+

WO2018143145A1 - 無細胞翻訳系におけるペプチドの合成方法 - Google Patents

無細胞翻訳系におけるペプチドの合成方法 Download PDF

Info

Publication number
WO2018143145A1
WO2018143145A1 PCT/JP2018/002831 JP2018002831W WO2018143145A1 WO 2018143145 A1 WO2018143145 A1 WO 2018143145A1 JP 2018002831 W JP2018002831 W JP 2018002831W WO 2018143145 A1 WO2018143145 A1 WO 2018143145A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino
compound
amino acid
group
oxy
Prior art date
Application number
PCT/JP2018/002831
Other languages
English (en)
French (fr)
Inventor
翔太 田中
太田 淳
哲郎 小嶋
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to EP18748388.8A priority Critical patent/EP3591048A4/en
Priority to JP2018565534A priority patent/JP7187323B2/ja
Priority to US16/479,736 priority patent/US20200040372A1/en
Publication of WO2018143145A1 publication Critical patent/WO2018143145A1/ja
Priority to JP2022191886A priority patent/JP7526243B2/ja
Priority to JP2024115568A priority patent/JP2024138064A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01011Penicillin amidase (3.5.1.11), i.e. penicillin-amidohydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/11Aminopeptidases (3.4.11)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a peptide synthesis method using a cell-free translation system.
  • Medium-molecular compounds (molecular weight: 500-2000) are difficult for small molecules because they can access tough targets, and difficult for antibodies because they can move into cells (intracellular target drug discovery or oralization) It is attracting attention because there is a possibility that things can be realized.
  • Peptide is a typical molecular species of medium molecular compounds.
  • Cyclosporin A which is a natural product, is a typical example, and is an orally administrable peptide that inhibits the intracellular target cyclophilin.
  • Non-Patent Documents 5, 6, 7 A characteristic of cyclosporin A is that it is a cyclic peptide containing an unnatural amino acid as a constituent component.
  • Non-Patent Documents 5, 6, 7 It has become known that the introduction of such non-natural amino acids contributes to membrane permeability and metabolic stability by reducing hydrogen-donating hydrogen, acquiring protease resistance, and immobilizing conformation.
  • Patent Documents 5 and 8, Patent Document 3 Patent Document 3
  • a drug discovery method for selecting drug candidate substances from a library of various peptides containing a plurality of unnatural amino acids has been considered.
  • an mRNA display library of peptides containing unnatural amino acids using a cell-free translation system has been expected from the viewpoint of diversity and ease of screening.
  • Polypeptides and proteins are composed of 20 kinds of amino acids. Information is transcribed from DNA consisting of four types of nucleotides to RNA, and the information is translated into amino acids, which constitute polypeptides and proteins.
  • tRNA plays a role as an adapter that associates a sequence of three-letter nucleotides with one type of amino acid.
  • aminoacyl-tRNA syathetase (ARS) is involved in the binding between tRNA and amino acid.
  • ARS is an enzyme that specifically binds amino acids and tRNAs. For each species, with some exceptions, there are 20 ARSs corresponding to each of the 20 naturally occurring amino acids. ARS accurately acylates tRNA with a specific amino acid assigned to the codon of the tRNA among 20 kinds of protein amino acids.
  • Non-patent Document 1 It has been reported that a non-natural aminoacyl-tRNA necessary for the synthesis of a peptide containing a non-natural amino acid by translation of mRNA can be prepared using the above-mentioned ARS (Non-patent Document 1).
  • natural ARS has high substrate specificity, and the structure of amino acids that ARS can acylate is limited to that similar to that of natural amino acids. Therefore, preparing non-natural aminoacyl-tRNA using ARS is not a highly versatile method. Further, in recent years, improvement of aminoacylation efficiency for some non-natural amino acids has been achieved by preparing modified ARS with altered substrate specificity (Patent Document 1).
  • non-ARS method a method for preparing non-natural aminoacyl-tRNA having various structures without using ARS. The following methods are typical examples.
  • Non-Patent Document 2 pdCpA (5'-phospho-2'-deooxyribocytidylriboadenosine) acylated with a chemically synthesized non-natural amino acid and the 3 'end obtained by transcription are used.
  • TRNA lacking CA can be ligated by T4 RNA ligase.
  • this method as long as chemical synthesis is possible in principle, it is possible to prepare tRNA aminoacylated with any unnatural amino acid without any structural limitation.
  • Forster et al. Have reported a pCpA method using pCpA (5'-phospho-ribocytidylriboadenosine) instead of pdCpA (Non-patent Document 3).
  • Non-Patent Document 4 it is possible to prepare non-natural aminoacyl tRNAs having various structures. Not all unnatural amino acids can be introduced into peptides by translation, but various ⁇ -amino acids, N-alkyl amino acids, ⁇ -amino acids, D-amino acids, etc. may be introduced into peptides by translation. It has been reported (Non-Patent Document 4).
  • Non-Patent Document 14 Although this is not an example of directly improving translation efficiency, it is considered to be one of the effective methods for synthesizing peptides containing unnatural amino acids having various structures.
  • Non-patent Document 15 modification of ribosome
  • Non-patent Document 16 modification of EF-Tu
  • Non-patent Document 17 Non-patent Document 17
  • the inventors of the present application have constructed a peptide display library by paying attention to structural diversity such as having a straight chain part in order to increase the possibility of obtaining a medium molecular cyclic peptide having a target activity.
  • structural diversity such as having a straight chain part
  • natural amino acids and amino acid analogs with various structures that have not been reported by translation synthesis are synthesized, and the amino acid tRNA prepared by pCpA method is used to translate the natural amino acids and amino acid analogs. Tried.
  • pCpA method is used to translate the natural amino acids and amino acid analogs. Tried.
  • the inventors of the present application have a wide variety of structures of natural amino acids and amino acid analogs, and therefore, it has been judged that it is not practical to prepare a variant (for example, but not limited to ribosome) corresponding to all of them. It was.
  • the present invention has been made in view of such circumstances. Translation of unprotected aminoacyl-tRNA into natural amino acids and amino acid analogs having various structures by a conventional technique, that is, a technique not based on ARS, is performed. It is an object of the present invention to provide a peptide synthesis method using a cell-free translation system that achieves excellent translation efficiency as compared with a method of adding the aminoacyl tRNA into a translation system after preparation outside.
  • the present inventors have found that the translation efficiency of peptides containing natural amino acids and amino acid analogs having various structures can be improved as compared with conventional methods. Specifically, in order to establish a method to add aminoacyl-tRNA to which a natural amino acid having a protecting group or an amino acid analog is bound in a cell-free translation system and perform deprotection and peptide translation in parallel in the system. Successful.
  • Aminoacyl-tRNA is known to increase stability against hydrolysis by forming a complex with EF-tu in the translation system.
  • EF-tu uses natural aminoacyl-tRNA as a natural substrate
  • the ability of non-natural aminoacyl-tRNA having various structures to form a complex with EF-tu is compared with that of natural-type aminoacyl-tRNA. It is considered weak. That is, it is considered that the non-natural aminoacyl-tRNA will hardly obtain this stabilizing effect, depending on the structure.
  • the present inventors can develop a method for adding an aminoacyl-tRNA to which an amino acid analog protected with a nitrogen atom is bound to the translation system and deprotecting the amino acid tRNA in the system. It was considered possible to minimize the influence of hydrolysis. Based on this idea, the present inventors have made various studies, found an appropriate protecting group, and can efficiently translate natural amino acids and amino acid analogs having various structures as compared with conventional methods. The present invention has been completed.
  • a method for synthesizing a peptide containing at least one amino acid comprising a step of deprotecting the protecting group of the amino acid in a cell-free translation system containing a tRNA to which an amino acid having a protecting group is bound, and a translation step.
  • the deprotecting step and the translation step are performed in parallel.
  • the method according to [1], wherein the protecting group of the amino acid is deprotected by one or more selected from the group consisting of an enzyme, a reducing agent, and a photoreaction.
  • the enzyme is a hydrolase.
  • X1 in the formula (I) is a group represented by the following general formula (IV), or 2-thienylmethyl, or an alkyl in which X2 in the formula (III) may be substituted , Aralkyl, or cycloalkyl, the method according to [5]: (In the formula, R 1 and R 2 are each independently a hydrogen atom, hydroxyl, fluoro, chloro, bromo, amino, nitro, or methoxy). [7] The method according to [5], wherein the formula (XII) is a group represented by the following general formula (XIII): [8] The method according to [2], wherein the reducing agent is tris (2-carboxyethyl) phosphine (TCEP).
  • TCEP (2-carboxyethyl) phosphine
  • the amino acid analog is one or more translatable amino acid analogs selected from the group consisting of N alkyl amino acids, cyclic amino acids, aliphatic amino acids, aromatic amino acids, ⁇ amino acids, D amino acids, and ⁇ dialkyl amino acids including cyclic amino acids
  • the method according to [11] which is a body.
  • [14] The method according to any one of [1] to [13], wherein the protecting group is a protecting group that is deprotected under the reaction conditions used for post-translational modification and the orthogonal reaction conditions.
  • the protecting group is a protecting group used in iSP (Initiation Suppression) method and an orthogonal protecting group.
  • [17] A compound comprising the compound of [16] and pCpA or pdCpA, which is represented by the following general formula (X) or (XI): (Wherein R 3 to R 7 are as defined in [13], R 8 is a hydrogen atom or hydroxyl, and P 1 is the protection according to any one of [5] to [7]. Group).
  • [18] An aminoacyl tRNA obtained by binding the compound according to [16] and tRNA.
  • the present invention further provides the inventions described in [2-1] to [2-13] below.
  • [2-1] A method for peptide synthesis comprising a step of deprotecting one or more components of a cell-free translation system having a protecting group in the cell-free translation system, and a translation step, A method wherein the deprotecting step and the translation step are performed in parallel.
  • [2-2] a step of deprotecting one or more components of the cell-free translation system having a protecting group by an enzyme, a reducing agent, or a photoreaction in the cell-free translation system, and a translation step.
  • a method for peptide synthesis, wherein the deprotecting step and the translation step are performed in parallel.
  • a peptide comprising a step of deprotecting a protective group of the amino acid by an enzyme, a reducing agent, or a photoreaction in a cell-free translation system containing a tRNA to which an amino acid having a protective group is bound, and a translation step Synthesis method.
  • [2-5] A method for producing a complex of a peptide containing one or more amino acid residues and having a cyclic part and a nucleic acid encoding the peptide, or a library containing the complex, -1] to [2-4], comprising synthesizing a peptide, and cyclizing the synthesized peptide.
  • [2-6] The method according to [2-5], wherein the peptide is cyclized by an amide bond, a thioether bond, a disulfide bond, an ether bond, an ester bond, a thioester bond, or a carbon-carbon bond.
  • [2-7] Use of an enzyme, a reducing agent, or a protecting group that is deprotected by a photoreaction in a peptide synthesis method, the method comprising one or more components of a cell-free translation system having a protecting group Said use comprising a step of deprotecting a component in said cell-free translation system, and a translation step, wherein said deprotection step and said translation step are performed in parallel.
  • [2-8] Use of an enzyme, a reducing agent, or a protecting group deprotected by a photoreaction in a peptide synthesis method, the method comprising a cell-free translation system comprising a tRNA to which an amino acid having a protecting group is bound Wherein the deprotection step and the translation step are performed in parallel, wherein the deprotection step and the translation step are performed in parallel.
  • [2-9] A step of deprotecting one or more components of a cell-free translation system having a protecting group in the cell-free translation system, and increasing the yield of the synthesized peptide A method wherein the deprotecting step and the translation step are performed in parallel.
  • a method for increasing the yield of a peptide to be synthesized comprising a step of deprotecting a protecting group of the amino acid in a cell-free translation system containing a tRNA to which an amino acid having a protecting group is bound, and a translation step A method wherein the deprotecting step and the translation step are performed in parallel.
  • An enzyme, a reducing agent, or a protecting group to be deprotected by a photoreaction for use in a peptide synthesis method which method is a kind of cell-free translation system having a protecting group
  • the protecting group comprising a step of deprotecting the above components in the cell-free translation system, and a translation step, wherein the deprotection step and the translation step are performed in parallel.
  • the protecting group comprising a step of deprotecting the protecting group of the amino acid and a translation step in a cell translation system, wherein the deprotecting step and the translation step are performed in parallel.
  • the amino acid protecting group constituting the aminoacyl-tRNA is deprotected in parallel with the translation step in a cell-free translation system.
  • the present invention provides a method for synthesizing a peptide with improved translation efficiency as compared with the conventional pCpA method in which deprotection is performed outside a cell-free translation system.
  • alkyl is a monovalent group derived by removing one arbitrary hydrogen atom from an aliphatic hydrocarbon, and contains a heteroatom or an unsaturated carbon-carbon bond in the skeleton. It has a subset of hydrocarbyl or hydrocarbon group structures containing hydrogen and carbon atoms.
  • the carbon chain length n ranges from 1 to 20, preferably C2-C10 alkyl.
  • Examples of the alkyl include “C1-C6 alkyl”, specifically, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, t-butyl group, sec-butyl group, 1-methylpropyl group.
  • 1,1-dimethylpropyl group 2,2-dimethylpropyl, 1,2-dimethylpropyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1,1,2,2-tetra Methylpropyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, isope Chill, neopentyl, and the like.
  • alkenyl is a monovalent group having at least one double bond (two adjacent SP2 carbon atoms). Depending on the arrangement of the double bonds and substituents (if present), the geometry of the double bond can take the Enthagengen (E) or Tuzanmen (Z), cis or trans configuration. Examples of alkenyl include straight chain or branched chain, and include straight chain containing internal olefin. C2-C10 alkenyl is preferable, and C2-C6 alkenyl is more preferable.
  • alkenyl examples include vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl (including cis and trans), 3-butenyl, pentenyl, hexenyl and the like. It is done.
  • alkynyl is a monovalent group having at least one triple bond (two adjacent SP carbon atoms). Examples include linear or branched alkynyl, including internal alkylene. Preferred is C2-C10 alkynyl, and more preferred is C2-C6 alkynyl.
  • alkynyl examples include ethynyl, 1-propynyl, propargyl, 3-butynyl, pentynyl, hexynyl, 3-phenyl-2-propynyl, 3- (2′-fluorophenyl) -2-propynyl, 2- Examples include hydroxy-2-propynyl, 3- (3-fluorophenyl) -2-propynyl, 3-methyl- (5-phenyl) -4-pentynyl and the like.
  • cycloalkyl means a saturated or partially saturated cyclic monovalent aliphatic hydrocarbon group, and includes a monocyclic ring, a bicyclo ring, and a spiro ring.
  • C3-C10 cycloalkyl is used.
  • Specific examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo [2.2.1] heptyl, and the like.
  • aryl means a monovalent aromatic hydrocarbon ring, preferably C6-C10 aryl.
  • aryl include phenyl, naphthyl (for example, 1-naphthyl, 2-naphthyl) and the like.
  • heteroaryl means a monovalent group of an aromatic ring which preferably contains 1 to 5 heteroatoms in the atoms constituting the ring, and is partially saturated. May be.
  • the ring may be monocyclic or two fused rings (eg, bicyclic heteroaryl fused with benzene or monocyclic heteroaryl).
  • the number of atoms constituting the ring is preferably 5 to 10 (5-membered to 10-membered heteroaryl).
  • heteroaryl examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzofuranyl Thienyl, benzothiadiazolyl, benzothiazolyl, benzoxazolyl, benzooxadiazolyl, benzimidazolyl, indolyl, isoindolyl, indazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, benzodioxolyl, indolizinyl, imidazopyr
  • arylalkyl is a group containing both aryl and alkyl.
  • it means a group in which at least one hydrogen atom of the alkyl is substituted with aryl, preferably “C5 -C10 aryl C1-C6 alkyl ".
  • aryl preferably “C5 -C10 aryl C1-C6 alkyl ".
  • benzyl and the like can be mentioned.
  • arylene means a divalent group derived by further removing one arbitrary hydrogen atom from the aryl.
  • Arylene may be a single ring or a condensed ring.
  • the number of atoms constituting the ring is not particularly limited, but is preferably 6 to 10 (C6 to 10 arylene).
  • Specific examples of the arylene include phenylene and naphthylene.
  • heteroarylene means a divalent group derived by removing any one hydrogen atom from the heteroaryl.
  • the heteroarylene may be a single ring or a condensed ring.
  • the number of atoms constituting the ring is not particularly limited, but is preferably 5 to 10 (5-membered to 10-membered heteroarylene).
  • heteroarylene examples include pyrrole diyl, imidazole diyl, pyrazole diyl, pyridine diyl, pyridazine diyl, pyrimidine diyl, pyrazine diyl, triazole diyl, triazine diyl, isoxazole diyl, oxazole diyl, oxadiazole diyl, isothiazole diyl, thiazole Examples include diyl, thiadiazole diyl, flangedyl, and thiophene diyl.
  • amino acid constituting the peptide may be a “natural amino acid” or an “amino acid analog”.
  • amino acid”, “natural amino acid”, and “amino acid analog” may be referred to as “amino acid residue”, “natural amino acid residue”, and “amino acid analog residue”, respectively.
  • Natural amino acid is ⁇ -aminocarboxylic acid ( ⁇ -amino acid), and refers to 20 types of amino acids contained in proteins. Specifically, Gly, Ala, Ser, Thr, Val, Leu, Ile, Phe, Tyr, Trp, His, Glu, Asp, Gln, Asn, Cys, Met, Lys, Arg, and Pro.
  • Amino acid analogs are not particularly limited, but ⁇ -amino acids, ⁇ -amino acids, D-type amino acids, N-substituted amino acids, ⁇ , ⁇ -disubstituted amino acids, hydroxycarboxylic acids, non-natural amino acids (with side chains as natural Different amino acids; for example, unnatural ⁇ -amino acids, ⁇ -amino acids, ⁇ -amino acids).
  • an ⁇ -amino acid it may be a D-type amino acid or an ⁇ , ⁇ -dialkyl amino acid.
  • any configuration is allowed as in the case of ⁇ -amino acids.
  • the side chain (main chain methylene) of the amino acid analog is not particularly limited, but may have, for example, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, cycloalkyl in addition to a hydrogen atom.
  • Each may have one or more substituents, which may be any functional group including, for example, a halogen atom, N atom, O atom, S atom, B atom, Si atom, P atom. You can choose from.
  • C1-C6 alkyl optionally having halogen as a substituent means “C1-C6 alkyl” substituted with one or more halogen atoms, specifically, For example, trifluoromethyl, difluoromethyl, fluoromethyl, pentapuroethyl, tetrafluoroethyl, trifluoroethyl, difluoroethyl, fluoroethyl, trichloromethyl, dichloromethyl, chloromethyl, pentachloroethyl, tetrachloroethyl, trichloroethyl , Dichloroethyl, chloroethyl and the like.
  • optionally substituted C5-C10 aryl C1-C6 alkyl means that at least one hydrogen atom of the aryl and / or alkyl of “C5-C10 aryl C1-C6 alkyl” is substituted. Means a group substituted by a group.
  • substituents include, for example, having a functional group containing an S atom and further having a functional group such as amino or halogen. .
  • the main chain amino group of the amino acid analog may be unsubstituted (NH 2 group) or substituted (ie, NHR group: R may have an optionally substituted alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl) And a carbon chain bonded to the N atom and a carbon atom at the ⁇ -position may form a ring, such as proline, and the substituent is the same as the substituent on the side chain, For example, halogen, oxy, hydroxy, etc. may be mentioned.
  • alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, cycloalkyl applies mutatis mutandis to the definition of the functional group.
  • alkoxy means a group in which a hydrogen atom of a hydroxyl group is substituted with the alkyl, and preferred examples include “C1-C6 alkoxy”.
  • halogen-derived substituent examples include fluoro (—F), chloro (—Cl), bromo (—Br), iodo (—I) and the like.
  • Examples of the substituent derived from the O atom include hydroxyl (—OH), oxy (—OR), carbonyl (—C ⁇ O—R), carboxyl (—CO 2 H), oxycarbonyl (—C ⁇ O—OR), Carbonyloxy (—O—C ⁇ O—R), thiocarbonyl (—C ⁇ O—SR), carbonylthio group (—S—C ⁇ O—R), aminocarbonyl (—C ⁇ O—NHR), carbonyl Amino (—NH—C ⁇ O—R), oxycarbonylamino (—NH—C ⁇ O—OR), sulfonylamino (—NH—SO 2 —R), aminosulfonyl (—SO 2 —NHR), sulfa Examples include moylamino (—NH—SO 2 —NHR), thiocarboxyl (—C ( ⁇ O) —SH), and carboxylcarbonyl (—C ( ⁇ O) —CO 2 H).
  • oxy examples include alkoxy, cycloalkoxy, alkenyloxy, alkynyloxy, aryloxy, heteroaryloxy, aralkyloxy and the like.
  • carbonyl examples include formyl (—C ⁇ O—H), alkylcarbonyl, cycloalkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, aralkylcarbonyl and the like. .
  • Examples of oxycarbonyl include alkyloxycarbonyl, cycloalkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, aralkyloxycarbonyl and the like.
  • (-C O-OR)
  • carbonyloxy examples include alkylcarbonyloxy, cycloalkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, arylcarbonyloxy, heteroarylcarbonyloxy, aralkylcarbonyloxy and the like.
  • thiocarbonyl examples include alkylthiocarbonyl, cycloalkylthiocarbonyl, alkenylthiocarbonyl, alkynylthiocarbonyl, arylthiocarbonyl, heteroarylthiocarbonyl, aralkylthiocarbonyl and the like.
  • carbonylthio examples include alkylcarbonylthio, cycloalkylcarbonylthio, alkenylcarbonylthio, alkynylcarbonylthio, arylcarbonylthio, heteroarylcarbonylthio, aralkylcarbonylthio and the like. .
  • aminocarbonyl examples include alkylaminocarbonyl, cycloalkylaminocarbonyl, alkenylaminocarbonyl, alkynylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, aralkylaminocarbonyl and the like.
  • compounds in which the H atom bonded to the N atom in —C ⁇ O—NHR is further substituted with alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl are exemplified.
  • Examples of carbonylamino include alkylcarbonylamino, cycloalkylcarbonylamino, alkenylcarbonylamino, alkynylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, aralkylcarbonylamino and the like. .
  • compounds in which the H atom bonded to the N atom in —NH—C ⁇ O—R is further substituted with alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl or aralkyl.
  • Examples of oxycarbonylamino include alkoxycarbonylamino, cycloalkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aralkyloxy And carbonylamino.
  • alkoxycarbonylamino cycloalkoxycarbonylamino
  • alkenyloxycarbonylamino alkynyloxycarbonylamino
  • aryloxycarbonylamino heteroaryloxycarbonylamino
  • aralkyloxy And carbonylamino aralkyloxy And carbonylamino.
  • sulfonylamino examples include alkylsulfonylamino, cycloalkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, aralkylsulfonylamino and the like.
  • alkylsulfonylamino examples include alkylsulfonylamino, cycloalkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, aralkylsulfonylamino and the like.
  • H atom bonded to the N atom in —NH—SO 2 —R is further substituted with alkyl, cycloalkyl,
  • aminosulfonyl examples include alkylaminosulfonyl, cycloalkylaminosulfonyl, alkenylaminosulfonyl, alkynylaminosulfonyl, arylaminosulfonyl, heteroarylaminosulfonyl, aralkylaminosulfonyl and the like.
  • compounds in which the H atom bonded to the N atom in —SO 2 —NHR is further substituted with alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl are exemplified.
  • sulfamoylamino examples include alkylsulfamoylamino, cycloalkylsulfamoylamino, alkenylsulfamoylamino, alkynylsulfamoylamino, arylsulfamoylamino, hetero Arylsulfamoylamino, aralkylsulfamoylamino and the like can be mentioned.
  • the two H atoms bonded to the N atom in —NH—SO 2 —NHR are substituents independently selected from the group consisting of alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and aralkyl. They may be substituted, and these two substituents may form a ring.
  • Substituents derived from S atoms include thiol (—SH), thio (—S—R), sulfinyl (—S ⁇ O—R), sulfonyl (—S (O) 2 —R), sulfo (—SO 3 H). ).
  • thio examples are selected from alkylthio, cycloalkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio, aralkylthio and the like.
  • sulfinyl examples include alkylsulfinyl, cycloalkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heteroarylsulfinyl, aralkylsulfinyl and the like.
  • sulfonyl examples include alkylsulfonyl, cycloalkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aralkylsulfonyl and the like.
  • azide (—N 3 , also referred to as “azido group”), cyano (—CN), primary amino (—NH 2 ), secondary amino (—NH—R), tertiary amino (—NR (R ′)), amidino (—C ( ⁇ NH) —NH 2 ), substituted amidino (—C ( ⁇ NR) —NR′R ′′), guanidino (—NH—C ( ⁇ NH) — NH 2 ), substituted guanidino (—NR—C ( ⁇ NR ′ ′′) — NR′R ′′), and aminocarbonylamino (—NR—CO—NR′R ′′).
  • secondary amino examples include alkylamino, cycloalkylamino, alkenylamino, alkynylamino, arylamino, heteroarylamino, aralkylamino and the like.
  • tertiary amino are independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl and the like, for example, alkyl (aralkyl) amino And an amino group having two arbitrary substituents, and these two arbitrary substituents may form a ring.
  • substituted amidinos are the three substituents R, R ′, and R ′′ on the N atom are alkyl, cycloalkyl, alkenyl, alkynyl, aryl , Heteroaryl, and groups independently selected from aralkyl, for example, alkyl (aralkyl) (aryl) amidino and the like.
  • substituted guanidino examples include R, R ′, R ′′, and R ′ ′′ where alkyl, cycloalkyl, alkenyl, alkynyl , Aryl, heteroaryl, and aralkyl groups independently selected from each other, or a group in which these form a ring.
  • aminocarbonylamino examples include those in which R, R ′, and R ′′ are hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl. Examples thereof include a group independently selected from the above, or a group that forms a ring.
  • substituent derived from the B atom examples include boryl (—BR (R ′)) and dioxyboryl (—B (OR) (OR ′)). These two substituents R and R ′ are each independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl and the like, or they may form a ring .
  • At least one atom constituting the “amino acid” constituting the peptide may be an atom (isotope) having the same atomic number (number of protons) and different mass numbers (sum of the number of protons and neutrons).
  • isotopes contained in the "amino acid" constituting the peptide is a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, a fluorine atom, include a chlorine atom, respectively, 2 H, 3 H, 13 C, 14 C, 15 N, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 36 Cl and the like are included.
  • the amino acid characteristics that greatly improve the translation efficiency of the peptide according to the present invention are characterized by rapid hydrolysis with aminoacyl-tRNA alone and low affinity with EF-tu. Mention may be made of amino acids.
  • the amino acid characteristic that is not expected to have a significant effect on improving the translation efficiency in the present invention is characterized by amino acids that are slow to hydrolyze with aminoacyl-tRNA alone (especially translation time). And / or amino acids with sufficiently high affinity for EF-tu. Even such amino acids can be used as long as the effects of the present invention are not impaired.
  • amino acid analogs that can be used for peptide synthesis of the present invention are exemplified below, but are not limited thereto. Many of these amino acid analogs can be purchased with protected or unprotected side chains and protected or unprotected amine sites. Those that cannot be purchased can be synthesized by known methods.
  • N-Me amino acids can be used as amino acid analogs.
  • N-alkylamino acids can also be used as amino acid analogs.
  • D-type amino acids can also be used as amino acid analogs.
  • ⁇ , ⁇ -dialkyl amino acids can also be used as amino acid analogs.
  • amino acids can also be used as amino acid analogs.
  • the amino acid analog used for peptide synthesis in the present invention includes a group consisting of N alkyl amino acids including cyclic amino acids, aliphatic amino acids, aromatic amino acids, ⁇ amino acids, D amino acids, and ⁇ dialkyl amino acids.
  • One or more translatable amino acid analogs selected from the above can be selected. Whether or not the amino acid analog used in the above embodiment is translatable is not limited to this.
  • MALDI-TOF MS for mass spectrometry of peptides synthesized and synthesized in a cell-free translation system or radio It can be evaluated by techniques known to those skilled in the art, such as detection of peptides using isotope-labeled amino acids by electrophoresis.
  • the amino acid having a protecting group that can be used in the peptide synthesis of the present invention is preferably introduced at a position other than the N-terminal of the peptide to be translated.
  • the amino acids used for peptide synthesis in the present invention include translatable amino acids represented by the following general formula (VI) or (VII).
  • R 3 , R 4 , and R 5 in the formula are each independently a hydrogen atom, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, or cycloalkyl, and these groups may be substituted.
  • R 3 and R 4 or R 3 and R 5 together with the atoms to which they are attached may form a ring.
  • R 6 and R 7 are each independently a hydrogen atom or methyl.
  • any one of R 4 and R 5 may be a hydrogen atom or may form a ring together with R 3 , in which case R 4 , R 5
  • the other is optionally substituted C 1-6 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, aryl, heteroaryl, aralkyl, or C 3-7 cycloalkyl.
  • amino acid analogs used for peptide synthesis in the present invention include azetidine-2-carboxylic acid (Aze (2)), n-butylglycine (nBuG), 3-pyridylalanine (Ala (3 -Pyr)), 2-amino-2-methylpropanoic acid ( ⁇ -aminoisobutyric acid; AIB), 3-aminopropanoic acid ( ⁇ -alanine; ⁇ -Ala), D-alanine (D-Ala), and homophenylalanine
  • Aze (2) n-butylglycine
  • Al 3-pyridylalanine
  • 2-amino-2-methylpropanoic acid ⁇ -aminoisobutyric acid
  • AIB 2-amino-2-methylpropanoic acid
  • ⁇ -Ala 2-amino-2-methylpropanoic acid
  • D-Ala D-alanine
  • homophenylalanine One or more amino acid analogs selected from the group consisting of (Hp
  • the present invention provides at least one amino acid comprising a step of deprotecting a protective group of the amino acid in a cell-free translation system comprising a tRNA to which an amino acid having a protective group is bound, and a translation step.
  • a peptide synthesis method comprising the steps of: deprotecting and translating the peptide in parallel.
  • the “amino acid having a protecting group” means an amino acid having a protecting group in the main chain and / or side chain of the amino acid.
  • the amino acid is not limited as long as it has such characteristics, but is preferably an amino acid having a protecting group on the amino group of the main chain of the amino acid.
  • “performed in parallel” means performing both the step of deprotecting the protecting group of the amino acid and the step of translating the peptide in a cell-free translation system containing a tRNA bound to an amino acid having a protecting group Means. If the deprotecting step and the peptide translation step are both performed in a cell-free translation system, the deprotection step and the translation step may be partially overlapped in time. Alternatively, they may be performed simultaneously in time coincidence. Or you may perform a deprotection process and a translation process mutually independently temporally. In the deprotection step and the translation step, the deprotection step may be started first, or the translation step may be started first. Alternatively, both steps can be started simultaneously.
  • the time to be performed in parallel there is no particular limitation on the time to be performed in parallel, and for example, it may be 30 seconds, 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes, 120 minutes, 180 minutes or more.
  • the amino acid still has a protecting group at the time when the amino acid bound to tRNA is added to the cell-free translation system.
  • the protecting group of the amino acid is not deprotected before the amino acid bound to tRNA is added to the cell-free translation system.
  • any deprotection method may be used for the step of deprotecting the protecting group of the amino acid in the peptide synthesis method as long as the deprotection reaction proceeds under translation conditions.
  • any deprotection method can be used as long as the operation performed for the deprotection, the reagent added for the deprotection reaction, or the residue of the protecting group discharged into the system by the deprotection reaction does not damage the translation system. May be used. However, even a deprotection method that damages such a translation system can be used as long as the effects of the present invention are not impaired.
  • the peptide synthesis method of the present invention may include a step of post-translational modification of the peptide.
  • the peptide synthesis method of the present invention may include a step of cyclizing the peptide by post-translational modification.
  • the peptide before cyclization obtained by the peptide synthesis method of the present invention may be one in which an amino acid subjected to a cyclization reaction is protected with a protecting group.
  • deprotection can be performed in the process of post-translational modification.
  • the deprotection conditions under the translation conditions are preferably the deprotection reaction conditions used for the post-translational modification and the orthogonal deprotection conditions.
  • any deprotection method may be used as long as the deprotection conditions under translation conditions are the deprotection reaction conditions used for post-translational modification and the orthogonal deprotection conditions.
  • post-translational modification refers to a chemical reaction that occurs automatically after translation other than the action of ribosomes or is caused by adding a reagent different from the reagent for advancing the deprotection reaction under translation conditions.
  • a cyclization reaction and a deprotection reaction can be mentioned.
  • the step of deprotecting an amino acid protecting group in the cell-free translation system according to the present invention is spontaneous in the system due to the influence of components (for example, DTT (dithiothreitol) etc.) originally contained in the cell-free translation system. It can be interpreted as excluding the deprotection reaction that occurs automatically.
  • components for example, DTT (dithiothreitol) etc.
  • the deprotection of the protecting group of the amino acid is at least one deprotection selected from the group consisting of deprotection with an enzyme, deprotection with a reducing agent, and deprotection with a photoreaction.
  • a method of synthesizing peptides that are protective is provided.
  • the enzyme used for deprotection by the enzyme is preferably a hydrolase, and more preferably penicillin amide hydrolase, esterase, or aminopeptidase.
  • the penicillin amide hydrolase in the present invention represents a hydrolase classified as EC number (Enzyme Commission numbers) 3.5.1.11.
  • Hydrolytic enzymes classified as EC number 3.5.1.11 are enzymes that catalyze chemical reactions that use penicillin and water as natural substrates and give carboxylic acid and penicillanic acid as products. It has also been known for a long time that it does not hydrolyze ordinary peptide bonds but has a specific hydrolyzing action on, for example, phenylacetylamide bonds. For example, E.
  • coli-derived penicillin amide hydrolase can also be used.
  • the EC number is a four-digit number for systematically classifying enzymes according to their reaction format, and is an enzyme number defined by the Enzyme Committee of the International Biochemical Molecular Biology Union.
  • the esterase in the present invention is not particularly limited as long as it is an enzyme having esterase activity, and those skilled in the art can appropriately select an enzyme having esterase activity.
  • examples of such enzymes include enzymes classified under EC number (Enzyme Commission numbers) 3.1.1.XX.
  • Enzymes classified as EC number 3.1.1.XX are enzymes that hydrolyze carboxylic esters into carboxylic acids and alcohols.
  • carboxylesterase preferably classified into EC number 3.1.1.1 and triacylglycerol lipase (also simply referred to as lipase) classified into EC number 3.1.1.3 are mentioned.
  • esterases derived from E. coli or pig liver can also be used.
  • esterase retains its function, it may be a variant in which an amino acid is altered by genetic manipulation, and may or may not be chemically modified.
  • the aminopeptidase in the present invention is not particularly limited as long as it is an enzyme having aminopeptidase activity, and those skilled in the art can appropriately select an enzyme having aminopeptidase activity.
  • examples of such enzymes include enzymes classified into EC numbers (Enzyme Commission numbers) 3.4.11.XX.
  • Enzymes classified as EC No. 3.4.11.XX are enzymes that catalyze a reaction that hydrolyzes the amino acid chain of a peptide stepwise from the N-terminus to produce an amino acid.
  • leucine aminopeptidase preferably classified into EC number 3.4.11.1 and methionine aminopeptidase classified into EC number 3.4.11.18 can be mentioned.
  • aminopeptidase derived from bacteria or pig kidney can also be used.
  • these aminopeptidases retain their functions, they may be modified by amino acid modification by genetic manipulation, and may or may not be chemically modified.
  • the protecting group to be deprotected by the enzyme is a group represented by the following general formula (I) or general formula (II) having a partial structure X1 recognized by penicillin amide hydrolase.
  • Y is NH or an oxygen atom
  • L is a single bond (representing a methylene group here), arylene, or heteroarylene.
  • X1 in the formula is a structure recognized by the enzyme penicillin amide hydrolase, an ester or amide bond represented by Y—C ⁇ O in formula (I), or * —C in formula (II)
  • the structure (X1) is not particularly limited as long as the amide bond represented by ⁇ O can be hydrolyzed as a substrate for penicillin amide hydrolase.
  • the protecting group to be deprotected by the enzyme is preferably a group represented by the following general formula (III) having a partial structure X2 recognized by esterase.
  • L in the formula is a single bond, arylene, or heteroarylene.
  • X2 in the formula is a structure recognized by the enzyme esterase.
  • the structure (X2) is particularly limited. Will never be done.
  • the remaining protecting groups after hydrolysis are automatically deprotected from amino acids. Esterases are known to have various substrate specificities depending on their types, and those skilled in the art can appropriately select an appropriate structure from known techniques.
  • the protecting group to be deprotected by the enzyme is preferably a group represented by the following general formula (XII) having a partial structure X3 recognized by aminopeptidase.
  • L in the formula is a single bond, arylene, or heteroarylene.
  • X3 in the formula is a structure recognized by the enzyme aminopeptidase, and the structure (X3) is not particularly limited as long as the amide bond in the formula can be hydrolyzed as a substrate of aminopeptidase.
  • the remaining protecting groups after hydrolysis are automatically deprotected from amino acids.
  • Such a structure can be appropriately selected by those skilled in the art from known techniques.
  • the partial structure X1 in the above formula (I) is preferably the following general formula (IV) or 2-thienylmethyl.
  • R 1 and R 2 are each independently a hydrogen atom, hydroxyl, fluoro, chloro, bromo, amino, nitro, or methoxy.
  • R 1 may be present at any position of the ortho, meta, and para positions relative to —CHR 2 —, and is preferably present at the para position.
  • the partial structure X2 in the above formula (III) is preferably an optionally substituted alkyl, aralkyl, or cycloalkyl, and is methyl, ethyl, benzyl, or n-propyl. Is particularly preferred.
  • the formula (XII) is preferably the following general formula (XIII).
  • the protecting group that is deprotected by penicillin amide hydrolase is preferably a 4- (2- (4-fluorophenyl) acetamido) benzyloxycarbonyl (F-Pnaz) group. is there.
  • the protecting group to be deprotected by esterase is preferably a 4- (propionyloxy) benzyloxycarbonyl (Etez) group.
  • the protecting group deprotected by aminopeptidase is preferably a (S)-((4- (2-amino-4-methylpentanamido) benzyl) oxy) carbonyl (Leuz) group.
  • the ratio of the concentration of the enzyme to be mixed and the concentration of the tRNA bound to the amino acid having a protecting group to be deprotected by the enzyme is 1: 1000, 1: 900, 1: 800, 1: 700, 1: 600, 1: 500, 1: 400, 1: 300, 1: 200, 1: 100, 1:90, 1:80, 1:70, 1:60, 1:50, 1:40, 1:30, 1:20, 1:10, 1: 1 are preferred.
  • the reducing agent used for the deprotection by the reducing agent is preferably tris (2-carboxyethyl) phosphine (TCEP). More preferably, the protecting group to be deprotected by the reducing agent is a protecting group represented by the following general formula (V), or an azide group formed together with an amino group of the main chain (main chain amino group). Azide groups that mask groups). (L in the formula is a single bond, arylene, or heteroarylene.)
  • the protecting group to be deprotected by the reducing agent is preferably a 4-azidobenzyloxycarbonyl group (Acbz) or an azidomethyloxycarbonyl (Azoc).
  • the ratio of the concentration of the reducing agent to be mixed and the concentration of the tRNA bound to the amino acid having a protecting group to be deprotected by the reducing agent is 5000: 1, 4000: 1, 3000: 1, 2000: 1, 1000: 1, 900: 1, 800: 1, 700: 1, 600: 1, 500: 1, 400: 1, 300: 1, 200: 1, 100: 1 are preferred.
  • the present invention includes a step of deprotecting a protective group of the amino acid with an enzyme or a reducing agent in a cell-free translation system containing a tRNA bound to an amino acid having a protective group, and a translation step.
  • a method for synthesizing a peptide is provided.
  • the step of deprotecting the amino acid protecting group and the step of translating the peptide can be performed partially overlapping in time or simultaneously in time coincidence. Or in this invention, you may perform a deprotection process and a translation process mutually independently temporally. When performed independently, it is not limited to this, but it is more preferable to start the translation step after deprotecting the protecting group of the amino acid in a cell-free translation system.
  • the protecting group is deprotected by the reaction conditions used for the post-translational modification and the orthogonal reaction conditions.
  • the present invention provides a method for synthesizing a peptide, wherein the protecting group of the amino acid is a protecting group that is deprotected under the reaction conditions used for post-translational modification and the orthogonal reaction conditions. provide.
  • the protecting group of the amino acid is preferably an protecting group that is orthogonal to the protecting group used in the iSP (Initiation Suppression) method.
  • the present invention provides a method for synthesizing a peptide, in which the protecting group of the amino acid is a protecting group used in iSP (Initiation Suppression) method and an orthogonal protecting group.
  • the protecting group of the amino acid is a protecting group used in iSP (Initiation Suppression) method and an orthogonal protecting group.
  • iSP Initiation Suppression
  • orthogonal protecting group refers to a protecting group that is substantially unaffected by other deprotection reaction conditions.
  • the protecting group that allows the deprotection reaction to proceed under conditions other than the reduction reaction is selected as the orthogonal protecting group. It is preferable to do.
  • a protective group capable of proceeding with the deprotection reaction by another enzymatic reaction for example, penicillin amide hydrolase
  • a desired amino acid other than methionine when introduced into the N-terminus of the translated peptide, for example, the following method can be used (WO2013 / 100132).
  • the iSP (Initiation Suppression) method generally translates methionine as a translation initiation amino acid (N-terminal amino acid).
  • amino acid analogs at the N-terminus have a higher tolerance than that at the time of peptide chain elongation, and amino acid analogs having a structure greatly different from that of natural amino acids can be used at the N-terminus (Non-Patent Document: J Am Chem Soc.
  • initiation read through As another method of introducing a desired amino acid other than methionine as a translation initiation amino acid, there can be mentioned initiation read through (initiation read through: skipping of the start codon).
  • proteins and peptides are translated from methionine, which is a translation initiation amino acid encoded as an AUC codon.
  • the second and later codons can be obtained by eliminating the translation initiation methionyl tRNA in the cell-free translation system, or by replacing the translation initiation amino acid with an amino acid analog with low translation efficiency.
  • a translation product having the N-terminal amino acid as the amino acid encoded by can be synthesized.
  • a method in which an N-terminal methionine of a peptide is scraped by acting an enzyme such as peptide deformylase and Methionine aminopeptidase (Non-patent document: Meinnel, T., et al. Biochimie (1993) 75, 1061-1075, Methionine as translation start signal: A review of the enzymes of the pathway in Escherichia coli.). It is also possible to prepare a library of peptides starting from translation initiation methionine, and to treat this with Methionine-aminopeptidase to remove the N-terminal methionine and prepare a library with random N-terminal amino acids.
  • an enzyme such as peptide deformylase and Methionine aminopeptidase
  • the peptide can be further cyclized in the process of post-translational modification after completion of the peptide synthesis reaction in the present invention.
  • the N-terminal amino acid residue of the synthesized peptide hereinafter, including the N-terminal carboxylic acid analog in addition to the natural amino acid residue and amino acid analog residue
  • the C-terminal side A peptide can be cyclized by combining with a reactive site on the side chain of an amino acid residue or amino acid analog residue (WO2013 / 100132).
  • Examples of such a method include, for example, an amino acid residue on the N-terminal side having an amino group and a reaction auxiliary group in the side chain, and an active ester group located on the C-terminal side from the amino acid residue on the N-terminal side.
  • a method for obtaining a cyclic compound by amide-bonding an amino acid residue or amino acid analog residue in a side chain, an amino acid residue having an amino group and an active ester group in the side chain A method for obtaining a cyclic compound by amide-bonding an active ester group of a group or an amino acid analog residue, an amino acid residue or amino acid analog having a reaction point at the N-terminal amino acid residue and one reaction point in the side chain Examples thereof include a method of carbon-carbon bonding between the reactive site of the residue.
  • the C terminal which has an amino group (it may have a reaction auxiliary group) in the said active ester group and side chain of the amino acid residue of the N terminal side which has an active ester group A functional group opposite to the above may be arranged, such as amide bond with the amino group in the amino acid residue on the side.
  • the N-terminal carboxylic acid analog in the present invention has an amino group and a carboxyl group at the same time, a compound having 3 or more atoms between them, various carboxylic acid derivatives having no amino group, It may be a peptide formed from 4 residues, or an amino acid whose main chain amino group is chemically modified by an amide bond with a carboxylic acid. Moreover, you may have the boric acid and boric-acid ester site
  • a portion other than the functional group defined in these compounds is widely selected from an optionally substituted alkyl group, aralkyl group, aryl group, cycloalkyl group, heteroaryl group, alkenyl group, alkynyl group, and the like ( Is freely replaced).
  • Transfer RNA is RNA having a molecular weight of 25000 to 30000 and comprising a 3'-terminal CCA sequence and a chain length of 73 to 93 bases, and is involved in codon identification.
  • the tRNA forms an ester bond with the carboxy terminus of the amino acid at its 3 'end to form an aminoacyl tRNA.
  • Aminoacyl tRNA forms a triple complex with polypeptide elongation factor (EF-Tu), GTP, and is carried to ribosome.
  • EF-Tu polypeptide elongation factor
  • TRNA biosynthesized in cells contains covalently modified bases that affect tRNA conformation and anticodon base pairing to help identify tRNA codons.
  • TRNA synthesized by general in vitro transcription is composed of so-called nucleobases adenine, uracil, guanine, and cytosine, but those prepared from cells or chemically synthesized contain these methylated products.
  • modified bases such as sulfur derivatives, deaminated derivatives, adenosine derivatives containing isopentenyl groups and threonine. Further, when a pdCpA method or the like is used, a deoxy base may be included.
  • the aminoacyl tRNA used in the peptide synthesis of the present invention can be prepared using the following method. Prepare a template DNA that encodes the desired tRNA sequence and arranges a T7, T3, or SP6 promoter upstream, and uses RNA polymerase suitable for the promoter such as T7 RNA polymerase or T3, SP6 RNA polymerase to transcribe tRNA. Can be synthesized. Alternatively, it is possible to extract and purify tRNA from cells, and extract a target generated tRNA using a probe having a sequence complementary to the sequence of tRNA. In this case, cells transformed with the expression vector of the target tRNA can also be used as a source.
  • the aminoacyl tRNA can be obtained, for example, by binding the tRNA obtained by removing CA from the 3 ′ terminal CCA sequence thus obtained and aminoacylated pdCpA or pCpA separately prepared with RNA ligase (pdCpA Method, pCpA method).
  • an aminoacyl-tRNA for an amino acid represented by formula (VI) or (VII) can be produced using pdCpA or pCpA linked to an amino acid represented by formula (VI) or (VII) .
  • the aminoacyl-tRNA is useful in the production of a peptide, a peptide-mRNA conjugate, or a peptide-mRNA conjugate library of the present invention.
  • the present invention relates to pdCpA or pCpA bound to an amino acid represented by formula (VI) or (VII).
  • Specific examples of pdCpA or pCpA bound to the amino acid represented by the formula (VI) or (VII) include compounds represented by the following formula (X) or (XI).
  • R 3 ⁇ R 7, and P 1 are as defined and R 3 ⁇ R 7 and P 1 in the formula below (VIII) or (IX), R 8 is hydrogen atom or hydroxyl.
  • the present invention also relates to a tRNA aminoacylated with an amino acid represented by formula (VI) or (VII).
  • aminoacylation by flexizyme which is a ribozyme prepared by preparing full-length tRNA and carrying active esters of various amino acid analogs on tRNA, is also possible.
  • translation synthesis is performed by, for example, protein factors (methionyl tRNA transformylase, EF-G, RF1, RF2, RF3, RRF, IF1, IF2, IF3, EF-Tu, EF- Ts, ARS (Choose what you need from AlaRS, ArgRS, AsnRS, AspRS, CysRS, GlnRS, GluRS, GlyRS, HisRS, IleRS, LeuRS, LysRS, MetRS, PheRS, ProRS, SerRS, ThrRS, TrpRS, TyrRS, ValRS) ), Ribosome, amino acid, creatine kinase, myokinase, inorganic pyrophosphatase, nucleoside diphosphate kinase, E.
  • protein factors methionyl tRNA transformylase, EF-G, RF1, RF2, RF3, RRF, IF1, IF2, IF3, EF-Tu, EF- Ts
  • coli -derived tRNA creatine phosphate, potassium glutamate, HEPES-KOH pH7.6, magnesium acetate, spermidine, dithiothreitol, It can be performed by adding mRNA to a known cell-free translation system such as PUREsystem in which GTP, ATP, CTP, UTP and the like are mixed.
  • PUREsystem a known cell-free translation system
  • T7-RNA-polymerase is added, transcription and translation from a template DNA containing a T7 promoter can be performed in a coupled manner.
  • a peptide containing an amino acid analog group can be translated and synthesized by adding a desired acylated tRNA group or an amino acid analog group allowed by ARS (eg, F-Tyr) to the system (Kawakami T, et al . Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J Am Chem Soc. 2008, 130, 16861-3., Kawakami T, et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat 2009-Chem Biol.
  • ARS eg, F-Tyr
  • the cell-free translation system can include various ones as long as mRNA can be translated into protein.
  • mRNA can be translated into protein.
  • the cell-free translation system of the present invention can contain an initiation factor, elongation factor, dissociation factor, aminoacyl-tRNA synthetase, and the like. These factors can be obtained by purifying from various cell extracts. Examples of the cell for purifying the factor include prokaryotic cells and eukaryotic cells.
  • Prokaryotic cells can include E. coli cells, hyperthermophilic cells, or Bacillus subtilis cells.
  • Known eukaryotic cells are those made from yeast cells, wheat germ, rabbit reticulocytes, plant cells, insect cells, or animal cells.
  • the PURE system is a reconstituted cell-free translation system in which protein factors, energy regeneration enzymes, and ribosomes necessary for translation of Escherichia coli are extracted and purified and mixed with tRNA, amino acids, ATP, GTP, and the like. Not only is the content of impurities small, but because it is a reconstitution system, it is possible to easily produce a system that does not contain protein factors and amino acids to be excluded. ((I) Nat Biotechnol. 2001; 19: 751-5.
  • the present invention provides a compound represented by the following general formula (VIII) or (IX). These compounds have a protecting group P 1 on the amino group of the amino acid main chain.
  • R 3 , R 4 , and R 5 are each independently a hydrogen atom, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, or cycloalkyl, and these groups are substituted
  • R 3 and R 4 or R 3 and R 5 may be combined with the atoms to which they are bonded to form a ring
  • R 6 and R 7 are each independently a hydrogen atom or methyl
  • P 1 is an enzyme, reducing agent, and / or protecting group that is deprotected by photoreaction.
  • P 1 in the formula is preferably a protecting group recognized by penicillin amide hydrolase, esterase, or aminopeptidase.
  • P 1 examples include a protecting group represented by the following general formula (I) or general formula (II) having a partial structure X1 recognized by penicillin amide hydrolase, and a partial structure recognized by esterase.
  • Examples thereof include a protecting group represented by the following general formula (III) having X2 or the following general formula (XII) having a partial structure X3 recognized by aminopeptidase.
  • Y is NH or an oxygen atom
  • L is a single bond, arylene, or heteroarylene.
  • P 1 in the formula represents whether the partial structure X1 in the formula (I) is the following general formula (IV) or 2-thienylmethyl, or the partial structure in the formula (III)
  • X2 is preferably optionally substituted alkyl, aralkyl, or cycloalkyl, and particularly preferably methyl, ethyl, benzyl, or n-propyl.
  • R 1 and R 2 are each independently a hydrogen atom, hydroxyl, fluoro, chloro, bromo, amino, nitro, or methoxy.
  • formula (XII) is more preferably the following general formula (XIII).
  • P 1 in the formula is a protecting group represented by the following general formula (V) or an azide group formed together with an amino group of the main chain (an azide group that masks the amino group of the main chain) ).
  • L in the formula is a single bond, arylene, or heteroarylene.
  • These protecting groups can be deprotected with a reducing agent (preferably TCEP). More specific examples of these protecting groups include 4-azidobenzyloxycarbonyl group (Acbz) and azidomethyloxycarbonyl group (Azoc).
  • the present invention provides a compound represented by the following general formula (X) or (XI). These compounds are compounds formed by binding a compound represented by the general formula (VIII) or (IX) and pCpA or pdCpA. (Wherein, R 3 ⁇ R 7, and P 1 are as defined and R 3 ⁇ R 7 and P 1 in formula (VIII) or (IX), R 8 is hydrogen atom or hydroxyl.)
  • the present invention relates to an aminoacyl tRNA formed by binding a compound described in the formula (X) or (XI) and tRNA. Furthermore, the present invention relates to an aminoacyl tRNA formed by binding a compound represented by the formula (VIII) or (IX) and tRNA.
  • aminoacyl-tRNA described above is useful for efficient translation of peptides containing amino acids in the present invention.
  • the aminoacyl-tRNA described above can be obtained by methods well known to those skilled in the art.
  • the present invention provides a peptide synthesis comprising a step of deprotecting one or more components of a cell-free translation system having a protecting group in the cell-free translation system, and a translation step A method is provided wherein the deprotecting step and the translation step are performed in parallel.
  • an enzyme or a reducing agent for the deprotection in the said aspect.
  • the types of enzymes and reducing agents the types of protecting groups, the types of amino acids and the like used in this embodiment, the above description can be referred to as appropriate.
  • the “component of the cell-free translation system” in the above embodiment is not limited as long as it is a component contained in the cell-free translation system used for translational synthesis of peptides containing amino acids.
  • the present invention provides a complex of a peptide containing one or more amino acid residues and having a cyclic part and a nucleic acid encoding the peptide, or a method for producing a library containing the complex And the manufacturing method of the said composite_body
  • the synthesized peptide is preferably cyclized by an amide bond, a thioether bond, a disulfide bond, an ether bond, an ester bond, a thioester bond, or a carbon-carbon bond.
  • nucleic acid in the present invention can include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or a nucleotide derivative having an artificial base. Moreover, a peptide nucleic acid (PNA) can also be included.
  • the nucleic acid of the present invention can be any of these nucleic acids or a hybrid as long as the target genetic information is retained. That is, chimeric nucleic acids in which different nucleic acids such as DNA-RNA hybrid nucleotides and DNA and RNA are linked in a single strand are also included in the nucleic acids of the present invention.
  • a nucleic acid library such as a display library containing these nucleic acids as templates can be preferably used.
  • the display library is a library in which peptides that are phenotypes and RNAs or DNAs that encode the peptides that are genotypes are associated with each other.
  • a desired immobilized target By contacting the library with a desired immobilized target and washing away molecules that do not bind to the target, it is possible to concentrate peptides that bind to the target (panning method).
  • the sequence of the protein bound to the target can be clarified.
  • mRNAmdisplay Proc Natl Acad Sci USA. 1997; 94: 12297 -302.
  • a spacer such as puromycin is bound to the 3 ′ end of an mRNA library obtained by transcription from a DNA library containing a promoter such as the T7 promoter, the mRNA is translated into a protein in a cell-free translation system. Puromycin is mistakenly recognized as an amino acid by ribosome and incorporated into protein. Thereby, mRNA and the protein encoded by this are linked, and a library in which mRNA and its product are associated can be obtained. Since this process does not involve transformation of E. coli or the like, high efficiency is realized and a large-scale display library (10 12 -10 14 types) can be constructed.
  • cDNA By synthesizing cDNA from mRNA, which is a tag containing gene information that is concentrated and selected by panning, PCR amplification and analysis of the base sequence, the sequence of the protein bound to the desired target substance can be determined. It can be clarified.
  • a DNA library that serves as a template for the library can be obtained by synthesizing a portion where amino acid residues are not fixed by mixing bases. Repeating 3 multiples of a mixture of four bases of A, T, G, C (N), or N for the first and second letters of the codon, and for two bases such as W, M, K, and S for the third letter It can be synthesized as a mixture. Furthermore, if the number of amino acids to be introduced is limited to 16 or less, there is also a method in which the third character is one base.
  • CDNA display a novel screening method for functional disulfide-rich peptides by solid- phase synthesis and stabilization of mRNA-protein fusions.Yamaguchi J, Naimuddin M, Biyani M, Sasaki T, Machida M, Kubo T, Funatsu T, Husimi Y, Nemoto N.), Ribosome display (Proc Natl Acad Sci US A. 1994; 91: 9022-6. An in vitro polysome display system for identifying ligands from very large peptide libraries.
  • CIS display In vitro selection of peptides from libraries of protein) -DNA complexes.Odegrip R, Coomber D, Eldridge B, Hederer R, Kuhlman PA, Ullman C, FitzGerald K, McGregor D.) It has been known. In addition, in vitro compartmentalization (Nat Biotechnol. 1998; 16: 652-6.Transcriptional translation system is encapsulated in water-in-oil emulsion or liposome for each molecule of DNA constituting DNA library. Man-made cell-like compartments for molecular evolution. Tawfik DS, Griffiths AD.) Is also known. The above method can be used as appropriate using a known method.
  • these nucleic acid libraries can be translated using the above-described cell-free translation system.
  • a cell-free translation system it is preferable to include a sequence encoding a spacer downstream of the target nucleic acid.
  • the spacer sequence include, but are not limited to, a sequence containing glycine and serine.
  • a linker formed of RNA, DNA, or a polymer of hexaethylene glycol (spc18) is inserted between the compound incorporated into the peptide during translation by ribosome, such as puromycin and its derivatives, and the nucleic acid library. It is preferable to include.
  • a method for producing a peptide-nucleic acid complex having a desired activity include a manufacturing method including the following steps: (i) Using the peptide synthesis method of the present invention described above, a non-cyclic peptide having a total of 9 to 13 residues of natural amino acids and / or amino acid analogs is translated and synthesized, and the non-cyclic peptide and Of forming a non-cyclic peptide-nucleic acid complex comprising a complex in which a nucleic acid sequence encoding a DNA is bound via a linker (ii) The non-cyclic peptide of the complex translated and synthesized in step (i) is cyclized by an amide bond or a carbon-carbon bond, and the total number of residues of the natural amino acid and / or amino acid analog in the cyclic part is 5 to Forming a cyclic peptide to be 12 (iii) A step
  • a peptide having a desired activity can be produced from the complex selected in the above step.
  • a production method including the following steps can be mentioned: (iv) obtaining peptide sequence information based on the nucleic acid sequence of the complex selected in step (iii), and (v) A step of chemically synthesizing the peptide based on the sequence information obtained in the step (iv).
  • the acyclic peptide may contain ⁇ -hydroxycarboxylic acid and a natural amino acid and / or amino acid analog having an amino group in the side chain which may be protected.
  • a branched site is formed by chemically reacting ⁇ -hydroxycarboxylic acid with a natural amino acid and / or amino acid analog having an amino group in the side chain.
  • the process of making it include may be included. By this process, it is possible to produce a cyclic peptide having a linear part at various positions of the cyclic part.
  • step (i) the total number of natural amino acids and / or amino acid analogs described in the above step (i) and the total number of residues of natural amino acids and / or amino acid analogs in the cyclic part described in step (ii). Does not include natural amino acids and / or amino acid analogs that are removed by post-translational modifications.
  • the target substance is preferably an in vivo molecule.
  • the ⁇ in vivo molecule '' in the present invention is not particularly limited as long as it is an in vivo molecule, but is preferably a molecule that is a target for treatment of a disease, and in particular, a hole to which a conventional low molecular weight compound having a molecular weight of less than 500 can bind ( Molecules that do not have a cavity), intracellular proteins, nucleic acids, intracellular regions of membrane proteins or transmembrane domains of membrane proteins that are inaccessible to high molecular compounds such as antibodies are preferred.
  • transcription factors such as STAT, AP1, CREB, SREBP, muscarinic acetylcholine receptor, cannabinoid receptor, GLP-1 receptor, PTH receptor and other G protein-coupled receptors (GPCR), TNF , TNFR, IL-6, IL-6R and other cytokines and their receptors, P2X receptors, ion channel receptors such as nicotinic acetylcholine receptors, ion channels, transporters, miRNAs such as miR-21 and miR206 Can be mentioned.
  • the cyclic portion can be formed using, for example, the cyclization reaction described above, and an amide bond or a carbon-carbon bond can be formed by the cyclization reaction.
  • a known technique such as a cell-free translation system can be used. Specifically, it can be produced using the method described above.
  • the present invention relates to the use of an enzyme, a reducing agent, or a protecting group that is deprotected by a photoreaction in a peptide synthesis method, the method comprising a cell-free translation system having a protecting group
  • the use of the protecting group characterized in that the step of deprotecting one or more of the components in the cell-free translation system and the translation step are performed in parallel.
  • the present invention relates to the use of a protecting group that is deprotected by an enzyme, a reducing agent, or a photoreaction in a peptide synthesis method, the method comprising tRNA having an amino acid having a protecting group bound thereto
  • a cell-free translation system comprising: a use of the protecting group, wherein the step of deprotecting the protecting group of the amino acid and the translation step are performed in parallel.
  • the present invention provides a protecting group that is deprotected by an enzyme, a reducing agent, or a photoreaction for use in a peptide synthesis method, the method comprising a protecting group, Including a step of deprotecting one or more components of a cell translation system in the cell-free translation system, and a translation step, wherein the deprotection step and the translation step are performed in parallel.
  • the present invention provides a protecting group that is deprotected by an enzyme, a reducing agent, or a photoreaction for use in a peptide synthesis method, wherein the method comprises the steps of: In the cell-free translation system containing the bound tRNA, the step of deprotecting the protective group of the amino acid and the translation step are provided, wherein the deprotecting step and the translation step are performed in parallel. To do.
  • the LCMS analysis conditions are as follows.
  • Example 1 Synthesis of pCpA-amino acid used in cell-free translation system According to the following scheme, aminoacylated pCpA (ts05, ts07, ts09, ts14, ts19, ts20, ts23, ts26, ts29, TS03, TS06, TS09, TS12, TS15, TS18, TS21, TS24, TS29, TS34, TS37) were synthesized.
  • Buffer A was prepared as follows. Acetic acid is added to an aqueous solution of N, N, N-trimethylhexadecane-1-aminium chloride (6,40 g, 20 mmol) and imidazole (6.81 g, 100 mmol), pH 8, 20 mM N, N, N-trimethylhexadecane- Buffer solution A (1 L) of 1-aminium and 100 mM imidazole was obtained.
  • N-((((4-azidobenzyl) oxy) carbonyl) -N-butylglycine (compound ts02, Acbz-nBuG-OH) (70.0 mg, 0.23 mmol) and N-ethyl-isopropylpropane- 2-Amine (DIPEA) (0.080 mL, 0.46 mmol) was dissolved in acetonitrile (229 ⁇ l), 2-bromoacetonitrile (0.023 mL, 0.34 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 2 hours.
  • DIPEA N-ethyl-isopropylpropane- 2-Amine
  • n-butylglycine H-nBuG-OH
  • carbonic acid- (4-nitrophenyl) -4- (2- (4-fluorophenyl) acetamido) benzyl To a mixture of compound ts11) (150 mg, 0.35 mmol) was added DMF (0.35 mL) at room temperature. After stirring at room temperature for 5 minutes, triethylamine (113 ⁇ L, 0.81 mmol) was added at 0 degrees.
  • N-butyl-N-(((4- (2- (4-fluorophenyl) acetamido) benzyl) oxy) carbonyl) glycine compound ts12, F-Pnaz-nBuG-OH
  • DIPEA N-ethyl-isopropylpropan-2-amine
  • Trifluoroacetic acid (4.60 mL) was added at room temperature, followed by lyophilization. The obtained residue was dissolved in water (50.0 ml), washed with ethyl acetate (100 ml), and the aqueous layer was lyophilized. The obtained residue was purified by reverse phase silica gel column chromatography (0.05% aqueous trifluoroacetic acid / 0.05% trifluoroacetic acid acetonitrile) to give the title compound (compound ts23, Pen-Aze (2) -pCpA). (20.0 mg, 2%) was obtained.
  • LCMS (ESI) m / z 818 (M + H) + Retention time: 0.63 minutes (analysis condition SMD method 1)
  • n-Butylglycine hydrochloride (H-nBuG-OH ⁇ HCl) (17.00 g, 7.62 mmol) was dissolved in 1,4-dioxane (150 ml) / water (150 ml) and adjusted to pH 7 with sodium carbonate. Thereafter, penta-4-enoic acid 2,5-dioxopyrrolidin-1-yl (20.0 g, 101.4 mmol) and sodium carbonate (7.00 g, 83.33 mmol) were added, and the reaction solution was allowed to cool to room temperature. For 16 hours.
  • N-butyl-N- (pent-4-enoyl) glycine compound ts24, Pen-nBuG-OH
  • DIPEA N-ethyl-isopropylpropan-2-amine
  • Buffer A (100 ml) was diluted with dihydrogen phosphate ((2R, 3R, 4R, 5R) -5- (4-amino-2-oxopyrimidin-1 (2H) -yl) -3-(((( (2R, 3S, 4R, 5R) -5- (6-Amino-9H-purin-9-yl) -3,4-dihydroxytetrahydrofuran-2-yl) methoxy) (hydroxy) phosphoryl) oxy) -4- ( (Tetrahydrofuran-2-yl) oxy) tetrahydrofuran-2-yl) methyl (compound pc01) (400 mg, 0.55 mmol) was dissolved and cyanomethyl N-butyl-N- (pent-4-enoyl) glycinate (compound ts25, A THF solution (4 ml) of Pen-nBuG-OCH 2 CN) (558 mg, 2.22 mmol) was
  • Trifluoroacetic acid (2.30 mL) was added at room temperature, followed by lyophilization. The obtained residue was purified by reverse phase silica gel column chromatography (0.05% aqueous trifluoroacetic acid / 0.05% trifluoroacetic acid acetonitrile) to give the title compound (compound ts26, Pen-nBuG-pCpA) (65 mg, 14%).
  • LCMS (ESI) m / z 848 (M + H) + Retention time: 1.25 minutes (analysis condition SMD method 3)
  • N-ethyl-isopropylpropan-2-amine (35 uL, 0.20 mmol) and 2-bromoacetonitrile (8.43 uL, 0.12 mmol) were added again.
  • DIPEA N-ethyl-isopropylpropan-2-amine
  • 2-bromoacetonitrile (8.43 uL, 0.12 mmol) were added again.
  • a saturated aqueous ammonium chloride solution was added and the mixture was extracted with MTBE. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off with an evaporator to give a crude product (S) -2- (pent-4-enamido) -3- (pyridin-3-yl) propane.
  • DMF 1.0 mL
  • azidobenzyl 157 mg, 0.50 mmol
  • triethylamine 174 ⁇ L, 1.25 mmol
  • N-((((4-azidobenzyl) oxy) carbonyl) -L-alanine (Compound TS01, Acbz-Ala-OH) (174.0 mg, 0.66 mmol) and N-ethyl-isopropylpropane-2 Amine (DIPEA) (0.172 mL, 0.99 mmol) was dissolved in acetonitrile (1315 ⁇ l), 2-bromoacetonitrile (0.067 mL, 0.99 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 18 hours.
  • DIPEA N-(((4-azidobenzyl) oxy) carbonyl) -L-alanine
  • DIPEA N-ethyl-isopropylpropane-2 Amine
  • N-((((4-azidobenzyl) oxy) carbonyl) -D-alanine (Compound TS19, Acbz-D-Ala-OH) (79.0 mg, 0.3 mmol) and N-ethyl-isopropylpropane under nitrogen atmosphere -2-Amine (DIPEA) (0.079 mL, 0.45 mmol) was dissolved in acetonitrile (600 ⁇ l), 2-bromoacetonitrile (0.030 mL, 0.45 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 18 hours. .
  • DIPEA N-(((4-azidobenzyl) oxy) carbonyl) -D-alanine
  • Homophenylalanine (H-Hph-OH) (54.0 mg, 0.30 mmol) and carbonic acid (4-nitrophenyl) 4-synthesized by the method described in the literature (Bioconjugate Chem. 2008, 19, 714.) under a nitrogen atmosphere.
  • To a mixture of azidobenzyl 99.0 mg, 0.32 mmol
  • DMSO 2.0 mL
  • triethylamine 966.0 ⁇ L, 0.69 mmol
  • Example 2 The following tRNAGluUAG (-CA) was prepared by a conventional synthesis method of aminoacyl tRNA .
  • SEQ ID NO: TR-1 SEQ ID NO: 1
  • tRNAGluUAG -CA
  • RNA sequence GUCCCCUUCGUCUAGAGGCCCAGGACACCGCCCUUAGACGGCGGUAACAGGGGUUCGAAUCCCCUAGGGGACGC
  • tRNAGluACG (-CA) was prepared by a conventional method.
  • SEQ ID NO: TR-2 (SEQ ID NO: 9) tRNAGluACG (-CA) RNA sequence: GUCCCCUUCGUCUAGAGGCCCAGGACACCGCCCUACGACGGCGGUAACAGGGGUUCGAAUCCCCUAGGGGACGC
  • Aminoacyl tRNA synthesis using aminoacyl pCpA Part 1 50 ⁇ M transcribed tRNAGluUAG (-CA) (SEQ ID NO: TR-1) (20 ⁇ l), 10 ⁇ ligation buffer (500 mM HEPES-KOH pH 7.5, 200 mM MgCl 2) (4 ⁇ l), 10 mM ATP (4 ⁇ l), Nuclease free water (5 6 ⁇ l) was added and heated at 95 ° C. for 2 minutes, and then allowed to stand at room temperature for 5 minutes to refold tRNA.
  • DMSO of 10 units / ⁇ l T4 RNA ligase (New england bio lab.) (2.4 ⁇ L) and 2.5 mM aminoacylated pCpA (ts05, ts07, ts09, ts14, ts19, ts20, ts23, ts26, and ts29)
  • the solution (4 ⁇ L) was added, and a ligation reaction was performed at 16 ° C. for 45 minutes.
  • Aminoacyl tRNA synthesis using aminoacyl pCpA Part 2 50 ⁇ M transcribed tRNAGluUAG (-CA) (SEQ ID NO: TR-1) (20 ⁇ l), 10 ⁇ ligation buffer (500 mM HEPES-KOH pH 7.5, 200 mM MgCl 2) (4 ⁇ l), 10 mM ATP (4 ⁇ l), Nuclease free water (5 6 ⁇ l) was added and heated at 95 ° C. for 2 minutes, and then allowed to stand at room temperature for 5 minutes to refold tRNA.
  • the aminoacylated tRNA was recovered by ethanol precipitation. (This deprotection operation is not performed for TS06, TS12, TS18, TS24, and TS29, where the protecting group is not an Acbz group.)
  • the recovered aminoacylated tRNAs (compounds AAtR-10 to AAtR-14, AAtR-16 to AAtR -20) was dissolved in 1 mM sodium acetate just prior to addition to the translation mixture.
  • Aminoacyl tRNA synthesis using aminoacyl pCpA Part 3 50 ⁇ M transcribed tRNAGluACG (-CA) (SEQ ID NO: TR-2) (20 ⁇ l), 10 ⁇ ligation buffer (500 mM HEPES-KOH pH 7.5, 200 mM MgCl 2) (4 ⁇ l), 10 mM ATP (4 ⁇ l), Nuclease free water (5 6 ⁇ l) was added and heated at 95 ° C. for 2 minutes, and then allowed to stand at room temperature for 5 minutes to refold tRNA.
  • Example 3 Peptide translation synthesis Translation synthesis was performed.
  • PURE system a reconstituted cell-free protein synthesis system derived from E. coli, was used. Specifically, cell-free translation solution (1% (v / v) RNasein Ribonuclease inhibitor (Promega, N2111), 1 mM GTP, 1 mM ATP, 20 mM creatine phosphate, 50 mM HEPES-KOH pH 7.6, 100 mM potassium acetate, 6 mM magnesium acetate, 2 mM spermidine, 1 mM dithiothreitol, 1.5 mg / ml E.
  • ⁇ Detection by mass spectrometry Part 1> In order to mass-analyze peptides synthesized by cell-free translation system, MALDI-TOF MS was used. Specifically, 1 ⁇ M template mRNA (R-1) and Ala, Phe, Gly, Lys, Met, Pro, Arg, Ser, and Val (each final concentration 250 ⁇ M) were added to the above cell-free translation system. Nine 10 ⁇ M aminoacyl tRNAs prepared (AAtR-1, AAtR-2, AAtR-3, AAtR-4, AAtR-5, AAtR-6, AAtR-7, AAtR-8, AAtR-9) Each was added and incubated at 37 ° C. for 60 minutes.
  • TCEP Tris (2-carboxyethyl) phosphine; reducing agent, final concentration 10 mM
  • SPE C-TIP Nikkyo Technos
  • the translation product was identified by measuring MALDI-TOF MS spectrum using ⁇ -cyano-4-hydroxycinnamic acid as matrix.
  • the translation products (AAtR-4, AAtR-5, AAtR-6) obtained by deprotecting the Acacz-protected aminoacyl-tRNA in the translation system using TCEP, the F-Pnaz-protected aminoacyl-tRNA using PGA
  • any of the translation products (AAtR-7, AAtR-8, AAtR-9) deprotected within the translation system, it was confirmed that the target product shown in Table 2 could be translated as the main product ( FIG. 1-1, FIG. 1-2, and FIG. 1-3).
  • ⁇ Detection by mass spectrometry Part 2>
  • MALDI-TOF MS was used. Specifically, 1 ⁇ M template mRNA (R-1) and Ala, Phe, Gly, Lys, Met, Pro, Arg, Ser, and Val (each final concentration 250 ⁇ M) were added to the above cell-free translation system.
  • a solution was prepared, and 8 types of 10 ⁇ M aminoacyl tRNAs (AAtR-10 to AAtR-13, AAtR-16 to AAtR-19) thus prepared were added, respectively, and incubated at 37 ° C. for 60 minutes.
  • ⁇ Detection by mass spectrometry Part 3>
  • MALDI-TOF MS was used. Specifically, 1 ⁇ M template mRNA (R-1) and Ala, Phe, Gly, Lys, Met, Pro, Arg, Ser, and Val (each final concentration 250 ⁇ M) were added to the above cell-free translation system. A solution was prepared, and two types of 10 ⁇ M aminoacyl tRNAs (AAtR-14 and AAtR-20) thus prepared were added, respectively, and incubated at 37 ° C. for 60 minutes.
  • ⁇ Detection by mass spectrometry Part 4>
  • MALDI-TOF MS was used. Specifically, 1 ⁇ M template mRNA (R-1) and Ala, Phe, Gly, Lys, Met, Pro, Leu, Ser, and Val (each final concentration 250 ⁇ M) were added to the above cell-free translation system. A solution was prepared, and two types of 10 ⁇ M aminoacyl tRNA (AAtR-15, AAtR-21) thus prepared were added, respectively, and incubated at 37 ° C. for 60 minutes.
  • Aminopeptidase (leucine aminopeptidase, final concentration 1 mg / ml, SIGMA) was added as a deprotection reagent for aminoacyl-tRNA (AAtR-21) with a Leuz protecting group.
  • the obtained translation reaction product was purified by SPE C-TIP (Nikkyo Technos) and analyzed by MALDI-TOF MS. The translation product was identified by measuring MALDI-TOF MS spectrum using ⁇ -cyano-4-hydroxycinnamic acid as matrix.
  • a template mRNA (SEQ ID NO: R-1) was synthesized from the template DNA (SEQ ID NO: D-1) by an in vitro transcription reaction using RiboMAX Large Scale RNA production System T7 (Promega, P1300), and RNeasy Mini kit ( Qiagen).
  • RNA sequence GGGUUAACUUUAAGAAGGAGAUAUACAUAUGAGUCUAAAGCCGUUUGCUCGUGUUGGUUAAGCUUCG
  • the gel after electrophoresis is dried using Clear Dry Quick Dry Starter KIT (TEFCO, 03-278), exposed to an imaging plate (GE Healthcare, 28-9564-75) for 24 hours, and bioanalyzer system ( (Typhoon FLA 7000, GE Healthcare) and detected by ImageQuantTL (GE Healthcare).
  • TEZCO Clear Dry Quick Dry Starter KIT
  • the translation products (AAtR-4, AAtR-5, AAtR-6) obtained by deprotecting the Acacz-protected aminoacyl-tRNA in the translation system using TCEP, the F-Pnaz-protected aminoacyl-tRNA using PGA
  • aminoacyl tRNAs (AAtR-1, AAtR-2, AAtR-3) prepared outside the translation system are used. It was confirmed that the target compounds shown in Table 3 were synthesized with high translation efficiency compared to the case of using them (FIG. 2-1).
  • the aminoacyl-tRNA (AAtR-15) prepared outside the translation system was used in the translation product (AAtR-21) obtained by deprotecting Leuz-protected aminoacyl-tRNA within the translation system using leucine aminopeptidase. Compared to the case, it was confirmed that the target compounds shown in Table 3 were synthesized with high translation efficiency (FIGS. 2-4).
  • template DNA SEQ ID NO: D-1D
  • template mRNA SEQ ID NO: R-1D
  • RiboMAX Large Scale RNA production System T7 Promega, P1300
  • RNeasy Mini kit Qiagen
  • RNA sequence GGGUUAACUUUAAGAAGGAGAUAUACAUAUGAGUCUAAAGCCGUUUGCUCGUGUUGGUGACGACGACUAAGCUUCG
  • the present invention provides a method for efficiently synthesizing a peptide containing one or a plurality of amino acids.
  • the method of the present invention includes a step of deprotecting an amino acid protecting group bound to tRNA and a step of translating a peptide from a template nucleic acid, and these steps are performed in parallel.
  • the present invention is useful in the synthesis and screening of medium molecular compounds such as cyclic peptides containing amino acids expected as drug candidates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pyridine Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、無細胞翻訳系を用いて、従来の手法(ARSを使用せずに、翻訳系外で保護基を有しないアミノアシルtRNAを調製した後に翻訳系内に添加する手法)と比較して優れた翻訳効率を達成することが可能な、多様な構造を持つアミノ酸を含むペプチドの合成方法を提供することを課題とする。本発明において、tRNAに結合しているアミノ酸を適切な保護基で保護することにより、無細胞翻訳系においてtRNAに結合しているアミノ酸の保護基を脱保護する工程と、鋳型核酸からペプチドを翻訳する工程を並行して行い、アミノ酸を含むペプチドを効率的に合成できることが見出された。

Description

無細胞翻訳系におけるペプチドの合成方法
 本発明は、無細胞翻訳系を用いたペプチドの合成方法に関する。
 中分子化合物(分子量:500~2000)は、タフターゲットにアクセスできる点で低分子には困難なこと、細胞内に移行できる点(細胞内標的創薬可、経口化可)で抗体にも困難なことを実現できる可能性があることから注目を集めている。中分子化合物の代表的な分子種としてペプチドがある。天然物であるシクロスポリンAはその代表例であり、細胞内標的であるサイクロフィリンを阻害する経口投与可能なペプチドである。
 シクロスポリンAの特徴として、非天然型アミノ酸を構成成分に含む環状ペプチドであることが挙げられる。これに端を発し、近年、非天然型アミノ酸をペプチドに導入することでペプチドのdrug-likenessを高め、さらにそれを創薬へ応用する研究が複数報告されている(非特許文献5,6,7)。このような非天然型アミノ酸の導入は、水素結合供与性水素の減少、プロテアーゼ耐性の獲得、コンフォーメーションの固定化につながり、膜透過性や代謝安定性に寄与することも知られるようになった(非特許文献5、8、特許文献3)。
 このことから、非天然型アミノ酸を複数含む多様なペプチドのライブラリーから医薬品の候補物質を選択する創薬方法が考えられている。なかでも無細胞翻訳系を利用した非天然型アミノ酸を含有するペプチドのmRNAディスプレイライブラリーなどは、その多様性、スクリーニングの簡便性の点から期待が集まっている(非特許文献9,10、特許文献2)。
 地球上の生物は一般的に、DNA(=情報貯蔵物質)の情報が、RNA(=情報伝達物質)を介して、タンパク質(=機能物質)の構造ならびにその構造によって生じる機能を規定している。ポリペプチドやタンパク質は20種類のアミノ酸からなる。4種類のヌクレオチドからなるDNAからRNAに情報が転写され、その情報がアミノ酸に翻訳され、アミノ酸がポリペプチドやタンパク質を構成する。
 翻訳の際、3文字のヌクレオチドの並びを1種類のアミノ酸に対応させるアダプターとしての役割を果たすのがtRNAである。また、tRNAとアミノ酸との結合に関与するのが、アミノアシルtRNA合成酵素(aminoacyl-tRNA syathetase;ARS)である。ARSはアミノ酸とtRNAとを特異的に結合させる酵素である。生物種毎に、一部の例外を除き、天然に存在する20種類のアミノ酸それぞれに対応する20種類のARSが存在する。ARSは、tRNAを、20種類のタンパク性アミノ酸のうち当該tRNAのコドンに割りつけられた特定のアミノ酸で正確にアシル化する。
 mRNAの翻訳による非天然型アミノ酸を含有するペプチドの合成に必要な非天然型アミノアシルtRNAは、上述したARSを使用して調製できることが報告されている(非特許文献1)。しかし天然型ARSは基質特異性が高く、ARSがアシル化することができるアミノ酸の構造は、天然型アミノ酸のそれに類似したものに限定される。したがって、ARSを使用して非天然型アミノアシルtRNAを調製することは、汎用性の高い方法とはいえない。また近年では、その基質特異性を変化させた改変型ARSを作成することにより、一部の非天然型アミノ酸に対するアミノアシル化効率の向上が達成されている(特許文献1)。しかしながらこの手法を用いた場合、改変型ARSもアミノ酸毎に用意する必要があることから、多大な時間と労力を要する。
 このように、ARSを使用して多様な構造を持つ非天然型アミノ酸をアミノアシル化することは簡単ではない。このような背景から、ARSを用いない、多様な構造を持つ非天然型アミノアシルtRNAの調製法(non-ARS法と定義する)が知られている。代表的なものとして以下の方法が挙げられる。
 まず、Hechtらが開発したpdCpA法(非特許文献2)では、化学合成した非天然型アミノ酸でアシル化されたpdCpA(5’-phospho-2’-deooxyribocytidylriboadenosine)と転写で得た3’末端のCAが欠如したtRNAをT4 RNA ligaseにより連結することができる。この方法では、原理上化学合成さえ可能であれば、構造の制限なく、任意の非天然型アミノ酸でアミノアシル化されたtRNAを調製することが可能である。またForsterらは、pdCpAの代わりにpCpA(5’-phospho-ribocytidylriboadenosine)を用いたpCpA法について報告している(非特許文献3)。
 別の方法として、Sugaらは、あらかじめエステル化により活性化した非天然型アミノ酸を人工RNA触媒(フレキシザイム)を用いてtRNAにアミノアシル化させる方法を報告している(特許文献2)。こちらも任意の非天然型アミノ酸でアミノアシル化されたtRNAを調製できると考えられる。
 なおこれらnon-ARS法においては、翻訳系の外で調製された非天然型アミノアシルtRNAを翻訳反応液に添加することにより、ペプチドを合成する。
 上記のいずれかの手法を用いることにより、多様な構造を持つ非天然型アミノアシルtRNAを調製することが可能である。全ての非天然型アミノ酸を翻訳によりペプチドに導入することが可能とは限らないが、多様なαアミノ酸、Nアルキルアミノ酸、またβアミノ酸やD-アミノ酸などを翻訳によりペプチドに導入することが検討、報告されている(非特許文献4)。
 またKawakamiらは、翻訳後修飾を活用することにより、従来では翻訳により導入することが不可能であった正もしくは負に帯電した置換基を側鎖に持つNアルキルアミノ酸を含むペプチドを合成することに成功している(非特許文献14)。これは直接的に翻訳効率を改善した例ではないが、多様な構造を持つ非天然型アミノ酸を含むペプチドを合成するための有効な手法のひとつであると考えられる。
 非天然型アミノアシルtRNAを使用してペプチドを合成する際に、ペプチドの翻訳効率を改善した手法として、リボソームの改変(非特許文献15)や、EF-Tuの改変(非特許文献16)などが報告されている。これら改変体を用いる手法は、意図した構造を持つ非天然型アミノ酸に対する基質特異性を変化させるため、その構造毎に非天然型アミノアシルtRNAを用意する必要があり、多大な労力を要する。多様な構造を持つ非天然型アミノ酸に対して翻訳効率の改善効果を有する汎用性の高い手法は、本発明者らの知る限り報告されていない。
 また、無細胞翻訳系中に大量のtRNAを添加すると、ペプチド収量が低下する一因となることが知られている(非特許文献17)。そのため、無細胞翻訳系中に天然には存在しない成分を添加すると、ペプチドの翻訳合成が妨げられ、収量に影響を及ぼす可能性があった。
WO2007/103307 WO2007/066627 WO2013/100132
M. C. T. Hartman et al., PLoS one, 2007, 10, e972. S.M. Hecht et al., J. Biol. Chem. 253 (1978) 4517-4520. J. Wang et al., ACS. Chem. Biol. 2015, 10, 2187-2192. R. Maini et al., Curr. Opin. Chem. Biol. 2016, 34, 44-52. R. S. Lokey et al., Nat. Chem. Biol. 2011, 7(11), 810-817. J. W. Szostak et al., J. Am. Chem. Soc. 2008, 130, 6131-6136. T.Kawakami et al., Chemistry & Biology, 2008,Vol. 15, 32-42. H. Kessler et al., J. Am. Chem. Soc. 2012, 134, 12125-12133. S. W. Millward et al., J. Am. Chem. Soc., 2005, 127, 14142-14143. Y. Yamagishi et al., Chem. Biol., 18, 1562-1570, 2011. T. Fujino et al., J. Am. Chem. Soc. 2013, 135, 1830-1837. T. Fujino et al., J. Am. Chem. Soc. 2016, 138, 1962-1969. T. Kawakami et al., J. Am. Chem. Soc. 2008, 130, 16861-16863. T.Kawakami et al., Chem. Sci., 2014,5, 887-893. R. Maini et al., Biochemistry. 2015, 54, 3694-3706. Y. Doi et al., J. Am. Chem. Soc. 2007, 129, 14458-14462. A. O. Subtelny et al., Angew Chem Int Ed 2011 50 3164.
 本願発明者らはこれまでに、目的の活性を有する中分子環状ペプチドの取得の可能性を高めるため、直鎖部を有するなど構造の多様性に着目してペプチドディスプレイライブラリーを構築してきた。その検討のなかで、多様な標的に対して結合するペプチドの取得の可能性をより大きく高めるためには、側鎖の性質が異なるアミノ酸を多種類導入することも重要であると考えるに至った。その考えのもと、翻訳合成による導入報告例の無い多様な構造を持つ天然アミノ酸およびアミノ酸類縁体を合成し、pCpA法により調製したアミノアシルtRNAを使用して当該天然アミノ酸およびアミノ酸類縁体の翻訳導入を試みた。しかし、全く翻訳されないものや、翻訳が不十分なものが散見された。本願発明者らは、天然アミノ酸やアミノ酸類縁体の構造は多岐に渡るため、それらの全てに対応する改変体(例えばリボソームだがこれに限らない)を調製することは現実的でないとの判断に至った。
 本発明はこのような情況に鑑みて為されたものであり、多様な構造を持つ天然アミノ酸およびアミノ酸類縁体に対して従来の手法、すなわちARSによらない手法により無保護のアミノアシルtRNAを翻訳系外で調製した後に、当該アミノアシルtRNAを翻訳系内に添加する手法、と比較して優れた翻訳効率を達成する、無細胞翻訳系を用いたペプチドの合成方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために検討した結果、従来の手法と比較して多様な構造を持つ天然アミノ酸およびアミノ酸類縁体を含むペプチドの翻訳効率を改善できることを見出した。具体的には、保護基を持つ天然アミノ酸やアミノ酸類縁体が結合しているアミノアシルtRNAを無細胞翻訳系内に添加し、当該系内で脱保護とペプチド翻訳を並行して行う手法の確立に成功した。
 この手法を着想するにあたり、本発明者らは、アミノアシルtRNAの加水分解に着目し、これを最小限に止めることにより翻訳効率を改善できるとの仮説を持った。アミノアシルtRNAは、翻訳系内においては、EF-tuと複合体を形成することにより、加水分解に対する安定性を増すことが知られている。しかしながら、EF-tuは天然型のアミノアシルtRNAを本来の基質とするため、多様な構造を持つ非天然型アミノアシルtRNAがEF-tuと複合体を形成する能力は、天然型とのそれと比較して弱いと考えられる。すなわち、構造により程度の差はあれ、非天然型アミノアシルtRNAはこの安定化効果を得難いであろうと考えられる。まず本発明者らは、この推測のもと、EF-tuの濃度を上げることで、非天然型アミノアシルtRNAの加水分解に対する安定性を増加させることを考え、検討を行った。しかしながら、翻訳効率の改善は不十分であった。また上述したように、従来の手法では、無細胞翻訳系外で無保護のアミノアシルtRNAを調製しそれを系内に添加するために、調製中においても少なからず加水分解が進行してしまうことも見出した。すなわち、翻訳系外におけるアミノアシルtRNA単独での加水分解、及びアミノ酸類縁体ゆえの翻訳系内における加水分解、これら2つがアミノ酸類縁体の翻訳効率を低下させている一因であると推定した。一方で、窒素原子が保護されたアミノ酸類縁体が結合しているアミノアシルtRNAは、無保護のアミノアシルtRNAと比較して加水分解に対する安定性が向上することを見出していた。
 以上の知見から、本発明者らは、窒素原子が保護されたアミノ酸類縁体が結合しているアミノアシルtRNAを翻訳系内に添加し、系内で脱保護する手法を開発できれば、上述した2つの加水分解の影響を最小限に止めることが可能と考えた。その考えのもとに本発明者らは種々検討を行い、適切な保護基を見出し、多様な構造を持つ天然アミノ酸およびアミノ酸類縁体を従来法と比較して効率よく翻訳することが可能である、本発明を完成するに至った。
 本発明はこのような知見に基づくものであり、具体的には以下〔1〕から〔18〕に記載の発明を提供する。
〔1〕保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含む、少なくとも1つのアミノ酸を含むペプチドの合成方法であって、該脱保護する工程、および該翻訳工程が並行して行われる、方法。
〔2〕前記アミノ酸の保護基が、酵素、還元剤、及び光反応からなる群より選択される一以上によって脱保護される、〔1〕に記載の方法。
〔3〕前記酵素が、加水分解酵素である、〔2〕に記載の方法。
〔4〕前記酵素が、ペニシリンアミドヒドロラーゼ、エステラーゼ、又はアミノペプチダーゼである、〔3〕に記載の方法。
〔5〕前記保護基が、下記一般式(I)、(II)、(III)、又は(XII)で表される基である、〔4〕に記載の方法:
Figure JPOXMLDOC01-appb-I000008
(式中、
 X1は、ペニシリンアミドヒドロラーゼが認識する部分構造であり、
 Yは、NHもしくは酸素原子であり、
 X2は、エステラーゼが認識する部分構造であり、
 X3は、アミノペプチダーゼが認識する部分構造であり、
 Lは、単結合、アリーレン、またはヘテロアリーレンである)。
〔6〕前記式(I)中のX1が以下一般式(IV)で表される基、もしくは2-チエニルメチルであるか、または、前記式(III)中のX2が置換されてもよいアルキル、アラルキル、またはシクロアルキルである、〔5〕に記載の方法:
Figure JPOXMLDOC01-appb-I000009
(式中のR、およびRは、それぞれ独立して、水素原子、ヒドロキシル、フルオロ、クロロ、ブロモ、アミノ、ニトロ、またはメトキシである)。
〔7〕前記式(XII)が、下記一般式(XIII)で表される基である、〔5〕に記載の方法:
Figure JPOXMLDOC01-appb-I000010
〔8〕前記還元剤が、トリス(2-カルボキシエチル)ホスフィン(TCEP)である、〔2〕に記載の方法。
〔9〕前記保護基が、下記一般式(V)で表される基であるか、又は主鎖のアミノ基と一緒になって形成されたアジド基である、〔8〕に記載の方法:
Figure JPOXMLDOC01-appb-I000011
(式中のLは、単結合、アリーレン、またはヘテロアリーレンである)。
〔10〕前記保護基が、4-アジドベンジルオキシカルボニル基(Acbz)、又はアジドメチルオキシカルボニル基(Azoc)である、〔9〕に記載の方法。
〔11〕前記アミノ酸が、アミノ酸類縁体である、〔1〕~〔10〕のいずれか一項に記載の方法。
〔12〕前記アミノ酸類縁体が、環状アミノ酸を含むNアルキルアミノ酸、脂肪族アミノ酸、芳香族アミノ酸、βアミノ酸、Dアミノ酸、及びαジアルキルアミノ酸からなる群より選ばれる1種以上の翻訳可能なアミノ酸類縁体である、〔11〕に記載の方法。
〔13〕前記アミノ酸類縁体が、下記一般式(VI)または(VII)で表される、〔12〕に記載の方法:
Figure JPOXMLDOC01-appb-I000012
(式中、
 R、R、およびRは、それぞれ独立して、水素原子、アルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、またはシクロアルキルであり、これらの基は置換されていてもよく、あるいはRとRもしくはRとRは、それらが結合する原子と一緒になって環を形成してもよく、
 R、およびRは、それぞれ独立して水素原子またはメチルである)。
〔14〕前記保護基が、翻訳後修飾のために用いられる反応条件とオルソゴナルな反応条件によって脱保護される保護基である、〔1〕~〔13〕のいずれか一項に記載の方法。
〔15〕前記保護基が、iSP(Initiation Suppression)法で用いられる保護基とオルソゴナルな保護基である、〔14〕に記載の方法。
〔16〕下記一般式(VIII)または(IX)で表される、アミノ酸類縁体の主鎖のアミノ基上に、保護基Pを有する化合物:
Figure JPOXMLDOC01-appb-I000013
(式中、R~Rはそれぞれ〔13〕に定義したとおりであり、Pは〔5〕~〔7〕のいずれか一項に記載の保護基である)。
〔17〕下記一般式(X)または(XI)で表される、〔16〕に記載の化合物とpCpA、又はpdCpAとが結合してなる化合物:
Figure JPOXMLDOC01-appb-I000014
(式中、R~Rはそれぞれ〔13〕に定義したとおりであり、Rは水素原子またはヒドロキシルであり、Pは〔5〕~〔7〕のいずれか一項に記載の保護基である)。
〔18〕〔16〕に記載の化合物とtRNAが結合してなるアミノアシルtRNA。
 本発明においては、さらに、以下の〔2-1〕から〔2-13〕に記載の発明も提供される。
〔2-1〕保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を含む、ペプチドの合成方法であって、該脱保護する工程および該翻訳工程が並行して行われる、方法。
〔2-2〕保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で酵素、還元剤、または光反応によって脱保護する工程、及び翻訳工程を含む、ペプチドの合成方法であって、該脱保護する工程および該翻訳工程が並行して行われる、方法。
〔2-3〕保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を酵素、還元剤、または光反応によって脱保護する工程、及び翻訳工程を含む、ペプチドの合成方法。
〔2-4〕無細胞翻訳系中で、前記アミノ酸の保護基を脱保護した後に翻訳工程を開始する、〔2-3〕に記載の方法。
〔2-5〕1種以上のアミノ酸残基を含み、かつ環状部を有するペプチドと当該ペプチドをコードする核酸との複合体、又は当該複合体を含むライブラリーの製造方法であって、〔2-1〕~〔2-4〕に記載の方法によりペプチドを合成する工程、及び合成されたペプチドを環化する工程を含む、方法。
〔2-6〕アミド結合、チオエーテル結合、ジスルフィド結合、エーテル結合、エステル結合、チオエステル結合、又は炭素-炭素結合によって前記ペプチドが環化される、〔2-5〕に記載の方法。
〔2-7〕ペプチドの合成方法における酵素、還元剤、または光反応によって脱保護される保護基の使用であって、該方法は、保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を含み、該脱保護する工程および該翻訳工程が並行して行われる、前記使用。
〔2-8〕ペプチドの合成方法における酵素、還元剤、または光反応によって脱保護される保護基の使用であって、該方法は、保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含み、該脱保護する工程および該翻訳工程が並行して行われる、前記使用。
〔2-9〕保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を含む、合成されるペプチドの収率を上げる方法であって、該脱保護する工程および該翻訳工程が並行して行われる、方法。
〔2-10〕保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含む、合成されるペプチドの収率を上げる方法であって、該脱保護する工程および該翻訳工程が並行して行われる、方法。
〔2-11〕ペプチドの合成方法において使用するための、酵素、還元剤、または光反応によって脱保護される保護基であって、該方法は、保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を含み、該脱保護する工程および該翻訳工程が並行して行われる、前記保護基。
〔2-12〕ペプチドの合成方法において使用するための、酵素、還元剤、または光反応によって脱保護される保護基であって、該方法は、保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含み、該脱保護する工程および該翻訳工程が並行して行われる、前記保護基。
〔2-13〕前記アミノ酸が、アミノ酸類縁体である、〔2-3〕~〔2-6〕、〔2-10〕のいずれか一項に記載の方法、〔2-8〕に記載の使用、または〔2-12〕に記載の保護基。
 本発明では、無細胞翻訳系中で翻訳工程と並行し、アミノアシルtRNAを構成するアミノ酸の保護基を脱保護する。本発明により、無細胞翻訳系外で脱保護を行う従来のpCpA法と比較して、翻訳効率が向上したペプチドの合成方法が提供された。
AAtR-1, AAtR-4, AAtR-7を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-2, AAtR-5, AAtR-8を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-3, AAtR-6, AAtR-9を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-10, AAtR-16を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-11, AAtR-17を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-12, AAtR-18を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-13, AAtR-19を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-14, AAtR-20を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-15, AAtR-21を用いて行った翻訳合成ペプチドの主生成物の分子量をMALDI TOF MSにより確認した実験結果を示す図である。 AAtR-1~AAtR-9を用いた翻訳合成ペプチドの翻訳量を電気泳動により確認した実験結果を示す図である(Pep-4はAAtR-1、Pep-5はAAtR-2、Pep-6はAAtR-3を用いて合成されたペプチドの翻訳量を基準(100)として、相対値が記載されている)。 AAtR-10~AAtR-13、AAtR-16~AAtR-19を用いた翻訳合成ペプチドの翻訳量を電気泳動により確認した実験結果を示す図である(Pep-14はAAtR-11、Pep-15はAAtR-12、Pep-16はAAtR-13、Pep-13はAAtR-10を用いて合成されたペプチドの翻訳量を基準(100)として、相対値が記載されている)。 AAtR-14, AAtR-20を用いた翻訳合成ペプチドの翻訳量を電気泳動により確認した実験結果を示す図である(Pep-17はAAtR-14を用いて合成されたペプチドの翻訳量を基準(100)として、相対値が記載されている)。 AAtR-15, AAtR-21を用いた翻訳合成ペプチドの翻訳量を電気泳動により確認した実験結果を示す図である(Pep-18はAAtR-15を用いて合成されたペプチドの翻訳量を基準(100)として、相対値が記載されている)。
<置換基等の定義>
 本明細書において、「アルキル」とは脂肪族炭化水素から任意の水素原子を1個除いて誘導される1価の基であり、骨格中にヘテロ原子または不飽和の炭素-炭素結合を含有せず、水素および炭素原子を含有するヒドロカルビルまたは炭化水素基構造の部分集合を有する。炭素鎖の長さnは1~20個の範囲であり、好ましくはC2-C10アルキルである。アルキルとしては、たとえば、「C1~C6アルキル」が挙げられ、具体的には、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、イソプロピル、t-ブチル基、sec-ブチル基、1-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル、1,2-ジメチルプロピル、1,1,2-トリメチルプロピル、1,2,2-トリメチルプロピル、1,1,2,2-テトラメチルプロピル、1-メチルブチル、2-メチルブチル、3-メチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,2-ジメチルブチル、2,3-ジメチルブチル、3,3-ジメチルブチル、1-エチルブチル、2-エチルブチル、イソペンチル、ネオペンチル等が挙げられる。
 本明細書において「アルケニル」とは、少なくとも1個の二重結合(2個の隣接SP2炭素原子)を有する1価の基である。二重結合および置換分(存在する場合)の配置によって、二重結合の幾何学的形態は、エントゲーゲン(E)またはツザンメン(Z)、シスまたはトランス配置をとることができる。アルケニルとしては、直鎖状または分枝鎖状のものが挙げられ、内部オレフィンを含む直鎖などを含む。好ましくはC2-C10アルケニル、さらに好ましくはC2-C6アルケニルが挙げられる。
 このようなアルケニルとして、具体的には、たとえば、ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル(シス、トランスを含む)、3-ブテニル、ペンテニル、ヘキセニルなどが挙げられる。
 本明細書において「アルキニル」は、少なくとも1個の三重結合(2個の隣接SP炭素原子)を有する、1価の基である。直鎖状または分枝鎖状のアルキニルが挙げられ、内部アルキレンを含む。好ましくはC2-C10アルキニル、さらに好ましくはC2-C6アルキニルが挙げられる。
 アルキニルとしては具体的には、たとえば、エチニル、1-プロピニル、プロパルギル、3-ブチニル、ペンチニル、ヘキシニル、3-フェニル-2-プロピニル、3-(2'-フルオロフェニル)-2-プロピニル、2-ヒドロキシ-2-プロピニル、3-(3-フルオロフェニル)-2-プロピニル、3-メチル-(5-フェニル)-4-ペンチニルなどが挙げられる。
 本明細書において「シクロアルキル」とは、飽和または部分的に飽和した環状の1価の脂肪族炭化水素基を意味し、単環、ビシクロ環、スピロ環を含む。好ましくはC3-C10シクロアルキルが挙げられる。シクロアルキルとしては具体的には、たとえば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ[2.2.1]ヘプチルなどが挙げられる。
 本明細書において「アリール」とは、1価の芳香族炭化水素環を意味し、好ましくはC6-C10アリールが挙げられる。アリールとしては具体的には、たとえば、フェニル、ナフチル(たとえば、1-ナフチル、2-ナフチル)などが挙げられる。
 本明細書において「ヘテロアリール」とは、環を構成する原子中に好ましくは1~5個のヘテロ原子を含有する芳香族性の環の1価の基を意味し、部分的に飽和されていてもよい。環は単環、または2個の縮合環(たとえば、ベンゼンまたは単環へテロアリールと縮合した2環式ヘテロアリール)であってもよい。環を構成する原子の数は好ましくは5~10である(5員-10員ヘテロアリール)。
 ヘテロアリールとしては具体的には、たとえば、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、ベンゾチエニル、ベンゾチアジアゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、ベンゾオキサジアゾリル、ベンゾイミダゾリル、インドリル、イソインドリル、インダゾリル、キノリル、イソキノリル、シンノリニル、キナゾリニル、キノキサリニル、ベンゾジオキソリル、インドリジニル、イミダゾピリジルなどが挙げられる。
 本明細書において「アリールアルキル(アラルキル)」とは、アリールとアルキルを共に含む基であり、例えば、前記アルキルの少なくとも一つの水素原子がアリールで置換された基を意味し、好ましくは、「C5~C10アリールC1-C6アルキル」が挙げられる。たとえば、ベンジルなどが挙げられる。
 本明細書において「アリーレン」は、前記アリールからさらに任意の水素原子を1個除いて誘導される2価の基を意味する。アリーレンは、単環でも縮合環でもよい。環を構成する原子の数は特に限定されないが、好ましくは6~10である(C6~10アリーレン)。アリーレンとして具体的には、たとえば、フェニレン、ナフチレンなどが挙げられる。
 本明細書において「ヘテロアリーレン」は、前記ヘテロアリールからさらに任意の水素原子を1個除いて誘導される2価の基を意味する。ヘテロアリーレンは、単環でも縮合環でもよい。環を構成する原子の数は特に限定されないが、好ましくは5~10である(5員~10員ヘテロアリーレン)。ヘテロアリーレンとして具体的には、ピロールジイル、イミダゾールジイル、ピラゾールジイル、ピリジンジイル、ピリダジンジイル、ピリミジンジイル、ピラジンジイル、トリアゾールジイル、トリアジンジイル、イソオキサゾールジイル、オキサゾールジイル、オキサジアゾールジイル、イソチアゾールジイル、チアゾールジイル、チアジアゾールジイル、フランジイルおよびチオフェンジイルなどが挙げられる。
 本発明において、ペプチドを構成する「アミノ酸」は、「天然アミノ酸」でも「アミノ酸類縁体」でもよい。「アミノ酸」、「天然アミノ酸」、「アミノ酸類縁体」はそれぞれ、「アミノ酸残基」、「天然アミノ酸残基」、「アミノ酸類縁体残基」ということがある。
 「天然アミノ酸」とは、α-アミノカルボン酸(α-アミノ酸)であり、タンパク質に含まれる20種類のアミノ酸を指す。具体的にはGly、Ala、Ser、Thr、Val、Leu、Ile、Phe、Tyr、Trp、His、Glu、Asp、Gln、Asn、Cys、Met、Lys、Arg、Proを指す。
 「アミノ酸類縁体」は、特に限定されないが、β-アミノ酸、γ-アミノ酸、D型アミノ酸、N置換アミノ酸、α,α-二置換アミノ酸、ヒドロキシカルボン酸、非天然型アミノ酸(側鎖が天然と異なるアミノ酸;例えば、非天然型のα-アミノ酸、β-アミノ酸、γ-アミノ酸)を含む。α-アミノ酸の場合、D型アミノ酸でもよく、α,α-ジアルキルアミノ酸でもよい。β-アミノ酸やγ-アミノ酸の場合も、α-アミノ酸と同様に、任意の立体配置が許容される。アミノ酸類縁体の側鎖(主鎖メチレン)は特に制限されないが、水素原子の他にも例えば、アルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、シクロアルキルを有し得る。それぞれには1つ以上の置換基を有していてもよく、それら置換基は例えば、ハロゲン原子、N原子、O原子、S原子、B原子、Si原子、P原子を含む任意の官能基の中から選択することができる。例えば、本明細書において「ハロゲンを置換基に有していてもよいC1~C6アルキル」とは、1つ以上のハロゲン原子で置換された「C1~C6アルキル」を意味し、具体的には、例えば、トリフルオロメチル、ジフルオロメチル、フルオロメチル、ペンタプルオロエチル、テトラフルオロエチル、トリフルオロエチル、ジフルオロエチル、フルオロエチル、トリクロロメチル、ジクロロメチル、クロロメチル、ペンタクロロエチル、テトラクロロエチル、トリクロロエチル、ジクロロエチル、クロロエチル等が挙げられる。また、例えば「置換基を有していてもよいC5~C10アリールC1-C6アルキル」とは、「C5~C10アリールC1-C6アルキル」のアリールおよび/またはアルキルの少なくとも一つの水素原子が、置換基により置換された基を意味する。さらに、これら「置換基を2つ以上有している場合」は、例えば、S原子を含む官能基を有し、さらにその官能基がアミノやハロゲンなどの官能基を有していることも含む。
 アミノ酸類縁体の主鎖アミノ基は、非置換(NH基)でもよく、置換(即ち、NHR基:Rは置換基を有していてもよいアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、シクロアルキルを示し、またプロリンのようにN原子に結合した炭素鎖とα位の炭素原子とが環を形成していてもよい。該置換基は、側鎖の置換基と同様であり、例えば、ハロゲン、オキシ、ヒドロキシなどが挙げられる。)されていてもよい。さらに、これらの置換基の定義の中における「アルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、シクロアルキル」は、前記の当該官能基の定義を準用する。例えば、本明細書において「アルコキシ」とは、水酸基の水素原子が前記アルキルで置換された基を意味し、例えば好ましい例として「C1-C6アルコキシ」が挙げられる。
 ハロゲン由来の置換基としては、フルオロ(-F)、クロロ(-Cl)、ブロモ(-Br)、ヨウド(-I)などが挙げられる。
 O原子由来の置換基としては、ヒドロキシル(-OH)、オキシ(-OR)、カルボニル(-C=O-R)、カルボキシル(-COH)、オキシカルボニル(-C=O-OR)、カルボニルオキシ(-O-C=O-R)、チオカルボニル(-C=O-SR)、カルボニルチオ基(-S-C=O-R)、アミノカルボニル(-C=O-NHR)、カルボニルアミノ(-NH-C=O-R)、オキシカルボニルアミノ(-NH-C=O-OR)、スルホニルアミノ(-NH-SO-R)、アミノスルホニル(-SO-NHR)、スルファモイルアミノ(-NH-SO-NHR)、チオカルボキシル(-C(=O)-SH)、カルボキシルカルボニル(-C(=O)-COH)が挙げられる。
 オキシ(-OR)の例としては、アルコキシ、シクロアルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、ヘテロアリールオキシ、アラルキルオキシなどが挙げられる。
 カルボニル(-C=O-R)の例としては、ホルミル(-C=O-H)、アルキルカルボニル、シクロアルキルカルボニル、アルケニルカルボニル、アルキニルカルボニル、アリールカルボニル、ヘテロアリールカルボニル、アラルキルカルボニルなどが挙げられる。
 オキシカルボニル(-C=O-OR)の例としては、アルキルオキシカルボニル、シクロアルキルオキシカルボニル、アルケニルオキシカルボニル、アルキニルオキシカルボニル、アリールオキシカルボニル、ヘテロアリールオキシカルボニル、アラルキルオキシカルボニルなどが挙げられる。
(-C=O-OR)
 カルボニルオキシ(-O-C=O-R)の例としては、アルキルカルボニルオキシ、シクロアルキルカルボニルオキシ、アルケニルカルボニルオキシ、アルキニルカルボニルオキシ、アリールカルボニルオキシ、ヘテロアリールカルボニルオキシ、アラルキルカルボニルオキシなどが挙げられる。
 チオカルボニル(-C=O-SR)の例としては、アルキルチオカルボニル、シクロアルキルチオカルボニル、アルケニルチオカルボニル、アルキニルチオカルボニル、アリールチオカルボニル、ヘテロアリールチオカルボニル、アラルキルチオカルボニルなどが挙げられる。
 カルボニルチオ(-S-C=O-R)の例としては、アルキルカルボニルチオ、シクロアルキルカルボニルチオ、アルケニルカルボニルチオ、アルキニルカルボニルチオ、アリールカルボニルチオ、ヘテロアリールカルボニルチオ、アラルキルカルボニルチオなどが挙げられる。
 アミノカルボニル(-C=O-NHR)の例としては、アルキルアミノカルボニル、シクロアルキルアミノカルボニル、アルケニルアミノカルボニル、アルキニルアミノカルボニル、アリールアミノカルボニル、ヘテロアリールアミノカルボニル、アラルキルアミノカルボニルなどが挙げられる。これらに加えて、-C=O-NHR中のN原子と結合したH原子が、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルでさらに置換された化合物が挙げられる。
 カルボニルアミノ(-NH-C=O-R)の例としては、アルキルカルボニルアミノ、シクロアルキルカルボニルアミノ、アルケニルカルボニルアミノ、アルキニルカルボニルアミノ、アリールカルボニルアミノ、ヘテロアリールカルボニルアミノ、アラルキルカルボニルアミノなどが挙げられる。これらに加えて-NH-C=O-R中のN原子と結合したH原子が、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルでさらに置換された化合物が挙げられる。
 オキシカルボニルアミノ(-NH-C=O-OR)の例としては、アルコキシカルボニルアミノ、シクロアルコキシカルボニルアミノ、アルケニルオキシカルボニルアミノ、アルキニルオキシカルボニルアミノ、アリールオキシカルボニルアミノ、ヘテロアリールオキシカルボニルアミノ、アラルキルオキシカルボニルアミノなどが挙げられる。これらに加えて、-NH-C=O-OR中のN原子と結合したH原子がアルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルでさらに置換された化合物が挙げられる。
 スルホニルアミノ(-NH-SO-R)の例としては、アルキルスルホニルアミノ、シクロアルキルスルホニルアミノ、アルケニルスルホニルアミノ、アルキニルスルホニルアミノ、アリールスルホニルアミノ、ヘテロアリールスルホニルアミノ、アラルキルスルホニルアミノなどが挙げられる。これらに加えて、-NH-SO-R中のN原子と結合したH原子がアルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルでさらに置換された化合物が挙げられる。
 アミノスルホニル(-SO-NHR)の例としては、アルキルアミノスルホニル、シクロアルキルアミノスルホニル、アルケニルアミノスルホニル、アルキニルアミノスルホニル、アリールアミノスルホニル、ヘテロアリールアミノスルホニル、アラルキルアミノスルホニルなどが挙げられる。これらに加えて、-SO-NHR中のN原子と結合したH原子がアルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルでさらに置換された化合物が挙げられる。
 スルファモイルアミノ(-NH-SO-NHR)の例としては、アルキルスルファモイルアミノ、シクロアルキルスルファモイルアミノ、アルケニルスルファモイルアミノ、アルキニルスルファモイルアミノ、アリールスルファモイルアミノ、ヘテロアリールスルファモイルアミノ、アラルキルスルファモイルアミノなどが挙げられる。さらに、-NH-SO-NHR中のN原子と結合した2つのH原子はアルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、およびアラルキルからなる群より独立して選択される置換基で置換されていてもよく、またこれらの2つの置換基は環を形成しても良い。
 S原子由来の置換基として、チオール(-SH)、チオ(-S-R)、スルフィニル(-S=O-R)、スルホニル(-S(O)-R)、スルホ(-SOH)が挙げられる。
 チオ(-S-R)の例としては、アルキルチオ、シクロアルキルチオ、アルケニルチオ、アルキニルチオ、アリールチオ、ヘテロアリールチオ、アラルキルチオなどの中から選択される。
 スルフィニル(-S=O-R)の例としては、アルキルスルフィニル、シクロアルキルスルフィニル、アルケニルスルフィニル、アルキニルスルフィニル、アリールスルフィニル、ヘテロアリールスルフィニル、アラルキルスルフィニルなどが挙げられる。
 スルホニル(-S(O)-R)の例としては、アルキルスルホニル、シクロアルキルスルホニル、アルケニルスルホニル、アルキニルスルホニル、アリールスルホニル、ヘテロアリールスルホニル、アラルキルスルホニルなどが挙げられる。
 N原子由来の置換基として、アジド(-N、「アジド基」ともいう)、シアノ(-CN)、1級アミノ(-NH)、2級アミノ(-NH-R)、3級アミノ(-NR(R'))、アミジノ(-C(=NH)-NH)、置換アミジノ(-C(=NR)-NR'R'')、グアニジノ(-NH-C(=NH)-NH)、置換グアニジノ(-NR-C(=NR''')-NR'R'')、アミノカルボニルアミノ(-NR-CO-NR'R'')が挙げられる。
 2級アミノ(-NH-R)の例としては、アルキルアミノ、シクロアルキルアミノ、アルケニルアミノ、アルキニルアミノ、アリールアミノ、ヘテロアリールアミノ、アラルキルアミノなどが挙げられる。
 3級アミノ(-NR(R'))の例としては、例えばアルキル(アラルキル)アミノなど、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルなどの中からそれぞれ独立して選択される、任意の2つの置換基を有するアミノ基が挙げられ、これらの任意の2つの置換基は環を形成しても良い。
 置換アミジノ(-C(=NR)-NR'R'')の例としては、N原子上の3つの置換基R、R'、およびR''が、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルの中からそれぞれ独立して選択された基、例えばアルキル(アラルキル)(アリール)アミジノなどが挙げられる。
 置換グアニジノ(-NR-C(=NR''')-NR'R'')の例としては、R,R'、R''、およびR'''が、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルの中からそれぞれ独立して選択された基、あるいはこれらが環を形成した基などが挙げられる。
 アミノカルボニルアミノ(-NR-CO-NR'R'')の例としては、R、R'、およびR''が、水素原子、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルの中からそれぞれ独立して選択された基、あるいはこれらは環を形成した基などが挙げられる。
 B原子由来の置換基として、ボリル(-BR(R'))やジオキシボリル(-B(OR)(OR'))などが挙げられる。これらの2つの置換基RおよびR'は、アルキル、シクロアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキルなどの中からそれぞれ独立して選択されるか、あるいはこれらは環を形成してもよい。
 ペプチドを構成する「アミノ酸」を構成する少なくとも1つの原子は、原子番号(陽子数)が同じで,質量数(陽子と中性子の数の和)が異なる原子(同位体)であってもよい。当該ペプチドを構成する「アミノ酸」に含まれる同位体の例としては、水素原子、炭素原子、窒素原子、酸素原子、リン原子、硫黄原子、フッ素原子、塩素原子などがあり、それぞれ、H、H、13C、14C、15N、17O、18O、31P、32P、35S、18F、36Cl等が含まれる。
 特定の理論に拘束されることは無いが、本発明によるペプチドの翻訳効率の改善効果が大きいアミノ酸の特徴としては、アミノアシルtRNA単独での加水分解が速く、且つEF-tuとの親和性が低いアミノ酸を挙げることができる。
 一方で、特定の理論に拘束されることは無いが、本発明において翻訳効率の改善効果が大きくないと予測されるアミノ酸の特徴としては、アミノアシルtRNA単独での加水分解が遅いアミノ酸(特に翻訳時間を考慮したときに無視できるほど遅い)、及び/又はEF-tuとの親和性が十分に高いアミノ酸を挙げることができる。そのようなアミノ酸であっても、本発明の効果を損なわない範囲で使用することはできる。
 本発明において、本発明のペプチド合成に利用できるアミノ酸類縁体を以下に例示するが、それらに限定されない。これらのアミノ酸類縁体の多くは側鎖が保護あるいは無保護、アミン部位が保護あるいは無保護の状態で購入することができる。購入できないものは、既知の方法によって合成することができる。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
 アミノ酸類縁体として、以下のN-Meアミノ酸を用いることができる。
 N-メチルアラニン、N-メチルグリシン、N-メチルフェニルアラニン、N-メチルチロシン、N-メチル-3-クロロフェニルアラニン、N-メチル-4―クロロフェニルアラニン、N-メチル-4-メトキシフェニルアラニン、N-メチル-4-チアゾールアラニン、N-メチルヒスチジン、N-メチルセリン、N-メチルアスパラギン酸。
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
 アミノ酸類縁体として、以下のN-アルキルアミノ酸も用いることができる。
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
 アミノ酸類縁体として、以下のD型アミノ酸も用いることができる。
Figure JPOXMLDOC01-appb-I000021
 アミノ酸類縁体として、以下のα,α-ジアルキルアミノ酸も用いることができる。
Figure JPOXMLDOC01-appb-I000022
 アミノ酸類縁体として、以下のアミノ酸も用いることができる。
Figure JPOXMLDOC01-appb-I000023
 非限定の一態様として、本発明におけるペプチド合成に用いられるアミノ酸類縁体としては、環状アミノ酸を含むNアルキルアミノ酸、脂肪族アミノ酸、芳香族アミノ酸、βアミノ酸、Dアミノ酸、及びαジアルキルアミノ酸からなる群より選ばれる1種以上の翻訳可能なアミノ酸類縁体を選択することができる。
 上記態様において用いられるアミノ酸類縁体が翻訳可能か否かは、これに限定されることはないが、無細胞翻訳系にて翻訳合成されたペプチドを質量分析するためのMALDI-TOF MSや、ラジオアイソトープでラベルしたアミノ酸を用いたペプチドの電気泳動による検出等、当業者公知の手法により評価することができる。
 非限定の一態様として、本発明のペプチド合成に用いることができる、保護基を有するアミノ酸の導入位置としては、翻訳されるペプチドのN末端以外の位置に導入されることが好ましい。
 非限定の一態様として、本発明におけるペプチド合成に用いられるアミノ酸としては、下記一般式(VI)または(VII)で示される、翻訳可能なアミノ酸を挙げることができる。
Figure JPOXMLDOC01-appb-I000024
 式中のR、R、およびRは、それぞれ独立して、水素原子、アルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、またはシクロアルキルであり、これらの基は置換されていてもよく、あるいはRとRもしくはRとR5は、それらが結合する原子と一緒になって環を形成してもよい。R、およびRは、それぞれ独立して水素原子またはメチルである。
 これらに限定されることはないが、R、Rのいずれか一方は水素原子であるかもしくはRと一緒になって環を形成してもよく、その際にR、Rのもう一方は置換されていてもよいC1-6アルキル、C1-6アルケニル、C1-6アルキニル、アリール、ヘテロアリール、アラルキル、またはC3-7シクロアルキルである。
 非限定の一態様として、本発明におけるペプチド合成に用いられるアミノ酸類縁体としては、アゼチジン-2-カルボン酸(Aze(2))、n-ブチルグリシン(nBuG)、3-ピリジルアラニン(Ala(3-Pyr))、2-アミノ-2-メチルプロパン酸(α-アミノイソ酪酸;AIB)、3-アミノプロパン酸(β-アラニン;β-Ala)、D-アラニン(D-Ala)、及びホモフェニルアラニン(Hph)からなる群より選ばれる1以上のアミノ酸類縁体を選択することができる。
 非限定の一態様として、本発明は、保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含む、少なくとも1つのアミノ酸を含むペプチドの合成方法であって、該脱保護する工程、および該翻訳工程が並行して行われる、ペプチドの合成方法を提供する。
 上記態様における「保護基を有するアミノ酸」とは、アミノ酸の主鎖及び/又は側鎖に保護基を有するアミノ酸を意味する。そのような特徴を有するアミノ酸である限り限定されることは無いが、好ましくはアミノ酸の主鎖のアミノ基上に保護基を有するアミノ酸である。
 上記態様における「並行して行われる」とは、保護基を有するアミノ酸を結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程とペプチドの翻訳工程をともに行うことを意味する。保護基を脱保護する工程とペプチドの翻訳工程がともに無細胞翻訳系中で行われていれば、上記脱保護工程及び上記翻訳工程は、時間的に一部重複して行われてもよいし、あるいは時間的に一致して同時に行われてもよい。あるいは、脱保護工程と翻訳工程を時間的に互いに独立して行ってもよい。
 上記脱保護工程及び上記翻訳工程は、脱保護工程を先に開始してもよいし、翻訳工程を先に開始してもよい。あるいは、両工程を同時に開始することもできる。また、並行して行う時間に特に制限はなく、例えば、30秒、1分、5分、10分、20分、30分、60分、120分、180分以上であってもよい。
 本発明の非限定の一態様として、tRNAに結合したアミノ酸が無細胞翻訳系中に添加される時点においては、該アミノ酸はまだ保護基を有していることが好ましい。あるいは、tRNAに結合したアミノ酸が無細胞翻訳系中に添加される前に、該アミノ酸の保護基は脱保護されていないことが好ましい。
 非限定の一態様として、上記ペプチド合成方法における該アミノ酸の保護基を脱保護する工程は、翻訳条件下において脱保護反応が進行する限り、どのような脱保護法を用いてもよい。さらに、脱保護のために行う操作や脱保護反応のために加える試薬、または脱保護反応により系内に排出される保護基の残骸が翻訳系にダメージを与えない限り、どのような脱保護法を用いてもよい。ただし、そのような翻訳系にダメージを与える脱保護法であっても、本発明の効果を損なわない範囲で使用することはできる。
 非限定の一態様として、本発明のペプチド合成方法は、ペプチドを翻訳後修飾する工程を含んでもよい。限定の一態様として、本発明のペプチド合成方法は、翻訳後修飾によりペプチドを環化する工程を含んでもよい。本発明のペプチド合成方法よって得られる環化前のペプチドは、環化反応に供されるアミノ酸が保護基で保護されたものであってもよい。本発明においては、例えば、翻訳後修飾の過程で脱保護を行うこともできる。その場合、上記翻訳条件下における脱保護条件は、該翻訳後修飾のために用いる脱保護反応条件とオルソゴナルな脱保護条件であることが好ましい。本発明においては、翻訳条件下における脱保護条件は、翻訳後修飾のために用いる脱保護反応条件とオルソゴナルな脱保護条件である限り、どのような脱保護法を用いてもよい。ここで、翻訳後修飾とは、翻訳後にリボゾームの作用以外で自動的に生じるあるいは翻訳条件下において脱保護反応を進行させるための試薬とは異なる試薬を添加させて生じさせる化学反応を指し、例えば環化反応や脱保護反応を挙げることができる。
 本発明における無細胞翻訳系中でアミノ酸の保護基を脱保護する工程は、該無細胞翻訳系に最初から含まれる構成成分(例えば、DTT(dithiothreitol)等)の影響により、該系内で自発的に起きる脱保護反応を除くものとして解釈することが出来る。
 非限定の一態様として、上記ペプチド合成方法において、上記アミノ酸の保護基の脱保護が、酵素による脱保護、還元剤による脱保護、及び光反応による脱保護からなる群より選ばれる一以上の脱保護である、ペプチドを合成する方法を提供する。
 これに限定されることはないが、上記酵素による脱保護に用いられる酵素は、好ましくは加水分解酵素であり、より好ましくは、ペニシリンアミドヒドロラーゼ、エステラーゼ、又はアミノペプチダーゼである。
 本発明におけるペニシリンアミドヒドロラーゼは、EC番号(Enzyme Commission numbers)3.5.1.11に分類される加水分解酵素を表す。EC番号3.5.1.11に分類される加水分解酵素は、ペニシリンと水を天然の基質とし、生成物としてカルボン酸とぺニシラン酸を与える化学反応を触媒する酵素である。また、通常のペプチド結合を加水分解せず、例えばフェニルアセチルアミド結合に対して特異的に加水分解作用を有することもあわせて古くから知られている。例えば、大腸菌由来のペニシリンアミドヒドロラーゼを用いることも出来る。これらのペニシリンアミドヒドロラーゼのアミノ酸配列および塩基配列は、当業者に公知である(www.ncbi.nlm.nih.gov/protein/?term=EC+3.5.1.11)。
 なおこれらのペニシリンアミドヒドロラーゼは、その機能を保持する限り、遺伝子操作によりアミノ酸が改変された改変体であってもよく、化学修飾の有無も問わない。EC番号は、酵素を反応形式に従って系統的に分類するための4組の数字より成る番号で、国際生化学分子生物学連合の酵素委員会によって定義づけられている酵素の番号である。
 本発明におけるエステラーゼは、エステラーゼ活性を有する酵素である限り、特に限定されることはなく、当業者がエステラーゼ活性を有する酵素を適宜選択することができる。そのような酵素として、例えばEC番号(Enzyme Commission numbers)3.1.1.XXに分類される酵素を挙げることができる。EC番号3.1.1.XXに分類される酵素は、カルボン酸エステルをカルボン酸とアルコールに加水分解する酵素である。これらに限定されることはないが、例えば好ましくはEC番号3.1.1.1に分類されるカルボキシルエステラーゼや、EC番号3.1.1.3に分類されるトリアシルグリセロールリパーゼ(単にリパーゼともいう)が挙げられる。例えば、大腸菌由来やブタ肝臓由来のエステラーゼを用いることも出来る。これらエステラーゼのアミノ酸配列および塩基配列は、当業者に公知である(www.ncbi.nlm.nih.gov/protein/?term=EC+3.1.1)。
 なおこれらのエステラーゼは、その機能を保持する限り、遺伝子操作によりアミノ酸が改変された改変体であってもよく、化学修飾の有無も問わない。
 本発明におけるアミノペプチダーゼは、アミノペプチダーゼ活性を有する酵素である限り、特に限定されることはなく、当業者がアミノペプチダーゼ活性を有する酵素を適宜選択することができる。そのような酵素として、例えばEC番号(Enzyme Commission numbers)3.4.11.XXに分類される酵素を挙げることができる。EC番号3.4.11.XXに分類される酵素は、ペプチドのアミノ酸鎖をN 末端から段階的に加水分解し,アミノ酸を生じる反応を触媒する酵素である。これらに限定されることはないが、例えば好ましくはEC番号3.4.11.1に分類されるロイシンアミノペプチダーゼや、EC番号3.4.11.18に分類されるメチオニンアミノペプチダーゼが挙げられる。例えば、細菌由来やブタ腎臓由来のアミノペプチダーゼを用いることも出来る。これらアミノペプチダーゼのアミノ酸配列および塩基配列は、当業者に公知である(www.ncbi.nlm.nih.gov/protein/?term=EC+3.4.11)。
 なおこれらのアミノペプチダーゼは、その機能を保持する限り、遺伝子操作によりアミノ酸が改変された改変体であってもよく、化学修飾の有無も問わない。
 非限定の一態様として、上記酵素によって脱保護される保護基は、ペニシリンアミドヒドロラーゼが認識する部分構造X1を有する下記一般式(I)、若しくは一般式(II)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-I000025
(式中のYは、NHもしくは酸素原子であり、Lは、単結合(ここではメチレン基を表す)、アリーレン、またはヘテロアリーレンである。)
 式中のX1は、酵素であるペニシリンアミドヒドロラーゼによって認識される構造であり、式(I)中のY-C=Oで表記されるエステルまたはアミド結合、あるいは式(II)中の*-C=Oで表記されるアミド結合がペニシリンアミドヒドロラーゼの基質として加水分解され得る限り、特にその構造(X1)が限定されることはない。加水分解された後の残りの保護基は自動的にアミノ酸から脱保護される。そのような構造は、当業者が公知技術より適宜選択することができる(Journal of Molecular Biology, Volume 284, Issue 2, 27 November 1998, Pages 463-475, Annals New York Academy of Sciences, Volume 799, Enzyme Engineering XIII Pages 659-669)。
 非限定の一態様として、上記酵素によって脱保護される保護基は、エステラーゼが認識する部分構造X2を有する下記一般式(III)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-I000026
(式中のLは、単結合、アリーレン、またはヘテロアリーレンである。)
 式中のX2は、酵素であるエステラーゼによって認識される構造であり、式中、X2とLとの間にあるエステル結合がエステラーゼの基質として加水分解され得る限り、特にその構造(X2)が限定されることはない。加水分解された後の残りの保護基は自動的にアミノ酸から脱保護される。エステラーゼはその種類により多様な基質特異性を持つことが知られており、当業者は公知技術より適切な構造を適宜選択することができる。
 非限定の一態様として、上記酵素によって脱保護される保護基は、アミノペプチダーゼが認識する部分構造X3を有する下記一般式(XII)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-I000027
(式中のLは、単結合、アリーレン、またはヘテロアリーレンである。)
 式中のX3は、酵素であるアミノペプチダーゼによって認識される構造であり、式中のアミド結合がアミノペプチダーゼの基質として加水分解され得る限り、特にその構造(X3)が限定されることはない。加水分解された後の残りの保護基は自動的にアミノ酸から脱保護される。そのような構造は、当業者が公知技術より適宜選択することができる。
 非限定の一態様において、上記式(I)中の部分構造X1は、以下一般式(IV)もしくは2-チエニルメチルであることが好ましい。
Figure JPOXMLDOC01-appb-I000028
(式中のR、およびRは、それぞれ独立して、水素原子、ヒドロキシル、フルオロ、クロロ、ブロモ、アミノ、ニトロ、またはメトキシである。)
 また、R、およびRの組み合わせとして、好ましくは、R=FかつR=H、R=ClかつR=H、R=BrかつR=Hが挙げられる。また、Rは、-CHR-に対してオルト位、メタ位、パラ位のどの位置に存在していてもよく、パラ位に存在することが好ましい。
 非限定の一態様において、上記式(III)中の部分構造X2は、置換されてもよいアルキル、アラルキル、またはシクロアルキルであることが好ましく、メチル、エチル、ベンジル、若しくはn-プロピルであることが特に好ましい。
 非限定の一態様において、上記式(XII)は、下記一般式(XIII)であることが好ましい。
Figure JPOXMLDOC01-appb-I000029
 非限定の一態様において、上記酵素のうち、ペニシリンアミドヒドロラーゼにより脱保護される保護基は、好ましくは、4-(2-(4-フルオロフェニル)アセトアミド)ベンジルオキシカルボニル(F-Pnaz)基である。エステラーゼにより脱保護される保護基は、好ましくは、4-(プロピオニルオキシ)ベンジルオキシカルボニル(Etez)基である。アミノペプチダーゼにより脱保護される保護基は、好ましくは、(S)-((4-(2-アミノ-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル(Leuz)基である。
 非限定の一態様において、混合する酵素の濃度と該酵素により脱保護される保護基を有するアミノ酸を結合したtRNAの濃度の比率としては、1:1000、1:900、1:800、1:700、1:600、1:500、1:400、1:300、1:200、1:100、1:90、1:80、1:70、1:60、1:50、1:40、1:30、1:20、1:10、1:1が好ましい。
 これに限定されることはないが、上記還元剤による脱保護に用いられる還元剤は、好ましくは、トリス(2-カルボキシエチル)ホスフィン(TCEP)である。さらに好ましくは、上記還元剤によって脱保護される保護基として、下記一般式(V)で表される保護基、又は主鎖のアミノ基と一緒になって形成されたアジド基(主鎖のアミノ基をマスクするアジド基)を用いることができる。
Figure JPOXMLDOC01-appb-I000030
(式中のLは、単結合、アリーレン、またはヘテロアリーレンである。)
 非限定の一態様において、上記還元剤(好ましくは、TCEP)により脱保護される保護基は、好ましくは、4-アジドベンジルオキシカルボニル基(Acbz)、又はアジドメチルオキシカルボニル(Azoc)である。
 非限定の一態様において、混合する還元剤の濃度と該還元剤により脱保護される保護基を有するアミノ酸を結合したtRNAの濃度の比率としては、5000:1、4000:1、3000:1、2000:1、1000:1、900:1、800:1、700:1、600:1、500:1、400:1、300:1、200:1、100:1が好ましい。
 これに限定されることはないが、上記光反応による脱保護は、公知の方法を適宜参照することにより、当業者が実施することができる(Bioorganic & Medicinal Chemistry Letters,Volume 24, Issue 23, Nat. Commun. 7:12501 doi: 10.1038/ncomms12501 (2016).)。
 非限定の一態様において、本発明は、保護基を有するアミノ酸を結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を酵素、又は還元剤によって脱保護する工程、及び翻訳工程を含む、ペプチドの合成方法を提供する。
 上記態様において、アミノ酸の保護基を脱保護する工程とペプチドの翻訳工程は、時間的に一部重複して行うか、時間的に一致して同時に行うことができる。あるいは本発明においては、脱保護工程と翻訳工程を時間的に互いに独立して行ってもよい。独立して行う場合、これに限定されることはないが、無細胞翻訳系中で、該アミノ酸の保護基を脱保護した後に翻訳工程を開始することがより好ましい。
 本発明におけるペプチド合成反応の完了後、翻訳後修飾の過程でさらにペプチドの環化反応等を行う場合は、該翻訳後修飾のために用いる反応条件とオルソゴナルな反応条件によって脱保護される保護基を、本発明におけるペプチドの合成反応に用いることが好ましい。
 すなわち、非限定の一態様として、本発明は、アミノ酸の有する保護基が、翻訳後修飾のために用いられる反応条件とオルソゴナルな反応条件によって脱保護される保護基である、ペプチドの合成方法を提供する。さらに、上述したアミノ酸の有する保護基は、iSP(Initiation Suppression)法で用いられる保護基とオルソゴナルな保護基であることが好ましい。
 非限定の一態様として、本発明は、アミノ酸の有する保護基が、iSP(Initiation Suppression)法で用いられる保護基とオルソゴナルな保護基である、ペプチドの合成方法を提供する。
 例えば、翻訳後修飾の過程で、還元条件下でペプチドの環化反応を行う場合、該還元条件とはオルソゴナルな反応条件である酵素による脱保護条件を、本発明のペプチド合成に用いることができる。
 上記態様における、「オルソゴナル」な保護基とは、他の脱保護反応の条件に実質的に影響されない保護基をいう。例えば、他の脱保護反応が還元条件下で行なわれる場合、オルソゴナルな保護基としては、還元反応以外の条件(例えば、酵素反応、光反応等)で脱保護反応が進行し得る保護基を選択することが好ましい。また、他の脱保護反応が酵素反応(エステラーゼ)で行なわれる場合、オルソゴナルな保護基として他の酵素反応(例えば、ペニシリンアミドヒドロラーゼ)で脱保護反応が進行し得る保護基を選択することもできる。
 非限定の一態様として、翻訳されるペプチドのN末端にメチオニン以外の他の所望のアミノ酸を導入する場合は、例えば以下のような方法を用いることができる(WO2013/100132)。
iSP(Initiation Suppression)法
 本来は、一般的に翻訳開始アミノ酸(N末端アミノ酸)としてメチオニンが翻訳されるが、他の所望のアミノ酸をアミノアシル化した翻訳開始tRNAを用いて翻訳させることによって、当該所望のアミノ酸を翻訳開始アミノ酸(N末端アミノ酸)として翻訳させることもできる。N末端におけるアミノ酸類縁体の許容度は、ペプチド鎖の伸長時におけるそれよりも高く、N末端では天然アミノ酸と大きく構造の異なるアミノ酸類縁体を利用できることが知られている(非特許文献:J Am Chem Soc. 2009 Apr 15;131(14):5040-1.Translation initiation with initiator tRNA charged with exotic peptides.Goto Y, Suga H.)。
 これに限定されることはないが、N末端のアミノ酸として、Cys、又は側鎖にSH基を有するアミノ酸類縁体を用いる場合、該アミノ酸の主鎖のアミノ基及び/又は側鎖のSH基は保護基を有していることが好ましい。保護基は、本発明のペプチド合成における脱保護条件とはオルソゴナルな条件で反応が進行する保護基を選択することがさらに好ましい。
 翻訳開始アミノ酸としてメチオニン以外の所望のアミノ酸を導入するその他の方法として、initiation read through(イニシエーション リード スルー:開始コドンの読み飛ばし)を挙げることが出来る。一般的には、タンパクやペプチドはAUCコドンとしてコードされる翻訳開始アミノ酸であるメチオニンから翻訳される。これに対しinitiation read throughでは、無細胞翻訳系において翻訳開始メチオニルtRNAが含まれないようにすることにより、あるいは、翻訳開始アミノ酸を翻訳効率の低いアミノ酸類縁体に置き換えることにより、2番目以降のコドンにコードされるアミノ酸をN末端アミノ酸とする翻訳産物を合成することができる。
 さらに別法として、酵素、例えば、peptide deformylase(ペプチド デフォルミラーゼ)とMethionine aminopeptidase(メチオニン アミノペプチダーゼ)を作用させることによってペプチドのN末端のメチオニンを削り取る方法が知られている(非特許文献:Meinnel, T., et al. Biochimie (1993) 75, 1061-1075, Methionine as translation start signal: A review of the enzymes of the pathway in Escherichia coli.)。翻訳開始メチオニンから始まるペプチドのライブラリーを用意し、これにMethionine aminopeptidaseを作用させることによってN末端のメチオニンを除去し、N末端のアミノ酸がランダムなライブラリーを調製することも出来る。
 非限定の一態様として、本発明におけるペプチド合成反応の完了後、翻訳後修飾の過程で、さらにペプチドの環化を行うこともできる。その場合、合成されたペプチドのN末端側のアミノ酸残基(以下、天然のアミノ酸残基やアミノ酸類縁体残基に加え、N末端カルボン酸類縁体を含む)の反応点と、C末端側のアミノ酸残基又はアミノ酸類縁体残基の側鎖の反応点とを結合させ、ペプチドを環化することができる(WO2013/100132)。そのような方法としては、例えば、側鎖にアミノ基と反応補助基を有する、N末端側のアミノ酸残基と、N末端側のアミノ酸残基よりもC末端側に位置する、活性エステル基を側鎖に有するアミノ酸残基又はアミノ酸類縁体残基をアミド結合させて環状化合物を得る方法、アミノ基を有するN末端のアミノ酸残基の当該アミノ基と、活性エステル基を側鎖に有するアミノ酸残基又はアミノ酸類縁体残基の当該活性エステル基をアミド結合させて環状化合物を得る方法、N末端のアミノ酸残基の反応点と、側鎖に1つの反応点を有するアミノ酸残基又はアミノ酸類縁体残基の反応点とを炭素-炭素結合させる方法などが挙げられる。また、上記の例に限定されず、例えば、活性エステル基を有するN末端側のアミノ酸残基の当該活性エステル基と側鎖にアミノ基(反応補助基を有してもよい)を有するC末端側のアミノ酸残基における当該アミノ基との間でアミド結合させるなど、上記と逆の官能基を配置してもよい。
 本発明におけるN末端カルボン酸類縁体は、アミノ基とカルボキシル基とを同時に持ち、両者の間の原子数が3つ以上の化合物、アミノ基を持たない様々なカルボン酸誘導体や、2残基~4残基から形成されるペプチド、主鎖アミノ基がカルボン酸とのアミド結合などで化学修飾されたアミノ酸でもよい。また、環化に使用できるホウ酸やホウ酸エステル部位を有していてもよい。また、二重結合部位や三重結合部位を有するカルボン酸でもよく、ケトンやハライドを有するカルボン酸でもよい。なお、これらの化合物において規定された官能基以外の部分は、置換されてもよいアルキル基、アラルキル基、アリール基、シクロアルキル基、ヘテロアリール基、アルケニル基、アルキニル基などの中から幅広く選択(自由に置換)される。
 転移RNA(tRNA)は、分子量25000から30000で、3’末端のCCA配列を含む鎖長73~93塩基からなるRNAであり、コドンの識別に関与するRNAである。tRNAはその3’末端においてアミノ酸のカルボキシ末端とエステル結合を形成し、アミノアシルtRNAを形成する。アミノアシルtRNAはポリペプチド伸長因子(EF-Tu)、GTPと三重複合体を形成し、ribosomeに運ばれる。ribosomeにおけるmRNAの塩基配列情報からアミノ酸配列への翻訳の過程において、アミノアシルtRNAの配列中のアンチコドンとmRNAのコドンとが塩基対を形成し、これによってコドンを識別する。細胞内で生合成されるtRNAには共有結合的に修飾された塩基が含まれており、当該塩基がtRNAのコンフォメーションやアンチコドンの塩基対形成に影響し、tRNAのコドン識別を助けていることがある。一般的な試験管内転写にて合成したtRNAは所謂核酸塩基であるアデニン、ウラシル、グアニン、シトシンから成るが、細胞内から調製したものや化学的に合成したものにはこれらのメチル化体、含硫誘導体、脱アミノ誘導体、イソペンテニル基やトレオニンを含むアデノシン誘導体などの修飾塩基を含むものもある。また、pdCpA法などを利用した場合にデオキシ塩基を含む場合もある。
 非限定の一態様として、本発明のペプチド合成において用いられるアミノアシルtRNAは、以下のような方法を用いて作製することができる。
 所望のtRNA配列をコードし、上流にT7、T3もしくはSP6プロモーターを配置した鋳型DNAを用意し、T7 RNA polymeraseやT3, SP6 RNA polymeraseなどのプロモーターに適応したRNAポリメラーゼを利用して、転写によってtRNAを合成することが出来る。あるいは、細胞からtRNAを抽出精製し、tRNAの配列と相補的な配列を有するプローブを用いて目的の生成tRNAを抽出することも出来る。この際、目的のtRNAの発現ベクターで形質転換した細胞をソースとして用いることも出来る。化学合成によって目的の配列のtRNAを合成することも出来る。アミノアシルtRNAは、例えば、このようにして得られた3’末端のCCA配列からCAを除いたtRNAと別途調製したアミノアシル化したpdCpAまたはpCpAとをRNAリガーゼで結合させることで得ることが出来る(pdCpA法、pCpA法)。
 例えば、式(VI)又は(VII)で表されるアミノ酸のためのアミノアシルtRNAは、式(VI)又は(VII)で表されるアミノ酸と結合したpdCpAまたはpCpAを使用して製造することができる。当該アミノアシルtRNAは、本発明のペプチド、ペプチドとmRNAの結合体、ペプチドとmRNAの結合体のライブラリーの製造において有用である。したがって本発明は、式(VI)又は(VII)で表されるアミノ酸と結合したpdCpAまたはpCpAに関する。このような式(VI)又は(VII)で表されるアミノ酸と結合したpdCpAまたはpCpAとして具体的には、下記式(X)または(XI)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000031
(式中、R~R、およびPは後述の式(VIII)または(IX)中のR~RおよびPと同意義であり、Rは水素原子またはヒドロキシルである。)
 また本発明は、式(VI)又は(VII)で表されるアミノ酸でアミノアシル化されたtRNAに関する。
 あるいは、全長tRNAを用意し、種々のアミノ酸類縁体の活性エステルをtRNAに担持させるリボザイムであるフレキシザイムによるアミノアシル化も可能である。
 また本発明において翻訳合成は、例えば、大腸菌の翻訳に必要な蛋白因子類(メチオニルtRNAトランスフォルミラーゼ、 EF-G、RF1、RF2、RF3、RRF、IF1、IF2、IF3、EF-Tu、EF-Ts、ARS(AlaRS、ArgRS、AsnRS、AspRS、CysRS、GlnRS、GluRS、GlyRS、HisRS、IleRS、LeuRS、LysRS、MetRS、PheRS、ProRS、SerRS、ThrRS、TrpRS、TyrRS、ValRSから必要なものを選ぶ))、リボソーム、アミノ酸、クレアチンキナーゼ、ミオキナーゼ、無機ピロフォスファターゼ、ヌクレオシド二リン酸キナーゼ、E. coli 由来tRNA、クレアチンリン酸、グルタミン酸カリウム、HEPES-KOH pH7.6、酢酸マグネシウム、スペルミジン、ジチオスレイトール、GTP、ATP、CTP、UTPなどを混合したPUREsystem等の公知の無細胞翻訳系にmRNAを加えることによって行うことが出来る。また、T7 RNA polymeraseを加えておけば、T7プロモーターを含む鋳型DNAからの転写、翻訳を共役して行なうこともできる。このとき所望のアシル化tRNA群やARSが許容するアミノ酸類縁体群(例えばF-Tyr)を系に添加することによってアミノ酸類縁体群を含むペプチドを翻訳合成することが出来る(Kawakami T, et al. Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J Am Chem Soc. 2008, 130, 16861-3., Kawakami T, et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol. 2009, 5, 888-90.)。あるいは、リボソームやEF-Tuなどの変異体を利用することによってアミノ酸類縁体の翻訳導入の効率を高めることも出来る(Dedkova LM, et al. Construction of modified ribosomes for incorporation of D-amino acids into proteins. Biochemistry. 2006, 45, 15541-51., Doi Y,et al. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. J Am Chem Soc. 2007, 129, 14458-62., Park HS,et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science. 2011, 333, 1151-4.)。
 無細胞翻訳系は、mRNAを蛋白質に翻訳することが出来るものである限り、様々なものを含み得る。例えば、細胞より抽出したリボソームの他、翻訳に関与する蛋白因子群、tRNA、アミノ酸、ATPなどのエネルギー源、その再生系を組み合わせたものなどが挙げられる。また本発明の無細胞翻訳系は、これら以外にも、開始因子、伸長因子、解離因子、アミノアシルtRNA合成酵素などを含むことができる。これらの因子は、種々の細胞の抽出液から精製することによって得ることができる。因子を精製するための細胞は、例えば原核細胞、または真核細胞を挙げることができる。原核細胞としては、大腸菌細胞、高度好熱菌細胞、または枯草菌細胞を挙げることができる。真核細胞としては、酵母細胞、小麦胚芽、ウサギ網状赤血球、植物細胞、昆虫細胞、または動物細胞を材料にしたものが知られている。
 一方、PURE systemは大腸菌の翻訳に必要な蛋白因子類、エネルギー再生系酵素、リボソームのそれぞれを抽出、精製し、tRNA、アミノ酸、ATP、GTPなどと混合した再構成無細胞翻訳系である。不純物の含有量が少ないだけでなく、再構成系であるため排除したい蛋白因子、アミノ酸を含まない系を容易に作製することができる。((i)Nat Biotechnol. 2001;19:751-5. Cell-free translation reconstituted with purified components. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T.(ii)Methods Mol Biol. 2010;607:11-21.PURE technology.Shimizu Y, Ueda T.)。
 非限定の一態様として、本発明は、下記の一般式(VIII)または(IX)で表される化合物を提供する。これらの化合物は、アミノ酸の主鎖のアミノ基上に、保護基Pを有する。
Figure JPOXMLDOC01-appb-I000032
(式中のR、R、およびRは、それぞれ独立して、水素原子、アルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、またはシクロアルキルであり、これらの基は置換されていてもよく、あるいはRとRもしくはRとRは、それらが結合する原子と一緒になって環を形成してもよい。R、Rは、それぞれ独立して水素原子またはメチルであり、Pは、酵素、還元剤、及び/又は光反応によって脱保護される保護基である。)
 これに限定されることはないが、式中のPは、ペニシリンアミドヒドロラーゼ、エステラーゼ、又はアミノペプチダーゼが認識する保護基であることが好ましい。
 このようなPとして、具体的には例えば、ペニシリンアミドヒドロラーゼが認識する部分構造X1を有する下記一般式(I)、若しくは一般式(II)で表される保護基、エステラーゼが認識する部分構造X2を有する下記一般式(III)、又はアミノペプチダーゼが認識する部分構造X3を有する下記一般式(XII)で表される保護基が挙げられる。
Figure JPOXMLDOC01-appb-I000033
(式中のYは、NHもしくは酸素原子であり、Lは、単結合、アリーレン、またはヘテロアリーレンである。)
 より具体的には、式中のPは、前記式(I)中の部分構造X1が以下一般式(IV)もしくは2-チエニルメチルであるか、または、前記式(III)中の部分構造X2が、置換されてもよいアルキル、アラルキル、またはシクロアルキルであることが好ましく、メチル、エチル、ベンジル、若しくはn-プロピルであることが特に好ましい。
Figure JPOXMLDOC01-appb-I000034
(R、Rは、それぞれ独立して、水素原子、ヒドロキシル、フルオロ、クロロ、ブロモ、アミノ、ニトロ、またはメトキシである。)
 また、前記式(XII)は、より具体的には、下記一般式(XIII)であることが好ましい。
Figure JPOXMLDOC01-appb-I000035
 このような基としてよりさらに具体的には、4-(2-(4-フルオロフェニル)アセトアミド)ベンジルオキシカルボニル(F-Pnaz)基:
Figure JPOXMLDOC01-appb-I000036
4-(プロピオニルオキシ)ベンジルオキシカルボニル(Etez)基:
Figure JPOXMLDOC01-appb-I000037
(S)-((4-(2-アミノ-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル(Leuz)基:
Figure JPOXMLDOC01-appb-I000038
が挙げられる。
 式中のPは、下記一般式(V)で表される保護基であるか、又は主鎖のアミノ基と一緒になって形成されたアジド基(主鎖のアミノ基をマスクするアジド基)であることもできる。
Figure JPOXMLDOC01-appb-I000039
(式中のLは、単結合、アリーレン、またはヘテロアリーレンである。)
 これらの保護基は、還元剤(好ましくは、TCEP)により脱保護することができる。これらの保護基として、より具体的には、例えば、4-アジドベンジルオキシカルボニル基(Acbz)、又はアジドメチルオキシカルボニル基(Azoc)が挙げられる。
 非限定の一態様として、本発明は、以下の一般式(X)または(XI)で表される化合物を提供する。これらの化合物は、一般式(VIII)または(IX)で表される化合物とpCpA、又はpdCpAとが結合してなる化合物である。
Figure JPOXMLDOC01-appb-I000040
(式中、R~R、およびPは前記式(VIII)または(IX)中のR~RおよびPと同意義であり、Rは水素原子またはヒドロキシルである。)
 さらに本発明は、前記式(X)または(XI)に記載の化合物とtRNAとが結合してなるアミノアシルtRNAに関する。
 さらに本発明は、前記式(VIII)または(IX)に記載の化合物とtRNAとが結合してなるアミノアシルtRNAに関する。
 上述したアミノアシルtRNAは、本発明におけるアミノ酸を含むペプチドの効率的な翻訳において有用である。上述したアミノアシルtRNAは、当業者に周知の方法によって取得することができる。
 非限定の一態様として、本発明は、保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を含む、ペプチドの合成方法であって、該脱保護する工程および該翻訳工程が並行して行われる方法を提供する。これに限定されることはないが、上記態様における脱保護には、酵素、又は還元剤を利用することが好ましい。本態様において用いられる酵素や還元剤の種類、保護基の種類、アミノ酸の種類等は、上述した記載を適宜参考にすることができる。
 上記態様における「無細胞翻訳系の構成成分」は、アミノ酸を含むペプチドの翻訳合成をする際に使用する無細胞翻訳系中に含まれる構成成分であれば限定されることはない。
 非限定の一態様として、本発明は、1種以上のアミノ酸残基を含み、かつ環状部を有するペプチドと当該ペプチドをコードする核酸との複合体、又は当該複合体を含むライブラリーの製造方法であって、本発明におけるペプチドの合成工程、及び合成されたペプチドを環化する工程を含む、前記複合体又は前記ライブラリーの製造方法を提供する。これに限定されることはないが、合成されたペプチドは、アミド結合、チオエーテル結合、ジスルフィド結合、エーテル結合、エステル結合、チオエステル結合又は炭素-炭素結合によって環化することが好ましい。
mRNA display
 本発明における「核酸」は、デオキシリボ核酸(DNA)、リボ核酸(RNA)あるいは、人工塩基を有するヌクレオチド誘導体を含むことができる。また、ペプチド核酸(PNA)を含むこともできる。本発明の核酸は、目的とする遺伝情報が保持される限り、これらの核酸のいずれか、あるいは混成とすることもできる。すなわち、DNA-RNAのハイブリッドヌクレオチドやDNAとRNAのような異なる核酸が1本鎖に連結されたキメラ核酸も本発明における核酸に含まれる。
 本発明においては、これら核酸を鋳型として含むdisplayライブラリーなどの核酸ライブラリーを、好適に用いることができる。
 displayライブラリーは、表現型であるペプチドとその遺伝子型であるペプチドをコードするRNAもしくはDNAとが対応付けられているライブラリーである。所望の固定した標的にライブラリーを接触させ、標的に結合しない分子を洗い流すことで、標的に結合するペプチドの濃縮が可能である(パニング法)。このような過程を経て選択されたペプチドに対応付けられている遺伝子情報を解析することで、標的に結合したタンパク質の配列を明らかにすることが出来る。例えば、アミノアシルtRNAのアナログである抗生物質ピューロマイシンがribosomeにおけるmRNA翻訳伸長中の蛋白質に非特異的に連結されることを利用する方法が、mRNA display(Proc Natl Acad Sci USA. 1997;94:12297-302. RNA-peptide fusions for the in vitro selection of peptides and proteins. Roberts RW, Szostak JW.)ないしはin vitro virus(FEBS Lett. 1997;414:405-8. In vitro virus: bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H.)として報告されている。
 T7プロモーターなどのプロモーターを含むDNAライブラリーからの転写により得られるmRNAのライブラリーの3'末端にピューロマイシンなどのスペーサーを結合しておくと、無細胞翻訳系において当該mRNAをタンパク質に翻訳させる時に、ピューロマイシンがribosomeによってアミノ酸と間違って認識され、タンパク質に取り込まれる。これにより、mRNAとこれにコードされる蛋白質が連結され、mRNAとその産物が対応付けられたライブラリーを取得することができる。この過程は大腸菌などの形質転換を含まないため、高い効率が実現され、大規模なdisplayライブラリー(1012-1014種類)を構築することが出来る。パニングで濃縮、選択された蛋白質に結合している遺伝子情報を含むタグであるmRNAからcDNAを合成し、PCR増幅し、塩基配列を解析することで、所望の標的物質に結合した蛋白質の配列を明らかにすることが出来る。ライブラリーの鋳型となるDNAライブラリーは、アミノ酸残基を固定しない箇所については塩基を混ぜて合成することによって得ることができる。A, T, G, Cの 4塩基の混合(N)の3の倍数個の繰り返し、もしくはコドンの一文字目二文字目はN、三文字目はW, M, K, Sなどの 2塩基の混合として合成することができる。さらに、導入するアミノ酸の種類を16以下に抑えるのであれば、三文字目を1種類の塩基にする方法もある。
 無細胞翻訳系を利用したdisplayライブラリーは、mRNA displayの他に、
ペプチドとピューロマイシンの複合体にペプチドをコードするcDNAが結合しているcDNA display(Nucleic Acids Res. 2009;37(16):e108.cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions.Yamaguchi J, Naimuddin M, Biyani M, Sasaki T, Machida M, Kubo T, Funatsu T, Husimi Y, Nemoto N.)、
mRNA翻訳中におけるribosomeと翻訳産物の複合体が比較的安定であることを利用したribosome display(Proc Natl Acad Sci U S A. 1994;91:9022-6. An in vitro polysome display system for identifying ligands from very large peptide libraries. Mattheakis LC, Bhatt RR, Dower WJ.)、
bacteriophage endonuclease P2AがDNAと共有結合を形成することを利用したcovalent display(Nucleic Acids Res. 2005;33:e10.Covalent antibody display--an in vitro antibody-DNA library selection system.Reiersen H, Lobersli I, Loset GA, Hvattum E, Simonsen B, Stacy JE, McGregor D, Fitzgerald K, Welschof M, Brekke OH, Marvik OJ.)、
微生物のプラスミドの複製開始蛋白RepAが複製開始点oriに結合することを利用したCIS display(Proc Natl Acad Sci U S A. 2004;101:2806-10. CIS display: In vitro selection of peptides from libraries of protein-DNA complexes. Odegrip R, Coomber D, Eldridge B, Hederer R, Kuhlman PA, Ullman C, FitzGerald K, McGregor D.)
が知られている。また、DNAライブラリーを構成するDNAの1分子毎に転写翻訳系をwater-in-oilエマルジョンやリポソームに封入し、翻訳反応を行う、in vitro compartmentalization(Nat Biotechnol. 1998;16:652-6. Man-made cell-like compartments for molecular evolution. Tawfik DS, Griffiths AD.)も知られている。適宜、公知の方法を用いて上記方法を使用することができる。
 本発明では、上述の無細胞翻訳系を用いてこれら核酸ライブラリーを翻訳することができる。無細胞翻訳系を使用する場合、目的の核酸の下流にスペーサーをコードする配列を含むことが好ましい。スペーサー配列としては、グリシンやセリンを含む配列が挙げられるがこれに限定されない。またピューロマイシン、その誘導体などリボソームによる翻訳時にペプチドに取り込まれる化合物と核酸ライブラリーの間には、RNA、DNA、ヘキサエチレングリコール(spc18)のポリマー(例えば5つのポリマー)などで形成されるリンカーを含むことが好ましい。
所望の活性を有する環状ペプチドのスクリーニング・製造方法
 所望の活性を有するペプチド-核酸複合体を製造する方法としては、例えば以下の工程を含む製造方法を挙げることができる:
(i)上述した本発明におけるペプチドの合成方法を使用して、天然アミノ酸及び/又はアミノ酸類縁体の総数が9~13残基である非環状ペプチドを翻訳合成して、当該非環状ペプチドとそれをコードする核酸配列がリンカーを介して結合している複合体からなる非環状ペプチド-核酸複合体を形成する工程
(ii)工程(i)で翻訳合成された複合体の非環状ペプチドをアミド結合又は炭素-炭素結合によって環化し、環状部の天然アミノ酸及び/又はアミノ酸類縁体の残基数の合計が5~12となる環状ペプチドを形成する工程
(iii)工程(ii)で得られた環状部を有するペプチド-核酸複合体ライブラリーと標的物質とを接触させ、当該標的物質に対して結合活性を有する複合体を選択する工程。
 さらに、上記の工程で選択された複合体から、所望の活性を有するペプチドを製造することができる。
 例えば以下の工程を含む製造方法を挙げることができる:
(iv)前記工程(iii)で選択された複合体の核酸配列に基づきペプチドの配列情報を得る工程、および、
(v)前記工程(iv)で得られた配列情報に基づきペプチドを化学合成する工程。
 上記の製造工程において、前記非環状ペプチドはα-ヒドロキシカルボン酸、及び、保護されていてもよい側鎖にアミノ基を有する天然アミノ酸及び/又はアミノ酸類縁体を含んでいてもよい。さらに、工程(ii)の環状ペプチドを形成する工程の前又は後で、α-ヒドロキシカルボン酸と側鎖にアミノ基を有する天然アミノ酸及び/又はアミノ酸類縁体を化学反応させて分枝部位を形成させる工程を含んでいてもよい。当該工程により、環状部の様々な位置に直鎖部を有する環状ペプチドを製造することが可能である。
 ここで、上述の工程(i)に記載の天然アミノ酸及び/又はアミノ酸類縁体の総数、及び、工程(ii)に記載の環状部の天然アミノ酸及び/又はアミノ酸類縁体の残基数の合計には、翻訳後修飾によって除かれる天然アミノ酸及び/又はアミノ酸類縁体は含まれない。
 なお、本製造方法では、工程(ii)や工程(v)において、上述の環状ペプチドを最適化するための化学修飾を行ってもよい。また、本発明において、標的物質は生体内分子が好ましい。本発明における「生体内分子」とは、生体内の分子であれば特に限定されないが、疾患治療のターゲットとなる分子が好ましく、特に、従来の分子量500未満の低分子化合物が結合し得る穴(キャビティ)を有していない分子や、抗体等の高分子化合物がアクセスすることのできない細胞内蛋白、核酸、膜蛋白の細胞内領域又は膜蛋白の膜貫通ドメイン等が好ましい。
 具体的には例えば、STAT、AP1、CREB、SREBPなどの転写因子、ムスカリン性アセチルコリン受容体, カンナビノイド受容体、GLP-1受容体、PTH受容体などのGタンパク質共役型受容体(GPCR)、TNF、TNFR、IL-6、IL-6R等のサイトカインやそのレセプター、P2X受容体、ニコチン性アセチルコリン受容体などのイオンチャネル型受容体、イオンチャネル、トランスポーター、miR-21、miR206などのmicroRNAなどが挙げられる。
 また、環状部は、例えば、上述の環化反応を利用して形成することが可能であり、当該環化反応によって、アミド結合や炭素-炭素結合を形成させることが可能である。
 また、環状ペプチド-核酸複合体の合成工程において、無細胞翻訳系など公知の技術を用いることができる。具体的には、上述した方法を用いて作製することができる。
 非限定の一態様として、本発明は、ペプチドの合成方法における酵素、還元剤、または光反応によって脱保護される保護基の使用であって、該方法は、保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を並行して行うことを特徴とする、該保護基の使用を提供する。
 非限定の一態様として、本発明は、ペプチドの合成方法における酵素、還元剤、または光反応によって脱保護される保護基の使用であって、該方法は、保護基を有するアミノ酸を結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を並行して行うことを特徴とする、該保護基の使用を提供する。
 非限定の一態様として、本発明は、ペプチドの合成方法において使用するための、酵素、還元剤、または光反応によって脱保護される保護基であって、該方法は、保護基を有する、無細胞翻訳系の1種以上の構成成分を、該無細胞翻訳系中で脱保護する工程、及び翻訳工程を含み、該脱保護する工程および該翻訳工程が並行して行われる、前記保護基を提供する。
 非限定の一態様として、本発明は、ペプチドの合成方法において使用するための、酵素、還元剤、または光反応によって脱保護される保護基であって、該方法は、保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含み、該脱保護する工程および該翻訳工程が並行して行われる、前記保護基を提供する。
 なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
 本発明は、以下の実施例によってさらに例示されるが、下記の実施例に限定されるものではない。
 なお、実施例中では以下の略号を使用した。
DCM     ジクロロメタン
DIPEA   N,N-ジイソプロピルエチルアミン
DMF     ジメチルホルムアミド
DMSO    ジメチルスルホキシド
DTT     ジチオスレイロール
FA      ギ酸
TFA     トリフルオロ酢酸
TFE     トリフルオロエタノール
THF     テトラヒドロフラン
TCEP    トリス(2-カルボキシエチル)ホスフィン
NMP     N-メチル‐2‐ピロリドン
DBU     1,8-ジアザビシクロ[5.4.0]-7-ウンデセン
HOAt    1-ヒドロキシベンゾトリアゾール
DIC     N,N-ジイソプロピルカルボジイミド
PGA     ペニシリンGアシラーゼ
Acbz    4-アジドベンジルオキシカルボニル基:
Figure JPOXMLDOC01-appb-I000041
F-Pnaz  4-(2-(4-フルオロフェニル)アセトアミド)ベンジルオキシカルボニル基:
Figure JPOXMLDOC01-appb-I000042
Pen     4-ペンテノイル基
CHCN   シアノメチル基
DMAP    4,4-ジメチルアミノピリジン:
Etez    4-(プロピオニルオキシ)ベンジルオキシカルボニル基:
Figure JPOXMLDOC01-appb-I000043
Leuz    (S)-((4-(2-アミノ-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル基:
Figure JPOXMLDOC01-appb-I000044
 また、LCMSの分析条件は、下記のとおりである。
Figure JPOXMLDOC01-appb-T000045
実施例1.無細胞翻訳系に用いるpCpA-アミノ酸の合成
 以下のスキームに従い、アミノアシル化pCpA(ts05、ts07、ts09、ts14、ts19、ts20、ts23、ts26、ts29、TS03、TS06、TS09、TS12、TS15、TS18、TS21、TS24、TS29、TS34、TS37)を合成した。
Figure JPOXMLDOC01-appb-I000046
(S)-1-(((4-アジドベンジル)オキシ)カルボニル)アゼチジン-2-カルボン酸(化合物ts01、Acbz-Aze(2)-OH)の合成
Figure JPOXMLDOC01-appb-I000047
 窒素雰囲気下、(S)-アゼチジンー2-カルボン酸(H-Aze(2)-OH))(50.6mg、0.50mmol)、n-ブチルグリシン(H-nBuG-OH))(65.6mg、0.50mmol)、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(83.0mg、0.50mmol)及び文献記載(Bioconjugate Chem. 2008, 19, 714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(566mg、1.80mmol)の混合物に室温にてDMSO(5.0mL)を添加した。室温で5分撹拌後トリエチルアミン(418μL、3.00mmol)を室温にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(S)-1-(((4-アジドベンジル)オキシ)カルボニル)アゼチジン-2-カルボン酸(化合物ts01、Acbz-Aze(2)-OH)(80.0mg、58%)を得た。
LCMS(ESI) m/z = 275 (M-H)
保持時間:0.60分(分析条件SQDFA05)
N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシン(化合物ts02、Acbz-nBuG-OH)の合成
Figure JPOXMLDOC01-appb-I000048
 窒素雰囲気下、(S)-アゼチジンー2-カルボン酸(H-Aze(2)-OH))(50.6mg、0.50mmol)、n-ブチルグリシン(H-nBuG-OH))(65.6mg、0.50mmol)、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(83.0mg、0.50mmol)及び文献記載(Bioconjugate Chem. 2008, 19, 714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(566mg、1.80mmol)の混合物に室温にてDMSO(5.0mL)を添加した。室温で5分撹拌後トリエチルアミン(418μL、3.00mmol)を室温にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシン(化合物ts02、Acbz-nBuG-OH)(70.0mg、46%)を得た。
LCMS(ESI) m/z = 305 (M-H)
保持時間:0.77分(分析条件SQDFA05)
(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(化合物ts03、Acbz-Ala(3-Pyr)-OH)の合成
Figure JPOXMLDOC01-appb-I000049
 窒素雰囲気下、(S)-アゼチジンー2-カルボン酸(H-Aze(2)-OH))(50.6mg、0.50mmol)、n-ブチルグリシン(H-nBuG-OH))(65.6mg、0.50mmol)、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(83.0mg、0.50mmol)及び文献記載(Bioconjugate Chem. 2008, 19, 714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(566mg、1.80mmol)の混合物に室温にてDMSO(5.0mL)を添加した。室温で5分撹拌後トリエチルアミン(418μL、3.00mmol)を室温にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(化合物ts03、Acbz-Ala(3-Pyr)-OH)(105.0mg、62%)を得た。
LCMS(ESI) m/z = 340 (M-H)
保持時間:0.43分(分析条件SQDFA05)
(S)-アゼチジン-1,2-ジカルボン酸 2-(シアノメチル)1-(4-アジドベンジル)(化合物ts04、Acbz-Aze(2)-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000050
 窒素雰囲気下、(S)-1-(((4-アジドベンジル)オキシ)カルボニル)アゼチジン-2-カルボン酸(化合物ts01、Acbz-Aze(2)-OH)(70.0mg、0.25mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(0.089mL、0.50mmol)をアセトニトリル(507μl)に溶解し、2-ブロモアセトニトリル(0.026mL、0.38mmol)を0度において加え室温で2時間攪拌した。反応液を濃縮し、粗生成物(S)-アゼチジン-1,2-ジカルボン酸 2-(シアノメチル)1-(4-アジドベンジル)(化合物ts04、Acbz-Aze(2)-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 316 (M+H)
保持時間:0.72分(分析条件SQDFA05)
(2S)-アゼチジン-1,2-ジカルボン酸 1-(4-アジドベンジル) 2-((2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル)(化合物ts05、Acbz-Aze(2)-pCpA)の合成
Figure JPOXMLDOC01-appb-I000051
 緩衝液A(40ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(85.0mg、0.117mmol)を溶解させ、(S)-アゼチジン-1,2-ジカルボン酸 2-(シアノメチル)1-(4-アジドベンジル)(化合物ts04、Acbz-Aze(2)-OCHCN)のアセトニトリル溶液(2.00ml)を投与し、室温で90分撹拌した。反応液を0度に冷却した後に、トリフルオロ酢酸(2mL)を加えた。反応液を0度で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts05、Acbz-Aze(2)-pCpA)(6.0mg、8.5%)を得た。
LCMS(ESI) m/z = 911 (M+H)
保持時間:0.43分(分析条件SQDFA05)
 なお、緩衝液Aは以下のように調整した。
 N,N,N-トリメチルヘキサデカン-1-アミニウム 塩化物(6,40g、20mmol)とイミダゾール(6.81g、100mmol)の水溶液に酢酸を添加し、pH8、20mM N,N,N-トリメチルヘキサデカン-1-アミニウム、100mMイミダゾールの緩衝液A(1L)を得た。
シアノメチル N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシナート(化合物ts06、Acbz-nBuG-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000052
 窒素雰囲気下、N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシン(化合物ts02、Acbz-nBuG-OH)(70.0mg、0.23mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(0.080mL、0.46mmol)をアセトニトリル(229μl)に溶解し、2-ブロモアセトニトリル(0.023mL、0.34mmol)を0度において加え室温で2時間攪拌した。反応液を濃縮し、粗生成物シアノメチル N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシナート(化合物ts06、Acbz-nBuG-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 346 (M+H)
保持時間:0.87分(分析条件SQDFA05)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル -N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシナート(化合物ts07、Acbz-nBuG-pCpA)の合成
Figure JPOXMLDOC01-appb-I000053
 緩衝液A(40ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(85.0mg、0.117mmol)を溶解させ、(シアノメチル N-(((4-アジドベンジル)オキシ)カルボニル)-N-ブチルグリシナート(化合物ts06、Acbz-nBuG-OCHCN)のアセトニトリル溶液(2.00ml)を投与し、室温で90分撹拌した。反応液を0度に冷却した後に、トリフルオロ酢酸(2mL)を加えた。反応液を0度で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts07、Acbz-nBuG)-pCpA)(16.0mg、21.8%)を得た。
LCMS(ESI) m/z = 941 (M+H)
保持時間:0.52分(分析条件SQDFA05)
(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts08、Acbz-Ala(3-Pyr)-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000054
 窒素雰囲気下、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(化合物ts03、Acbz-Ala(3-Pyr)-OH)(80.0mg、0.23mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(0.082mL、0.47mmol)をアセトニトリル(234μl)に溶解し、2-ブロモアセトニトリル(0.024mL、0.35mmol)を0度において加え室温で2時間攪拌した。反応液を濃縮し、粗生成物(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts08、Acbz-Ala(3-Pyr)-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 381 (M+H)
保持時間:0.51分(分析条件SQDFA05)
(2R)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物ts09、Acbz-Ala(3-Pyr)-pCpA)の合成
Figure JPOXMLDOC01-appb-I000055
 緩衝液A(40ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(85.0mg、0.117mmol)を溶解させ、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts08、Acbz-Ala(3-Pyr)-OCHCN)のアセトニトリル溶液(2.00ml)を投与し、室温で90分撹拌した。反応液を0度に冷却した後に、トリフルオロ酢酸(2mL)を加えた。反応液を0度で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts09、Acbz-Ala(3-Pyr))-pCpA)(10.0mg、13.1%)を得た。
LCMS(ESI) m/z = 976 (M+H)
保持時間:0.36分(分析条件SQDFA05)
2-(4-フルオロフェニル)-N-(4-(ヒドロキシメチル)フェニル)アセトアミド(化合物ts10)の合成
Figure JPOXMLDOC01-appb-I000056
 窒素雰囲気下、2-(4-フルオロフェニル)酢酸(300mg、1.95mmol)、4-アミノフェニルメタノール(264mg、2.14mmol)、DMT-MM(646mg、2.34mmol)の混合物に対してTHF(9.7ml)を加えたのち、40度において2時間撹拌した。反応液を逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル)にて精製し、2-(4-フルオロフェニル)-N-(4-(ヒドロキシメチル)フェニル)アセトアミド(化合物ts10)(400.0mg、79.0%)を得た。
LCMS(ESI) m/z = 260 (M+H)
保持時間:0.55分(分析条件SQDFA05)
炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)の合成
Figure JPOXMLDOC01-appb-I000057
 窒素雰囲気下、2-(4-フルオロフェニル)-N-(4-(ヒドロキシメチル)フェニル)アセトアミド(化合物ts10)(300mg、1.16mmol)をTHF(1.00ml)に溶解し、ピリジン(0.187ml、2.31mmol)を加えたのち、反応液を0度に冷却した。その反応液に対して4-ニトロフェニルクロロホルメート(233mg、1.16mmol)のTHF溶液(1.13ml)を0度においてゆっくり滴下したのち、室温において2時間撹拌した。反応液を濃縮し得られた残渣をヘキサン-酢酸エチル3:1で洗浄し、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(330.0mg、67.2%)を得た。
LCMS(ESI) m/z = 425 (M+H)
保持時間:0.84分(分析条件SQDFA05)
N-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシン(化合物ts12、F-Pnaz-nBuG-OH))の合成
Figure JPOXMLDOC01-appb-I000058
 窒素雰囲気下、n-ブチルグリシン(H-nBuG-OH))(46.4mg、0.35mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(150mg、0.35mmol)の混合物に室温にてDMF(0.35mL)を添加した。室温で5分撹拌した後トリエチルアミン(113μL、0.81mmol)を0度にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製しN-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシン(化合物ts12)、F-Pnaz-nBuG-OH)(110.0mg、75%)を得た。
LCMS(ESI) m/z = 415 (M-H)
保持時間:0.72分(分析条件SQDFA05)
シアノメチル N-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシナート(化合物ts13、F-Pnaz-nBuG-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000059
 窒素雰囲気下、N-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシン(化合物ts12、F-Pnaz-nBuG-OH)(30.0mg、0.07mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(18.87uL、0.11mmol)をアセトニトリル(180μl)に溶解し、2-ブロモアセトニトリル(4.83uL、0.34mmol)を0度において加え室温で2時間攪拌した。反応液を濃縮し、粗生成物シアノメチル N-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシナート(化合物ts13、F-Pnaz-nBuG-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 456 (M+H)
保持時間:0.81分(分析条件SQDFA05)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル N-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシナート(化合物ts14、F-Pnaz-nBuG-pCpA)の合成
Figure JPOXMLDOC01-appb-I000060
 緩衝液A(40ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(104.0mg、0.144mmol)を溶解させ、シアノメチル N-ブチル-N-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)グリシナート(化合物ts13、F-Pnaz-nBuG-OCHCN)のアセトニトリル溶液(2.00ml)を投与し、室温で60分撹拌した。反応液を0度に冷却した後に、トリフルオロ酢酸(2mL)を加えた。反応液を0度で45分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts14、F-Pnaz-nBuG-pCpA)(25.0mg、33.0%)を得た。
LCMS(ESI) m/z = 1051 (M+H)
保持時間:0.53分(分析条件SQDFA05)
(S)-1-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アゼチジン-2-カルボン酸(化合物ts15、F-Pnaz-Aze(2)-OH))の合成
Figure JPOXMLDOC01-appb-I000061
 窒素雰囲気下、(S)-アゼチジンー2-カルボン酸(H-Aze(2)-OH))(20.0mg、0.20mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(101mg、0.24mmol)の混合物に室温にてDMF(0.35mL)を添加した。室温で5分撹拌した後トリエチルアミン(63.4μL、0.46mmol)を0度にて添加した。反応混合物を室温で30分撹拌した後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し(S)-1-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アゼチジン-2-カルボン酸(化合物ts15、F-Pnaz-Aze(2)-OH))(66.0mg、86%)を得た。
LCMS(ESI) m/z = 385 (M-H)
保持時間:0.60分(分析条件SQDFA05)
(S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(化合物ts16、F-Pnaz-Ala(3-Pyr)-OH))の合成
Figure JPOXMLDOC01-appb-I000062
 窒素雰囲気下、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(30.0mg、0.18mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(92mg、0.22mmol)の混合物に室温にてDMF(0.18mL)を添加した。室温で5分撹拌した後トリエチルアミン(57.9μL、0.42mmol)を0度にて添加した。反応混合物を35度において30分撹拌した後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し(S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(化合物ts16、F-Pnaz-Ala(3-Pyr)-OH))(33.0mg、41%)を得た。
LCMS(ESI) m/z = 452 (M+H)
保持時間:0.46分(分析条件SQDFA05)
(S)-アゼチジン-1,2-ジカルボン酸 1-(4-(2-(4-フルオロフェニル)アセトアミド)ベンジル) 2-(シアノメチル)(化合物ts17、F-Pnaz-Aze(2)-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000063
 窒素雰囲気下、(S)-1-(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アゼチジン-2-カルボン酸(化合物ts15、F-Pnaz-Aze(2)-OH)(30.0mg、0.08mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(20.34uL、0.12mmol)をアセトニトリル(194μl)に溶解し、2-ブロモアセトニトリル(6.24uL、0.09mmol)を0度において加え室温で3時間攪拌した。反応液を濃縮し、粗生成物(S)-アゼチジン-1,2-ジカルボン酸 1-(4-(2-(4-フルオロフェニル)アセトアミド)ベンジル) 2-(シアノメチル)(化合物ts17、F-Pnaz-Aze(2)-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 426 (M+H)
保持時間:0.70分(分析条件SQDFA05)
(S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts18、F-Pnaz-Ala(3-Pyr)-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000064
 窒素雰囲気下、(S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(化合物ts16、F-Pnaz-Ala(3-Pyr)-OH))(30.0mg、0.07mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(17.41uL、0.10mmol)をアセトニトリル(166μl)に溶解し、2-ブロモアセトニトリル(6.24uL、0.09mmol)を0度において加え室温で3時間攪拌した。反応液を濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し(S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts18、F-Pnaz-Ala(3-Pyr)-OCHCN)(14.0mg、43%)を得た。
LCMS(ESI) m/z = 491 (M+H)
保持時間:0.52分(分析条件SQDFA05)
(2S)-アゼチジン-1,2-ジカルボン酸 1-(4-(2-(4-フルオロフェニル)アセトアミド)ベンジル) 2-((2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル)(化合物ts19、F-Pnaz-Aze(2)-pCpA)の合成
Figure JPOXMLDOC01-appb-I000065
 緩衝液A(40ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(113.0mg、0.156mmol)を溶解させ、(S)-アゼチジン-1,2-ジカルボン酸 1-(4-(2-(4-フルオロフェニル)アセトアミド)ベンジル) 2-(シアノメチル)(化合物ts17、F-Pnaz-Aze(2)-OCHCN)のアセトニトリル溶液(2.00ml)を投与し、室温で60分撹拌した。反応液を0度に冷却した後に、トリフルオロ酢酸(2mL)を加えた。反応液を0度で45分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts19、F-Pnaz-Aze(2)-pCpA)(6.0mg、7.5%)を得た。
LCMS(ESI) m/z = 1021 (M+H)
保持時間:0.45分(分析条件SQDFA05)
(2S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物ts20、F-Pnaz-Ala(3-Pyr)-pCpA)の合成
Figure JPOXMLDOC01-appb-I000066
 緩衝液A(15ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(41.0mg、0.057mmol)を溶解させ、(S)-2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts18、F-Pnaz-Ala(3-Pyr)-OCHCN)のアセトニトリル溶液(0.75ml)を投与し、室温で60分撹拌した。反応液を0度に冷却した後に、トリフルオロ酢酸(0.75mL)を加えた。反応液を0度で45分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts20、F-Pnaz-Ala(3-Pyr))-pCpA)(6.0mg、19.4%)を得た。
LCMS(ESI) m/z = 1086 (M+H)
保持時間:0.40分(分析条件SQDFA05)
(S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸(化合物ts21、Pen-Aze(2)-OH)の合成
Figure JPOXMLDOC01-appb-I000067
 (S)-アゼチジンー2-カルボン酸(H-Aze(2)-OH))(4.00g、39.56mmol)を1,4-ジオキサン (111 ml)/水(111ml)に溶解させた後に、ペンタ-4-エン酸 2,5-ジオキソピロリジン-1-イル(23.4 g、118.67 mmol)と、炭酸水素ナトリウム(6.65g、79.16mmol)を加え、反応液を25度で16時間撹拌した。反応が完結した後、反応液に水を加えて酢酸エチルで洗浄し、水層の液性がpH3になるまで1M塩酸水溶液を加えた。得られた混合物を酢酸エチルで抽出操作を行い有機層を無水硫酸ナトリウムで乾燥させ、ろ過後、減圧濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール)にて精製し、(S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸(化合物ts21、Pen-Aze(2)-OH)(6.30g、87%)を得た。
LCMS(ESI) m/z = 184(M+H)
保持時間:1.03分(分析条件SMD method2)
(S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸シアノメチル(化合物ts22、Pen-Aze(2)-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000068
 窒素雰囲気下、(S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸(化合物ts21、Pen-Aze(2)-OH)(0.71g、3.88mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(1.00g、7.75mmol)をジクロロメタン(16ml)に溶解し、2-ブロモアセトニトリル(1.86g、15.51mmol)を加えて25度で16時間撹拌した。反応液を濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(石油エーテル/酢酸エチル)にて精製し(S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸シアノメチル(化合物ts22、Pen-Aze(2)-OCHCN)を定量的に得た。
LCMS(ESI) m/z = 223(M+H)
保持時間:1.13分(分析条件SMD method2)
(2S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物ts23、Pen-Aze(2)-pCpA)の合成
Figure JPOXMLDOC01-appb-I000069
 緩衝液A(200ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(800mg、1.11mmol)を溶解させ、(S)-1-(ペンタ-4-エノイル)アゼチジン-2-カルボン酸シアノメチル(化合物ts22、Pen-Aze(2)-OCHCN)(1.05g、4.71mmol)のアセトニトリル溶液(6.00ml)を投与し、25度で60分撹拌した。室温でトリフルオロ酢酸(4.60mL)を加えたのち凍結乾燥を行った。得られた残渣を水(50.0ml)に溶解させ酢酸エチル(100ml)で洗浄した後、水層を凍結乾燥した。得られた残渣を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts23、Pen-Aze(2)-pCpA)(20.0mg、2%)を得た。
LCMS(ESI) m/z = 818(M+H)
保持時間:0.63分(分析条件SMD method1)
N-ブチル-N-(ペンタ-4-エノイル)グリシン(化合物ts24、Pen-nBuG-OH)の合成
Figure JPOXMLDOC01-appb-I000070
 n-ブチルグリシン塩酸塩(H-nBuG-OH・HCl))(17.00g、7.62mmol)を1,4-ジオキサン (150ml)/水(150ml)に溶解させ、炭酸ナトリウムでpH7に調整した後、ペンタ-4-エン酸 2,5-ジオキソピロリジン-1-イル(20.0 g、101.4 mmol)と、炭酸ナトリウム(7.00g、83.33mmol)を加え、反応液を室温で16時間撹拌した。反応が完結した後、反応液をジエチルエーテルで洗浄し、水層の液性がpH2になるまで1M塩酸水溶液を加えた。得られた混合物をDCMで4回抽出操作を行い有機層を無水硫酸ナトリウムで乾燥させ、ろ過後、減圧濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(酢酸エチル/エーテル)にて精製し、N-ブチル-N-(ペンタ-4-エノイル)グリシン(化合物ts24、Pen-nBuG-OH)(7.00g、62%)を得た。
LCMS(ESI) m/z = 214(M+H)
保持時間:1.24分(分析条件SMD method3)
シアノメチル N-ブチル-N-(ペンタ-4-エノイル)グリシナート(化合物ts25、Pen-nBuG-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000071
 窒素雰囲気下、N-ブチル-N-(ペンタ-4-エノイル)グリシン(化合物ts24、Pen-nBuG-OH)(3.80g、17.8mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(4.6g、35.6mmol)をジクロロメタン(80ml)に溶解し、2-ブロモアセトニトリル((8.54g、71.2mmol)を加えて室温で16時間撹拌した。反応液を濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(石油エーテル/酢酸エチル)にて精製しシアノメチル N-ブチル-N-(ペンタ-4-エノイル)グリシナート(化合物ts25、Pen-nBuG-OCHCN)(2.8g、64%)を得た。
LCMS(ESI) m/z = 253(M+H)
保持時間:1.40分(分析条件SMD method3)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル N-ブチル-N-(ペンタ-4-エノイル)グリシナート(化合物ts26、Pen-nBuG-pCpA)の合成
Figure JPOXMLDOC01-appb-I000072
 緩衝液A(100ml))に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(400mg、0.55mmol)を溶解させ、シアノメチル N-ブチル-N-(ペンタ-4-エノイル)グリシナート(化合物ts25、Pen-nBuG-OCHCN)(558mg、2.22mmol)のTHF溶液(4ml)を投与し、室温で2時間撹拌した。室温でトリフルオロ酢酸(2.30mL)を加えたのち凍結乾燥を行った。得られた残渣を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts26、Pen-nBuG-pCpA)(65mg、14%)を得た。
LCMS(ESI) m/z = 848(M+H)
保持時間:1.25分(分析条件SMD method3)
(S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸(化合物ts27、Pen-Ala(3-Pyr)-OH)の合成
Figure JPOXMLDOC01-appb-I000073
 DCM(20ml)に2-クロロトリチルレジン(1.60mmol/g、3.21g)を加え10分間振とうしレジンを膨潤させた。DCMを除いたのち、(S)-2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-3-(ピリジン-3-イル)プロパン酸(Fmoc-Ala(3-Pyr)-OH)(2.00g、5.15mmol)及びN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(1.33g、10.3mmol)のDCM溶液(33ml)を加え室温で30分間振とうした後、MeOH(2.78ml)を加えさらに1時間振とうした。DCM溶液を除去した後DCM(15ml)でレジンを2回洗浄し、化合物ts27+++を得た。得られた化合物ts27+++に対して、2%DBU-DMF溶液(20ml)を加え室温で15分振とうした後に溶液を除去し、DMF(20ml)で5回レジンを洗浄し、化合物ts27++(2.35g、5.14mmol)を得た。得られた化合物ts27++に対して、4-ペンテン酸(2.06g、20.6mmol)、HOAt(2.10g、15.4mmol)及びDIC(3.24g、25.7mmol)のDMF溶液(20ml)を加え室温で終夜振とうした。溶液を除去しDMF(20ml)で4回、DCM(20ml)で4回レジンを洗浄し、化合物27+(2.76g、5.12mmol)を得た。得られた化合物27+に対してDCM(30ml)を加え15分間振とうしレジンを膨潤させた。DCMを除いたのちTFE(50ml)/DCM(50ml)を加え室温で2時間半振とうし、化合物ts27のレジン上から切り出した。切り出し液TFE-DCM(100ml)を除去し、さらにTFE(30ml)/DCM(30ml)でレジンを2回洗浄した。この洗浄液(計60ml)と先ほどの切り出し液(100ml)を合わせエバポレーターで留去し得られた残渣を逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸(化合物ts27、Pen-Ala(3-Pyr)-OH)(564mg、44%)を得た。
LCMS(ESI) m/z = 247(M-H)
保持時間:0.33分(分析条件SQDFA05)
(S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts28、Pen-Ala(3-Pyr)-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000074
 窒素雰囲気下、(S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸(化合物ts27、Pen-Ala(3-Pyr)-OH)(100mg、0.40mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(106uL、0.60mmol)をDMF(1.00ml)に溶解し、2-ブロモアセトニトリル(28.1uL、0.40mmol)を室温で加え室温で30分攪拌した後N-エチル-イソプロピルプロパン-2-アミン(DIPEA)(35uL、0.20mmol)及び2-ブロモアセトニトリル(8.43uL、0.12mmol)を再び加えた。室温で10分撹拌した後、飽和塩化アンモニウム水溶液を加えMTBEで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後エバポレーターで溶媒を留去し、粗生成物(S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts28、Pen-Ala(3-Pyr)-OCHCN)を得た。得られた粗生成物をアセトニトリル(0.57ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 288 (M+H)
保持時間:0.40分(分析条件SQDFA05)
(2S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物ts29、Pen-Ala(3-Pyr)-pCpA)の合成
Figure JPOXMLDOC01-appb-I000075
 緩衝液A(17ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(59.2mg、0.082mmol)を溶解させ、(S)-2-(ペンタ-4-エンアミド)-3-(ピリジン-3-イル)プロパン酸シアノメチル(化合物ts28、Pen-Ala(3-Pyr)-OCHCN)のアセトニトリル溶液(0.57ml)を投与し、室温で60分撹拌した。反応液に酢酸(17mL)を加え1時間撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物ts29、Pen-Ala(3-Pyr)-pCpA)(14.8mg、20.5%)を得た。
LCMS(ESI) m/z = 896 (M+H)
保持時間:0.39、0.41分(分析条件SMD method2)
N-(((4-アジドベンジル)オキシ)カルボニル)-L-アラニン(化合物TS01、Acbz-Ala-OH)の合成
Figure JPOXMLDOC01-appb-I000076
 窒素雰囲気下、L-アラニン(H-Ala-OH)(44.5mg、0.50mmol)及び文献記載(Bioconjugate Chem.2008,19,714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(157mg、0.50mmol)の混合物に室温にてDMF(1.0mL)を添加した。0℃で5分撹拌後トリエチルアミン(174μL、1.25mmol)を0℃にて添加した。反応混合物を室温で72時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製しN-(((4-アジドベンジル)オキシ)カルボニル)-L-アラニン(化合物TS01、Acbz-Ala-OH)(113.6mg、86%)を得た。
LCMS(ESI) m/z = 263 (M-H)
保持時間:0.61分(分析条件SQDFA05)
シアノメチル(((4-アジドベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS02、Acbz-Ala-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000077
 窒素雰囲気下、N-(((4-アジドベンジル)オキシ)カルボニル)-L-アラニン(化合物TS01、Acbz-Ala-OH)(174.0mg、0.66mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(0.172mL、0.99mmol)をアセトニトリル(1315μl)に溶解し、2-ブロモアセトニトリル(0.067mL、0.99mmol)を0℃において加え室温で18時間攪拌した。反応液を濃縮し、粗生成物シアノメチル(((4-アジドベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS02、Acbz-Ala-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00ml)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 302 (M+H)
保持時間:0.71分(分析条件SQDFA05)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル (((4-アジドベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS03、Acbz-Ala-pCpA)の合成
Figure JPOXMLDOC01-appb-I000078
 緩衝液A(40ml)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(60.2mg、0.083mmol)を溶解させ、シアノメチル(((4-アジドベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS02、Acbz-Ala-OCHCN)のアセトニトリル溶液(1.25ml)を投与し、室温で90分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(1.25mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS03、Acbz-Ala-pCpA)(36.3mg、48.5%)を得た。
LCMS(ESI) m/z = 899 (M+H)
保持時間:0.44分(分析条件SQDFA05)
(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニン(化合物TS04、F-Pnaz-Ala-OH)の合成
Figure JPOXMLDOC01-appb-I000079
 窒素雰囲気下、L-アラニン(H-Ala-OH)(30.0mg、0.34mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(143mg、0.34mmol)の混合物に室温にてDMSO(1.12mL)を添加した。室温で5分撹拌した後、トリエチルアミン(94.0μL、0.67mmol)を0℃にて添加した。反応混合物を室温において40時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニン(化合物TS04、F-Pnaz-Ala-OH)(78.6mg、62%)を得た。
LCMS(ESI) m/z = 373 (M+H)
保持時間:0.62分(分析条件SQDFA05)
シアノメチル(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS05、F-Pnaz-Ala-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000080
 窒素雰囲気下、(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニン(化合物TS04、F-Pnaz-Ala-OH)(31.1mg、0.08mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(29.0μL、0.17mmol)をアセトニトリル(415μl)に溶解し、2-ブロモアセトニトリル(57.9μL、0.83mmol)を0℃において加え室温で2時間攪拌した。反応液を濃縮し、粗生成物シアノメチル(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS05、F-Pnaz-Ala-OCHCN)を得た。得られた粗生成物をアセトニトリル(0.75mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 412 (M+H)
保持時間:0.71分(分析条件SQDFA05)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル (((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS06、F-Pnaz-Ala-pCpA)の合成
Figure JPOXMLDOC01-appb-I000081
 緩衝液A(22.5mL)に、リン酸二水素((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(30.0mg、0.042mmol)を溶解させ、シアノメチル(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-L-アラニナート(化合物TS05、F-Pnaz-Ala-OCHCN)のアセトニトリル溶液(0.75mL)を投与し、室温で120分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(0.75mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS06、F-Pnaz-Ala-pCpA)(7.9mg、18.7%)を得た。
LCMS(ESI) m/z = 1007 (M+H)
保持時間:0.47分(分析条件SQDFA05)
2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸(化合物TS07、Acbz-AIB-OH)の合成
Figure JPOXMLDOC01-appb-I000082
 窒素雰囲気下、2-アミノ-2-メチルプロパン酸(H-AIB-OH)(32.8mg、0.32mmol)及び文献記載(Bioconjugate Chem.2008,19,714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(100mg、0.32mmol)の混合物に室温にてDMSO(1.59mL)を添加した。0℃で5分撹拌後、トリエチルアミン(127μL、0.73mmol)を0℃にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸(化合物TS07、Acbz-AIB-OH)(8.0mg、9%)を得た。
LCMS(ESI) m/z = 277 (M-H)
保持時間:0.64分(分析条件SQDFA05)
2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸シアノメチル(化合物TS08、Acbz-AIB-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000083
 窒素雰囲気下、2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸(化合物TS07、Acbz-AIB-OH)(7.0mg、0.03mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(8.80μL、0.06mmol)をアセトニトリル(126μL)に溶解し、2-ブロモアセトニトリル(2.54μL、0.04mmol)を0℃において加え室温で3時間攪拌した。反応液を濃縮し、粗生成物2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸シアノメチル(化合物TS08、Acbz-AIB-OCHCN)を得た。得られた粗生成物をアセトニトリル(0.75mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 316 (M+H)
保持時間:0.74分(分析条件SQDFA05)
2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS09、Acbz-AIB-pCpA)の合成
Figure JPOXMLDOC01-appb-I000084
 緩衝液A(15mL)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(31.9mg、0.044mmol)を溶解させ、2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸シアノメチル(化合物TS08、Acbz-AIB-OCHCN)のアセトニトリル溶液(0.75mL)を投与し、室温で120分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(0.75mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS09、Acbz-AIB-pCpA)(1.8mg、8.9%)を得た。
LCMS(ESI) m/z = 1007 (M+H)
保持時間:0.47分(分析条件SQDFA05)
2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸(化合物TS10、F-Pnaz-AIB-OH)の合成
Figure JPOXMLDOC01-appb-I000085
 窒素雰囲気下、2-アミノ-2-メチルプロパン酸(H-AIB-OH)(12.9mg、0.13mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(106mg、0.25mmol)の混合物に室温にてDMSO(1.00mL)を添加した。室温で5分撹拌した後、トリエチルアミン(40.1μL、0.29mmol)を室温にて添加した。反応混合物を50℃において15時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸(化合物TS10、F-Pnaz-AIB-OH)(21.0mg、43%)を得た。
LCMS(ESI) m/z = 387 (M+H)
保持時間:0.63分(分析条件SQDFA05)
2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸シアノメチル(化合物TS11、F-Pnaz-AIB-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000086
 窒素雰囲気下、2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸(化合物TS10、F-Pnaz-AIB-OH)(20.0mg、0.05mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(14.39μL、0.08mmol)をアセトニトリル(257μL)に溶解し、2-ブロモアセトニトリル(5.18μL、0.08mmol)を0℃において加え、室温で24時間撹拌した。反応液を濃縮し、粗生成物2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸シアノメチル(化合物TS11、F-Pnaz-AIB-OCHCN)を得た。得られた粗生成物をアセトニトリル(1.50mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 426 (M+H)
保持時間:0.71分(分析条件SQDFA05)
2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS12、F-Pnaz-AIB-pCpA)の合成
Figure JPOXMLDOC01-appb-I000087
 緩衝液A(30.0mL)に、リン酸二水素((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(74.4mg、0.103mmol)を溶解させ、2-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)-2-メチルプロパン酸シアノメチル(化合物TS11、F-Pnaz-AIB-OCHCN)のアセトニトリル溶液(1.50mL)を投与し、室温で120分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(1.50mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS12、F-Pnaz-AIB-pCpA)(7.3mg、13.9%)を得た。
LCMS(ESI) m/z = 1021 (M+H)
保持時間:0.46分(分析条件SQDFA05)
2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸(化合物TS13、Acbz-β―Ala-OH)の合成
Figure JPOXMLDOC01-appb-I000088
 窒素雰囲気下、3-アミノプロパン酸(28.4mg、0.32mmol)及び文献記載(Bioconjugate Chem.2008,19,714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(100mg、0.32mmol)の混合物に室温にてDMSO(1.59mL)を添加した。0℃で5分撹拌後、トリエチルアミン(127μL、0.73mmol)を0℃にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸(化合物TS13、Acbz-β-Ala-OH)(60.0mg、71.4%)を得た。
LCMS(ESI) m/z = 263 (M-H)
保持時間:0.58分(分析条件SQDFA05)
3-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸シアノメチル(化合物TS14、Acbz-β-Ala-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000089
 窒素雰囲気下、2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸(化合物TS13、Acbz-β-Ala-OH)(60.0mg、0.23mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(79.0μL、0.45mmol)をアセトニトリル(1.14mL)に溶解し、2-ブロモアセトニトリル(23.0μL、0.34mmol)を0℃において加え、室温で3時間撹拌した。反応液を濃縮し、粗生成物3-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸シアノメチル(化合物TS14、Acbz-β-Ala-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.50mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 302 (M+H)
保持時間:0.69分(分析条件SQDFA05)
3-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS15、Acbz-β-Ala-pCpA)の合成
Figure JPOXMLDOC01-appb-I000090
 緩衝液A(50mL)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(31.9mg、0.044mmol)を溶解させ、3-((((4-アジドベンジル)オキシ)カルボニル)アミノ)プロパン酸シアノメチル(化合物TS14、Acbz-β-Ala-OCHCN)のアセトニトリル溶液(2.50mL)を投与し、室温で30分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(2.50mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS15、Acbz-β-Ala-pCpA)(30.0mg、33.7%)を得た。
LCMS(ESI) m/z = 897 (M+H)
保持時間:0.42分(分析条件SQDFA05)
3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸(化合物TS16、F-Pnaz-β-Ala-OH)の合成
Figure JPOXMLDOC01-appb-I000091
 窒素雰囲気下、3-アミノプロパン酸(22.3mg、0.25mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(111mg、0.26mmol)の混合物に室温にてDMSO(1.00mL)を添加した。室温で5分撹拌した後、トリエチルアミン(80.1μL、0.58mmol)を室温にて添加した。反応混合物を室温において15時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸(化合物TS16、F-Pnaz-β-Ala-OH)(57.0mg、60.9%)を得た。
LCMS(ESI) m/z = 373 (M+H)
保持時間:0.58分(分析条件SQDFA05)
3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸シアノメチル(化合物TS17、F-Pnaz-β-Ala-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000092
 窒素雰囲気下、3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸(化合物TS16、F-Pnaz-β-Ala-OH)(20.0mg、0.05mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(14.93μL、0.09mmol)をアセトニトリル(107μL)に溶解し、2-ブロモアセトニトリル(5.37μL、0.08mmol)を0℃において加え、室温で90分撹拌した。反応液を濃縮し、粗生成物3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸シアノメチル(化合物TS17、F-Pnaz-β-Ala-OCHCN)を得た。得られた粗生成物をアセトニトリル(1.50mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 412 (M+H)
保持時間:0.67分(分析条件SQDFA05)
3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS18、F-Pnaz-β-Ala-pCpA)の合成
Figure JPOXMLDOC01-appb-I000093
 緩衝液A(30mL)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(48.9mg、0.068mmol)を溶解させ、3-((((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)アミノ)プロパン酸シアノメチル(化合物TS17、F-Pnaz-β-Ala-OCHCN)のアセトニトリル溶液(1.50mL)を投与し、室温で30分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(1.50mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS18、F-Pnaz-β-Ala-pCpA)(8.6mg、17.6%)を得た。
LCMS(ESI) m/z = 1007 (M+H)
保持時間:0.44分(分析条件SQDFA05)
N-(((4-アジドベンジル)オキシ)カルボニル)-D-アラニン(化合物TS19、Acbz-D-Ala-OH)の合成
Figure JPOXMLDOC01-appb-I000094
 窒素雰囲気下、D-アラニン(H-D-Ala-OH)(44.5mg、0.50mmol)及び文献記載(Bioconjugate Chem.2008,19,714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(157mg、0.50mmol)の混合物に室温にてDMF(1.0mL)を添加した。0℃で5分撹拌後、トリエチルアミン(174μL、1.25mmol)を0℃にて添加した。反応混合物を室温で72時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、N-(((4-アジドベンジル)オキシ)カルボニル)-D-アラニン(化合物TS19、Acbz-D-Ala-OH)(119.1mg、90%)を得た。
LCMS(ESI) m/z = 263 (M-H)
保持時間:0.61分(分析条件SQDFA05)
シアノメチル(((4-アジドベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS20、Acbz-D-Ala-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000095
 窒素雰囲気下、N-(((4-アジドベンジル)オキシ)カルボニル)-D-アラニン(化合物TS19、Acbz-D-Ala-OH)(79.0mg、0.3mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(0.079mL、0.45mmol)をアセトニトリル(600μl)に溶解し、2-ブロモアセトニトリル(0.030mL、0.45mmol)を0℃において加え、室温で18時間撹拌した。反応液を濃縮し、粗生成物シアノメチル(((4-アジドベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS20、Acbz-D-Ala-OCHCN)を得た。得られた粗生成物をアセトニトリル(2.00mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 302 (M+H)
保持時間:0.71分(分析条件SQDFA05)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル (((4-アジドベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS21、Acbz-D-Ala-pCpA)の合成
Figure JPOXMLDOC01-appb-I000096
 緩衝液A(72mL)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(108mg、0.15mmol)を溶解させ、シアノメチル(((4-アジドベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS20、Acbz-D-Ala-OCHCN)のアセトニトリル溶液(2.25mL)を投与し、室温で90分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(2.25mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS21、Acbz-D-Ala-pCpA)(56.3mg、41.7%)を得た。
LCMS(ESI) m/z = 899 (M+H)
保持時間:0.44分(分析条件SQDFA05)
(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニン(化合物TS22、F-Pnaz-D-Ala-OH)の合成
Figure JPOXMLDOC01-appb-I000097
 窒素雰囲気下、D-アラニン(H-D-Ala-OH)(100mg、1.12mmol)、炭酸-(4-ニトロフェニル)-4-(2-(4-フルオロフェニル)アセトアミド)ベンジル(化合物ts11)(476mg、1.12mmol)の混合物に室温にてDMSO(3.74mL)を添加した。室温で5分撹拌した後、トリエチルアミン(313μL、2.25mmol)を0℃にて添加した。反応混合物を室温において20時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニン(化合物TS22、F-Pnaz-D-Ala-OH)(366mg、87%)を得た。
LCMS(ESI) m/z = 373 (M+H)
保持時間:0.62分(分析条件SQDFA05)
シアノメチル(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS23、F-Pnaz-D-Ala-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000098
 窒素雰囲気下、(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニン(化合物TS22、F-Pnaz-D-Ala-OH)(366mg、0.98mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(341μL、1.95mmol)をアセトニトリル(4.88mL)に溶解し、2-ブロモアセトニトリル(661μL、9.77mmol)を0℃において加え、室温で2時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、シアノメチル(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS23、F-Pnaz-D-Ala-OCHCN)(390mg、97%)を得た。
LCMS(ESI) m/z = 412 (M+H)
保持時間:0.71分(分析条件SQDFA05)
(2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル (((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS24、F-Pnaz-D-Ala-pCpA)の合成
Figure JPOXMLDOC01-appb-I000099
 緩衝液A(45mL)に、リン酸二水素((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(80.0mg、0.083mmol)を溶解させ、シアノメチル(((4-(2-(4-フルオロフェニル)アセトアミド)ベンジル)オキシ)カルボニル)-D-アラニナート(化合物TS23、F-Pnaz-D-Ala-OCHCN)(68.7mg、0.17mmol)のアセトニトリル溶液(1.50mL)を投与し、室温で120分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(1.50mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS24、F-Pnaz-D-Ala-pCpA)(19.7mg、23.5%)を得た。
LCMS(ESI) m/z = 1007 (M+H)
保持時間:0.47分(分析条件SQDFA05)
プロピオン酸 4-(ヒドロキシメチル)フェニル(化合物TS25)の合成
Figure JPOXMLDOC01-appb-I000100
 窒素雰囲気下、4-(ヒドロキシメチル)フェノール(124mg、1.00mmol)、DMAP(12.2mg、0.10mmol)の混合物に対してDCM(5.00mL)を加えて撹拌したのち、トリエチルアミン(307μL、2.20mmol)、続けてプロピオン酸無水物(128μL、1.00mmol)を室温にて加え、そのまま15分撹拌した。反応液を濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、プロピオン酸 4-(ヒドロキシメチル)フェニル(化合物TS25)(97.0mg、54.0%)を得た。
LCMS(ESI) m/z = 179 (M+H)
保持時間:0.51分(分析条件SQDFA05)
プロピオン酸 4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル(化合物TS26)の合成
Figure JPOXMLDOC01-appb-I000101
 窒素雰囲気下、プロピオン酸 4-(ヒドロキシメチル)フェニル(化合物TS25)(97.0mg、0.54mmol)、4-ニトロフェニルクロロホルメート(108mg、0.54mmol)の混合物をDCM(1.00mL)に溶解し、0℃に冷却した。そこへピリジン(0.052mL、0.65mmol)を加えたのち、室温において1時間撹拌した。反応液を濃縮し、得られた残渣を順相シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、プロピオン酸 4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル(化合物TS26)(82.0mg、44.1%)を得た。
LCMS(ESI) m/z = 346 (M+H)
保持時間:0.86分(分析条件SQDFA05)
(S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸(化合物TS27、Etez-Hph-OH)の合成
Figure JPOXMLDOC01-appb-I000102
 窒素雰囲気下、ホモフェニルアラニン(H-Hph-OH)(42.6mg、0.24mmol)、プロピオン酸 4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル(化合物TS26)(82.0mg、0.24mmol)の混合物に室温にてDMSO(1.19mL)を添加した。室温で5分撹拌した後、トリエチルアミン(76.0μL、0.55mmol)を室温にて添加した。反応混合物を室温において4時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸(化合物TS27、Etez-Hph-OH)(46.0mg、50%)を得た。
LCMS(ESI) m/z = 384 (M+H)
保持時間:0.75分(分析条件SQDFA05)
(S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸シアノメチル(化合物TS28、Etez-Hph-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000103
 窒素雰囲気下、(S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸(化合物TS27、Etez-Hph-OH)(46.0mg、0.12mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(33.0μL、0.19mmol)をアセトニトリル(200μL)に溶解し、2-ブロモアセトニトリル(11.0μL、0.17mmol)を室温にて加え、終夜撹拌した。反応液を濃縮し、粗生成物(S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸シアノメチル(化合物TS28、Etez-Hph-OCHCN)を得た。得られた粗生成物をアセトニトリル(3.00mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 423 (M+H)
保持時間:0.84分(分析条件SQDFA05)
(2S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS29、Etez-Hph-pCpA)の合成
Figure JPOXMLDOC01-appb-I000104
 緩衝液A(60.0mL)に、リン酸二水素((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(72.2mg、0.10mmol)を溶解させ、(S)-4-フェニル-2-((((4-(プロピオニルオキシ)ベンジル)オキシ)カルボニル)アミノ)ブタン酸シアノメチル(化合物TS28、Etez-Hph-OCHCN)のアセトニトリル溶液(3.00mL)を投与し、室温で60分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(3.00mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS29、Etez-Hph-pCpA)(16.4mg、16.1%)を得た。
LCMS(ESI) m/z = 1018 (M+H)
保持時間:0.54分(分析条件SQDFA05)
(S)-(1-((4-(ヒドロキシメチル)フェニル)アミノ)-4-メチル-1-オキソペンタン-2-イル)カルバミン酸tert-ブチル(化合物TS30)の合成
Figure JPOXMLDOC01-appb-I000105
 窒素雰囲気下、(tert-ブトキシカルボニル)-L-ロイシン(231mg、1.00mmol)、4-アミノフェニルメタノール(123mg、1.00mmol)の混合物に対してDCM(2.00mL)を加え撹拌したのち、室温において2-エトキシキノリン-1(2H)-カルボン酸エチル(272mg、1.10mmol)を加え、さらに1時間撹拌した。反応液を逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル)にて精製し、(S)-(1-((4-(ヒドロキシメチル)フェニル)アミノ)-4-メチル-1-オキソペンタン-2-イル)カルバミン酸tert-ブチル(化合物TS30)(285.0mg、85.0%)を得た。
LCMS(ESI) m/z = 335 (M+H)
保持時間:0.66分(分析条件SQDFA05)
(S)-(4-メチル-1-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-1-オキソペンタン-2-イル)カルバミン酸tert-ブチル(化合物TS31)の合成
Figure JPOXMLDOC01-appb-I000106
 窒素雰囲気下、(S)-(1-((4-(ヒドロキシメチル)フェニル)アミノ)-4-メチル-1-オキソペンタン-2-イル)カルバミン酸tert-ブチル(化合物TS30)(168mg、0.50mmol)、4-ニトロフェニルクロロホルメート(101mg、0.50mmol)の混合物をDCM(2.00ml)に溶解し、0℃に冷却したのち、ピリジン(0.049mL、0.60mmol)を加え、室温において1時間撹拌した。反応液にDCM(3.5mL)を加えたのち、水(2mL)で有機層を2回洗浄し、濃縮し粗生成物(S)-(4-メチル-1-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-1-オキソペンタン-2-イル)カルバミン酸tert-ブチル(化合物TS31)(250.0mg、100%)を得た。
LCMS(ESI) m/z = 502 (M+H)
保持時間:0.91分(分析条件SQDFA05)
(S)-2-((((4-((S)-2-((tert-ブトキシカルボニル)アミノ)-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸(化合物TS32、Boc-Leuz-Hph-OH)の合成
Figure JPOXMLDOC01-appb-I000107
 窒素雰囲気下、ホモフェニルアラニン(H-Hph-OH)(22.4mg、0.13mmol)、(S)-(4-メチル-1-((4-((((4-ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)-1-オキソペンタン-2-イル)カルバミン酸tert-ブチル(化合物TS31)(62.7mg、0.13mmol)の混合物に室温にてDMSO(0.50mL)を添加した。室温で5分撹拌した後、トリエチルアミン(40.0μL、0.29mmol)を室温にて添加した。反応混合物を室温において3時間撹拌したのち、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(S)-2-((((4-((S)-2-((tert-ブトキシカルボニル)アミノ)-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸(化合物TS32、Boc-Leuz-Hph-OH)(37.0mg、55%)を得た。
LCMS(ESI) m/z = 540 (M+H)
保持時間:0.84分(分析条件SQDFA05)
(S)-2-((((4-((S)-2-((tert-ブトキシカルボニル)アミノ)-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸シアノメチル(化合物TS33、Boc-Leuz-Hph-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000108
 窒素雰囲気下、((S)-2-((((4-((S)-2-((tert-ブトキシカルボニル)アミノ)-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸(化合物TS32、Boc-Leuz-Hph-OH)(14.0mg、0.03mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(7.0μL、0.04mmol)をアセトニトリル(50μL)に溶解し、2-ブロモアセトニトリル(2.5μL、0.04mmol)を室温にて加え、35℃にて1時間撹拌した。反応液を濃縮し、粗生成物(S)-2-((((4-((S)-2-((tert-ブトキシカルボニル)アミノ)-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸シアノメチル(化合物TS33、Boc-Leuz-Hph-OCHCN)を得た。得られた粗生成物をアセトニトリル(0.75mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 1074 (M+H)
保持時間:0.46分(分析条件SQDFA05)
(2S)-2-((((4-((R)-2-アミノ-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS34、Leuz-Hph-pCpA)の合成
Figure JPOXMLDOC01-appb-I000109
 緩衝液A(15.0mL)に、リン酸二水素((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(27.1mg、0.04mmol)を溶解させ、(S)-2-((((4-((S)-2-((tert-ブトキシカルボニル)アミノ)-4-メチルペンタンアミド)ベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸シアノメチル(化合物TS33、Boc-Leuz-Hph-OCHCN)のアセトニトリル溶液(0.75mL)を投与し、室温で60分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(3.00mL)を加えた。反応液を0℃で60分撹拌した。さらにトリフルオロ酢酸(4.50mL)を加え、室温にて45分撹拌したのち、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS34、Leuz-Hph-pCpA)(2.0mg、7.4%)を得た。
LCMS(ESI) m/z = 1074 (M+H)
保持時間:0.46分(分析条件SQDFA05)
(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸(化合物TS35、Acbz-Hph-OH)の合成
Figure JPOXMLDOC01-appb-I000110
 窒素雰囲気下、ホモフェニルアラニン(H-Hph-OH)(54.0mg、0.30mmol)及び文献記載(Bioconjugate Chem.2008,19,714.)の方法で合成した炭酸(4-ニトロフェニル)4-アジドベンジル(99.0mg、0.32mmol)の混合物に室温にてDMSO(2.0mL)を添加した。室温で5分撹拌後、トリエチルアミン(966.0μL、0.69mmol)を室温にて添加した。反応混合物を室温で15時間撹拌後、逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル溶液)にて精製し、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸(化合物TS35、Acbz-Hph-OH)(33.0mg、31%)を得た。
LCMS(ESI) m/z = 353 (M-H)
保持時間:0.82分(分析条件SQDFA05)
(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸シアノメチル(化合物TS36、Acbz-Hph-OCH CN)の合成
Figure JPOXMLDOC01-appb-I000111
 窒素雰囲気下、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸(化合物TS35、Acbz-Hph-OH)(35.0mg、0.10mmol)およびN-エチル-イソプロピルプロパン-2-アミン(DIPEA)(0.035mL、0.20mmol)をアセトニトリル(500μL)に溶解し、2-ブロモアセトニトリル(0.013mL、0.20mmol)を室温において加え、室温で4時間撹拌した。反応液を濃縮し、粗生成物(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸シアノメチル(化合物TS36、Acbz-Hph-OCHCN)を得た。得られた粗生成物をアセトニトリル(3.00mL)に溶解し、そのまま次工程に用いた。
LCMS(ESI) m/z = 392 (M+H)
保持時間:0.91分(分析条件SQDFA05)
(2S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸 (2R,3S,4R,5R)-2-((((((2R,3S,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-4-ヒドロキシ-2-((ホスホノオキシ)メチル)テトラヒドロフラン-3-イル)オキシ)(ヒドロキシ)ホスホリル)オキシ)メチル)-5-(6-アミノ-9H-プリン-9-イル)-4-ヒドロキシテトラヒドロフラン-3-イル(化合物TS37、Acbz-Hph-pCpA)の合成
Figure JPOXMLDOC01-appb-I000112
 緩衝液A(60mL)に、リン酸二水素 ((2R,3R,4R,5R)-5-(4-アミノ-2-オキソピリミジン-1(2H)-イル)-3-(((((2R,3S,4R,5R)-5-(6-アミノ-9H-プリン-9-イル)-3,4-ジヒドロキシテトラヒドロフラン-2-イル)メトキシ)(ヒドロキシ)ホスホリル)オキシ)-4-((テトラヒドロフラン-2-イル)オキシ)テトラヒドロフラン-2-イル)メチル(化合物pc01)(72.0mg、0.10mmol)を溶解させ、(S)-2-((((4-アジドベンジル)オキシ)カルボニル)アミノ)-4-フェニルブタン酸シアノメチル(化合物TS36、Acbz-Hph-OCHCN)のアセトニトリル溶液(3.00mL)を投与し、室温で120分撹拌した。反応液を0℃に冷却した後に、トリフルオロ酢酸(3.00mL)を加えた。反応液を0℃で30分撹拌したのちに、反応液を逆相シリカゲルカラムクロマトグラフィー(0.05%トリフルオロ酢酸水溶液/0.05%トリフルオロ酢酸アセトニトリル)にて精製し、表題化合物(化合物TS37、Acbz-Hph-pCpA)(27.0mg、27%)を得た。
LCMS(ESI) m/z = 987 (M+H)
保持時間:0.62分(分析条件SQDFA05)
実施例2.アミノアシルtRNAの合成
 定法により以下のtRNAGluUAG(-CA)を調製した。
配列番号TR-1(配列番号:1)
tRNAGluUAG(-CA) RNA配列:
GUCCCCUUCGUCUAGAGGCCCAGGACACCGCCCUUAGACGGCGGUAACAGGGGUUCGAAUCCCCUAGGGGACGC
 定法により以下のtRNAGluACG(-CA)を調製した。
配列番号TR-2(配列番号:9)
tRNAGluACG(-CA) RNA配列:
GUCCCCUUCGUCUAGAGGCCCAGGACACCGCCCUACGACGGCGGUAACAGGGGUUCGAAUCCCCUAGGGGACGC
アミノアシルpCpAを用いたアミノアシルtRNA合成:その1
 50μM 転写tRNAGluUAG(-CA)(配列番号TR-1)(20μl)に、10X ligation buffer (500 mM HEPES-KOH pH 7.5, 200 mM MgCl2)(4μl)、10mM ATP (4μl)、Nuclease free water (5.6μl)を加え、95℃で2分間加熱した後、室温で5分間放置し、tRNAのリフォールディングを行った。10unit/μl T4 RNAリガーゼ(New england bio lab.社)(2.4μL)および、2.5mMのアミノアシル化pCpA(ts05、ts07、ts09、ts14、ts19、ts20、ts23、ts26、およびts29)のDMSO溶液 (4μL)を加え、16℃で45分間ライゲーション反応を行った。ライゲーション反応液に、0.3M 酢酸ナトリウムと、62.5mMヨウ素(水:THF=1:1溶液)を加え、室温で10分間静置し、ペンテノイル基の脱保護を行った後、フェノール・クロロホルム抽出を行い、エタノール沈殿によりアミノアシル化tRNA(化合物AAtR-1、2、3、4,5,6,7,8,9)を回収した。(なお保護基がペンテノイル基でない、ts05、ts07、ts09、ts14、ts19、ts20、についてはこの操作を行っていない。)回収したアミノアシル化tRNA(化合物AAtR-1、2、3,4,5,6,7,8,9)は、翻訳混合物に添加する直前に1mM酢酸ナトリウムに溶解した。
化合物AAtR-1
Aze(2)-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000113
化合物AAtR-2
nBuG-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000114
化合物AAtR-3
Ala(3-Pyr)-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000115
化合物AAtR-4
Acbz-Aze(2)-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000116
化合物AAtR-5
Acbz-nBuG-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000117
化合物AAtR-6
Acbz-Ala(3-Pyr)-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000118
化合物AAtR-7
F-Pnaz-Aze(2)-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000119
化合物AAtR-8
F-Pnaz-nBuG-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000120
化合物AAtR-9
F-Pnaz-Ala(3-Pyr)-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000121
アミノアシルpCpAを用いたアミノアシルtRNA合成:その2
 50μM 転写tRNAGluUAG(-CA)(配列番号TR-1)(20μl)に、10X ligation buffer (500 mM HEPES-KOH pH 7.5, 200 mM MgCl2)(4μl)、10mM ATP (4μl)、Nuclease free water (5.6μl)を加え、95℃で2分間加熱した後、室温で5分間放置し、tRNAのリフォールディングを行った。10unit/μl T4 RNAリガーゼ(New england bio lab.社)(2.4μL)および、2.5mMのアミノアシル化pCpA(TS03、TS06、TS09、TS12、TS15、TS18、TS21、TS24、TS29、およびTS37)のDMSO溶液 (4μL)を加え、16℃で45分間ライゲーション反応を行った。ライゲーション反応液に、0.3M 酢酸ナトリウムと、0.5M TCEP水溶液(pH7に調整、4μL)を加え、室温で10分間静置し、Acbz基の脱保護を行った後、フェノール・クロロホルム抽出を行い、エタノール沈殿によりアミノアシル化tRNAを回収した。(なお保護基がAcbz基でない、TS06、TS12、TS18、TS24、TS29についてはこの脱保護操作を行っていない。)回収したアミノアシル化tRNA(化合物AAtR-10~AAtR-14,AAtR-16~AAtR-20)は、翻訳混合物に添加する直前に1mM酢酸ナトリウムに溶解した。
化合物AAtR-10
Ala-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000122
化合物AAtR-11
AIB-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000123
化合物AAtR-12
β-Ala-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000124
化合物AAtR-13
D-Ala-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000125
化合物AAtR-14
Hph-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000126
化合物AAtR-16
F-Pnaz-Ala-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000127
化合物AAtR-17
F-Pnaz-AIB-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000128
化合物AAtR-18
F-Pnaz-β-Ala-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000129
化合物AAtR-19
F-Pnaz-D-Ala-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000130
化合物AAtR-20
Etez-Hph-tRNAGluUAG(配列番号:2)
Figure JPOXMLDOC01-appb-I000131
アミノアシルpCpAを用いたアミノアシルtRNA合成:その3
 50μM 転写tRNAGluACG(-CA)(配列番号TR-2)(20μl)に、10X ligation buffer (500 mM HEPES-KOH pH 7.5, 200 mM MgCl2)(4μl)、10mM ATP (4μl)、Nuclease free water (5.6μl)を加え、95℃で2分間加熱した後、室温で5分間放置し、tRNAのリフォールディングを行った。10unit/μl T4 RNAリガーゼ(New england bio lab.社)(2.4μL)および、2.5mMのアミノアシル化pCpA(TS34、およびTS37)のDMSO溶液 (4μL)を加え、16℃で45分間ライゲーション反応を行った。ライゲーション反応液に、0.3M 酢酸ナトリウムと、0.5M TCEP水溶液(pH7に調整、4μL)を加え、室温で10分間静置し、Acbz基の脱保護を行った後、フェノール・クロロホルム抽出を行い、エタノール沈殿によりアミノアシル化tRNAを回収した。(なお保護基がAcbz基でないTS34についてはこの脱保護操作を行っていない。)回収したアミノアシル化tRNA(化合物AAtR-15,AAtR-21)は、翻訳混合物に添加する直前に1mM酢酸ナトリウムに溶解した。
化合物AAtR-15
Hph-tRNAGluACG(配列番号:10)
Figure JPOXMLDOC01-appb-I000132
化合物AAtR-21
Leuz-Hph-tRNAGluACG(配列番号:10)
Figure JPOXMLDOC01-appb-I000133
 次に、本手法を用いることにより、翻訳の伸長反応におけるアミノ酸の翻訳効率と生成物の純度がどのように影響されるかを確認するための実験を実施した。具体的には、同じアミノ酸を含む同じペプチド化合物の翻訳合成を実施し、生成物の純度については質量分析を用いて比較・確認を行い、翻訳効率については放射性同位体によるラベル体を用いて比較・確認を行った。
実施例3.ペプチドの翻訳合成
 翻訳合成を行った。翻訳系は、大腸菌由来の再構成無細胞タンパク質合成系であるPURE systemを用いた。具体的には、無細胞翻訳液(1%(v/v)RNasein Ribonuclease inhibitor(Promega社,N2111),1mM GTP,1mM ATP,20mMクレアチンリン酸,50mM HEPES-KOH pH7.6,100mM 酢酸カリウム,6mM 酢酸マグネシウム,2mMスペルミジン,1mM ジチオスレイトール,1.5mg/ml E.coli MRE600(RNaseネガティブ)由来tRNA(Roche社),0.1mM 10-HCO-H4folate、4μg/ml クレアチンキナーゼ,3μg/ml ミオキナーゼ,2unit/ml 無機ピロフォスファターゼ,1.1μg/ml ヌクレオシド二リン酸キナーゼ,0.6μM メチオニルtRNAトランスフォルミラーゼ,0.26μM EF-G、0.24μM RF2、0.17μM RF3、0.5μM RRF,2.7μM IF1,0.4μM IF2,1.5μM IF3,40μM EF-Tu,44μM EF-Ts,1.2μM リボソーム,0.73μM AlaRS,0.03μM ArgRS,0.38μM AsnRS,0.13μM AspRS,0.02μM CysRS,0.06μM GlnRS,0.23μM GluRS,0.09μM GlyRS,0.02μM HisRS,0.4μM IleRS,0.04μM LeuRS,0.11μM LysRS,0.03μM MetRS,0.68μM PheRS,0.16μM ProRS,0.04μM SerRS,0.09μM ThrRS,0.03μM TrpRS,0.02μM TyrRS,0.02μM ValRS(自家調製タンパクは基本的にHisタグ付加タンパクとして調製した))に、1μM 鋳型mRNAと、Ala,Phe,Gly,Lys,Met,Pro,Arg,Ser,Valの各アミノ酸をそれぞれ250μMずつ加え、さらに10μMのアミノアシルtRNAGluを翻訳液混合物に加えて、37℃で1時間静置した。
<質量分析による検出:その1>
 無細胞翻訳系にて翻訳合成されたペプチドを質量分析するために、MALDI-TOF MSを用いて実施した。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Arg,Ser,Val(各々最終濃度250μM)を加えた溶液を調製し、調製した9種類の10μMアミノアシルtRNA(AAtR-1、AAtR-2、AAtR-3、AAtR-4、AAtR-5、AAtR-6、AAtR-7、AAtR-8、AAtR-9)をそれぞれ添加し、37℃で60分間保温した。Acbz保護基のついたアミノアシルtRNA(AAtR-4、AAtR-5、AAtR-6)を用いた翻訳系については脱保護試薬としてTCEP(トリス(2-カルボキシエチル)ホスフィン;還元剤、最終濃度10mM)を、F-Pnaz保護基のついたアミノアシルtRNA(AAtR-7、AAtR-8、AAtR-9)については脱保護試薬としてPGA(ペニシリンGアシラーゼ(=ペニシリンアミドヒドロラーゼ)、最終濃度1uM、SIGMA社)を加えた。得られた翻訳反応物を、SPE C-TIP(日京テクノス社)で精製し、MALDI-TOF MSで分析した。翻訳産物はマトリックスとしてα-シアノ-4-ヒドロキシケイ皮酸を用いてMALDI-TOF MSスペクトルを測定して同定した。
 その結果、Acbz保護されたアミノアシルtRNAをTCEPを用い翻訳系内で脱保護を行った翻訳産物(AAtR-4、AAtR-5、AAtR-6)、F-Pnaz保護されたアミノアシルtRNAをPGAを用い翻訳系内で脱保護を行った翻訳産物(AAtR-7、AAtR-8、AAtR-9)のいずれにおいても表2に示した目的物が主生成物として翻訳出来ていることが確認された(図1-1、図1-2、図1-3)。
<質量分析による検出:その2>
 無細胞翻訳系にて翻訳合成されたペプチドを質量分析するために、MALDI-TOF MSを用いて実施した。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Arg,Ser,Val(各々最終濃度250μM)を加えた溶液を調製し、調製した8種類の10μMアミノアシルtRNA(AAtR-10~AAtR-13、AAtR-16~AAtR-19)をそれぞれ添加し、37℃で60分間保温した。F-Pnaz保護基のついたアミノアシルtRNA(AAtR-16~AAtR-19)については脱保護試薬としてPGA(最終濃度1μM、SIGMA社)を加えた。得られた翻訳反応物を、SPE C-TIP(日京テクノス社)で精製し、MALDI-TOF MSで分析した。翻訳産物はマトリックスとしてα-シアノ-4-ヒドロキシケイ皮酸を用いてMALDI-TOF MSスペクトルを測定して同定した。
 その結果、F-Pnaz保護されたアミノアシルtRNAをPGAを用い翻訳系内で脱保護を行った翻訳産物も従来法同様に表2に示した目的物が主生成物として翻訳出来ていることが確認された(図1-4、図1-5、図1-6、図1-7)。
<質量分析による検出:その3>
 無細胞翻訳系にて翻訳合成されたペプチドを質量分析するために、MALDI-TOF MSを用いて実施した。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Arg,Ser,Val(各々最終濃度250μM)を加えた溶液を調製し、調製した2種類の10μMアミノアシルtRNA(AAtR-14、AAtR-20)をそれぞれ添加し、37℃で60分間保温した。Etez保護基のついたアミノアシルtRNA(AAtR-20)については脱保護試薬としてCHIRAZYME L―2 CB(リパーゼ、最終濃度1mg/ml、Roche Diagnostics社)を加えた。得られた翻訳反応物を、SPE C-TIP(日京テクノス社)で精製し、MALDI-TOF MSで分析した。翻訳産物はマトリックスとしてα-シアノ-4-ヒドロキシケイ皮酸を用いてMALDI-TOF MSスペクトルを測定して同定した。
 その結果、Etez保護されたアミノアシルtRNAをリパーゼを用い翻訳系内で脱保護を行った翻訳産物も従来法同様に表2に示した目的物が主生成物として翻訳出来ていることが確認された(図1-8)。
<質量分析による検出:その4>
 無細胞翻訳系にて翻訳合成されたペプチドを質量分析するために、MALDI-TOF MSを用いて実施した。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Leu,Ser,Val(各々最終濃度250μM)を加えた溶液を調製し、調製した2種類の10μMアミノアシルtRNA(AAtR-15、AAtR-21)をそれぞれ添加し、37℃で60分間保温した。Leuz保護基のついたアミノアシルtRNA(AAtR-21)については脱保護試薬としてAminopeptidase(ロイシンアミノペプチダーゼ、最終濃度1mg/ml、SIGMA社)を加えた。得られた翻訳反応物を、SPE C-TIP(日京テクノス社)で精製し、MALDI-TOF MSで分析した。翻訳産物はマトリックスとしてα-シアノ-4-ヒドロキシケイ皮酸を用いてMALDI-TOF MSスペクトルを測定して同定した。
 その結果、Leuz保護されたアミノアシルtRNAをロイシンアミノペプチダーゼを用い翻訳系内で脱保護を行った翻訳産物も従来法同様に表2に示した目的物が主生成物として翻訳出来ていることが確認された(図1-9)。
 鋳型DNA(配列番号D-1)から、RiboMAX Large Scale RNA production System T7(Promega社,P1300)を用いたin vitro 転写反応により鋳型用mRNA(配列番号R-1)を合成し、RNeasy Mini kit(Qiagen社)により精製した。
鋳型DNA 配列番号D-1(配列番号:3)
DNA配列:
GGCGTAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGAGTCTAAAGCCGTTTGCTCGTGTTGGTTAAGCTTCG
鋳型mRNA 配列番号R-1(配列番号:4)
RNA配列:
GGGUUAACUUUAAGAAGGAGAUAUACAUAUGAGUCUAAAGCCGUUUGCUCGUGUUGGUUAAGCUUCG
ペプチド配列
fMetSer[Xaa]LysProPheAlaArgValGly(配列番号:5)
fMetSerLeuLysProPheAla[Xaa]ValGly(配列番号:11)
Figure JPOXMLDOC01-appb-T000134
<電気泳動による検出:その1>
 N末端にシステインまたはシステイン類縁体が翻訳導入されたペプチドを検出するために、ラジオアイソトープでラベルしたアスパラギン酸を用いてペプチドの翻訳実験を行った。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1D)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Arg,Ser,Val(各々最終濃度250μM)、14C-アスパラギン酸(最終濃度37μM、Moravek Biochemicals社、MC139)を加えた溶液を調製し、調製した9種類の10μMアミノアシルtRNA(AAtR-1、AAtR-2、AAtR-3、AAtR-4、AAtR-5、AAtR-6、AAtR-7、AAtR-8、AAtR-9)をそれぞれ添加し、37℃で1時間静置した。Acbz保護基のついたアミノアシルtRNA(AAtR-4、AAtR-5、AAtR-6)を用いた翻訳系については脱保護試薬としてTCEP(最終濃度10mM)を、F-Pnaz保護基のついたアミノアシルtRNA(AAtR-7、AAtR-8、AAtR-9)については脱保護試薬としてPGA(最終濃度1uM、SIGMA社)を加えた。
 得られた翻訳反応溶液に対して等量の2Xサンプルバッファー(TEFCO社、catNo.06-323)を加え、95℃で3分間加熱後、電気泳動(16% Peptide-PAGE mini、TEFCO社、TB-162)を実施した。泳動後のゲルは、Clear Dry Quick Dry Starter KIT(TEFCO社、03-278)を用いて乾燥させ、イメージングプレート(GEヘルスケア社、28-9564-75)に24時間露光させ、バイオアナライザーシステム(Typhoon FLA 7000、GEヘルスケア社)で検出し、ImageQuantTL(GEヘルスケア社)で解析した。
 その結果、Acbz保護されたアミノアシルtRNAをTCEPを用い翻訳系内で脱保護を行った翻訳産物(AAtR-4、AAtR-5、AAtR-6)、F-Pnaz保護されたアミノアシルtRNAをPGAを用い翻訳系内で脱保護を行った翻訳産物(AAtR-7、AAtR-8、AAtR-9)いずれにおいても、翻訳系外で調製したアミノアシルtRNA(AAtR-1、AAtR-2、AAtR-3)を用いた場合と比較して、表3に示した目的物が高い翻訳効率で合成されていることが確認された(図2-1)。
<電気泳動による検出:その2>
 N末端にシステインまたはシステイン類縁体が翻訳導入されたペプチドを検出するために、ラジオアイソトープでラベルしたアスパラギン酸を用いてペプチドの翻訳実験を行った。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1D)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Arg,Ser,Val(各々最終濃度250μM)、14C-アスパラギン酸(最終濃度37μM、Moravek Biochemicals社、MC139)を加えた溶液を調製し、調製した8種類の10μMアミノアシルtRNA(AAtR-10~AAtR-13、AAtR-16~AAtR-19)をそれぞれ添加し、37℃で1時間静置した。F-Pnaz保護基のついたアミノアシルtRNA(AAtR-16~AAtR-19)については脱保護試薬としてPGA(最終濃度1μM、SIGMA社)を加えた。
 得られた翻訳反応溶液に対して等量の2Xサンプルバッファー(TEFCO社、catNo.06-323)を加え、95℃で3分間加熱後、電気泳動(16% Peptide-PAGE mini、TEFCO社、TB-162)を実施した。泳動後のゲルは、Clear Dry Quick Dry Starter KIT(TEFCO社、03-278)を用いて乾燥させ、イメージングプレート(GEヘルスケア社、28-9564-75)に24時間露光させ、バイオアナライザーシステム(Typhoon FLA 7000、GEヘルスケア社)で検出し、ImageQuantTL(GEヘルスケア社)で解析した。
 その結果、F-Pnaz保護されたアミノアシルtRNAをPGAを用い翻訳系内で脱保護を行った翻訳産物(AAtR-16~AAtR-19)においては、翻訳系外で調製したアミノアシルtRNA(AAtR-10~AAtR-13)を用いた場合と比較して、表3に示した目的物が高い翻訳効率で合成されていることが確認された(図2-2)。
<電気泳動による検出:その3>
 N末端にシステインまたはシステイン類縁体が翻訳導入されたペプチドを検出するために、ラジオアイソトープでラベルしたアスパラギン酸を用いてペプチドの翻訳実験を行った。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1D)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Arg,Ser,Val(各々最終濃度250μM)、14C-アスパラギン酸(最終濃度37μM、Moravek Biochemicals社、MC139)を加えた溶液を調製し、調製した2種類の10μMアミノアシルtRNA(AAtR-14、AAtR-20)をそれぞれ添加し、37℃で1時間静置した。Etez保護基のついたアミノアシルtRNA(AAtR-20)については脱保護試薬としてCHIRAZYME L―2 CB(リパーゼ;最終濃度1mg/ml、Roche Diagnostics社)を加えた。
 得られた翻訳反応溶液に対して等量の2Xサンプルバッファー(TEFCO社、catNo.06-323)を加え、95℃で3分間加熱後、電気泳動(16% Peptide-PAGE mini、TEFCO社、TB-162)を実施した。泳動後のゲルは、Clear Dry Quick Dry Starter KIT(TEFCO社、03-278)を用いて乾燥させ、イメージングプレート(GEヘルスケア社、28-9564-75)に24時間露光させ、バイオアナライザーシステム(Typhoon FLA 7000、GEヘルスケア社)で検出し、ImageQuantTL(GEヘルスケア社)で解析した。
 その結果、Etez保護されたアミノアシルtRNAをリパーゼを用い翻訳系内で脱保護を行った翻訳産物(AAtR-20)においては、翻訳系外で調製したアミノアシルtRNA(AAtR-14)を用いた場合と比較して、表3に示した目的物が高い翻訳効率で合成されていることが確認された(図2-3)。
<電気泳動による検出:その4>
 N末端にシステインまたはシステイン類縁体が翻訳導入されたペプチドを検出するために、ラジオアイソトープでラベルしたアスパラギン酸を用いてペプチドの翻訳実験を行った。具体的には、上述の無細胞翻訳系に1μM 鋳型mRNA(R-1D)と各アミノ酸としてAla,Phe,Gly,Lys,Met,Pro,Leu,Ser,Val(各々最終濃度250μM)、14C-アスパラギン酸(最終濃度37μM、Moravek Biochemicals社、MC139)を加えた溶液を調製し、調製した2種類の10μMアミノアシルtRNA(AAtR-15、AAtR-21)をそれぞれ添加し、37℃で1時間静置した。Leuz保護基のついたアミノアシルtRNA(AAtR-21)については脱保護試薬としてAminopeptidase(最終濃度1mg/ml、SIGMA社)を加えた。
 得られた翻訳反応溶液に対して等量の2Xサンプルバッファー(TEFCO社、catNo.06-323)を加え、95℃で3分間加熱後、電気泳動(16% Peptide-PAGE mini、TEFCO社、TB-162)を実施した。泳動後のゲルは、Clear Dry Quick Dry Starter KIT(TEFCO社、03-278)を用いて乾燥させ、イメージングプレート(GEヘルスケア社、28-9564-75)に24時間露光させ、バイオアナライザーシステム(Typhoon FLA 7000、GEヘルスケア社)で検出し、ImageQuantTL(GEヘルスケア社)で解析した。
 その結果、Leuz保護されたアミノアシルtRNAをロイシンアミノペプチダーゼを用い翻訳系内で脱保護を行った翻訳産物(AAtR-21)においては、翻訳系外で調製したアミノアシルtRNA(AAtR-15)を用いた場合と比較して、表3に示した目的物が高い翻訳効率で合成されていることが確認された(図2-4)。
 鋳型DNA(配列番号D-1D)から、RiboMAX Large Scale RNA production System T7(Promega社,P1300)を用いたin vitro 転写反応により鋳型用mRNA(配列番号R-1D)を合成し、RNeasy Mini kit(Qiagen社)により精製した。
鋳型DNA 配列番号D-1D(配列番号:6)
DNA配列:
GGCGTAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGAGTCTAAAGCCGTTTGCTCGTGTTGGTGACGACGACTAAGCTTCG
鋳型mRNA 配列番号R-1D(配列番号:7)
RNA配列:
GGGUUAACUUUAAGAAGGAGAUAUACAUAUGAGUCUAAAGCCGUUUGCUCGUGUUGGUGACGACGACUAAGCUUCG
ペプチド配列
fMetSer[Xaa]LysProPheAlaArgValGlyAspAspAsp(配列番号:8)
fMetSerLeuLysProPheAla[Xaa]ValGlyAspAspAsp(配列番号:12)
Figure JPOXMLDOC01-appb-T000135
 本発明により、1または複数のアミノ酸を含むペプチドを効率的に合成する手法が提供された。本発明の方法は、無細胞翻訳系において、tRNAに結合しているアミノ酸の保護基を脱保護する工程と、鋳型核酸からペプチドを翻訳する工程を含み、これらの工程を並行して行う。本発明は、医薬品の候補物質として期待されるアミノ酸を含む環状ペプチドなどの中分子化合物の合成やスクリーニングにおいて有用である。

Claims (18)

  1.  保護基を有するアミノ酸が結合したtRNAを含む無細胞翻訳系中で、該アミノ酸の保護基を脱保護する工程、及び翻訳工程を含む、少なくとも1つのアミノ酸を含むペプチドの合成方法であって、該脱保護する工程、および該翻訳工程が並行して行われる、方法。
  2.  前記アミノ酸の保護基が、酵素、還元剤、及び光反応からなる群より選択される一以上によって脱保護される、請求項1に記載の方法。
  3.  前記酵素が、加水分解酵素である、請求項2に記載の方法。
  4.  前記酵素が、ペニシリンアミドヒドロラーゼ、エステラーゼ、又はアミノペプチダーゼである、請求項3に記載の方法。
  5.  前記保護基が、下記一般式(I)、(II)、(III)、又は(XII)で表される基である、請求項4に記載の方法:
    Figure JPOXMLDOC01-appb-I000001
    (式中、
     X1は、ペニシリンアミドヒドロラーゼが認識する部分構造であり、
     Yは、NHもしくは酸素原子であり、
     X2は、エステラーゼが認識する部分構造であり、
     X3は、アミノペプチダーゼが認識する部分構造であり、
     Lは、単結合、アリーレン、またはヘテロアリーレンである)。
  6.  前記式(I)中のX1が以下一般式(IV)で表される基、もしくは2-チエニルメチルであるか、または、前記式(III)中のX2が置換されてもよいアルキル、アラルキル、またはシクロアルキルである、請求項5に記載の方法:
    Figure JPOXMLDOC01-appb-I000002
    (式中のR、およびRは、それぞれ独立して、水素原子、ヒドロキシル、フルオロ、クロロ、ブロモ、アミノ、ニトロ、またはメトキシである)。
  7.  前記式(XII)が、下記一般式(XIII)で表される基である、請求項5に記載の方法:
    Figure JPOXMLDOC01-appb-I000003
  8.  前記還元剤が、トリス(2-カルボキシエチル)ホスフィン(TCEP)である、請求項2に記載の方法。
  9.  前記保護基が、下記一般式(V)で表される基であるか、又は主鎖のアミノ基と一緒になって形成されたアジド基である、請求項8に記載の方法:
    Figure JPOXMLDOC01-appb-I000004
    (式中のLは、単結合、アリーレン、またはヘテロアリーレンである)。
  10.  前記保護基が、4-アジドベンジルオキシカルボニル基(Acbz)、又はアジドメチルオキシカルボニル基(Azoc)である、請求項9に記載の方法。
  11.  前記アミノ酸が、アミノ酸類縁体である、請求項1~10のいずれか一項に記載の方法。
  12.  前記アミノ酸類縁体が、環状アミノ酸を含むNアルキルアミノ酸、脂肪族アミノ酸、芳香族アミノ酸、βアミノ酸、Dアミノ酸、及びαジアルキルアミノ酸からなる群より選ばれる1種以上の翻訳可能なアミノ酸類縁体である、請求項11に記載の方法。
  13.  前記アミノ酸類縁体が、下記一般式(VI)または(VII)で表される、請求項12に記載の方法:
    Figure JPOXMLDOC01-appb-I000005
    (式中、
     R、R、およびRは、それぞれ独立して、水素原子、アルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、またはシクロアルキルであり、これらの基は置換されていてもよく、あるいはRとRもしくはRとRは、それらが結合する原子と一緒になって環を形成してもよく、
     R、およびRは、それぞれ独立して水素原子またはメチルである)。
  14.  前記保護基が、翻訳後修飾のために用いられる反応条件とオルソゴナルな反応条件によって脱保護される保護基である、請求項1~13のいずれか一項に記載の方法。
  15.  前記保護基が、iSP(Initiation Suppression)法で用いられる保護基とオルソゴナルな保護基である、請求項14に記載の方法。
  16.  下記一般式(VIII)または(IX)で表される、アミノ酸類縁体の主鎖のアミノ基上に、保護基Pを有する化合物:
    Figure JPOXMLDOC01-appb-I000006
    (式中、R~Rはそれぞれ請求項13に定義したとおりであり、Pは請求項5~7のいずれか一項に記載の保護基である)。
  17.  下記一般式(X)または(XI)で表される、請求項16に記載の化合物とpCpA、又はpdCpAとが結合してなる化合物:
    Figure JPOXMLDOC01-appb-I000007
    (式中、R~Rはそれぞれ請求項13に定義したとおりであり、Rは水素原子またはヒドロキシルであり、Pは請求項5~7のいずれか一項に記載の保護基である)。
  18.  請求項16に記載の化合物とtRNAが結合してなるアミノアシルtRNA。
PCT/JP2018/002831 2017-01-31 2018-01-30 無細胞翻訳系におけるペプチドの合成方法 WO2018143145A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18748388.8A EP3591048A4 (en) 2017-01-31 2018-01-30 PROCESS FOR SYNTHESIS OF PEPTIDES IN A CELL-FREE TRANSLATION SYSTEM
JP2018565534A JP7187323B2 (ja) 2017-01-31 2018-01-30 無細胞翻訳系におけるペプチドの合成方法
US16/479,736 US20200040372A1 (en) 2017-01-31 2018-01-31 Method for synthesizing peptides in cell-free translation system
JP2022191886A JP7526243B2 (ja) 2017-01-31 2022-11-30 無細胞翻訳系におけるペプチドの合成方法
JP2024115568A JP2024138064A (ja) 2017-01-31 2024-07-19 無細胞翻訳系におけるペプチドの合成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015201 2017-01-31
JP2017-015201 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143145A1 true WO2018143145A1 (ja) 2018-08-09

Family

ID=63040698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002831 WO2018143145A1 (ja) 2017-01-31 2018-01-30 無細胞翻訳系におけるペプチドの合成方法

Country Status (4)

Country Link
US (1) US20200040372A1 (ja)
EP (1) EP3591048A4 (ja)
JP (3) JP7187323B2 (ja)
WO (1) WO2018143145A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593044A (zh) * 2018-12-06 2019-04-09 盐城工学院 一种烷基脂肪酸胺及其制备方法
WO2020122182A1 (ja) * 2018-12-12 2020-06-18 中外製薬株式会社 分子内水素結合可能な官能基を有するアミノ酸とそれらのアミノ酸を含むペプチド化合物、およびそれらの製造方法
WO2020138336A1 (ja) 2018-12-26 2020-07-02 中外製薬株式会社 コドン拡張のための変異tRNA
US10815489B2 (en) 2015-03-13 2020-10-27 Chugai Seiyaku Kabushiki Kaisha Modified aminoacyl-tRNA synthetase and use thereof
WO2021117848A1 (ja) 2019-12-12 2021-06-17 中外製薬株式会社 非天然アミノ酸を含むペプチドの製造方法
WO2021132661A1 (ja) * 2019-12-27 2021-07-01 国立大学法人東京大学 ライブラリーの製造方法、環状ペプチド、FXIIa結合剤、及びIFNGR1結合剤
WO2021132546A1 (ja) 2019-12-26 2021-07-01 中外製薬株式会社 翻訳用組成物及びペプチドの製造方法
US20210207188A1 (en) * 2018-09-20 2021-07-08 The University Of Hong Kong Beta-lactam compounds and methods of use thereof
WO2021261577A1 (ja) 2020-06-25 2021-12-30 中外製薬株式会社 改変された遺伝暗号表を有する翻訳系
WO2022138892A1 (ja) 2020-12-25 2022-06-30 中外製薬株式会社 複数の標的分子と共に複合体を形成し得る候補分子のスクリーニング方法
US11492369B2 (en) 2017-12-15 2022-11-08 Chugai Seiyaku Kabushiki Kaisha Method for producing peptide, and method for processing bases
US11542299B2 (en) 2017-06-09 2023-01-03 Chugai Seiyaku Kabushiki Kaisha Method for synthesizing peptide containing N-substituted amino acid
WO2023054636A1 (ja) 2021-09-30 2023-04-06 中外製薬株式会社 光開裂性部位を有する化合物、連結体及びこれを用いたスクリーニング方法
US11732002B2 (en) 2018-11-30 2023-08-22 Chugai Seiyaku Kabushiki Kaisha Deprotection method and resin removal method in solid-phase reaction for peptide compound or amide compound, and method for producing peptide compound
JP7426764B1 (ja) 2023-06-05 2024-02-02 NUProtein株式会社 タンパク質の生産方法、培養肉の生産方法、培養肉の生産方法に用いる添加物、および、タンパク質の生産方法に用いるキット
US11891457B2 (en) 2011-12-28 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Peptide-compound cyclization method
US12071396B2 (en) 2019-03-15 2024-08-27 Chugai Seiyaku Kabushiki Kaisha Method for preparing aromatic amino acid derivative

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109438234B (zh) 2018-12-21 2020-04-21 浙江中欣氟材股份有限公司 一种2,3,5,6-四氟-4-甲氧基甲基苯甲醇的合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143698A (ja) * 1985-10-16 1987-06-26 ゲマ・ソシエテ・アノニム N−フエニルアセチルアミノ化合物の分割および精製方法
JPH01222795A (ja) * 1987-10-01 1989-09-06 Kernforschungsanlage Juelich Gmbh ペプチド、特にジペプチドを酵素により造るための方法およびそのための装置
WO2003068990A1 (en) * 2002-01-17 2003-08-21 Ambergen, Inc. METHODS FOR THE PREPARATION OF CHEMICALLY MISAMINOACYLATED tRNA VIA PROTECTIVE GROUPS
WO2007066627A1 (ja) 2005-12-06 2007-06-14 The University Of Tokyo 多目的アシル化触媒とその用途
WO2007103307A2 (en) 2006-03-03 2007-09-13 California Institute Of Technology Site-specific incorporation of amino acids into molecules
JP2007319064A (ja) * 2006-05-31 2007-12-13 Japan Science & Technology Agency 修飾化アミノ酸を部位特異的に導入したタンパク質を発現させる方法
JP2008125396A (ja) * 2006-11-17 2008-06-05 Univ Of Tokyo N末端に非天然骨格をもつポリペプチドの翻訳合成とその応用
WO2012026566A1 (ja) * 2010-08-27 2012-03-01 国立大学法人 東京大学 新規人工翻訳合成系
WO2013100132A1 (ja) 2011-12-28 2013-07-04 中外製薬株式会社 ペプチド化合物の環化方法
WO2015019999A1 (ja) * 2013-08-05 2015-02-12 国立大学法人東京大学 荷電性非タンパク質性アミノ酸含有ペプチドの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE270268T1 (de) * 1999-04-27 2004-07-15 Novartis Pharma Gmbh 2,4-diamino-3-hydroxycarboxylsäurederivate als proteasome inhibitoren
WO2004087730A2 (en) * 2003-03-27 2004-10-14 The Johns Hopkins University Method for producing diverse libraries of encoded polymers
US20080221303A1 (en) * 2004-02-18 2008-09-11 Jehoshua Katzhendler Method for the Preparation of Peptide-Oligonucleotide Conjugates
JP2011139667A (ja) * 2010-01-07 2011-07-21 Tottori Univ プロリンおよびβ−アラニンをN末端に有するジペプチド、及びその環化ジペプチドの酵素合成法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143698A (ja) * 1985-10-16 1987-06-26 ゲマ・ソシエテ・アノニム N−フエニルアセチルアミノ化合物の分割および精製方法
JPH01222795A (ja) * 1987-10-01 1989-09-06 Kernforschungsanlage Juelich Gmbh ペプチド、特にジペプチドを酵素により造るための方法およびそのための装置
WO2003068990A1 (en) * 2002-01-17 2003-08-21 Ambergen, Inc. METHODS FOR THE PREPARATION OF CHEMICALLY MISAMINOACYLATED tRNA VIA PROTECTIVE GROUPS
WO2007066627A1 (ja) 2005-12-06 2007-06-14 The University Of Tokyo 多目的アシル化触媒とその用途
WO2007103307A2 (en) 2006-03-03 2007-09-13 California Institute Of Technology Site-specific incorporation of amino acids into molecules
JP2007319064A (ja) * 2006-05-31 2007-12-13 Japan Science & Technology Agency 修飾化アミノ酸を部位特異的に導入したタンパク質を発現させる方法
JP2008125396A (ja) * 2006-11-17 2008-06-05 Univ Of Tokyo N末端に非天然骨格をもつポリペプチドの翻訳合成とその応用
WO2012026566A1 (ja) * 2010-08-27 2012-03-01 国立大学法人 東京大学 新規人工翻訳合成系
WO2013100132A1 (ja) 2011-12-28 2013-07-04 中外製薬株式会社 ペプチド化合物の環化方法
WO2015019999A1 (ja) * 2013-08-05 2015-02-12 国立大学法人東京大学 荷電性非タンパク質性アミノ酸含有ペプチドの製造方法

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
"Annals New York Academy of Sciences", ENZYME ENGINEERING XIII, vol. 799, pages 659 - 669
"Bioorganic & Medicinal Chemistry Letters", NAT. COMMUN. 7, vol. 24, no. 23, 2016, pages 12501
A. O. SUBTELNY ET AL., ANGEW CHEM INT ED, vol. 50, 2011, pages 3164
BIOCONJUGATE CHEM., vol. 19, 2008, pages 714
DEDKOVA LM ET AL.: "Construction of modified ribosomes for incorporation of D-amino acids into proteins", BIOCHEMISTRY, vol. 45, 2006, pages 15541 - 51
DOI Y ET AL.: "Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system", J AM CHEM SOC., vol. 129, 2007, pages 14458 - 62
GOTO, YSUGA, H.: "Translation initiation with initiator tRNA charged with exotic peptides", J. AM. CHEM. SOC., vol. 131, no. 14, 15 April 2009 (2009-04-15), pages 5040 - 1, XP002564833, doi:10.1021/ja900597d
H. KESSLER ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 12125 - 12133
HECHT S. M. ET AL.: "Chemical Aminoacylation'' of tRNA's", J. BIOL. CHEM., vol. 253, no. 13, 1978, pages 4517 - 4520, XP055529481 *
J. W. SZOSTAK ET AL., J. AM. CHEM. SOC., vol. 130, 2008, pages 16861 - 16863
J. WANG ET AL., ACS. CHEM. BIOL., vol. 10, 2015, pages 2187 - 2192
JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 2, 27 November 1998 (1998-11-27), pages 463 - 475
KAWAKAMI T ET AL.: "Diverse backbone-cyclized peptides via codon reprogramming", NAT CHEM BIOL., vol. 5, 2009, pages 888 - 90, XP055143411, doi:10.1038/nchembio.259
KAWAKAMI T ET AL.: "Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids", J AM CHEM SOC., vol. 130, 2008, pages 16861 - 3
M. C. T. HARTMAN ET AL., PLOS ONE, vol. 10, 2007, pages e972
MATTHEAKIS, LC.BHATT, RR.DOWER, WJ.: "An in vitro polysome display system for identifying ligands from very large peptide libraries", PROC. NATL. ACAD. SCI. USA., vol. 91, 1994, pages 9022 - 6, XP002043737, doi:10.1073/pnas.91.19.9022
MEINNEL, T. ET AL., BIOCHIMIE, vol. 75, 1993, pages 1061 - 1075
NEMOTO, N.MIYAMOTO-SATO, E.HUSIMI, YYANAGAWA, H.: "In vitro virus: bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro", FEBS LETT., vol. 414, 1997, pages 405 - 8, XP004366358, doi:10.1016/S0014-5793(97)01026-0
ODEGRIP, R.COOMBER, D.ELDRIDGE, B.HEDERER, R.KUHLMAN, PA.ULLMAN, C.FITZGERALD, K.MCGREGOR, D.: "CIS display: In vitro selection of peptides from libraries of protein-DNA complexes", PROC. NATL. ACAD. SCI. USA., vol. 101, 2004, pages 2806 - 10, XP002364430, doi:10.1073/pnas.0400219101
PARK HS ET AL.: "Expanding the genetic code of Escherichia coli with phosphoserine", SCIENCE, vol. 333, 2011, pages 1151 - 4, XP055014139, doi:10.1126/science.1207203
R. MAINI ET AL., BIOCHEMISTRY, vol. 54, 2015, pages 3694 - 3706
R. MAINI ET AL., CURR. OPIN. CHEM. BIOL., vol. 34, 2016, pages 44 - 52
R. S. LOKEY ET AL., NAT. CHEM. BIOL., vol. 7, no. 11, 2011, pages 810 - 817
REIERSEN, H.LOBERSLI, I.LOSET, GA.HVATTUM, E.SIMONSEN, B.STACY, JE.MCGREGOR, D.FITZGERALD, K.WELSCHOF, M.BREKKE, OH.: "Covalent antibody display-an in vitro antibody-DNA library selection system", NUCLEIC ACIDS RES., vol. 33, 2005, pages e10, XP055154764, doi:10.1093/nar/gni010
ROBERTS, R.W.SZOSTAK, J.W.: "RNA-peptide fusions for the in vitro selection of peptides and proteins", PROC. NATL. ACAD. SCI. USA., vol. 94, 1997, pages 12297 - 302, XP002913434, doi:10.1073/pnas.94.23.12297
S. M. HECHT ET AL., J. BIOL. CHEM., vol. 253, 1978, pages 4517 - 4520
S. W. MILLWARD ET AL., J. AM. CHEM. SOC., vol. 127, 2005, pages 14142 - 14143
SHIMIZU YINOUE ATOMARI YSUZUKI TYOKOGAWA TNISHIKAWA KUEDA T: "Cell-free translation reconstituted with purified components", NAT BIOTECHNOL., vol. 19, 2001, pages 751 - 5, XP001060378, doi:10.1038/90802
SHIMIZU YUEDA T.: "Methods Mol Biol.", PURE TECHNOLOGY, vol. 607, 2010, pages 11 - 21
T. FUJINO ET AL., J. AM. CHEM. SOC., vol. 135, 2013, pages 1830 - 1837
T. FUJINO ET AL., J. AM. CHEM. SOC., vol. 138, 2016, pages 1962 - 1969
T. KAWAKAMI ET AL., CHEM. SCI., vol. 5, 2014, pages 887 - 893
T. KAWAKAMI ET AL., CHEMISTRY & BIOLOGY, vol. 15, 2008, pages 32 - 42
TAWFIK, SGRIFFITHS, D.: "Man-made cell-like compartments for molecular evolution", NAT. BIOTECHNOL., vol. 16, 1998, pages 652 - 6, XP002669764, doi:10.1038/nbt0798-652
WANG J. ET AL.: "Kinetics of Ribosome-Catalyzed Polymerization Using Artificial Aminoacyl-tRNA Substrates Clarifies Inefficiencies and Improvements", ACS CHEM. BIOL., vol. 10, no. 10, 16 October 2015 (2015-10-16), pages 2187 - 2192, XP055529484, Retrieved from the Internet <URL:doi:10.1021/acschembio.5b00335> *
Y. DOI ET AL., J. AM. CHEM. SOC., vol. 129, 2007, pages 14458 - 14462
Y. YAMAGISHI ET AL., CHEM. BIOL., vol. 18, 2011, pages 1562 - 1570
YAMAGUCHI, J.NAIMUDDIN, M.BIYANI, M.SASAKI, T.MACHIDA, M.KUBO, T.FUNATSU, T.HUSIMI, YNEMOTO, N.: "cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions", NUCLEIC ACIDS RES., vol. 37, no. 16, 2009, pages el08, XP008154704, doi:10.1093/nar/gkp514

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891457B2 (en) 2011-12-28 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Peptide-compound cyclization method
US10815489B2 (en) 2015-03-13 2020-10-27 Chugai Seiyaku Kabushiki Kaisha Modified aminoacyl-tRNA synthetase and use thereof
US12163134B2 (en) 2015-03-13 2024-12-10 Chugai Seiyaku Kabushiki Kaisha Modified aminoacyl-tRNA synthetase and use thereof
US11542299B2 (en) 2017-06-09 2023-01-03 Chugai Seiyaku Kabushiki Kaisha Method for synthesizing peptide containing N-substituted amino acid
US12281141B2 (en) 2017-06-09 2025-04-22 Chugai Seiyaku Kabushiki Kaisha Method for synthesizing peptide containing N-substituted amino acid
US11787836B2 (en) 2017-06-09 2023-10-17 Chugai Seiyaku Kabushiki Kaisha Method for synthesizing peptide containing N-substituted amino acid
US11492369B2 (en) 2017-12-15 2022-11-08 Chugai Seiyaku Kabushiki Kaisha Method for producing peptide, and method for processing bases
US20210207188A1 (en) * 2018-09-20 2021-07-08 The University Of Hong Kong Beta-lactam compounds and methods of use thereof
US11732002B2 (en) 2018-11-30 2023-08-22 Chugai Seiyaku Kabushiki Kaisha Deprotection method and resin removal method in solid-phase reaction for peptide compound or amide compound, and method for producing peptide compound
CN109593044A (zh) * 2018-12-06 2019-04-09 盐城工学院 一种烷基脂肪酸胺及其制备方法
CN113454058A (zh) * 2018-12-12 2021-09-28 中外制药株式会社 具有能形成分子内氢键的官能团的氨基酸、包含该氨基酸的肽化合物、及其制备方法
CN113454058B (zh) * 2018-12-12 2024-03-22 中外制药株式会社 具有能形成分子内氢键的官能团的氨基酸、包含该氨基酸的肽化合物、及其制备方法
EP3896056A4 (en) * 2018-12-12 2023-03-15 Chugai Seiyaku Kabushiki Kaisha AMINO ACID HAVING A FUNCTIONAL GROUP CAPABLE OF FORMING AN INTERMOLECULAR HYDROGEN BOND, PEPTIDE COMPOUND CONTAINING IT AND METHOD FOR PRODUCTION
WO2020122182A1 (ja) * 2018-12-12 2020-06-18 中外製薬株式会社 分子内水素結合可能な官能基を有するアミノ酸とそれらのアミノ酸を含むペプチド化合物、およびそれらの製造方法
WO2020138336A1 (ja) 2018-12-26 2020-07-02 中外製薬株式会社 コドン拡張のための変異tRNA
US12071396B2 (en) 2019-03-15 2024-08-27 Chugai Seiyaku Kabushiki Kaisha Method for preparing aromatic amino acid derivative
WO2021117848A1 (ja) 2019-12-12 2021-06-17 中外製薬株式会社 非天然アミノ酸を含むペプチドの製造方法
WO2021132546A1 (ja) 2019-12-26 2021-07-01 中外製薬株式会社 翻訳用組成物及びペプチドの製造方法
WO2021132661A1 (ja) * 2019-12-27 2021-07-01 国立大学法人東京大学 ライブラリーの製造方法、環状ペプチド、FXIIa結合剤、及びIFNGR1結合剤
WO2021261577A1 (ja) 2020-06-25 2021-12-30 中外製薬株式会社 改変された遺伝暗号表を有する翻訳系
WO2022138892A1 (ja) 2020-12-25 2022-06-30 中外製薬株式会社 複数の標的分子と共に複合体を形成し得る候補分子のスクリーニング方法
WO2023054636A1 (ja) 2021-09-30 2023-04-06 中外製薬株式会社 光開裂性部位を有する化合物、連結体及びこれを用いたスクリーニング方法
JP7426764B1 (ja) 2023-06-05 2024-02-02 NUProtein株式会社 タンパク質の生産方法、培養肉の生産方法、培養肉の生産方法に用いる添加物、および、タンパク質の生産方法に用いるキット
WO2024252714A1 (ja) * 2023-06-05 2024-12-12 NUProtein株式会社 タンパク質の生産方法、培養肉の生産方法、培養肉の生産方法に用いる添加物、および、タンパク質の生産方法に用いるキット

Also Published As

Publication number Publication date
US20200040372A1 (en) 2020-02-06
JP2024138064A (ja) 2024-10-07
JP2023021170A (ja) 2023-02-09
JPWO2018143145A1 (ja) 2019-11-21
JP7187323B2 (ja) 2022-12-12
EP3591048A1 (en) 2020-01-08
JP7526243B2 (ja) 2024-07-31
EP3591048A4 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP7526243B2 (ja) 無細胞翻訳系におけるペプチドの合成方法
JP7357642B2 (ja) コドン拡張のための変異tRNA
JP7351968B2 (ja) チオール基をアミノ基近傍に有するアミノ酸をn末端に持つ非環状ペプチド-核酸複合体、そのライブラリー、およびそれから誘導される環状ペプチド-核酸複合体ライブラリーの製造方法
EP3636807A1 (en) Cyclic peptide compound having high membrane permeability, and library containing same
EP3896056A1 (en) Amino acid having functional group capable of intermolecular hydrogen bonding, peptide compound containing same and method for production thereof
JP6357154B2 (ja) 荷電性非タンパク質性アミノ酸含有ペプチドの製造方法
EP4026906A1 (en) Composition for translation, and method for producing peptide
JP6618534B2 (ja) アミノ酸修飾核酸とその利用
JP2023099039A (ja) 非天然アミノ酸を含むペプチドの製造方法
Zhang et al. Facilitated synthesis of proteins containing modified dipeptides
WO2024128195A1 (ja) 特定位置に酸素原子を有するアミノ酸を翻訳する工程を含む、ペプチドの製造方法
WO2017151997A1 (en) Methods for making polypeptides including d-amino acids
KR20240082357A (ko) 광개열성 부위를 갖는 화합물, 연결체 및 이를 이용한 스크리닝 방법
Nangreave Novel Strategies for Producing Proteins with Non-proteinogenic Amino Acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748388

Country of ref document: EP

Effective date: 20190902

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载