in Table 1 (e.g. , one or more kinase signaling inhibitors, such as PTPN2 and SOCSl)/immunotherapy combination therapy) can be greater than the sum of the separate effects of the anti-cancer
  • anti- cancer agents e.g. , inhibitors of one or more biomarkers in Table 1 (e.g. , one or more kinase signaling inhibitors, such as PTPN2 and SOCSl)/immunotherapy combination therapy
  • T cell includes CD4 + T cells and CD8 + T cells.
  • T cell also includes both T helper 1 type T cells and T helper 2 type T cells.
  • antigen presenting cell includes professional antigen presenting cells (e.g., B lymphocytes, monocytes, dendritic cells, Langerhans cells), as well as other antigen presenting cells (e.g., keratinocytes, endothelial cells, astrocytes, fibroblasts, and oligodendrocytes).
  • therapeutic effect refers to a local or systemic effect in animals, particularly mammals, and more particularly humans, caused by a pharmacologically active substance.
  • the term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human.
  • therapeutically- effective amount means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit risk ratio applicable to any treatment.
  • a therapeutically effective amount of a compound will depend on its therapeutic index, solubility, and the like.
  • certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.
  • terapéuticaally-effective amount and “effective amount” as used herein means that amount of a compound, material, or composition comprising a compound of the present invention which is effective for producing some desired therapeutic effect in at least a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment.
  • Toxicity and therapeutic efficacy of subject compounds may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 and the ED 5 o. Compositions that exhibit large therapeutic indices are preferred.
  • the LD50 lethal dosage
  • the LD50 can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more reduced for the agent relative to no administration of the agent.
  • the ED 5 o i.e., the concentration which achieves a half-maximal inhibition of symptoms
  • the ED 5 o can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent.
  • the IC 50 i.e., the concentration which achieves half-maximal cytotoxic or cytostatic effect on cancer cells
  • the IC 50 can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent.
  • cancer cell growth in an assay can be inhibited by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100%.
  • At least about a 10% , 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100% decrease in a solid malignancy can be achieved.
  • a “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or homologous with all or a portion of a mature mRNA made by transcription of a biomarker nucleic acid and normal post-transcriptional processing ⁇ e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.
  • a polynucleotide e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA
  • the term "unresponsiveness” includes refractivity of cancer cells to therapy or refractivity of therapeutic cells, such as immune cells, to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or exposure to high doses of antigen.
  • the term “anergy” or “tolerance” includes refractivity to activating receptor- mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2.
  • T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate.
  • Anergic T cells can, however, proliferate if cultured with cytokines ⁇ e.g., IL-2).
  • T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line.
  • a reporter gene construct can be used.
  • anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5' IL-2 gene enhancer or by a multimer of the API sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).
  • Arginine AGA, ACG, CGA, CGC, CGG, CGT
  • Glutamic acid (Glu, E) GAA, GAG Glutamine (Gin, Q) CAA, CAG
  • Glycine Gly, G
  • GGC GGG, GGT
  • Serine (Ser, S) AGC, AGT, TCA, TCC, TCG, TCT
  • nucleotide triplet An important and well-known feature of the genetic code is its redundancy, whereby, for most of the amino acids used to make proteins, more than one coding nucleotide triplet may be employed (illustrated above). Therefore, a number of different nucleotide sequences may code for a given amino acid sequence. Such nucleotide sequences are considered functionally equivalent since they result in the production of the same amino acid sequence in all organisms (although certain organisms may translate some sequences more efficiently than they do others). Moreover, occasionally, a methylated variant of a purine or pyrimidine may be found in a given nucleotide sequence. Such methylations do not affect the coding relationship between the trinucleotide codon and the corresponding amino acid.
  • nucleotide sequence of a DNA or R A encoding a biomarker nucleic acid can be used to derive the polypeptide amino acid sequence, using the genetic code to translate the DNA or RNA into an amino acid sequence.
  • corresponding nucleotide sequences that can encode the polypeptide can be deduced from the genetic code (which, because of its redundancy, will produce multiple nucleic acid sequences for any given amino acid sequence).
  • description and/or disclosure herein of a nucleotide sequence which encodes a polypeptide should be considered to also include description and/or disclosure of the amino acid sequence encoded by the nucleotide sequence.
  • description and/or disclosure of a polypeptide amino acid sequence herein should be considered to also include description and/or disclosure of all possible nucleotide sequences that can encode the amino acid sequence.
  • nucleic acid and amino acid sequence information for the loci and biomarkers of the present invention are well- known in the art and readily available on publicly available databases, such as the National Center for Biotechnology Information (NCBI).
  • NCBI National Center for Biotechnology Information
  • exemplary nucleic acid and amino acid sequences derived from publicly available sequence databases are provided below and include, for example, PCT Publ. WO 2014/022759, which is incorporated herein in its entirety by this reference.
  • Part IV Genes enriched in wild type C57BL6 mice treated with both GVAX and anti-PD-1 antibody against the TCRa KO mice without treatment as control
  • RNA nucleic acid molecules e.g., thymines replaced with uredines
  • nucleic acid molecules encoding orthologs of the encoded proteins as well as DNA or RNA nucleic acid sequences comprising a nucleic acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with the nucleic acid sequence of any SEQ ID NO listed in Table 1, or a portion thereof.
  • nucleic acid molecules can have a function of the full-length nucleic acid as described further herein.
  • polypeptide molecules comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with an amino acid sequence of any SEQ ID NO listed in Table 1 , or a portion thereof.
  • polypeptides can have a function of the full-length polypeptide as described further herein.
  • Table 1 any known components of the inhibition of kinase signaling pathway, including PTPN2 and SOCS1, as well as orthologs of the pathway components and nucleic acid and amino acid variants having the recited homology described in the immediately preceding paragraphs and elsewhere herein. * Included in Table 1 are any known components of the activation of kinase signaling pathway. In some embodiments, their agonists are used to activate the kinase signaling pathway as described herein.
  • such agonists include any natural or non-natural agent prepared, synthesized, manufactured, and/or purified by human that is capable of increasing, promoting, enhancing, and/or inducing the biological ability of a biomarker in Table 1, which activates kinase signaling pathway (and its fragments, domains, and/or motifs thereof, discussed herein).
  • such agonists may increase or enhance the binding/interaction between a biomarker in Table 1 and its substrates or other binding partners.
  • such agonists may increase or enhance at least one biomarker functions.
  • such agonists may decrease or inhibit the turnover rate, increase or enhance the expression and/or the stability (e.g., the half-life), and/or change the cellular localization of at least one biomarker in Table 1 , resulting in at least an increase in the biomarker levels and/or activity.
  • Such agonists may be any molecule, including but not limited to small molecule compounds, antibodies or intrabodies, polypeptides or fusion proteins (which comprise, e.g., full-length biomarker, or biologically active fragments thereof, with or without any mutations or modifications to maintain or enhancing biomarker expression levels or biological functions.
  • Such agonists may be specific to at least one biomarker or also enhance the copy number, amount, and/or activity of at least one of other proteins having a common domain/motif with the at least one biomarker.
  • These embodiments can also be equally applied to other biomarkers of Table 1 that results in an sgRNA enrichment in the sgR A screens described herein.
  • the subject for whom predicted likelihood of efficacy of an inhibitor of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and an immunotherapy combination treatment is determined is a mammal (e.g., mouse, rat, primate, non-human mammal, domestic animal, such as a dog, cat, cow, horse, and the like), and is preferably a human.
  • the subject is an animal model of cancer.
  • the animal model can be an orthotopic xenograft animal model of a human-derived cancer.
  • the subject has not undergone treatment, such as chemotherapy, radiation therapy, targeted therapy, and/or immunotherapies.
  • the subject has undergone treatment, such as chemotherapy, radiation therapy, targeted therapy, and/or immunotherapies.
  • the subject has had surgery to remove cancerous or precancerous tissue.
  • the cancerous tissue has not been removed, e.g., the cancerous tissue may be located in an inoperable region of the body, such as in a tissue that is essential for life, or in a region where a surgical procedure would cause considerable risk of harm to the patient.
  • the methods of the present invention can be used to determine the responsiveness to inhibitors of one or more biomarkers in Table 1 ⁇ e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCSl) and immunotherapy combination treatment of many different cancers in subjects such as those described herein.
  • one or more kinase signaling inhibitors such as PTPN2 and SOCSl
  • biomarker amount and/or activity measurement(s) in a sample from a subject is compared to a predetermined control (standard) sample.
  • the sample from the subject is typically from a diseased tissue, such as cancer cells or tissues.
  • the control sample can be from the same subject or from a different subject.
  • the control sample is typically a normal, non-diseased sample.
  • the control sample can be from a diseased tissue.
  • the control sample can be a combination of samples from several different subjects.
  • the biomarker amount and/or activity measurement(s) from a subject is compared to a pre-determined level. This pre-determined level is typically obtained from normal samples.
  • a "pre-determined" biomarker amount and/or activity measurement(s) may be a biomarker amount and/or activity measurement(s) used to, by way of example only, evaluate a subject that may be selected for treatment (e.g., based on the number of genomic mutations and/or the number of genomic mutations causing non-functional proteins for DNA repair genes), evaluate a response to an inhibitor of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCSl) and an immunotherapy combination treatment, and/or evaluate a response to such inhibitor and an immunotherapy combination treatment with one or more additional anti-cancer therapies.
  • a subject e.g., based on the number of genomic mutations and/or the number of genomic mutations causing non-functional proteins for DNA repair genes
  • evaluate a response to an inhibitor of one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and
  • a pre-determined biomarker amount and/or activity measurement(s) may be determined in populations of patients with or without cancer.
  • the pre-determined biomarker amount and/or activity measurement(s) can be a single number, equally applicable to every patient, or the pre-determined biomarker amount and/or activity measurement(s) can vary according to specific subpopulations of patients. Age, weight, height, and other factors of a subject may affect the pre-determined biomarker amount and/or activity measurement(s) of the individual.
  • the pre-determined biomarker amount and/or activity can be determined for each subject individually. In one embodiment, the amounts determined and/or compared in a method described herein are based on absolute measurements.
  • the amounts determined and/or compared in a method described herein are based on relative measurements, such as ratios (e.g., biomarker copy numbers, level, and/or activity before a treatment vs. after a treatment, such biomarker measurements relative to a spiked or man-made control, such biomarker measurements relative to the expression of a housekeeping gene, and the like).
  • the relative analysis can be based on the ratio of pre-treatment biomarker measurement as compared to post-treatment biomarker measurement.
  • Pre-treatment biomarker measurement can be made at any time prior to initiation of anti-cancer therapy.
  • Post-treatment biomarker measurement can be made at any time after initiation of anti-cancer therapy.
  • post-treatment biomarker measurements are made 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 weeks or more after initiation of anti-cancer therapy, and even longer toward indefinitely for continued monitoring.
  • Treatment can comprise anti-cancer therapy, such as a therapeutic regimen comprising one or more inhibitor of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and immunotherapy combination treatment alone or in combination with other anti-cancer agents, such as with immune checkpoint inhibitors.
  • the pre-determined biomarker amount and/or activity measurement(s) can be any suitable standard.
  • the pre-determined biomarker amount and/or activity measurement(s) can be obtained from the same or a different human for whom a patient selection is being assessed.
  • the pre-determined biomarker amount and/or activity measurement(s) can be obtained from a previous assessment of the same patient. In such a manner, the progress of the selection of the patient can be monitored over time.
  • the control can be obtained from an assessment of another human or multiple humans, e.g., selected groups of humans, if the subject is a human.
  • the extent of the selection of the human for whom selection is being assessed can be compared to suitable other humans, e.g., other humans who are in a similar situation to the human of interest, such as those suffering from similar or the same condition(s) and/or of the same ethnic group.
  • the change of biomarker amount and/or activity measurement(s) from the pre-determined level is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 fold or greater, or any range in between, inclusive.
  • cutoff values apply equally when the measurement is based on relative changes, such as based on the ratio of pre-treatment biomarker measurement as compared to post-treatment biomarker measurement.
  • Body fluids refer to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g., amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).
  • the subject and/or control sample is selected from the group consisting of cells, cell lines, histological slides, paraffin embedded tissues, biopsies, whole blood, nipple aspirate, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow.
  • the sample is serum, plasma, or urine.
  • the sample is serum.
  • the samples can be collected from individuals repeatedly over a longitudinal period of time (e.g., once or more on the order of days, weeks, months, annually, biannually, etc.). Obtaining numerous samples from an individual over a period of time can be used to verify results from earlier detections and/or to identify an alteration in biological pattern as a result of, for example, disease progression, drug treatment, etc. For example, subject samples can be taken and monitored every month, every two months, or combinations of one, two, or three month intervals according to the present invention.
  • biomarker amount and/or activity measurements of the subject obtained over time can be conveniently compared with each other, as well as with those of normal controls during the monitoring period, thereby providing the subject's own values, as an internal, or personal, control for long-term monitoring.
  • Sample preparation and separation can involve any of the procedures, depending on the type of sample collected and/or analysis of biomarker measurement(s).
  • Such procedures include, by way of example only, concentration, dilution, adjustment of pH, removal of high abundance polypeptides (e.g., albumin, gamma globulin, and transferrin, etc.), addition of preservatives and calibrants, addition of protease inhibitors, addition of denaturants, desalting of samples, concentration of sample proteins, extraction and purification of lipids.
  • the sample preparation can also isolate molecules that are bound in non-covalent complexes to other protein (e.g., carrier proteins).
  • carrier proteins e.g., albumin
  • This process may isolate those molecules bound to a specific carrier protein (e.g. , albumin), or use a more general process, such as the release of bound molecules from all carrier proteins via protein denaturation, for example using an acid, followed by removal of the carrier proteins.
  • undetectable proteins from a sample can be achieved using high affinity reagents, high molecular weight filters, ultracentrifugation and/or electrodialysis.
  • High affinity reagents include antibodies or other reagents (e.g., aptamers) that selectively bind to high abundance proteins.
  • Sample preparation could also include ion exchange chromatography, metal ion affinity chromatography, gel filtration, hydrophobic chromatography, chromatofocusing, adsorption chromatography, isoelectric focusing and related techniques.
  • Molecular weight filters include membranes that separate molecules on the basis of size and molecular weight. Such filters may further employ reverse osmosis, nanofiltration, ultrafiltration and microfiltration.
  • Ultracentrifugation is a method for removing undesired polypeptides from a sample.
  • Ultracentrifugation is the centrifugation of a sample at about 15,000-60,000 rpm while monitoring with an optical system the sedimentation (or lack thereof) of particles.
  • Electrodialysis is a procedure which uses an electromembrane or semipermable membrane in a process in which ions are transported through semi-permeable membranes from one solution to another under the influence of a potential gradient. Since the membranes used in electrodialysis may have the ability to selectively transport ions having positive or negative charge, reject ions of the opposite charge, or to allow species to migrate through a semipermable membrane based on size and charge, it renders electrodialysis useful for concentration, removal, or separation of electrolytes.
  • Separation and purification in the present invention may include any procedure known in the art, such as capillary electrophoresis (e.g., in capillary or on-chip) or chromatography (e.g. , in capillary, column or on a chip).
  • Electrophoresis is a method which can be used to separate ionic molecules under the influence of an electric field.
  • Electrophoresis can be conducted in a gel, capillary, or in a microchannel on a chip.
  • gels used for electrophoresis include starch, acrylamide, polyethylene oxides, agarose, or combinations thereof.
  • a gel can be modified by its cross-linking, addition of detergents, or denaturants, immobilization of enzymes or antibodies (affinity
  • capillaries used for electrophoresis include capillaries that interface with an electrospray.
  • CE Capillary electrophoresis
  • CZE capillary zone electrophoresis
  • CIEF capillary isoelectric focusing
  • cITP capillary isotachophoresis
  • CEC capillary electrochromatography
  • Capillary isotachophoresis is a technique in which the analytes move through the capillary at a constant speed but are nevertheless separated by their respective mobilities.
  • Capillary zone electrophoresis also known as free-solution CE (FSCE)
  • FSCE free-solution CE
  • CIEF Capillary isoelectric focusing
  • CEC is a hybrid technique between traditional high performance liquid chromatography (HPLC) and CE.
  • Chromatography can be based on the differential adsorption and elution of certain analytes or partitioning of analytes between mobile and stationary phases.
  • Different examples of chromatography include, but not limited to, liquid chromatography (LC), gas chromatography (GC), high performance liquid chromatography (HPLC), etc.
  • nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
  • the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double- stranded DNA.
  • nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.
  • an "isolated" nucleic acid molecule is free of sequences (preferably protein- encoding sequences) which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
  • an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • a biomarker nucleic acid molecule of the present invention can be isolated using standard molecular biology techniques and the sequence information in the database records described herein. Using all or a portion of such nucleic acid sequences, nucleic acid molecules of the present invention can be isolated using standard hybridization and cloning techniques (e.g. , as described in Sambrook et al. , ed., Molecular Cloning: A
  • a nucleic acid molecule of the present invention can be amplified using cDNA, mRNA, or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
  • the nucleic acid molecules so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
  • oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the present invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
  • nucleic acid molecule of the present invention can comprise only a portion of a nucleic acid sequence, wherein the full length nucleic acid sequence comprises a marker of the present invention or which encodes a polypeptide corresponding to a marker of the present invention.
  • nucleic acid molecules can be used, for example, as a probe or primer.
  • the probe/primer typically is used as one or more substantially purified oligonucleotides.
  • the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 7, preferably about 15, more preferably about 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more consecutive nucleotides of a biomarker nucleic acid sequence.
  • Probes based on the sequence of a biomarker nucleic acid molecule can be used to detect transcripts or genomic sequences corresponding to one or more markers of the present invention.
  • the probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
  • a biomarker nucleic acid molecules that differ, due to degeneracy of the genetic code, from the nucleotide sequence of nucleic acid molecules encoding a protein which corresponds to the biomarker, and thus encode the same protein, are also contemplated.
  • DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g. , the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus. In addition, it will be appreciated that DNA polymorphisms that affect RNA expression levels can also exist that may affect the overall expression level of that gene (e.g., by affecting regulation or degradation).
  • allele refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene or allele.
  • biomarker alleles can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides.
  • An allele of a gene can also be a form of a gene containing one or more mutations.
  • allelic variant of a polymorphic region of gene refers to an alternative form of a gene having one of several possible nucleotide sequences found in that region of the gene in the population.
  • allelic variant is meant to encompass functional allelic variants, non-functional allelic variants, SNPs, mutations and polymorphisms.
  • single nucleotide polymorphism refers to a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences.
  • the site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of a population).
  • a SNP usually arises due to substitution of one nucleotide for another at the polymorphic site.
  • SNPs can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele.
  • the polymorphic site is occupied by a base other than the reference base.
  • the altered allele can contain a "C” (cytidine), “G” (guanine), or "A” (adenine) at the polymorphic site.
  • SNP's may occur in protein-coding nucleic acid sequences, in which case they may give rise to a defective or otherwise variant protein, or genetic disease. Such a SNP may alter the coding sequence of the gene and therefore specify another amino acid (a "missense” SNP) or a SNP may introduce a stop codon (a "nonsense” SNP).
  • SNP When a SNP does not alter the amino acid sequence of a protein, the SNP is called "silent.” SNP's may also occur in noncoding regions of the nucleotide sequence. This may result in defective protein expression, e.g., as a result of alternative spicing, or it may have no effect on the function of the protein.
  • the terms "gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide corresponding to a marker of the present invention. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid
  • polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the present invention.
  • a biomarker nucleic acid molecule is at least 7, 15, 20, 25, 30, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule corresponding to a marker of the present invention or to a nucleic acid molecule encoding a protein corresponding to a marker of the present invention.
  • hybridizes under stringent conditions is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, 75%, 80%, preferably 85%) identical to each other typically remain hybridized to each other.
  • stringent conditions are known to those skilled in the art and can be found in sections 6.3.1-6.3.6 of Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989).
  • a preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50-65°C.
  • allelic variants of a nucleic acid molecule of the present invention that can exist in the population, the skilled artisan will further appreciate that sequence changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein encoded thereby.
  • sequence changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein encoded thereby.
  • a "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity.
  • amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration.
  • amino acid residues that are conserved among the homologs of various species e.g., murine and human
  • amino acid residues that are conserved among the homologs of various species may be essential for activity and thus would not be likely targets for alteration.
  • nucleic acid molecules encoding a polypeptide of the present invention that contain changes in amino acid residues that are not essential for activity.
  • polypeptides differ in amino acid sequence from the naturally-occurring proteins which correspond to the markers of the present invention, yet retain biological activity.
  • a biomarker protein has an amino acid sequence that is at least about 40% identical, 50%, 60%, 70%, 75%, 80%, 83%, 85%, 87.5%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or identical to the amino acid sequence of a biomarker protein described herein.
  • An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of nucleic acids of the present invention, such that one or more amino acid residue substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • non-polar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity.
  • the encoded protein can be expressed recombinantly and the activity of the protein can be determined.
  • the present invention further contemplates the use of anti- biomarker antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid of the present invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule corresponding to a marker of the present invention or complementary to an mRNA sequence corresponding to a marker of the present invention.
  • an antisense nucleic acid molecule of the present invention can hydrogen bond to (i.e. anneal with) a sense nucleic acid of the present invention.
  • the antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame).
  • An antisense nucleic acid molecule can also be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the present invention.
  • the non- coding regions (“5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino acids.
  • An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides in length.
  • An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • modified nucleotides which can be used to generate the antisense nucleic acid include 5- fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4- acetylcytosine, 5-(carboxyhydroxylmethyi) uracil, 5-carboxymethylaminomethyl-2- thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine,
  • the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been sub-cloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
  • the antisense nucleic acid molecules of the present invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide corresponding to a selected marker of the present invention to thereby inhibit expression of the marker, e.g., by inhibiting transcription and/or translation.
  • the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix.
  • antisense nucleic acid molecules of the present invention examples include direct injection at a tissue site or infusion of the antisense nucleic acid into a blood- or bone marrow-associated body fluid.
  • antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
  • antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens.
  • the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
  • An antisense nucleic acid molecule of the present invention can be an a-anomeric nucleic acid molecule.
  • An a-anomeric nucleic acid molecule forms specific double- stranded hybrids with complementary RNA in which, contrary to the usual a-units, the strands run parallel to each other (Gaultier et al, 1987, Nucleic Acids Res. 15:6625-6641).
  • the antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al, 1987, Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al, 1987, FEBSLett. 215:327-330).
  • Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
  • ribozymes e.g., hammerhead ribozymes as described in Haselhoff and Gerlach, 1988, Nature 334:585-591
  • a ribozyme having specificity for a nucleic acid molecule encoding a polypeptide corresponding to a marker of the present invention can be designed based upon the nucleotide sequence of a cDNA corresponding to the marker.
  • a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved (see Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742).
  • an mRNA encoding a polypeptide of the present invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see, e.g., Bartel and Szostak, 1993, Science 261:1411-1418).
  • the present invention also encompasses nucleic acid molecules which form triple helical structures.
  • expression of a biomarker protein can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells.
  • nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide e.g., the promoter and/or enhancer
  • the polypeptide e.g., the promoter and/or enhancer
  • the nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
  • the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acid molecules (see Hyrup et al., 1996, Bioorganic & Medicinal Chemistry 4(1): 5- 23).
  • the terms "peptide nucleic acids” or "PNAs" refer to nucleic acid mimics, e.g.
  • DNA mimics in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
  • the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
  • the synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670-675.
  • PNAs can be used in therapeutic and diagnostic applications.
  • PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g. , inducing transcription or translation arrest or inhibiting replication.
  • PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup, 1996, supra; Perry-O'Keefe et al, 1996, Proc. Natl. Acad. Sci. USA 93:14670-675).
  • PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
  • PNA-DNA chimeras can be generated which can combine the advantageous properties of PNA and DNA.
  • Such chimeras allow DNA recognition enzymes, e.g., RNASE H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
  • PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup, 1996, supra).
  • the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63.
  • a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs.
  • the oligonucleotide can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al, 1989, Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al, 1987, Proc. Natl Acad. Sci. USA 84:648-652; PCT
  • oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al, 1988, Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988, Pharm. Res. 5:539-549).
  • the oligonucleotide can be conjugated to another molecule, e.g. , a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
  • Another aspect of the present invention pertains to the use of biomarker proteins and biologically active portions thereof.
  • the native polypeptide in one embodiment, the native polypeptide
  • polypeptides corresponding to a marker can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
  • polypeptides corresponding to a marker of the present invention are produced by
  • a polypeptide corresponding to a marker of the present invention can be synthesized chemically using standard peptide synthesis techniques.
  • an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • the language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
  • protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein").
  • the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
  • culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
  • the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.
  • Biomarker polypeptides include polypeptides comprising amino acid sequences sufficiently identical to or derived from a biomarker protein amino acid sequence described herein, but which includes fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein.
  • biologically active portions comprise a domain or motif with at least one activity of the corresponding protein.
  • a biologically active portion of a protein of the present invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.
  • other biologically active portions, in which other regions of the protein are deleted can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the present invention.
  • Preferred polypeptides have an amino acid sequence of a biomarker protein encoded by a nucleic acid molecule described herein.
  • Other useful proteins are substantially identical ⁇ e.g., at least about 40%, preferably 50%, 60%, 70%, 75%, 80%, 83%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) to one of these sequences and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence).
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
  • the determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • a preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.
  • Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J Mol. Biol. 215:403-410.
  • Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402.
  • PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules.
  • a PAM120 weight residue table can, for example, be used with a &-tuple value of 2.
  • the percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.
  • the present invention also provides chimeric or fusion proteins corresponding to a biomarker protein.
  • a "chimeric protein” or “fusion protein” comprises all or part (preferably a biologically active part) of a polypeptide corresponding to a marker of the present invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the polypeptide corresponding to the marker).
  • a heterologous polypeptide i.e., a polypeptide other than the polypeptide corresponding to the marker.
  • the term "operably linked” is intended to indicate that the polypeptide of the present invention and the heterologous polypeptide are fused in-frame to each other.
  • the heterologous polypeptide can be fused to the amino-terminus or the carboxyl-terminus of the polypeptide of the present invention.
  • One useful fusion protein is a GST fusion protein in which a polypeptide corresponding to a marker of the present invention is fused to the carboxyl terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the present invention.
  • the fusion protein contains a heterologous signal sequence, immunoglobulin fusion protein, toxin, or other useful protein sequence.
  • Chimeric and fusion proteins of the present invention can be produced by standard recombinant DNA techniques.
  • the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see, e.g., Ausubel et al, supra).
  • fusion moiety e.g., a GST polypeptide
  • a nucleic acid encoding a polypeptide of the present invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the present invention.
  • a signal sequence can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest.
  • Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events.
  • Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway.
  • the present invention pertains to the described polypeptides having a signal sequence, as well as to polypeptides from which the signal sequence has been proteolytically cleaved (i.e., the cleavage products).
  • a nucleic acid sequence encoding a signal sequence can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate.
  • the signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved.
  • the protein can then be readily purified from the extracellular medium by art recognized methods.
  • the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.
  • the present invention also pertains to variants of the biomarker polypeptides described herein.
  • Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists.
  • Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation.
  • An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein.
  • An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest.
  • specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.
  • Variants of a biomarker protein which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the present invention for agonist or antagonist activity.
  • a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
  • a variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display).
  • a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display).
  • libraries of fragments of the coding sequence of a polypeptide corresponding to a marker of the present invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants.
  • a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector.
  • an expression library can be derived which encodes amino terminal and internal fragments of various sizes of the protein of interest.
  • combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected.
  • Recursive ensemble mutagenesis (REM) a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the present invention (Arkin and Yourvan, 1992, Proc. Natl. Acad. Sci. USA 59:7811-7815; Delgrave et al, 1993, Protein Engineering 6(3):327- 331).
  • An isolated polypeptide or a fragment thereof (or a nucleic acid encoding such a polypeptide) corresponding to one or more biomarkers of the invention, including the biomarkers listed in Table 1 or fragments thereof, can be used as an immunogen to generate antibodies that bind to said immunogen, using standard techniques for polyclonal and monoclonal antibody preparation according to well-known methods in the art.
  • An antigenic peptide comprises at least 8 amino acid residues and encompasses an epitope present in the respective full length molecule such that an antibody raised against the peptide forms a specific immune complex with the respective full length molecule.
  • the antigenic peptide comprises at least 10 amino acid residues.
  • such epitopes can be specific for a given polypeptide molecule from one species, such as mouse or human (i.e., an antigenic peptide that spans a region of the polypeptide molecule that is not conserved across species is used as immunogen; such non conserved residues can be determined using an alignment such as that provided herein).
  • the immunotherapy utilizes an inhibitor of at least one immune checkpoint, such as an antibody binds substantially specifically to an immune checkpoint, such as PD-1, and inhibits or blocks its immunoinhibitory function, such as by interrupting its interaction with a binding partner of the immune checkpoint, such as PD-Ll and/or PD-L2 binding partners of PD-1.
  • an antibody especially an intrbody, binds substantially specifically to one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and inhibits or blocks its biological function, such as by interrupting its interaction with a substrate like STAT or JAK proteins.
  • an antibody especially an intrbody, binds substantially specifically to a binding partner of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1), such as PTPN2 and/or SOCS1 substrates described herein, and inhibits or blocks its biological function, such as by interrupting its interaction to PTPN2 and/or SOCS1.
  • one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1
  • PTPN2 and SOCS1 substrates described herein e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1 substrates described herein
  • a polypeptide immunogen typically is used to prepare antibodies by immunizing a suitable subject (e.g. , rabbit, goat, mouse or other mammal) with the immunogen.
  • a suitable subject e.g. , rabbit, goat, mouse or other mammal
  • a preferred animal is a mouse deficeint in the desired target antigen.
  • a PD-1 knockout mouse if the desired antibody is an anti-PD-1 antibody, may be used. This results in a wider spectrum of antibody recognition possibilities as antibodies reactive to common mouse and human epitopes are not removed by tolerance mechanisms.
  • An appropriate immunogenic preparation can contain, for example, a recombinantly expressed or chemically synthesized molecule or fragment thereof to which the immune response is to be generated.
  • the preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.
  • Immunization of a suitable subject with an immunogenic preparation induces a polyclonal antibody response to the antigenic peptide contained therein.
  • Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide immunogen.
  • the polypeptide antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide.
  • ELISA enzyme linked immunosorbent assay
  • the antibody directed against the antigen can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography, to obtain the IgG fraction.
  • antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique (originally described by Kohler and Milstein (1975) Nature 256:495-497) (see also Brown et al. (1981) J Immunol. 127:539-46; Brown et al. (1980) J Biol. Chem. 255:4980-83; Yeh et al. (1976) Proc. Natl. Acad. Sci. 76:2927-31; Yeh et al. (1982) Int. J.
  • an immortal cell line typically a myeloma
  • lymphocytes typically splenocytes
  • the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds to the polypeptide antigen, preferably specifically.
  • the immunization is performed in a cell or animal host that has a knockout of a target antigen of interest (e.g., does not produce the antigen prior to immunization).
  • immortalized cell lines can be applied for the purpose of generating a monoclonal antibody against one or more biomarkers of the invention, including the biomarkers listed in Table 1, or a fragment thereof (see, e.g., Galfre, G. et al. (1977) Nature 266:55052; Gefter et al. (1977) supra; Lerner (1981) supra; Kenneth (1980) supra). Moreover, the ordinary skilled worker will appreciate that there are many variations of such methods which also would be useful.
  • the immortal cell line e.g., a myeloma cell line
  • the immortal cell line is derived from the same mammalian species as the lymphocytes.
  • murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line.
  • Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium").
  • HAT medium culture medium containing hypoxanthine, aminopterin and thymidine
  • Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NSl/l-Ag4-l, P3- x63-Ag8.653 or Sp2/0-Agl4 myeloma lines. These myeloma lines are available from the American Type Culture Collection (ATCC), Rockville, MD.
  • ATCC American Type Culture Collection
  • HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol ("PEG").
  • PEG polyethylene glycol
  • Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed).
  • Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind a given polypeptide, e.g. , using a standard ELIS A assay.
  • a monoclonal specific for one of the above described polypeptides can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the appropriate polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide.
  • Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia
  • the recombinant monoclonal antibodies of the present invention prepared as set forth above preferably comprise the heavy and light chain CDR3s of variable regions of the antibodies described herein and well-known in the art.
  • the antibodies can further comprise the CDR2s of variable regions of said antibodies.
  • the antibodies can further comprise the CDRls of variable regions of said antibodies.
  • the antibodies can comprise any combinations of the CDRs.
  • the CDR1, 2, and/or 3 regions of the engineered antibodies described above can comprise the exact amino acid sequence(s) as those of variable regions of the present invention described herein.
  • a desired target such as one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS 1) and/or a binding partner thereof, either alone or in combination with an
  • the engineered antibody may be composed of one or more CDRs that are, for example, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to one or more CDRs of the present invention described herein or otherwise publicly available.
  • non-human or human antibodies e.g., a rat anti-mouse/anti-human antibody
  • structurally related human antibodies especially introbodies, that retain at least one functional property of the antibodies of the present invention, such as binding to PTPN2 and/or SOCS1,
  • Another functional property includes inhibiting binding of the original known, non-human or human antibodies in a competition ELISA assay.
  • Antibodies, immunoglobulins, and polypeptides of the invention can be used in an isolated (e.g. , purified) form or contained in a vector, such as a membrane or lipid vesicle (e.g. a liposome).
  • a vector such as a membrane or lipid vesicle (e.g. a liposome).
  • amino acid sequence modification(s) of the antibodies described herein are contemplated.
  • antibody glycosylation patterns can be modulated to, for example, increase stability.
  • altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
  • Glycosylation of antibodies is typically N-linked. "N-linked” refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • tripeptide sequences asparagine-X-serine and asparagines-X-threonine, where X is any amino acid except proline are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • X is any amino acid except proline
  • the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site.
  • Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked
  • glycosylation sites Another type of covalent modification involves chemically or enzymatically coupling glycosides to the antibody. These procedures are advantageous in that they do not require production of the antibody in a host cell that has glycosylation capabilities for N- or O-linked glycosylation.
  • the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, orhydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine.
  • arginine and histidine free carboxyl groups
  • free sulfhydryl groups such as those of cysteine
  • free hydroxyl groups such as those of serine, threonine, orhydroxyproline
  • aromatic residues such as those of phenylalanine, tyrosine, or tryptophan
  • the amide group of glutamine For example, such methods are described in WO87/05330.
  • removal of any carbohydrate moieties present on the antibody may be accomplished chemically or enzymatically.
  • Chemical deglycosylation requires exposure of the antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N- acetylglucosamine or N-acetylgalactosamine), while leaving the antibody intact. Chemical deglycosylation is described by Sojahr et al. (1987) and by Edge et al. (1981). Enzymatic cleavage of carbohydrate moieties on antibodies can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al. (1987).
  • antibodies or proteins are covalently linked to one of a variety of non proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • non proteinaceous polymers e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes
  • heterologous agents can be made using a variety of bifunctional protein coupling agents including but not limited to N-succinimidyl (2-pyridyldithio) propionate (SPDP), succinimidyl (N-maleimidomethyl)cyclohexane-l-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido
  • SPDP N-succinimidyl (2-pyridyldithio) propionate
  • IT iminothiolane
  • imidoesters such as dimethyl adipimidate HCL
  • active esters such as disuccinimidyl suberate
  • aldehydes such as glutaraldehyde
  • 2,6diisocyanate 2,6diisocyanate
  • bis-active fluorine compounds such as l,5-difluoro-2,4- dinitrobenzene
  • carbon labeled 1-isothiocyanatobenzyl methyldiethylene triaminepentaacetic acid is an exemplary chelating agent for conjugation of radionucleotide to the antibody (WO 94/11026).
  • the present invention features antibodies conjugated to a therapeutic moiety, such as a cytotoxin, a drug, and/or a radioisotope.
  • a therapeutic moiety such as a cytotoxin, a drug, and/or a radioisotope.
  • these antibody conjugates are referred to as "immunotoxins.”
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to ⁇ e.g., kills) cells.
  • Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.
  • Conjugated antibodies in addition to therapeutic utility, can be useful for diagnostically or prognostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (/ ' e. , physically linking) the antibody to a detectable substance.
  • detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate (FITC), rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin (PE); an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125 1, 131 I, 35 S, or 3 H.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase; examples of suitable prosthetic
  • labeled with regard to the antibody, is intended to encompass direct labeling of the antibody by coupling (i.e., physically linking) a detectable substance, such as a radioactive agent or a fluorophore (e.g.
  • FITC fluorescein isothiocyanate
  • PE phycoerythrin
  • Cy5 Indocyanine
  • the antibody conjugates of the present invention can be used to modify a given biological response.
  • the therapeutic moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, Pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-.gamma.; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other cytokines or growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • an antibody for use in the instant invention is a bispecific or multispecific antibody.
  • a bispecific antibody has binding sites for two different antigens within a single antibody polypeptide. Antigen binding may be simultaneous or sequential.
  • Triomas and hybrid hybridomas are two examples of cell lines that can secrete bispecific antibodies. Examples of bispecific antibodies produced by a hybrid hybridoma or a trioma are disclosed in U.S. Patent 4,474,893. Bispecific antibodies have been constructed by chemical means (Staerz et al. (1985) Nature 314:628, and Perez et al. (1985) Nature 316:354) and hybridoma technology (Staerz and Bevan (1986) Proc. Natl. Acad.
  • Bispecific antibodies are also described in U.S. Patent 5,959,084. Fragments of bispecific antibodies are described in U.S. Patent 5,798,229.
  • Bispecific agents can also be generated by making heterohybridomas by fusing hybridomas or other cells making different antibodies, followed by identification of clones producing and co-assembling both antibodies. They can also be generated by chemical or genetic conjugation of complete immunoglobulin chains or portions thereof such as Fab and Fv sequences.
  • the antibody component can bind to a polypeptide or a fragment thereof of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1, or a fragment thereof.
  • the bispecific antibody could specifically bind to both a polypeptide or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof.
  • peptides or peptide mimetics can be used to antagonize the activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1, or a fragment(s) thereof.
  • variants of one or more biomarkers listed in Table 1 which function as a modulating agent for the respective full length protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, for antagonist activity.
  • a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
  • a variegated library of variants can be produced, for instance, by enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential polypeptide sequences is expressible as individual polypeptides containing the set of polypeptide sequences therein.
  • methods which can be used to produce libraries of polypeptide variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector.
  • degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential polypeptide sequences.
  • Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.
  • libraries of fragments of a polypeptide coding sequence can be used to generate a variegated population of polypeptide fragments for screening and subsequent selection of variants of a given polypeptide.
  • a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a polypeptide coding sequence with a nuclease under conditions wherein nicking occurs only about once per polypeptide, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector.
  • an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the polypeptide.
  • combinatorial libraries made by point mutations or truncation and for screening cDNA libraries for gene products having a selected property.
  • Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of polypeptides.
  • the most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected.
  • REM Recursive ensemble mutagenesis
  • a technique which enhances the frequency of functional mutants in the libraries can be used in combination with the screening assays to identify variants of interest (Arkin and Youvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delagrave et al. (1993) Protein Eng. 6(3):327-331).
  • cell based assays can be exploited to analyze a variegated polypeptide library.
  • a library of expression vectors can be transfected into a cell line which ordinarily synthesizes one or more biomarkers of the invention, including one or more biomarkers listed in Table 1, or a fragment thereof.
  • transfected cells are then cultured such that the full length polypeptide and a particular mutant polypeptide are produced and the effect of expression of the mutant on the full length polypeptide activity in cell supernatants can be detected, e.g., by any of a number of functional assays. Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively,
  • Systematic substitution of one or more amino acids of a polypeptide amino acid sequence with a D-amino acid of the same type ⁇ e.g., D-lysine in place of L-lysine) can be used to generate more stable peptides.
  • constrained peptides comprising a polypeptide amino acid sequence of interest or a substantially identical sequence variation can be generated by methods known in the art (Rizo and Gierasch (1992) Annu. Rev.
  • amino acid sequences described herein will enable those of skill in the art to produce polypeptides corresponding peptide sequences and sequence variants thereof.
  • polypeptides can be produced in prokaryotic or eukaryotic host cells by expression of polynucleotides encoding the peptide sequence, frequently as part of a larger polypeptide.
  • polypeptides can be synthesized by chemical methods. Methods for expression of heterologous proteins in recombinant hosts, chemical synthesis of
  • Peptides can be produced, typically by direct chemical synthesis. Peptides can be produced as modified peptides, with nonpeptide moieties attached by covalent linkage to the N-terminus and/or C-terminus. In certain preferred embodiments, either the carboxy- terminus or the amino-terminus, or both, are chemically modified. The most common modifications of the terminal amino and carboxyl groups are acetylation and amidation, respectively. Amino-terminal modifications such as acylation ⁇ e.g., acetylation) or alkylation (e.g., methylation) and carboxy-terminal-modifications such as amidation, as well as other terminal modifications, including cyclization, can be incorporated into various embodiments of the invention.
  • Certain amino-terminal and/or carboxy-terminal modifications and/or peptide extensions to the core sequence can provide advantageous physical, chemical, biochemical, and pharmacological properties, such as: enhanced stability, increased potency and/or efficacy, resistance to serum proteases, desirable pharmacokinetic properties, and others.
  • Peptides described herein can be used
  • Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity ⁇ e.g., a broad-spectrum of biological activities), reduced
  • Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer ⁇ e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling.
  • non-interfering positions generally are positions that do not form direct contacts with the macropolypeptides(s) to which the peptidomimetic binds to produce the therapeutic effect.
  • Derivatization ⁇ e.g., labeling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.
  • small molecules which can modulate (either enhance or inhibit) interactions, e.g., between biomarkers described herein or listed in Table 1 and their natural binding partners.
  • the small molecules of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one- compound' library method; and synthetic library methods using affinity chromatography selection. (Lam, K. S. (1997) Anticancer Drug Des. 12:145).
  • Biotechniques 13:412-421 or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner USP 5,223,409), spores (Ladner USP '409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382); (Felici (1991) J Mol. Biol. 222:301- 310); (Ladner supra.).
  • Compounds can be screened in cell based or non-cell based assays. Compounds can be screened in pools (e.g. multiple compounds in each testing sample) or as individual compounds.
  • Chimeric or fusion proteins can be prepared for the inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and/or agents for the immunotherapies described herein, such as inhibitors to the biomarkers of the invention, including the biomarkers listed in Table 1 , or fragments thereof.
  • a "chimeric protein" or “fusion protein” comprises one or more biomarkers of the invention, including one or more biomarkers listed in Table 1, or a fragment thereof, operatively linked to another polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the respective biomarker.
  • the fusion protein comprises at least one
  • biomarkers of the invention including one or more biomarkers listed in Table 1 , or fragments thereof.
  • operatively linked is intended to indicate that the biomarker sequences and the non- biomarker sequences are fused in-frame to each other in such a way as to preserve functions exhibited when expressed independently of the fusion.
  • the "another" sequences can be fused to the N-terminus or C-terminus of the biomarker sequences, respectively.
  • Such a fusion protein can be produced by recombinant expression of a nucleotide sequence encoding the first peptide and a nucleotide sequence encoding the second peptide.
  • the second peptide may optionally correspond to a moiety that alters the solubility, affinity, stability or valency of the first peptide, for example, an immunoglobulin constant region.
  • the first peptide consists of a portion of a biologically active molecule (e.g. the extracellular portion of the polypeptide or the ligand binding portion).
  • the second peptide can include an immunoglobulin constant region, for example, a human Cyl domain or Cy4 domain (e.g., the hinge, CH2 and CH3 regions of human IgCy 1, or human IgC/4, see e.g., Capon et al. U.S. Patents 5,116,964; 5,580,756; 5,844,095 and the like, incorporated herein by reference).
  • Such constant regions may retain regions which mediate effector function (e.g. Fc receptor binding) or may be altered to reduce effector function.
  • a resulting fusion protein may have altered solubility, binding affinity, stability and/or valency (i.e., the number of binding sites available per polypeptide) as compared to the independently expressed first peptide, and may increase the efficiency of protein purification.
  • Fusion proteins and peptides produced by recombinant techniques can be secreted and isolated from a mixture of cells and medium containing the protein or peptide. Alternatively, the protein or peptide can be retained cytoplasmically and the cells harvested, lysed and the protein isolated.
  • a cell culture typically includes host cells, media and other byproducts. Suitable media for cell culture are well-known in the art. Protein and peptides can be isolated from cell culture media, host cells, or both using techniques known in the art for purifying proteins and peptides. Techniques for transfecting host cells and purifying proteins and peptides are known in the art.
  • a fusion protein of the invention is produced by standard recombinant DNA techniques.
  • DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
  • the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
  • PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992).
  • the fusion proteins of the invention can be used as immunogens to produce antibodies in a subject. Such antibodies may be used to purify the respective natural polypeptides from which the fusion proteins were generated, or in screening assays to identify polypeptides which inhibit the interactions between one or more biomarkers polypeptide or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof.
  • compositions comprising one or more nucleic acids comprising or capable of expressing at least 1, 2, 3, 4, 5, 10, 20 or more small nucleic acids or antisense oligonucleotides or derivatives thereof, wherein said small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell specifically hybridize (e.g., bind) under cellular conditions, with cellular nucleic acids (e.g., small non-coding RNAS such as miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, a miRNA binding site, a variant and/or functional variant thereof, cellular mRNAs or a fragments thereof).
  • small non-coding RNAS such as miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, a miRNA binding site, a variant and/or functional variant thereof, cellular mRNAs or a fragments thereof.
  • expression of the small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell can inhibit expression or biological activity of cellular nucleic acids and/or proteins, e.g., by inhibiting transcription, translation and/or small nucleic acid processing of, for example, one or more biomarkers of the invention, including one or more biomarkers listed in Table 1, or fragment(s) thereof.
  • the small nucleic acids or antisense oligonucleotides or derivatives thereof are small RNAs (e.g.,
  • RNAs or complements of small RNAs.
  • the small nucleic acids or antisense oligonucleotides or derivatives thereof can be single or double stranded and are at least six nucleotides in length and are less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21,20, 19, 18, 17, 16, 15, or 10 nucleotides in length.
  • a composition may comprise a library of nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof, or pools of said small nucleic acids or antisense oligonucleotides or derivatives thereof.
  • a pool of nucleic acids may comprise about 2-5, 5- 10, 10-20, 10-30 or more nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof.
  • binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix.
  • antisense refers to the range of techniques generally employed in the art, and includes any process that relies on specific binding to oligonucleotide sequences.
  • the term "functional variant" of a miRNA sequence refers to an oligonucleotide sequence that varies from the natural miRNA sequence, but retains one or more functional characteristics of the miRNA (e.g. cancer cell proliferation inhibition, induction of cancer cell apoptosis, enhancement of cancer cell susceptibility to chemotherapeutic agents, specific miRNA target inhibition).
  • a functional variant of a miRNA sequence retains all of the functional characteristics of the miRNA.
  • a functional variant of a miRNA has a nucleobase sequence that is a least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the miRNA or precursor thereof over a region of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the functional variant hybridizes to the complement of the miRNA or precursor thereof under stringent hybridization conditions. Accordingly, in certain embodiments the nucleobase sequence of a functional variant is capable of hybridizing to one or more target sequences of the miRNA.
  • miRNAs and their corresponding stem-loop sequences described herein may be found in miRBase, an online searchable database of miRNA sequences and annotation, found on the world wide web at microrna.sanger.ac.uk.
  • Entries in the miRBase Sequence database represent a predicted hairpin portion of a miRNA transcript (the stem-loop), with information on the location and sequence of the mature miRNA sequence.
  • the miRNA stem-loop sequences in the database are not strictly precursor miRNAs (pre-miRNAs), and may in some instances include the pre-miRNA and some flanking sequence from the presumed primary transcript.
  • the miRNA nucleobase sequences described herein encompass any version of the miRNA, including the sequences described in Release 10.0 of the miRBase sequence database and sequences described in any earlier Release of the miRBase sequence database.
  • a sequence database release may result in the re-naming of certain miRNAs.
  • a sequence database release may result in a variation of a mature miRNA sequence.
  • miRNA sequences of the invention may be associated with a second RNA sequence that may be located on the same RNA molecule or on a separate RNA molecule as the miRNA sequence.
  • the miRNA sequence may be referred to as the active strand
  • the second RNA sequence which is at least partially complementary to the miRNA sequence
  • the active and complementary strands are hybridized to create a double-stranded RNA that is similar to a naturally occurring miRNA precursor.
  • the activity of a miRNA may be optimized by maximizing uptake of the active strand and minimizing uptake of the complementary strand by the miRNA protein complex that regulates gene translation. This can be done through modification and/or design of the complementary strand.
  • the complementary strand is modified so that a chemical group other than a phosphate or hydroxyl at its 5' terminus.
  • the presence of the 5' modification apparently eliminates uptake of the complementary strand and subsequently favors uptake of the active strand by the miRNA protein complex.
  • the 5' modification can be any of a variety of molecules known in the art, including NH2, NHCOCH3, and biotin.
  • the uptake of the complementary strand by the miRNA pathway is reduced by incorporating nucleotides with sugar modifications in the first 2-6 nucleotides of the complementary strand. It should be noted that such sugar modifications can be combined with the 5' terminal modifications described above to further enhance miRNA activities.
  • the complementary strand is designed so that nucleotides in the 3' end of the complementary strand are not complementary to the active strand. This results in double-strand hybrid RNAs that are stable at the 3' end of the active strand but relatively unstable at the 5' end of the active strand. This difference in stability enhances the uptake of the active strand by the miRNA pathway, while reducing uptake of the complementary strand, thereby enhancing miRNA activity.
  • Small nucleic acid and/or antisense constructs of the methods and compositions presented herein can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of cellular nucleic acids (e.g., small RNAs, mRNA, and/or genomic DNA).
  • the small nucleic acid molecules can produce RNA which encodes mRNA, miRNA, pre- miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof.
  • selection of plasmids suitable for expressing the miRNAs methods for inserting nucleic acid sequences into the plasmid, and methods of delivering the
  • recombinant plasmid to the cells of interest are within the skill in the art. See, for example, Zeng et al. (2002) Mol. Cell 9:1327-1333; Tuschl (2002), Nat. Biotechnol. 20:446-448; Brummelkamp et al. (2002) Science 296:550-553; Miyagishi et al. (2002) Nat. Biotechnol. 20:497-500; Paddison et al. (2002) Genes Dev. 16:948-958; Lee et al. (2002) Nat.
  • small nucleic acids and/or antisense constructs are oligonucleotide probes that are generated ex vivo and which, when introduced into the cell, results in hybridization with cellular nucleic acids.
  • Such oligonucleotide probes are preferably modified oligonucleotides that are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable in vivo.
  • Exemplary nucleic acid molecules for use as small nucleic acids and/or antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S.
  • Patents 5,176,996; 5,264,564; and 5,256,775) are reviewed, for example, by Van der Krol et al. (1988) BioTechniques 6:958-976; and Stein et al. (1988) Cancer Res 48:2659-2668.
  • Antisense approaches may involve the design of oligonucleotides (either DNA or RNA) that are complementary to cellular nucleic acids (e.g., complementary to biomarkers listed in Table 1). Absolute complementarity is not required. In the case of double- stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a nucleic acid (e.g., RNA) it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
  • Oligonucleotides that are complementary to the 5' end of the mRNA should work most efficiently at inhibiting translation.
  • sequences complementary to the 3' untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well (Wagner (1994) Nature 372:333). Therefore,
  • oligonucleotides complementary to either the 5' or 3' untranslated, non-coding regions of genes could be used in an antisense approach to inhibit translation of endogenous mRNAs.
  • Oligonucleotides complementary to the 5' untranslated region of the mRNA may include the complement of the AUG start codon.
  • Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could also be used in accordance with the methods and compositions presented herein.
  • small nucleic acids and/or antisense nucleic acids should be at least six nucleotides in length, and can be less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21,20, 19, 18, 17, 16, 15, or 10 nucleotides in length.
  • in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression.
  • these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides.
  • these studies compare levels of the target nucleic acid or protein with that of an internal control nucleic acid or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide.
  • control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
  • Small nucleic acids and/or antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double- stranded.
  • Small nucleic acids and/or antisense oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc., and may include other appended groups such as peptides (e.g., for targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. U.S.A.
  • small nucleic acids and/or antisense oligonucleotides may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization- triggered cleavage agent, etc.
  • Small nucleic acids and/or antisense oligonucleotides may comprise at least one modified base moiety which is selected from the group including but not limited to 5- fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4- acetylcytosine, 5-(carboxyhydroxytiethyl) uracil, 5-carboxymethylaminomethyl-2- thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouraci
  • Small nucleic acids and/or antisense oligonucleotides may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
  • a compound comprises an oligonucleotide (e.g., a miR A or miRNA encoding oligonucleotide) conjugated to one or more moieties which enhance the activity, cellular distribution or cellular uptake of the resulting oligonucleotide.
  • the moiety is a cholesterol moiety (e.g., antagomirs) or a lipid moiety or liposome conjugate. Additional moieties for conjugation include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.
  • a conjugate group is attached directly to the oligonucleotide.
  • a conjugate group is attached to the oligonucleotide by a linking moiety selected from amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), 8-amino-3,6- dioxaoctanoic acid (ADO), succinimidyl 4-(N-maleimidomethyl) cyclohexane-1- carboxylate (SMCC), 6-aminohexanoic acid (AHEX or AHA), substituted CI -CIO alkyl, substituted or unsubstituted C2-C10 alkenyl, and substituted or unsubstituted C2-C10 alkynyl.
  • a linking moiety selected from amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), 8-amino-3,6- dioxaoct
  • a substituent group is selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.
  • the compound comprises the oligonucleotide having one or more stabilizing groups that are attached to one or both termini of the
  • oligonucleotide to enhance properties such as, for example, nuclease stability.
  • stabilizing groups include cap structures. These terminal modifications protect the
  • the cap can be present at the 5'-terminus (5'-cap), or at the 3'-terminus (3 - cap), or can be present on both termini.
  • Cap structures include, for example, inverted deoxy abasic caps.
  • Suitable cap structures include a 4',5 -methylene nucleotide, a l-(beta-D- erythrofuranosyl) nucleotide, a 4'-thio nucleotide, a carbocyclic nucleotide, a 1,5- anhydrohexitol nucleotide, an L-nucleotide, an alpha-nucleotide, a modified base nucleotide, a phosphorodithioate linkage, a threo-pentofuranosyl nucleotide, an acyclic 3',4 -seco nucleotide, an acyclic 3,4-dihydroxybutyl nucleotide, an acyclic 3,5- dihydroxypentyl nucleotide, a 3'-3'-inverted nucleotide moiety, a 3'-3'-inverted abasic moiety, a 3'-2'-inverted
  • Small nucleic acids and/or antisense oligonucleotides can also contain a neutral peptide-like backbone. Such molecules are termed peptide nucleic acid (PNA)-oligomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. U.S.A.
  • PNA peptide nucleic acid
  • small nucleic acids and/or antisense oligonucleotides comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
  • small nucleic acids and/or antisense oligonucleotides are a-anomeric oligonucleotides.
  • An a-anomeric oligonucleotide forms specific double- stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al. (1987) Nucl. Acids Res. 15:6625-6641).
  • the oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al. (1987) Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett.
  • Small nucleic acids and/or antisense oligonucleotides of the methods and compositions presented herein may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.).
  • phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988) Nucl. Acids Res. 16:3209
  • methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.
  • an isolated miRNA can be chemically synthesized or recombinantly produced using methods known in the art.
  • miRNA are chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional
  • RNA molecules or synthesis reagents include, e.g., Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, Colo., USA), Pierce Chemical (part of Perbio Science, Rockford, 111., USA), Glen Research (Sterling, Va., USA), ChemGenes (Ashland, Mass., USA), Cruachem (Glasgow, UK), and Exiqon (Vedbaek, Denmark).
  • Small nucleic acids and/or antisense oligonucleotides can be delivered to cells in vivo.
  • a number of methods have been developed for delivering small nucleic acids and/or antisense oligonucleotides DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g. , antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systematically.
  • small nucleic acids and/or antisense oligonucleotides may comprise or be generated from double stranded small interfering RNAs (siRNAs), in which sequences fully complementary to cellular nucleic acids (e.g. mRNAs) sequences mediate degradation or in which sequences incompletely complementary to cellular nucleic acids (e.g., mRNAs) mediate translational repression when expressed within cells, or piwiRNAs.
  • siRNAs double stranded small interfering RNAs
  • double stranded siRNAs can be processed into single stranded antisense RNAs that bind single stranded cellular RNAs (e.g., microRNAs) and inhibit their expression.
  • RNA interference is the process of sequence-specific, post- transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene, in vivo, long dsRNA is cleaved by ribonuclease III to generate 21- and 22-nucleotide siRNAs. It has been shown that 21 -nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells (Elbashir et al. (2001) Nature 411 :494-498).
  • RNAs having a length of about 15 to 30 nucleotides or of about 18 to 21 nucleotides or of about 19 to 21 nucleotides.
  • a vector encoding for such siRNAs or short hairpin RNAs (shRNAs) that are metabolized into siRNAs can be introduced into a target cell (see, e.g., McManus et al. (2002) RNA 8:842; Xia et al. (2002) Nat. Biotechnol. 20:1006; and Brummelkamp et al. (2002) Science 296:550).
  • Vectors that can be used are commercially available, e.g., from OligoEngine under the name pSuper RNAi SystemTM.
  • Ribozyme molecules designed to catalytically cleave cellular mRNA transcripts can also be used to prevent translation of cellular mRNAs and expression of cellular
  • polypeptides See, e.g., PCT International Publication WO90/11364, published October 4, 1990; Sarver et al. (1990) Science 247:1222-1225 and U.S. Patent No.
  • Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA.
  • the sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'.
  • the construction and production of hammerhead ribozymes is well-known in the art and is described more fully in Haseloff and Gerlach (1988) Nature 334:585-591.
  • the ribozyme may be engineered so that the cleavage recognition site is located near the 5' end of cellular mRNAs; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.
  • ribozymes of the methods presented herein also include RNA
  • Cech-type ribozymes such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug et al. (1984) Science 224:574-578; Zaug et al. (1986) Science 231 :470-475; Zaug et al. (1986) Nature 324:429-433; WO 88/04300; and Been et al. (1986) Cell 47:207-216).
  • the Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place.
  • the methods and compositions presented herein encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in cellular genes.
  • the ribozymes can be composed of modified oligonucleotides ⁇ e.g., for improved stability, targeting, etc.).
  • a preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous cellular messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.
  • Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription of cellular genes are preferably single stranded and composed of
  • deoxyribonucleotides The base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base pairing rules, which generally require sizable stretches of either purines or pyrimidines to be present on one strand of a duplex.
  • Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix.
  • the pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand.
  • nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.
  • the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule.
  • Switchback molecules are synthesized in an alternating 5 '-3', 3 '-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.
  • Small nucleic acids e.g., miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti- miRNA, or a miRNA binding site, or a variant thereof
  • antisense oligonucleotides, ribozymes, and triple helix molecules of the methods and compositions presented herein may be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule.
  • DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters.
  • antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.
  • various well-known modifications to nucleic acid molecules may be introduced as a means of increasing intracellular stability and half-life. Possible
  • modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.
  • polypeptides, small nucleic acids, and antisense oligonucleotides can be further linked to another peptide or polypeptide (e.g., a heterologous peptide), e.g., that serves as a means of protein detection.
  • Non-limiting examples of label peptide or polypeptide moieties useful for detection in the invention include, without limitation, suitable enzymes such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; epitope tags, such as FLAG, MYC, HA, or HIS tags; fluorophores such as green fluorescent protein; dyes; radioisotopes; digoxygenin; biotin; antibodies; polymers; as well as others known in the art, for example, in Principles of Fluorescence Spectroscopy, Joseph R.
  • modulatory agents described herein e.g., antibodies, small molecules, peptides, fusion proteins, or small nucleic acids
  • modulatory agents described herein can be incorporated into pharmaceutical
  • compositions and administered to a subject in vivo may contain a single such molecule or agent or any combination of agents described herein.
  • Single active agents described herein can be combined with other pharmacologically active compounds (“second active agents”) known in the art according to the methods and compositions provided herein.
  • biomarker nucleic acid and/or biomarker polypeptide molecules described herein can be facilitated by using standard recombinant techniques.
  • such techniques use vectors, preferably expression vectors, containing a nucleic acid encoding a biomarker polypeptide or a portion of such a polypeptide.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector, wherein additional DNA segments can be ligated into the viral genome.
  • vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • Other vectors e.g., non-episomal mammalian vectors
  • certain vectors namely expression vectors, are capable of directing the expression of genes to which they are operably linked.
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors).
  • the present invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
  • the recombinant expression vectors of the present invention comprise a nucleic acid of the present invention in a form suitable for expression of the nucleic acid in a host cell.
  • the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
  • "operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in
  • Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like.
  • the expression vectors of the present invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.
  • the recombinant expression vectors for use in the present invention can be designed for expression of a polypeptide corresponding to a marker of the present invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells ⁇ using baculovirus expression vectors ⁇ , yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra.
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
  • Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
  • enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
  • GST glutathione S-transferase
  • maltose E binding protein or protein A, respectively, to the target recombinant protein.
  • Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al, 1988, Gene 69:301-315) and pET 1 Id (Studier et al, p. 60-89, In Gene
  • Target biomarker nucleic acid expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter.
  • Target biomarker nucleic acid expression from the pET l id vector relies on transcription from a T7 gnlO-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by host strains BL21 (DE3) or HMS174(DE3) from a resident prophage harboring a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
  • One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacterium with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, p. 119-128, In Gene Expression Technology: Methods in Enzymology vol. 185, Academic Press, San Diego, CA, 1990.
  • Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al, 1992, Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the present invention can be carried out by standard DNA synthesis techniques.
  • the expression vector is a yeast expression vector.
  • yeast S. cerevisiae examples include pYepSecl (Baldari et al, 1987, EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, 1982, Cell 30:933-943), pJRY88 (Schultz et al, 1987, Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).
  • the expression vector is a baculovirus expression vector.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., 1983, Mol. Cell Biol. 3:2156-2165) and the pVL series
  • a nucleic acid of the present invention is expressed in mammalian cells using a mammalian expression vector.
  • mammalian expression vectors include pCDM8 (Seed, 1987, Nature 329:840) and pMT2PC (Kaufman et al, 1987, EMBO J. 6:187-195).
  • the expression vector's control functions are often provided by viral regulatory elements.
  • commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
  • suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al. , supra.
  • the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al, 1987, Genes Dev.
  • lymphoid-specific promoters Calame and Eaton, 1988, Adv. Immunol. 43:235- 275
  • promoters of T cell receptors Winoto and Baltimore, 1989, EMBO J. 8:729-733
  • immunoglobulins Bonerji et al, 1983, Cell 33:729-740; Queen and Baltimore, 1983, Cell 33:741-748
  • neuron-specific promoters e.g., the neurofilament promoter; Byrne and Ruddle, 1989, Proc. Natl. Acad. Sci.
  • pancreas-specific promoters Eslund et al, 1985, Science 230:912-916)
  • mammary gland- specific promoters e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166
  • Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss, 1990, Science 249:374-379) and the cc-fetoprotein promoter (Camper and Tilghman, 1989, Genes Dev. 3:537-546).
  • the present invention further provides a recombinant expression vector comprising a DNA molecule cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the present invention.
  • Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue-specific or cell type specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • host cell and "recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
  • a host cell can be any prokaryotic ⁇ e.g., E. coli) or eukaryotic cell ⁇ e.g., insect cells, yeast or mammalian cells).
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co- precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation.
  • Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. ⁇ supra), and other laboratory manuals.
  • a gene that encodes a selectable marker e.g., for resistance to antibiotics
  • Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate.
  • Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
  • Biomarker nucleic acids and/or biomarker polypeptides can be analyzed according to the methods described herein and techniques known to the skilled artisan to identify such genetic or expression alterations useful for the present invention including, but not limited to, 1) an alteration in the level of a biomarker transcript or polypeptide, 2) a deletion or addition of one or more nucleotides from a biomarker gene, 4) a substitution of one or more nucleotides of a biomarker gene, 5) aberrant modification of a biomarker gene, such as an expression regulatory region, and the like.
  • a biological sample is tested for the presence of copy number changes in genomic loci containing the genomic marker.
  • a copy number of at least 3, 4, 5, 6, 7, 8, 9, or 10 is predictive of poorer outcome of inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, e.g. such as PTPN2 and SOCS1) and immunotherapy combination treatments.
  • Hybridization-based assays include, but are not limited to, traditional "direct probe” methods, such as Southern blots, in situ hybridization (e.g., FISH and FISH plus SKY) methods, and "comparative probe” methods, such as comparative genomic hybridization (CGH), e.g., cDNA-based or oligonucleotide-based CGH.
  • CGH comparative genomic hybridization
  • the methods can be used in a wide variety of formats including, but not limited to, substrate (e.g. membrane or glass) bound methods or array-based approaches.
  • evaluating the biomarker gene copy number in a sample involves a Southern Blot.
  • a Southern Blot the genomic DNA (typically fragmented and separated on an electrophoretic gel) is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal genomic DNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid.
  • a Northern blot may be utilized for evaluating the copy number of encoding nucleic acid in a sample.
  • mRNA is hybridized to a probe specific for the target region.
  • Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal RNA provides an estimate of the relative copy number of the target nucleic acid.
  • RNA e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.
  • other methods well-known in the art to detect RNA can be used, such that higher or lower expression relative to an appropriate control (e.g., a non-amplified portion of the same or related cell tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid.
  • in situ hybridization comprises the following steps: (1) fixation of tissue or biological structure to be analyzed; (2) prehybridization treatment of the biological structure to increase accessibility of target DNA, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization and (5) detection of the hybridized nucleic acid fragments.
  • the reagent used in each of these steps and the conditions for use vary depending on the particular application.
  • a nucleic acid In a typical in situ hybridization assay, cells are fixed to a solid support, typically a glass slide. If a nucleic acid is to be probed, the cells are typically denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of labeled probes specific to the nucleic acid sequence encoding the protein. The targets (e.g., cells) are then typically washed at a predetermined stringency or at an increasing stringency until an appropriate signal to noise ratio is obtained. The probes are typically labeled, e.g., with radioisotopes or fluorescent reporters. In one embodiment, probes are sufficiently long so as to specifically hybridize with the target nucleic acid(s) under stringent conditions. Probes generally range in length from about 200 bases to about 1000 bases. In some applications it is necessary to block the hybridization capacity of repetitive sequences. Thus, in some embodiments, tRNA, human genomic DNA, or Cot-I DNA is used to block
  • genomic DNA is isolated from normal reference cells, as well as from test cells (e.g., tumor cells) and amplified, if necessary.
  • the two nucleic acids are differentially labeled and then hybridized in situ to metaphase chromosomes of a reference cell.
  • the repetitive sequences in both the reference and test DNAs are either removed or their hybridization capacity is reduced by some means, for example by prehybridization with appropriate blocking nucleic acids and/or including such blocking nucleic acid sequences for said repetitive sequences during said hybridization.
  • the bound, labeled DNA sequences are then rendered in a visualizable form, if necessary.
  • Chromosomal regions in the test cells which are at increased or decreased copy number can be identified by detecting regions where the ratio of signal from the two DNAs is altered. For example, those regions that have decreased in copy number in the test cells will show relatively lower signal from the test DNA than the reference compared to other regions of the genome. Regions that have been increased in copy number in the test cells will show relatively higher signal from the test DNA. Where there are chromosomal deletions or multiplications, differences in the ratio of the signals from the two labels will be detected and the ratio will provide a measure of the copy number.
  • array CGH array CGH
  • the immobilized chromosome element is replaced with a collection of solid support bound target nucleic acids on an array, allowing for a large or complete percentage of the genome to be represented in the collection of solid support bound targets.
  • Target nucleic acids may comprise cDNAs, genomic DNAs, oligonucleotides (e.g., to detect single nucleotide polymorphisms) and the like.
  • Array-based CGH may also be performed with single-color labeling (as opposed to labeling the control and the possible tumor sample with two different dyes and mixing them prior to hybridization, which will yield a ratio due to competitive hybridization of probes on the arrays).
  • amplification-based assays can be used to measure copy number.
  • the nucleic acid sequences act as a template in an amplification reaction ⁇ e.g., Polymerase Chain Reaction (PCR).
  • PCR Polymerase Chain Reaction
  • the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls, e.g. healthy tissue, provides a measure of the copy number.
  • Quantitative amplification involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction.
  • Detailed protocols for quantitative PCR are provided in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.). Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis is described in Ginzonger, et al. (2000) Cancer Research 60:5405-5409.
  • the known nucleic acid sequence for the genes is sufficient to enable one of skill in the art to routinely select primers to amplify any portion of the gene.
  • Fluorogenic quantitative PCR may also be used in the methods of the present invention. In fluorogenic quantitative PCR, quantitation is based on amount of fluorescence signals, e.g., TaqMan and SYBR green.
  • ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4: 560, Landegren, et al. (1988) Science 241 : 1077, and Barringer et al. (1990) Gene 89: 117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87: 1874), dot PCR, and linker adapter PCR, etc.
  • LCR ligase chain reaction
  • Loss of heterozygosity (LOH) and major copy proportion (MCP) mapping may also be used to identify regions of amplification or deletion.
  • Biomarker expression may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed molecule or protein.
  • Non-limiting examples of such methods include immunological methods for detection of secreted, cell- surface, cytoplasmic, or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.
  • activity of a particular gene is characterized by a measure of gene transcript (e.g. mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity.
  • Marker expression can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.
  • detecting or determining expression levels of a biomarker and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) comprises detecting or determining RNA levels for the marker of interest.
  • one or more cells from the subject to be tested are obtained and RNA is isolated from the cells.
  • a sample of breast tissue cells is obtained from the subject.
  • RNA is obtained from a single cell.
  • a cell can be isolated from a tissue sample by laser capture microdissection (LCM).
  • LCM laser capture microdissection
  • a cell can be isolated from a tissue section, including a stained tissue section, thereby assuring that the desired cell is isolated (see, e.g., Bonner et al. (1997) Science 278: 1481; Emmert-Buck et al. (1996) Science 274:998; Fend et al. (1999) Am. J. Path. 154: 61 and Murakami et al. (2000) Kidney Int. 58:1346).
  • Murakami et al, supra describe isolation of a cell from a previously immunostained tissue section.
  • RNA can be extracted.
  • Methods for establishing cultures of non-transformed cells, i. e. , primary cell cultures, are known in the art.
  • RNA in the tissue and cells may quickly become degraded. Accordingly, in a preferred embodiment, the tissue or cells obtained from a subject is snap frozen as soon as possible.
  • RNA can be extracted from the tissue sample by a variety of methods, e.g., the guanidium thiocyanate lysis followed by CsCl centrifugation (Chirgwin et al. , 1979, Biochemistry 18:5294-5299).
  • RNA from single cells can be obtained as described in methods for preparing cDNA libraries from single cells, such as those described in Dulac, C. (1998) Curr. Top. Dev. Biol. 36, 245 and Jena et al. (1996) J. Immunol. Methods 190:199. Care to avoid RNA degradation must be taken, e.g., by inclusion of RNAsin.
  • RNA sample can then be enriched in particular species.
  • poly(A)+ RNA is isolated from the RNA sample.
  • such purification takes advantage of the poly -A tails on mRNA.
  • poly-T oligonucleotides may be immobilized within on a solid support to serve as affinity ligands for mRNA. Kits for this purpose are commercially available, e.g., the MessageMaker kit (Life Technologies, Grand Island, NY).
  • the RNA population is enriched in marker sequences. Enrichment can be undertaken, e.g., by primer-specific cDNA synthesis, or multiple rounds of linear amplification based on cDNA synthesis and template-directed in vitro
  • RNA enriched or not in particular species or sequences
  • an "amplification process" is designed to strengthen, increase, or augment a molecule within the RNA.
  • an amplification process such as RT-PCR can be utilized to amplify the mRNA, such that a signal is detectable or detection is enhanced.
  • Such an amplification process is beneficial particularly when the biological, tissue, or tumor sample is of a small size or volume.
  • RNAscribe mRNA into cDNA followed by polymerase chain reaction RT-PCR
  • RT-AGLCR reverse transcribe mRNA into cDNA followed by symmetric gap ligase chain reaction
  • Northern analysis involves running a preparation of RNA on a denaturing agarose gel, and transferring it to a suitable support, such as activated cellulose, nitrocellulose or glass or nylon membranes. Radiolabeled cDNA or RNA is then hybridized to the preparation, washed and analyzed by autoradiography.
  • In situ hybridization visualization may also be employed, wherein a radioactively labeled antisense RNA probe is hybridized with a thin section of a biopsy sample, washed, cleaved with RNase and exposed to a sensitive emulsion for autoradiography.
  • the samples may be stained with hematoxylin to demonstrate the histological composition of the sample, and dark field imaging with a suitable light filter shows the developed emulsion.
  • Non-radioactive labels such as digoxigenin may also be used.
  • mRNA expression can be detected on a DNA array, chip or a microarray.
  • Labeled nucleic acids of a test sample obtained from a subject may be hybridized to a solid surface comprising biomarker DNA. Positive hybridization signal is obtained with the sample containing biomarker transcripts.
  • mRNA is extracted from the biological sample to be tested, reverse transcribed, and fluorescently-labeled cDNA probes are generated.
  • the microarrays capable of hybridizing to marker cDNA are then probed with the labeled cDNA probes, the slides scanned and fluorescence intensity measured. This intensity correlates with the hybridization intensity and expression levels.
  • probes that can be used in the methods described herein include cDNA, riboprobes, synthetic oligonucleotides and genomic probes.
  • the type of probe used will generally be dictated by the particular situation, such as riboprobes for in situ hybridization, and cDNA for Northern blotting, for example.
  • the probe is directed to nucleotide regions unique to the RNA.
  • the probes may be as short as is required to differentially recognize marker mRNA transcripts, and may be as short as, for example, 15 bases; however, probes of at least 17, 18, 19 or 20 or more bases can be used.
  • the primers and probes hybridize specifically under stringent conditions to a DNA fragment having the nucleotide sequence corresponding to the marker.
  • stringent conditions means hybridization will occur only if there is at least 95% identity in nucleotide sequences. In another embodiment, hybridization under "stringent conditions" occurs when there is at least 97% identity between the sequences.
  • the form of labeling of the probes may be any that is appropriate, such as the use of radioisotopes, for example, 32 P and 35 S. Labeling with radioisotopes may be achieved, whether the probe is synthesized chemically or biologically, by the use of suitably labeled bases.
  • the biological sample contains polypeptide molecules from the test subject.
  • the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
  • the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting marker polypeptide, mRNA, genomic DNA, or fragments thereof, such that the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, is detected in the biological sample, and comparing the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, in the control sample with the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof in the test sample,
  • the activity or level of a biomarker protein can be detected and/or quantified by detecting or quantifying the expressed polypeptide.
  • the polypeptide can be detected and quantified by any of a number of means well-known to those of skill in the art.
  • Aberrant levels of polypeptide expression of the polypeptides encoded by a biomarker nucleic acid and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) are associated with the likelihood of response of a cancer to inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and immunotherapy combination treatments.
  • Any method known in the art for detecting polypeptides can be used. Such methods include, but are not limited to, immunodiffusion, Immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs),
  • immunofluorescent assays Western blotting, binder-ligand assays, immunohistochemical techniques, agglutination, complement assays, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like (e.g., Basic and Clinical Immunology, Sites and Terr, eds., Appleton and Lange, Norwalk, Conn, pp 217-262, 1991 which is incorporated by reference).
  • binder-ligand immunoassay methods including reacting antibodies with an epitope or epitopes and competitively displacing a labeled polypeptide or derivative thereof.
  • ELISA and RIA procedures may be conducted such that a desired biomarker protein standard is labeled (with a radioisotope such as 125 I or 35 S, or an assayable enzyme, such as horseradish peroxidase or alkaline phosphatase), and, together with the unlabeled sample, brought into contact with the corresponding antibody, whereon a second antibody is used to bind the first, and radioactivity or the immobilized enzyme assayed (competitive assay).
  • a radioisotope such as 125 I or 35 S, or an assayable enzyme, such as horseradish peroxidase or alkaline phosphatase
  • the biomarker protein in the sample is allowed to react with the corresponding immobilized antibody, radioisotope- or enzyme-labeled anti-biomarker protein antibody is allowed to react with the system, and radioactivity or the enzyme assayed (ELISA-sandwich assay).
  • radioactivity or the enzyme assayed ELISA-sandwich assay.
  • Other conventional methods may also be employed as suitable.
  • a “one-step” assay involves contacting antigen with immobilized antibody and, without washing, contacting the mixture with labeled antibody.
  • a “two-step” assay involves washing before contacting, the mixture with labeled antibody.
  • Other conventional methods may also be employed as suitable.
  • a method for measuring biomarker protein levels comprises the steps of: contacting a biological specimen with an antibody or variant (e.g., fragment) thereof which selectively binds the biomarker protein, and detecting whether said antibody or variant thereof is bound to said sample and thereby measuring the levels of the biomarker protein.
  • an antibody or variant e.g., fragment
  • Enzymatic and radiolabeling of biomarker protein and/or the antibodies may be effected by conventional means.
  • Such means will generally include covalent linking of the enzyme to the antigen or the antibody in question, such as by glutaraldehyde, specifically so as not to adversely affect the activity of the enzyme, by which is meant that the enzyme must still be capable of interacting with its substrate, although it is not necessary for all of the enzyme to be active, provided that enough remains active to permit the assay to be effected.
  • some techniques for binding enzyme are non-specific (such as using formaldehyde), and will only yield a proportion of active enzyme.
  • Enzymes employable for labeling are not particularly limited, but may be selected from the members of the oxidase group, for example. These catalyze production of hydrogen peroxide by reaction with their substrates, and glucose oxidase is often used for its good stability, ease of availability and cheapness, as well as the ready availability of its substrate (glucose). Activity of the oxidase may be assayed by measuring the concentration of hydrogen peroxide formed after reaction of the enzyme-labeled antibody with the substrate under controlled conditions well-known in the art.
  • biomarker protein may be detected according to a practitioner's preference based upon the present disclosure.
  • One such technique is Western blotting (Towbin et at., Proc. Nat. Acad. Sci. 76:4350 (1979)), wherein a suitably treated sample is run on an SDS-PAGE gel before being transferred to a solid support, such as a nitrocellulose filter.
  • Anti-biomarker protein antibodies (unlabeled) are then brought into contact with the support and assayed by a secondary immunological reagent, such as labeled protein A or anti-immunoglobulin (suitable labels including 125 I, horseradish peroxidase and alkaline phosphatase). Chromatographic detection may also be used.
  • Immunohistochemistry may be used to detect expression of biomarker protein, e.g., in a biopsy sample.
  • a suitable antibody is brought into contact with, for example, a thin layer of cells, washed, and then contacted with a second, labeled antibody.
  • Labeling may be by fluorescent markers, enzymes, such as peroxidase, avidin, or radiolabeling.
  • the assay is scored visually, using microscopy.
  • Anti-biomarker protein antibodies may also be used for imaging purposes, for example, to detect the presence of biomarker protein in cells and tissues of a subject.
  • Suitable labels include radioisotopes, iodine ( 125 1, 121 I), carbon ( 14 C), sulphur ( 35 S), tritium ( 3 H), indium ( 112 In), and technetium ( 99 mTc), fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • antibodies are not detectable, as such, from outside the body, and so must be labeled, or otherwise modified, to permit detection.
  • Markers for this purpose may be any that do not substantially interfere with the antibody binding, but which allow external detection.
  • Suitable markers may include those that may be detected by X-radiography, NMR or MRI.
  • suitable markers include any radioisotope that emits detectable radiation but that is not overtly harmful to the subject, such as barium or cesium, for example.
  • Suitable markers for NMR and MRI generally include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by suitable labeling of nutrients for the relevant hybridoma, for example.
  • the size of the subject, and the imaging system used, will determine the quantity of imaging moiety needed to produce diagnostic images.
  • the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of technetium-99.
  • the labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain biomarker protein. The labeled antibody or antibody fragment can then be detected using known techniques.
  • Antibodies that may be used to detect biomarker protein include any antibody, whether natural or synthetic, full length or a fragment thereof, monoclonal or polyclonal, that binds sufficiently strongly and specifically to the biomarker protein to be detected.
  • An antibody may have a Kd of at most about 10 "6 M, 10 "7 M, 10 "8 M, 10 "9 M, 10- 10 M, 10 " ⁇ ⁇ , 10 " 12 M.
  • the phrase "specifically binds” refers to binding of, for example, an antibody to an epitope or antigen or antigenic determinant in such a manner that binding can be displaced or competed with a second preparation of identical or similar epitope, antigen or antigenic determinant.
  • An antibody may bind preferentially to the biomarker protein relative to other proteins, such as related proteins.
  • Antibodies are commercially available or may be prepared according to methods known in the art.
  • Antibodies and derivatives thereof that may be used encompass polyclonal or monoclonal antibodies, chimeric, human, humanized, primatized (CDR-grafted), veneered or single-chain antibodies as well as functional fragments, i.e., biomarker protein binding fragments, of antibodies.
  • antibody fragments capable of binding to a biomarker protein or portions thereof including, but not limited to, Fv, Fab, Fab' and F(ab') 2 fragments can be used.
  • Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab') 2 fragments, respectively.
  • Fab or F(ab') 2 fragments can also be used to generate Fab or F(ab') 2 fragments.
  • Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site.
  • a chimeric gene encoding a F(ab') 2 heavy chain portion can be designed to include DNA sequences encoding the CH, domain and hinge region of the heavy chain.
  • agents that specifically bind to a biomarker protein other than antibodies are used, such as peptides.
  • Peptides that specifically bind to a biomarker protein can be identified by any means known in the art. For example, specific peptide binders of a biomarker protein can be screened for using peptide phage display libraries, d. Methods for Detection of Biomarker Structural Alterations
  • biomarker nucleic acid and/or biomarker polypeptide molecule can be used to identify the presence of a structural alteration in a biomarker nucleic acid and/or biomarker polypeptide molecule in order to, for example, identify PTPN2, SOCS1, or other biomarkers used in the
  • detection of the alteration involves the use of a
  • PCR polymerase chain reaction
  • LCR ligation chain reaction
  • This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a biomarker gene under conditions such that hybridization and amplification of the biomarker gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
  • nucleic acid e.g., genomic, mRNA or both
  • Alternative amplification methods include: self-sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well-known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
  • mutations in a biomarker nucleic acid from a sample cell can be identified by alterations in restriction enzyme cleavage patterns.
  • sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
  • sequence specific ribozymes see, for example, U.S. Pat. No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
  • biomarker nucleic acid can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin, M. T. et al. (1996) Hum. Mutat. 7:244-255; Kozal, M. J. et al. (1996) Nat. Med. 2:753-759).
  • biomarker genetic mutations can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. (1996) supra.
  • a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential, overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
  • biomarker genetic mutations can be identified in a variety of contexts, including, for example, germline and somatic mutations.
  • any of a variety of sequencing reactions known in the art can be used to directly sequence a biomarker gene and detect mutations by comparing the sequence of the sample biomarker with the corresponding wild-type (control) sequence.
  • Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert (1977) Proc. Natl. Acad. Sci. USA 74:560 or Sanger (1977) Proc. Natl. Acad Sci. USA 74:5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve (1995)
  • Biotechniques 19:448-53 including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127- 162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).
  • RNA/RNA or RNA/DNA heteroduplexes Other methods for detecting mutations in a biomarker gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242).
  • the art technique of "mismatch cleavage" starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type biomarker sequence with potentially mutant RNA or DNA obtained from a tissue sample.
  • the double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands.
  • RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions.
  • either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397 and Saleeba et al. (1992) Methods Enzymol. 217:286-295.
  • the control DNA or RNA can be labeled for detection.
  • the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in biomarker cDNAs obtained from samples of cells.
  • DNA mismatch repair enzymes
  • the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).
  • a probe based on a biomarker sequence e.g., a wild-type biomarker treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like (e.g., U.S. Pat. No. 5,459,039.)
  • alterations in electrophoretic mobility can be used to identify mutations in biomarker genes.
  • SSCP single strand conformation polymorphism
  • Single-stranded DNA fragments of sample and control biomarker nucleic acids will be denatured and allowed to renature.
  • the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
  • the DNA fragments may be labeled or detected with labeled probes.
  • the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
  • the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495).
  • DGGE denaturing gradient gel electrophoresis
  • DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high- melting GC-rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).
  • oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163; Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230).
  • allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
  • allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention.
  • Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res.
  • inhibitors ofk one or more biomarkers in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1
  • immunotherapy combination treatment is predicted according to biomarker amount and/or activity associated with a cancer in a subject according to the methods described herein.
  • inhibitors and immunotherapy combination treatments e.g., one or more such inhibitors and immunotherapy combination treatment in combination with one or more additional anti-cancer therapies, such as another immune checkpoint inhibitor
  • Such inhibitors and immunotherapy combination treatment can be avoided once a subject is indicated as not being a likely responder to such inhibitors and immunotherapy combination treatment and an alternative treatment regimen, such as targeted and/or untargeted anticancer therapies can be administered.
  • Combination therapies are also contemplated and can comprise, for example, one or more chemotherapeutic agents and radiation, one or more chemotherapeutic agents and immunotherapy, or one or more chemotherapeutic agents, radiation and chemotherapy, each combination of which can be with anti-immune checkpoint therapy.
  • any representative embodiment of an agent to modulate a particular target can be adapted to any other target described herein by the ordinarily skilled artisn (e.g., direct and indirect PD-1 inhibitors described herein can be applied to other immune checkpoint inhibitors and/or biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1), such as monospecific antibodies, bispecific antibodies, non-activiting forms, small molecules, peptides, interfering nucleic acids, and the like).
  • kinase signaling inhibitors such as PTPN2 and SOCS1
  • targeted therapy refers to administration of agents that selectively interact with a chosen biomolecule to thereby treat cancer.
  • immunotherapies such as immune checkpoint inhibitors, which are well-known in the art.
  • anti-PD-1 pathway agents such as therapeutic monoclonal blocking antibodies, which are well-known in the art and described above, can be used to target tumor microenvironments and cells expressing unwanted components of the PD-1 pathway, such as PD-1, PD-L1, and/or PD-L2.
  • PD-1 pathway refers to the PD-1 receptor and its ligands, PD-L1 and PD-L2.
  • PD-1 pathway inhibitors block or otherwise reduce the interaction between PD-1 and one or both of its ligands such that the immunoinhibitory signaling otherwise generated by the interaction is blocked or otherwise reduced.
  • Anti-immune checkpoint inhibitors can be direct or indirect. Direct anti-immune checkpoint inhibitors block or otherwise reduce the interaction between an immune checkpoint and at least one of its ligands.
  • PD-1 inhibitors can block PD-1 binding with one or both of its ligands.
  • Direct PD-1 combination inhibitors are well-known in the art, especially since the natural binding partners of PD-1 (e.g., PD-L1 and PD-L2), PD-L1 (e.g., PD-1 and B7-1), and PD-L2 (e.g., PD-1 and RGMb) are known.
  • PD-1 e.g., PD-L1 and PD-L2
  • PD-L1 e.g., PD-1 and B7-1
  • PD-L2 e.g., PD-1 and RGMb
  • agents which directly block the interaction between PD-1 and PD-L1, PD-1 and PD-L2, PD-1 and both PD-L1 and PD-L2, such as a bispecific antibody can prevent inhibitory signaling and upregulate an immune response (i.e., as a PD-1 pathway inhibitor).
  • agents that indirectly block the interaction between PD-1 and one or both of its ligands can prevent inhibitory signaling and upregulate an immune response.
  • B7-1 or a soluble form thereof, by binding to a PD-L1 polypeptide indirectly reduces the effective concentration of PD-L1 polypeptide available to bind to PD-1.
  • Exemplary agents include monospecific or bispecific blocking antibodies against PD-1, PD-L1, and/or PD-L2 that block the interaction between the receptor and ligand(s); a non- activating form of PD-1, PD-L1, and/or PD-L2 (e.g., a dominant negative or soluble polypeptide), small molecules or peptides that block the interaction between PD-1, PD-L1, and/or PD-L2; fusion proteins (e.g.
  • Indirect anti-immune checkpoint inhibitors block or otherwise reduce the
  • an inhibitor can block the interaction between PD-1 and one or both of its ligands without necessarily directly blocking the interaction between PD-1 and one or both of its ligands.
  • indirect inhibitors include intrabodies that bind the intracellular portion of PD-1 and/or PD-Ll required to signal to block or otherwise reduce the immunoinhibitory signaling.
  • nucleic acids that reduce the expression of PD-1, PD-Ll, and/or PD-L2 can indirectly inhibit the interaction between PD-1 and one or both of its ligands by removing the availability of components for interaction. Such nucleic acid molecules can block PD-Ll, PD-L2, and/or PD-L2 transcription or translation.
  • agents which directly block the interaction between one or more biomarkers in Table 1 can remove the inhibition to the signaling pathways related to such one or more biomarkers in Table 1 (e.g. , PTPN2- and/or SOCS1 -regulated signaling) and its downstream immune responses, such as increasing sensitivity to interferon signaling.
  • agents that indirectly block the interaction between one or more biomarkers in Table 1 and their binding partners/substrates can remove the inhibition to such biomarkers-related signaling and its downstream immune responses.
  • Exemplary agents include monospecific or bispecific blocking antibodies, especially intrbodies, against such biomarkers and/or their substrate(s) that block the interaction between such one or more biomarkers and their substrate(s); a non-active form of such one or more biomarkers and/or their substrate(s) (e.g., a dominant negative polypeptide), small molecules or peptides that block the interaction between such one or more biomarkers and their substrate(s) or the catalytic activity of such biomarkers; and a non-activating form of a natural biomarkers in Table 1 and/or its substrate(s).
  • monospecific or bispecific blocking antibodies especially intrbodies, against such biomarkers and/or their substrate(s) that block the interaction between such one or more biomarkers and their substrate(s)
  • a non-active form of such one or more biomarkers and/or their substrate(s) e.g., a dominant negative polypeptide
  • small molecules or peptides that block the interaction between such one or more biomarkers and their substrate(
  • Immunotherapies that are designed to elicit or amplify an immune response are referred to as "activation immunotherapies.” Immunotherapies that are designed to reduce or suppress an immune response are referred to as “suppression immunotherapies.” Any agent believed to have an immune system effect on the genetically modified transplanted cancer cells can be assayed to determine whether the agent is an immunotherapy and the effect that a given genetic modification has on the modulation of immune response.
  • the immunotherapy is cancer cell-specific.
  • immunotherapy can be "untargeted,” which refers to administration of agents that do not selectively interact with immune system cells, yet modulates immune system function. Representative examples of untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.
  • Immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g., administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen). Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix
  • polynucleotides and the like can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.
  • immunotherapy comprises adoptive cell-based
  • adoptive cell-based immunotherapeutic modalities including, without limitation, Irradiated autologous or allogeneic tumor cells, tumor lysates or apoptotic tumor cells, antigen-presenting cell-based immunotherapy, dendritic cell-based immunotherapy, adoptive T cell transfer, adoptive CAR T cell therapy, autologous immune enhancement therapy (AIET), cancer vaccines, and/or antigen presenting cells.
  • Irradiated autologous or allogeneic tumor cells including, without limitation, Irradiated autologous or allogeneic tumor cells, tumor lysates or apoptotic tumor cells, antigen-presenting cell-based immunotherapy, dendritic cell-based immunotherapy, adoptive T cell transfer, adoptive CAR T cell therapy, autologous immune enhancement therapy (AIET), cancer vaccines, and/or antigen presenting cells.
  • AIET autologous immune enhancement therapy
  • Such cell- based immunotherapies can be further modified to express one or more gene products to further modulate immune responses, such as expressing cytokines like GM-CSF, and/or to express tumor-associated antigen (TAA) antigens, such as Mage-1, gp-100, patient-specific neoantigen vaccines, and the like.
  • TAA tumor-associated antigen
  • immunotherapy comprises non-cell-based
  • compositions comprising antigens with or without vaccine-enhancing adjuvants are used.
  • Such compositions exist in many well-known forms, such as peptide compositions, oncolytic viruses, recombinant antigen comprising fusion proteins, and the like.
  • immunomodulatory interleukins such as IL-2, IL-6, IL-7, IL-12, IL-17, IL-23, and the like, as well as modulators thereof (e.g. , blocking antibodies or more potent or longer lasting forms) are used.
  • immunomodulatory cytokines such as interferons, G-CSF, imiquimod, TNFalpha, and the like, as well as modulators thereof (e.g., blocking antibodies or more potent or longer lasting forms) are used.
  • immunomodulatory chemokines such as CCL3, CCL26, and CXCL7, and the like, as well as modulators thereof (e.g., blocking antibodies or more potent or longer lasting forms) are used.
  • immunomodulatory molecules targeting immunosuppression such as STAT3 signaling modulators, NFkappaB signaling modulators, and immune checkpoint modulators, are used.
  • immunomodulatory drugs such as immunocytostatic drugs, glucocorticoids, cytostatics, immunophilins and modulators thereof (e.g., rapamycin, a calcineurin inhibitor, tacrolimus, ciclosporin (cyclosporin), pimecrolimus, abetimus, gusperimus, ridaforolimus, everolimus, temsirolimus, zotarolimus, etc.), hydrocortisone (Cortisol), cortisone acetate, prednisone, prednisolone, methylprednisolone, dexamethasone, betamethasone, triamcinolone, beclometasone, fludrocortisone acetate, deoxycorticosterone acetate (doca) aldosterone, a non-glucocorticoid steroid, a pyrimidine synthesis inhibitor, leflunomide, teriflunomide, a foli
  • immunomodulatory antibodies or protein are used.
  • Nutritional supplements that enhance immune responses such as vitamin A, vitamin B
  • agents and therapies other than immunotherapy or in combination thereof can be used with in combination with inhibitors of one or more biomarkers in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS ⁇ /immunotherapies to stimulate an immune response to thereby treat a condition that would benefit therefrom.
  • one or more kinase signaling inhibitors such as PTPN2 and SOCS ⁇ /immunotherapies
  • kinase signaling inhibitors such as PTPN2 and SOCS ⁇ /immunotherapies
  • chemotherapy e.g., radiation, epigenetic modifiers (e.g., histone deacetylase (HDAC) modifiers, methylation modifiers, phosphorylation modifiers, and the like
  • targeted therapy e.g., radiation, epigenetic modifiers (e.g., histone deacetylase (HDAC) modifiers, methylation modifiers, phosphorylation modifiers, and the like are well-
  • untargeted therapy refers to administration of agents that do not selectively interact with a chosen biomolecule yet treat cancer.
  • Representative examples of untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.
  • Chemotherapy includes the
  • chemotherapeutic agent may be, but is not limited to, those selected from among the following groups of compounds: platinum compounds, cytotoxic antibiotics, antimetabolites, anti-mitotic agents, alkylating agents, arsenic compounds, DNA topoisomerase inhibitors, taxanes, nucleoside analogues, plant alkaloids, and toxins; and synthetic derivatives thereof.
  • Exemplary compounds include, but are not limited to, alkylating agents: cisplatin, treosulfan, and trofosfamide; plant alkaloids: vinblastine, paclitaxel, docetaxol; DNA topoisomerase inhibitors: teniposide, crisnatol, and mitomycin; anti-folates: methotrexate, mycophenolic acid, and hydroxyurea; pyrimidine analogs: 5-fluorouracil, doxifluridine, and cytosine arabinoside; purine analogs:
  • compositions comprising one or more chemotherapeutic agents (e.g., FLAG, CHOP) may also be used.
  • FLAG comprises fludarabine, cytosine arabinoside (Ara-C) and G-CSF.
  • CHOP comprises cyclophosphamide, vincristine, doxorubicin, and prednisone.
  • PARP e.g., PARP-1 and/or PARP-2
  • inhibitors are well-known in the art (e.g., Olaparib, ABT-888, BSI-201, BGP-15 (N-Gene Research Laboratories, Inc.); INO-1001 (Inotek Pharmaceuticals Inc.); PJ34 (Soriano et al, 2001; Pacher et al, 2002b); 3-aminobenzamide (Trevigen); 4-amino- 1,8-naphthalimide; (Trevigen); 6(5H)-phenanthridinone (Trevigen); benzamide (U.S. Pat. Re. 36,397); and NU1025 (Bowman et al).
  • the mechanism of action is generally related to the ability of PARP inhibitors to bind PARP and decrease its activity.
  • PARP catalyzes the conversion of .beta. -nicotinamide adenine dinucleotide (NAD+) into nicotinamide and poly-ADP-ribose (PAR). Both poly (ADP-ribose) and PARP have been linked to regulation of transcription, cell proliferation, genomic stability, and carcinogenesis
  • Poly(ADP-ribose) polymerase 1 (PARP1) is a key molecule in the repair of DNA single- strand breaks (SSBs) (de Murcia J. et al. 1997. Proc Natl Acad Sci USA 94:7303-7307; Schreiber V, Dantzer F, Ame J C, de Murcia G (2006) Nat Rev Mol Cell Biol 7:517-528; Wang Z Q, et al. (1997) Genes Dev 11 :2347-2358). Knockout of SSB repair by inhibition of PARP1 function induces DNA double-strand breaks (DSBs) that can trigger synthetic lethality in cancer cells with defective homology-directed DSB repair (Bryant H E, et al. (2005) Nature 434:913-917; Farmer H, et al. (2005) Nature 434:917-921).
  • chemotherapeutic agents are illustrative, and are not intended to be limiting.
  • radiation therapy is used.
  • the radiation used in radiation therapy can be ionizing radiation.
  • Radiation therapy can also be gamma rays, X-rays, or proton beams.
  • Examples of radiation therapy include, but are not limited to, external-beam radiation therapy, interstitial implantation of radioisotopes (1-125, palladium, iridium), radioisotopes such as strontium-89, thoracic radiation therapy, intraperitoneal P-32 radiation therapy, and/or total abdominal and pelvic radiation therapy.
  • the radiation therapy can be administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source.
  • the radiation treatment can also be administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass.
  • photodynamic therapy comprising the administration of photosensitizers, such as hematoporphyrin and its derivatives, Vertoporfin (BPD-MA), phthalocyanine,
  • photosensitizer Pc4 demethoxy-hypocrellin A; and 2BA-2-DMHA.
  • surgical intervention can occur to physically remove cancerous cells and/or tissues.
  • hormone therapy is used.
  • Hormonal therapeutic treatments can comprise, for example, hormonal agonists, hormonal antagonists ⁇ e.g., flutamide, bicalutamide, tamoxifen, raloxifene, leuprolide acetate (LUPRON), LH-RH antagonists), inhibitors of hormone biosynthesis and processing, and steroids (e.g., dexamethasone, retinoids, deltoids, betamethasone, Cortisol, cortisone, prednisone, dehydrotestosterone, glucocorticoids, mineralocorticoids, estrogen, testosterone, progestins), vitamin A derivatives ⁇ e.g., all-trans retinoic acid (ATRA)); vitamin D3 analogs; antigestagens ⁇ e.g., mifepristone, onapristone), or antiandrogens ⁇ e.g., cyproterone acetate).
  • hormonal agonists e.g., hormonal antagonists
  • hyperthermia a procedure in which body tissue is exposed to high temperatures (up to 106°F.) is used. Heat may help shrink tumors by damaging cells or depriving them of substances they need to live.
  • Hyperthermia therapy can be local, regional, and whole-body hyperthermia, using external and internal heating devices. Hyperthermia is almost always used with other forms of therapy (e.g., radiation therapy, chemotherapy, and biological therapy) to try to increase their effectiveness.
  • Local hyperthermia refers to heat that is applied to a very small area, such as a tumor. The area may be heated externally with high-frequency waves aimed at a tumor from a device outside the body.
  • sterile probes may be used, including thin, heated wires or hollow tubes filled with warm water; implanted microwave antennae; and radiofrequency electrodes.
  • regional hyperthermia an organ or a limb is heated. Magnets and devices that produce high energy are placed over the region to be heated.
  • perfusion some of the patient's blood is removed, heated, and then pumped (perfused) into the region that is to be heated internally.
  • Whole- body heating is used to treat metastatic cancer that has spread throughout the body. It can be accomplished using warm-water blankets, hot wax, inductive coils (like those in electric blankets), or thermal chambers (similar to large incubators). Hyperthermia does not cause any marked increase in radiation side effects or complications. Heat applied directly to the skin, however, can cause discomfort or even significant local pain in about half the patients treated. It can also cause blisters, which generally heal rapidly.
  • photodynamic therapy also called PDT, photoradiation therapy, phototherapy, or photochemotherapy
  • PDT photoradiation therapy
  • phototherapy phototherapy
  • photochemotherapy is used for the treatment of some types of cancer. It is based on the discovery that certain chemicals known as photosensitizing agents can kill one-celled organisms when the organisms are exposed to a particular type of light.
  • PDT destroys cancer cells through the use of a fixed-frequency laser light in combination with a photosensitizing agent.
  • the photosensitizing agent is injected into the bloodstream and absorbed by cells all over the body. The agent remains in cancer cells for a longer time than it does in normal cells.
  • the photosensitizing agent absorbs the light and produces an active form of oxygen that destroys the treated cancer cells.
  • the laser light used in PDT can be directed through a fiberoptic (a very thin glass strand).
  • the fiber-optic is placed close to the cancer to deliver the proper amount of light.
  • the fiber-optic can be directed through a bronchoscope into the lungs for the treatment of lung cancer or through an endoscope into the esophagus for the treatment of esophageal cancer.
  • An advantage of PDT is that it causes minimal damage to healthy tissue.
  • PDT is mainly used to treat tumors on or just under the skin or on the lining of internal organs.
  • Photodynamic therapy makes the skin and eyes sensitive to light for 6 weeks or more after treatment. Patients are advised to avoid direct sunlight and bright indoor light for at least 6 weeks. If patients must go outdoors, they need to wear protective clothing, including sunglasses. Other temporary side effects of PDT are related to the treatment of specific areas and can include coughing, trouble swallowing, abdominal pain, and painful breathing or shortness of breath.
  • FDA U.S. Food and Drug Administration
  • a photosensitizing agent called porfimer sodium, or Photofrin®, to relieve symptoms of esophageal cancer that is causing an obstruction and for esophageal cancer that cannot be satisfactorily treated with lasers alone.
  • laser therapy is used to harness high-intensity light to destroy cancer cells.
  • This technique is often used to relieve symptoms of cancer such as bleeding or obstruction, especially when the cancer cannot be cured by other treatments. It may also be used to treat cancer by shrinking or destroying tumors.
  • the term "laser” stands for light amplification by stimulated emission of radiation. Ordinary light, such as that from a light bulb, has many wavelengths and spreads in all directions. Laser light, on the other hand, has a specific wavelength and is focused in a narrow beam. This type of high- intensity light contains a lot of energy. Lasers are very powerful and may be used to cut through steel or to shape diamonds.
  • CO2 laser Carbon dioxide
  • This type of laser can remove thin layers from the skin's surface without penetrating the deeper layers. This technique is particularly useful in treating tumors that have not spread deep into the skin and certain precancerous conditions.
  • the CO2 laser is also able to cut the skin. The laser is used in this way to remove skin cancers.
  • Neodymium:yttrium-aluminum-garnet (Nd: YAG) laser Light from this laser can penetrate deeper into tissue than light from the other types of lasers, and it can cause blood to clot quickly. It can be carried through optical fibers to less accessible parts of the body. This type of laser is sometimes used to treat throat cancers.
  • Argon laser This laser can pass through only superficial layers of tissue and is therefore useful in dermatology and in eye surgery. It also is used with light-sensitive dyes to treat tumors in a procedure known as photodynamic therapy (PDT). Lasers have several advantages over standard surgical tools, including: Lasers are more precise than scalpels. Tissue near an incision is protected, since there is little contact with surrounding skin or other tissue.
  • Lasers sterilizes the surgery site, thus reducing the risk of infection. Less operating time may be needed because the precision of the laser allows for a smaller incision. Healing time is often shortened; since laser heat seals blood vessels, there is less bleeding, swelling, or scarring. Laser surgery may be less complicated. For example, with fiber optics, laser light can be directed to parts of the body without making a large incision. More procedures may be done on an outpatient basis. Lasers can be used in two ways to treat cancer: by shrinking or destroying a tumor with heat, or by activating a chemical—known as a photosensitizing agent— that destroys cancer cells.
  • C0 2 and Nd:YAG lasers are used to shrink or destroy tumors. They may be used with endoscopes, tubes that allow physicians to see into certain areas of the body, such as the bladder. The light from some lasers can be transmitted through a flexible endoscope fitted with fiber optics. This allows physicians to see and work in parts of the body that could not otherwise be reached except by surgery and therefore allows very precise aiming of the laser beam. Lasers also may be used with low-power microscopes, giving the doctor a clear view of the site being treated.
  • Lasers Used with other instruments, laser systems can produce a cutting area as small as 200 microns in diameter— less than the width of a very fine thread.
  • Lasers are used to treat many types of cancer.
  • Laser surgery is a standard treatment for certain stages of glottis (vocal cord), cervical, skin, lung, vaginal, vulvar, and penile cancers.
  • laser surgery is also used to help relieve symptoms caused by cancer (palliative care).
  • lasers may be used to shrink or destroy a tumor that is blocking a patient's trachea (windpipe), making it easier to breathe. It is also sometimes used for palliation in colorectal and anal cancer.
  • LITT Laser- induced interstitial thermotherapy
  • hyperthermia a cancer treatment
  • heat may help shrink tumors by damaging cells or depriving them of substances they need to live.
  • lasers are directed to interstitial areas (areas between organs) in the body. The laser light then raises the temperature of the tumor, which damages or destroys cancer cells.
  • the duration and/or dose of treatment with therapies may vary according to the particular therapeutic agent or combination thereof.
  • An appropriate treatment time for a particular cancer therapeutic agent will be appreciated by the skilled artisan.
  • the present invention contemplates the continued assessment of optimal treatment schedules for each cancer therapeutic agent, where the phenotype of the cancer of the subject as determined by the methods of the present invention is a factor in determining optimal treatment doses and schedules.
  • any means for the introduction of a polynucleotide into mammals, human or non- human, or cells thereof may be adapted to the practice of this invention for the delivery of the various constructs of the present invention into the intended recipient.
  • the DNA constructs are delivered to cells by transfection, i.e., by delivery of "naked" DNA or in a complex with a colloidal dispersion system.
  • a colloidal system includes macromolecule complexes, nanocapsules,
  • a plasmid containing a transgene bearing the desired DNA constructs may first be experimentally optimized for expression (e.g., inclusion of an intron in the 5' untranslated region and elimination of unnecessary sequences (Feigner, et al. , Ann NY Acad Sci 126-139, 1995). Formulation of DNA, e.g.
  • lipid or liposome materials may then be effected using known methods and materials and delivered to the recipient mammal. See, e.g., Canonico et al, Am J Respir Cell Mol Biol 10:24-29, 1994; Tsan et al, Am J Physiol 268; Alton et al, Nat Genet. 5:135-142, 1993 and U.S. patent No. 5,679,647 by Carson et al.
  • the targeting of liposomes can be classified based on anatomical and mechanistic factors.
  • Anatomical classification is based on the level of selectivity, for example, organ- specific, cell-specific, and organelle-specific.
  • Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs, which contain sinusoidal capillaries.
  • RES reticulo-endothelial system
  • Active targeting involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.
  • a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein
  • the surface of the targeted delivery system may be modified in a variety of ways.
  • lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer.
  • Various linking groups can be used for joining the lipid chains to the targeting ligand. Naked DNA or DNA associated with a delivery vehicle, e.g., liposomes, can be administered to several sites in a subject (see below).
  • Nucleic acids can be delivered in any desired vector. These include viral or non- viral vectors, including adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, and plasmid vectors. Exemplary types of viruses include HSV (herpes simplex virus), AAV (adeno associated virus), HIV (human immunodeficiency virus), BIV (bovine immunodeficiency virus), and MLV (murine leukemia virus). Nucleic acids can be administered in any desired format that provides sufficiently efficient delivery levels, including in virus particles, in liposomes, in nanoparticles, and complexed to polymers.
  • the nucleic acids encoding a protein or nucleic acid of interest may be in a plasmid or viral vector, or other vector as is known in the art. Such vectors are well-known and any can be selected for a particular application.
  • the gene delivery vehicle comprises a promoter and a demethylase coding sequence.
  • Preferred promoters are tissue-specific promoters and promoters which are activated by cellular proliferation, such as the thymidine kinase and thymidylate synthase promoters.
  • Other preferred promoters include promoters which are activatable by infection with a virus, such as the a- and ⁇ -interferon promoters, and promoters which are activatable by a hormone, such as estrogen.
  • Other promoters which can be used include the Moloney virus LTR, the CMV promoter, and the mouse albumin promoter.
  • a promoter may be constitutive or inducible.
  • naked polynucleotide molecules are used as gene delivery vehicles, as described in WO 90/11092 and U.S.
  • Such gene delivery vehicles can be either growth factor DNA or RNA and, in certain embodiments, are linked to killed adenovirus. Curiel et al, Hum. Gene. Ther. 3:147-154, 1992.
  • Other vehicles which can optionally be used include DNA-ligand (Wu et al. , J. Biol. Chem.
  • a gene delivery vehicle can optionally comprise viral sequences such as a viral origin of replication or packaging signal. These viral sequences can be selected from viruses such as astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, retrovirus, togavirus or adenovirus.
  • the growth factor gene delivery vehicle is a recombinant retroviral vector. Recombinant retroviruses and various uses thereof have been described in numerous references including, for example, Mann et al, Cell 33:153, 1983, Cane and Mulligan, Proc. Nat'l. Acad. Sci.
  • Herpes virus e.g., Herpes Simplex Virus (U.S. Patent No. 5,631,236 by Woo et al, issued May 20, 1997 and WO 00/08191 by Neurovex), vaccinia virus (Ridgeway (1988) Ridgeway, "Mammalian expression vectors," In: Rodriguez R L, Denhardt D T, ed.
  • Vectors A survey of molecular cloning vectors and their uses.
  • viruses include an alphavirus, a poxivirus, an arena virus, a vaccinia virus, a polio virus, and the like. They offer several attractive features for various mammalian cells (Friedmann (1989) Science, 244:1275-1281;
  • target DNA in the genome can be manipulated using well- known methods in the art.
  • the target DNA in the genome can be manipulated by deletion, insertion, and/or mutation are retroviral insertion, artificial chromosome techniques, gene insertion, random insertion with tissue specific promoters, gene targeting, transposable elements and/or any other method for introducing foreign DNA or producing modified DNA/modified nuclear DNA.
  • Other modification techniques include deleting DNA sequences from a genome and/or altering nuclear DNA sequences. Nuclear DNA sequences, for example, may be altered by site-directed mutagenesis.
  • biomarker polypeptides, and fragments thereof can be administered to subjects.
  • fusion proteins can be constructed and administered which have enhanced biological properties.
  • biomarker polypeptides, and fragment thereof can be modified according to well-known
  • pharmacological methods in the art ⁇ e.g., pegylation, glycosylation, oligomerization, etc.) in order to further enhance desirable biological activities, such as increased bioavailability and decreased proteolytic degradation.
  • Clinical efficacy can be measured by any method known in the art.
  • the response to a therapy such as inhibitors of one or more biomarkers in Table 1 ⁇ e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and immunotherapy combination treatment, relates to any response of the cancer, e.g., a tumor, to the therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy.
  • Tumor response may be assessed in a neoadjuvant or adjuvant situation where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation and the cellularity of a tumor can be estimated histologically and compared to the cellularity of a tumor biopsy taken before initiation of treatment.
  • Response may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection.
  • Response may be recorded in a quantitative fashion like percentage change in tumor volume or cellularity or using a semi-quantitative scoring system such as residual cancer burden (Symmans et al., J. Clin. Oncol.
  • cCR pathological complete response
  • cPR clinical partial remission
  • cSD clinical stable disease
  • cPD clinical progressive disease
  • Assessment of tumor response may be performed early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months.
  • a typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed.
  • clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR).
  • CBR clinical benefit rate
  • the clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy.
  • the CBR for a particular anti-immune checkpoint therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more.
  • Additional criteria for evaluating the response to immunotherapies are related to "survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); "recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith).
  • the length of said survival may be calculated by reference to a defined start point ⁇ e.g., time of diagnosis or start of treatment) and end point ⁇ e.g., death, recurrence or metastasis).
  • criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.
  • a particular anticancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any immunotherapy, such as anti-immune checkpoint therapy.
  • any immunotherapy such as anti-immune checkpoint therapy.
  • biomarker measurement may be pathologic response to therapy given in the neoadjuvant setting.
  • outcome measures such as overall survival and disease-free survival can be monitored over a period of time for subjects following immunotherapies for whom biomarker measurement values are known.
  • the same doses of immunotherapy agents, if any, are administered to each subject.
  • the doses administered are standard doses known in the art for those agents used in immunotherapies.
  • the period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months.
  • Biomarker measurement threshold values that correlate to outcome of an immunotherapy can be determined using methods such as those described in the Examples section. 5. Further Uses and Methods of the Present Invention
  • compositions described herein can be used in a variety of diagnostic, prognostic, and therapeutic applications.
  • any method described herein such as a diagnostic method, prognostic method, therapeutic method, or combination thereof, all steps of the method can be performed by a single actor or, alternatively, by more than one actor.
  • diagnosis can be performed directly by the actor providing therapeutic treatment.
  • a person providing a therapeutic agent can request that a diagnostic assay be performed.
  • the diagnostician and/or the therapeutic interventionist can interpret the diagnostic assay results to determine a therapeutic strategy.
  • such alternative processes can apply to other assays, such as prognostic assays.
  • the assays provide a method for identifying whether a cancer is likely to respond to inhibitor of one or more biomarker s in Table 1 (e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and immunotherapy combination treatments, such as in a human by using a xenograft animal model assay, and/or whether an agent can inhibit the growth of or kill a cancer cell that is unlikely to respond to such inhibitors and immunotherapy combination treatments.
  • one or more biomarker s in Table 1 e.g., one or more kinase signaling inhibitors, such as PTPN2 and SOCS1
  • immunotherapy combination treatments such as in a human by using a xenograft animal model assay, and/or whether an agent can inhibit the growth of or kill a cancer cell that is unlikely to respond to such inhibitors and immunotherapy combination treatments.
  • the present invention relates to assays for screening test agents which bind to, or modulate the biological activity of, at least one biomarker described herein (e.g., in the tables, figures, examples, or otherwise in the specification).
  • a method for identifying such an agent entails determining the ability of the agent to modulate, e.g. inhibit, the at least one biomarker described herein.
  • an assay is a cell-free or cell-based assay, comprising contacting at least one biomarker described herein, with a test agent, and determining the ability of the test agent to modulate (e.g., inhibit) the enzymatic activity of the biomarker, such as by measuring direct binding of substrates or by measuring indirect parameters as described below.
  • biomarker protein in a direct binding assay, can be coupled with a radioisotope or enzymatic label such that binding can be determined by detecting the labeled protein or molecule in a complex.
  • the targets can be labeled with 125 1, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting.
  • the targets can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
  • Determining the interaction between biomarker and substrate can also be accomplished using standard binding or enzymatic analysis assays.
  • Binding of a test agent to a target can be accomplished in any vessel suitable for containing the reactants.
  • vessels include microtiter plates, test tubes, and micro-centrifuge tubes.
  • Immobilized forms of the antibodies described herein can also include antibodies bound to a solid phase like a porous, microporous (with an average pore diameter less than about one micron) or macroporous (with an average pore diameter of more than about 10 microns) material, such as a membrane, cellulose, nitrocellulose, or glass fibers; a bead, such as that made of agarose or polyacrylamide or latex; or a surface of a dish, plate, or well, such as one made of polystyrene.
  • a solid phase like a porous, microporous (with an average pore diameter less than about one micron) or macroporous (with an average pore diameter of more than about 10 microns) material, such as a membrane, cellulose, nitrocellulose, or glass fibers;
  • determining the ability of the agent to modulate the interaction between the biomarker and a substrate or a biomarker and its natural binding partner can be accomplished by determining the ability of the test agent to modulate the activity of a polypeptide or other product that functions downstream or upstream of its position within the signaling pathway (e.g., feedback loops).
  • feedback loops are well- known in the art (see, for example, Chen and Guillemin (2009) Int. J. Tryptophan Res. 2:1- 19).
  • the present invention further pertains to novel agents identified by the above- described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein, such as in an appropriate animal model.
  • an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
  • an antibody identified as described herein can be used in an animal model to determine the mechanism of action of such an agent
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically.
  • diagnostic assays for determining the amount and/or activity level of a biomarker described herein in the context of a biological sample (e.g., blood, serum, cells, or tissue) to thereby determine whether an individual afflicted with a cancer is likely to respond to inhibitors of one or more biomarkers in Table 1 (e.g. , one or more kinase signaling inhibitors, such as PTPN2 and SOCS1) and immunotherapy combination treatments, such as in a cancer.
  • a biological sample e.g., blood, serum, cells, or tissue
  • kinase signaling inhibitors such as PTPN2 and SOCS1
  • immunotherapy combination treatments such as in a cancer.
  • Such assays can be used for prognostic or predictive purpose alone, or can be coupled with a therapeutic intervention to thereby prophylactically treat an individual prior to the onset or after recurrence of a disorder characterized by or associated with biomarker polypeptide, nucleic acid expression or activity.
  • biomarker polypeptide nucleic acid expression or activity.
  • any method can use one or more (e.g. , combinations) of biomarkers described herein, such as those in the tables, figures, examples, and otherwise described in the specification.
  • Another aspect of the present invention pertains to monitoring the influence of agents (e.g., drugs, compounds, and small nucleic acid-based molecules) on the expression or activity of a biomarker described herein.
  • agents e.g., drugs, compounds, and small nucleic acid-based molecules
  • a computer system can also store and manipulate data generated by the methods of the present invention which comprises a plurality of biomarker signal changes/profiles which can be used by a computer system in implementing the methods of this invention.
  • a computer system receives biomarker expression data; (ii) stores the data; and (iii) compares the data in any number of ways described herein (e.g., analysis relative to appropriate controls) to determine the state of informative biomarkers from cancerous or pre-cancerous tissue.
  • a computer system (i) compares the determined expression biomarker level to a threshold value; and (ii) outputs an indication of whether said biomarker level is significantly modulated (e.g., above or below) the threshold value, or a phenotype based on said indication.
  • such computer systems are also considered part of the present invention.
  • Numerous types of computer systems can be used to implement the analytic methods of this invention according to knowledge possessed by a skilled artisan in the bioinformatics and/or computer arts.
  • Several software components can be loaded into memory during operation of such a computer system.
  • the software components can comprise both software components that are standard in the art and components that are special to the present invention (e.g., dCHIP software described in Lin et al. (2004)
  • the methods of the present invention can also be programmed or modeled in mathematical software packages that allow symbolic entry of equations and high-level specification of processing, including specific algorithms to be used, thereby freeing a user of the need to procedurally program individual equations and algorithms.
  • Such packages include, e.g., Matlab from Mathworks (Natick, Mass.), Mathematica from Wolfram

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Urology & Nephrology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne, en partie, des méthodes de traitement d'un cancer chez un sujet consistant à administrer au sujet une quantité thérapeutiquement efficace d'un agent qui inhibe un ou plusieurs biomarqueurs du tableau 1 en association avec une immunothérapie.
PCT/US2018/017379 2017-02-08 2018-02-08 Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse WO2018148378A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762456432P 2017-02-08 2017-02-08
US62/456,432 2017-02-08
US201762532587P 2017-07-14 2017-07-14
US62/532,587 2017-07-14

Publications (1)

Publication Number Publication Date
WO2018148378A1 true WO2018148378A1 (fr) 2018-08-16

Family

ID=63107779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/017379 WO2018148378A1 (fr) 2017-02-08 2018-02-08 Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse

Country Status (1)

Country Link
WO (1) WO2018148378A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146563A1 (fr) * 2019-01-10 2020-07-16 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs tels que spp pour augmenter l'immunité tumorale et améliorer l'efficacité d'immunothérapie anticancéreuse
WO2020163365A3 (fr) * 2019-02-04 2020-09-24 KSQ Therapeutics, Inc. Cibles géniques combinées pour immunothérapie améliorée
US10844119B2 (en) 2016-10-11 2020-11-24 Agenus Inc. Anti-LAG-3 antibodies and methods of use thereof
US10851073B2 (en) 2019-03-14 2020-12-01 Abbvie Inc. Protein tyrosine phosphatase inhibitors and methods of use thereof
WO2021034444A1 (fr) * 2019-08-22 2021-02-25 Nantomics, Llc Thérapies ciblées à entraînement génomique
US10954202B2 (en) 2018-06-21 2021-03-23 Abbvie Inc. Protein tyrosine phosphatase inhibitors and methods of use thereof
US11111493B2 (en) 2018-03-15 2021-09-07 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11248213B2 (en) 2017-08-07 2022-02-15 The Regents Of The University Of California Platform for generating safe cell therapeutics
US11261428B2 (en) 2018-03-15 2022-03-01 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
WO2022053065A1 (fr) * 2020-09-14 2022-03-17 信达生物制药(苏州)有限公司 Biomarqueur utilisé pour prédire ou évaluer des patients atteints d'un cancer du poumon, procédé de détection et application
US11332713B2 (en) 2016-11-16 2022-05-17 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
CN115003315A (zh) * 2019-12-04 2022-09-02 莫纳什大学 使用ptp1b和ptpn2抑制剂激活细胞毒性白细胞的方法
CN119064582A (zh) * 2024-09-02 2024-12-03 南方医科大学南方医院 RIPK1 O-GlcNAc糖基化抑制剂在制备增强肾细胞癌舒尼替尼敏感性药物中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534056B1 (en) * 1998-12-11 2003-03-18 Mcgill University Therapeutic and diagnostic uses of protein tyrosine phosphatase TC-PTP
US20050074878A1 (en) * 2001-05-18 2005-04-07 Cowsert Lex M. Antisense modulation of ptpn2 expression
US20130202577A1 (en) * 2010-02-03 2013-08-08 Monash University Diagnostic and prognostic assay for breast cancer
WO2015188228A1 (fr) * 2014-06-10 2015-12-17 Monash University Procédé de production de leucocytes par utilisation de l'inhibition du ptpn2 pour transfert adoptif de cellules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534056B1 (en) * 1998-12-11 2003-03-18 Mcgill University Therapeutic and diagnostic uses of protein tyrosine phosphatase TC-PTP
US20050074878A1 (en) * 2001-05-18 2005-04-07 Cowsert Lex M. Antisense modulation of ptpn2 expression
US20130202577A1 (en) * 2010-02-03 2013-08-08 Monash University Diagnostic and prognostic assay for breast cancer
WO2015188228A1 (fr) * 2014-06-10 2015-12-17 Monash University Procédé de production de leucocytes par utilisation de l'inhibition du ptpn2 pour transfert adoptif de cellules

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882908B2 (en) 2016-10-11 2021-01-05 Agenus Inc. Anti-LAG-3 antibodies and methods of use thereof
US12187795B2 (en) 2016-10-11 2025-01-07 Agenus Inc. Anti-LAG-3 antibodies and methods of use thereof
US10844119B2 (en) 2016-10-11 2020-11-24 Agenus Inc. Anti-LAG-3 antibodies and methods of use thereof
US11993651B2 (en) 2016-10-11 2024-05-28 Agenus Inc. Anti-lag-3 antibodies and methods of use thereof
US11332713B2 (en) 2016-11-16 2022-05-17 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11248213B2 (en) 2017-08-07 2022-02-15 The Regents Of The University Of California Platform for generating safe cell therapeutics
US12264336B2 (en) 2017-08-07 2025-04-01 The Regents Of The University Of California Platform for generating safe cell therapeutics
US12049644B2 (en) 2017-08-07 2024-07-30 The Regents Of The University Of California Platform for generating safe cell therapeutics
US11674121B2 (en) 2017-08-07 2023-06-13 The Regents Of The University Of California Platform for generating safe cell therapeutics
US11261428B2 (en) 2018-03-15 2022-03-01 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US12123021B2 (en) 2018-03-15 2024-10-22 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US12280111B2 (en) 2018-03-15 2025-04-22 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11421228B2 (en) 2018-03-15 2022-08-23 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11459544B2 (en) 2018-03-15 2022-10-04 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11608500B2 (en) 2018-03-15 2023-03-21 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US11111493B2 (en) 2018-03-15 2021-09-07 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US12084682B2 (en) 2018-03-15 2024-09-10 KSQ Therapeutics, Inc. Gene-regulating compositions and methods for improved immunotherapy
US10954202B2 (en) 2018-06-21 2021-03-23 Abbvie Inc. Protein tyrosine phosphatase inhibitors and methods of use thereof
WO2020146563A1 (fr) * 2019-01-10 2020-07-16 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs tels que spp pour augmenter l'immunité tumorale et améliorer l'efficacité d'immunothérapie anticancéreuse
US12050219B2 (en) 2019-01-10 2024-07-30 Dana-Farber Cancer Institute, Inc. Modulating biomarkers such as SPP to increase tumor immunity and improve the efficacy of cancer immunotherapy
CN113396216A (zh) * 2019-02-04 2021-09-14 Ksq治疗公司 用于改进的免疫疗法的组合基因靶标
WO2020163365A3 (fr) * 2019-02-04 2020-09-24 KSQ Therapeutics, Inc. Cibles géniques combinées pour immunothérapie améliorée
US10851073B2 (en) 2019-03-14 2020-12-01 Abbvie Inc. Protein tyrosine phosphatase inhibitors and methods of use thereof
WO2021034444A1 (fr) * 2019-08-22 2021-02-25 Nantomics, Llc Thérapies ciblées à entraînement génomique
CN115003315A (zh) * 2019-12-04 2022-09-02 莫纳什大学 使用ptp1b和ptpn2抑制剂激活细胞毒性白细胞的方法
WO2022053065A1 (fr) * 2020-09-14 2022-03-17 信达生物制药(苏州)有限公司 Biomarqueur utilisé pour prédire ou évaluer des patients atteints d'un cancer du poumon, procédé de détection et application
CN119064582A (zh) * 2024-09-02 2024-12-03 南方医科大学南方医院 RIPK1 O-GlcNAc糖基化抑制剂在制备增强肾细胞癌舒尼替尼敏感性药物中的应用

Similar Documents

Publication Publication Date Title
US11873486B2 (en) Modulating dsRNA editing, sensing, and metabolism to increase tumor immunity and improve the efficacy of cancer immunotherapy and/or modulators of intratumoral interferon
WO2018148378A1 (fr) Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse
US11740242B2 (en) Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
US12005073B2 (en) Methods for modulating regulatory T cells, regulatory b cells, and immune responses using modulators of the april-taci interaction
US20210267991A1 (en) Methods for treating pten deficient epithelial cancers using a combination of anti-pi3kbeta and anti-immune checkpoint agents
WO2021247540A1 (fr) Méthodes permettant de moduler l'expression du cmh-i et leurs utilisations en immunothérapie
EP4093513A1 (fr) Utilisations de biomarqueurs pour améliorer une immunothérapie
US20200300859A1 (en) Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
US20200108066A1 (en) Methods for modulating regulatory t cells and immune responses using cdk4/6 inhibitors
US20200149042A1 (en) Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
US12050219B2 (en) Modulating biomarkers such as SPP to increase tumor immunity and improve the efficacy of cancer immunotherapy
AU2019227641B2 (en) Methods for treating cancer using combinations of anti-BTNL2 and immune checkpoint blockade agents
US12109266B2 (en) Modulating gabarap to modulate immunogenic cell death
US11852631B2 (en) Biomarkers predictive of anti-immune checkpoint response
US12227548B2 (en) Use of IRE1α-XBP1 signaling pathway biomarkers for modulating immune responses
US20220289854A1 (en) Methods for treating cancer using combinations of anti-cx3cr1 and immune checkpoint blockade agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751117

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载