+

WO2018142523A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2018142523A1
WO2018142523A1 PCT/JP2017/003688 JP2017003688W WO2018142523A1 WO 2018142523 A1 WO2018142523 A1 WO 2018142523A1 JP 2017003688 W JP2017003688 W JP 2017003688W WO 2018142523 A1 WO2018142523 A1 WO 2018142523A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial control
measurement point
target
dead time
partial
Prior art date
Application number
PCT/JP2017/003688
Other languages
French (fr)
Japanese (ja)
Inventor
勝敏 井▲崎▼
誠司 橋本
木原 健
凌太 池田
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2018565150A priority Critical patent/JP6792790B2/en
Priority to PCT/JP2017/003688 priority patent/WO2018142523A1/en
Publication of WO2018142523A1 publication Critical patent/WO2018142523A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/32Automatic controllers electric with inputs from more than one sensing element; with outputs to more than one correcting element

Definitions

  • the present invention relates to a control device and a control method, and more particularly to a control device and a control method in a multi-input / output control system.
  • a temperature adjustment system in a system having interference that requires multipoint control with a plurality of sensors and a heat source (actuator) is known.
  • a temperature control system is used in, for example, an air conditioning system and an injection molding machine.
  • each point to control the temperature difference between multiple points to zero in the transient state until the target value is reached as well as quickly following each corresponding target value.
  • the ratio between the target value and the output value is the same among multiple points.
  • Patent Document 1 discloses that a mode conversion matrix Gm from each temperature to an average temperature (overall average temperature) and a temperature difference between multiple points, and a pre-compensation matrix Gc that appropriately distributes an operation amount to the heater, A structure is disclosed in which the temperature difference can be controlled while controlling the temperature (see, for example, FIG. 25 of the same document).
  • Patent Document 2 assumes an ideal first-order lag model by canceling the target dynamic characteristic by the reverse characteristic of the control target (the reverse characteristic of the temperature difference model) while canceling the interference term by the compensation term ⁇ ′ for the interference term.
  • a structure for performing PID control is disclosed.
  • Patent Documents 1 and 2 Both methods disclosed in Patent Documents 1 and 2 are intended to follow a target temperature while minimizing a temperature difference between multiple points. However, these methods have the following problems.
  • the PID controller design needs to be designed in consideration of the dead time.
  • the design is based on the Ziegler-Nichols (ZN) method. Accordingly, the method shown in Patent Document 1 can be improved as compared with the conventional method (multi-point PID control method), but a significant improvement in characteristics cannot be expected at the average temperature.
  • the method shown in Patent Document 1 when multiple target values are different, only the temperature difference (absolute value) can be controlled. For example, when the arrival times are controlled to be the same, the inclination cannot be controlled.
  • the above-mentioned multipoint temperature control methods are all control methods that focus on the temperature difference between the multipoints, and do not necessarily focus on improving the performance with respect to the transient characteristics considering the dead time. As a result, it is not possible to improve the temperature difference and the transient characteristics with respect to the average temperature at the same time. Such a problem is similar to a control object including a dead time element other than temperature control.
  • the present invention provides a control device that controls the transient characteristics of the average (for example, average temperature) of the output at each point as well as the difference in the output at each point (for example, the temperature difference between multiple points), and
  • An object is to provide a control method.
  • a control device for controlling a control object having a plurality of measurement points and a plurality of inputs corresponding to the respective measurement points, and (a) a response to an input among the measurement points is provided.
  • First control for controlling a physical quantity at a measurement point with respect to a first partial control target having a measurement point that is slower than the response at another measurement point as an output and an input corresponding to the measurement point as an input
  • a second controller for controlling a physical quantity at the measurement point
  • a control device is provided for the second controller.
  • a control device and a control method for controlling a transient characteristic of an average (eg, average temperature) of outputs at each point as well as a difference in output at each point (eg, temperature difference between multiple points) to a desired characteristic. can do.
  • multi-input / output control system such as multi-point temperature control
  • the rise of a measured value (for example, temperature) relative to the input is relatively slow (the control system for this point).
  • a slow mode a measurement point other than the above measurement point
  • the control system for this point is also referred to as a fast mode hereinafter
  • Such a configuration is a basic configuration, and the transient characteristic of the average temperature is controlled to a desired characteristic together with the temperature difference between multiple points.
  • a control device and a design method that can be designed without considering dead time when designing a PID controller are proposed. Further, even when the target values at multiple points are different, the rising temperature ratio (ratio of the measured temperature with respect to the target value) is made equal, and each point reaches the target value at substantially the same timing.
  • this Embodiment demonstrates using the example which controls temperature, you may control physical quantities other than temperature.
  • the temperature to be controlled will be described using an example of measurement (detection) at a measurement point. However, the temperature to be controlled was measured at a temperature other than the measurement point obtained based on the temperature measured at the measurement point, or measured at the measurement point. You may control the temperature calculated
  • FIG. 1 is a block diagram of a multi-input / output control system in the present embodiment.
  • the control device 10 in this embodiment controls each physical quantity at a plurality of measurement points of the control target 1.
  • the control device 10 includes, for example, a first PID controller (first controller) 11, a first dead time difference compensator 12, a first dead time compensator 13, and a second dead time difference compensator. 14, a feedforward compensator (FF compensator) 15, a second PID controller (second controller) 16, a second dead time compensator 17, and a target value adjuster 18.
  • FF compensator feedforward compensator
  • second PID controller second controller
  • the control object 1 has a plurality of measurement points and a plurality of inputs corresponding to each measurement point.
  • the control target 1 is illustrated as being divided into a first partial control target 1A and a second partial control target 1B.
  • the first partial control object 1A outputs a measurement point (first measurement point) whose response to the input is slower than the response at other measurement points among the plurality of measurement points, and an input corresponding to the first measurement point.
  • the second partial control target 1B outputs a measurement point (second measurement point) other than the measurement point of the first partial control target 1A among a plurality of measurement points, and inputs corresponding to the measurement points as inputs. .
  • the output of the second partial control target 1B is a measurement point that has a relatively fast response to the input.
  • the first partial control target 1A and the second partial control target 1B may each be subject to disturbance. Further, the first partial control target 1A may receive interference from the input or the like of the second partial control target 1B, and vice versa.
  • the first PID controller 11 performs PID control on the first partial control target 1A.
  • the second PID controller 16 performs PID control on the second partial control target 1B.
  • a conventional technique can be used as a design technique for the first PID controller 11 and the second PID controller 16.
  • a control method other than PID control may be used.
  • the present embodiment has a configuration in which the output in the fast mode follows the output in the slow mode.
  • the target value SV2 of the second partial control target 1B is determined based on the output PV1 of the first partial control target 1A and given to the second PID controller 16.
  • the output PV1 of the first partial control target 1A may be used as the target value SV2 of the second partial control target 1B as it is, but as will be described later, the first dead time compensator 13 and the second dead time difference compensation.
  • the target value SV2 of the second partial control target 1B can be obtained based on the output PV1 of the first partial control target 1A by the device 14 and / or the target value adjuster 18.
  • the slow mode is arranged on the left side of the block diagram (upstream of the signal, sometimes called a master), and the fast mode is arranged on the right side (downstream of the signal, sometimes called a slave). Deploy.
  • This configuration makes it possible to control the temperature difference between the two points in the slow mode and the fast mode to approach zero.
  • the present embodiment has a configuration (first dead time compensator 13) that obtains the target value SV2 in the fast mode by compensating for the time delay of the first partial control target 1A with respect to the output PV1 in the slow mode.
  • the response in the fast mode is the time delay in the fast mode (in addition to the time delay in the slow mode ( Output is delayed by the dead time).
  • the first dead time compensator 13 of the present embodiment removes the dead time component of the first partial control target 1A from the output PV1 of the first partial control target 1A.
  • the output from the first dead time compensator 13 is an output without delay in the slow mode.
  • the first dead time compensator 13 can be realized by applying a control structure of the Smith method.
  • the first dead time compensator 13 includes a model (first model) of the first partial control target 1A including the dead time component of the first partial control target 1A, and the first partial control target 1A. It has a model (second model) of the first partial control target 1A excluding the time delay component.
  • the operation amount MV1 for the first partial control target 1A is input to the first model, and the output of the first model is obtained.
  • the output from the first PID controller 11 is input to the second model, and the output of the second model is obtained.
  • the first dead time compensator 13 subtracts the output of the first model from the output PV1 of the first partial control target 1A to obtain an interference term and a component corresponding to the disturbance. Further, the first dead time compensator 13 adds the output of the second model to the subtraction result and outputs the result. Needless to say, the order of addition and subtraction described above may be reversed. Similarly to the first dead time compensator 13, the second dead time compensator 17 has the first model and the second model for the second partial control target 1B, and performs the same processing. Can be configured.
  • the output from the first dead time compensator 13 may be feedback in a feedback loop for the first partial control target 1A. Further, the output of the second partial control target 1B is also compensated for the time delay of the second partial control target 1B by the second dead time compensator 17 to provide a feedback loop for the second partial control target 1B. It is good also as feedback in.
  • This embodiment is configured to include the second PID controller 16 and the FF compensator 15 for the target value response in the fast mode.
  • the FF compensator 15 has a reverse characteristic of the second partial control target 1B.
  • the target value SV2 of the second partial control target 1B is supplied to the FF compensator 15 and the second PID controller 16, and the output of the FF compensator 15 and the output of the second PID controller 16 are added to obtain the second value This is given to the partial control object 1B.
  • Such a configuration can improve the followability of the fast mode itself.
  • the delay of the dynamic characteristics of the fast mode itself can be improved, and the output of the slow mode can be followed almost without delay. Thereby, the temperature difference between the slow mode and the fast mode can be further reduced.
  • the present embodiment has a configuration (a first dead time difference compensator 12 and a second dead time difference compensator 14) for compensating for a dead time difference between the slow mode and the fast mode.
  • the first partial control target 1A in the slow mode and the second partial control target 1B in the fast mode have different dead times. Therefore, when the output without delay from the first dead time compensator 13 is set to the target value SV2 in the fast mode, the output PV1 of the first partial control target 1A is equal to the dead time (L1 of the first partial control target 1A).
  • the output PV2 of the second partial control target 1B is output with a delay corresponding to the dead time (L2) of the second partial control target 1B.
  • the first dead time difference compensator 12 of the present embodiment when the dead time of the second partial control target 1B is longer than the dead time of the first partial control target 1A (L2> L1), The operation amount of the target 1A is delayed.
  • the first dead time difference compensator 12 delays, for example, a difference (L2 ⁇ L1) obtained by subtracting the dead time of the first partial control target 1A from the dead time of the second partial control target 1B.
  • the second dead time difference compensator 14 sets the target value of the second partial control target 1B. Or delay the operation amount.
  • the second dead time difference compensator 14 delays, for example, by a difference (L1-L2) obtained by subtracting the dead time of the second partial control target 1B from the dead time of the first partial control target 1A.
  • the first dead time difference compensator 12 When the dead time of the second partial control object 1B is longer than the dead time of the first partial control object 1A, the first dead time difference compensator 12 is enabled and the dead time of the first partial control object 1A is activated.
  • a switching unit (not shown) that enables the second dead time difference compensator 14 may be further included.
  • the present embodiment has a configuration (target value adjuster 18) that appropriately sets the target value in the fast mode using the ratio of the target values in each mode even when the target values in the slow mode and the fast mode are different.
  • the target value adjuster 18 multiplies the input signal by the ratio (r2 / r1) between the target value r1 in the slow mode and the target value r2 in the fast mode and outputs the result.
  • the target value r2 in the fast mode is not the target value SV2 that is dynamically set according to the output in the slow mode, but the original target value that the fast mode output PV is to finally reach (this specification) (Referred to as the final target value).
  • the target value r1 in the slow mode here is the same as the above-described target value SV1, but is referred to as r1 for convenience.
  • Such a configuration makes it possible to directly control the temperature ratio between multiple points in addition to controlling the temperature difference. More specifically, even when multipoint target values are different, it is possible to follow different target values while controlling the ratio of the fast mode response to the slow mode response at a constant rate. In addition, it is possible to match the arrival times to the target values at multiple points and to directly control the slope (rate) of the response.
  • configuration 1 is a basic configuration, and configurations 2 to 5 can be combined as appropriate.
  • control apparatus 10 of this Embodiment can be comprised like each following aspect, it is not limited only to this combination.
  • the control device 10 may be configured with the configuration 1 described above.
  • the control device 10 includes a first PID controller 11 and a second PID controller 16.
  • the output of the first partial control target 1A is used as the target value of the second partial control target 1B.
  • the control device 10 may be configured by the above-described configuration 1 and configuration 2.
  • the control device 10 includes a first PID controller 11, a second PID controller 16, and a first dead time compensator 13.
  • the control device 10 may further include a second dead time compensator 17.
  • the output of the first dead time compensator 13 is used as the target value of the second partial control target 1B.
  • the control device 10 may be configured by the above-described configurations 1 to 3.
  • the control device 10 includes the first PID controller 11, the second PID controller 16, the first dead time compensator 13, and the FF compensator 15.
  • the control device 10 may further include a second dead time compensator 17.
  • the output of the first dead time compensator 13 is used as the target value of the second partial control target 1B.
  • the control device 10 may be configured by the above-described configurations 1 to 4.
  • the control device 10 includes the first PID controller 11, the second PID controller 16, the first dead time compensator 13, the FF compensator 15, and the first dead time difference compensator 12.
  • a second dead time difference compensator 14 The control device 10 may further include a second dead time compensator 17. As the target value of the second partial control target 1B, the output of the second dead time difference compensator 14 is used.
  • the control device 10 may be configured by the above-described configurations 1 to 5.
  • the control device 10 includes the first PID controller 11, the second PID controller 16, the first dead time compensator 13, the FF compensator 15, and the first dead time difference compensator 12. And a second dead time difference compensator 14 and a target value adjuster 18.
  • the control device 10 may further include a second dead time compensator 17.
  • the output of the target value adjuster 18 is used as the target value of the second partial control target 1B.
  • the control device 10 may be configured by the above-described configuration 1 and configuration 3.
  • the control device 10 includes the first PID controller 11, the second PID controller 16, and the FF compensator 15.
  • the output of the first partial control target 1A is used as the target value of the second partial control target 1B.
  • the control device 10 may be configured by the above-described configuration 1 and configuration 5.
  • the control device 10 includes a first PID controller 11, a second PID controller 16, and a target value adjuster 18.
  • the output of the target value adjuster 18 is used as the target value of the second partial control target 1B.
  • the configuration 4 may be further added to the above-described modes 1, 2, and 6.
  • the output of the second dead time difference compensator 14 is used as the target value of the second partial control target 1B.
  • the configuration 5 may be further added to the above-described embodiment 1, embodiment 2, embodiment 6, and embodiment 8.
  • the output of the target value adjuster 18 is used as the target value of the second partial control target 1B.
  • FIG. 2 shows a simulation result of an average temperature and a temperature difference between multiple points by a conventional control method.
  • the method shown in Patent Document 1 and the method shown in Patent Document 2 the results of the average temperature 21 at two points to be controlled and the temperature difference 22 between each point are shown.
  • the result in multipoint control is indicated by a solid line, and a is added to the reference symbol.
  • the result in the method shown in patent document 1 is shown with a broken line, and b is attached
  • Patent Document 2 The result in the method shown in Patent Document 2 is indicated by a one-dot chain line, and c is attached to the reference numeral. From the figure, the maximum temperature differences in the multipoint control, the method shown in Patent Document 1, and the method shown in Patent Document 2 are about 68 ° C., about 18 ° C., and about 25 ° C., respectively.
  • FIG. 3A and 3B show simulation results in the above-described aspect 2 (configuration 1 + 2).
  • a simulation result is shown in which the slow mode no delay output (the output of the first dead time compensator 13) including the interference term and the disturbance component is the target value SV2 in the fast mode.
  • the upper part of FIG. 3A shows target values SV1 and SV2 and outputs PV1 and PV2 in each mode.
  • the lower part of the figure shows the control inputs MV1 and MV2 in each mode.
  • the upper part of FIG. 3B shows the target value 31 of the average temperature of each point, the average temperature 32, the target value 41 of the temperature difference between the points, and the temperature difference 42 between the points.
  • the lower part of the figure represents the control input. From the upper part of FIG.
  • the maximum temperature difference (maximum temperature difference between each point) is about 25 ° C., which is equivalent to the conventional method. It can also be confirmed that the dynamic characteristics such as the overshoot from the target value and the settling time are improved. Furthermore, the steady-state deviation is zero despite interference.
  • FIG. 4A and 4B show simulation results in the above-described aspect 3 (configuration 1 + 2 + 3).
  • the simulation result when the FF compensator 15 is introduced in the fast mode is shown. From the upper part of FIG. 4A, it can be seen that the FF compensator 15 reduces the responsiveness of the fast mode, particularly the overshoot amount, and as a result, the maximum temperature difference is improved to about 15 ° C.
  • FIG. 5A and FIG. 5B show simulation results in the above-described aspect 4 (configuration 1 + 2 + 3 + 4).
  • a simulation result in which a difference in dead time between the slow mode and fast mode control objects is compensated is shown.
  • the difference in dead time between the two modes is 0.5 seconds, and the dead time is longer in the slow mode than in the fast mode.
  • the rising of the output PV2 in the fast mode is delayed by 0.5 seconds with respect to the mode 3 shown in the upper part of FIG. 4A.
  • the rising of the output PV2 in the fast mode and the rising of the output PV1 in the slow mode coincide, and in particular, the temperature difference between the two modes at the rising portion becomes even smaller. Looking at the upper part of FIG. 5B, it can be confirmed that the temperature difference is small. In this example, the maximum temperature difference is also improved to 12 ° C.
  • FIG. 6A and 6B show simulation results at different target values in the above-described aspect 5 (configuration 1 + 2 + 3 + 4 + 5). In other words, it is a simulation result at different target values in the control device 10 including all of the configurations 1 to 5 described above.
  • the target value r1 in the slow mode is set to 100 ° C.
  • the target value r2 in the fast mode is set to 200 ° C. as the target values.
  • the ratio of the temperature to each target value is controlled, and it can be confirmed from the upper stage of FIG. 6A that the arrival time to the target value is substantially the same according to the control of the temperature ratio.
  • the temperature difference in the upper part of FIG. 6B is also controlled to 100 ° C. (target value difference) in a steady state.
  • FIG. 7A and 7B show the simulation results for the same target value in the above-described aspect 5.
  • FIG. 7B it can be confirmed that the transient characteristics (overshoot amount and settling time) are improved in the average temperature characteristics, and the maximum temperature difference is 12 ° C., which is superior to the conventional method.
  • control system for the point with the slowest response to the input may be set to the slow mode, and the control systems for other points may be set to the fast mode in parallel on the downstream side of the signal.
  • the slow mode output with the slowest response may be set as the target value in all the control systems in the fast mode.
  • the control system for one of the points where the response to the input is relatively slow with respect to other measurement points may be set to the slow mode.
  • a mode in which a deviation between the target value and the output is large may be regarded as a master and arranged upstream, and the output may be set as a target value for other modes.
  • the present invention is applicable to, for example, a multi-input / output control system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

With the present invention, the output difference at each point (the temperature difference between multiple points, for example) as well as the transient characteristics of the average of the output of each point (the average temperature, for example) are controlled to desired characteristics. A control device (10) controls a control object having a plurality of measurement points and a plurality of inputs that correspond to the plurality of measurement points, wherein the control device (10) comprises: a first control element (11) that, with respect to a first partial control object (1A) for which the measurement point among the measurement points that has a slower response to an input than the response of other measurement points is taken as the output, and for which the input corresponding to the measurement point is taken as the input, controls the physical quantity for that measurement point; and a second control element (16) that, with respect to a second partial control object (1B) for which the measurement point among the measurement points that is not the measurement point of the first partial control object (1A) is taken as an output, and for which the input corresponding to the measurement point is taken as the input, controls the physical quantity for that measurement point. A target value (SV2) for the measurement point of the second partial control object (1B) is determined on the basis of an output (PV1) of the first partial control object (1A), and is given to the second controller (16).

Description

制御装置及び制御方法Control apparatus and control method
 本発明は、制御装置及び制御方法に係り、特に多入出力制御系における制御装置及び制御方法に関する。 The present invention relates to a control device and a control method, and more particularly to a control device and a control method in a multi-input / output control system.
 複数のセンサと熱源(アクチュエータ)による多点制御が必要な、干渉を有するシステムにおける温度調整系が知られている。このような温度調整系は、例えば、空調システム、射出成型機などに利用されている。このようなシステムでは、多点それぞれが、対応する個々の目標値に素早く追従することだけでなく、目標値に到達するまでの過渡状態においても、多点間の温度差を零に制御するニーズ、及び、目標値が各点で異なる場合には目標値と出力値の比率を多点間で同じに制御するニーズがある。さらに、省エネルギーという観点からも、過渡状態での追従特性を改善し、特に行き過ぎ量を抑えたいというニーズがある。 A temperature adjustment system in a system having interference that requires multipoint control with a plurality of sensors and a heat source (actuator) is known. Such a temperature control system is used in, for example, an air conditioning system and an injection molding machine. In such a system, there is a need for each point to control the temperature difference between multiple points to zero in the transient state until the target value is reached as well as quickly following each corresponding target value. When the target value is different at each point, there is a need to control the ratio between the target value and the output value to be the same among multiple points. Furthermore, from the viewpoint of energy saving, there is a need to improve the follow-up characteristics in a transient state and particularly to suppress the overshoot amount.
 従来から、多点温度制御としてPID制御を用いた多点PID制御法がよく用いられている。これに対して、多点の温度差と平均温度を制御する下記特許文献1に示す方法、及び、非干渉化と極零相殺を用いた下記特許文献2に示す方法などが提案されている。例えば特許文献1は、各温度から平均温度(全体の平均温度)と多点間の温度差へのモード変換行列Gmと、ヒータへの操作量を適切に分配する前置補償行列Gcにより、全体の温度を制御しつつ、温度差も制御可能な構造が開示されている(例えば、同文献の図25参照)。 Conventionally, a multi-point PID control method using PID control is often used as multi-point temperature control. On the other hand, a method shown in the following Patent Document 1 for controlling a temperature difference and an average temperature at multiple points, a method shown in the following Patent Document 2 using non-interference and pole-zero cancellation, and the like have been proposed. For example, Patent Document 1 discloses that a mode conversion matrix Gm from each temperature to an average temperature (overall average temperature) and a temperature difference between multiple points, and a pre-compensation matrix Gc that appropriately distributes an operation amount to the heater, A structure is disclosed in which the temperature difference can be controlled while controlling the temperature (see, for example, FIG. 25 of the same document).
 また、特許文献2は、干渉項に対する補償項β’により干渉項を相殺しつつ制御対象の逆特性(温度差モデルの逆特性)により対象の動特性を相殺し、理想の一次遅れモデルを仮定し、PID制御を行う構造が開示されている。 Further, Patent Document 2 assumes an ideal first-order lag model by canceling the target dynamic characteristic by the reverse characteristic of the control target (the reverse characteristic of the temperature difference model) while canceling the interference term by the compensation term β ′ for the interference term. However, a structure for performing PID control is disclosed.
特開2001-296902号公報JP 2001-296902 A 特開2009-282878号公報JP 2009-282878 A
 特許文献1及び2に開示されたいずれの手法も、多点の温度差を最小化しつつ目標温度へ追従させることを目的としている。しかしながら、これらの手法は以下のような課題がある。 Both methods disclosed in Patent Documents 1 and 2 are intended to follow a target temperature while minimizing a temperature difference between multiple points. However, these methods have the following problems.
 まず、制御対象の特性はむだ時間を含んでいるため、PID制御器設計にはむだ時間を考慮した設計が必要である。例えば、ジーグラ・ニコルス(Ziegler-Nichols、ZN)法などによる設計となる。これに伴い、特許文献1に示す方法は従来法(多点PID制御法)に比べ改善され得るが、平均温度においては大幅な特性改善は望めない。また、特許文献1に示す方法では、多点の目標値が異なる場合、温度差(の絶対値)しか制御できず、例えば到達時間を同一に制御する場合、その傾きを制御することはできない。 First, since the characteristics of the controlled object include dead time, the PID controller design needs to be designed in consideration of the dead time. For example, the design is based on the Ziegler-Nichols (ZN) method. Accordingly, the method shown in Patent Document 1 can be improved as compared with the conventional method (multi-point PID control method), but a significant improvement in characteristics cannot be expected at the average temperature. Moreover, in the method shown in Patent Document 1, when multiple target values are different, only the temperature difference (absolute value) can be controlled. For example, when the arrival times are controlled to be the same, the inclination cannot be controlled.
 上述の多点温度制御法は、いずれも多点間の温度差に主眼をおいた制御法であり、必ずしもむだ時間を考慮した過渡特性に対する性能改善については焦点をあてていない。その結果、温度差と平均温度に対する過渡特性を両立して積極的に改善することは望めない。このような課題は、温度制御以外でも、むだ時間要素を含む制御対象においては同様である。 The above-mentioned multipoint temperature control methods are all control methods that focus on the temperature difference between the multipoints, and do not necessarily focus on improving the performance with respect to the transient characteristics considering the dead time. As a result, it is not possible to improve the temperature difference and the transient characteristics with respect to the average temperature at the same time. Such a problem is similar to a control object including a dead time element other than temperature control.
 本発明は以上の点に鑑み、各点での出力の差(例えば多点間の温度差)とともに各点の出力の平均(例えば平均温度)の過渡特性を所望の特性に制御する制御装置及び制御方法を提供することを目的とする。 In view of the above points, the present invention provides a control device that controls the transient characteristics of the average (for example, average temperature) of the output at each point as well as the difference in the output at each point (for example, the temperature difference between multiple points), and An object is to provide a control method.
 本発明の第1の解決手段によると、複数の測定点と各測定点に対応する複数の入力を有する制御対象を制御する制御装置であって、(a)上記測定点のうち入力に対する応答が他の測定点での応答に比べて遅い測定点を出力とし、該測定点に対応する入力を入力とする第1の部分制御対象に対して、該測定点における物理量を制御する第1の制御器と、(b)上記測定点のうち上記第1の部分制御対象の測定点以外の測定点を出力とし、該測定点に対応する入力を入力とする第2の部分制御対象に対して、該測定点における物理量を制御する第2の制御器とを備え、(c)上記第2の部分制御対象の測定点に対する目標値を上記第1の部分制御対象の出力に基づいて定め、上記第2の制御器に与える制御装置が提供される。 According to the first solving means of the present invention, there is provided a control device for controlling a control object having a plurality of measurement points and a plurality of inputs corresponding to the respective measurement points, and (a) a response to an input among the measurement points is provided. First control for controlling a physical quantity at a measurement point with respect to a first partial control target having a measurement point that is slower than the response at another measurement point as an output and an input corresponding to the measurement point as an input And (b) a second measurement target other than the measurement point of the first partial control object among the measurement points as an output and an input corresponding to the measurement point as an input, A second controller for controlling a physical quantity at the measurement point; (c) determining a target value for the measurement point of the second partial control target based on an output of the first partial control target; A control device is provided for the second controller.
 本発明の第2の解決手段によると、複数の測定点と各測定点に対応する複数の入力を有する制御対象を制御する制御方法であって、(A)上記測定点のうち入力に対する応答が他の測定点での応答に比べて遅い測定点を出力とし、該測定点に対応する入力を入力とする第1の部分制御対象に対して、該測定点における物理量を制御することと、(B)上記測定点のうち上記第1の部分制御対象の測定点以外の測定点を出力とし、該測定点に対応する入力を入力とする第2の部分制御対象に対して、該測定点における物理量を制御することと、(C)上記第2の部分制御対象の測定点に対する目標値を上記第1の部分制御対象の出力に基づいて定めることを含む制御方法が提供される。 According to the second solving means of the present invention, there is provided a control method for controlling a control object having a plurality of measurement points and a plurality of inputs corresponding to the respective measurement points, and (A) a response to an input among the measurement points is provided. Controlling a physical quantity at the measurement point with respect to a first partial control object having a measurement point that is slower than the response at another measurement point as an output and an input corresponding to the measurement point as an input; B) Among the measurement points, a measurement point other than the measurement point of the first partial control object is output, and a second partial control object that has an input corresponding to the measurement point as an input is There is provided a control method including controlling a physical quantity and (C) determining a target value for a measurement point of the second partial control target based on an output of the first partial control target.
 本発明によると、各点での出力の差(例えば多点間の温度差)とともに各点の出力の平均(例えば平均温度)の過渡特性を所望の特性に制御する制御装置及び制御方法を提供することができる。 According to the present invention, there is provided a control device and a control method for controlling a transient characteristic of an average (eg, average temperature) of outputs at each point as well as a difference in output at each point (eg, temperature difference between multiple points) to a desired characteristic. can do.
本実施の形態における制御系のブロック図である。It is a block diagram of a control system in the present embodiment. 従来の制御法による平均温度と多点間の温度差のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the temperature difference between the average temperature by a conventional control method, and many points. 本実施の形態における態様2(構成1+2)におけるシミュレーション結果を示すグラフ(1)である。It is a graph (1) which shows the simulation result in aspect 2 (configuration 1 + 2) in the present embodiment. 本実施の形態における態様2におけるシミュレーション結果を示すグラフ(2)である。It is a graph (2) which shows the simulation result in the aspect 2 in this Embodiment. 本実施の形態における態様3(構成1+2+3)におけるシミュレーション結果を示すグラフ(1)である。It is a graph (1) which shows the simulation result in the aspect 3 (configuration 1 + 2 + 3) in the present embodiment. 本実施の形態における態様3におけるシミュレーション結果を示すグラフ(2)である。It is a graph (2) which shows the simulation result in the aspect 3 in this Embodiment. 本実施の形態における態様4(構成1+2+3+4)におけるシミュレーション結果を示すグラフ(1)である。It is a graph (1) which shows the simulation result in the aspect 4 (configuration 1 + 2 + 3 + 4) in the present embodiment. 本実施の形態における態様4におけるシミュレーション結果を示すグラフ(2)である。It is a graph (2) which shows the simulation result in the aspect 4 in this Embodiment. 本実施の形態における態様5(構成1+2+3+4+5)で異なる目標値におけるシミュレーション結果を示すグラフ(1)である。It is graph (1) which shows the simulation result in a different target value by the aspect 5 (configuration 1 + 2 + 3 + 4 + 5) in this Embodiment. 本実施の形態における態様5で異なる目標値におけるシミュレーション結果を示すグラフ(2)である。It is a graph (2) which shows the simulation result in a different target value by the aspect 5 in this Embodiment. 本実施の形態における態様5で同一目標値におけるシミュレーション結果を示すグラフ(1)である。It is a graph (1) which shows the simulation result in the same target value by the aspect 5 in this Embodiment. 本実施の形態における態様5で同一目標値におけるシミュレーション結果を示すグラフ(2)である。It is a graph (2) which shows the simulation result in the same target value by the aspect 5 in this Embodiment. 本実施の形態における態様6(構成1+3)におけるシミュレーション結果を示すグラフ(1)である。It is a graph (1) which shows the simulation result in the aspect 6 (configuration 1 + 3) in this Embodiment. 本実施の形態における態様6におけるシミュレーション結果を示すグラフ(2)である。It is a graph (2) which shows the simulation result in the aspect 6 in this Embodiment.
 以下、本発明の実施形態を、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1.本実施の形態の基本構成
 まず、本実施の形態の基本構成について説明する。本実施の形態では、多点温度制御などの多入出力制御系(多入出力制御システム)において、入力に対して測定値(例えば、温度)の立ち上がりが比較的遅い点(この点に対する制御系を、以下スローモード(Slow mode)とも称する)に着目し、その出力に上記測定点以外の測定点(この点に対する制御系を、以下ファストモード(Fast mode)とも称する)を追従させる。このような構成を基本構成とし、多点間の温度差とともに平均温度の過渡特性を所望の特性に制御する。また、PID制御器設計時にむだ時間を考慮することなく設計可能な制御装置及び設計方法を提案する。更に、多点の目標値が異なる場合であっても、立ち上がりの温度比率(目標値に対する測定温度の比率)を均等にし、ほぼ同じタイミングで各点を目標値に到達させる。
1. First, the basic configuration of the present embodiment will be described. In the present embodiment, in a multi-input / output control system (multi-input / output control system) such as multi-point temperature control, the rise of a measured value (for example, temperature) relative to the input is relatively slow (the control system for this point). , Hereinafter referred to as a slow mode), and a measurement point other than the above measurement point (the control system for this point is also referred to as a fast mode hereinafter) follows the output. Such a configuration is a basic configuration, and the transient characteristic of the average temperature is controlled to a desired characteristic together with the temperature difference between multiple points. In addition, a control device and a design method that can be designed without considering dead time when designing a PID controller are proposed. Further, even when the target values at multiple points are different, the rising temperature ratio (ratio of the measured temperature with respect to the target value) is made equal, and each point reaches the target value at substantially the same timing.
 なお、本実施の形態は温度を制御する例を用いて説明するが、温度以外の物理量を制御してもよい。また、制御する温度は、測定点で測定(検出)される例を用いて説明するが、測定点で測定された温度に基づいて求められる測定点以外の温度、又は、測定点で測定された物理量に基づいて求められる温度を制御してもよい。換言すると、制御する物理量は、測定点で直接測定される必要はない。 In addition, although this Embodiment demonstrates using the example which controls temperature, you may control physical quantities other than temperature. The temperature to be controlled will be described using an example of measurement (detection) at a measurement point. However, the temperature to be controlled was measured at a temperature other than the measurement point obtained based on the temperature measured at the measurement point, or measured at the measurement point. You may control the temperature calculated | required based on a physical quantity. In other words, the physical quantity to be controlled need not be measured directly at the measurement point.
2.制御装置の構成例
 図1は、本実施の形態における多入出力制御系のブロック図である。本実施の形態における制御装置10は、制御対象1の複数の測定点における各物理量を制御する。制御装置10は、例えば、第1のPID制御器(第1の制御器)11と、第1のむだ時間差補償器12と、第1のむだ時間補償器13と、第2のむだ時間差補償器14と、フィードフォワ―ド補償器(FF補償器)15と、第2のPID制御器(第2の制御器)16と、第2のむだ時間補償器17と、目標値調整器18とを備える。なお、後述するように、第1のむだ時間差補償器12、第1のむだ時間補償器13、第2のむだ時間差補償器14、FF補償器15、第2のむだ時間補償器17、及び、目標値調整器18は適宜省略することができる。
2. Configuration Example of Control Device FIG. 1 is a block diagram of a multi-input / output control system in the present embodiment. The control device 10 in this embodiment controls each physical quantity at a plurality of measurement points of the control target 1. The control device 10 includes, for example, a first PID controller (first controller) 11, a first dead time difference compensator 12, a first dead time compensator 13, and a second dead time difference compensator. 14, a feedforward compensator (FF compensator) 15, a second PID controller (second controller) 16, a second dead time compensator 17, and a target value adjuster 18. Prepare. As will be described later, the first dead time difference compensator 12, the first dead time compensator 13, the second dead time difference compensator 14, the FF compensator 15, the second dead time compensator 17, and The target value adjuster 18 can be omitted as appropriate.
 制御対象1は、複数の測定点と各測定点に対応する複数の入力を有する。制御対象1は、第1の部分制御対象1Aと第2の部分制御対象1Bとに分けて図示されている。第1の部分制御対象1Aは、複数の測定点のうち入力に対する応答が他の測定点での応答に比べて遅い測定点(第1測定点)を出力とし、第1測定点に対応する入力を入力とする。第2の部分制御対象1Bは、複数の測定点のうち第1の部分制御対象1Aの測定点以外の測定点(第2測定点)を出力とし、該測定点に対応する入力を入力とする。第2の部分制御対象1Bの出力は、換言すれば、入力に対する応答が比較的速い測定点である。なお、第1の部分制御対象1A及び第2の部分制御対象1Bはそれぞれ、外乱を受ける場合がある。また、第1の部分制御対象1Aは、第2の部分制御対象1Bの入力等からの干渉を受ける場合があり、逆も同じである。 The control object 1 has a plurality of measurement points and a plurality of inputs corresponding to each measurement point. The control target 1 is illustrated as being divided into a first partial control target 1A and a second partial control target 1B. The first partial control object 1A outputs a measurement point (first measurement point) whose response to the input is slower than the response at other measurement points among the plurality of measurement points, and an input corresponding to the first measurement point. As an input. The second partial control target 1B outputs a measurement point (second measurement point) other than the measurement point of the first partial control target 1A among a plurality of measurement points, and inputs corresponding to the measurement points as inputs. . In other words, the output of the second partial control target 1B is a measurement point that has a relatively fast response to the input. Note that the first partial control target 1A and the second partial control target 1B may each be subject to disturbance. Further, the first partial control target 1A may receive interference from the input or the like of the second partial control target 1B, and vice versa.
 第1のPID制御器11は、第1の部分制御対象1Aに対してPID制御を行う。第2のPID制御器16は、第2の部分制御対象1Bに対してPID制御を行う。第1のPID制御器11及び第2のPID制御器16の設計手法は、従来の手法を用いることができる。なお、PID制御以外の他の制御法を用いてもよい。 The first PID controller 11 performs PID control on the first partial control target 1A. The second PID controller 16 performs PID control on the second partial control target 1B. A conventional technique can be used as a design technique for the first PID controller 11 and the second PID controller 16. A control method other than PID control may be used.
 以下、本実施の形態における各構成例を、図1を参照して説明する。 Hereinafter, each configuration example in the present embodiment will be described with reference to FIG.
(構成1)
 本実施の形態は、上述の基本構成で述べたように、スローモードの出力にファストモードの出力を追従させる構成を有する。例えば、第2の部分制御対象1Bの目標値SV2を、第1の部分制御対象1Aの出力PV1に基づいて定め、第2のPID制御器16に与える。なお、第1の部分制御対象1Aの出力PV1をそのまま第2の部分制御対象1Bの目標値SV2としてもよいが、後述するように、第1のむだ時間補償器13、第2のむだ時間差補償器14、及び/又は、目標値調整器18により、第1の部分制御対象1Aの出力PV1に基づいて第2の部分制御対象1Bの目標値SV2を求めることができる。図1に示すように、ブロック線図の左側(信号の上流側。マスタと呼ぶ場合もある)にスローモードを配置し、右側(信号の下流側。スレーブと呼ぶ場合もある)にファストモードを配置する。
(Configuration 1)
As described in the above basic configuration, the present embodiment has a configuration in which the output in the fast mode follows the output in the slow mode. For example, the target value SV2 of the second partial control target 1B is determined based on the output PV1 of the first partial control target 1A and given to the second PID controller 16. The output PV1 of the first partial control target 1A may be used as the target value SV2 of the second partial control target 1B as it is, but as will be described later, the first dead time compensator 13 and the second dead time difference compensation. The target value SV2 of the second partial control target 1B can be obtained based on the output PV1 of the first partial control target 1A by the device 14 and / or the target value adjuster 18. As shown in FIG. 1, the slow mode is arranged on the left side of the block diagram (upstream of the signal, sometimes called a master), and the fast mode is arranged on the right side (downstream of the signal, sometimes called a slave). Deploy.
 このような構成により、スローモードとファストモードの2点間の温度差を零に近づけるような制御が可能となる。 This configuration makes it possible to control the temperature difference between the two points in the slow mode and the fast mode to approach zero.
(構成2)
 本実施の形態は、スローモードの出力PV1に対して第1の部分制御対象1Aの時間遅れを補償してファストモードにおける目標値SV2を求める構成(第1のむだ時間補償器13)を有する。
(Configuration 2)
The present embodiment has a configuration (first dead time compensator 13) that obtains the target value SV2 in the fast mode by compensating for the time delay of the first partial control target 1A with respect to the output PV1 in the slow mode.
 スローモードの出力(第1の部分制御対象1Aの出力PV1)をそのままファストモードにおける目標値SV2とした場合、ファストモードの応答は、スローモードにおける時間遅れに加えて、ファストモードの時間遅れ分(むだ時間分)遅れて出力される。本実施の形態の第1のむだ時間補償器13は、第1の部分制御対象1Aの出力PV1から、第1の部分制御対象1Aのむだ時間成分を除去する。換言すると、第1のむだ時間補償器13からの出力は、スローモードの遅れ無し出力である。なお、多入出力制御系に干渉項が存在する場合、目標値SV2が定常偏差を持ち、その結果、ファストモードの出力PV2にも定常偏差が生じる。そこで、第1のむだ時間補償器13では、干渉項や外乱信号をそれに含む信号を出力する。 When the output in the slow mode (the output PV1 of the first partial control target 1A) is used as the target value SV2 in the fast mode as it is, the response in the fast mode is the time delay in the fast mode (in addition to the time delay in the slow mode ( Output is delayed by the dead time). The first dead time compensator 13 of the present embodiment removes the dead time component of the first partial control target 1A from the output PV1 of the first partial control target 1A. In other words, the output from the first dead time compensator 13 is an output without delay in the slow mode. When an interference term exists in the multi-input / output control system, the target value SV2 has a steady deviation, and as a result, a steady deviation also occurs in the fast mode output PV2. Therefore, the first dead time compensator 13 outputs a signal including an interference term and a disturbance signal.
 具体的には、第1のむだ時間補償器13は、Smith法の制御構造を応用して実現することができる。例えば、第1のむだ時間補償器13は、第1の部分制御対象1Aのむだ時間成分を含む第1の部分制御対象1Aのモデル(第1のモデル)と、第1の部分制御対象1Aのむだ時間成分を除いた第1の部分制御対象1Aのモデル(第2のモデル)を有する。例えば、第1のモデルには第1の部分制御対象1Aに対する操作量MV1を入力し、第1のモデルの出力を得る。また、例えば、第2のモデルには第1のPID制御器11からの出力を入力し、第2のモデルの出力を得る。第1のむだ時間補償器13は、例えば、第1の部分制御対象1Aの出力PV1から第1のモデルの出力を減算して、干渉項と外乱に相当する成分を求める。さらに、第1のむだ時間補償器13は、減算結果に第2のモデルの出力を加算して出力する。なお、上述の加算及び減算の順序が逆でもよいことはいうまでもない。第2のむだ時間補償器17は第1のむだ時間補償器13と同様に、第2の部分制御対象1Bに対する上記第1のモデルと第2のモデルを有し、同様の処理を行うように構成することができる。 Specifically, the first dead time compensator 13 can be realized by applying a control structure of the Smith method. For example, the first dead time compensator 13 includes a model (first model) of the first partial control target 1A including the dead time component of the first partial control target 1A, and the first partial control target 1A. It has a model (second model) of the first partial control target 1A excluding the time delay component. For example, the operation amount MV1 for the first partial control target 1A is input to the first model, and the output of the first model is obtained. Further, for example, the output from the first PID controller 11 is input to the second model, and the output of the second model is obtained. For example, the first dead time compensator 13 subtracts the output of the first model from the output PV1 of the first partial control target 1A to obtain an interference term and a component corresponding to the disturbance. Further, the first dead time compensator 13 adds the output of the second model to the subtraction result and outputs the result. Needless to say, the order of addition and subtraction described above may be reversed. Similarly to the first dead time compensator 13, the second dead time compensator 17 has the first model and the second model for the second partial control target 1B, and performs the same processing. Can be configured.
 なお、第1のむだ時間補償器13からの出力を、第1の部分制御対象1Aに対するフィードバックループにおけるフィードバックとしてもよい。また、第2の部分制御対象1Bの出力に対しても、第2のむだ時間補償器17より第2の部分制御対象1Bの時間遅れを補償して、第2の部分制御対象1Bに対するフィードバックループにおけるフィードバックとしてもよい。 Note that the output from the first dead time compensator 13 may be feedback in a feedback loop for the first partial control target 1A. Further, the output of the second partial control target 1B is also compensated for the time delay of the second partial control target 1B by the second dead time compensator 17 to provide a feedback loop for the second partial control target 1B. It is good also as feedback in.
 このような構成により、ファストモードの出力が、スローモードの時間遅れとファストモードの時間遅れの双方を含むことを回避できる。また、外乱や干渉項を同定あるいは推定せずとも、ファストモードの出力での定常偏差を少なく又は零にできる。
(構成3)
With such a configuration, it is possible to avoid that the output in the fast mode includes both the time delay in the slow mode and the time delay in the fast mode. Further, the steady-state deviation at the output of the fast mode can be reduced or zero without identifying or estimating the disturbance or the interference term.
(Configuration 3)
 本実施の形態は、ファストモードにおける目標値応答について、第2のPID制御器16とFF補償器15を有する構成とする。 This embodiment is configured to include the second PID controller 16 and the FF compensator 15 for the target value response in the fast mode.
 FF補償器15は、第2の部分制御対象1Bの逆特性を有する。第2の部分制御対象1Bの目標値SV2をFF補償器15と第2のPID制御器16に与え、FF補償器15の出力と第2のPID制御器16の出力を加算して第2の部分制御対象1Bに与える。 The FF compensator 15 has a reverse characteristic of the second partial control target 1B. The target value SV2 of the second partial control target 1B is supplied to the FF compensator 15 and the second PID controller 16, and the output of the FF compensator 15 and the output of the second PID controller 16 are added to obtain the second value This is given to the partial control object 1B.
 このような構成により、ファストモード自身の追従性を改善できる。換言すると、ファストモード自身の持つ動特性の遅れを改善し、スローモードの出力に対してほぼ遅れなく追従可能となる。これにより、スローモードとファストモードの温度差をより小さくすることが可能である。 Such a configuration can improve the followability of the fast mode itself. In other words, the delay of the dynamic characteristics of the fast mode itself can be improved, and the output of the slow mode can be followed almost without delay. Thereby, the temperature difference between the slow mode and the fast mode can be further reduced.
(構成4)
 本実施の形態は、スローモードとファストモードの間のむだ時間差を補償する構成(第1のむだ時間差補償器12、第2のむだ時間差補償器14)を有する。
(Configuration 4)
The present embodiment has a configuration (a first dead time difference compensator 12 and a second dead time difference compensator 14) for compensating for a dead time difference between the slow mode and the fast mode.
 スローモードの第1の部分制御対象1Aとファストモードの第2の部分制御対象1Bは、各々のむだ時間に差がある。したがって、第1のむだ時間補償器13からの遅れ無し出力をファストモードにおける目標値SV2とした場合、第1の部分制御対象1Aの出力PV1は第1の部分制御対象1Aのむだ時間分(L1とする)だけ遅れて出力されるのに対して、第2の部分制御対象1Bの出力PV2は第2の部分制御対象1Bのむだ時間分(L2とする)だけ遅れて出力される。その結果、両モードの出力にはむだ時間差分だけ時間差が生じる。これにより、同じ時間でみると温度差が生じる。 The first partial control target 1A in the slow mode and the second partial control target 1B in the fast mode have different dead times. Therefore, when the output without delay from the first dead time compensator 13 is set to the target value SV2 in the fast mode, the output PV1 of the first partial control target 1A is equal to the dead time (L1 of the first partial control target 1A). The output PV2 of the second partial control target 1B is output with a delay corresponding to the dead time (L2) of the second partial control target 1B. As a result, there is a time difference between the outputs of both modes by a dead time difference. This causes a temperature difference when viewed at the same time.
 本実施の形態の第1のむだ時間差補償器12は、第2の部分制御対象1Bのむだ時間が第1の部分制御対象1Aのむだ時間より長い場合(L2>L1)、第1の部分制御対象1Aの操作量を遅らせる。第1のむだ時間差補償器12は、例えば第2の部分制御対象1Bのむだ時間から第1の部分制御対象1Aのむだ時間を引いた差分(L2-L1)の時間だけ遅らせる。第2のむだ時間差補償器14は、第1の部分制御対象1Aのむだ時間が第2の部分制御対象1Bのむだ時間より長い場合(L1>L2)、第2の部分制御対象1Bの目標値又は操作量を遅らせる。第2のむだ時間差補償器14は、例えば第1の部分制御対象1Aのむだ時間から第2の部分制御対象1Bのむだ時間を引いた差分(L1-L2)の時間だけ遅らせる。 The first dead time difference compensator 12 of the present embodiment, when the dead time of the second partial control target 1B is longer than the dead time of the first partial control target 1A (L2> L1), The operation amount of the target 1A is delayed. The first dead time difference compensator 12 delays, for example, a difference (L2−L1) obtained by subtracting the dead time of the first partial control target 1A from the dead time of the second partial control target 1B. When the dead time of the first partial control target 1A is longer than the dead time of the second partial control target 1B (L1> L2), the second dead time difference compensator 14 sets the target value of the second partial control target 1B. Or delay the operation amount. The second dead time difference compensator 14 delays, for example, by a difference (L1-L2) obtained by subtracting the dead time of the second partial control target 1B from the dead time of the first partial control target 1A.
 なお、第2の部分制御対象1Bのむだ時間が第1の部分制御対象1Aのむだ時間より長い場合、第1のむだ時間差補償器12を有効にし、第1の部分制御対象1Aのむだ時間が第2の部分制御対象1Bのむだ時間より長い場合、第2のむだ時間差補償器14を有効にする切り替え部(図示せず)をさらに有しても良い。 When the dead time of the second partial control object 1B is longer than the dead time of the first partial control object 1A, the first dead time difference compensator 12 is enabled and the dead time of the first partial control object 1A is activated. When the dead time is longer than that of the second partial control target 1B, a switching unit (not shown) that enables the second dead time difference compensator 14 may be further included.
 このような構成により、ファストモードの出力波形の形状がスローモードの出力波形の形状に一致しても、両出力にむだ時間差分だけ時間的にずれが生じ、出力の差(例えば、温度差)が一致しないという状況を改善できる。換言すると、応答波形の形状はスローモードの波形に一致させ、時間軸ではむだ時間の長いモードに一致させることで、両者の温度差の最小化を図ることが可能となる。 With such a configuration, even if the shape of the output waveform in the fast mode matches the shape of the output waveform in the slow mode, there is a time lag between both outputs, resulting in a difference in output (for example, temperature difference). Can be improved. In other words, it is possible to minimize the temperature difference between the two by matching the shape of the response waveform with the waveform of the slow mode and matching the mode with a long dead time on the time axis.
(構成5)
 本実施の形態は、スローモードとファストモードにおける目標値が異なる場合でも、各モードにおける目標値の比を用いてファストモードにおける目標値を適切に設定する構成(目標値調整器18)を有する。
(Configuration 5)
The present embodiment has a configuration (target value adjuster 18) that appropriately sets the target value in the fast mode using the ratio of the target values in each mode even when the target values in the slow mode and the fast mode are different.
 目標値調整器18は、スローモードにおける目標値r1とファストモードにおける目標値r2の比(r2/r1)を入力される信号に乗じて出力する。ここでのファストモードにおける目標値r2とは、スローモードの出力に応じて動的に設定される目標値SV2ではなく、ファストモードの出力PVを最終的に到達させたい本来の目標値(本明細書において、最終目標値と称する)である。ここでのスローモードにおける目標値r1は、上述の目標値SV1と同じであるが、便宜上r1と記す。 The target value adjuster 18 multiplies the input signal by the ratio (r2 / r1) between the target value r1 in the slow mode and the target value r2 in the fast mode and outputs the result. Here, the target value r2 in the fast mode is not the target value SV2 that is dynamically set according to the output in the slow mode, but the original target value that the fast mode output PV is to finally reach (this specification) (Referred to as the final target value). The target value r1 in the slow mode here is the same as the above-described target value SV1, but is referred to as r1 for convenience.
 このような構成により、温度差の制御に加え、多点間の温度の比を直接制御することができる。より具体的には、多点の目標値が異なる場合にも、スローモードの応答に対してファストモードの応答をそれらの比率を一定に制御しながら異なる目標値に追従させることができる。また、多点での目標値への到達時間を一致させ、またその応答の傾き(レート)を直接的に制御することができる。 Such a configuration makes it possible to directly control the temperature ratio between multiple points in addition to controlling the temperature difference. More specifically, even when multipoint target values are different, it is possible to follow different target values while controlling the ratio of the fast mode response to the slow mode response at a constant rate. In addition, it is possible to match the arrival times to the target values at multiple points and to directly control the slope (rate) of the response.
 上述の構成1を基本構成とし、構成2乃至構成5を適宜組み合わせることができる。例えば本実施の形態の制御装置10は、以下の各態様のように構成することができるが、この組み合わせのみに限定されるものではない。 The above-described configuration 1 is a basic configuration, and configurations 2 to 5 can be combined as appropriate. For example, although the control apparatus 10 of this Embodiment can be comprised like each following aspect, it is not limited only to this combination.
(態様1)
 制御装置10は上述の構成1で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と第2のPID制御器16を備える。第2の部分制御対象1Bの目標値として第1の部分制御対象1Aの出力を用いる。
(Aspect 1)
The control device 10 may be configured with the configuration 1 described above. In other words, the control device 10 includes a first PID controller 11 and a second PID controller 16. The output of the first partial control target 1A is used as the target value of the second partial control target 1B.
(態様2)
 制御装置10は、上述の構成1と構成2で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と、第2のPID制御器16と、第1のむだ時間補償器13を備える。制御装置10は、第2のむだ時間補償器17をさらに備えても良い。第2の部分制御対象1Bの目標値として、第1のむだ時間補償器13の出力を用いる。
(Aspect 2)
The control device 10 may be configured by the above-described configuration 1 and configuration 2. In other words, the control device 10 includes a first PID controller 11, a second PID controller 16, and a first dead time compensator 13. The control device 10 may further include a second dead time compensator 17. The output of the first dead time compensator 13 is used as the target value of the second partial control target 1B.
(態様3)
 制御装置10は、上述の構成1~構成3で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と、第2のPID制御器16と、第1のむだ時間補償器13と、FF補償器15を備える。制御装置10は、第2のむだ時間補償器17をさらに備えても良い。第2の部分制御対象1Bの目標値として、第1のむだ時間補償器13の出力を用いる。
(Aspect 3)
The control device 10 may be configured by the above-described configurations 1 to 3. In other words, the control device 10 includes the first PID controller 11, the second PID controller 16, the first dead time compensator 13, and the FF compensator 15. The control device 10 may further include a second dead time compensator 17. The output of the first dead time compensator 13 is used as the target value of the second partial control target 1B.
(態様4)
 制御装置10は、上述の構成1~構成4で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と、第2のPID制御器16と、第1のむだ時間補償器13と、FF補償器15と、第1のむだ時間差補償器12と、第2のむだ時間差補償器14を備える。制御装置10は、第2のむだ時間補償器17をさらに備えても良い。第2の部分制御対象1Bの目標値として、第2のむだ時間差補償器14の出力を用いる。
(Aspect 4)
The control device 10 may be configured by the above-described configurations 1 to 4. In other words, the control device 10 includes the first PID controller 11, the second PID controller 16, the first dead time compensator 13, the FF compensator 15, and the first dead time difference compensator 12. And a second dead time difference compensator 14. The control device 10 may further include a second dead time compensator 17. As the target value of the second partial control target 1B, the output of the second dead time difference compensator 14 is used.
(態様5)
 制御装置10は、上述の構成1~構成5で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と、第2のPID制御器16と、第1のむだ時間補償器13と、FF補償器15と、第1のむだ時間差補償器12と、第2のむだ時間差補償器14と目標値調整器18を備える。制御装置10は、第2のむだ時間補償器17をさらに備えても良い。第2の部分制御対象1Bの目標値として、目標値調整器18の出力を用いる。
(Aspect 5)
The control device 10 may be configured by the above-described configurations 1 to 5. In other words, the control device 10 includes the first PID controller 11, the second PID controller 16, the first dead time compensator 13, the FF compensator 15, and the first dead time difference compensator 12. And a second dead time difference compensator 14 and a target value adjuster 18. The control device 10 may further include a second dead time compensator 17. The output of the target value adjuster 18 is used as the target value of the second partial control target 1B.
(態様6)
 制御装置10は、上述の構成1と構成3で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と、第2のPID制御器16と、FF補償器15を備える。第2の部分制御対象1Bの目標値として第1の部分制御対象1Aの出力を用いる。
(Aspect 6)
The control device 10 may be configured by the above-described configuration 1 and configuration 3. In other words, the control device 10 includes the first PID controller 11, the second PID controller 16, and the FF compensator 15. The output of the first partial control target 1A is used as the target value of the second partial control target 1B.
(態様7)
 制御装置10は、上述の構成1と構成5で構成してもよい。換言すると、制御装置10は、第1のPID制御器11と、第2のPID制御器16と、目標値調整器18を備える。第2の部分制御対象1Bの目標値として、目標値調整器18の出力を用いる。
(Aspect 7)
The control device 10 may be configured by the above-described configuration 1 and configuration 5. In other words, the control device 10 includes a first PID controller 11, a second PID controller 16, and a target value adjuster 18. The output of the target value adjuster 18 is used as the target value of the second partial control target 1B.
(態様8)
 上述の態様1、態様2、及び、態様6に対して、構成4を更に付加してもよい。この場合、第2の部分制御対象1Bの目標値として、第2のむだ時間差補償器14の出力を用いる。
(Aspect 8)
The configuration 4 may be further added to the above-described modes 1, 2, and 6. In this case, the output of the second dead time difference compensator 14 is used as the target value of the second partial control target 1B.
(態様9)
 上述の態様1、態様2、態様6、及び、態様8に対して、構成5を更に付加してもよい。第2の部分制御対象1Bの目標値として、目標値調整器18の出力を用いる。
(Aspect 9)
The configuration 5 may be further added to the above-described embodiment 1, embodiment 2, embodiment 6, and embodiment 8. The output of the target value adjuster 18 is used as the target value of the second partial control target 1B.
3.シミュレーション結果
 次に、2入出力温度制御でのシミュレーション結果を示す。図2は、従来の制御法による平均温度と多点間の温度差のシミュレーション結果を示す。図では、多点制御、特許文献1に示す方法及び特許文献2に示す方法について、制御対象の2点の平均温度21と各点間の温度差22の結果を示している。図中、多点制御における結果を実線で示し、符号にaを付している。また、特許文献1に示す方法における結果を破線で示し、符号にbを付している。特許文献2に示す方法における結果を一点鎖線で示し、符号にcを付している。図より、多点制御、特許文献1に示す方法、及び特許文献2に示す方法での最大温度差は、それぞれ約68℃、約18℃、約25℃である。
3. Simulation Result Next, a simulation result in the two-input / output temperature control is shown. FIG. 2 shows a simulation result of an average temperature and a temperature difference between multiple points by a conventional control method. In the figure, for the multipoint control, the method shown in Patent Document 1 and the method shown in Patent Document 2, the results of the average temperature 21 at two points to be controlled and the temperature difference 22 between each point are shown. In the figure, the result in multipoint control is indicated by a solid line, and a is added to the reference symbol. Moreover, the result in the method shown in patent document 1 is shown with a broken line, and b is attached | subjected to the code | symbol. The result in the method shown in Patent Document 2 is indicated by a one-dot chain line, and c is attached to the reference numeral. From the figure, the maximum temperature differences in the multipoint control, the method shown in Patent Document 1, and the method shown in Patent Document 2 are about 68 ° C., about 18 ° C., and about 25 ° C., respectively.
 図3A及び図3Bは、上述の態様2(構成1+2)におけるシミュレーション結果を示す。換言すると、干渉項と外乱成分を含む、スローモードの遅れ無し出力(第1のむだ時間補償器13の出力)をファストモードにおける目標値SV2としたシミュレーション結果を示す。図3Aの上段は各モードにおける目標値SV1、SV2と出力PV1、PV2を示す。同図下段は各モードの制御入力MV1、MV2を示す。図3Bの上段は、各点の平均温度の目標値31、平均温度32、各点間の温度差の目標値41、及び、各点間の温度差42を示す。同図下段は制御入力を表している。図3B上段より、最大温度差(各点間の最大温度差)は約25℃であり、従来法と同等程度であることがわかる。また、目標値からの行き過ぎ量や整定時間といった動特性も改善されていることが確認できる。さらに、干渉があるにもかかわらず定常偏差は零となっている。 3A and 3B show simulation results in the above-described aspect 2 (configuration 1 + 2). In other words, a simulation result is shown in which the slow mode no delay output (the output of the first dead time compensator 13) including the interference term and the disturbance component is the target value SV2 in the fast mode. The upper part of FIG. 3A shows target values SV1 and SV2 and outputs PV1 and PV2 in each mode. The lower part of the figure shows the control inputs MV1 and MV2 in each mode. The upper part of FIG. 3B shows the target value 31 of the average temperature of each point, the average temperature 32, the target value 41 of the temperature difference between the points, and the temperature difference 42 between the points. The lower part of the figure represents the control input. From the upper part of FIG. 3B, it can be seen that the maximum temperature difference (maximum temperature difference between each point) is about 25 ° C., which is equivalent to the conventional method. It can also be confirmed that the dynamic characteristics such as the overshoot from the target value and the settling time are improved. Furthermore, the steady-state deviation is zero despite interference.
 図4A及び図4Bは、上述の態様3(構成1+2+3)におけるシミュレーション結果を示す。換言すると、ファストモードにFF補償器15を導入した場合のシミュレーション結果を示す。図4A上段より、FF補償器15によりファストモードの応答性、特に行き過ぎ量が低減し、その結果最大温度差が約15℃まで改善されたことがわかる。 4A and 4B show simulation results in the above-described aspect 3 (configuration 1 + 2 + 3). In other words, the simulation result when the FF compensator 15 is introduced in the fast mode is shown. From the upper part of FIG. 4A, it can be seen that the FF compensator 15 reduces the responsiveness of the fast mode, particularly the overshoot amount, and as a result, the maximum temperature difference is improved to about 15 ° C.
 図5A及び図5Bは、上述の態様4(構成1+2+3+4)におけるシミュレーション結果を示す。換言すると、スローモードとファストモードの制御対象のむだ時間の差を補償したシミュレーション結果を示す。なお、この例では、両モードのむだ時間の差は0.5秒であり、スローモードの方がファストモードに比べ、むだ時間が長い。図5A上段に示すように、図4A上段に示す態様3に対して、ファストモードの出力PV2の立ち上がりが0.5秒遅れる。このように、ファストモードの出力PV2の立ち上がりとスローモードの出力PV1の立ち上がりが一致し、特に立ち上がり部分での両モードの温度差が更に小さくなることがわかる。図5B上段を見ても、温度差が小さくなっていることが確認できる。この例では最大温度差も12℃に改善された結果となる。 FIG. 5A and FIG. 5B show simulation results in the above-described aspect 4 (configuration 1 + 2 + 3 + 4). In other words, a simulation result in which a difference in dead time between the slow mode and fast mode control objects is compensated is shown. In this example, the difference in dead time between the two modes is 0.5 seconds, and the dead time is longer in the slow mode than in the fast mode. As shown in the upper part of FIG. 5A, the rising of the output PV2 in the fast mode is delayed by 0.5 seconds with respect to the mode 3 shown in the upper part of FIG. 4A. Thus, it can be seen that the rising of the output PV2 in the fast mode and the rising of the output PV1 in the slow mode coincide, and in particular, the temperature difference between the two modes at the rising portion becomes even smaller. Looking at the upper part of FIG. 5B, it can be confirmed that the temperature difference is small. In this example, the maximum temperature difference is also improved to 12 ° C.
 図6A及び図6Bは、上述の態様5(構成1+2+3+4+5)で異なる目標値におけるシミュレーション結果を示す。換言すると、上述の構成1から構成5の全てを含む制御装置10での異なる目標値におけるシミュレーション結果である。この例では、目標値としてスローモードにおける目標値r1を100℃、ファストモードにおける目標値r2を200℃とした例を示す。態様5では、各目標値に対する温度の比が制御されており、図6A上段より、目標値への到達時間も温度の比の制御に応じてほぼ同一となっていることが確認できる。また、図6B上段の温度差も、定常状態で100℃(目標値の差)に制御されていることが確認できる。 6A and 6B show simulation results at different target values in the above-described aspect 5 (configuration 1 + 2 + 3 + 4 + 5). In other words, it is a simulation result at different target values in the control device 10 including all of the configurations 1 to 5 described above. In this example, the target value r1 in the slow mode is set to 100 ° C. and the target value r2 in the fast mode is set to 200 ° C. as the target values. In the aspect 5, the ratio of the temperature to each target value is controlled, and it can be confirmed from the upper stage of FIG. 6A that the arrival time to the target value is substantially the same according to the control of the temperature ratio. Moreover, it can be confirmed that the temperature difference in the upper part of FIG. 6B is also controlled to 100 ° C. (target value difference) in a steady state.
 図7A及び図7Bは、上述の態様5で同一目標値におけるシミュレーション結果を示す。換言すると、上述の構成1から構成5の全てを含む制御装置10での同一目標値におけるシミュレーション結果を示す。図7Bより、平均温度特性では過渡特性(行き過ぎ量及び整定時間)も改善されており、また最大温度差は12℃であり、従来法より優れた効果を奏することが確認できる。 7A and 7B show the simulation results for the same target value in the above-described aspect 5. FIG. In other words, a simulation result at the same target value in the control device 10 including all of the configurations 1 to 5 described above is shown. From FIG. 7B, it can be confirmed that the transient characteristics (overshoot amount and settling time) are improved in the average temperature characteristics, and the maximum temperature difference is 12 ° C., which is superior to the conventional method.
 図8A及び図8Bは、上述の態様6(構成1+3)におけるシミュレーション結果を示す。換言すると、ファストモードにFF補償器15を導入し、2自由度制御を適用した場合のシミュレーション結果を示す。従来の多点PID制御器に対して、応答が改善されることは確認できる。ただし、むだ時間分の遅れが生じるため応答が遅れる。
4.3点以上の制御
8A and 8B show simulation results in the above-described aspect 6 (configuration 1 + 3). In other words, the simulation result when the FF compensator 15 is introduced in the fast mode and the two-degree-of-freedom control is applied is shown. It can be confirmed that the response is improved with respect to the conventional multipoint PID controller. However, since a delay corresponding to the dead time occurs, the response is delayed.
4. Control over 3 points
 上述の実施の形態では、主に2つの測定点(2点)を制御する例を用いて説明したが、本実施の形態は3点以上を制御する場合にも適用可能である。3点以上の制御の場合には、例えば入力に対する応答が最も遅い点に対する制御系をスローモードとし、それ以外の点に対する各制御系をファストモードとして信号の下流側に並列に配置してもよい。この場合、応答が最も遅いスローモードの出力をファストモードのすべての制御系における目標値としてもよい。なお、応答が最も遅い点に対する制御系をスローモードとする以外に、入力に対する応答が他の測定点に対して相対的に遅い点のひとつに対する制御系をスローモードとしてもよい。また、目標値と出力の偏差が大きいモードをマスタと捉え上流に配置し、その出力をそれ以外のモードへの目標値とした構造にしてもよい。 In the above-described embodiment, description has been made mainly using an example in which two measurement points (two points) are controlled. However, this embodiment can also be applied to a case in which three or more points are controlled. In the case of control of three or more points, for example, the control system for the point with the slowest response to the input may be set to the slow mode, and the control systems for other points may be set to the fast mode in parallel on the downstream side of the signal. . In this case, the slow mode output with the slowest response may be set as the target value in all the control systems in the fast mode. In addition to setting the control system for the point with the slowest response to the slow mode, the control system for one of the points where the response to the input is relatively slow with respect to other measurement points may be set to the slow mode. Further, a mode in which a deviation between the target value and the output is large may be regarded as a master and arranged upstream, and the output may be set as a target value for other modes.
 本発明は、例えば、多入出力制御系に適用可能である。 The present invention is applicable to, for example, a multi-input / output control system.
10 制御装置
11 第1のPID制御器
12 第1のむだ時間差補償器
13 第1のむだ時間補償器
14 第2のむだ時間差補償器
14 フィードフォワ―ド補償器(FF補償器)
16 第2のPID制御器
17 第2のむだ時間補償器
18 目標値調整器
 
DESCRIPTION OF SYMBOLS 10 Control apparatus 11 1st PID controller 12 1st dead time difference compensator 13 1st dead time compensator 14 2nd dead time difference compensator 14 Feed forward compensator (FF compensator)
16 Second PID controller 17 Second dead time compensator 18 Target value adjuster

Claims (14)

  1.  複数の測定点と各測定点に対応する複数の入力を有する制御対象を制御する制御装置であって、
     前記測定点のうち入力に対する応答が他の測定点での応答に比べて遅い測定点を出力とし、該測定点に対応する入力を入力とする第1の部分制御対象に対して、該測定点における物理量を制御する第1の制御器と、
     前記測定点のうち前記第1の部分制御対象の測定点以外の測定点を出力とし、該測定点に対応する入力を入力とする第2の部分制御対象に対して、該測定点における物理量を制御する第2の制御器と
    を備え、
     前記第2の部分制御対象の測定点に対する目標値を前記第1の部分制御対象の出力に基づいて定め、前記第2の制御器に与える制御装置。
    A control device for controlling a control object having a plurality of measurement points and a plurality of inputs corresponding to each measurement point,
    Among the measurement points, a measurement point whose response to an input is slower than responses at other measurement points is an output, and the measurement point is measured with respect to a first partial control object that has an input corresponding to the measurement point as an input. A first controller for controlling a physical quantity in
    Among the measurement points, a measurement point other than the measurement point of the first partial control target is output, and a physical quantity at the measurement point is set for a second partial control target having an input corresponding to the measurement point as an input. A second controller for controlling,
    A control device that determines a target value for a measurement point of the second partial control target based on an output of the first partial control target and supplies the target value to the second controller.
  2.  前記第1の部分制御対象の出力から、前記第1の部分制御対象のむだ時間成分を除去する第1のむだ時間補償器
    をさらに備え、
     前記第2の部分制御対象の測定点に対する目標値を前記第1のむだ時間補償器の出力に基づいて定め、前記第2の制御器に与える請求項1に記載の制御装置。
    A first dead time compensator for removing a dead time component of the first partial control target from an output of the first partial control target;
    2. The control device according to claim 1, wherein a target value for a measurement point of the second partial control target is determined based on an output of the first dead time compensator and is given to the second controller.
  3.  前記第1のむだ時間補償器の出力は、前記第1の部分制御対象に対する外乱成分及び/又は前記第2の部分制御対象からの干渉成分を含む請求項2に記載の制御装置。 3. The control device according to claim 2, wherein the output of the first dead time compensator includes a disturbance component with respect to the first partial control target and / or an interference component from the second partial control target.
  4.  前記第2の部分制御対象の逆特性を有するフィードフォワ―ド制御器
    を更に備え、
     前記第2の部分制御対象の測定点に対する目標値を、前記フィードフォワ―ド制御器と前記第2の制御器に与え、
     前記フィードフォワード制御器の出力と前記第2の制御器の出力を、前記第2の部分制御対象に与える請求項1乃至3のいずれかに記載の制御装置。
    A feedforward controller having an inverse characteristic of the second partial control object;
    A target value for the measurement point of the second partial control object is given to the feedforward controller and the second controller;
    The control device according to any one of claims 1 to 3, wherein an output of the feedforward controller and an output of the second controller are given to the second partial control target.
  5.  前記第2の部分制御対象のむだ時間から前記第1の部分制御対象のむだ時間を引いた差分の時間、前記第1の部分制御対象の操作量を遅らせる第1のむだ時間差補償器
    をさらに備える請求項1乃至4のいずれかに記載の制御装置。
    A first dead time difference compensator for delaying the amount of operation of the first partial control object by a difference time obtained by subtracting the dead time of the first partial control object from the dead time of the second partial control object; The control device according to claim 1.
  6.  前記第1の部分制御対象のむだ時間から前記第2の部分制御対象のむだ時間を引いた差分の時間、前記第2の部分制御対象の測定点に対する目標値又は操作量を遅らせる第2のむだ時間差補償器
    をさらに備える請求項1乃至5のいずれかに記載の制御装置。
    A second time delay for delaying a target value or an operation amount with respect to a measurement point of the second partial control target, a difference time obtained by subtracting the dead time of the second partial control target from the dead time of the first partial control target. The control device according to claim 1, further comprising a time difference compensator.
  7.  前記第1の部分制御対象の操作量を遅らせる第1のむだ時間差補償器と、
     前記第2の部分制御対象の測定点に対する目標値又は操作量を遅らせる第2のむだ時間差補償器と、
     前記第1の部分制御対象のむだ時間が前記第2の部分制御対象のむだ時間より長い場合、前記第2のむだ時間差補償器を有効にし、前記第2の部分制御対象のむだ時間が前記第1の部分制御対象のむだ時間より長い場合、前記第1のむだ時間差補償器を有効にする切り替え部と
    をさらに備える請求項1乃至4のいずれかに記載の制御装置。
    A first dead time difference compensator for delaying an operation amount of the first partial control target;
    A second dead time difference compensator for delaying a target value or an operation amount for the measurement point of the second partial control target;
    When the dead time of the first partial control object is longer than the dead time of the second partial control object, the second dead time difference compensator is enabled and the dead time of the second partial control object is the first time. 5. The control device according to claim 1, further comprising a switching unit that enables the first dead time difference compensator when the dead time is longer than one partial control target.
  8.  前記第2の制御器に入力する目標値に対して、前記第1の部分制御対象の測定点に対する目標値と前記第2の部分制御対象の測定点を最終的に整定させる最終目標値の比を乗じて、前記第2の制御器に入力する請求項1乃至7のいずれかに記載の制御装置。 The ratio of the target value for the measurement point of the first partial control object and the final target value for finally setting the measurement point of the second partial control object with respect to the target value input to the second controller The control device according to any one of claims 1 to 7, wherein the control device is multiplied by and input to the second controller.
  9.  前記複数の測定点は、3つ以上の測定点を有し、
     前記測定点のうち入力に対する応答が他の測定点での応答と比べて相対的に遅い測定点のひとつを出力とする部分制御対象を前記第1の部分制御対象とし、前記第1の制御器は、該第1の部分制御対象に対して該測定点における物理量を制御し、
     前記測定点のうち前記第1の部分制御対象の測定点以外の複数の測定点を出力する部分制御対象を前記第2の部分制御対象とし、前記第2の制御器は、該第2の部分制御対象に対して各測定点における物理量を制御する請求項1乃至8のいずれかに記載の制御装置。
    The plurality of measurement points have three or more measurement points,
    Of the measurement points, a partial control target that outputs one of the measurement points whose response to input is relatively slower than the response at other measurement points is set as the first partial control target, and the first controller Controls the physical quantity at the measurement point with respect to the first partial control object,
    Among the measurement points, a partial control target that outputs a plurality of measurement points other than the measurement points of the first partial control target is set as the second partial control target, and the second controller includes the second part. The control device according to claim 1, wherein a physical quantity at each measurement point is controlled with respect to a control target.
  10.  前記測定点のうち入力に対する応答が最も遅い測定点を出力とする部分制御対象を前記第1の部分制御対象とする請求項9に記載の制御装置。 10. The control device according to claim 9, wherein a partial control target whose output is the measurement point with the slowest response to an input among the measurement points is the first partial control target.
  11.  前記第1の制御器及び前記第2の制御器が制御する物理量は、温度である請求項1乃至10のいずれかに記載の制御装置。 11. The control device according to claim 1, wherein the physical quantity controlled by the first controller and the second controller is a temperature.
  12.  前記制御対象はむだ時間要素を含み、
     前記第1の制御器及び前記第2の制御器はそれぞれ、PID制御器である請求項1乃至11のいずれかに記載の制御装置。
    The controlled object includes a dead time element,
    The control device according to claim 1, wherein each of the first controller and the second controller is a PID controller.
  13.  前記第1の部分制御対象及び前記第2の部分制御対象は、互いに干渉する請求項1乃至12のいずれかに記載の制御装置。 The control device according to any one of claims 1 to 12, wherein the first partial control target and the second partial control target interfere with each other.
  14.  複数の測定点と各測定点に対応する複数の入力を有する制御対象を制御する制御方法であって、
     前記測定点のうち入力に対する応答が他の測定点での応答に比べて遅い測定点を出力とし、該測定点に対応する入力を入力とする第1の部分制御対象に対して、該測定点における物理量を制御することと、
     前記測定点のうち前記第1の部分制御対象の測定点以外の測定点を出力とし、該測定点に対応する入力を入力とする第2の部分制御対象に対して、該測定点における物理量を制御することと、
     前記第2の部分制御対象の測定点に対する目標値を前記第1の部分制御対象の出力に基づいて定めること
    を含む制御方法。
    A control method for controlling a control object having a plurality of measurement points and a plurality of inputs corresponding to each measurement point,
    Among the measurement points, a measurement point whose response to an input is slower than responses at other measurement points is an output, and the measurement point is measured with respect to a first partial control object that has an input corresponding to the measurement point as an input. Controlling physical quantities in
    Among the measurement points, a measurement point other than the measurement point of the first partial control target is output, and a physical quantity at the measurement point is set for a second partial control target having an input corresponding to the measurement point as an input. Control and
    A control method including determining a target value for a measurement point of the second partial control target based on an output of the first partial control target.
PCT/JP2017/003688 2017-02-02 2017-02-02 Control device and control method WO2018142523A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018565150A JP6792790B2 (en) 2017-02-02 2017-02-02 Control device and control method
PCT/JP2017/003688 WO2018142523A1 (en) 2017-02-02 2017-02-02 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003688 WO2018142523A1 (en) 2017-02-02 2017-02-02 Control device and control method

Publications (1)

Publication Number Publication Date
WO2018142523A1 true WO2018142523A1 (en) 2018-08-09

Family

ID=63039467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003688 WO2018142523A1 (en) 2017-02-02 2017-02-02 Control device and control method

Country Status (2)

Country Link
JP (1) JP6792790B2 (en)
WO (1) WO2018142523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149569A (en) * 2019-03-15 2020-09-17 株式会社チノー Control device and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375901A (en) * 1986-09-19 1988-04-06 Tohoku Electric Power Co Inc Overall control system for parallel control circuit
JP2001021141A (en) * 1999-07-02 2001-01-26 Sumitomo Light Metal Ind Ltd Combustion control method and apparatus for heating furnace
JP2002049406A (en) * 2000-08-04 2002-02-15 Yamatake Corp Control device and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375901A (en) * 1986-09-19 1988-04-06 Tohoku Electric Power Co Inc Overall control system for parallel control circuit
JP2001021141A (en) * 1999-07-02 2001-01-26 Sumitomo Light Metal Ind Ltd Combustion control method and apparatus for heating furnace
JP2002049406A (en) * 2000-08-04 2002-02-15 Yamatake Corp Control device and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149569A (en) * 2019-03-15 2020-09-17 株式会社チノー Control device and control method

Also Published As

Publication number Publication date
JPWO2018142523A1 (en) 2019-11-21
JP6792790B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
Sanz et al. Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay
US7915848B2 (en) Servo control apparatus that performs dual-position feedback control
JP6324739B2 (en) Semiconductor wafer temperature control device and semiconductor wafer temperature control method
Tsubakino et al. Exact predictor feedbacks for multi-input LTI systems with distinct input delays
US10151213B2 (en) State observer for a steam generator of a thermal power plant
JP2004288164A (en) Synchronous control device
US10393092B2 (en) Method and system for controlling the active power output of a wind farm
Basin et al. A closed-form optimal control for linear systems with equal state and input delays
WO2018142523A1 (en) Control device and control method
US20220207328A1 (en) Control device
Taleb et al. High order integral sliding mode control with gain adaptation
Ortseifen et al. A new design method for mismatch-based anti-windup compensators: Achieving local performance and global stability in the SISO case
Kurniawan et al. Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals
US20150293542A1 (en) Device temperature adjustment
JP2008181452A (en) Control device
JP2005071034A (en) Servo controller
WO2019087554A1 (en) Feedback control method and motor control device
TWI546636B (en) An intelligent adaptive control system
TWI823295B (en) Temperature control device and temperature control method
KR102002237B1 (en) Plate width control device of rolled material
JP4382632B2 (en) Control device
JP5342435B2 (en) Adaptive controller
JP4440827B2 (en) Anti-windup controller
Asghar et al. Guaranteed cost control design for descriptor systems with time-varying delays
JP2007037332A (en) Digital servo control unit and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895228

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载