WO2018146779A1 - 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 - Google Patents
有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 Download PDFInfo
- Publication number
- WO2018146779A1 WO2018146779A1 PCT/JP2017/004797 JP2017004797W WO2018146779A1 WO 2018146779 A1 WO2018146779 A1 WO 2018146779A1 JP 2017004797 W JP2017004797 W JP 2017004797W WO 2018146779 A1 WO2018146779 A1 WO 2018146779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural unit
- organic
- charge transporting
- group
- transporting polymer
- Prior art date
Links
- 0 *c(cc1)ccc1Br Chemical compound *c(cc1)ccc1Br 0.000 description 5
- YLRBJYMANQKEAW-UHFFFAOYSA-N BrCc(cc1)ccc1Br Chemical compound BrCc(cc1)ccc1Br YLRBJYMANQKEAW-UHFFFAOYSA-N 0.000 description 1
- NRTDFHUSNYJENJ-UHFFFAOYSA-N Brc(cc1)ccc1-[n](c(ccc(Br)c1)c1c1c2)c1ccc2Br Chemical compound Brc(cc1)ccc1-[n](c(ccc(Br)c1)c1c1c2)c1ccc2Br NRTDFHUSNYJENJ-UHFFFAOYSA-N 0.000 description 1
- NMUMVZGYDDTVRD-UHFFFAOYSA-N Cc(cc1)ccc1-[n](c1ccc(C=C)cc1c1c2)c1ccc2I Chemical compound Cc(cc1)ccc1-[n](c1ccc(C=C)cc1c1c2)c1ccc2I NMUMVZGYDDTVRD-UHFFFAOYSA-N 0.000 description 1
- HRACFVJMILPTGD-UHFFFAOYSA-N Ic(cc1)ccc1N(C1C=CC(I)=CC1)c(cc1)ccc1I Chemical compound Ic(cc1)ccc1N(C1C=CC(I)=CC1)c(cc1)ccc1I HRACFVJMILPTGD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/124—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/13—Morphological aspects
- C08G2261/135—Cross-linked structures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/16—End groups
- C08G2261/164—End groups comprising organic end groups
- C08G2261/1642—End groups comprising organic end groups comprising reactive double bonds or triple bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/16—End groups
- C08G2261/164—End groups comprising organic end groups
- C08G2261/1644—End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3241—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/51—Charge transport
- C08G2261/512—Hole transport
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/70—Post-treatment
- C08G2261/76—Post-treatment crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/95—Use in organic luminescent diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/50—OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
Definitions
- the present disclosure relates to an organic electronics material, a liquid composition, an organic layer, an organic electronics element, an organic electroluminescence element (organic EL element), a display element, a lighting device, and a display device.
- organic EL element organic electroluminescence element
- Organic EL elements are attracting attention as large-area solid-state light source applications that can replace, for example, incandescent lamps or gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
- LCD liquid crystal display
- FPD flat panel display
- Organic EL elements are roughly classified into two types, low molecular organic EL elements and high molecular organic EL elements, from the organic materials used.
- the polymer organic EL element a polymer compound is used as an organic material
- the low molecular organic EL element a low molecular compound is used.
- the manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system, and a wet process in which film formation is performed by plate printing such as relief printing and intaglio printing, and plateless printing such as inkjet. It is roughly divided into two. The wet process is expected as an indispensable method for future large-screen organic EL displays because simple film formation is possible.
- Patent Document 1 a compound having a polymerizable group
- the present disclosure provides an organic electronics material and a liquid composition that exhibit sufficient curability suitable for a wet process and are suitable for improving the characteristics of an organic electronics element.
- the present disclosure also provides an organic layer suitable for improving the characteristics of an organic electronic device.
- the present disclosure provides an organic electronics element, an organic EL element, a display element, a lighting device, and a display device having excellent characteristics.
- the present invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
- One embodiment has a charge transport property having a crosslinkable group represented by the following formula (1) at at least one terminal and a crosslinkable group represented by the following formula (2) at at least one terminal.
- the present invention relates to an organic electronic material containing a polymer or an oligomer.
- R a to R g each independently represents a hydrogen atom or a substituent.
- R a to R c each independently represents a hydrogen atom or a substituent.
- the charge transporting polymer or oligomer has three or more ends.
- the charge transporting polymer or oligomer includes at least a divalent structural unit L and a monovalent structural unit T, and the structural unit L is a substituted or unsubstituted aromatic amine structure, And a monovalent group including a structural unit including at least one structure selected from the group consisting of a substituted or unsubstituted carbazole structure, wherein the structural unit T includes a crosslinkable group represented by the formula (1). And a monovalent structural unit T2 containing a crosslinkable group represented by the formula (2).
- the charge transporting polymer or oligomer is further represented by the structural unit B having a valence of 3 or more, the crosslinkable group represented by the formula (1), and the formula (2).
- the structural unit B is a substituted or unsubstituted aromatic amine structure, substituted or unsubstituted
- a structural unit containing at least one structure selected from the group consisting of a carbazole structure and a substituted or unsubstituted condensed polycyclic aromatic hydrocarbon structure, wherein the structural unit T3 is a substituted or unsubstituted aromatic ring Includes structural units that contain structures.
- an adjacent structural unit selected from the group consisting of the structural unit L, the structural unit T, and the structural unit B optionally included is an aromatic ring. They are connected to each other by direct connection.
- the charge transporting polymer or oligomer includes a bifunctional monomer including a structural unit having charge transporting property, a monofunctional monomer T1 including a crosslinkable group represented by the formula (1), and It is a copolymer of monomers containing at least a monofunctional monomer T2 containing a crosslinkable group represented by the formula (2).
- the charge transporting polymer or oligomer includes a bifunctional monomer including a structural unit having a hole transporting property, a monofunctional monomer T1 including a crosslinkable group represented by the formula (1), It is a copolymer of monomers containing at least a monofunctional monomer T2 containing a crosslinkable group represented by the formula (2).
- Another embodiment relates to a liquid composition containing any one of the organic electronic materials and a solvent.
- Another embodiment relates to an organic layer formed using any one of the organic electronic materials or the liquid composition.
- Another embodiment relates to an organic electronic device including at least one organic layer.
- the organic electronic device includes at least a pair of an anode and a cathode, and at least one organic layer located between the anode and the cathode.
- Another embodiment relates to an organic electroluminescence device including at least one organic layer.
- the organic electroluminescent element includes at least a substrate, an anode, a light emitting layer, and a cathode, and the light emitting layer is the organic layer.
- the organic electroluminescent device includes at least a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, and a cathode, and the hole injection layer, the hole transport layer, And at least one layer selected from the group consisting of the light emitting layers is the organic layer.
- the organic electroluminescent device includes at least a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode, and the hole injection At least one layer selected from the group consisting of a layer, the hole transport layer, and the light emitting layer is the organic layer.
- Another embodiment relates to a display element including the organic electroluminescence element.
- Another embodiment relates to a display device including the illumination device and a liquid crystal element as a display unit.
- an organic electronics material and a liquid composition that exhibit sufficient curability suitable for a wet process and are suitable for improving the characteristics of an organic electronics element.
- the organic layer suitable for the improvement of the characteristic of an organic electronics element is provided.
- an organic electronics element, an organic EL element, a display element, a lighting device, and a display device having excellent characteristics are provided.
- FIG. 1 is a schematic cross-sectional view illustrating an example of an organic EL element according to an embodiment.
- the organic electronic material has a crosslinkable group represented by the following formula (1) at at least one end and has at least one crosslinkable group represented by the following formula (2).
- a charge transporting polymer or oligomer having two terminals (“charge transporting polymer or oligomer” is referred to as “charge transporting polymer”, and "crosslinking group represented by formula (1)” is referred to as “crosslinking group ( 1) "and” crosslinkable group represented by formula (2) "may be referred to as” crosslinkable group (2) ".
- the organic electronic material may contain only one kind of charge transporting polymer, or may contain two or more kinds.
- the charge transporting polymer is preferable in that the film forming property in the wet process is excellent as compared with the low molecular compound.
- R a to R g each independently represents a hydrogen atom or a substituent.
- “*” in the formula represents a binding site with another structure.
- R a to R c each independently represents a hydrogen atom or a substituent.
- the charge transporting polymer has the ability to transport charge.
- the charge transporting polymer has a crosslinkable group (1) at at least one end and has a crosslinkable group (2) at at least one end.
- the term “end” refers to the end of a polymer chain.
- the “at least one terminal” at which the crosslinkable group (2) is present is preferably a terminal different from the “at least one terminal” at which the crosslinkable group (1) is present.
- the charge transporting polymer may have only one type or two or more types of the crosslinkable group (1) and the crosslinkable group (2).
- the crosslinkable group (1) may be present at at least one terminal of the charge transporting polymer
- the crosslinkable group (2) may be present at at least one terminal of the charge transporting polymer.
- the charge transporting polymer may have two terminals or three or more terminals.
- the charge transporting polymer having two ends is a linear polymer that does not include a branch on the polymer chain, and the charge transporting polymer having three or more ends is a branch including a branch on the polymer chain.
- the charge transporting polymer may be linear or branched. When the charge transporting polymer is a branched polymer, the crosslinkable group (1) and the crosslinkable group (2) are introduced into the side chain even if they are introduced into the main chain of the charge transporting polymer. It may be introduced to both the main chain and the side chain.
- the charge transporting polymer preferably includes at least a divalent structural unit L and a monovalent structural unit T constituting a terminal portion, and is a trivalent or higher structural unit constituting a branched portion. B may further be included. Further, according to one embodiment, the charge transporting polymer preferably includes at least a trivalent structural unit B and a monovalent structural unit T constituting a terminal portion, and further includes a divalent structural unit L. But you can.
- the charge transporting polymer may contain only one type of each structural unit, or may contain a plurality of types. In the charge transporting polymer, each structural unit is bonded to each other at a binding site of “monovalent” to “trivalent or more”. The bond is preferably a direct bond between aromatic rings.
- the charge transporting polymer may be “adjacent structural unit selected from the group consisting of structural unit L, structural unit T, and optionally included structural unit B” or “structural unit B, structural unit.
- the “adjacent structural unit selected from the group consisting of T and optionally included structural unit L” is a polymer bonded to each other by a direct bond between aromatic rings.
- the charge transporting polymer has a crosslinkable group (1) at at least one end and a crosslinkable group (2) at at least one end. Therefore, at least a part of the structural unit T contained in the charge transporting polymer is the structural unit T1 including the crosslinkable group (1), and at least a part of the structural unit T includes the crosslinkable group (2).
- the structural unit T2 is included. Furthermore, at least a part of the structural unit T may be a structural unit T3 that does not include the crosslinkable group (1) and the crosslinkable group (2).
- the charge transporting polymer has a combination of the crosslinkable group (1) and the crosslinkable group (2)
- high curability can be obtained as compared with the charge transportable polymer having other crosslinkable groups.
- a charge transporting polymer having a combination of the crosslinkable group (1) and the crosslinkable group (2) is used, an organic electronic device having excellent characteristics such as life characteristics can be obtained.
- the charge transporting polymer includes at least a structural unit L and a structural unit T, and the structural unit L is composed of a substituted or unsubstituted aromatic amine structure and a substituted or unsubstituted carbazole structure.
- the structural unit T includes a structural unit including at least one structure selected from the group, and the structural unit T includes a structural unit T1 including a crosslinkable group (1) and a structural unit T2 including a crosslinkable group (2).
- the charge transporting polymer in addition to the structural unit L and the structural unit T, further includes the structural unit B, and the crosslinkable group (1) and the crosslinkable group (2).
- the structural unit includes a structural unit including at least one structure selected from the group consisting of a substituted condensed polycyclic aromatic hydrocarbon structure, and the structural unit T3 includes a structural unit including a substituted or unsubstituted aromatic ring structure.
- Examples of the partial structure contained in the charge transporting polymer include the following structures.
- the charge transporting polymer is not limited to those having the following partial structures.
- L represents the structural unit L
- T represents the structural unit T
- B represents the structural unit B.
- a plurality of L may be the same structural unit or different structural units. The same applies to T and B.
- the structural unit L is preferably a structural unit having charge transporting properties.
- the structural unit having charge transporting properties is not particularly limited as long as it contains an atomic group having the ability to transport charges.
- the structural unit L is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenylene structure, terphenylene structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxaline structure, acridine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxadiazole structure, thiazole structure, thiadiazole structure, triazole structure, benzo Selected from the group consisting of thiophene structure, fluoren
- the aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure. If each of these structures has a substituent, examples of the substituent include, for example, the substituents R A, which will be described later, it preferably has a substituent R E, which will be described later, is a substituent R B, which will be described later More preferred.
- the structural unit L is a group consisting of a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, and pyrrole structure from the viewpoint of obtaining excellent hole transport properties.
- it contains at least one structure selected from the group consisting of a substituted or unsubstituted aromatic amine structure and a substituted or unsubstituted carbazole structure. More preferred.
- the structural unit L is at least selected from the group consisting of a substituted or unsubstituted fluorene structure, benzene structure, phenanthrene structure, pyridine structure, and quinoline structure from the viewpoint of obtaining excellent electron transport properties. It preferably contains one type of structure. If each of these structures has a substituent, examples of the substituent include, for example, the substituents R A, which will be described later, it preferably has a substituent R E, which will be described later, is a substituent R B, which will be described later More preferred.
- structural unit L includes the following.
- the structural unit L is not limited to the following.
- Each R independently represents a hydrogen atom or a substituent.
- each of the substituents is independently —R 1 (except when it is a hydrogen atom), —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , halogen It is a substituent selected from the group consisting of an atom, a group containing a crosslinkable group (1), a group containing a crosslinkable group (2), and a group containing a polymerizable functional group.
- R 1 to R 8 each independently represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group.
- the alkyl group may be further substituted with an aryl group and / or a heteroaryl group.
- the aryl group may be further substituted with an alkyl group and / or a heteroaryl group.
- the heteroaryl group may be further substituted with an alkyl group and / or an aryl group.
- R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group.
- Ar represents an arylene group or a heteroarylene group.
- Ar is preferably an arylene group, more preferably a phenylene group.
- Ar may have a substituent, examples of the substituent group include the substituents R A, preferably a substituent R E, which will be described later, and more preferably a substituent R B, which will be described later .
- the alkyl group may be a linear, branched or cyclic alkyl group.
- the linear, branched or cyclic alkyl group is an atomic group obtained by removing one hydrogen atom from a linear or branched saturated hydrocarbon, or an atomic group obtained by removing one hydrogen atom from a cyclic saturated hydrocarbon.
- the alkyl group preferably has 1 to 22 carbon atoms.
- An aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon ring.
- the number of carbon atoms of the aryl group is preferably 6-30.
- a heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
- the carbon number of the heteroaryl group is preferably 2-30.
- An arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon ring.
- the number of carbon atoms of the arylene group is preferably 6-30.
- a heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle.
- the carbon number of the heteroarylene group is preferably 2-30.
- the structural unit L may contain at least one of the crosslinkable group (1) and the crosslinkable group (2) as long as the effect is not hindered. In another embodiment, the structural unit L may not include both the crosslinkable group (1) and the crosslinkable (2) from the viewpoint of obtaining a high effect of improving the characteristics.
- the structural unit T is a monovalent structural unit constituting the terminal portion of the charge transporting polymer.
- the structural unit T may be a structural unit having charge transporting properties.
- the charge transporting polymer only needs to have at least one structural unit T1 and at least one structural unit T2. When the charge transporting polymer has more than two terminals, it may further have a structural unit T3.
- the structural unit T3 is not particularly limited.
- the structural unit T1 is a structural unit including a crosslinkable group represented by the formula (1).
- the charge transporting polymer may have only one type of structural unit T1, or two or more types of structural unit T1.
- the structural unit T1 may contain only one crosslinkable group (1) or two or more. When two or more are included, the two or more may be the same or different.
- R a to R g each independently represents a hydrogen atom or a substituent.
- the substituent is, for example, a substituent selected from —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , and a halogen atom exemplified for the structural unit L. (The substituent may be referred to as “substituent R B ”.)
- R a to R g are all hydrogen atoms.
- the structural unit T1 may be a structure represented by the formula (1). That is, the crosslinkable group (1) may be the structural unit T1.
- the structural unit T1 includes a substituted or unsubstituted aromatic ring structure and a crosslinkable group (1) bonded to the aromatic ring structure directly or via a divalent linking group. It may be a structural unit. In the latter case, the structural unit T1 has a binding site with another structural unit on the aromatic ring structure.
- the divalent linking group include a substituted or unsubstituted alkylene group, an ether bond, a carbonyl bond, a substituted or unsubstituted aromatic ring group, or a group formed by bonding two or more selected from these. .
- the aromatic ring structure, the alkylene group, and the substituent that the aromatic ring group may have include, for example, —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , — It is a substituent selected from the group consisting of SiR 6 R 7 R 8 , a halogen atom, a group containing a crosslinkable group (1), and a group containing a polymerizable functional group (the substituent is referred to as “substituent R C ”. There is a case.)
- the alkylene group may be linear, branched or cyclic.
- the alkylene group may be a linear, branched or cyclic alkylene group.
- the linear, branched or cyclic alkylene group is an atomic group obtained by removing two hydrogen atoms from a linear or branched saturated hydrocarbon, or an atomic group obtained by removing two hydrogen atoms from a cyclic saturated hydrocarbon.
- aromatic ring refers to a ring exhibiting aromaticity.
- the aromatic ring may be an aromatic hydrocarbon such as benzene, naphthalene, anthracene, tetracene, fluorene, or phenanthrene, for example, pyridine, pyrazine, quinoline, isoquinoline, acridine, phenanthroline, furan, pyrrole, thiophene,
- An aromatic heterocyclic ring such as carbazole, oxazole, oxadiazole, thiadiazole, triazole, benzoxazole, benzoxiadiazole, benzothiadiazole, benzotriazole, or benzothiophene may be used.
- the aromatic ring may be a monocycle such as benzene, for example, a condensed polycyclic aromatic hydrocarbon in which the rings are condensed with each other, such as naphthalene, or a ring is condensed with each other, for example, quinoline. It may be a condensed polycyclic aromatic heterocycle.
- the aromatic ring may have a structure in which two or more selected from independent single rings and condensed rings are bonded, such as biphenyl, terphenyl, or triphenylbenzene.
- the structural unit T1 can be represented by the following formula (3), for example.
- T1 is a structure containing a crosslinkable group (1).
- the structural unit T1 is not limited to the following example.
- Ar represents a substituted or unsubstituted aromatic ring
- X represents a divalent linking group
- R a to R g each independently represent a hydrogen atom or a substituent.
- 1 to m represent integers, 1 is 0 or 1, n is 0 or 1, and m is 1 or more. The upper limit of m is determined according to the structure of Ar and the number of l.
- substituents that the aromatic ring may have include the above-described substituent RC , and examples of the substituent when at least one of R a to R g is a substituent include the substituent R B Is mentioned.
- the structural unit T1 is not limited to the following example.
- Ar represents a substituted or unsubstituted aromatic ring
- R a to R g each independently represents a hydrogen atom or a substituent.
- l and m represent an integer, l is 0 or 1, and m is 1 or more.
- the upper limit of m is determined according to the structure of Ar and the number of l.
- a to d represent integers, a is 0 to 1, b is 0 to 20, c is 0 to 5, and d is 0 to 3.
- substituent that the aromatic ring may have include the above-described substituent RC , and examples of the substituent when at least one of R a to R g is a substituent include the substituent R B Is mentioned.
- the structural unit T1 is not limited to the following example.
- R a to R g each independently represents a hydrogen atom or a substituent.
- substituents when at least one of R a to R g is a substituent include the above-described substituent R B.
- the structural unit T1 is not limited to the following example.
- R a to R g each independently represents a hydrogen atom or a substituent.
- m is an integer of 1 to 5.
- a to d represent integers, a is 0 to 1, b is 0 to 20, c is 0 to 5, and d is 0 to 3.
- Examples of the substituent when at least one of R a to R g is a substituent include the above-described substituent R B.
- the structural unit T2 is a structural unit including a crosslinkable group represented by the formula (2).
- the charge transporting polymer may have only one type of structural unit T2, or may have two or more types.
- the structural unit T2 may contain only one crosslinkable group (2) or two or more. When two or more are included, the two or more may be the same or different.
- R a to R c each independently represents a hydrogen atom or a substituent. Substituents are, for example, a substituent R B.
- R a to R c are all hydrogen atoms; R a and R b are hydrogen atoms, R c is a methyl group; R a and R b are hydrogen atoms.
- An atom, R c is a phenyl group; or R a is a methyl group, R b and R c are hydrogen atoms, and the like.
- the structural unit T2 may be, for example, a structure represented by the formula (2). That is, the crosslinkable group (2) may be the structural unit T2.
- the structural unit T2 includes a substituted or unsubstituted aromatic ring structure and a crosslinkable group (2) bonded to the aromatic ring structure directly or via a divalent linking group. It may be a structural unit. In the latter case, the structural unit T2 has a binding site with another structural unit on the aromatic ring structure.
- the divalent linking group include a substituted or unsubstituted alkylene group, an ether bond, a carbonyl bond, a substituted or unsubstituted aromatic ring group, or a group formed by bonding two or more selected from these.
- the aromatic ring structure, the alkylene group, and the substituent that the aromatic ring group may have include, for example, —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , — It is a substituent selected from the group consisting of SiR 6 R 7 R 8 , a halogen atom, a group containing a crosslinkable group (2), and a group containing a polymerizable functional group (the substituent is “substituent R D ”). There is a case.)
- the alkylene group may be linear, branched or cyclic.
- the structural unit T2 can be represented by, for example, the following formula (8).
- T2 is a structure containing a crosslinkable group (2).
- the structural unit T2 is not limited to the following example.
- Ar represents a substituted or unsubstituted aromatic ring
- X represents a divalent linking group
- R a to R c each independently represent a hydrogen atom or a substituent.
- 1 to m represent integers, 1 is 0 or 1, n is 0 or 1, and m is 1 or more.
- the upper limit of m is determined according to the structure of Ar and the number of l.
- substituents that the aromatic ring may have include the above substituent RD
- examples of the substituent when at least one of R a to R c is a substituent include the above substituent R B Is mentioned.
- the structural unit T2 is not limited to the following example.
- Ar represents a substituted or unsubstituted aromatic ring
- R a to R c each independently represents a hydrogen atom or a substituent.
- l and m represent an integer, l is 0 or 1, and m is 1 or more.
- the upper limit of m is determined according to the structure of Ar and the number of l.
- a to g are integers, a is 0 to 20, b is 0 to 1, c is 0 to 20, d is 0 to 1, e is 0 to 1, f is 0 to 5, and g is 0 to 1. is there.
- Examples of the substituent that the aromatic ring may have include the above substituent RD , and examples of the substituent when at least one of R a to R c is a substituent include the above substituent R B Is mentioned.
- the structural unit T2 is not limited to the following example.
- R a to R c each independently represents a hydrogen atom or a substituent.
- substituents when at least one of R a to R c is a substituent include the above-described substituent R B.
- the structural unit T2 is not limited to the following example.
- R a to R c each independently represents a hydrogen atom or a substituent.
- m is an integer of 1 to 5.
- a to g are integers, a is 0 to 20, b is 0 to 1, c is 0 to 20, d is 0 to 1, e is 0 to 1, f is 0 to 5, and g is 0 to 1. is there.
- substituent when at least one of R a to R c is a substituent include the above-described substituent R B.
- the structural unit T3 is a structural unit different from the structural unit T1 and the structural unit T2.
- the structural unit T3 does not include the crosslinkable group (1) and does not include the crosslinkable group (2).
- the charge transporting polymer may have only one type of structural unit T3, or may have two or more types.
- the structural unit T3 is not particularly limited, and includes, for example, an aromatic ring structure.
- the structural unit T3 preferably contains at least one selected from the group consisting of a substituted or unsubstituted aromatic hydrocarbon structure and a substituted or unsubstituted aromatic heterocyclic structure.
- the structural unit T3 is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without deteriorating charge transportability, and is preferably substituted or unsubstituted benzene.
- a structure is more preferable.
- the structural unit T3 may have a polymerizable structure (that is, a polymerizable functional group such as a pyrrole-yl group).
- the structural unit T3 may have the same structure as the structural unit L or may have a different structure. However, in the same case, for example, the example given as the structural unit L can be changed to a monovalent structure unit T.
- the substituent is, for example, —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 exemplified for the structural unit L.
- a halogen atom, and a substituent selected from a group containing a polymerizable substituent the substituent may be referred to as “substituent R E ”).
- the structural unit T3 includes a structural unit represented by the following formula (13).
- the structural unit T3 is not limited to the following.
- R is a hydrogen atom or a substituent.
- substituent include the substituent R E.
- R is a polymerizable functional group. A group containing a group.
- the proportion of the structural unit T1 in the total structural unit T of the charge transporting polymer is preferably 0.1 mol% or more, more preferably 0.00%, based on the total number of all the structural units T. It is 2 mol% or more, more preferably 0.3 mol% or more. In particular, it is preferably 1 mol% or more, and more preferably 2 mol% or more.
- the charge transporting polymer is not particularly limited as long as it has at least one structural unit T2. Therefore, the upper limit is less than 100 mol%.
- the ratio in the total structural unit T can be determined by, for example, the charge ratio (molar ratio) of the monomer corresponding to the structural unit T used for synthesizing the charge transporting polymer.
- the proportion of the structural unit T2 in the total structural unit T of the charge transporting polymer is preferably 0.1 mol% or more, more preferably 0.00%, based on the total number of all the structural units T. It is 2 mol% or more, more preferably 0.3 mol% or more. In particular, it is preferably 1 mol% or more, and more preferably 2 mol% or more.
- the charge transporting polymer is not particularly limited as long as it has at least one structural unit T1. Therefore, the upper limit is less than 100 mol%.
- the ratio in the total structural unit T can be determined by, for example, the charge ratio (molar ratio) of the monomer corresponding to the structural unit T used for synthesizing the charge transporting polymer.
- the ratio of the structural unit T3 in the total number of all the structural units T is based on the total number of all the structural units T from the viewpoint of introducing the structural units T1 and T2.
- it is 99.8 mol% or less, More preferably, it is 99.6 mol% or less, More preferably, it is 99.4 mol% or less.
- the lower limit is not particularly limited, but may be 5 mol% or more in consideration of introduction of a polymerizable functional group, introduction of a substituent for improving film formability, wettability, and the like.
- the structural unit B is a trivalent or higher-valent structural unit that constitutes a branched portion when the charge transporting polymer has a branched structure.
- the structural unit B is preferably hexavalent or less, more preferably trivalent or tetravalent, from the viewpoint of improving the durability of the organic electronic element.
- the structural unit B is preferably a unit having charge transportability.
- the structural unit B includes a substituted or unsubstituted aromatic amine structure, a substituted or unsubstituted carbazole structure, and a substituted or unsubstituted condensed polycyclic aromatic carbonization from the viewpoint of improving the durability of the organic electronic device.
- substituents R A are preferably within the above substituent R E, and more preferably the substituents R B.
- structural unit B includes the following.
- the structural unit B is not limited to the following.
- W represents a trivalent linking group, for example, an arenetriyl group or a heteroarenetriyl group.
- Ar each independently represents a divalent linking group, for example, each independently represents an arylene group or a heteroarylene group.
- Ar is preferably an arylene group, more preferably a phenylene group.
- Y represents a divalent linking group, for example, from one or more a group having a hydrogen atom in the substituents R B, include further divalent group derived by removing one hydrogen atom.
- Z represents any of a carbon atom, a silicon atom, or a phosphorus atom.
- the substituent R A can be mentioned in the structural unit L, is preferably the substituent R E, more preferably the substituents R B.
- an arenetriyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon.
- the carbon number of the arenetriyl group is preferably 6-30.
- the heteroarene triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocyclic ring.
- the carbon number of the heteroarene triyl group is preferably 2-30.
- the structural unit B may contain at least one of the crosslinkable group (1) and the crosslinkable group (2) as long as the effect is not hindered. In another embodiment, the structural unit B may not include both the crosslinkable group (1) and the crosslinkable (2) from the viewpoint of obtaining a high effect of improving the characteristics.
- the charge transporting polymer is polymerized differently from the structure containing the crosslinkable group (1) and the structure containing the crosslinkable group (2) from the viewpoint of curing by a polymerization reaction and changing the solubility in a solvent. May have at least one functional group.
- the “polymerizable functional group” refers to a functional group that can form a bond with each other by applying heat and / or light.
- Examples of the polymerizable functional group include a group having a small ring (for example, a cyclic alkyl group such as a cyclopropyl group or a cyclobutyl group; a cyclic ether group such as an epoxy group (oxiranyl group) or an oxetane group (oxetanyl group); a diketene group; Episulfide groups; lactone groups; lactam groups, etc.), heterocyclic groups (eg, furan-yl groups, pyrrole-yl groups, thiophene-yl groups, silol-yl groups) and the like.
- a small ring for example, a cyclic alkyl group such as a cyclopropyl group or a cyclobutyl group; a cyclic ether group such as an epoxy group (oxiranyl group) or an oxetane group (oxetanyl group); a diketen
- an epoxy group and / or an oxetane group is preferable, and an oxetane group is more preferable from the viewpoint of reactivity and characteristics of the organic electronic element.
- the main skeleton of the charge transporting polymer and the polymerizable functional group are preferably connected by an alkylene chain.
- a hydrophilic chain such as an ethylene glycol chain or a diethylene glycol chain from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO. preferable.
- the charge transporting polymer is polymerized with the end of the alkylene chain and / or the hydrophilic chain, that is, with these chains.
- An ether bond or an ester bond may be present at the connecting portion with the functional group and / or the connecting portion between these chains and the skeleton of the charge transporting polymer.
- group containing a polymerizable functional group means a polymerizable functional group itself or a group obtained by combining a polymerizable functional group with an alkylene chain or the like.
- the polymerizable functional group may have a substituent such as a linear, branched or cyclic alkyl group.
- a group exemplified in International Publication No. WO2010 / 140553 can be suitably used.
- the polymerizable functional group may be introduced at the terminal of the charge transporting polymer (that is, the structural unit T), or may be introduced at a portion other than the terminal (that is, the structural unit L or B), or may be other than the terminal and the terminal. It may be introduced in both parts. From the viewpoint of curability, it is preferably introduced at least at the end (that is, the structural unit T), and from the viewpoint of achieving both curability and charge transportability, it is preferably introduced only at the end.
- the charge transporting polymer is a branched polymer
- the polymerizable functional group may be introduced into the main chain of the charge transporting polymer or may be introduced into the side chain. It may be introduced in both.
- the number average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
- the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and still more preferably 2,000 or more, from the viewpoint of excellent charge transportability.
- the number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of a liquid composition. The following is more preferable.
- the weight average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
- the weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, and still more preferably 10,000 or more, from the viewpoint of excellent charge transportability.
- the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of a liquid composition. The following is more preferable.
- the number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
- GPC gel permeation chromatography
- the measurement conditions can be set as follows.
- Equipment High-performance liquid chromatograph Prominence, Shimadzu Corporation Liquid feed pump (LC-20AD) Deaeration unit (DGU-20A) Autosampler (SIL-20AHT) Column oven (CTO-20A) PDA detector (SPD-M20A) Differential refractive index detector (RID-20A)
- LC-20AD Liquid feed pump
- DGU-20A Deaeration unit
- SIL-20AHT Autosampler
- CTO-20A CTO-20A
- PDA detector SPD-M20A
- Differential refractive index detector RID-20A
- the proportion of the structural unit L is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total structural unit, from the viewpoint of obtaining sufficient charge transportability. 30 mol% or more is more preferable. Further, the ratio of the structural unit L is preferably 95 mol% or less, more preferably 90 mol% or less, and still more preferably 85 mol% or less in consideration of the structural unit T and the structural unit B introduced as necessary.
- the proportion of the structural unit T contained in the charge transporting polymer is based on the total structural unit from the viewpoint of improving the characteristics of the organic electronics element or suppressing the increase in the viscosity and satisfactorily synthesizing the charge transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is still more preferable.
- the proportion of the structural unit T is preferably 60 mol% or less, more preferably 55 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining sufficient charge transport properties.
- the proportion of the structural unit B is preferably 1 mol% or more, more preferably 5 mol% or more, based on the total structural units, from the viewpoint of improving the durability of the organic electronics element. 10 mol% or more is more preferable.
- the proportion of the structural unit B is preferably 50 mol% or less, preferably 40 mol% or less, from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge transporting polymer or obtaining sufficient charge transportability. Is more preferable, and 30 mol% or less is still more preferable.
- the total proportion of the crosslinkable group (1), the crosslinkable group (2), and the polymerizable functional group present as necessary is the charge transporting polymer.
- 0.01 mol% or more is preferable, 0.05 mol% or more is more preferable, and 0.1 mol% or more is still more preferable on the basis of all structural units.
- 0.5 mol% or more is preferable, 1 mol% or more is more preferable, and 1.5 mol% or more is still more preferable.
- the proportion of the polymerizable group is preferably 70 mol% or less, more preferably 60 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining good charge transportability. In particular, 30 mol% or less is preferable, 20 mol% or less is more preferable, and 10 mol% or less is still more preferable.
- the “ratio of polymerizable group” refers to the ratio of structural units having a polymerizable group.
- the charge transporting polymer when the organic electronic material is a hole transporting material, from the viewpoint of obtaining high hole injecting property and hole transporting property, the charge transporting polymer includes a structural unit including an aromatic amine structure, and / or Or it is preferable to have a structural unit containing a carbazole structure as a main structural unit. From this viewpoint, the ratio of the total number of structural units containing an aromatic amine structure and / or carbazole structure based on the total number of structural units L and B in the charge transporting polymer (one structure) In the case of including only the unit, the ratio of the total number of the one structural unit.
- the ratio of the total number of the both structural units is preferably 40 mol% or more, more preferably 45 mol% or more. Preferably, 50 mol% or more is more preferable.
- the ratio of the total number of structural units containing an aromatic amine structure and / or structural units containing a carbazole structure may be 100 mol%.
- the aromatic amine structure and the carbazole structure may each be substituted or unsubstituted.
- the proportion of the structural unit can be determined by using the charged amount of the monomer corresponding to each structural unit used for synthesizing the charge transporting polymer. Further, the proportion of the structural units can be calculated as an average value using the integrated value of the spectrum derived from each structural unit in the 1 H-NMR spectrum of the charge transporting polymer. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
- the amount contained in the charge transporting polymer is small.
- the content of the polymerizable group can be appropriately set in consideration of these.
- the number of polymerizable groups per molecule of the charge transporting polymer is 2 or more, preferably 3 or more, more preferably 4 or more from the viewpoint of obtaining a sufficient change in solubility. Further, the number of polymerizable groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.
- the number of the polymerizable groups is the amount of the polymerizable group used for synthesizing the charge transporting polymer (for example, the amount of the monomer having a polymerizable group), the amount of the monomer corresponding to each structural unit,
- the average value can be determined using the weight average molecular weight of the charge transporting polymer.
- the number of polymerizable groups is the ratio of the integral value of the signal derived from the polymerizable group and the integral value of the entire spectrum in the 1 H-NMR (nuclear magnetic resonance) spectrum of the charge transporting polymer, It can be calculated as an average value using a weight average molecular weight or the like. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
- the crosslinkable group (1), the crosslinkable group (2), and the polymerizable functional group can also be determined in the same manner as described above.
- the charge transporting polymer can be produced by various synthetic methods and is not particularly limited.
- the charge transporting polymer includes a bifunctional monomer including a structural unit having charge transporting property, a monofunctional monomer T1 including a crosslinkable group (1), and a monofunctional monomer including a crosslinkable group (2). It is a copolymer of monomers containing at least T2.
- the charge transporting polymer includes a bifunctional monomer including a structural unit having a hole transporting property, a monofunctional monomer T1 including a crosslinkable group (1), and a crosslinkable group (2). This is a copolymer of monomers including at least a monofunctional monomer T2.
- the monomer may further contain a trifunctional or higher polyfunctional monomer.
- the charge transporting polymer includes a trifunctional or higher polyfunctional monomer including a structural unit having charge transporting property, a monofunctional monomer T1 including a crosslinkable group (1), and a crosslinkable group (2).
- the charge transporting polymer is composed of a trifunctional or higher polyfunctional monomer including a structural unit having hole transportability, a monofunctional monomer T1 including a crosslinkable group (1), a crosslinkable group ( It is a copolymer of monomers containing at least a monofunctional monomer T2 containing 2).
- the monomer may further include a bifunctional monomer.
- the bifunctional monomer is a monomer having two functional groups capable of forming a bond by a reaction in a copolymerization reaction, and the monofunctional monomer has one functional group capable of forming a bond by a reaction in a copolymerization reaction.
- a monomer, which is a trifunctional or higher polyfunctional monomer, is a monomer having three or more functional groups capable of forming a bond by reaction in a copolymerization reaction.
- a known coupling reaction such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Stille coupling, Buchwald-Hartwig coupling or the like can be used.
- Suzuki coupling causes, for example, a cross coupling reaction using a Pd catalyst between an aromatic boronic acid derivative and an aromatic halide.
- a charge transporting polymer can be easily produced by bonding desired aromatic rings together.
- the structural unit L, the structural unit B, and the structural unit T are all structural units derived from a monomer used for introducing each structural unit by a copolymerization reaction.
- a Pd (0) compound, a Pd (II) compound, a Ni compound, or the like is used as a catalyst.
- a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate and the like with a phosphine ligand can also be used.
- Examples of monomers that can be used in the copolymerization reaction include the following.
- L represents the structural unit L
- B represents the structural unit B
- T represents the structural unit T.
- R 1 to R 3 each represents a functional group capable of forming a bond with each other, and preferably any one selected from the group consisting of a boronic acid group, a boronic ester group, and a halogen group.
- the monomer T includes at least a monomer T1 having a structural unit T1 as “T” and a monomer T2 having a structural unit T2 as “T”.
- the monomer L is an example of a bifunctional monomer
- the monomer B is an example of a polyfunctional monomer having three or more functions
- the monomer T is an example of a monofunctional monomer.
- These monomers can be synthesized by a known method. These monomers are available from, for example, Tokyo Chemical Industry Co., Ltd., Sigma Aldrich Japan LLC.
- the method for producing the charge transporting polymer is not limited to the above.
- the charge transporting polymer may be produced by introducing a crosslinkable group (1) and a crosslinkable group (2) into a commercially available charge transportable polymer.
- the organic electronic material may further contain a dopant.
- the dopant is not particularly limited as long as it is a compound that can be added to the organic electronic material to develop a doping effect and improve the charge transport property.
- Doping includes p-type doping and n-type doping.
- p-type doping a substance serving as an electron acceptor is used as a dopant
- n-type doping a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability.
- the dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. Further, one kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.
- the dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and ⁇ -conjugated compounds.
- Lewis acid FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like;
- protonic acid HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeCl 3
- the electron-accepting compounds described in JP 2000-36390 A, JP 2005-75948 A, JP 2003-213002 A, and the like can also be used.
- the dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
- alkali metals such as Li and Cs
- alkaline earth metals such as Mg and Ca
- alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
- a compound that can act as a polymerization initiator for the polymerizable functional group as a dopant.
- examples of the substance having both a function as a dopant and a function as a polymerization initiator include the ionic compounds.
- the organic electronic material may further contain other polymers and the like.
- the content of the charge transporting polymer is preferably 50% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more based on the total weight of the organic electronic material from the viewpoint of obtaining good charge transporting properties. preferable. It may be 100% by mass.
- the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more. Moreover, from a viewpoint of maintaining favorable film formability, 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is still more preferable.
- the organic electronic material may contain a polymerization initiator, but the polymerization reaction proceeds sufficiently even when it does not contain a polymerization initiator.
- a polymerization initiator When a polymerization initiator is contained, known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators, and the like can be used. From the viewpoint of easily preparing the liquid composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator.
- the polymerization initiator that also has a function as a dopant include the ionic compound.
- the ionic compound include, for example, a salt having the perfluoroanion.
- the ionic compound include a salt (for example, the following compound) of a perfluoroanion and an iodonium ion or an ammonium ion.
- the content of the polymerization initiator is preferably 0.1 to 10.0% by mass, based on the polymer weight, and preferably 0.2 to 5.0% by mass. More preferred is 0.5 to 3.0% by mass.
- the liquid composition contains the organic electronic material and a solvent capable of dissolving or dispersing the material.
- the liquid composition can be preferably used as a liquid composition.
- the organic layer can be easily formed by a simple method such as a coating method.
- the liquid composition can be preferably used as an ink composition.
- solvent water, an organic solvent, or a mixed solvent thereof can be used.
- Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, 2,4
- Amide solvents dimethyl sulfoxide, tetrahydrofuran, acetone, chloroform, methylene chloride and the like can be mentioned.
- the liquid composition may further contain an additive as an optional component.
- additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.
- the content of the solvent in the liquid composition can be determined in consideration of application to various coating methods.
- the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferred is an amount of
- the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. .
- the organic layer is a layer formed using the organic electronic material or the liquid composition.
- an organic layer can be favorably formed by a coating method.
- the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc.
- a known method such as a plateless printing method may be used.
- the organic layer (coating layer) obtained after the coating may be dried using a hot plate or an oven to remove the solvent.
- the solubility of the organic layer may be changed by advancing the polymerization reaction (crosslinking reaction) of the charge transporting polymer by light irradiation, heat treatment or the like.
- the means for initiating or advancing the polymerization reaction is not particularly limited as long as it is a means for polymerizing a polymerizable group such as application of heat, light, microwave, radiation, electron beam, etc., but light irradiation and / or heat treatment. Heat treatment is more preferred.
- the light irradiation is usually performed for 0.1 seconds or longer, preferably 10 hours or shorter.
- the heat treatment is preferably performed at a temperature equal to or higher than the boiling point of the solvent contained in the liquid composition. Heating is preferably performed at a temperature of 120 ° C. to 410 ° C., more preferably 125 ° C. to 350 ° C., and still more preferably 130 ° C. to 250 ° C.
- the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more.
- the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoint of reducing electrical resistance.
- the organic electronic material is included in the organic layer as the organic electronic material itself or as a derivative derived from an organic electronic material such as a polymer, a reactant, or a decomposition product.
- the organic electronics element has at least the organic layer.
- the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor.
- the organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes (anode and cathode).
- the organic EL element has at least the organic layer.
- the organic EL element usually includes a substrate, an anode, a light emitting layer, and a cathode laminated, and other functions such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer, as necessary. With layers. Each layer may be formed by a vapor deposition method or a coating method.
- the organic EL element preferably has an organic layer as a light emitting layer or other functional layer, more preferably as a functional layer, and still more preferably as at least one of a hole injection layer and a hole transport layer.
- At least one selected from the group consisting of a hole injection layer, a hole transport layer, and a light emitting layer including at least a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, and a cathode.
- An organic electroluminescent element whose one layer is the said organic layer is mentioned.
- the substrate includes at least a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode, and includes a hole injection layer, a hole transport layer, and light emission.
- the organic electroluminescent element whose at least 1 layer selected from the group which consists of layers is the said organic layer is mentioned.
- FIG. 1 is a schematic cross-sectional view showing an example of an organic EL element.
- the organic EL element of FIG. 1 is an element having a multilayer structure, and includes a substrate 8, an anode 2, a hole injection layer 3 and a hole transport layer 6 made of the organic layer, a light emitting layer 1, an electron transport layer 7, and an electron injection layer. 5 and the cathode 4 in this order.
- a substrate 8 an anode 2
- a hole injection layer 3 and a hole transport layer 6 made of the organic layer
- a light emitting layer 1 an electron transport layer 7, and an electron injection layer. 5 and the cathode 4 in this order.
- each layer will be described.
- the hole injection layer 3 and the hole transport layer 6 are organic layers formed using the above-described organic electronics material, but the organic EL is not limited to such a structure, and other organic layers The organic layer formed using said organic electronics material may be sufficient.
- Light emitting layer As a material used for forming the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.
- TADF thermally activated delayed fluorescent material
- Low molecular weight compounds such as perylene, coumarin, rubrene, quinacdrine, stilbene, dye laser dyes, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinyl carbazole, fluorene-benzothiadiazole copolymer , Fluorene-triphenylamine copolymers, polymers thereof such as derivatives thereof, and mixtures thereof.
- Examples of phosphorescent materials include metal complexes containing metals such as Ir and Pt.
- Examples of the Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), Ir (ppy) 3 that emits green light.
- the light emitting layer contains a phosphorescent material
- a host material a low molecular compound, a polymer, or a dendrimer can be used.
- Examples of the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′-
- Examples of the polymer such as bis (carbazol-9-yl) -2,2′-dimethylbiphenyl) and derivatives thereof include the organic electronic materials, polyvinylcarbazole, polyphenylene, polyfluorene, and derivatives thereof.
- thermally activated delayed fluorescent materials include Adv.AMater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012) ; Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385) (2013); Chem. Lett., 43, 319 (2014) and the like.
- the hole injection layer 3 and the hole transport layer 6 are organic layers formed using the above-described organic electronics material, but the organic EL element is not limited to such a structure, but other organic layers. May be an organic layer formed using the above-mentioned organic electronic material. It is preferable to have at least one of a hole transport layer and a hole injection layer formed using the organic electronic material, and it is more preferable to have at least as a hole transport layer.
- a known material can be used for the hole injection layer.
- a known material is used for the hole transport layer. Can be used.
- aromatic amine compounds for example, aromatic diamines such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine ( ⁇ -NPD)
- Phthalocyanine compounds for example, thiophene compounds (for example, poly (3,4-ethylenedioxythiophene): thiophene conductive polymer such as poly (4-styrenesulfonate) (PEDOT: PSS)), and the like.
- Electrode transport layer examples include condensed ring tetracarboxylic acids such as phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene, and perylene.
- condensed ring tetracarboxylic acids such as phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene, and perylene.
- Anhydrides carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives (for example, 2,2 ', 2 "-(1,3,5-benzenetri Yl) tris (1-phenyl-1H-benzimidazole) (TPBi)), quinoxaline derivatives, aluminum complexes (eg, bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum (BAlq)), etc. Raised The organic electronic materials can also be used.
- cathode As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
- a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
- anode for example, a metal (for example, Au) or another material having conductivity is used.
- examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
- substrate glass, plastic or the like can be used.
- the substrate is preferably transparent and preferably has flexibility. Quartz glass, light transmissive resin film, and the like are preferably used.
- the resin film examples include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate. Can be mentioned.
- an inorganic substance such as silicon oxide or silicon nitride may be coated on the resin film in order to suppress permeation of water vapor, oxygen and the like.
- the emission color of the organic EL element is not particularly limited.
- the white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.
- a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used.
- a combination of a plurality of emission colors is not particularly limited, but a combination containing three emission maximum wavelengths of blue, green and red, a combination containing two emission maximum wavelengths of blue and yellow, yellow green and orange, etc. Is mentioned.
- the emission color can be controlled by adjusting the type and amount of the light emitting material.
- the display element includes the organic EL element.
- a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB).
- Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
- the lighting device includes the organic EL element.
- the display device includes a lighting device and a liquid crystal element as a display unit.
- the display device can be a display device using the illumination device as a backlight and a known liquid crystal element as a display means, that is, a liquid crystal display device.
- Embodiments of the present invention will be specifically described with reference to examples. Embodiments of the present invention are not limited to the following examples.
- 5-Bromo-1-pentene (7.45 g, 50 mmol) and tetrahydrofuran (20 mL) were mixed in a 300 mL three-necked flask under a nitrogen atmosphere to obtain a solution.
- a 0.5 M 9-BBN / THF solution (9-borabicyclo [3.3.1] nonane tetrahydrofuran solution) (100 mL) (100 mL) was added dropwise to the obtained solution over 1 hour, followed by stirring at room temperature for 12 hours.
- the obtained organic layer was dried with sodium sulfate, and then purified by column chromatography using a mixed solvent of hexane / ethyl acetate (95/5) as a developing solvent and silica gel as a filler, whereby monomer T1-2 (4.14 g, 12 mmol) was obtained.
- Monomer T1-3 was obtained in the same procedure as in Synthesis Example 1 except that Intermediate B (4.53 g, 14 mmol) was used instead of Intermediate A (3.80 g, 15 mmol) and the equivalent ratio was adjusted ( 4.99 g, 12 mmol).
- 1,4-dibromobenzene (3.54 g, 15 mmol) and ether (30 mL) were mixed in a 200 mL three-necked flask, and the resulting solution was cooled to ⁇ 78 ° C.
- a 1.6 M n-butyllithium / hexane solution (9.4 mL) was added dropwise to the solution over 30 minutes, and the mixture was stirred at -78 ° C. for 2 hours.
- Intermediate A (3.80 g, 15 mmol) was added dropwise and stirred at ⁇ 78 ° C. for 30 minutes. The mixture was then returned to room temperature and stirred for 12 hours.
- Monomer T1-5 (2.40 g) was prepared in the same manner as in Synthesis Example 3 except that Intermediate B (4.99 g, 12 mmol) was used instead of Intermediate A (3.80 g, 15 mmol) and the equivalent ratio was adjusted. 6 mmol).
- intermediate C was purified by column chromatography using a mixed solvent of hexane / ethyl acetate (90/10) as a developing solvent and silica gel as a filler. Obtained (10.55 g, 31.7 mmol).
- Methyltriphenylphosphonium bromide (21.33 g, 59.7 mmol), potassium tert-butoxide (6.70 g, 59.7 mmol), and tetrahydrofuran (60 mL) were placed in a 200 mL three-necked flask under a nitrogen atmosphere. After mixing at 0 ° C., the mixture was stirred at room temperature for 1 hour. Thereafter, Intermediate C (10.55 g, 31.7 mmol) dissolved in tetrahydrofuran (15 mL) was added and mixed at 0 ° C., followed by stirring at room temperature for 24 hours.
- Monomer T2-5 (12.52 g, 40 mmol) was obtained in the same manner as in Synthesis Example 6 except that 5-hexen-1-ol (6.27 g, 43.5 mmol) was changed to 4-hydroxybutyl acrylate.
- the number average molecular weight of the obtained charge transporting polymer 1 was 5,200, and the weight average molecular weight was 41,200.
- the charge transporting polymer 1 has a structural unit L-1, a structural unit B-1, a structural unit T3-1 having an oxetane group, and a structural unit T3-2, and the ratio (molar ratio) of each structural unit is 45.5%, 18.2%, 18.2%, and 18.2%.
- the structure is shown in the following formula (the left side is the structure shown in parentheses represents each structural unit, and the numbers attached to each structural unit represent the molar ratio of the structural units.
- the right side is the charge transporting polymer. This is an example of a partial structure presumed to be contained in the same as in the synthesis of the following charge transporting polymer).
- the number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent.
- GPC polystyrene conversion
- THF tetrahydrofuran
- the number average molecular weight of the obtained charge transporting polymer 2 was 12,600, and the weight average molecular weight was 63,400.
- the charge transporting polymer 2 has a structural unit L-1, a structural unit B-2, a structural unit T1-1, a structural unit T2-1, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 2.8%, 2.8%, and 30.7%.
- the number of terminals having a crosslinkable group (1) and terminals having a crosslinkable group (2) in the charge transporting polymer 2 was 7.5% and 7.5% of the total number of structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 3 was 12,600, and the weight average molecular weight was 57,600.
- the charge transporting polymer 3 has a structural unit L-1, a structural unit B-2, a structural unit T1-2, a structural unit T2-2, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 1.80%, and 33.6%.
- the numbers of the terminal having the crosslinkable group (1) and the terminal having the crosslinkable group (2) of the charge transporting polymer 3 were 2.5% and 5.0% of the total number of the structural units T, respectively. .
- the number average molecular weight of the obtained charge transporting polymer 4 was 12,100, and the weight average molecular weight was 60,500.
- the charge transporting polymer 4 has a structural unit L-1, a structural unit B-2, a structural unit T1-2, a structural unit T2-3, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of the terminal having the crosslinkable group (1) and the terminal having the crosslinkable group (2) of the charge transporting polymer 4 was 2.5% and 2.5% of the total number of the structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 5 was 11,500, and the weight average molecular weight was 60,000.
- the charge transporting polymer 5 has a structural unit L-1, a structural unit B-2, a structural unit T1-2, a structural unit T2-4, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of terminals having a crosslinkable group (1) and terminals having a crosslinkable group (2) in the charge transporting polymer 5 was 2.5% and 2.5% of the total number of structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 6 was 12,200, and the weight average molecular weight was 61,000.
- the charge transporting polymer 6 has a structural unit L-1, a structural unit B-2, a structural unit T1-3, a structural unit T2-4, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of terminals having a crosslinkable group (1) and terminals having a crosslinkable group (2) in the charge transporting polymer 6 was 2.5% and 2.5% of the total number of structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 7 was 13,200, and the weight average molecular weight was 62,000.
- the charge transporting polymer 7 has a structural unit L-1, a structural unit B-2, a structural unit T1-4, a structural unit T2-4, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of terminals having a crosslinkable group (1) and terminals having a crosslinkable group (2) in the charge transporting polymer 7 was 2.5% and 2.5% of the total number of structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 8 was 13,500, and the weight average molecular weight was 60,000.
- the charge transporting polymer 8 has a structural unit L-1, a structural unit B-2, a structural unit T1-5, a structural unit T2-4, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of the terminal having the crosslinkable group (1) and the terminal having the crosslinkable group (2) of the charge transporting polymer 8 was 2.5% and 2.5% of the total number of the structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 9 was 12,500, and the weight average molecular weight was 59,700.
- the charge transporting polymer 9 has a structural unit L-1, a structural unit B-2, a structural unit T1-4, a structural unit T2-5, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of terminals having a crosslinkable group (1) and terminals having a crosslinkable group (2) in the charge transporting polymer 9 was 2.5% and 2.5% of the total number of structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 10 was 11,000, and the weight average molecular weight was 59,000.
- the charge transporting polymer 10 has a structural unit L-1, a structural unit B-2, a structural unit T1-4, a structural unit T2-6, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 0.90%, 0.90%, and 34.5%.
- the number of terminals having a crosslinkable group (1) and terminals having a crosslinkable group (2) in the charge transporting polymer 10 was 2.5% and 2.5% of the total number of structural units T, respectively. It was.
- the number average molecular weight of the obtained charge transporting polymer 11 was 16,300, and the weight average molecular weight was 62,600.
- the charge transporting polymer 11 has a structural unit L-1, a structural unit B-2, a structural unit T3-1 having an oxetane group, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit is 45.5%, 18.2%, 5.6%, and 30.7%.
- the number average molecular weight of the obtained charge transporting polymer 12 was 14,500, and the weight average molecular weight was 53,900.
- the charge transporting polymer 12 has a structural unit L-1, a structural unit B-2, a structural unit T2-1 having a vinyl group, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit is 45.5%, 18.2%, 5.6%, and 30.7%.
- the number average molecular weight of the obtained charge transporting polymer 13 was 14,500, and the weight average molecular weight was 53,900.
- the charge transporting polymer 13 has a structural unit L-1, a structural unit B-2, a structural unit T1-1 having a benzocyclobutene group, and a structural unit T3-3, and the ratio (molar ratio) of each structural unit. ) Were 45.5%, 18.2%, 5.6%, and 30.7%.
- the liquid composition was dropped on a glass substrate, and a film was formed using a spin coater (“MS-A100 type” manufactured by Mikasa Co., Ltd.) under the conditions of a rotational speed of 3,000 min ⁇ 1 for 60 seconds. Subsequently, the film on the glass substrate was baked at 230 ° C. for 30 minutes using a high power hot plate (“ND-3H” manufactured by ASONE) in a nitrogen-substituted glove box. About the obtained film
- the glass substrate was immersed in a toluene solution (25 ° C.) for 10 seconds, and then toluene was dried at room temperature.
- the absorbance of the maximum wavelength (Abs. 2) of the obtained film was measured using a spectrophotometer (“U-3310” manufactured by Hitachi High-Technologies Corporation). (Abs.2 / Abs.1) ⁇ 100 (%) was determined as the remaining film ratio. Table 1 shows the remaining film ratio (unit: “%”).
- the films (organic layers) obtained in Examples 1 to 9 showed a higher residual film ratio than the films obtained in Comparative Examples 1 to 3. It was confirmed that the organic layer according to one embodiment has high curability. It was confirmed that the charge transporting polymer having a vinyl structure and a benzocyclobutene structure at the end as a crosslinkable group is a material suitable for laminating organic layers.
- the charge transporting polymer (10.0 mg) shown in Table 2 and toluene (1.15 mL) were mixed to prepare an ink composition for forming a hole transporting layer.
- the ink composition was spin-coated on the hole injection layer formed above at a rotation speed of 3,000 min ⁇ 1 and then cured by heating on a hot plate at 200 ° C. for 10 minutes to form a hole transport layer (40 nm ) Was formed.
- the hole transport layer could be formed without dissolving the hole injection layer.
- the glass substrate obtained above was transferred into a vacuum vapor deposition machine, and CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi (30 nm), LiF (0 .8 nm) and Al (100 nm) were formed in this order by a vapor deposition method, and sealing treatment was performed to produce an organic EL element.
- Examples 10 to 18 a long-life device was obtained as compared with Comparative Examples 4 to 6. It was confirmed that an organic electronic material containing a charge transporting polymer having a vinyl structure and a benzocyclobutene structure at the end as a crosslinkable group is suitable for improving the characteristics of an organic electronic element.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
<有機エレクトロニクス材料>
一実施形態によれば、有機エレクトロニクス材料は、下記式(1)で表される架橋性基を少なくとも1つの末端に有し、かつ、下記式(2)で表される架橋性基を少なくとも1つの末端に有する電荷輸送性ポリマー又はオリゴマーを含有する(「電荷輸送性ポリマー又はオリゴマー」を「電荷輸送性ポリマー」と、「式(1)で表される架橋性基」を「架橋性基(1)」と、「式(2)で表される架橋性基」を「架橋性基(2)」という場合がある。)。有機エレクトロニクス材料は、電荷輸送性ポリマーを、1種のみ含有しても、又は、2種以上含有してもよい。電荷輸送性ポリマーは、低分子化合物と比較し、湿式プロセスにおける成膜性に優れるという点で好ましい。
本開示において式中の「*」は、他の構造との結合部位を表す。
一実施形態において、電荷輸送性ポリマーは、電荷を輸送する能力を有する。電荷輸送性ポリマーは、少なくとも1つの末端に架橋性基(1)を有し、かつ、少なくとも1つの末端に架橋性基(2)を有する。末端とは、ポリマー鎖の端をいう。架橋性基(2)が存在する「少なくとも1つの末端」は、架橋性基(1)が存在する「少なくとも1つの末端」とは異なる末端であることが好ましい。電荷輸送性ポリマーは、架橋性基(1)及び架橋性基(2)を、それぞれ1種のみ有しても、2種以上有してもよい。
電荷輸送性ポリマーに含まれる部分構造の例として、例えば、以下の構造が挙げられる。電荷輸送性ポリマーは、以下の部分構造を有するものに限定されない。部分構造中、「L」は構造単位Lを、「T」は構造単位Tを、「B」は構造単位Bを表す。以下の部分構造中、複数のLは、互いに同一の構造単位であっても、互いに異なる構造単位であってもよい。T及びBについても、同様である。
構造単位Lは、電荷輸送性を有する構造単位であることが好ましい。電荷輸送性を有する構造単位は、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。例えば、構造単位Lは、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ビフェニレン構造、ターフェニレン構造、ナフタレン構造、アントラセン構造、テトラセン構造、フェナントレン構造、ジヒドロフェナントレン構造、ピリジン構造、ピラジン構造、キノリン構造、イソキノリン構造、キノキサリン構造、アクリジン構造、ジアザフェナントレン構造、フラン構造、ピロール構造、オキサゾール構造、オキサジアゾール構造、チアゾール構造、チアジアゾール構造、トリアゾール構造、ベンゾチオフェン構造、ベンゾオキサゾール構造、ベンゾオキサジアゾール構造、ベンゾチアゾール構造、ベンゾチアジアゾール構造、及びベンゾトリアゾール構造からなる群から選択される少なくとも1種の構造を含む。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。これらの各構造が置換基を有する場合、置換基としては、例えば、後述する置換基RAが挙げられ、後述する置換基REであることが好ましく、後述する置換基RBであることがより好ましい。
Arは、アリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基であり、より好ましくはフェニレン基である。Arは置換基を有してもよく、置換基の例として、上記置換基RAが挙げられ、後述する置換基REであることが好ましく、後述する置換基RBであることがより好ましい。
構造単位Tは、電荷輸送性ポリマーの末端部を構成する1価の構造単位である。構造単位Tは、電荷輸送性を有する構造単位であってもよい。電荷輸送性ポリマーは、少なくとも1つの構造単位T1を有し、かつ、少なくとも1つの構造単位T2を有すればよい。電荷輸送性ポリマーが2つを超える末端を有する場合は、更に構造単位T3を有してもよい。構造単位T3は特に限定されない。
構造単位T1は、式(1)で表される架橋性基を含む構造単位である。電荷輸送性ポリマーは、構造単位T1を、1種のみ有してもよいし、2種以上有してもよい。構造単位T1は、架橋性基(1)を1つのみ含んでも、2つ以上含んでもよい。2つ以上含む場合、該2つ以上は同種であっても、異なっていてもよい。
芳香環が有してもよい置換基の例として、上記置換基RCが挙げられ、Ra~Rgの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
芳香環が有してもよい置換基の例として、上記置換基RCが挙げられ、Ra~Rgの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
Ra~Rgの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
Ra~Rgの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
構造単位T2は、式(2)で表される架橋性基を含む構造単位である。電荷輸送性ポリマーは、構造単位T2を、1種のみ有してもよいし、2種以上有してもよい。構造単位T2は、架橋性基(2)を1つのみ含んでも、2つ以上含んでもよい。2つ以上含む場合、該2つ以上は同種であっても、異なっていてもよい。
芳香環が有してもよい置換基の例として、上記置換基RDが挙げられ、Ra~Rcの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
芳香環が有してもよい置換基の例として、上記置換基RDが挙げられ、Ra~Rcの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
Ra~Rcの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
Ra~Rcの少なくとも1つが置換基である場合の該置換基の例として、上記置換基RBが挙げられる。
構造単位T3は、構造単位T1及び構造単位T2とは異なる構造単位である。構造単位T3は、架橋性基(1)を含まず、かつ、架橋性基(2)を含まない。電荷輸送性ポリマーが構造単位T3を含む場合、電荷輸送性ポリマーは、構造単位T3を、1種のみ有してもよいし、2種以上有してもよい。
電荷輸送性ポリマーの全構造単位Tにおける構造単位T1の割合は、硬化性を付与する観点から、全構造単位Tの合計数を基準として、好ましくは0.1モル%以上、より好ましくは0.2モル%以上、更に好ましくは0.3モル%以上である。特に、1モル%以上であることが好ましく、2モル%以上であることがより好ましい。電荷輸送性ポリマーは構造単位T2を1つでも有していれば特に限定されない。よって、上限は100モル%未満である。他の構造単位Tを含むことを考慮すると、例えば、80モル%以下、50モル%以下、20モル%以下、10モル%以下、8モル%以下としてもよい。全構造単位Tにおける割合は、例えば、電荷輸送性ポリマーを合成するために使用した、構造単位Tに対応するモノマーの仕込み量比(モル比)により求めることができる。
構造単位Bは、電荷輸送性ポリマーが分岐構造を有する場合に、分岐部を構成する3価以上の構造単位である。構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、好ましくは6価以下であり、より好ましくは3価又は4価である。構造単位Bは、電荷輸送性を有する単位であることが好ましい。例えば、構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、置換又は非置換の芳香族アミン構造、置換又は非置換のカルバゾール構造、及び、置換又は非置換の縮合多環式芳香族炭化水素構造からなる群から選択される少なくとも1種を含むことが好ましい。これらの各構造が置換基を有する場合、置換基としては、例えば、上記置換基RAが挙げられ、上記置換基REであることが好ましく、上記置換基RBであることがより好ましい。
一実施形態において、重合反応により硬化させ、溶剤への溶解度を変化させる観点から、電荷輸送性ポリマーは、架橋性基(1)を含む構造及び架橋性基(2)を含む構造とは異なる重合性官能基を少なくとも1つ有していても良い。「重合性官能基」とは、熱及び/又は光を加えることにより、互いに結合を形成し得る官能基をいう。
電荷輸送性ポリマーの数平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、液状組成物の調製を容易にするという観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましい。
装置 :高速液体クロマトグラフ Prominence(株)島津製作所
送液ポンプ(LC-20AD)
脱気ユニット(DGU-20A)
オートサンプラ(SIL-20AHT)
カラムオーブン(CTO-20A)
PDA検出器(SPD-M20A)
示差屈折率検出器(RID-20A)
カラム :Gelpack(登録商標)
GL-A160S(製造番号:686-1J27)
GL-A150S(製造番号:685-1J27)日立化成(株)
溶離液 :テトラヒドロフラン(THF)(HPLC用、安定剤含有)和光純薬工業(株)
流速 :1mL/min
カラム温度 :40℃
検出波長 :254nm
分子量標準物質:PStQuick A/B/C 東ソー(株)
電荷輸送性ポリマーが構造単位Lを含む場合、構造単位Lの割合は、十分な電荷輸送性を得る観点から、全構造単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、構造単位Lの割合は、構造単位T及び必要に応じて導入される構造単位Bを考慮すると、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましい。
電荷輸送性ポリマーは、種々の合成方法により製造でき、特に限定されない。一実施形態において、電荷輸送性ポリマーは、電荷輸送性を有する構造単位を含む2官能モノマーと、架橋性基(1)を含む単官能モノマーT1と、架橋性基(2)を含む単官能モノマーT2とを少なくとも含むモノマーの共重合体である。また、一実施形態において、電荷輸送性ポリマーは、正孔輸送性を有する構造単位を含む2官能モノマーと、架橋性基(1)を含む単官能モノマーT1と、架橋性基(2)を含む単官能モノマーT2とを少なくとも含むモノマーの共重合体である。いずれの実施形態においても、モノマーは、更に3官能以上の多官能モノマーを含んでもよい。
有機エレクトロニクス材料は、ドーパントを更に含有してもよい。ドーパントは、有機エレクトロニクス材料に添加することでドーピング効果を発現させ、電荷の輸送性を向上させ得る化合物であればよく、特に制限はない。ドーピングには、p型ドーピングとn型ドーピングがあり、p型ドーピングではドーパントとして電子受容体として働く物質が用いられ、n型ドーピングではドーパントとして電子供与体として働く物質が用いられる。正孔輸送性の向上にはp型ドーピング、電子輸送性の向上にはn型ドーピングを行うことが好ましい。有機エレクトロニクス材料に用いられるドーパントは、p型ドーピング又はn型ドーピングのいずれの効果を発現させるドーパントであってもよい。また、1種のドーパントを単独で添加しても、複数種のドーパントを混合して添加してもよい。
有機エレクトロニクス材料は、他のポリマー等を更に含有してもよい。
電荷輸送性ポリマーの含有量は、良好な電荷輸送性を得る観点から、有機エレクトロニクス材料の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。100質量%とすることも可能である。
一実施形態によれば、有機エレクトロニクス材料は、重合開始剤を含有してもよいが、重合開始剤を含有しない場合でも十分に重合反応は進行する。重合開始剤を含有する場合、公知のラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤等を使用できる。液状組成物を簡便に調製できる観点から、ドーパントとしての機能と重合開始剤としての機能とを兼ねる物質を用いることが好ましい。ドーパントとしての機能も備えた重合開始剤として、例えば、前記イオン化合物が挙げられる。イオン化合物の例として、例えば、前記パーフルオロアニオンを有する塩が挙げられるが、この例として、例えば、パーフルオロアニオンとヨードニウムイオンまたはアンモニウムイオンとの塩(例えば、下記の化合物)が挙げられる。
一実施形態において、液状組成物は、前記有機エレクトロニクス材料と該材料を溶解又は分散し得る溶媒とを含有する。液状組成物は、液状組成物として好ましく用いることができる。液状組成物を用いることによって、塗布法といった簡便な方法によって有機層を容易に形成できる。液状組成物はインク組成物として好ましく用いることができる。
溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、芳香族エーテル等である。
液状組成物は、更に、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。
液状組成物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、0.1質量%以上となる量が好ましく、0.2質量%以上となる量がより好ましく、0.5質量%以上となる量が更に好ましい。また、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、20質量%以下となる量が好ましく、15質量%以下となる量がより好ましく、10質量%以下となる量が更に好ましい。
一実施形態によれば、有機層は、前記有機エレクトロニクス材料又は前記液状組成物を用いて形成された層である。液状組成物を用いることによって、塗布法により有機層を良好に形成できる。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。塗布法によって有機層を形成する場合、塗布後に得られた有機層(塗布層)を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去してもよい。
一実施形態によれば、有機エレクトロニクス素子は、少なくとも前記有機層を有する。有機エレクトロニクス素子として、例えば、有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極(陽極及び陰極)の間に有機層が配置された構造を有する。
一実施形態によれば、有機EL素子は、少なくとも前記有機層を有する。有機EL素子は、通常、基板、陽極、発光層及び陰極を積層して備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の他の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。有機EL素子は、好ましくは、有機層を発光層又は他の機能層として有し、より好ましくは機能層として有し、更に好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。
発光層の形成に使用される材料として、低分子化合物、ポリマー、デンドリマー等の発光材料を使用できる。ポリマーは、溶媒への溶解性が高く、塗布法に適しているため好ましい。発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料(TADF)等が挙げられる。
図1では、正孔注入層3及び正孔輸送層6が、上記の有機エレクトロニクス材料を用いて形成された有機層であるが、有機EL素子はこのような構造に限らず、他の有機層が上記の有機エレクトロニクス材料を用いて形成された有機層であってもよい。前記有機エレクトロニクス材料を用いて形成された正孔輸送層及び正孔注入層の少なくとも一方として有することが好ましく、少なくとも正孔輸送層として有することが更に好ましい。例えば、有機EL素子が、上記の有機エレクトロニクス材料を用いて形成された層を正孔輸送層として有し、更に正孔注入層を有する場合、正孔注入層には公知の材料を使用できる。また、例えば、有機EL素子が、上記の有機エレクトロニクス材料を用いて形成された有機層を正孔注入層として有し、更に正孔輸送層を有する場合、正孔輸送層には公知の材料を使用できる。
電子輸送層及び電子注入層の形成に使用される材料としては、例えば、フェナントロリン誘導体、ビピリジン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレン、ペリレンなどの縮合環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体(例えば、2,2′,2”-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(TPBi))、キノキサリン誘導体、アルミニウム錯体(例えば、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム(BAlq))等が挙げられる。また、前記有機エレクトロニクス材料も使用できる。
陰極材料としては、例えば、Li、Ca、Mg、Al、In、Cs、Ba、Mg/Ag、LiF、CsF等の金属又は金属合金が用いられる。
陽極材料としては、例えば、金属(例えば、Au)又は導電性を有する他の材料が用いられる。他の材料として、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)、導電性高分子(例えば、ポリチオフェン-ポリスチレンスルホン酸混合物(PEDOT:PSS))が挙げられる。
基板として、ガラス、プラスチック等を使用できる。基板は、透明であることが好ましく、また、フレキシブル性を有することが好ましい。石英ガラス、光透過性樹脂フィルム等が好ましく用いられる。
有機EL素子の発光色は特に限定されない。白色の有機EL素子は、家庭用照明、車内照明、時計又は液晶のバックライト等の各種照明器具に用いることができるため好ましい。
一実施形態によれば、表示素子は、前記有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
以下に、式(1)で表される架橋性基を有するモノマー及び式(2)で表される架橋性基を有するモノマーの合成例を示すが、合成法は以下に限定されるものではない。
以下の方法によって、下記構造を有するモノマーT1-2を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT1-3を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT1-4を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT1-5を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT2-2を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT2-3を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT2-4を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT2-5を合成した。詳細には、下記の経路により合成した。
以下の方法によって、下記構造を有するモノマーT2-6を合成した。詳細には、下記の経路により合成した。
(Pd触媒の調製)
窒素雰囲気下のグローブボックス中で、室温下、サンプル管にトリス(ジベンジリデンアセトン)ジパラジウム(73.2mg、80μmol)を秤取り、アニソール(15mL)を加え、30分間撹拌した。同様に、サンプル管にトリス(t-ブチル)ホスフィン(129.6mg、640μmol)を秤取り、アニソール(5mL)を加え、5分間撹拌した。得られた溶液を混合し、室温で30分間撹拌して、触媒とした。全ての溶媒は、30分間以上窒素バブルにより脱気した後、使用した。
三口丸底フラスコに、下記モノマーL-1(5.0mmol)、下記モノマーB-1(2.0mmol)、下記モノマーT3-1(2.0mmol)、下記モノマーT3-2(2.0mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。30分間撹拌した後、10%テトラエチルアンモニウム水酸化物水溶液(20mL)を加えた。全ての溶媒は30分間以上、窒素バブルにより脱気した後、使用した。得られた混合物を2時間、加熱還流した。ここまでの全ての操作は窒素気流下で行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、下記モノマーB-2(2.0mmol)、下記モノマーT1-1(0.3mmol)、下記モノマーT2-1(0.3mmol)、下記モノマーT3-3(3.4mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー2の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-2(0.1mmol)、下記モノマーT2-2(0.2mmol)、前記モノマーT3-3(3.7mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー3の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-2(0.1mmol)、下記モノマーT2-3(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー4の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-2(0.1mmol)、下記モノマーT2-4(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー5の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-3(0.1mmol)、下記モノマーT2-4(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー6の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-4(0.1mmol)、下記モノマーT2-4(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー7の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-5(0.1mmol)、下記モノマーT2-4(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー8の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-4(0.1mmol)、下記モノマーT2-5(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー9の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT1-4(0.1mmol)、下記モノマーT2-6(0.1mmol)、前記モノマーT3-3(3.8mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー10の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、前記モノマーT3-1(0.6mmol)、前記モノマーT3-3(3.4mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー11の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、下記モノマーT2-1(0.6mmol)、前記モノマーT3-3(3.4mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー12の合成を行った。
三口丸底フラスコに、前記モノマーL-1(5.0mmol)、前記モノマーB-2(2.0mmol)、前記モノマーT1-1(0.6mmol)、前記モノマーT3-3(3.4mmol)、及びアニソール(20mL)を加え、更に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー13の合成を行った。
<有機層の残膜率の測定と評価>
(液状組成物の調製)
電荷輸送性ポリマー2~13をそれぞれトルエンに溶解させることにより、電荷輸送性ポリマーの濃度が1質量%である液状組成物(トルエン溶液)を調製した。
液状組成物をガラス基板上に滴下し、スピンコーター(ミカサ社製「MS-A100型」、)を用い、回転数3,000min-1、60秒間の条件で成膜した。次いで、窒素置換されたグローブボックス中で、ハイパワーホットプレート(アズワン製「ND-3H」)を用いて、ガラス基板上の膜を230℃、30分間ベークした。得られた膜について、分光光度計(日立ハイテクノロジーズ社製「U-3310」)を用いて極大波長の吸光度(Abs.1)を測定した。
次いで、ガラス基板を、トルエン溶液(25℃)に10秒間浸した後、常温でトルエンを乾燥した。得られた膜について、分光光度計(日立ハイテクノロジーズ社製「U-3310」)を用いて極大波長の吸光度(Abs.2)を測定した。
(Abs.2/Abs.1)×100(%)を残膜率として求めた。残膜率(単位「%」)を表1に示す。
<有機EL素子の作製>
窒素雰囲気下で、電荷輸送性ポリマー1(10.0mg)、下記電子受容性化合物1(0.5mg)、及びトルエン(2.3mL)を混合し、正孔注入層形成用のインク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、前記インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で220℃、10分間加熱して硬化させ、正孔注入層(25nm)を形成した。
有機EL素子の作製においては、スピンコーターとして、ミカサ社製「MS-A100型」を用い、ホットプレートとして、アズワン製「ND-3H」を用いた。
2 陽極
3 正孔注入層
4 陰極
5 電子注入層
6 正孔輸送層
7 電子輸送層
8 基板
Claims (20)
- 前記電荷輸送性ポリマー又はオリゴマーが、3個以上の末端を有する、請求項1に記載の有機エレクトロニクス材料。
- 前記電荷輸送性ポリマー又はオリゴマーが、2価の構造単位Lと1価の構造単位Tとを少なくとも含み、
前記構造単位Lが、置換又は非置換の芳香族アミン構造、及び、置換又は非置換のカルバゾール構造からなる群から選択される少なくとも1種の構造を含む構造単位を含み、
前記構造単位Tが、前記式(1)で表される架橋性基を含む1価の構造単位T1と、前記式(2)で表される架橋性基を含む1価の構造単位T2とを含む、請求項1又は2に記載の有機エレクトロニクス材料。 - 前記電荷輸送性ポリマー又はオリゴマーが、更に、3価以上の構造単位B、及び、前記式(1)で表される架橋性基と前記式(2)で表される架橋性基とを含まない1価の構造単位T3からなる群から選択される少なくとも1種の構造単位を含み、
前記構造単位Bが、置換又は非置換の芳香族アミン構造、置換又は非置換のカルバゾール構造、及び、置換又は非置換の縮合多環式芳香族炭化水素構造からなる群から選ばれる少なくとも1種の構造を含む構造単位を含み、
前記構造単位T3が、置換又は非置換の芳香環構造を含む構造単位を含む、請求項1~3のいずれかに記載の有機エレクトロニクス材料。 - 前記構造単位L、前記構造単位T、及び任意に含まれる前記構造単位Bからなる群から選択される隣り合う構造単位が、芳香環同士の直接結合によって互いに結合している、請求項3又は4に記載の有機エレクトロニクス材料。
- 前記電荷輸送性ポリマー又はオリゴマーが、電荷輸送性を有する構造単位を含む2官能モノマーと、前記式(1)で表される架橋性基を含む単官能モノマーT1と、前記式(2)で表される架橋性基を含む単官能モノマーT2とを少なくとも含むモノマーの共重合体である、請求項1又は2に記載の有機エレクトロニクス材料。
- 前記電荷輸送性ポリマー又はオリゴマーが、正孔輸送性を有する構造単位を含む2官能モノマーと、式(1)で表される架橋性基を含む単官能モノマーT1と、式(2)で表される架橋性基を含む単官能モノマーT2とを少なくとも含むモノマーの共重合体である、請求項1又は2に記載の有機エレクトロニクス材料。
- 請求項1~7のいずれかに記載の有機エレクトロニクス材料と、溶媒とを含有する、液状組成物。
- 請求項1~7のいずれかに記載の有機エレクトロニクス材料、又は、請求項8に記載の液状組成物を用いて形成された、有機層。
- 請求項9に記載の有機層を少なくとも1つ含む、有機エレクトロニクス素子。
- 少なくとも一対の陽極及び陰極、並びに、前記陽極及び前記陰極の間に位置する少なくとも1つの請求項9に記載の有機層を含む、有機エレクトロニクス素子。
- 請求項9に記載の有機層を少なくとも1つ含む、有機エレクトロルミネセンス素子。
- 基板、陽極、発光層、及び陰極を少なくとも含み、前記発光層が請求項9に記載の有機層である、有機エレクトロルミネセンス素子。
- 基板、陽極、正孔注入層、正孔輸送層、発光層、及び陰極を少なくとも含み、
前記正孔注入層、前記正孔輸送層、及び前記発光層からなる群から選択される少なくとも1つの層が、請求項9に記載の有機層である、有機エレクトロルミネセンス素子。 - 基板、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、及び陰極を少なくとも含み、
前記正孔注入層、前記正孔輸送層、及び前記発光層からなる群から選択される少なくとも1つの層が、請求項9に記載の有機層である、有機エレクトロルミネセンス素子。 - 基板がフレキシブル基板である、請求項13~15のいずれかに記載の有機エレクトロルミネセンス素子。
- 基板が樹脂フィルム基板である、請求項13~16のいずれかに記載の有機エレクトロルミネセンス素子。
- 請求項12~16のいずれかに記載の有機エレクトロルミネセンス素子を備えた、表示素子。
- 請求項12~16のいずれかに記載の有機エレクトロルミネセンス素子を備えた、照明装置。
- 請求項19に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018566712A JP6775738B2 (ja) | 2017-02-09 | 2017-02-09 | 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 |
EP17896142.1A EP3582277A4 (en) | 2017-02-09 | 2017-02-09 | ORGANIC ELECTRONIC MATTER, ORGANIC ELECTRONIC ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT |
US16/484,682 US20200083456A1 (en) | 2017-02-09 | 2017-02-09 | Organic electronic material, organic electronic element, and organic electroluminescent element |
PCT/JP2017/004797 WO2018146779A1 (ja) | 2017-02-09 | 2017-02-09 | 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 |
CN201780086098.9A CN110268539A (zh) | 2017-02-09 | 2017-02-09 | 有机电子材料、有机电子元件及有机电致发光元件 |
KR1020197022494A KR20190116289A (ko) | 2017-02-09 | 2017-02-09 | 유기 일렉트로닉스 재료, 유기 일렉트로닉스 소자 및 유기 일렉트로루미네센스 소자 |
TW107102811A TW201840631A (zh) | 2017-02-09 | 2018-01-26 | 有機電子材料、有機電子元件、及有機電致發光元件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004797 WO2018146779A1 (ja) | 2017-02-09 | 2017-02-09 | 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018146779A1 true WO2018146779A1 (ja) | 2018-08-16 |
Family
ID=63107334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004797 WO2018146779A1 (ja) | 2017-02-09 | 2017-02-09 | 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200083456A1 (ja) |
EP (1) | EP3582277A4 (ja) |
JP (1) | JP6775738B2 (ja) |
KR (1) | KR20190116289A (ja) |
CN (1) | CN110268539A (ja) |
TW (1) | TW201840631A (ja) |
WO (1) | WO2018146779A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053671A (ja) * | 2018-09-21 | 2020-04-02 | 三菱ケミカル株式会社 | 組成物、電荷輸送膜及び有機電界発光素子 |
EP4032933A4 (en) * | 2019-09-20 | 2024-03-20 | Agc Inc. | FLUORINE ETHER COMPOUND, SURFACE TREATMENT AGENT, FLUORINE ETHER COMPOSITION, COATING LIQUID, ARTICLE AND COMPOUND |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019097714A1 (ja) * | 2017-11-20 | 2019-05-23 | 日立化成株式会社 | 有機薄膜の製造方法、有機薄膜及びその利用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000036390A (ja) | 1998-05-13 | 2000-02-02 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2003213002A (ja) | 2001-11-19 | 2003-07-30 | Mitsubishi Chemicals Corp | 芳香族ジアミン含有高分子化合物およびそれを用いる有機電界発光素子 |
JP2005075948A (ja) | 2003-09-01 | 2005-03-24 | Mitsubishi Chemicals Corp | 高分子化合物、正孔注入・輸送材料、有機電界発光素子材料および有機電界発光素子 |
JP2009283509A (ja) | 2008-05-19 | 2009-12-03 | Nippon Hoso Kyokai <Nhk> | 有機el素子および有機elディスプレイ |
WO2010140553A1 (ja) | 2009-06-01 | 2010-12-09 | 日立化成工業株式会社 | 有機エレクトロニクス材料およびそれを含むインク組成物、ならびにそれらを用いて形成された有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置および表示装置 |
JP2013087217A (ja) * | 2011-10-19 | 2013-05-13 | Idemitsu Kosan Co Ltd | 架橋型重合体及びそれを用いた有機エレクトロルミネッセンス素子 |
JP2017048290A (ja) * | 2015-09-01 | 2017-03-09 | 三星電子株式会社Samsung Electronics Co.,Ltd. | アミノフルオレンポリマー、有機エレクトロルミネッセンス素子用材料、および有機エレクトロルミネッセンス素子 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5625271B2 (ja) * | 2008-07-29 | 2014-11-19 | 住友化学株式会社 | 高分子化合物及びそれを用いた発光素子 |
GB2501047B (en) * | 2011-01-31 | 2018-04-18 | Cambridge Display Tech Ltd | Polymer |
EP2770006A1 (en) * | 2011-10-19 | 2014-08-27 | Idemitsu Kosan Co., Ltd | Cross-linking polymer and organic electroluminescent element using same |
JP6015181B2 (ja) * | 2012-07-13 | 2016-10-26 | 日立化成株式会社 | 硬化性重合体並びにこれを用いた樹脂及び有機el素子 |
CN105051088A (zh) * | 2013-03-28 | 2015-11-11 | 住友化学株式会社 | 高分子化合物及使用该化合物的发光元件 |
JP6500891B2 (ja) * | 2014-03-25 | 2019-04-17 | 住友化学株式会社 | 高分子化合物およびそれを用いた発光素子 |
CN106340533B (zh) * | 2016-11-29 | 2019-04-30 | 深圳市华星光电技术有限公司 | Oled显示面板及其制作方法 |
-
2017
- 2017-02-09 WO PCT/JP2017/004797 patent/WO2018146779A1/ja unknown
- 2017-02-09 CN CN201780086098.9A patent/CN110268539A/zh active Pending
- 2017-02-09 US US16/484,682 patent/US20200083456A1/en not_active Abandoned
- 2017-02-09 KR KR1020197022494A patent/KR20190116289A/ko not_active Withdrawn
- 2017-02-09 EP EP17896142.1A patent/EP3582277A4/en not_active Withdrawn
- 2017-02-09 JP JP2018566712A patent/JP6775738B2/ja active Active
-
2018
- 2018-01-26 TW TW107102811A patent/TW201840631A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000036390A (ja) | 1998-05-13 | 2000-02-02 | Mitsubishi Chemicals Corp | 有機電界発光素子 |
JP2003213002A (ja) | 2001-11-19 | 2003-07-30 | Mitsubishi Chemicals Corp | 芳香族ジアミン含有高分子化合物およびそれを用いる有機電界発光素子 |
JP2005075948A (ja) | 2003-09-01 | 2005-03-24 | Mitsubishi Chemicals Corp | 高分子化合物、正孔注入・輸送材料、有機電界発光素子材料および有機電界発光素子 |
JP2009283509A (ja) | 2008-05-19 | 2009-12-03 | Nippon Hoso Kyokai <Nhk> | 有機el素子および有機elディスプレイ |
WO2010140553A1 (ja) | 2009-06-01 | 2010-12-09 | 日立化成工業株式会社 | 有機エレクトロニクス材料およびそれを含むインク組成物、ならびにそれらを用いて形成された有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置および表示装置 |
JP2013087217A (ja) * | 2011-10-19 | 2013-05-13 | Idemitsu Kosan Co Ltd | 架橋型重合体及びそれを用いた有機エレクトロルミネッセンス素子 |
JP2017048290A (ja) * | 2015-09-01 | 2017-03-09 | 三星電子株式会社Samsung Electronics Co.,Ltd. | アミノフルオレンポリマー、有機エレクトロルミネッセンス素子用材料、および有機エレクトロルミネッセンス素子 |
Non-Patent Citations (12)
Title |
---|
ADV. MATER., vol. 21, 2009, pages 4802 - 4906 |
ADV. MATER., vol. 25, 2013, pages 3319 |
APPL. PHYS. LETT., vol. 101, 2012, pages 093306 |
APPL. PHYS. LETT., vol. 98, 2011, pages 083302 |
CHEM. COMM., vol. 48, 2012, pages 11392 |
CHEM. COMM., vol. 49, 2013, pages 10385 |
CHEM. LETT., vol. 43, 2014, pages 319 |
J. AM. CHEM. SOC., vol. 134, 2012, pages 14706 |
J. PHYS. CHEM. A, vol. 117, 2013, pages 5607 |
NATURE, vol. 492, 2012, pages 234 |
PHYS. CHEM. CHEM. PHYS., vol. 15, 2013, pages 15850 |
See also references of EP3582277A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053671A (ja) * | 2018-09-21 | 2020-04-02 | 三菱ケミカル株式会社 | 組成物、電荷輸送膜及び有機電界発光素子 |
JP7275738B2 (ja) | 2018-09-21 | 2023-05-18 | 三菱ケミカル株式会社 | 組成物、電荷輸送膜及び有機電界発光素子 |
EP4032933A4 (en) * | 2019-09-20 | 2024-03-20 | Agc Inc. | FLUORINE ETHER COMPOUND, SURFACE TREATMENT AGENT, FLUORINE ETHER COMPOSITION, COATING LIQUID, ARTICLE AND COMPOUND |
Also Published As
Publication number | Publication date |
---|---|
TW201840631A (zh) | 2018-11-16 |
EP3582277A1 (en) | 2019-12-18 |
EP3582277A4 (en) | 2020-11-18 |
KR20190116289A (ko) | 2019-10-14 |
US20200083456A1 (en) | 2020-03-12 |
JPWO2018146779A1 (ja) | 2019-11-21 |
JP6775738B2 (ja) | 2020-10-28 |
CN110268539A (zh) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7044063B2 (ja) | 有機エレクトロニクス材料及びその利用 | |
WO2018139487A1 (ja) | 有機エレクトロニクス材料、インク組成物、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 | |
JP2017069324A (ja) | 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示素子 | |
WO2018143438A1 (ja) | 有機エレクトロニクス材料及びその利用 | |
JP6775738B2 (ja) | 有機エレクトロニクス材料、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子 | |
WO2017043502A1 (ja) | 有機エレクトロニクス材料及びその利用 | |
JP6775736B2 (ja) | 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 | |
JP6641845B2 (ja) | 電荷輸送性材料、該材料を用いたインキ組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 | |
US20190165293A1 (en) | Organic electronic material | |
JP6724310B2 (ja) | 有機エレクトロニクス材料及び有機エレクトロニクス素子 | |
JP6769020B2 (ja) | 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 | |
WO2018020571A1 (ja) | 有機エレクトロニクス材料 | |
JP7226311B2 (ja) | 有機エレクトロニクス材料及び有機エレクトロニクス素子 | |
JP6816540B2 (ja) | 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置 | |
JP6536809B2 (ja) | 有機エレクトロニクス材料及び有機エレクトロニクス素子 | |
JP2020145299A (ja) | 有機エレクトロニクス材料、有機エレクトロニクス材料用インク組成物、有機エレクトロニクス機器用有機層および有機エレクトロニクス機器 | |
JP6657663B2 (ja) | 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、表示装置及び照明装置 | |
JP6690241B2 (ja) | 有機エレクトロニクス材料及びその利用 | |
JP2017199866A (ja) | 電荷輸送性材料及びその利用 | |
JP2017059724A (ja) | 有機エレクトロニクス材料及び該材料を含むインク組成物、並びに有機エレクトロニクス素子及び有機エレクトロルミネセンス素子 | |
JP2019131670A (ja) | 有機エレクトロニクス材料 | |
JP2020145236A (ja) | 有機エレクトロニクス材料及びその利用 | |
WO2019175976A1 (ja) | 有機エレクトロニクス材料及び有機エレクトロニクス素子 | |
WO2018143471A1 (ja) | 枝分かれポリマーの製造方法、枝分かれポリマー、及び有機エレクトロニクス素子 | |
JP2017191908A (ja) | 有機エレクトロニクス材料及び有機エレクトロルミネセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896142 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018566712 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197022494 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017896142 Country of ref document: EP Effective date: 20190909 |