WO2018142495A1 - 円形加速器 - Google Patents
円形加速器 Download PDFInfo
- Publication number
- WO2018142495A1 WO2018142495A1 PCT/JP2017/003508 JP2017003508W WO2018142495A1 WO 2018142495 A1 WO2018142495 A1 WO 2018142495A1 JP 2017003508 W JP2017003508 W JP 2017003508W WO 2018142495 A1 WO2018142495 A1 WO 2018142495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- accelerator
- region
- gradient
- energy
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 10
- 230000005684 electric field Effects 0.000 claims abstract description 10
- 150000002500 ions Chemical class 0.000 claims abstract description 8
- 238000004220 aggregation Methods 0.000 claims description 24
- 230000002776 aggregation Effects 0.000 claims description 24
- 238000010884 ion-beam technique Methods 0.000 claims 5
- 238000000605 extraction Methods 0.000 description 11
- 230000010355 oscillation Effects 0.000 description 9
- 230000005284 excitation Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- -1 carbon ions Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/04—Magnet systems, e.g. undulators, wigglers; Energisation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/20—Electromagnets; Actuators including electromagnets without armatures
- H01F7/202—Electromagnets for high magnetic field strength
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/005—Cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/02—Synchrocyclotrons, i.e. frequency modulated cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H15/00—Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
Definitions
- the present invention relates to an accelerator for accelerating heavy ions such as protons or carbon ions.
- the high-energy nuclear beam used for particle beam therapy and physical experiments is generated using an accelerator.
- the accelerator that obtains a beam having a kinetic energy per nucleon of around 200 MeV include the cyclotron described in Patent Document 1 and Patent Document 2, the synchrotron described in Patent Document 3, and the variable energy accelerator described in Patent Document 4.
- the cyclotron is characterized by the fact that the beam that circulates in a static magnetic field is accelerated by a high-frequency electric field. As the beam is accelerated, the radius of curvature of its orbit increases, moves to the outer orbit, and is extracted after reaching the highest energy. . Therefore, the energy of the beam to be extracted is fixed.
- the synchrotron changes the frequency of the magnetic field of the electromagnet that deflects the beam and the frequency of the high-frequency electric field that accelerates the beam, so that the beam goes around a fixed orbit. Therefore, it is possible to extract the beam before reaching the design maximum energy, and the extraction energy can be controlled.
- the variable energy accelerator is characterized in that the beam trajectory is decentered in one direction as it accelerates while accelerating the beam that circulates in the magnetic field with a high-frequency electric field like the cyclotron.
- JP 2014-160613 A JP 2014-020800 A JP 2014-186939 A International Publication No. 2016-092621
- variable energy accelerators require an isochronous magnetic field whose orbital time is invariant to energy, similar to a cyclotron.
- the isochronous magnetic field is characterized in that the average magnetic field on the beam trajectory is proportional to the relativistic ⁇ factor of the beam. Therefore, when the magnetic field on the orbit of the high energy beam is compared with the magnetic field on the orbit of the low energy beam, the magnetic field in the orbit of the high energy beam is larger.
- the second derivative (magnetic field gradient gradient) of the magnetic field along two directions in the plane perpendicular to the beam trajectory is generated, and this is a disturbance to the convergence force that guarantees the stable circulation of the beam. Therefore, in order to secure the amount of the orbiting beam in the variable energy accelerator, it is necessary to determine the magnetic field on the orbit in consideration of the gradient of the magnetic field, but the guideline has not been given so far.
- the feature of the present invention that achieves the above-described object is that ions that circulate in an isochronous magnetic field are accelerated by a high-frequency electric field, and the beam trajectory is displaced in a specific direction along with the acceleration, so that the trajectory for each energy is dense.
- An accelerator having an aggregated region and a discrete region that is sparsely discrete, wherein the magnetic field has a magnetic field gradient in a radial direction of a beam trajectory in the aggregated region, and has a magnetic field gradient and a beam size that passes through the aggregated region.
- the accelerator is characterized in that the product has a characteristic of being smaller than the magnetic field gradient.
- the amount of beam that can be generated by the accelerator increases.
- the accelerator 1 of the present embodiment is a variable energy accelerator capable of continuously outputting a beam with variable energy.
- the accelerator 1 is a circular accelerator that accelerates a charged particle beam that circulates in a constant magnetic field with a constant frequency (isochronous) by a high-frequency electric field.
- the appearance is shown in FIG.
- the accelerator 1 forms an outer shell by a magnet 11 that can be divided into upper and lower portions, and the inside is evacuated.
- the magnet 11 has a plurality of through-holes.
- the extraction beam through-hole 111 for extracting the accelerated beam, the extraction openings 112 and 113 for extracting the internal coil to the outside, and the high-frequency power input through-hole 114 are the upper and lower magnetic poles. It is provided on the connection surface.
- An ion source 12 is installed above the magnet 11, and a beam enters the accelerator 1 through the beam entrance through hole 115.
- a cylindrical space 20 formed by a cylindrical inner wall, and an annular coil 13 is installed along the inner wall.
- an annular coil 13 is installed along the inner wall.
- the magnet 11 is magnetized, and a magnetic field is excited in the magnet 11 with a predetermined distribution.
- Magnetic poles 121 to 124 are installed inside the coil 13, and a cylindrical return yoke 14 is provided outside the coil 13.
- the beam circulates in the internal space 20 and accelerates.
- the energy of the extraction beam is a minimum of 70 MeV to a maximum of 235 MeV, and the circular frequency of the beam is 19.82 MHz.
- the betatron oscillation stably occurs in the beam orbital plane and in the direction perpendicular to the orbital plane.
- the magnetic pole recess is provided with high-frequency cavities 31 and 32 for exciting a high-frequency electric field, an extraction septum electromagnet 40, and a coil 50 for generating a kicker magnetic field.
- the kicker magnetic field adopts a massless septum method that applies a magnetic field only to a specific position as will be described later, and a current is passed through a coil installed symmetrically in a direction perpendicular to the trajectory plane with respect to the beam. Excites the magnetic field.
- the beam is incident on the accelerator 1 in the state of low energy ions from the incident point 120.
- the incident beam is accelerated every time it passes through the electric field gap by the high frequency electric field excited by the high frequency cavity.
- the accelerator 1 determines the beam trajectory so that the beam trajectory center moves in one direction on the same plane according to the acceleration of the beam.
- the magnetic pole shape and the coil arrangement are mirror-symmetric with respect to the center plane so that the in-plane component of the magnetic field at the center plane is zero.
- the magnetic poles 121 and 124 and 122 and 123 have symmetrical shapes.
- Each magnetic pole is provided with a trim coil for fine adjustment of the magnetic field, and the trim coil current is adjusted before operation so as to ensure isochronism and stability of betatron oscillation.
- FIG. 3 illustrates the shape of the trajectory with the center plane as the XY plane.
- the trajectory of 50 energy types is shown by a solid line from the maximum energy of 235 MeV every magnetic rigidity of 0.04 Tm.
- the dotted line is a line connecting the same circular phase of each orbit and is called an isochronous line. Isochronous lines are plotted for each orbital phase ⁇ / 20 from the aggregation region.
- the acceleration gap is set along the isochronous line.
- the orbit centered around the ion incident point is the same as the cyclotron, but the orbit of energy larger than 50 MeV is densely gathered near the incident point of the extraction septum magnet.
- the tracks are positioned apart from each other.
- the points where the orbits are gathered densely will be referred to as an aggregation area, and the discrete areas will be referred to as an orbital discrete area.
- the beam spreads over a wide region in the center plane according to the energy.
- the beam shifted from the predetermined equilibrium trajectory by this kick is incident on a septum electromagnet installed in an aggregation region downstream of the half circumference.
- the septum magnet provides the beam with the deflection necessary to place the extracted beam on a defined design trajectory on the extraction path 140. Specifically, a magnetic field in a direction that cancels the main electromagnet magnetic field is excited, and the beam is guided to the extraction path 140.
- the accelerator 1 of this embodiment employs a magnetic field distribution in which the minimum and maximum magnetic fields appear four times per revolution along the beam orbit. is doing.
- FIG. 4 shows the magnetic field distribution along the trajectory.
- FIG. 4 shows the magnetic field distribution along the trajectories of energy 235 MeV, 202 MeV, 157 MeV, 75.5 MeV, and 11.5 MeV.
- the distance and the vertical axis are the magnetic field.
- FIG. 5 shows the magnetic field distribution on the center plane as an isomagnetic field diagram.
- the magnetic field in the center plane is expressed by isomagnetic lines in 16 steps between the maximum magnetic field 2.54T and the minimum magnetic field 0.32T.
- the origin of the XY plane is the incident point, and the Y axis corresponds to the left-right symmetric axis AA ′ that connects the discrete region and the aggregation point.
- the circles shown by broken lines in FIGS. 3, 2, and 5 are circles having a radius of 1526 mm, and the trajectory of all energy is included in the circle.
- the evaluation result of the betatron frequency (tune) around the orbit is shown in FIG.
- the tune was calculated based on the magnetic field gradient obtained from the magnetic field of the orbit and the energy of the front and back.
- the tune in the orbital plane is almost 1, which increases with acceleration.
- the tune in the direction perpendicular to the orbital plane is almost zero at low energy, and exists in the range of 0 to less than 0.5 in the entire energy region.
- the betatron function ⁇ corresponding to the betatron oscillation amplitude exists in each of the in-plane direction (r) and the direction (z) perpendicular to the acceleration plane, and the behavior is shown in FIGS. As shown in FIGS.
- ⁇ tends to be larger in the z direction than in the r direction.
- the r direction ⁇ is a discrete region and is at most 10 m.
- the z direction ⁇ takes the maximum value in the aggregation region, and its size is about 35 m.
- the beam size resulting from betatron oscillation is calculated by the square root ⁇ ( ⁇ ) of the product of emittance ⁇ and ⁇ . Then, when a beam having the same emittance in the r direction and the z direction circulates in the accelerator 1, the beam size in the z direction in the aggregation region becomes the maximum in the orbit.
- the beam size in the z direction in the aggregation region is about 6 mm. Therefore, in order to make the beam circulate stably, that is, to prevent the tune of the circulated beam from deviating greatly from the value shown in FIG. 6, the variation in the convergence force received by the beam in the region of the beam size is reduced. There is a need to.
- the convergence force for the beam is proportional to the magnetic field gradient (quadrupole magnetic field) in the direction perpendicular to the beam trajectory. In the magnetic field distribution shown in FIG. 5, the quadrupole magnetic field is oscillatingly distributed in the range of ⁇ 4 T / m.
- a factor that causes a change in the quadrupole magnetic field in a beam having a finite size is a second-order derivative of the magnetic field along the direction perpendicular to the beam trajectory, that is, a magnetic field gradient.
- the second derivative of the magnetic field along the direction perpendicular to the beam trajectory is called the hexapole magnetic field.
- the frequency of betatron oscillation of each particle varies.
- the difference of the quadrupole magnetic field inside the beam is proportional to the product of the hexapole magnetic field and the beam size.
- the sensitivity of the influence of the change in the quadrupole magnetic field generated at a point on the orbit on the betatron frequency is proportional to ⁇ at that point. Therefore, the variation of betatron oscillation is proportional to the integral value over the entire orbit of the product of ⁇ 3/2 (that is, the beam size cube) and the hexapole magnetic field.
- the magnetic field distribution of this embodiment is characterized in that the magnetic field distribution in the aggregation region is a substantially linear magnetic field distribution with respect to the direction perpendicular to the beam trajectory (direction parallel to the Y axis). That is, on the axis of symmetry AA 'of the accelerator 1, the magnetic field takes a shape that can be approximated by a linear function on the aggregation point side, as shown in FIG.
- the values of the quadrupole magnetic field and the hexapole magnetic field along the trajectory are shown in FIGS.
- the quadrupole magnetic field alternates between a positive region and a negative region.
- the convergence force in the z direction is imposed, and in the negative region, the convergence force in the r direction is imposed, and as a whole, it circulates stably in both the r direction and the z direction.
- the hexapole magnetic field is 0 in the aggregated region (region in which the horizontal axis is 0). This can achieve stability of a finite size beam.
- variable energy accelerator to which the present invention is not applied, a hexapole magnetic field of about 100 T / m 2 can be generated in the concentrated region.
- a quadrupole magnetic field deviation of ⁇ 0.6 T / m occurs within a region of 6 mm corresponding to the beam size.
- the main magnetic field distribution according to the present invention can contribute to the stability of the beam, and hence the amount of beam current that circulates.
- a trim coil attached to the electromagnet 11 is used to excite the magnetic field distribution shown in FIG.
- FIG. 12 shows the shape of the trim coil.
- Trim coils 151 to 155 are installed in the magnetic pole convex portions 121 to 124 and the aggregation region. Each trim coil has a plurality of systems in which the amount of excitation can be adjusted independently.
- the trim coil is a coil for correcting a magnetic field installed in a region separated in the z direction with respect to the surface around which the beam circulates.
- the accelerator 1 is provided with trim coils 152 to 155 for adjusting the magnetic field distribution on the magnetic pole projections.
- trim coils 152 to 155 are connected to a power source, and the magnetic field measurement results obtained separately and the beam monitor measurement results are obtained. Further, the excitation amount is controlled so as to approach a predetermined magnetic field distribution from the result of magnetic field measurement.
- an aggregation region trim coil 151 for obtaining a linear magnetic field distribution in the aggregation region which is a feature of the present embodiment, is separately provided.
- the trim coil 151 also adjusts the amount of excitation for the purpose of adjusting the magnetic field in the aggregation region from the result of magnetic field measurement and the measurement result of the amount of circulating beam.
- the trim coil is adjusted so that the change in the quadrupole magnetic field due to the beam size is sufficiently small with respect to the quadrupole magnetic field (magnetic field gradient) in the aggregation region.
- the change of the quadrupole magnetic field inside the beam is proportional to the product of the hexapole magnetic field (magnetic field gradient) and the beam size, and the betatron frequency spread inside the beam is the cube of the hexapole magnetic field and the beam size. Is proportional to the integral over the entire orbit of the product.
- the trim coil stabilizes the beam by setting the product of the magnetic field gradient and the beam size of at least the beam passing through the aggregation region to be smaller than the magnetic field gradient at the aggregation point where the z-direction beam size is maximum.
- the effect of turning around is the greatest.
- a variable energy accelerator capable of increasing the beam amount can be realized.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Particle Accelerators (AREA)
Abstract
従来のサイクロトロンでは取り出しビームのエネルギー変更は不可能であり、シンクロトロンでは連続的にビームを出力することが難しかった。 等時性磁場中を周回するイオンを高周波電場によって加速し、加速に伴いビームの軌道が特定の方向に変位することでエネルギー毎の軌道が密に集約した集約領域と疎に離散した離散領域を有する加速器であって、前記磁場が前記集約領域においてビーム軌道の径方向に磁場勾配を有し、磁場勾配勾配と前記集約領域を通過するビームサイズの積が前記磁場勾配よりも小さくなる特徴を持つ。
Description
本発明は陽子または炭素イオン等の重イオンを加速する加速器に関する。
粒子線治療や物理実験などで使用する高エネルギー原子核ビームは加速器を用いて発生させられる。核子当たりの運動エネルギーが200MeV前後のビームを得る加速器には特許文献1や特許文献2に記載のサイクロトロンや特許文献3に記載のシンクロトロンや特許文献4に記載の可変エネルギー加速器が挙げられる。サイクロトロンの特徴は静磁場中を周回するビームを高周波電場で加速する点であり、加速されるにつれてビームはその軌道の曲率半径を増し、外側の軌道に移動し、最高エネルギーまで到達した後に取り出される。そのため取り出すビームのエネルギーは固定される。シンクロトロンはビームを偏向する電磁石の磁場と加速する高周波電場の周波数を時間的に変化させることでビームは一定の軌道を周回する。そのため、設計上の最大エネルギーに到達する前にビームを取り出すことも可能であり、取り出しエネルギーが制御可能である。可変エネルギー加速器は、サイクロトロン同様磁場中を周回するビームを高周波電場で加速しながらも、ビーム軌道が加速に伴い一方向に偏心していくことが特徴である。
特許文献4に記載の可変エネルギー加速器では加速に伴い軌道が一方向に偏心する特性から各エネルギーの軌道が互いに近接しその結果密に集約する領域(集約領域)と、各エネルギーの軌道が互いに離散する領域(離散領域)が存在する。一方で可変エネルギー加速器はサイクロトロンと同様にエネルギーに対して周回時間が不変である等時性磁場を必要とする。等時性磁場の特徴はビーム軌道上の平均磁場がビームの相対論的γファクターに比例させる点にある。したがって、通常高エネルギービームの軌道上の磁場と低エネルギービームの軌道上の磁場を比較すると高エネルギービームの軌道における磁場の方がより大きくなる。すると、ビーム軌道に対して垂直な面内の二方向に沿った磁場の二回微分(磁場勾配勾配)が生じ、ビームの安定周回を担保する収束力に対する擾乱となる。そこで、可変エネルギー加速器における周回ビーム量の確保には磁場勾配勾配を考慮したうえで軌道上の磁場を定める必要があるが、従来その指針は与えられていなかった。
上記した目的を達成する本発明の特徴は、等時性磁場中を周回するイオンを高周波電場によって加速し、加速に伴いビームの軌道が特定の方向に変位することでエネルギー毎の軌道が密に集約した集約領域と疎に離散した離散領域を有する加速器であって、前記磁場が前記集約領域においてビーム軌道の径方向に磁場勾配を有し、磁場勾配勾配と前記集約領域を通過するビームサイズの積が前記磁場勾配よりも小さくなる特徴を持つことを特徴とする加速器とする点にある。
本発明によれば、加速器が生成できるビーム量が増大する。
本発明の好適な一実施例である実施例1の加速器を図1~図12を用いて以下に説明する。本実施例の加速器1はエネルギー可変かつ連続的にビーム出力可能な可変エネルギー加速器である。この加速器1は時間的に一定の磁場中を一定の周波数(等時性)で周回する荷電粒子ビームを高周波電場によって加速する円形加速器である。その外観を図1に示す。加速器1は上下に分割可能な磁石11によってその外殻を形成し、内部は真空引きされている。磁石11には貫通口が複数あり、そのうち加速されたビームを取り出す取り出しビーム用貫通口111、内部のコイルを外部に引き出すための引き出し口112・113、高周波電力入力用貫通口114が上下磁極の接続面上に設けられている。また磁石11の上部にはイオン源12が設置されており、ビーム入射用貫通口115を通してビームが加速器1内部に入射される。
次に、加速器の内部構造について図2を用いて説明する。磁石11の内部は円筒状内壁で形成される円筒状の空間20があり、円環状のコイル13が内壁に沿って設置されている。コイル13に電流を流すことによって磁石11が磁化し、磁石11の内部に所定の分布で磁場を励起する。コイル13の内側には磁極121~124が設置されており、コイル13の外側は円筒状のリターンヨーク14を備える。内部空間20中をビームが周回し、加速する。取り出しビームのエネルギーは最小70MeVから最大235MeVであり、ビームの周回周波数は19.82MHzである。
磁極121~124によってビームの軌道に沿って4組の凹凸が形成され、ビームに作用する磁場は凹部では低磁場、凸部では高磁場となる。このようにビーム軌道に沿って磁場の強弱をつけ、さらに軌道に沿った磁場の平均値をビームの相対論的γファクターに比例させることで、周回ビームの周回時間をエネルギーに依らず一定としつつ、ビームの軌道面内と軌道面に対して垂直な方向に対して安定にベータトロン振動する。磁極凹部には高周波電場を励起する高周波空胴31・32、取り出し用セプタム電磁石40、キッカ磁場発生用のコイル50が備えられている。キッカ磁場は後に説明するように特定の位置にのみ磁場を印加するマスレスセプタムの方式を採用し、ビームに対して軌道面に対し垂直な方向に対称に設置されたコイルに電流を流すことで磁場を励起する。
ビームは入射点120から低エネルギーのイオンの状態で加速器1に入射される。入射されたビームは高周波空胴によって励起される高周波電場によって電場ギャップを通過する毎に加速される。この加速器1はビームの加速に従ってビームの軌道中心が同一面内上で一方向に移動するようにビーム軌道を定めている。従って、中心面において磁場は面内成分が0となるように、磁極形状とコイル配置は中心面に対して鏡面対称としている。また、磁場分布は中心面内の軸AA’に対して左右対称の分布とした結果、磁極121と124、122と123がそれぞれ左右対称の形状となっている。各磁極には磁場の微調整用のトリムコイルが設けられており、等時性とベータトロン振動の安定を確保するように運転前にトリムコイル電流が調整されている。
次に、本加速器中を周回するビームの軌道について述べる。各エネルギーの軌道は図3に示す。図3は中心面をXY平面として軌道の形状を図示したものである。周回軌道は最大エネルギー235MeVから磁気剛性率0.04Tmおきに50エネルギー種の軌道を実線で示している。点線は各軌道の同一の周回位相を結んだ線であり、等時性線と呼ぶ。等時性線は集約領域から周回位相π/20ごとにプロットしている。加速ギャップは等時性線に沿って設置される。50MeV以下の低エネルギー領域ではサイクロトロン同様にイオンの入射点付近を中心とする軌道をとなるが、50MeVよりも大きなエネルギーの軌道は取り出し用セプタム電磁石の入射点近くで密に集まっており、逆にマスレスセプタム50が設置されている凹部では各軌道が互いに離れた位置関係にある。この軌道が密に集まっている点を集約領域、離散した領域を軌道離散領域と呼ぶこととする。軌道離散領域においては中心面内の広い領域にエネルギーに応じてビームが広がっており、マスレスセプタムによる磁場の励磁位置を適当に定めることで、その励磁位置に対応するエネルギーのビームがキックを受ける。このキックによって所定の平衡軌道からずらされたビームは半周下流の集約領域に設置されたセプタム電磁石に入射される。セプタム電磁石は取り出すビームを取り出し経路140上の定められた設計軌道に乗せるのに必要な偏向をビームに対して与える。具体的には主電磁石磁場を打ち消す方向の磁場を励起し、取り出し経路140にビームを導いている。
上記のような軌道構成と軌道周辺での安定なベータトロン振動を生じさせるために、本実施例の加速器1においてはビーム軌道に沿って磁場の極小と極大が一周当たり4回現れる磁場分布を採用している。図4に軌道に沿った磁場分布を示す。図4にはエネルギー235MeV、202MeV,157MeV、75.5MeV,11.5MeVの軌道に沿った磁場分布であり、横軸は軌道集約領域において0で、半周下流の軌道離散領域を1とした軌道方向距離、縦軸は磁場である。このようにエネルギーにたいして平均的な磁場を上げつつ、振幅を適切に定めることで本加速器のような偏心した軌道配置においても等時性かつベータトロン振動する磁場分布を実現できる。また、中心面上の磁場分布を等磁場線図として図5に示す。図5は中心面における磁場を最大磁場2.54T、最小磁場0.32Tの間を16段階に分けて等磁場線で表現している。図3同様、XY平面の原点が入射点であり、Y軸が離散領域と集約点を結ぶ左右対称軸AA’に相当する。図3・図2および図5の破線で示した円は半径1526mmの円でありこの内部に全エネルギーの軌道が内包されている。
以上の条件のもと、軌道周りのベータトロン振動数(チューン)の評価結果を図6に示す。軌道上の磁場と前後のエネルギーの磁場から得られる磁場勾配を元にチューンを計算した。低エネルギーにおいては軌道面内のチューンがほぼ1であり、加速とともにおおきくなっていく。また軌道面に垂直な方向のチューンは低エネルギーではほぼ0であり、全エネルギー領域で0以上0.5未満の範囲に存在する。また、ベータトロン振動振幅に対応するベータトロン関数βは加速面内方向(r)と加速面に垂直な方向(z)それぞれに存在し、その振る舞いを図6・図7に示す。図6と図7に示したように、βはr方向に比べz方向に大きくなる傾向がある。例えば最大値を比較するとr方向βは離散領域でとり、最大でも10m以下である。一方、z方向βは集約領域で最大値を取り、その大きさは35m程度である。ベータトロン振動起因のビームサイズはエミッタンスεとβの積の平方根√(εβ)で計算される。すると、r方向とz方向で同じ値のエミッタンスを持つビームが加速器1内を周回した場合、集約領域におけるz方向のビームサイズが軌道中最大となる。例えばエミッタンスが1πmm・mradであった場合、集約領域におけるz方向ビームサイズは6mm程度である。よって、ビームを安定に周回させる、すなわち周回するビームのチューンが図6に示した値に対して大きくずれないようにするためには、ビームサイズの領域中でビームが受ける収束力のばらつきを低減する必要がある。ビームに対する収束力はビーム軌道に垂直な方向の磁場勾配(四極磁場)に比例する。四極磁場は図5に示す磁場分布においては±4T/mの範囲を振動的に分布しており、周回中に収束・発散の作用を受けた結果安定なベータトロン振動となる。よって、軌道上の四極磁場に対して十分ビームサイズ起因の四極磁場変化を小さくする必要がある。有限のサイズを持つビームがビーム内での四極磁場が変化する要因として、ビーム軌道に対して垂直な方向に沿った磁場の二階微分、すなわち磁場勾配勾配があげられる。ビーム軌道に対して垂直な方向に沿った磁場の二階微分を六極磁場と呼び、六極磁場が存在する領域ではビームを構成する粒子が受ける収束力がビーム内の位置によって変化し、その結果各粒子のベータトロン振動の振動数がばらつく。ビーム内部での四極磁場の差は六極磁場とビームサイズの積に比例する。さらに、軌道のある点に生じた四極磁場の変化がベータトロン振動数に与える影響の感度はその点でのβに比例することが知られている。よって、ベータトロン振動のばらつきはβの3/2乗(すなわちビームサイズの3乗)と六極磁場の積の軌道全周に渡る積分値に比例する。
以上の気づきを踏まえ、本発明ではベータトロン関数が大きくなる集約領域における六極磁場に着目し、ベータトロン振動のばらつきを抑える磁場分布を構築した。本実施例の磁場分布においては集約領域における磁場分布をビーム軌道に対して垂直な方向(Y軸に平行な方向)に対して略線形な磁場分布とした点に特徴がある。すなわち、加速器1の左右対称軸AA’上において、磁場は図9に示す如く、集約点側では一次関数で近似できる形状を取る。言い換えると、ビーム軌道に対して垂直な面内の二方向に沿った磁場の二回微分(磁場勾配勾配)が生じるのを抑制するような磁場分布とする。すなわち、軌道径方向に、入射点(Y=0mm)における磁場-1.3Tから集約領域の最外周まで-0.7T/mの磁場勾配で単調に磁場の大きさが減少する分布となっている。このような磁場では六極磁場およびさらに高次の多極磁場が0となり、ビーム内おける収束力のばらつきが生じない磁場分布である。
これを確認するために、軌道に沿った四極磁場と六極磁場の値を図10・図11に示す。図10に示すように、ビーム軌道に沿って、四極磁場が正の領域と負の領域を交互に遷移する。四極磁場が正の領域ではz方向の収束力、負の領域ではr方向の収束力が課されており、全体としてr方向にもz方向にも安定に周回する。さらに、図11に示したように六極磁場は集約領域(横軸が0の領域)において0である。これによって有限サイズのビームの安定が達成できる。仮に、本発明を適用しない可変エネルギー加速器では集約領域において100T/m2程度の六極磁場が生じ得る。その場合、ビームサイズに相当する6mmの領域内で±0.6T/mの四極磁場偏差が生じる。すると、集約点での四極磁場0.7T/mに対して同程度のばらつきとなるため、設計通りの収束力が得られない。よって、本発明にかかる主磁場分布によってビームの安定性、ひいては周回するビーム電流量の増加に寄与できる。
本実施例の加速器1において図5に示す磁場分布を励磁するため、電磁石11に付属したトリムコイルを用いる。図12にトリムコイルの形状を示す。磁極凸部121~124と集約領域にトリムコイル151~155が設置される。各トリムコイルは独立に励磁量の調整が可能な複数の系統を持っている。トリムコイルとはビームが周回する面に対してz方向に離れた領域に設置される磁場を補正するためのコイルである。加速器1は磁極凸部に磁場分布調整用のトリムコイル152~155が設置されており、これらのトリムコイル152~155は電源に接続され、別途得られる磁場測定の結果や、ビームモニタの測定結果や磁場測定の結果から所定の磁場分布に近付けるように励磁量を制御する。さらに、本実施例の特徴である、集約領域で直線的な磁場分布を得るための集約領域用トリムコイル151が別途備えられている。このトリムコイル151もトリムコイル152~155同様に磁場測定の結果や、周回ビーム量の測定結果から集約領域の磁場を調整する目的で励磁量を調整する。
具体的には、前述のように、集約領域における四極磁場(磁場勾配)に対して十分ビームサイズ起因の四極磁場変化を小さくなるようにトリムコイルを調整する。ビーム内部での四極磁場の変化は、六極磁場(磁場勾配勾配)とビームサイズとの積に比例し、さらに、ビーム内部でのベータトロン振動数の広がりは六極磁場とビームサイズの3乗との積の軌道全周に渡る積分値に比例する。そのため、トリムコイルは、z方向ビームサイズが最大となる集約点において、磁場勾配勾配と少なくとも集約領域を通過するビームのビームサイズの積が磁場勾配よりも小さくなるように設定することでビームを安定に周回する効果が最も大きく得られる。以上によって、ビーム量の増加が見込める可変エネルギー加速器を実現できる。
1 加速器
11 磁石
12 イオン源
13 コイル
14 リターンヨーク
20 内部空間
31~32 高周波空胴
40 取り出し用セプタム電磁石
50 マスレスセプタム用コイル
111 取り出しビーム用貫通口
112~113 コイル接続用貫通口
114 高周波入力用貫通口
115 ビーム入射用貫通口
121~124 磁極凸部
130 入射点
140 ビーム取り出し経路
151~155 トリムコイル
11 磁石
12 イオン源
13 コイル
14 リターンヨーク
20 内部空間
31~32 高周波空胴
40 取り出し用セプタム電磁石
50 マスレスセプタム用コイル
111 取り出しビーム用貫通口
112~113 コイル接続用貫通口
114 高周波入力用貫通口
115 ビーム入射用貫通口
121~124 磁極凸部
130 入射点
140 ビーム取り出し経路
151~155 トリムコイル
Claims (7)
- 等時性磁場中を周回するイオンを高周波電場によって加速し、加速に伴いビームの軌道が特定の方向に変位することでエネルギー毎の軌道が密に集約した集約領域と疎に離散した離散領域を有する加速器であって、
前記磁場が前記集約領域においてビーム軌道の径方向に磁場勾配を有し、磁場勾配勾配と前記集約領域を通過するビームサイズの積が前記磁場勾配よりも小さくなることを特徴とする加速器。 - 請求項1に記載の加速器であって、
前記集約領域における径方向の磁場勾配が、略線形であることを特徴とする加速器。 - 請求項1に記載の加速器であって、
前記前記集約領域における六極磁場がゼロであることを特徴とする加速器。 - 互いに対向して設置され、間に磁場を形成する一対の磁石と、
イオンビームを加速する高周波空洞とを有し、
前記磁石は、異なるエネルギーの前記イオンビームがそれぞれ周回する環状の複数のビーム周回軌道が、一方において集約するように磁場を形成し、
前記磁石が形成する磁場は、前記周回軌道の径方向に磁場勾配を有し、
前記磁石が形成する磁場は、前記磁場勾配の勾配と前記イオンビームのサイズとの積が前記磁場勾配より小さくなることを特徴とする加速器。 - 請求項4に記載の加速器であって、
前記磁石が形成する磁場は、前記周回軌道が集約する領域の径方向の磁場勾配が、略線形であることを特徴とする加速器。 - 請求項4に記載の加速器であって、
前記周回軌道が集約する領域に、集約領域用のトリムコイルを有することを特徴とする加速器。 - 互いに対向して設置され、間に磁場を形成する一対の磁石と、
イオンビームを加速する高周波空とを有し、
前記磁石は、異なるエネルギーの前記イオンビームがそれぞれ周回する環状の複数のビーム周回軌道が、一方において集約するように磁場を形成し、
前記磁石が形成する磁場は、前記周回軌道が集約する領域の径方向の磁場勾配が、略線形であることを特徴とする加速器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018565131A JP6768845B2 (ja) | 2017-02-01 | 2017-02-01 | 円形加速器 |
PCT/JP2017/003508 WO2018142495A1 (ja) | 2017-02-01 | 2017-02-01 | 円形加速器 |
US16/341,077 US10624201B2 (en) | 2017-02-01 | 2017-02-01 | Circular accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/003508 WO2018142495A1 (ja) | 2017-02-01 | 2017-02-01 | 円形加速器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142495A1 true WO2018142495A1 (ja) | 2018-08-09 |
Family
ID=63039553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003508 WO2018142495A1 (ja) | 2017-02-01 | 2017-02-01 | 円形加速器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10624201B2 (ja) |
JP (1) | JP6768845B2 (ja) |
WO (1) | WO2018142495A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109362170A (zh) * | 2018-11-27 | 2019-02-19 | 中国原子能科学研究院 | 一种实现连续束加速的大范围变轨道磁铁结构 |
JP2020038797A (ja) * | 2018-09-04 | 2020-03-12 | 株式会社日立製作所 | 加速器、およびそれを備えた粒子線治療システム |
WO2022130680A1 (ja) * | 2020-12-14 | 2022-06-23 | 株式会社日立製作所 | 加速器および粒子線治療装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10624201B2 (en) * | 2017-02-01 | 2020-04-14 | Hitachi, Ltd. | Circular accelerator |
JP6901381B2 (ja) * | 2017-11-20 | 2021-07-14 | 株式会社日立製作所 | 加速器および粒子線治療システム |
JP7002952B2 (ja) * | 2018-01-29 | 2022-01-20 | 株式会社日立製作所 | 円形加速器、円形加速器を備えた粒子線治療システム、及び円形加速器の運転方法 |
JP2019200899A (ja) * | 2018-05-16 | 2019-11-21 | 株式会社日立製作所 | 粒子線加速器および粒子線治療システム |
JP7425711B2 (ja) * | 2020-10-21 | 2024-01-31 | 株式会社日立製作所 | 加速器および粒子線治療システム |
CN113202707B (zh) * | 2021-05-12 | 2022-08-02 | 兰州空间技术物理研究所 | 一种可变直径离子推力器磁极 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179800U (ja) * | 1982-05-26 | 1983-12-01 | 株式会社日本製鋼所 | サイクロトロンのビ−ム形状整形装置 |
JPS63148779U (ja) * | 1987-03-20 | 1988-09-30 | ||
JPH06132098A (ja) * | 1992-10-16 | 1994-05-13 | Mitsubishi Electric Corp | リング,リングの四極電磁石およびその制御装置 |
JP2011249118A (ja) * | 2010-05-26 | 2011-12-08 | Sumitomo Heavy Ind Ltd | 加速器及びサイクロトロン |
WO2016092622A1 (ja) * | 2014-12-08 | 2016-06-16 | 株式会社日立製作所 | 加速器及び粒子線照射装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0269500U (ja) | 1988-11-15 | 1990-05-25 | ||
US7315140B2 (en) * | 2005-01-27 | 2008-01-01 | Matsushita Electric Industrial Co., Ltd. | Cyclotron with beam phase selector |
US8374306B2 (en) * | 2009-06-26 | 2013-02-12 | General Electric Company | Isotope production system with separated shielding |
US8410729B2 (en) * | 2009-07-31 | 2013-04-02 | The Board Of Trustees Of The Leland Stanford Junior University | Special purpose modes in photonic band gap fibers |
US8558485B2 (en) * | 2011-07-07 | 2013-10-15 | Ionetix Corporation | Compact, cold, superconducting isochronous cyclotron |
US8581525B2 (en) * | 2012-03-23 | 2013-11-12 | Massachusetts Institute Of Technology | Compensated precessional beam extraction for cyclotrons |
JP5917322B2 (ja) * | 2012-07-12 | 2016-05-11 | 住友重機械工業株式会社 | 荷電粒子線照射装置 |
JP5955709B2 (ja) * | 2012-09-04 | 2016-07-20 | 住友重機械工業株式会社 | サイクロトロン |
JP6038682B2 (ja) | 2013-02-20 | 2016-12-07 | 住友重機械工業株式会社 | サイクロトロン |
JP5998089B2 (ja) | 2013-03-25 | 2016-09-28 | 株式会社日立製作所 | 粒子線照射システムとその運転方法 |
JP2015065102A (ja) * | 2013-09-26 | 2015-04-09 | 株式会社日立製作所 | 円形加速器 |
EP3024306B1 (en) * | 2014-11-19 | 2019-08-07 | Ion Beam Applications S.A. | High current cyclotron |
JP6215450B2 (ja) | 2014-12-08 | 2017-10-18 | 株式会社日立製作所 | 加速器及び粒子線照射装置 |
US10548212B2 (en) * | 2014-12-08 | 2020-01-28 | Hitachi, Ltd. | Accelerator and particle beam irradiation system |
US9986630B2 (en) * | 2015-05-26 | 2018-05-29 | Krunoslav Subotic | Superconducting magnet winding structures for the generation of iron-free air core cyclotron magnetic field profiles |
WO2016191592A1 (en) * | 2015-05-26 | 2016-12-01 | Antaya Science & Technology | Isochronous cyclotron with superconducting flutter coils and non-magnetic reinforcement |
US9907153B2 (en) * | 2016-05-13 | 2018-02-27 | Ion Beam Applications S.A. | Compact cyclotron |
US10624201B2 (en) * | 2017-02-01 | 2020-04-14 | Hitachi, Ltd. | Circular accelerator |
CN109923946B (zh) * | 2017-03-24 | 2021-06-04 | 株式会社日立制作所 | 圆形加速器 |
-
2017
- 2017-02-01 US US16/341,077 patent/US10624201B2/en active Active
- 2017-02-01 WO PCT/JP2017/003508 patent/WO2018142495A1/ja active Application Filing
- 2017-02-01 JP JP2018565131A patent/JP6768845B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179800U (ja) * | 1982-05-26 | 1983-12-01 | 株式会社日本製鋼所 | サイクロトロンのビ−ム形状整形装置 |
JPS63148779U (ja) * | 1987-03-20 | 1988-09-30 | ||
JPH06132098A (ja) * | 1992-10-16 | 1994-05-13 | Mitsubishi Electric Corp | リング,リングの四極電磁石およびその制御装置 |
JP2011249118A (ja) * | 2010-05-26 | 2011-12-08 | Sumitomo Heavy Ind Ltd | 加速器及びサイクロトロン |
WO2016092622A1 (ja) * | 2014-12-08 | 2016-06-16 | 株式会社日立製作所 | 加速器及び粒子線照射装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020038797A (ja) * | 2018-09-04 | 2020-03-12 | 株式会社日立製作所 | 加速器、およびそれを備えた粒子線治療システム |
WO2020049755A1 (ja) * | 2018-09-04 | 2020-03-12 | 株式会社日立製作所 | 加速器、およびそれを備えた粒子線治療システム |
CN109362170A (zh) * | 2018-11-27 | 2019-02-19 | 中国原子能科学研究院 | 一种实现连续束加速的大范围变轨道磁铁结构 |
WO2022130680A1 (ja) * | 2020-12-14 | 2022-06-23 | 株式会社日立製作所 | 加速器および粒子線治療装置 |
JP7485593B2 (ja) | 2020-12-14 | 2024-05-16 | 株式会社日立製作所 | 加速器および粒子線治療装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190239334A1 (en) | 2019-08-01 |
JP6768845B2 (ja) | 2020-10-14 |
JPWO2018142495A1 (ja) | 2019-11-07 |
US10624201B2 (en) | 2020-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018142495A1 (ja) | 円形加速器 | |
JP4719241B2 (ja) | 円形加速器 | |
JP6714146B2 (ja) | 円形加速器 | |
US9848487B2 (en) | High current cyclotron | |
EP0426861B1 (en) | Method of cooling charged particle beam | |
JP2014053194A (ja) | シンクロトロン | |
JP2019096404A (ja) | 円形加速器および粒子線治療システム | |
WO2022130680A1 (ja) | 加速器および粒子線治療装置 | |
Aksent’ev et al. | Modeling of proton beam dynamics in an accelerator-driver at 600–1000 MeV and investigation of the electrodynamic characteristics of accelerating cavities | |
WO2018096648A1 (ja) | 加速器および粒子線照射装置 | |
Seidel | Injection and extraction in cyclotrons | |
CN115604902A (zh) | 一种自引出回旋加速器 | |
WO2018092483A1 (ja) | 加速器および粒子線照射装置、ならびにビームの取出し方法 | |
WO2018051425A1 (ja) | ビーム取り出し方法およびそれを用いた円形加速器 | |
CN109862686B (zh) | 离子-离子并束装置 | |
EP4383955A1 (en) | Circular accelerator and particle beam treatment system | |
JP2024055638A (ja) | 円形加速器及び粒子線治療装置、並びに円形加速器の運転方法 | |
Mechida et al. | Coherent mode of a high intensity beam in a synchrotron | |
WO2025094510A1 (ja) | 円形加速器及び粒子線治療システム | |
RU2218679C2 (ru) | Индукционный ускоритель электронов | |
JP2024092822A (ja) | 加速器及び粒子線治療システム | |
Samsonov et al. | Numerical simulation of ions acceleration and extraction in cyclotron DC-110 | |
Samsonov et al. | Numerical simulation of ion acceleration and extraction in cyclotron DC-110 | |
WO2023162640A1 (ja) | 加速器および加速器を備える粒子線治療システム | |
JPH0992500A (ja) | 円形加速器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17895087 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018565131 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17895087 Country of ref document: EP Kind code of ref document: A1 |