+

WO2018147652A1 - Central tension line for high-capacity power transmission cable and method for manufacturing same - Google Patents

Central tension line for high-capacity power transmission cable and method for manufacturing same Download PDF

Info

Publication number
WO2018147652A1
WO2018147652A1 PCT/KR2018/001687 KR2018001687W WO2018147652A1 WO 2018147652 A1 WO2018147652 A1 WO 2018147652A1 KR 2018001687 W KR2018001687 W KR 2018001687W WO 2018147652 A1 WO2018147652 A1 WO 2018147652A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
resin
basalt
center
fiber
Prior art date
Application number
PCT/KR2018/001687
Other languages
French (fr)
Korean (ko)
Inventor
허석봉
박재성
강부민
박재우
Original Assignee
일진복합소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진복합소재 주식회사 filed Critical 일진복합소재 주식회사
Publication of WO2018147652A1 publication Critical patent/WO2018147652A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/025Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of helicoidally wound wire-conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/024Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of braided metal wire

Definitions

  • the present invention relates to a central tensile line that can be diagnosed soundness, and more particularly to a central tensile line with improved structural integrity and a method of manufacturing the same.
  • Such electrical cables include a central stranded steel core wound around a stranded aluminum conductor forming the core of the cable. These cables have been in use for decades without major changes. However, these cables have been vulnerable to bending under certain loads and to corrosion under certain circumstances.
  • the present invention provides a center tension line having a structure capable of making the outer surface of the center tension line as uniform as possible and increasing the interlayer bonding force, and a power transmission cable including the same.
  • the center tensile line according to the present invention is a basalt fiber (basalt fiber) or twisted basalt fiber bundles are formed twisted structure in a helical shape, the basalt fibers are a core core bound by the first resin; A center core protective layer formed of the first resin and formed outside the center core such that the basalt fibers included in the center core are not exposed; An intermediate core formed to surround the outside of the center core, wherein the carbon fiber bundles in which carbon fibers or twist structures are formed form a twist structure, and the carbon fibers bound by a second resin; And bundles of the glass fibers and the basalt fibers formed to surround the outer side of the intermediate core, wherein the bundles of the glass fibers and the basalt fibers are formed of any one of the glass fibers and the basalt fibers, and the twisted structure is formed in a helical shape.
  • the fibers include an outer core bound by a third resin, wherein the first resin of the central core protective layer is formed with the intermediate core in a state in which at least
  • center core protective layer may be integrally formed with the first resin of the center core.
  • the first resin may be formed of a thermosetting resin.
  • the second resin and the third resin may be any one of vinyl ester, epoxy, epoxy / acrylate, phenolic, urethane, and thermosetting resin.
  • the intermediate core 200 may be formed in a plurality of layer structures.
  • the method of producing a central tensile line comprises the steps of: impregnating any one of the basalt fibers and the basalt fiber bundle forming the twist structure in the first resin; Forming a twisted structure of the impregnated basalt fiber or helical shape into a helical shape and hardening to form a central core; Forming an intermediate core by winding a carbon fiber impregnated in the second resin in a helical shape while heating a portion of the outer layer of the cured central core in a helical shape; And winding one of the glass fibers and the basalt fibers impregnated into the third resin in a helical shape to form an outer core.
  • the first resin may be a thermosetting resin.
  • the forming of the central core may include a step of compressing the diameter within a predetermined standard through a drawing die in a state where the twist structure is formed in the helical shape.
  • the step of removing a predetermined amount of the first resin through the drawing die may be such that the basalt fibers contained in the central core is not exposed.
  • the center tensile line according to the present invention forms a center core using basalt fibers, and forms a middle core and an outer core in a state in which the surface thereof is partially melted, thereby making the surface of the center tensile line uniform and interlaminar structural stability. Can be improved.
  • FIG. 1 is a partial cutaway perspective view showing a state of a power transmission cable according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a state of a overhead transmission line as an example of a transmission cable.
  • FIG 3 is a cross-sectional view illustrating a state of a center tensile line according to an exemplary embodiment.
  • FIG. 4 is a perspective view showing the appearance of basalt fibers according to one embodiment forming a central core.
  • FIG. 5 is a schematic diagram illustrating a process of forming a central core according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a step of forming a center tensile line of the present invention.
  • FIGS. 1 and 2 A high capacity power transmission cable (enhanced power transmission cable) according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • 1 is a cutaway perspective view schematically illustrating a high capacity power transmission cable according to an embodiment of the present invention
  • FIG. 2 is a schematic view schematically showing a state in which a high capacity power transmission cable according to an embodiment of the present invention is installed.
  • the high capacity power transmission cable 1 includes aluminum conductors 1a and 1b and a center tension line 10 forming a core inside.
  • this type of high capacity power transmission cable is known as an aluminum conductor composite core (ACCC), a reinforcement cable, a stranded overhead transmission and a wiring conductor.
  • ACCC aluminum conductor composite core
  • reinforcement cable a reinforcement cable
  • stranded overhead transmission a wiring conductor.
  • wiring conductor typically, such conductors are used to transmit and wire high power and form, for example, the backbone of a national grid.
  • the high-capacity power transmission cable 1 includes aluminum strands having a trapezoidal shape in a plurality of cross-sections spirally surrounding the central tensile line.
  • the aluminum conductor first layer 1b is further surrounded by the aluminum conductor second layer 1a having a trapezoidal cross section.
  • the aluminum conductors 1a and 1b function as passages for transmitting power.
  • the outer side of the aluminum conductors 1a and 1b may further include an insulating first protective layer (not shown) as a coating for protecting against corrosion or the like caused by an external environment.
  • the first protective layer may be formed using an epoxy resin or the like.
  • the center tensile line 10 included in the high capacity power transmission cable 1 according to the present embodiment is known as a synthetic core, etc., and serves to reinforce the tensile force of the high capacity power transmission cable 1.
  • the center tensile line 10 according to the present embodiment includes an outer core 100, an intermediate core 200, and a central core 300.
  • the center core protective layer 390 is formed outside the center core 200.
  • center tensile line 10 will be described in detail later with reference to the drawings.
  • the high capacity power transmission cable 1 may be installed in the form of overhead transmission lines connected between electric poles and power transmission towers 2, and transmits high voltage and high capacity power.
  • the transmission voltage of this high capacity power transmission cable 1 is typically in the range of 2,400 V to 765,000 V, but is not limited thereto.
  • the high-capacity power transmission cable 1 is formed to be flexible and flexible, and is transported in a wound state using a drum for transport and installation, and installation work is performed.
  • FIGS. 3 and 4 are schematic cross-sectional views showing a state of a central tensile line according to an embodiment.
  • the center tensile line 10 includes an outer core 100, an intermediate core 200, and a central core 300.
  • the central core 300 is formed using basalt fibers and a resin.
  • Basalt fibers are gray-brown fibers made of basalt and melt at about 1400 ° C. Limestone may be added as needed.
  • the molten basalt is made of fibers by centrifugal processes and can be produced by blowing through a fine nozzle.
  • Basalt fiber is 50% silicon dioxide, 12% aluminum oxide, 11% calcium oxide, 10% magnesium oxide, 7% iron (II) oxide, 5% alkali metal oxides Na2O and K2O, 3% titanium oxide (IV) and 2% different It has an average chemical composition of oxide.
  • the resin forming the core core 300 is preferably formed of a thermosetting material.
  • the center core 300 may be manufactured by forming a twist structure in a helical shape from a basalt fiber 301 impregnated in resin or a bundle of basalt fibers 301 in which a twist structure is formed.
  • the central core protective layer 390 is formed on the outside of the central core 300 so that the basalt fibers included in the central core 300 are not exposed to the outside.
  • the central core protective layer 390 may be at least one of resins provided to bind the basalt fibers included in the central core 300, and may be excessively included in the die after forming the twisted structure of the impregnated basalt fibers. In the process of removing the resin, it is preferable to form a predetermined amount to remain on the surface of the central core (300). That is, through the above method, the central core protective layer 390 and the resin layer in the central core 300 may be integrally formed.
  • the center core protective layer 390 is formed in a state in which at least a portion of the resin layer forming the intermediate core 200 is molten.
  • the resin for forming the core core protective layer 390 uses a thermosetting material. The process for forming such a structure will be described later.
  • basalt is one of the next generation fiber materials in terms of production technology and quality compared to glass.
  • the melting point of basalt reaches about 1450, but depends on chemical composition and is higher than 300 compared to E-glass fiber.
  • the characteristics of basalt fibers are difficult to generalize, and there are many areas that have not yet been identified because they cannot be specified / objectived.
  • Basalt is a natural rock. The composition of the rock depends on the raw stone, and the chemical composition of the rock varies greatly.
  • the high tensile strength and Young's modulus are due to the high content of aluminum oxide and silicon dioxide, and the excellent heat resistance and thermal conductivity are due to the high iron oxide component.
  • the higher the content of the metal oxide the better the acid resistance
  • the higher the content of the silicon dioxide the poor the alkali resistance.
  • basalt fiber is cheaper in raw materials and basalt fiber can be used as an alternative material for E-glass in terms of product quality.
  • the intermediate core 200 is provided to surround the outside of the central core 300.
  • the intermediate core 200 may be formed using carbon fiber and epoxy resin. That is, a plurality of carbon fiber bundles are used as a reinforcing member responsible for tensile force, and an epoxy resin is used to bind them.
  • the carbon fiber may be provided on the outer circumferential surface of the optical cable 305 in a helical shape.
  • epoxy resin vinyl ester, epoxy / acrylate, phenolic, urethane, thermosetting resin can be used.
  • the intermediate core 200 is preferably formed using a carbon fiber and an epoxy resin, but may be formed in a plurality of layer structures according to a manufacturing method. Each of the plurality of layers can be mixed with different materials, ie with different carbon fiber compositions or non-carbon fibers.
  • the outer core 100 is provided to surround the intermediate core 200.
  • the outer core 100 is formed of an insulating material.
  • the outer core 100 may be formed of glass fiber or basalt fiber.
  • the outer core 100 may be made of glass fiber or basalt fiber as described above, and may use an epoxy resin as a binding material.
  • a vinyl ester, an epoxy / acrylate, a phenolic, urethane, or a thermosetting resin may be used in place of or together with the epoxy resin.
  • the outer core 100 and the intermediate core 200 formed of glass fiber or basalt fiber may be provided by winding in a helical shape.
  • the protective layer may also include an outer core protective layer (not shown) surrounding the outer core 100.
  • the protective layer ie the protective coating, surrounds the outer core 100 and has a radial thickness.
  • the protective coating provides not only UV protection but also potential for surface resin corrosion protection and surface electrical tracking.
  • surface coatings may include fiber, paint, and polymer coatings of Reemay based (polyethylene terephthalate) such as HETROLAC, such as organic surfacing veils such as NEXUS or surface acrylic based coatings. .
  • FIG. 5 is a schematic view illustrating a method of forming a center core according to an embodiment.
  • a central core is first formed. First, the basalt fiber 301 is unwound from the bobbin, and the unwinded basalt fiber 301 is impregnated in the resin 302 in a molten state, and a twisted structure is formed and then hardened to form a central core 300.
  • the core core 300 may be formed by a drawing process.
  • the basalt fiber 301 unrolled from the bobbin may form an individual stranded structure, followed by a resin impregnation bath. It is impregnated to resin 302 of the molten state. Subsequently, the impregnated basalt fibers 301 are drawn together through a first die to compact together to form a predetermined specification. The first die also functions to remove resin that is excessively contained in the basalt fibers 301 in which the individual twist structures are formed. At this time, in the process of removing a predetermined amount of the first resin through the drawing die, the basalt fibers included in the core core 300 are surrounded by the resin, thereby preventing the basalt fibers from being exposed to the outside. ).
  • the twisted structures of the individual basalt fibers 301 stranded structures as described above are formed and then cured through the first curing unit to form the core core 300.
  • the formed core core 300 is wound on another drum and then provided to the process for the formation of the intermediate core and the outer core.
  • FIG. 6 is a schematic diagram illustrating a process of manufacturing a center tensile line according to an embodiment.
  • the center core 300 wound on a drum or the like in a state where the resin is cured is unwound and provided to manufacture a center tensile line.
  • the intermediate core is formed by impregnating the carbon fiber 101 having the twisted structure with an epoxy resin or the like in a resin impregnation tank, and then applying it to the outside of the central core 300. At this time, the central core 300 unwound from the drum allows at least a part of the surface to be molten through the heating part.
  • the interface between the center core 300 and the intermediate core is applied by applying the carbon fiber 101 or the twisted structure carbon fiber 102 impregnated with an epoxy resin or the like while at least a part of the outer surface of the center core 300 is molten. This should not be formed distinctly.
  • a physically mixed boundary layer may exist between the central core 300 and the intermediate core 200, or a physical / chemical interface may be formed according to a material. By forming a layer structure on such an interface, structural stability can be maintained even when the transmission cable is bent for external force, and stress can be prevented from being concentrated on any one layer.
  • the outer core can be formed in the same manner as the intermediate core.
  • the central tensile line is formed by impregnating the glass fiber 202 or the like having the twisted structure with the resin in the resin impregnation tank and then applying it to the outside of the intermediate core.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ropes Or Cables (AREA)

Abstract

The present invention relates to a central tension line and a method for manufacturing same. The central tension line, according to the present invention, comprises: a central core in which basalt fiber bundles having a twisted structure form the twisted structure in a helical shape, wherein the basalt fibers are bonded using a first resin; a central core protective layer formed using the first resin and formed on the outside of the central core so that the basalt fiber included in the central core is not exposed; a middle core in which carbon fiber or carbon fiber bundles have a twisted structure, wherein the carbon fibers are bonded using a second resin; and an external core formed to surround the outside of the middle core and in which glass fiber and/or the basalt fiber bundles or the glass fiber and the basalt fiber bundles having a twisted structure form the twisted structure in a helical shape, wherein the glass fibers and the basalt fibers are bonded using a third resin.

Description

고용량 송전케이블용 중심인장선 및 이를 제조하는 방법Center Tensile Line for High Capacity Transmission Cable and Method of Manufacturing the Same
본 발명은 건전성 진단이 가능한 중심인장선에 관한 것으로서, 보다 상세하게는 구조적 건정성이 향상된 중심인장선 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a central tensile line that can be diagnosed soundness, and more particularly to a central tensile line with improved structural integrity and a method of manufacturing the same.
송전 및 배선 케이블에 대한 수요는 전기에 대한 수요가 커짐에 따라 증가한다. 전력 수요가 증가함에 따라 전송 용량이 증가된 새로운 전기 케이블이 계속해서 설치되고 있다. The demand for power transmission and wiring cables increases as the demand for electricity increases. As electric power demands increase, new electrical cables with increased transmission capacity continue to be installed.
이러한 전기 케이블은 케이블의 코어를 형성하는 스트랜디드(stranded) 알루미늄 컨덕터에 감겨 있는 중심 스트랜디드 강철 코어를 포함한다. 이러한 케이블은 큰 변화없이 수십 년 동안 사용되어 왔다. 그러나 이러한 케이블은 특정한 하중 하에서 휨에 취약하고, 특정 환경하에서 부식에 취약한 문제가 있었다.Such electrical cables include a central stranded steel core wound around a stranded aluminum conductor forming the core of the cable. These cables have been in use for decades without major changes. However, these cables have been vulnerable to bending under certain loads and to corrosion under certain circumstances.
이러한 단점을 극복하고 전송용량을 증가시키기 위해, 다른 복합적 기반의 솔루션이 개발되어 왔다. 특정의 이러한 솔루션은 미국특허 제7,060,326; 미국공개특허 2004-0131834; 2004-0131851; 2005-0227067; 2005-0129942; 2005-0186410; 2006-0051580 등에 개시되어 있다. 이러한 솔루션은 스트랜디드 중심 강철 코어를 다른 코어 성분으로 대체하여 왔는데, 이 코어 성분은 매트릭스 내에 내장된 탄소 섬유 재료, 및 수지 내에 내장된 탄소가 아닌 섬유 재료로부터 형성된 외부 성분으로 형성되어 있다. 이 코어는 다양한 섬유를 인발 다이(pultrusion dies)를 통해 펄트루딩(pultruding)함으로써 형성된다.To overcome these shortcomings and increase transmission capacity, other complex based solutions have been developed. Certain such solutions are described in US Pat. No. 7,060,326; US Patent Publication 2004-0131834; 2004-0131851; 2005-0227067; 2005-0129942; 2005-0186410; 2006-0051580 and the like. This solution has replaced the stranded core steel core with another core component, which is formed from carbon fiber material embedded within the matrix and external components formed from non-carbon fiber materials embedded within the resin. This core is formed by pultruding various fibers through pultrusion dies.
이와 같이 외부 환경에 대응하여 고인장력을 구비하는 등의 다양한 고용량 전력 전송용 케이블들이 개발되어 왔다. 그러나, US 공개특허 7368162호와 같은 중심인장선의 경우 중심코어를 형성하는 과정에서 중심코어의 표면이 불균일한 문제가 발생하기 때문에 이와 같은 중심인장선을 포함하는 송전 케이블의 구조적 안정성이 좋지 못하고 이로 인하여 일부 구간에서 단선이 발생하는 우려가 있었다.As such, various high capacity power transmission cables have been developed such as having high tensile strength in response to external environments. However, in the case of the center tension line, such as US Patent Publication No. 7368162, since the surface of the center core is uneven in the process of forming the center core, the structural stability of the transmission cable including such a center tension line is not good, There was a fear of disconnection in some sections.
본 발명은 중심인장선의 외표면을 최대한 균일하게 하고 층간 결합력을 증가시킬 수 있는 구조를 구비하는 중심인장선 및 이를 포함하는 송전 케이블을 제공한다.The present invention provides a center tension line having a structure capable of making the outer surface of the center tension line as uniform as possible and increasing the interlayer bonding force, and a power transmission cable including the same.
본 발명에 따른 중심 인장선은 현무암 섬유(basalt fiber) 또는 꼬임구조가 형성된 현무암 섬유 다발들이 헬리컬 형상으로 꼬임구조를 형성하고, 상기 현무암 섬유들은 제1 수지에 의하여 바인딩 된 중심 코어; 상기 제1 수지로 형성되고, 상기 중심 코어에 포함되는 현무암 섬유가 노출되지 않도록 상기 중심 코어의 외측에 형성되는 중심코어 보호층; 상기 중심코어 외측을 둘러싸도록 형성되고, 탄소 섬유 또는 꼬임구조가 형성된 탄소 섬유 다발들이 꼬임구조를 형성하고, 상기 탄소 섬유들은 제2 수지에 의하여 바인딩 된 중간 코어; 및 상기 중간 코어의 외측을 둘러싸도록 형성되고, 유리 섬유 및 현무암 섬유 중 어느 하나의 섬유 또는 꼬임 구조가 형성된 상기 유리 섬유 및 현무암 섬유의 다발들이 헬리컬 형상으로 꼬임구조를 형성하고, 상기 유리 섬유 및 현무암 섬유들은 제3 수지에 의하여 바인딩 된 외부 코어;를 포함하고, 상기 중심 코어 보호층의 제1 수지는 외주면의 적어도 일부가 용융된 상태에서 상기 중간 코어가 형성된다.The center tensile line according to the present invention is a basalt fiber (basalt fiber) or twisted basalt fiber bundles are formed twisted structure in a helical shape, the basalt fibers are a core core bound by the first resin; A center core protective layer formed of the first resin and formed outside the center core such that the basalt fibers included in the center core are not exposed; An intermediate core formed to surround the outside of the center core, wherein the carbon fiber bundles in which carbon fibers or twist structures are formed form a twist structure, and the carbon fibers bound by a second resin; And bundles of the glass fibers and the basalt fibers formed to surround the outer side of the intermediate core, wherein the bundles of the glass fibers and the basalt fibers are formed of any one of the glass fibers and the basalt fibers, and the twisted structure is formed in a helical shape. The fibers include an outer core bound by a third resin, wherein the first resin of the central core protective layer is formed with the intermediate core in a state in which at least a portion of the outer circumferential surface is molten.
또한 상기 중심코어 보호층은 상기 중심 코어의 제1 수지에 일체로 형성될 수 있다.In addition, the center core protective layer may be integrally formed with the first resin of the center core.
또한 상기 제1 수지는 열경화성 수지로 형성될 수 있다.In addition, the first resin may be formed of a thermosetting resin.
또한 상기 제2 수지 및 제3 수지는 비닐 에스터, 에폭시, 에폭시/아크릴레이트, 페놀릭, 우레탄, 열경화성 수지 중 어느 하나일 수 있다.In addition, the second resin and the third resin may be any one of vinyl ester, epoxy, epoxy / acrylate, phenolic, urethane, and thermosetting resin.
또한 상기 중간 코어(200)는 복수의 층구조로 형성될 수 있다.In addition, the intermediate core 200 may be formed in a plurality of layer structures.
다른 한편, 본 발명에 따른 중심인장선 제조방법은 현무암 섬유 및 꼬임 구조를 형성하는 현무암 섬유 다발 중 어느 하나를 제1 수지에 함침시키는 단계; 함침 된 현무암 섬유 또는 헬리컬 형상의 꼬임구조를 헬리컬 형상으로 꼬임 구조를 형성하고 경화시켜 중심 코어를 형성하는 단계; 상기 경화된 중심 코어의 외층 일부를 가열한 상태에서 제2 수지에 함침된 탄소 섬유를 상기 중심 코어의 외측을 헬리컬 형상으로 감아 중간 코어를 형성하는 단계; 및 제3 수지에 함침된 유리 섬유 및 현무암 섬유 중 어느 하나를 상기 중간 코어의 외측을 헬리컬 형상으로 감아 외측 코어를 형성하는 단계;를 포함한다.On the other hand, the method of producing a central tensile line according to the present invention comprises the steps of: impregnating any one of the basalt fibers and the basalt fiber bundle forming the twist structure in the first resin; Forming a twisted structure of the impregnated basalt fiber or helical shape into a helical shape and hardening to form a central core; Forming an intermediate core by winding a carbon fiber impregnated in the second resin in a helical shape while heating a portion of the outer layer of the cured central core in a helical shape; And winding one of the glass fibers and the basalt fibers impregnated into the third resin in a helical shape to form an outer core.
또한 상기 제1 수지는 열경화성 수지일 수 있다.In addition, the first resin may be a thermosetting resin.
또한 상기 중심 코어를 형성하는 단계에서는, 상기 헬리컬 형상으로 꼬임 구조가 형성된 상태에서 인발 다이를 통하여 직경이 일정 규격 이내가 되도록 압착하는 단계를 포함할 수 있다.In addition, the forming of the central core may include a step of compressing the diameter within a predetermined standard through a drawing die in a state where the twist structure is formed in the helical shape.
또한 상기 인발 다이를 통하여 상기 제1 수지의 일정량을 제거하는 단계에서 상기 중심 코어에 포함되는 현무암 섬유가 노출되지 않도록 할 수 있다.In addition, in the step of removing a predetermined amount of the first resin through the drawing die may be such that the basalt fibers contained in the central core is not exposed.
본 발명에 따른 중심인장선은 현무암 섬유(basalt fiber)를 이용한 중심 코어를 형성하고, 이의 표면이 일부 용융된 상태에서 중간 코어 및 외부 코어를 형성함으로써 중심인장선의 표면이 균일하고 층간 구조적인 안정성이 향상될 수 있다.The center tensile line according to the present invention forms a center core using basalt fibers, and forms a middle core and an outer core in a state in which the surface thereof is partially melted, thereby making the surface of the center tensile line uniform and interlaminar structural stability. Can be improved.
도 1은 본 발명의 일 실시예에 따른 송전케이블의 모습을 나타내는 부분 절개 사시도이다.1 is a partial cutaway perspective view showing a state of a power transmission cable according to an embodiment of the present invention.
도 2는 송전케이블의 일 예로서 가공 송전선의 모습을 나타내는 개략도이다.2 is a schematic diagram showing a state of a overhead transmission line as an example of a transmission cable.
도 3은 일 실시예에 따른 중심 인장선의 모습을 나타내는 단면도이다.3 is a cross-sectional view illustrating a state of a center tensile line according to an exemplary embodiment.
도 4는 중심 코어를 형성하는 일 실시예에 따른 현무암 섬유의 모습을 나타내는 사시도이다.4 is a perspective view showing the appearance of basalt fibers according to one embodiment forming a central core.
도 5는 본 발명의 일 실시예에 따른 중심 코어를 형성하는 공정을 나타내는 개략도이다.5 is a schematic diagram illustrating a process of forming a central core according to an embodiment of the present invention.
도 6은 본 발명의 중심인장선을 형성하는 공정을 나타내는 개략도이다.6 is a schematic view showing a step of forming a center tensile line of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다. 특별한 정의나 언급이 없는 경우에 본 설명에 사용하는 방향을 표시하는 용어는 도면에 표시된 상태를 기준으로 한다. 또한 각 실시예를 통하여 동일한 도면부호는 동일한 부재를 가리킨다. 한편, 도면상에서 표시되는 각 구성은 설명의 편의를 위하여 그 두께나 치수가 과장될 수 있으며, 실제로 해당 치수나 구성간의 비율로 구성되어야 함을 의미하지는 않는다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Unless otherwise defined or mentioned, terms indicating directions used in the present description are based on the states shown in the drawings. In addition, the same reference numerals throughout the embodiments indicate the same member. On the other hand, each of the components shown in the drawings may be exaggerated in thickness or dimensions for the convenience of description, and does not mean that actually should be configured by the ratio between the dimensions or configurations.
도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 고용량 송전케이블(증용량 송전케이블)을 설명한다. 도 1은 본 발명의 일 실시예에 따른 고용량 송전케이블을 개략적으로 나타내는 절개사시도이고, 도 2는 본 발명의 일 실시예에 따른 고용량 송전케이블의 설치된 모습을 개략적으로 나타내는 개략도이다.A high capacity power transmission cable (enhanced power transmission cable) according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 is a cutaway perspective view schematically illustrating a high capacity power transmission cable according to an embodiment of the present invention, and FIG. 2 is a schematic view schematically showing a state in which a high capacity power transmission cable according to an embodiment of the present invention is installed.
본 발명의 일 실시예에 따른 고용량 송전 케이블(1)은 알루미늄 컨덕터(1a, 1b)와 내측의 코어를 형성하는 중심인장선(10)을 포함한다.The high capacity power transmission cable 1 according to an embodiment of the present invention includes aluminum conductors 1a and 1b and a center tension line 10 forming a core inside.
일반적으로 이와 같은 타입의 고용량 송전 케이블은 알루미늄 컨덕터 합성코어(aluminum conductor composite core, ACCC), 보강 케이블, 스트랜디드 가공 송전(overhead transmission) 및 배선 컨덕터 등으로 알려져 있다. 통상적으로, 이러한 컨덕터는 고전력을 송전 및 배선하는데 사용되며 예를 들어 전국 전력 계통망(national grid)의 백본을 형성한다.Generally, this type of high capacity power transmission cable is known as an aluminum conductor composite core (ACCC), a reinforcement cable, a stranded overhead transmission and a wiring conductor. Typically, such conductors are used to transmit and wire high power and form, for example, the backbone of a national grid.
본 실시예에 따른 고용량 송전 케이블(1)은 중심인장선를 나선형으로 둘러싸는 다수의 단면이 사다리꼴 형상인 알루미늄 스트랜드(strand)를 포함한다. 알루미늄 컨덕터 제1층(1b)은 단면이 사다리꼴 형상인 알루미늄 컨덕터 제2층(1a)에 의해서 추가적으로 둘러싸인다. 알루미늄 컨덕터(1a, 1b)는 전력을 전송하는 통로로서 기능한다. The high-capacity power transmission cable 1 according to the present embodiment includes aluminum strands having a trapezoidal shape in a plurality of cross-sections spirally surrounding the central tensile line. The aluminum conductor first layer 1b is further surrounded by the aluminum conductor second layer 1a having a trapezoidal cross section. The aluminum conductors 1a and 1b function as passages for transmitting power.
알루미늄 컨덕터(1a, 1b)의 외측에는 외부의 환경에 의한 부식 등으로부터 보호하기 위한 피복으로서의 절연성의 제1 보호층(미도시)을 더 포함할 수 있다. 제1 보호층은 에폭시 수지 등을 이용하여 형성될 수 있다.The outer side of the aluminum conductors 1a and 1b may further include an insulating first protective layer (not shown) as a coating for protecting against corrosion or the like caused by an external environment. The first protective layer may be formed using an epoxy resin or the like.
본 실시예에 따른 고용량 송전 케이블(1)에 포함되는 중심인장선(10)은 합성코어 등으로 알려져 있으며, 고용량 송전 케이블(1)의 인장력을 보강하는 기능을 한다. 본 실시예에 따른 중심인장선(10)은 외부 코어(100), 중간 코어(200) 및 중심 코어(300)를 포함한다. 중심 코어(200)의 외측에는 중심 코어 보호층(390)이 형성된다.The center tensile line 10 included in the high capacity power transmission cable 1 according to the present embodiment is known as a synthetic core, etc., and serves to reinforce the tensile force of the high capacity power transmission cable 1. The center tensile line 10 according to the present embodiment includes an outer core 100, an intermediate core 200, and a central core 300. The center core protective layer 390 is formed outside the center core 200.
중심인장선(10)은 이후 각 도면을 참조하여 상세히 설명한다.The center tensile line 10 will be described in detail later with reference to the drawings.
도 2를 참조하여 설명하면, 고용량 송전 케이블(1)은 전주(electrical poles) 및 송전탑(2)들간에 이어진 가공 송전선 방식으로 설치될 수 있으며, 고전압, 고용량의 전력을 전송한다. 이러한 고용량 송전 케이블(1)의 전송 전압은 통상적으로 2,400V 내지 765,000V의 범위이지만, 이에 제한되지는 않는다.Referring to FIG. 2, the high capacity power transmission cable 1 may be installed in the form of overhead transmission lines connected between electric poles and power transmission towers 2, and transmits high voltage and high capacity power. The transmission voltage of this high capacity power transmission cable 1 is typically in the range of 2,400 V to 765,000 V, but is not limited thereto.
고용량 송전 케이블(1)은 유연성 있고 휘어질 수 있도록 형성되며, 이송 및 설치용 드럼을 이용하여 감긴 상태에서 이송되고 설치작업이 수행된다.The high-capacity power transmission cable 1 is formed to be flexible and flexible, and is transported in a wound state using a drum for transport and installation, and installation work is performed.
도 3 및 도 4를 참조하여 일 실시예에 따른 중심인장선을 설명한다. 도 3은 일 실시예에 따른 중심인장선의 모습을 나타내는 개략적인 단면도이다.A center tensile line according to an embodiment will be described with reference to FIGS. 3 and 4. 3 is a schematic cross-sectional view showing a state of a central tensile line according to an embodiment.
앞서 설명한 바와 같이 본 실시예에 따른 중심인장선(10)은 외부 코어(100), 중간 코어(200) 및 중심 코어(300)를 포함한다. As described above, the center tensile line 10 according to the present embodiment includes an outer core 100, an intermediate core 200, and a central core 300.
본 실시예에 따른 중심 코어(300)는 현무암 섬유(basalt fiber)와 수지를 이용하여 형성된다. 현무암 섬유는 현무암으로 만들어진 회갈색 섬유로서 약 1400℃에서 녹는다. 필요에 따라 석회암이 첨가될 수 있다. 용융된 현무암은 원심 과정에 의해 섬유로 만들어지며, 미세 노즐을 통하여 분출하여 만들어질 수 있다. 현무암 섬유는 50% 이산화규소, 12% 산화알루미늄, 11% 산화칼슘, 10% 산화마그네슘, 7% 산화철(Ⅱ), 5% 알칼리 금속 산화물 Na2O와 K2O, 3% 산화티탄(Ⅳ)와 2% 다른 산화물의 평균 화학 조성을 가지고 있다. 중심 코어(300)를 형성하는 수지는 열경화성 재질로 형성하는 것이 바람직하다.The central core 300 according to the present embodiment is formed using basalt fibers and a resin. Basalt fibers are gray-brown fibers made of basalt and melt at about 1400 ° C. Limestone may be added as needed. The molten basalt is made of fibers by centrifugal processes and can be produced by blowing through a fine nozzle. Basalt fiber is 50% silicon dioxide, 12% aluminum oxide, 11% calcium oxide, 10% magnesium oxide, 7% iron (II) oxide, 5% alkali metal oxides Na2O and K2O, 3% titanium oxide (IV) and 2% different It has an average chemical composition of oxide. The resin forming the core core 300 is preferably formed of a thermosetting material.
중심 코어(300)는 도 4에 도시된 바와 같이 수지에 함침된 현무암 섬유(301) 또는 꼬임 구조가 형성된 현무암 섬유(301) 다발을 헬리컬 형상으로 꼬임구조를 형성함으로써 제조될 수 있다.The center core 300 may be manufactured by forming a twist structure in a helical shape from a basalt fiber 301 impregnated in resin or a bundle of basalt fibers 301 in which a twist structure is formed.
중심 코어 보호층(390)은 중심 코어(300)에 포함되는 현무암 섬유가 외부로 드러나지 않도록 중심 코어(300)의 외부에 형성된다. 중심 코어 보호층(390)은 중심 코어(300)에 포함되는 현무암 섬유를 바인딩하기 위하여 제공되는 수지 중 적어도 어느 하나일 수 있으며, 함침된 현무암 섬유의 꼬임구조를 형성한 후 다이에서 과도하게 포함된 수지를 제거하는 과정에서 일정양을 중심 코어(300)의 표면에 잔존 시키는 방식으로 형성하는 것이 바람직하다. 즉, 이와 같은 방법을 통하여 중심코어 보호층(390)과 중심 코어(300) 내 수지층을 일체로 형성할 수 있다.The central core protective layer 390 is formed on the outside of the central core 300 so that the basalt fibers included in the central core 300 are not exposed to the outside. The central core protective layer 390 may be at least one of resins provided to bind the basalt fibers included in the central core 300, and may be excessively included in the die after forming the twisted structure of the impregnated basalt fibers. In the process of removing the resin, it is preferable to form a predetermined amount to remain on the surface of the central core (300). That is, through the above method, the central core protective layer 390 and the resin layer in the central core 300 may be integrally formed.
또한 중심코어 보호층(390)은 중간 코어(200)를 형성하는 수지층과 적어도 일부가 용융된 상태로 형성된다. 중심코어 보호층(390)을 형성하는 수지는 열경화성 재료를 이용한다. 이러한 구조를 형성하기 위한 공정은 후술한다.In addition, the center core protective layer 390 is formed in a state in which at least a portion of the resin layer forming the intermediate core 200 is molten. The resin for forming the core core protective layer 390 uses a thermosetting material. The process for forming such a structure will be described later.
현무암과 유리의 섬유화공정은 매우 유사하나, 현무암은 유리와 비교하여 생산기술 및 품질면에서 차세대 섬유소재의 하나라고 볼 수 있다. 현무암의 용융점은 약 1450에 달하나 화학적 조성에 따라 차이가 있으며 E-glass 섬유에 비해 300 이상 높다. 현무암 섬유의 특성은 일반화하기 어려우며, 이를 구체화/객관화하지 못해 아직까지 밝혀지지 않은 부분이 많다. 현무암은 천연암석으로서 암석의 조성은 원석에 좌우되고 있으며, 단일 암석에서도 화학적 조성이 큰 차이를 나타낸다. The fibrous process of basalt and glass is very similar, but basalt is one of the next generation fiber materials in terms of production technology and quality compared to glass. The melting point of basalt reaches about 1450, but depends on chemical composition and is higher than 300 compared to E-glass fiber. The characteristics of basalt fibers are difficult to generalize, and there are many areas that have not yet been identified because they cannot be specified / objectived. Basalt is a natural rock. The composition of the rock depends on the raw stone, and the chemical composition of the rock varies greatly.
일례로 인장강도, 영률이 높은 것은 산화알루미늄 및 이산화규소의 함량이 높기 때문이며, 우수한 내열성 및 열전도도는 산화철 성분이 높은 데 기인한다. 단, 일반적으로 금속산화물의 함유량이 많을수록 내산성이 좋지 못하며, 이산화규소의 함유량이 많을수록 내알칼리성이 좋지 못하다.For example, the high tensile strength and Young's modulus are due to the high content of aluminum oxide and silicon dioxide, and the excellent heat resistance and thermal conductivity are due to the high iron oxide component. However, in general, the higher the content of the metal oxide, the better the acid resistance, and the higher the content of the silicon dioxide, the poor the alkali resistance.
천연적으로 생성되기 때문에 화학적 조성이 일정한 특수 유리섬유와 특성을 비교하기 어려우나, E-glass대비 대부분의 특성이 우수하다. 또한 현무암 섬유는 원료가 저렴하며 제품의 품질면에서 현무암섬유는 E-glass의 대체소재로서 활용할 수 있다.Because it is naturally produced, it is difficult to compare characteristics with special glass fibers with a constant chemical composition, but most of them are superior to E-glass. In addition, basalt fiber is cheaper in raw materials and basalt fiber can be used as an alternative material for E-glass in terms of product quality.
중간 코어(200)는 중심 코어(300)의 외부를 둘러싸는 형태로 구비된다. 중간 코어(200)는 탄소 섬유와 에폭시 수지를 이용하여 형성될 수 있다. 즉, 인장력을 담당하는 보강재로서 복수의 탄소 섬유 다발을 이용하고, 이를 바인딩하기 위하여 에폭시 수지를 이용한다. 탄소 섬유는 광케이블(305)의 외주면에 헬리컬 형상으로 와인딩되는 방식으로 구비될 수 있다. 이외에도 에폭시 수지를 대체하여 비닐 에스터, 에폭시/아크릴레이트, 페놀릭, 우레탄, 열경화성 수지를 이용할 수 있다.The intermediate core 200 is provided to surround the outside of the central core 300. The intermediate core 200 may be formed using carbon fiber and epoxy resin. That is, a plurality of carbon fiber bundles are used as a reinforcing member responsible for tensile force, and an epoxy resin is used to bind them. The carbon fiber may be provided on the outer circumferential surface of the optical cable 305 in a helical shape. In addition to the epoxy resin, vinyl ester, epoxy / acrylate, phenolic, urethane, thermosetting resin can be used.
중간 코어(200)는 탄소 섬유 및 에폭시 수지를 이용하여 형성하는 것이 바람직하나, 제조방법 상 복수의 층구조로 형성되는 것도 가능하다. 복수의 층 각각은 서로 다른 재료, 즉 서로 다른 탄소 섬유 조성물 또는 비탄소 섬유와의 혼용이 가능하다.The intermediate core 200 is preferably formed using a carbon fiber and an epoxy resin, but may be formed in a plurality of layer structures according to a manufacturing method. Each of the plurality of layers can be mixed with different materials, ie with different carbon fiber compositions or non-carbon fibers.
외부 코어(100)는 중간 코어(200)를 둘러 싸도록 구비된다. 외부코어(100)는 절연물질로 형성된다. 예를 들어 외부코어(100)는 유리 섬유 또는 현무암 섬유로 형성될 수 있다. 외부코어(100)는 위와 같은 유리 섬유 또는 현무암 섬유를 보강재로 하고, 바인딩 물질로서 에폭시 수지를 이용할 수 있다. 이외에도 중간 코어(200)와 마찬가지로 에폭시 수지를 대체하여 또는 함께 비닐 에스터, 에폭시/아크릴레이트, 페놀릭, 우레탄, 열경화성 수지를 이용할 수 있다.The outer core 100 is provided to surround the intermediate core 200. The outer core 100 is formed of an insulating material. For example, the outer core 100 may be formed of glass fiber or basalt fiber. The outer core 100 may be made of glass fiber or basalt fiber as described above, and may use an epoxy resin as a binding material. In addition to the intermediate core 200, a vinyl ester, an epoxy / acrylate, a phenolic, urethane, or a thermosetting resin may be used in place of or together with the epoxy resin.
유리 섬유 또는 현무암 섬유로 형성된 외부 코어(100)와 중간 코어(200)는 헬리컬 형상으로 와인딩 하는 방식으로 구비될 수 있다.The outer core 100 and the intermediate core 200 formed of glass fiber or basalt fiber may be provided by winding in a helical shape.
또한 외부 코어(100)를 둘러싸는 외부 코어 보호층(미도시)을 포함할 수 있다. 보호층, 즉 보호 코팅은 외부 코어(100)를 에워싸고 방사 방향의 두께를 가진다. 보호 코팅은 UV 보호뿐만 아니라 표면수지 부식 방지 및 표면 전기 트래킹용 전위를 제공한다. 다른 재료 중에서도, 표면 코팅은 NEXUS와 같은 유기표면 베일(orgnic surfacing veils) 또는 표면 아크릴 기반의 코팅과 같은, HETROLAC와 같은 Reemay 기반(폴리 에틸렌 테레프탈레이트)의 섬유, 페인트, 폴리머 코팅을 포함할 수 있다.It may also include an outer core protective layer (not shown) surrounding the outer core 100. The protective layer, ie the protective coating, surrounds the outer core 100 and has a radial thickness. The protective coating provides not only UV protection but also potential for surface resin corrosion protection and surface electrical tracking. Among other materials, surface coatings may include fiber, paint, and polymer coatings of Reemay based (polyethylene terephthalate) such as HETROLAC, such as organic surfacing veils such as NEXUS or surface acrylic based coatings. .
도 5를 참조하여 중심 코어를 형성하는 공정의 일 예를 설명한다. 도 5는 일 실시예에 따른 중심 코어 형성방법을 설명하는 개략도이다.An example of a process of forming a central core will be described with reference to FIG. 5. 5 is a schematic view illustrating a method of forming a center core according to an embodiment.
일 실시에에 따른 중심인장선(10)을 제조하기 위하여 중심 코어가 먼저 형성된다. 먼저 보빈으로부터 현무암 섬유(301)를 권출시키고, 권출된 현무암 섬유(301)를 용융 상태의 수지(302)에 함침시키고, 이를 꼬임구조를 형성한 후 경화시켜 중심 코어(300)를 형성하게 된다.In order to manufacture the central tensile line 10 according to an embodiment, a central core is first formed. First, the basalt fiber 301 is unwound from the bobbin, and the unwinded basalt fiber 301 is impregnated in the resin 302 in a molten state, and a twisted structure is formed and then hardened to form a central core 300.
구체적으로 중심 코어(300)는 인발 공정에 의해 형성될 수 있으며, 예를 들어 도 5에 도시된 바와 같이 보빈으로부터 권출된 현무암 섬유(301)는 개별의 스트랜디드 구조를 형성한 후 수지함침조 내 용융 상태의 수지(302)에 함침된다. 이어서, 함침된 현무암 섬유(301)들을 함께 압착하여 미리 지정된 규격으로 형성하기 위하여 제1 다이를 통하여 인발한다. 또한 제1 다이는 함침된 개별의 꼬임구조가 형성된 현무암 섬유(301)에 과도하게 포함된 수지를 제거하는 기능을 한다. 이 때 인발 다이를 통하여 제1 수지의 일정량을 제거하는 과정에서 중심 코어(300)에 포함되는 현무암 섬유가 수지에 의하여 둘러싸인 상태가 되도록 함으로써 현무암 섬유가 외측으로 노출되지 않도록 하는 중심코어 보호층(390)을 형성한다.Specifically, the core core 300 may be formed by a drawing process. For example, as illustrated in FIG. 5, the basalt fiber 301 unrolled from the bobbin may form an individual stranded structure, followed by a resin impregnation bath. It is impregnated to resin 302 of the molten state. Subsequently, the impregnated basalt fibers 301 are drawn together through a first die to compact together to form a predetermined specification. The first die also functions to remove resin that is excessively contained in the basalt fibers 301 in which the individual twist structures are formed. At this time, in the process of removing a predetermined amount of the first resin through the drawing die, the basalt fibers included in the core core 300 are surrounded by the resin, thereby preventing the basalt fibers from being exposed to the outside. ).
이후 필요에 따라 1차 오븐 등에서 가열한 후 위와 같은 개별의 현무암 섬유(301) 스트랜디드 구조들의 꼬임 구조를 형성한 후 제1 경화부를 통하여 경화시킴으로써 중심 코어(300)를 형성하게 된다. 형성된 중심 코어(300)는 또 다른 드럼 상에 권취되고 이후 중간 코어 및 외부 코어의 형성을 위한 공정에 제공된다. Thereafter, after heating in a primary oven or the like as necessary, the twisted structures of the individual basalt fibers 301 stranded structures as described above are formed and then cured through the first curing unit to form the core core 300. The formed core core 300 is wound on another drum and then provided to the process for the formation of the intermediate core and the outer core.
도 6을 참조하여 중간 코어 및 외부 코어를 형성하는 공정의 일 예를 설명한다. 도 6은 일 실시예에 따른 중심인장선 제조 공정을 나타내는 개략도이다.An example of a process of forming the intermediate core and the outer core will be described with reference to FIG. 6. 6 is a schematic diagram illustrating a process of manufacturing a center tensile line according to an embodiment.
수지가 경화된 상태로 드럼 등에 권취된 중심 코어(300)는 권출되어 중심 인장선의 제조에 제공된다.The center core 300 wound on a drum or the like in a state where the resin is cured is unwound and provided to manufacture a center tensile line.
구체적으로, 꼬임 구조가 형성된 탄소 섬유(101)를 수지함침조에서 에폭시 수지 등에 함침시킨 후 중심 코어(300)의 외부에 적용시킴으로써 중간 코어를 형성한다. 이 때 드럼으로부터 권출되는 중심 코어(300)는 가열부를 통하여 표면의 적어도 일부가 용융상태가 되도록 한다. 이와 같이 중심 코어(300)의 외표면의 적어도 일부가 용융된 상태에서 에폭시 수지 등에 함침된 탄소 섬유(101) 또는 꼬임 구조의 탄소 섬유(102)를 적용함으로써 중심 코어(300)와 중간 코어의 경계면이 뚜렷하게 형성되지 않도록 한다. 중심 코어(300)와 중간 코어(200) 사이에는 물리적으로 혼재된 경계층이 존재하거나, 재질에 따라 물리/화학적인 계면이 형성될 수 있다. 이와 같은 경계면 상에 층 구조를 형성함으로써 외력에 위하여 송전 케이블이 휘어지는 경우에도 구조적인 안정성을 유지할 수 있으며, 응력이 어느 한 층에 집중되는 것을 방지할 수 있다.Specifically, the intermediate core is formed by impregnating the carbon fiber 101 having the twisted structure with an epoxy resin or the like in a resin impregnation tank, and then applying it to the outside of the central core 300. At this time, the central core 300 unwound from the drum allows at least a part of the surface to be molten through the heating part. As described above, the interface between the center core 300 and the intermediate core is applied by applying the carbon fiber 101 or the twisted structure carbon fiber 102 impregnated with an epoxy resin or the like while at least a part of the outer surface of the center core 300 is molten. This should not be formed distinctly. A physically mixed boundary layer may exist between the central core 300 and the intermediate core 200, or a physical / chemical interface may be formed according to a material. By forming a layer structure on such an interface, structural stability can be maintained even when the transmission cable is bent for external force, and stress can be prevented from being concentrated on any one layer.
중간 코어와 마찬가지의 방법으로 외부 코어를 형성할 수 있다. 꼬임 구조가 형성된 유리 섬유(202) 등을 수지함침조에서 수지에 함침시킨 후 중간 코어의 외부에 적용시킴으로써 중심인장선을 형성한다.The outer core can be formed in the same manner as the intermediate core. The central tensile line is formed by impregnating the glass fiber 202 or the like having the twisted structure with the resin in the resin impregnation tank and then applying it to the outside of the intermediate core.
이 후 제2 다이를 통하여 과도하게 적용된 수지 등을 제거하고, 동시에 중심 인장선(10)을 일정한 규격으로 압착시킨다. 이후 경화 과정을 거친 후 코팅부에서 외부에 코팅층이 형성된 중심인장선(10`)을 형성하는 것도 가능하다.Thereafter, excessively applied resin or the like is removed through the second die, and at the same time, the central tensile line 10 is pressed to a certain standard. After the curing process, it is also possible to form a central tension line (10`) formed with a coating layer on the outside in the coating portion.
이상 본 발명의 바람직한 실시예에 대하여 설명하였으나, 본 발명의 기술적 사상이 상술한 바람직한 실시예에 한정되는 것은 아니며, 특허청구범위에 구체화된 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양하게 구현될 수 있다.Although the preferred embodiment of the present invention has been described above, the technical idea of the present invention is not limited to the above-described preferred embodiment, and may be variously implemented in a range without departing from the technical idea of the present invention specified in the claims. have.

Claims (9)

  1. 현무암 섬유(basalt fiber) 또는 꼬임구조가 형성된 현무암 섬유 다발들이 헬리컬 형상으로 꼬임구조를 형성하고, 상기 현무암 섬유들은 제1 수지에 의하여 바인딩 된 중심 코어;A basalt fiber or a basalt fiber bundle having a twisted structure formed therein with a helical shape, the basalt fibers comprising: a central core bound by a first resin;
    상기 제1 수지로 형성되고, 상기 중심 코어에 포함되는 현무암 섬유가 노출되지 않도록 상기 중심 코어의 외측에 형성되는 중심코어 보호층;A center core protective layer formed of the first resin and formed outside the center core such that the basalt fibers included in the center core are not exposed;
    상기 중심코어 외측을 둘러싸도록 형성되고, 탄소 섬유 또는 꼬임구조가 형성된 탄소 섬유 다발들이 꼬임구조를 형성하고, 상기 탄소 섬유들은 제2 수지에 의하여 바인딩 된 중간 코어;An intermediate core formed to surround the outside of the center core, wherein the carbon fiber bundles in which carbon fibers or twist structures are formed form a twist structure, and the carbon fibers bound by a second resin;
    상기 중간 코어의 외측을 둘러싸도록 형성되고, 유리 섬유 및 현무암 섬유 중 어느 하나의 섬유 또는 꼬임 구조가 형성된 상기 유리 섬유 및 현무암 섬유의 다발들이 헬리컬 형상으로 꼬임구조를 형성하고, 상기 유리 섬유 및 현무암 섬유들은 제3 수지에 의하여 바인딩 된 외부 코어;를 포함하고,The bundles of the glass fiber and the basalt fiber formed to surround the outer side of the intermediate core, the fiber or the basalt fiber of any one of the glass fiber and the basalt fiber are formed in a helical shape, and the glass fiber and the basalt fiber Includes a third resin bound outer core; and
    상기 중심 코어 보호층의 제1 수지는 외주면의 적어도 일부가 용융된 상태에서 상기 중간 코어가 형성되는 중심인장선.A center tension line in which the intermediate core is formed in a state in which at least a portion of an outer circumferential surface of the first resin of the central core protective layer is molten.
  2. 제1항에 있어서,The method of claim 1,
    상기 중심코어 보호층은 상기 중심 코어의 제1 수지에 일체로 형성되는 중심인장선.The center core protective layer is a central tensile line formed integrally with the first resin of the center core.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 수지는 열경화성 수지로 형성되는 중심인장선.The first resin is a central tensile line formed of a thermosetting resin.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 수지 및 제3 수지는 비닐 에스터, 에폭시, 에폭시/아크릴레이트, 페놀릭, 우레탄, 열경화성 수지 중 어느 하나인 중심인장선.The second resin and the third resin is a center tension line which is any one of vinyl ester, epoxy, epoxy / acrylate, phenolic, urethane, thermosetting resin.
  5. 제1항에 있어서,The method of claim 1,
    상기 중간 코어(200)는 복수의 층구조로 형성되는 중심인장선.The intermediate core 200 is a center tension line is formed of a plurality of layer structure.
  6. 현무암 섬유 및 꼬임 구조를 형성하는 현무암 섬유 다발 중 어느 하나를 제1 수지에 함침시키는 단계;Impregnating either of the basalt fibers and the basalt fiber bundle forming the twisted structure to the first resin;
    함침 된 현무암 섬유 또는 헬리컬 형상의 꼬임구조를 헬리컬 형상으로 꼬임 구조를 형성하고 경화시켜 중심 코어를 형성하는 단계;Forming a twisted structure of the impregnated basalt fiber or helical shape into a helical shape and hardening to form a central core;
    상기 경화된 중심 코어의 외층 일부를 가열한 상태에서 제2 수지에 함침된 탄소 섬유를 상기 중심 코어의 외측을 헬리컬 형상으로 감아 중간 코어를 형성하는 단계;Forming an intermediate core by winding a carbon fiber impregnated in the second resin in a helical shape while heating a portion of the outer layer of the cured central core in a helical shape;
    제3 수지에 함침된 유리 섬유 및 현무암 섬유 중 어느 하나를 상기 중간 코어의 외측을 헬리컬 형상으로 감아 외측 코어를 형성하는 단계;를 포함하는 중심인장선 제조방법.And forming an outer core by winding one of the glass fibers and the basalt fibers impregnated in the third resin into a helical shape on the outside of the intermediate core.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 수지는 열경화성 수지인 중심인장선 제조방법.Wherein said first resin is a thermosetting resin.
  8. 제6항에 있어서,The method of claim 6,
    상기 중심 코어를 형성하는 단계에서는, 상기 헬리컬 형상으로 꼬임 구조가 형성된 상태에서 인발 다이를 통하여 직경이 일정 규격 이내가 되도록 압착하는 단계를 포함하는 중심인장선 제조방법.In the step of forming the center core, the method of manufacturing a center tension line comprising the step of pressing so that the diameter is within a predetermined standard through the drawing die in the form of the twist structure in the helical shape.
  9. 제8항에 있어서,The method of claim 8,
    상기 인발 다이를 통하여 상기 제1 수지의 일정량을 제거하는 단계에서 상기 중심 코어에 포함되는 현무암 섬유가 노출되지 않도록 하는 중심인장선 제조방법.The method of manufacturing a center tension liner so that the basalt fibers contained in the center core are not exposed in the step of removing a predetermined amount of the first resin through the drawing die.
PCT/KR2018/001687 2017-02-08 2018-02-08 Central tension line for high-capacity power transmission cable and method for manufacturing same WO2018147652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170017385A KR101916231B1 (en) 2017-02-08 2017-02-08 Central strength member for gap conductor and the method for manufacturing thereof
KR10-2017-0017385 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147652A1 true WO2018147652A1 (en) 2018-08-16

Family

ID=63107716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001687 WO2018147652A1 (en) 2017-02-08 2018-02-08 Central tension line for high-capacity power transmission cable and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101916231B1 (en)
WO (1) WO2018147652A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596182A (en) * 2020-12-30 2021-04-02 江苏永鼎股份有限公司 Extrusion molding process of cushion layer of optical cable center reinforcement
CN113808786A (en) * 2021-09-17 2021-12-17 广东鑫源恒业复合材料科技有限公司 Super gentle stranded and compound carbon fiber composite core wire and wire detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560551B1 (en) * 2020-11-18 2023-07-26 재단법인 한국탄소산업진흥원 Core for electrical power transmission cable and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070014109A (en) * 2003-10-22 2007-01-31 씨티씨 케이블 코포레이션 Aluminum conductor composite core reinforcement cable and manufacturing method
KR100817982B1 (en) * 2007-02-12 2008-03-31 엘에스전선 주식회사 Polymer composite wire for overhead transmission line and manufacturing method
US20100038112A1 (en) * 2008-08-15 2010-02-18 3M Innovative Properties Company Stranded composite cable and method of making and using
KR101477720B1 (en) * 2007-02-15 2014-12-30 어드밴스드 테크놀로지 홀딩스 리미티드 Electrical conductor and core for an electrical conductor
KR20150003937A (en) * 2013-07-01 2015-01-12 (주)세이프코리아 electro-conductive core for transmission line and manufactuaring method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070014109A (en) * 2003-10-22 2007-01-31 씨티씨 케이블 코포레이션 Aluminum conductor composite core reinforcement cable and manufacturing method
KR100817982B1 (en) * 2007-02-12 2008-03-31 엘에스전선 주식회사 Polymer composite wire for overhead transmission line and manufacturing method
KR101477720B1 (en) * 2007-02-15 2014-12-30 어드밴스드 테크놀로지 홀딩스 리미티드 Electrical conductor and core for an electrical conductor
US20100038112A1 (en) * 2008-08-15 2010-02-18 3M Innovative Properties Company Stranded composite cable and method of making and using
KR20150003937A (en) * 2013-07-01 2015-01-12 (주)세이프코리아 electro-conductive core for transmission line and manufactuaring method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596182A (en) * 2020-12-30 2021-04-02 江苏永鼎股份有限公司 Extrusion molding process of cushion layer of optical cable center reinforcement
CN113808786A (en) * 2021-09-17 2021-12-17 广东鑫源恒业复合材料科技有限公司 Super gentle stranded and compound carbon fiber composite core wire and wire detection device

Also Published As

Publication number Publication date
KR101916231B1 (en) 2018-11-07
KR20180092068A (en) 2018-08-17

Similar Documents

Publication Publication Date Title
KR101477720B1 (en) Electrical conductor and core for an electrical conductor
US5155304A (en) Aerial service wire
US4761053A (en) Communications transmission media
US3980808A (en) Electric cable
JPS62144121A (en) fiber optic communication cable
WO2018147652A1 (en) Central tension line for high-capacity power transmission cable and method for manufacturing same
JP2005148373A (en) FRP tensile body and drop optical fiber cable
CN104698556B (en) A kind of ADSS optical fiber cables and its forming method
CN210489270U (en) Armored double-sheath photoelectric composite cable
US20020092668A1 (en) Flexible electrical cable
CN201707951U (en) Composite material core for enhancing cable and cable
WO2018147651A1 (en) Central tension line comprising diagnostic optical fiber for high-capacity power transmission cable and power transmission cable comprising same
CN216212400U (en) Aluminum alloy core fire-resistant armored photovoltaic cable for photovoltaic system
CN215265637U (en) High-strength anti-fracture power cable
RU159553U1 (en) ELECTRICAL OPTICAL CABLE FOR AIR TRANSMISSION LINES
CN210835374U (en) High-strength access optical cable
CN210294613U (en) Bending-resistant double-sheath optical cable
CN215730926U (en) Flexible self-adhesive photoelectric hybrid optical cable
KR100337699B1 (en) Optical fiber composite ground wire
CN222126107U (en) Composite optical fiber cable
CN218824822U (en) Carbon fiber optical cable reinforced core
CN210956209U (en) Dampproofing tensile elevator composite cable that large-scale mine was used
CN218896502U (en) Ultrahigh-voltage carbon fiber photoelectric composite overhead conductor
CN102749688A (en) Novel optical cable suitable to arrange in buildings
CN211788258U (en) Photoelectric hybrid optical cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750902

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载