WO2018147067A1 - Laser light source device - Google Patents
Laser light source device Download PDFInfo
- Publication number
- WO2018147067A1 WO2018147067A1 PCT/JP2018/001902 JP2018001902W WO2018147067A1 WO 2018147067 A1 WO2018147067 A1 WO 2018147067A1 JP 2018001902 W JP2018001902 W JP 2018001902W WO 2018147067 A1 WO2018147067 A1 WO 2018147067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- laser light
- laser
- source device
- light source
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
Definitions
- the present invention relates to a laser light source device.
- halogen lamps have been used as light sources for vehicles, projectors, or general lighting.
- LEDs Light Emitting Diodes
- LEDs have often been used as light sources for illumination for outdoor use.
- laser light sources have attracted attention as light sources that can replace the above-mentioned light sources.
- the laser light source has a long life and low power consumption, and can emit light with high luminance and color purity as compared with each of the above light sources.
- a pseudo white light is obtained by irradiating a yellow phosphor with a blue laser beam (see Patent Document 1).
- White light is obtained by mixing (also called combining) red laser light, green laser light, and blue laser light (refer to Patent Document 2).
- Japanese Patent Publication Japanese Patent Laid-Open No. 2004-241142 (published August 26, 2004)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2016-15415 (published Jan. 28, 2016)”
- the wavelength range of the light emitted from the yellow phosphor is wide, so that there is a problem that the color reproduction range is narrowed.
- the wavelength range of light emitted from the LED is wide, so that the color reproduction range is narrowed.
- red laser red laser
- green laser a laser emitting green laser light
- green laser light a laser emitting blue laser light
- An object of one embodiment of the present invention is to realize a laser light source device that has a wide color reproduction range and is small.
- a laser light source device is characterized in that light blue laser light and red laser light are mixed and emitted.
- the color reproduction range is wide and small.
- FIG. 2 is a chromaticity diagram showing a color reproduction range of light obtained from the laser light source device shown in FIG. 1.
- FIG. 1 is a top view showing a schematic configuration of a laser light source apparatus 100 according to an embodiment of the present invention.
- the laser light source device 100 includes a light blue laser package 1, a red laser package 2, apertures 3 and 4, beam correction units 5 and 6, collimating lenses 7 and 8, a mirror 9, a dichroic mirror 10, and an emission window unit 11. .
- the light blue laser package 1 is a highly airtight package containing a light blue laser that emits light blue laser light al.
- the light blue laser is, for example, a GaN (gallium nitride) semiconductor laser, and emits laser light having a wavelength of 490 nm (nanometers) as light blue laser light al.
- the wavelength of the light blue laser light al emitted from the light blue laser is not limited to 490 nm, and any wavelength from 482 nm to 499 nm can be selected.
- the red laser package 2 is a highly airtight package containing a red laser.
- the red laser is, for example, an AlGaInP semiconductor laser, and emits laser light having a wavelength of 638 nm as red laser light rl.
- the wavelength of the red laser light rl emitted from the red laser is not limited to 638 nm, and an arbitrary wavelength from 610 nm to 780 nm can be selected.
- the light blue laser package 1 and the red laser package 2 are arranged side by side. Specifically, in FIG. 1, the light blue laser package 1 and the red laser package 2 are arranged such that the optical axis ala of the light blue laser light al and the optical axis rla of the red laser light rl are parallel to each other. ing.
- the arrangement of the light blue laser package 1 and the red laser package 2 in the laser light source device 100 is not limited to this.
- the light blue laser is removed such that the mirror 9 is removed and the optical axis ala and the optical axis rla are perpendicular to each other.
- Package 1 and red laser package 2 may be arranged.
- the emission angle (FFP: far field pattern) of the light blue laser beam al is larger than the emission angle (FFP) of the red laser beam rl.
- the red laser package 2 is a light blue laser. It is arranged behind the package 1. However, it is not essential that the red laser package 2 is disposed behind the light blue laser package 1.
- the front-rear relationship between the arrangement of the light blue laser package 1 and the arrangement of the red laser package 2 depends on the magnitude relationship between the emission angle (FFP) of the light blue laser light al and the emission angle (FFP) of the red laser light rl. Can be set appropriately.
- the aperture 3 is an opening through which the light blue laser light al emitted from the light blue laser of the light blue laser package 1 passes, and removes unnecessary components (such as leakage light) from the light blue laser light al.
- the aperture 4 is an opening through which the red laser light rl emitted from the red laser of the red laser package 2 passes, and removes unnecessary components (such as leakage light) from the red laser light rl.
- the beam correction unit 5 includes a biconcave lens 5a and a planoconcave lens 5b.
- the biconcave lens 5a is a lens having concave shapes on both sides, and mainly adjusts the FFP of the light blue laser light al that has passed through the aperture 3.
- the plano-concave lens 5b is a lens in which the surface on the light blue laser package 1 side is flat and the surface opposite to the light blue laser package 1 side is concave, and the beam spot diameter of the light blue laser light al transmitted mainly through the biconcave lens 5a. Adjust.
- the beam correction unit 5 can be appropriately changed in design according to the beam spot diameter and beam shape of the light blue laser light al that has passed through the aperture 3.
- the beam correction unit 6 includes a biconcave lens 6a and a planoconcave lens 6b.
- the biconcave lens 6a is a lens having concave shapes on both sides, and mainly adjusts the FFP of the red laser light rl that has passed through the aperture 4.
- the plano-concave lens 6b is a lens in which the surface on the red laser package 2 side is flat and the surface on the opposite side to the red laser package 2 side is concave, and the beam spot diameter of the red laser light rl mainly transmitted through the biconcave lens 6a. Adjust.
- the beam correction unit 6 can be appropriately changed in design according to the beam spot diameter and beam shape of the red laser light rl that has passed through the aperture 4.
- the collimating lens 7 converts the light blue laser light al that has passed through the beam correction unit 5 into substantially parallel light.
- the collimating lens 8 converts the red laser light rl that has passed through the beam correction unit 6 into substantially parallel light.
- the mirror 9 bends the optical axis ala of the light blue laser light al by reflecting the light blue laser light al that has passed through the collimating lens 7 (in this case, it is bent by 90 °).
- the dichroic mirror 10 bends the optical axis rla of the red laser beam rl by reflecting the red laser beam rl that has passed through the collimating lens 8 (in this case, it is bent by 90 °).
- the dichroic mirror 10 transmits the light blue laser light al reflected by the mirror 9.
- the mirror 9 and the dichroic mirror 10 are arranged so that the optical axis ala of the light blue laser light al transmitted through the dichroic mirror 10 and the optical axis rla of the red laser light rl reflected by the dichroic mirror 10 substantially coincide. Is arranged. Then, since the optical axis ala of the light blue laser light al and the optical axis rla of the red laser light rl substantially coincide with each other, the light blue laser light al and the red laser light rl are mixed in color (both combined). This produces white light.
- the design of the apertures 3 and 4, the beam correction units 5 and 6, the collimating lenses 7 and 8, the mirror 9, and the dichroic mirror 10 can be changed as appropriate without changing the gist of the present invention achieved by the laser light source device 100. Is possible.
- the apertures 3 and 4, the beam correction units 5 and 6, the collimating lenses 7 and 8, the mirror 9, and the dichroic mirror 10 can be omitted if they are not necessary in the laser light source device 100.
- the exit window portion 11 includes an aperture 11a and a translucent window member 11b that covers the aperture 11a.
- White light obtained by mixing the light blue laser light al and the red laser light rl passes through the aperture 11a, passes through the window member 11b, and is emitted to the outside of the laser light source device 100.
- the laser light source device 100 uses light blue laser light al and red laser light. By mixing rl, white light can be obtained. Therefore, the laser light source device 100 can be reduced in size as compared with a laser light source device that obtains white light by mixing red laser light, green laser light, and blue laser light.
- the laser light source device in order to make the laser light source device as small as possible, it is conceivable to arrange a plurality of lasers so as to make the interval between two adjacent lasers as small as possible.
- each laser generates heat during driving, and may affect the adjacent laser due to the generated heat.
- the red laser has a large output drop when driven at a high temperature as compared with the green laser and the blue laser.
- the light blue laser of the light blue laser package 1 is used instead of the green laser and the blue laser.
- the number of heat sources that can increase the driving temperature of the red laser of the red laser package 2 is reduced, so that the degree of freedom of arrangement of the red laser package 2 is improved and the laser light source device 100 does not need to be provided with a heat dissipation mechanism. Therefore, a small laser light source device 100 can be realized.
- the light blue laser is housed in the light blue laser package 1 and the red laser is housed in the red laser package 2, respectively.
- each of the light blue laser and the red laser may be provided in the laser light source device 100 in a so-called open air state that is not housed in a package. Since the blue laser emits a laser beam having a short wavelength, a contaminant is attached to the emission end face, and the life is likely to be shortened. For this reason, it is difficult to mount the blue laser on the laser light source device in an open air state. On the other hand, since the light blue laser emits a laser beam having a longer wavelength than that of the blue laser, contaminants are unlikely to adhere to the emission end face (the lifetime is unlikely to be shortened). Therefore, the light blue laser is more suitable in that it is mounted on the laser light source device 100 in an open air state.
- FIG. 2 is a chromaticity diagram showing the color reproduction range of the light obtained from the laser light source device 100.
- the chromaticity diagram shown in FIG. 2 is obtained by writing a dotted line L and an ellipse E on a general CIE chromaticity diagram.
- the dotted line L is a line connecting the wavelength regulation point of the light blue laser beam al (wavelength 490 nm) and the wavelength regulation point of the red laser beam rl (wavelength 661 nm).
- An ellipse E is a chromaticity range in which the light according to the present embodiment can be regarded as white.
- the laser light source device 100 white having a chromaticity within the range of the ellipse E in FIG. 2 and on the dotted line L by appropriately adjusting the output of the light blue laser light al and the output of the red laser light rl. Can get the light.
- the light blue laser beam al and the red laser beam rl have narrow wavelengths (that is, the half-value width of the emitted light is narrow), on the straight line L connecting the wavelength defining points on the color gamut boundaries where the chromaticity coordinates are opposed to each other. All colors can be reproduced, and the color reproduction range is wide. Further, since the light blue laser and the red laser have high directivity, they are suitable for spot irradiation with light far away.
- the light emitted from the LED or the phosphor has a wide half width, so that it is difficult to reproduce all the colors on the straight line L, and the color reproduction range is narrow.
- LEDs or phosphors have low directivity, they are not suitable for spot irradiation with light far away.
- the wavelength of the light blue laser light al is preferably 482 nm or more and 499 nm or less
- the wavelength of the red laser light rl is preferably 610 nm or more and 780 nm or less.
- the laser light source device emits light of a blue laser beam and a red laser beam in a mixed color.
- the light blue laser beam and the red laser beam have a narrow wavelength (that is, the half-value width of the emitted light is narrow), so that the wavelength defining point on the color gamut boundary where the chromaticity coordinates are opposed to each other. All colors on the straight line connecting the two can be reproduced, and the color reproduction range is wide.
- the degree of freedom of arrangement of the red laser is improved, and it is not necessary to provide a heat dissipation mechanism in the laser light source device. Therefore, a small laser light source device can be realized.
- the wavelength of the light blue laser light is not less than 482 nm and not more than 499 nm.
- the wavelength of the red laser light is 610 nm or more and 780 nm or less.
- the degree of freedom in color reproduction can be increased by appropriately selecting the wavelength of the light blue laser light and the wavelength of the red laser light.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Semiconductor Lasers (AREA)
Abstract
Provided is a laser light source device having a wide color reproduction range and a small size. The laser light source device (100) mixes light-blue laser light (al) and red laser light (rl), and emits laser light of a mixed color.
Description
本発明は、レーザ光源装置に関する。
The present invention relates to a laser light source device.
従来、車両用、プロジェクタ用、または一般照明用の光源として、ハロゲンランプ、メタルハライドランプ、またはLED(Light Emitting Diode:発光ダイオード)等が用いられてきた。また従来、特に、屋外用のイルミネーション用等の光源として、LEDがしばしば用いられてきた。
Conventionally, halogen lamps, metal halide lamps, or LEDs (Light Emitting Diodes) have been used as light sources for vehicles, projectors, or general lighting. Conventionally, LEDs have often been used as light sources for illumination for outdoor use.
一方、近年、上記の各光源に代わる光源として、レーザ光源が注目されている。レーザ光源は、上記の各光源と比べて、長寿命および低消費電力であり、かつ、輝度および色純度が高い光を発することができる。
On the other hand, in recent years, laser light sources have attracted attention as light sources that can replace the above-mentioned light sources. The laser light source has a long life and low power consumption, and can emit light with high luminance and color purity as compared with each of the above light sources.
ところで、従来、白色光源にレーザ光源を適用する場合、下記(A)~(C)のいずれかの方法が採用されてきた。
Incidentally, conventionally, when a laser light source is applied to a white light source, one of the following methods (A) to (C) has been adopted.
(A)青色のレーザ光を、黄色蛍光体に対して照射することにより、疑似白色の光を得る(特許文献1参照)。
(A) A pseudo white light is obtained by irradiating a yellow phosphor with a blue laser beam (see Patent Document 1).
(B)レーザとLEDとを組み合わせることにより、白色の光を得る。
(B) White light is obtained by combining the laser and the LED.
(C)赤色のレーザ光と、緑色のレーザ光と、青色のレーザ光とを混色(合波とも言う)することにより、白色の光を得る(特許文献2参照)。
(C) White light is obtained by mixing (also called combining) red laser light, green laser light, and blue laser light (refer to Patent Document 2).
上記(A)~(C)の方法においては、それぞれ、下記の問題が発生する。
In the above methods (A) to (C), the following problems occur.
上記(A)の方法においては、黄色蛍光体が発する光の波長幅が広いため、色の再現範囲が狭くなるという問題が発生する。
In the method (A), the wavelength range of the light emitted from the yellow phosphor is wide, so that there is a problem that the color reproduction range is narrowed.
上記(B)の方法においても、上記(A)の方法と同様に、LEDが発する光の波長幅が広いため、色の再現範囲が狭くなるという問題が発生する。
Also in the method (B), as in the method (A), the wavelength range of light emitted from the LED is wide, so that the color reproduction range is narrowed.
上記(C)の方法においては、赤色のレーザ光を発するレーザ(以下、赤色レーザと称する)、緑色のレーザ光を発するレーザ(以下、緑色レーザと称する)、および青色のレーザ光を発するレーザ(以下、青色レーザと称する)を精度よく配置する必要がある。そして、当該配置を実現するためには、レーザ光源装置の大型化が避けられないという問題が発生する。
In the method (C), a laser emitting red laser light (hereinafter referred to as red laser), a laser emitting green laser light (hereinafter referred to as green laser), and a laser emitting blue laser light (hereinafter referred to as green laser light). Hereinafter, it is necessary to accurately arrange the blue laser). And in order to implement | achieve the said arrangement | positioning, the problem that the enlargement of a laser light source device cannot be avoided generate | occur | produces.
すなわち、赤色レーザは高温駆動時における出力低下が大きいため、高温に発熱する緑色レーザおよび青色レーザから離して赤色レーザを配置するか、レーザ光源装置に放熱機構を設ける必要がある。この結果、上記(C)の方法においては、レーザ光源装置の大型化が避けられない。
That is, since the output of the red laser is large when driven at a high temperature, it is necessary to dispose the red laser away from the green laser and the blue laser that generate heat at high temperatures, or to provide a heat radiation mechanism in the laser light source device. As a result, in the method (C), an increase in the size of the laser light source device is inevitable.
本発明の一態様は、色の再現範囲が広く、小型であるレーザ光源装置を実現することを目的とする。
An object of one embodiment of the present invention is to realize a laser light source device that has a wide color reproduction range and is small.
上記の課題を解決するために、本発明の一態様に係るレーザ光源装置は、水色のレーザ光と赤色のレーザ光とを、混色して出射することを特徴としている。
In order to solve the above-described problems, a laser light source device according to an aspect of the present invention is characterized in that light blue laser light and red laser light are mixed and emitted.
本発明の一態様によれば、色の再現範囲が広く、小型である。
According to one embodiment of the present invention, the color reproduction range is wide and small.
本発明を実施するための形態について、図1および図2を参照して説明する。
Embodiments for carrying out the present invention will be described with reference to FIG. 1 and FIG.
図1は、本発明の実施の形態に係るレーザ光源装置100の概略構成を示す上面図である。レーザ光源装置100は、水色レーザパッケージ1、赤色レーザパッケージ2、アパーチャー3および4、ビーム補正部5および6、コリメートレンズ7および8、ミラー9、ダイクロイックミラー10、ならびに出射窓部11を備えている。
FIG. 1 is a top view showing a schematic configuration of a laser light source apparatus 100 according to an embodiment of the present invention. The laser light source device 100 includes a light blue laser package 1, a red laser package 2, apertures 3 and 4, beam correction units 5 and 6, collimating lenses 7 and 8, a mirror 9, a dichroic mirror 10, and an emission window unit 11. .
水色レーザパッケージ1は、水色のレーザ光alを発する水色レーザを収納した、気密性の高いパッケージである。当該水色レーザは、例えばGaN(窒化ガリウム)系半導体レーザであり、水色のレーザ光alとして、波長490nm(ナノメートル)のレーザ光を発する。なお、当該水色レーザが発する水色のレーザ光alの波長は、490nmに限らず、482nm以上499nm以下の任意の波長を選択することができる。
The light blue laser package 1 is a highly airtight package containing a light blue laser that emits light blue laser light al. The light blue laser is, for example, a GaN (gallium nitride) semiconductor laser, and emits laser light having a wavelength of 490 nm (nanometers) as light blue laser light al. The wavelength of the light blue laser light al emitted from the light blue laser is not limited to 490 nm, and any wavelength from 482 nm to 499 nm can be selected.
赤色レーザパッケージ2は、赤色レーザを収納した、気密性の高いパッケージである。当該赤色レーザは、例えばAlGaInP系半導体レーザであり、赤色のレーザ光rlとして、波長638nmのレーザ光を発する。なお、当該赤色レーザが発する赤色のレーザ光rlの波長は、638nmに限らず、610nm以上780nm以下の任意の波長を選択することができる。
The red laser package 2 is a highly airtight package containing a red laser. The red laser is, for example, an AlGaInP semiconductor laser, and emits laser light having a wavelength of 638 nm as red laser light rl. Note that the wavelength of the red laser light rl emitted from the red laser is not limited to 638 nm, and an arbitrary wavelength from 610 nm to 780 nm can be selected.
なお、レーザ光源装置100において、水色レーザパッケージ1と赤色レーザパッケージ2とは、互いに横並びに配置されている。具体的には、図1において、水色レーザパッケージ1と赤色レーザパッケージ2とは、水色のレーザ光alの光軸alaと赤色のレーザ光rlの光軸rlaとが互いに平行となるように配置されている。但し、レーザ光源装置100における水色レーザパッケージ1および赤色レーザパッケージ2の配置はこれに限定されず、例えば、ミラー9を取り除き、光軸alaと光軸rlaとが互いに垂直となるように、水色レーザパッケージ1および赤色レーザパッケージ2が配置されていてもよい。
In the laser light source device 100, the light blue laser package 1 and the red laser package 2 are arranged side by side. Specifically, in FIG. 1, the light blue laser package 1 and the red laser package 2 are arranged such that the optical axis ala of the light blue laser light al and the optical axis rla of the red laser light rl are parallel to each other. ing. However, the arrangement of the light blue laser package 1 and the red laser package 2 in the laser light source device 100 is not limited to this. For example, the light blue laser is removed such that the mirror 9 is removed and the optical axis ala and the optical axis rla are perpendicular to each other. Package 1 and red laser package 2 may be arranged.
また、レーザ光源装置100においては、水色のレーザ光alの放射角(FFP:ファーフィールドパターン)が、赤色のレーザ光rlの放射角(FFP)より大きくなっている。そして、水色のレーザ光alのビームスポット径およびビーム形状と、赤色のレーザ光rlのビームスポット径およびビーム形状との整合をとるために、レーザ光源装置100においては、赤色レーザパッケージ2が水色レーザパッケージ1より後方に配置されている。但し、赤色レーザパッケージ2が水色レーザパッケージ1より後方に配置されていることは必須でない。水色レーザパッケージ1の配置と、赤色レーザパッケージ2の配置との前後関係は、水色のレーザ光alの放射角(FFP)と、赤色のレーザ光rlの放射角(FFP)との大小関係に応じて適宜設定し得るものである。
Further, in the laser light source device 100, the emission angle (FFP: far field pattern) of the light blue laser beam al is larger than the emission angle (FFP) of the red laser beam rl. In order to match the beam spot diameter and beam shape of the light blue laser light al with the beam spot diameter and beam shape of the red laser light rl, in the laser light source device 100, the red laser package 2 is a light blue laser. It is arranged behind the package 1. However, it is not essential that the red laser package 2 is disposed behind the light blue laser package 1. The front-rear relationship between the arrangement of the light blue laser package 1 and the arrangement of the red laser package 2 depends on the magnitude relationship between the emission angle (FFP) of the light blue laser light al and the emission angle (FFP) of the red laser light rl. Can be set appropriately.
アパーチャー3は、水色レーザパッケージ1の水色レーザから発せられた水色のレーザ光alが通過する開口であり、水色のレーザ光alから不要な成分(漏れ光等)を除去するものである。
The aperture 3 is an opening through which the light blue laser light al emitted from the light blue laser of the light blue laser package 1 passes, and removes unnecessary components (such as leakage light) from the light blue laser light al.
アパーチャー4は、赤色レーザパッケージ2の赤色レーザから発せられた赤色のレーザ光rlが通過する開口であり、赤色のレーザ光rlから不要な成分(漏れ光等)を除去するものである。
The aperture 4 is an opening through which the red laser light rl emitted from the red laser of the red laser package 2 passes, and removes unnecessary components (such as leakage light) from the red laser light rl.
ビーム補正部5は、両凹レンズ5a、および平凹レンズ5bからなっている。両凹レンズ5aは、両面が凹形状のレンズであり、主にアパーチャー3を通った水色のレーザ光alのFFPを調整する。平凹レンズ5bは、水色レーザパッケージ1側の面が平面、水色レーザパッケージ1側と反対側の面が凹形状のレンズであり、主に両凹レンズ5aを透過した水色のレーザ光alのビームスポット径を調整する。但し、ビーム補正部5は、アパーチャー3を通った水色のレーザ光alをどのようなビームスポット径およびビーム形状とするかに応じて適宜設計変更が可能である。
The beam correction unit 5 includes a biconcave lens 5a and a planoconcave lens 5b. The biconcave lens 5a is a lens having concave shapes on both sides, and mainly adjusts the FFP of the light blue laser light al that has passed through the aperture 3. The plano-concave lens 5b is a lens in which the surface on the light blue laser package 1 side is flat and the surface opposite to the light blue laser package 1 side is concave, and the beam spot diameter of the light blue laser light al transmitted mainly through the biconcave lens 5a. Adjust. However, the beam correction unit 5 can be appropriately changed in design according to the beam spot diameter and beam shape of the light blue laser light al that has passed through the aperture 3.
ビーム補正部6は、両凹レンズ6a、および平凹レンズ6bからなっている。両凹レンズ6aは、両面が凹形状のレンズであり、主にアパーチャー4を通った赤色のレーザ光rlのFFPを調整する。平凹レンズ6bは、赤色レーザパッケージ2側の面が平面、赤色レーザパッケージ2側と反対側の面が凹形状のレンズであり、主に両凹レンズ6aを透過した赤色のレーザ光rlのビームスポット径を調整する。但し、ビーム補正部6は、アパーチャー4を通った赤色のレーザ光rlをどのようなビームスポット径およびビーム形状とするかに応じて適宜設計変更が可能である。
The beam correction unit 6 includes a biconcave lens 6a and a planoconcave lens 6b. The biconcave lens 6a is a lens having concave shapes on both sides, and mainly adjusts the FFP of the red laser light rl that has passed through the aperture 4. The plano-concave lens 6b is a lens in which the surface on the red laser package 2 side is flat and the surface on the opposite side to the red laser package 2 side is concave, and the beam spot diameter of the red laser light rl mainly transmitted through the biconcave lens 6a. Adjust. However, the beam correction unit 6 can be appropriately changed in design according to the beam spot diameter and beam shape of the red laser light rl that has passed through the aperture 4.
コリメートレンズ7は、ビーム補正部5を通過した水色のレーザ光alを、略平行光に変換するものである。
The collimating lens 7 converts the light blue laser light al that has passed through the beam correction unit 5 into substantially parallel light.
コリメートレンズ8は、ビーム補正部6を通過した赤色のレーザ光rlを、略平行光に変換するものである。
The collimating lens 8 converts the red laser light rl that has passed through the beam correction unit 6 into substantially parallel light.
ミラー9は、コリメートレンズ7を透過した水色のレーザ光alを反射させることにより、水色のレーザ光alの光軸alaを曲げる(ここでは、90°曲げる)ものである。ダイクロイックミラー10は、コリメートレンズ8を透過した赤色のレーザ光rlを反射させることにより、赤色のレーザ光rlの光軸rlaを曲げる(ここでは、90°曲げる)ものである。また、ダイクロイックミラー10は、ミラー9によって反射された水色のレーザ光alを透過させる。
The mirror 9 bends the optical axis ala of the light blue laser light al by reflecting the light blue laser light al that has passed through the collimating lens 7 (in this case, it is bent by 90 °). The dichroic mirror 10 bends the optical axis rla of the red laser beam rl by reflecting the red laser beam rl that has passed through the collimating lens 8 (in this case, it is bent by 90 °). The dichroic mirror 10 transmits the light blue laser light al reflected by the mirror 9.
ここで、ダイクロイックミラー10を透過した水色のレーザ光alの光軸alaと、ダイクロイックミラー10によって反射された赤色のレーザ光rlの光軸rlaとが略一致するように、ミラー9およびダイクロイックミラー10は配置されている。そして、水色のレーザ光alの光軸alaと、赤色のレーザ光rlの光軸rlaとが略一致していることにより、水色のレーザ光alと赤色のレーザ光rlとが混色(合波とも言う)され、これにより白色の光が生成される。
Here, the mirror 9 and the dichroic mirror 10 are arranged so that the optical axis ala of the light blue laser light al transmitted through the dichroic mirror 10 and the optical axis rla of the red laser light rl reflected by the dichroic mirror 10 substantially coincide. Is arranged. Then, since the optical axis ala of the light blue laser light al and the optical axis rla of the red laser light rl substantially coincide with each other, the light blue laser light al and the red laser light rl are mixed in color (both combined). This produces white light.
なお、アパーチャー3および4、ビーム補正部5および6、コリメートレンズ7および8、ミラー9、ならびにダイクロイックミラー10は、レーザ光源装置100によって達成される本発明の主旨を変更しない程度に適宜設計変更が可能である。また、アパーチャー3および4、ビーム補正部5および6、コリメートレンズ7および8、ミラー9、ならびにダイクロイックミラー10のそれぞれは、レーザ光源装置100において不要である場合、省略することも可能である。
The design of the apertures 3 and 4, the beam correction units 5 and 6, the collimating lenses 7 and 8, the mirror 9, and the dichroic mirror 10 can be changed as appropriate without changing the gist of the present invention achieved by the laser light source device 100. Is possible. In addition, the apertures 3 and 4, the beam correction units 5 and 6, the collimating lenses 7 and 8, the mirror 9, and the dichroic mirror 10 can be omitted if they are not necessary in the laser light source device 100.
出射窓部11は、アパーチャー11a、およびアパーチャー11aを覆う透光性の窓部材11bからなっている。水色のレーザ光alと赤色のレーザ光rlとが混色されて得られた白色の光は、アパーチャー11aを通り、窓部材11bを透過して、レーザ光源装置100の外部に出射される。
The exit window portion 11 includes an aperture 11a and a translucent window member 11b that covers the aperture 11a. White light obtained by mixing the light blue laser light al and the red laser light rl passes through the aperture 11a, passes through the window member 11b, and is emitted to the outside of the laser light source device 100.
赤色のレーザ光と、緑色のレーザ光と、青色のレーザ光とを混色することにより、白色の光を得る方法と異なり、レーザ光源装置100においては、水色のレーザ光alと、赤色のレーザ光rlとを混色することにより、白色の光が得られる。このため、赤色のレーザ光と、緑色のレーザ光と、青色のレーザ光とを混色することにより、白色の光を得るレーザ光源装置と比べて、レーザ光源装置100は小型化が可能である。
Unlike the method of obtaining white light by mixing red laser light, green laser light, and blue laser light, the laser light source device 100 uses light blue laser light al and red laser light. By mixing rl, white light can be obtained. Therefore, the laser light source device 100 can be reduced in size as compared with a laser light source device that obtains white light by mixing red laser light, green laser light, and blue laser light.
すなわち、レーザ光源装置をできるだけ小型化するためには、隣接する2つのレーザの間隔をできるだけ小さくするように、複数のレーザを配置することが考えられる。しかしながら、各レーザは、駆動中に発熱し、隣接するレーザに対して当該発熱に伴う影響を与える場合がある。特に赤色レーザについては、緑色レーザおよび青色レーザと比べて、高温駆動時における出力低下が大きい。レーザ光源装置100においては、緑色レーザおよび青色レーザの代わりに、水色レーザパッケージ1の水色レーザを用いている。これにより、赤色レーザパッケージ2の赤色レーザの駆動温度を高め得る熱源の数が減るため、赤色レーザパッケージ2の配置の自由度が向上すると共に、レーザ光源装置100に放熱機構を設ける必要がない。従って、小型のレーザ光源装置100を実現することが可能となる。
That is, in order to make the laser light source device as small as possible, it is conceivable to arrange a plurality of lasers so as to make the interval between two adjacent lasers as small as possible. However, each laser generates heat during driving, and may affect the adjacent laser due to the generated heat. In particular, the red laser has a large output drop when driven at a high temperature as compared with the green laser and the blue laser. In the laser light source device 100, the light blue laser of the light blue laser package 1 is used instead of the green laser and the blue laser. As a result, the number of heat sources that can increase the driving temperature of the red laser of the red laser package 2 is reduced, so that the degree of freedom of arrangement of the red laser package 2 is improved and the laser light source device 100 does not need to be provided with a heat dissipation mechanism. Therefore, a small laser light source device 100 can be realized.
なお、レーザ光源装置100においては、水色レーザが水色レーザパッケージ1に、赤色レーザが赤色レーザパッケージ2に、それぞれ収納されている。但し、当該水色レーザおよび当該赤色レーザのそれぞれは、パッケージに収納されていない、いわゆるオープンエアーの状態で、レーザ光源装置100に設けられていてもよい。青色レーザは、波長の短いレーザ光を発するため、出射端面に汚染物質が付着して寿命が短くなり易い。このため、青色レーザをオープンエアーの状態でレーザ光源装置に搭載することは困難である。一方、水色レーザは、青色レーザと比べて波長の長いレーザ光を発するため、出射端面に汚染物質が付着し難い(寿命が短くなり難い)。従って、水色レーザは、オープンエアーの状態でレーザ光源装置100に搭載する点でより好適である。
In the laser light source device 100, the light blue laser is housed in the light blue laser package 1 and the red laser is housed in the red laser package 2, respectively. However, each of the light blue laser and the red laser may be provided in the laser light source device 100 in a so-called open air state that is not housed in a package. Since the blue laser emits a laser beam having a short wavelength, a contaminant is attached to the emission end face, and the life is likely to be shortened. For this reason, it is difficult to mount the blue laser on the laser light source device in an open air state. On the other hand, since the light blue laser emits a laser beam having a longer wavelength than that of the blue laser, contaminants are unlikely to adhere to the emission end face (the lifetime is unlikely to be shortened). Therefore, the light blue laser is more suitable in that it is mounted on the laser light source device 100 in an open air state.
図2は、レーザ光源装置100から得られる光の色の再現範囲を示す色度図である。図2に示す色度図は、一般的なCIE色度図に、点線Lおよび楕円Eを書き込んだものである。
FIG. 2 is a chromaticity diagram showing the color reproduction range of the light obtained from the laser light source device 100. The chromaticity diagram shown in FIG. 2 is obtained by writing a dotted line L and an ellipse E on a general CIE chromaticity diagram.
点線Lは、水色のレーザ光al(波長490nm)の波長規定点と、赤色のレーザ光rl(波長661nm)の波長規定点とを結ぶ線である。楕円Eは、本実施の形態に係る光を白色とみなすことができる色度の範囲である。
The dotted line L is a line connecting the wavelength regulation point of the light blue laser beam al (wavelength 490 nm) and the wavelength regulation point of the red laser beam rl (wavelength 661 nm). An ellipse E is a chromaticity range in which the light according to the present embodiment can be regarded as white.
レーザ光源装置100においては、水色のレーザ光alの出力と、赤色のレーザ光rlの出力とを適宜調整することにより、図2中の楕円Eの範囲内かつ点線L上の色度を有する白色の光を得ることができる。
In the laser light source device 100, white having a chromaticity within the range of the ellipse E in FIG. 2 and on the dotted line L by appropriately adjusting the output of the light blue laser light al and the output of the red laser light rl. Can get the light.
水色のレーザ光alおよび赤色のレーザ光rlは、狭波長である(すなわち、発した光の半値幅が狭い)ため、色度座標の相対する色域境界上の波長規定点を結ぶ直線L上の全ての色を再現可能であり、色の再現範囲が広い。また、水色レーザおよび赤色レーザは、指向性が高いため、遠方に光をスポット照射することに適している。
Since the light blue laser beam al and the red laser beam rl have narrow wavelengths (that is, the half-value width of the emitted light is narrow), on the straight line L connecting the wavelength defining points on the color gamut boundaries where the chromaticity coordinates are opposed to each other. All colors can be reproduced, and the color reproduction range is wide. Further, since the light blue laser and the red laser have high directivity, they are suitable for spot irradiation with light far away.
これに対して、LEDまたは蛍光体等が発した光は、半値幅が広いため、直線L上の全ての色を再現することが困難であり、色の再現範囲が狭い。また、LEDまたは蛍光体等は、指向性が低いため、遠方に光をスポット照射することに適していない。
On the other hand, the light emitted from the LED or the phosphor has a wide half width, so that it is difficult to reproduce all the colors on the straight line L, and the color reproduction range is narrow. In addition, since LEDs or phosphors have low directivity, they are not suitable for spot irradiation with light far away.
また、上述したとおり、水色のレーザ光alの波長は、482nm以上499nm以下であることが好ましく、赤色のレーザ光rlの波長は、610nm以上780nm以下であることが好ましい。水色のレーザ光alの波長および赤色のレーザ光rlの波長を適宜選択することにより、色の再現における自由度を高くすることができる。
Further, as described above, the wavelength of the light blue laser light al is preferably 482 nm or more and 499 nm or less, and the wavelength of the red laser light rl is preferably 610 nm or more and 780 nm or less. By appropriately selecting the wavelength of the light blue laser beam al and the wavelength of the red laser beam rl, the degree of freedom in color reproduction can be increased.
〔まとめ〕
本発明の態様1に係るレーザ光源装置は、水色のレーザ光と赤色のレーザ光とを、混色して出射する。 [Summary]
The laser light source device according to the first aspect of the present invention emits light of a blue laser beam and a red laser beam in a mixed color.
本発明の態様1に係るレーザ光源装置は、水色のレーザ光と赤色のレーザ光とを、混色して出射する。 [Summary]
The laser light source device according to the first aspect of the present invention emits light of a blue laser beam and a red laser beam in a mixed color.
上記の構成によれば、水色のレーザ光および赤色のレーザ光は、狭波長である(すなわち、発した光の半値幅が狭い)ため、色度座標の相対する色域境界上の波長規定点を結ぶ直線上の全ての色を再現可能であり、色の再現範囲が広い。
According to the above configuration, the light blue laser beam and the red laser beam have a narrow wavelength (that is, the half-value width of the emitted light is narrow), so that the wavelength defining point on the color gamut boundary where the chromaticity coordinates are opposed to each other. All colors on the straight line connecting the two can be reproduced, and the color reproduction range is wide.
また、上記の構成によれば、赤色レーザの駆動温度を高め得る熱源の数が減るため、赤色レーザの配置の自由度が向上すると共に、レーザ光源装置に放熱機構を設ける必要がない。従って、小型のレーザ光源装置を実現することが可能となる。
Further, according to the above configuration, since the number of heat sources that can increase the driving temperature of the red laser is reduced, the degree of freedom of arrangement of the red laser is improved, and it is not necessary to provide a heat dissipation mechanism in the laser light source device. Therefore, a small laser light source device can be realized.
本発明の態様2に係るレーザ光源装置は、上記態様1において、上記水色のレーザ光の波長は、482nm以上499nm以下である。
In the laser light source device according to aspect 2 of the present invention, in the aspect 1, the wavelength of the light blue laser light is not less than 482 nm and not more than 499 nm.
また、本発明の態様3に係るレーザ光源装置は、上記態様1または2において、上記赤色のレーザ光の波長は、610nm以上780nm以下である。
Further, in the laser light source device according to aspect 3 of the present invention, in the above aspect 1 or 2, the wavelength of the red laser light is 610 nm or more and 780 nm or less.
上記の各構成によれば、水色のレーザ光の波長および赤色のレーザ光の波長を適宜選択することにより、色の再現における自由度を高くすることができる。
According to each configuration described above, the degree of freedom in color reproduction can be increased by appropriately selecting the wavelength of the light blue laser light and the wavelength of the red laser light.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
1 水色レーザパッケージ
2 赤色レーザパッケージ
3、4 アパーチャー
5、6 ビーム補正部
5a、6a 両凹レンズ
5b、6b 平凹レンズ
7、8 コリメートレンズ
9 ミラー
10 ダイクロイックミラー
11 出射窓部
11a アパーチャー
11b 窓部材
100 レーザ光源装置
al 水色のレーザ光
rl 赤色のレーザ光
ala 水色のレーザ光の光軸
rla 赤色のレーザ光の光軸
E 楕円
L 点線 DESCRIPTION OFSYMBOLS 1 Light blue laser package 2 Red laser package 3, 4 Aperture 5, 6 Beam correction part 5a, 6a Biconcave lens 5b, 6b Plano- concave lens 7, 8 Collimate lens 9 Mirror 10 Dichroic mirror 11 Output window part 11a Aperture 11b Window member 100 Laser light source Device al Light blue laser light rl Red laser light ala Optical axis rla of light blue laser light Optical axis E of red laser light Ellipse L Dotted line
2 赤色レーザパッケージ
3、4 アパーチャー
5、6 ビーム補正部
5a、6a 両凹レンズ
5b、6b 平凹レンズ
7、8 コリメートレンズ
9 ミラー
10 ダイクロイックミラー
11 出射窓部
11a アパーチャー
11b 窓部材
100 レーザ光源装置
al 水色のレーザ光
rl 赤色のレーザ光
ala 水色のレーザ光の光軸
rla 赤色のレーザ光の光軸
E 楕円
L 点線 DESCRIPTION OF
Claims (3)
- 水色のレーザ光と赤色のレーザ光とを、混色して出射することを特徴とするレーザ光源装置。 A laser light source device that emits a mixture of light blue laser light and red laser light.
- 上記水色のレーザ光の波長は、482nm以上499nm以下であることを特徴とする請求項1に記載のレーザ光源装置。 2. The laser light source device according to claim 1, wherein the wavelength of the light blue laser light is not less than 482 nm and not more than 499 nm.
- 上記赤色のレーザ光の波長は、610nm以上780nm以下であることを特徴とする請求項1または2に記載のレーザ光源装置。 3. The laser light source device according to claim 1, wherein the wavelength of the red laser light is 610 nm or more and 780 nm or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017023589 | 2017-02-10 | ||
JP2017-023589 | 2017-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147067A1 true WO2018147067A1 (en) | 2018-08-16 |
Family
ID=63108074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001902 WO2018147067A1 (en) | 2017-02-10 | 2018-01-23 | Laser light source device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018147067A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014044291A (en) * | 2012-08-27 | 2014-03-13 | Konica Minolta Inc | Projection type display device |
US20140204558A1 (en) * | 2013-01-24 | 2014-07-24 | Texas Instruments Incorporated | Split phosphor/slit color wheel segment for color generation in solid-state illumination system |
JP2014197038A (en) * | 2011-07-29 | 2014-10-16 | 三菱電機株式会社 | Image display device and image display method |
-
2018
- 2018-01-23 WO PCT/JP2018/001902 patent/WO2018147067A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014197038A (en) * | 2011-07-29 | 2014-10-16 | 三菱電機株式会社 | Image display device and image display method |
JP2014044291A (en) * | 2012-08-27 | 2014-03-13 | Konica Minolta Inc | Projection type display device |
US20140204558A1 (en) * | 2013-01-24 | 2014-07-24 | Texas Instruments Incorporated | Split phosphor/slit color wheel segment for color generation in solid-state illumination system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12210276B2 (en) | Light-source system and projection device | |
US9702513B2 (en) | Lighting device with a pump laser matrix, and method for operating said lighting device | |
US8277064B2 (en) | Light source and illumination system having a predefined external appearance | |
JP4590647B2 (en) | Light source device and projector device | |
JP5427324B1 (en) | Light emitting device and projection device | |
CN104160204B (en) | Light emitting device with pump laser column and the method for running the light emitting device | |
JP6422143B2 (en) | Projector and image light projection method | |
US20100072919A1 (en) | Led lamp with high efficacy and high color rendering and manufacturing method thereof | |
JP5863987B2 (en) | Illumination device having a light emitter on a movable support | |
US9285096B2 (en) | Illumination unit, projection display unit, and direct-view display unit | |
JP5970610B2 (en) | Light emitting device and lighting device | |
CN103969935A (en) | Illuminator and image display device | |
CN105431776A (en) | Lighting device with luminescent material wheel and excitation radiation source | |
CN105223761A (en) | Projection device and lighting system | |
WO2013161462A1 (en) | Solid-state lighting device | |
JP2016224304A (en) | Light source device, projection type display device and light generation method | |
WO2013051296A1 (en) | Collected linear illumination device and driving method therefor, and light fixture | |
JP2017107776A (en) | Light emitting device and lighting device | |
JP2012119476A (en) | Led device and optical unit equipped therewith | |
JP2015118139A (en) | Type video display apparatus including the same | |
US20080239476A1 (en) | Illuminating module and surgical microscope incorporating said illuminating module | |
WO2018147067A1 (en) | Laser light source device | |
US20140362558A1 (en) | Luminescent Body For Converting Pump Light | |
US10174926B2 (en) | Light source unit and cooling method of the light source unit | |
JP2015197592A (en) | Multi display device and projection type display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18751230 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18751230 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |