+

WO2018141113A1 - Process for preparing amine via direct amination reaction - Google Patents

Process for preparing amine via direct amination reaction Download PDF

Info

Publication number
WO2018141113A1
WO2018141113A1 PCT/CN2017/072998 CN2017072998W WO2018141113A1 WO 2018141113 A1 WO2018141113 A1 WO 2018141113A1 CN 2017072998 W CN2017072998 W CN 2017072998W WO 2018141113 A1 WO2018141113 A1 WO 2018141113A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
reactant
group
catalyst
metal oxide
Prior art date
Application number
PCT/CN2017/072998
Other languages
French (fr)
Inventor
Ajay TOMER
Marc Pera Titus
Anne PONCHEL
Zhen YAN
Original Assignee
Rhodia Operations
Le Centre National De La Recherche Scientifique
Université D'artois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations, Le Centre National De La Recherche Scientifique, Université D'artois filed Critical Rhodia Operations
Priority to PCT/CN2017/072998 priority Critical patent/WO2018141113A1/en
Publication of WO2018141113A1 publication Critical patent/WO2018141113A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • This invention provides an effective process for converting alcohols to an amine.
  • This invention provides an effective process for converting alcohols to an amine, notably primary, with desired characteristics such as inexpensiveness, high selectivity and conversion.
  • the reaction is performed in the presence of a low loading transition metal catalyst, notably noble metal-free metal.
  • Heterogeneous catalyst used in direct amination reaction is very attractive technology nowadays for its ease of separation and recyclability.
  • Rare earth oxides such as cerium oxide is always used in the catalytic amination reactions.
  • WO15054828 A1 discloses cerium oxide is used as a support to noble metal in the direct amination reaction.
  • US2013178656 reports a process for preparing secondary amines by aminating excess primary or secondary alcohols with primary amines in the liquid phase in the presence of copper-comprising catalysts.
  • Said oxidic support could be aluminum oxides, silicon dioxide, titanium dioxides, zirconium dioxide, lanthanum oxide, molybdenum oxide, tungsten oxide or mixtures of these oxides. However, it only links to high copper loading alumina supporting catalyst.
  • Ken-ichi Shimizu et al. ACS Catalysis (2013) , 3 (1) , 112-117 reports a noble metal-free catalytic system for synthesis of primary amines from alcohols and NH 3 by Al 2 O 3 supported Ni catalysts.
  • Various Ni loadings were tested according to this paper (1-20%) and catalysts with 5wt%and 10 wt%are found to be optimal.
  • US4209424 teaches a catalyst for implementing a process for manufacturing amines from alcohols is composed of an active element in the transition metals family uniformly combined with a refractory porous structure with a specific surface of between 10 and 300m 2 /g and with a pore diameter less than 5000 A, wherein the transition metal content represents 30-70%of the total catalyst weight.
  • the catalyst and the process are specifically applicable to the ethanolamine-ammonia reaction with a view to producing ethylenediamine, piperazine, and useful byproducts and the conversion of reactant is not quite good.
  • the reaction is performed in the presence of a low loading transition metal catalyst, notably noble metal-free metal.
  • the present invention pertains to a process for preparing an amine, comprising reacting:
  • a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M 1 and at least one metal oxide M 2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
  • the invention also concerns a composition
  • a composition comprising:
  • a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M 1 and at least one metal oxide M 2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
  • any particular upper concentration can be associated with any particular lower concentration.
  • metals of group IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB are often referred to as transition metals.
  • This group comprises the elements with atomic number 21 to 30 (Sc to Zn) , 39 to 48 (Y to Cd) , 72 to 80 (Hf to Hg) and 104 to 112 (Rf to Cn) .
  • Lides refer to metals with atomic number 57 to 71.
  • rare earth metal As used herein, rare earth metal (REM) , as defined by IUPAC, is one of a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides, as well as scandium and yttrium. Rare earth elements are cerium (Ce) , dysprosium (Dy) , erbium (Er) , europium (Eu) , gadolinium (Gd) , holmium (Ho) , lanthanum (La) , lutetium (Lu) , neodymium (Nd) , praseodymium (Pr) , promethium (Pm) , samarium (Sm) , scandium (Sc) , terbium (Tb) , thulium (Tm) , ytterbium (Yb) and yttrium (Y) .
  • Ce cerium
  • Dy dysprosium
  • Er erbium
  • Er europ
  • specific surface area is understood to mean the BET specific surface area determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 laid down from the Brunauer-Emmett-Teller method described in the periodical “The Journal of the American Chemical Society, 60, 309 (1938) ” . Specific surface areas are expressed for a designated calcination temperature and time.
  • hydrocarbon group refers to a group mainly consisting of carbon atoms and hydrogen atoms, which group may be saturated or unsaturated, linear, branched or cyclic, aliphatic or aromatic.
  • alkyl refers to a monovalent saturated aliphatic (i.e. non-aromatic) acyclic hydrocarbon group which may be linear or branched and does not comprise any carbon-to-carbon double bond or any carbon-to-carbon triple bond.
  • Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like.
  • alkenyl refers to a monovalent unsaturated aliphatic acyclic hydrocarbon group which may be linear or branched and comprises at least one carbon-to-carbon double bond while it does not comprise any carbon-to-carbon triple bond.
  • Representative unsaturated straight chain alkenyls include ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl and the like.
  • aryl refers to a monovalent aromatic hydrocarbon group, including bridged ring and/or fused ring systems, containing at least one aromatic ring. Examples of aryl groups include phenyl, naphthyl and the like.
  • arylalkyl or the term “aralkyl” refers to alkyl substituted with an aryl.
  • arylalkoxy refers to an alkoxy substituted with aryl.
  • cyclic group means a closed ring hydrocarbon group that is classified as an alicyclic group, aromatic group, or heterocyclic group.
  • alicyclic group means a cyclic hydrocarbon group having properties resembling those of aliphatic groups.
  • cycloalkyl as used herein means cycloalkyl groups containing from 3 to 8 carbon atoms, such as for example cyclohexyl.
  • heterocyclic means heterocyclic groups containing up to 6 carbon atoms together with 1 or 2 heteroatoms which are usually selected from O, N and S, such as for example radicals of: oxirane, oxirene, oxetane, oxete, oxetium, oxalane (tetrahydrofurane) , oxole, furane, oxane, pyrane, dioxine, pyranium, oxepane, oxepine, oxocane, oxocinc groups, aziridine, azirine, azirene, azetidine, azetine, azete, azolidine, azoline, azole, azinane, tetrahydropyridine, tetrahydrotetrazine, dihydroazine, azine, azepane,
  • Heterocyclic may also mean a heterocyclic group fused with a benzene-ring wherein the fused rings contain carbon atoms together with 1 or 2 heteroatom’s which are selected from N, O and S.
  • the present invention provides a process for preparing an amine, comprising reacting:
  • a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M 1 and at least one metal oxide M 2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
  • the transition metal of present invention is Ni.
  • the loading amount of metal on support of present invention could preferably be comprised from 0.50wt%to 4.50wt%with respect to total weight of catalyst and more preferably from 1.50wt%to 2.50wt%.
  • the rare earth metal oxide M 1 could be chosen in the group consisting of lanthanum oxide (La 2 O 3 ) , cerium oxide (CeO 2 ) , praseodymium oxide (Pr 6 O 11 ) , neodymium oxide (Nd 2 O 3 ) and samarium oxide (Sm 2 O 3 ) and more preferably cerium oxide (CeO 2 ) .
  • the support also comprises at least one metal oxide M 2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide and zirconia.
  • the metal oxide could be alumina and more preferably ⁇ -Al 2 O 3 .
  • the weight ratio of metal oxide M 1 to metal oxide M 2 of present invention may be comprised from 0.05 to 0.50 and preferably from 0.10 to 0.30 and more preferably from 0.11 to 0.17.
  • the content of metal oxide M 1 and metal oxide M 2 in the support could be comprised from 80.00wt%to 100.00wt%with respect to total weight of support and preferably from 95.00wt%to 100.00wt%.
  • the support of present invention is composed of a mixture of metal oxide M 1 and metal oxide M 2 .
  • the mixture of metal oxide M 1 and metal oxide M 2 above mentioned could be prepared by all well-known ways, such as wet chemical method and precipitation method.
  • wet chemical method refers to impregnation of metal precursor on an oxide support in the excess of solvent thermally treated at a particular temperature. Typically, a known concentration of metal precursor solution is added to the support solution (thermally treated at a particular temperature) over a period of time and mixture is allowed to stir for another few hours at that temperature.
  • precipitation method refers to precipitating a known metal precursor or solutions over the oxide support in the presence of acid-base with a thermal treatment. Typically, first a known concentration of metal precursor is added to the support over a period of time followed by the addition of acid-base solution slowly to the solution and mixture is aged for few hours at that temperature.
  • Catalyst of present invention could be prepared by well-known ways, such as incipient wetness impregnation (IWI) method.
  • IWI incipient wetness impregnation
  • Incipient wetness impregnation also called capillary impregnation or dry impregnation
  • capillary impregnation is a commonly used technique for the synthesis of heterogeneous catalysts.
  • the active metal precursor is dissolved in an aqueous or organic solution.
  • the metal-containing solution is added to a catalyst support containing the same pore volume as the volume of the solution that was added.
  • Solution added in excess of the support pore volume causes the solution transport to change from a capillary action process to a diffusion process, which is much slower.
  • the catalyst can then be dried and calcined to drive off the volatile components within the solution, depositing the metal on the catalyst surface.
  • the maximum loading is limited by the solubility of the precursor in the solution.
  • the concentration profile of the impregnated compound depends on the mass transfer conditions within the pores during impregnation and drying.
  • the mixture of metal oxide M 1 and metal oxide M 2 comprised in support could be calcined before being prepared into catalyst.
  • the support comprising mixture of metal oxide M 1 and metal oxide M 2 prepared by wet chemical method could be directly prepared into catalyst by the way of incipient wetness impregnation (IWI) method.
  • IWI incipient wetness impregnation
  • the support comprising mixture of metal oxide M 1 and metal oxide M 2 prepared by precipitation method could be calcined at a temperature from 300°C to 800°C before being prepared into catalyst by the way of incipient wetness impregnation (IWI) method.
  • IWI incipient wetness impregnation
  • the catalyst of present invention may have a specific surface area (S BET ) comprised from 100m 2 /g to 300m 2 /g and preferably from 120m 2 /g to 150m 2 /g.
  • S BET specific surface area
  • the specific surface area referred to in the present specification is measured according to the BET method utilizing absorption of nitrogen gas, which is the most standard method for measuring the specific surface area of powders.
  • the pore volume of catalyst may be comprised from 0.2cm 3 /g to 0.7cm 3 /g and preferably from 0.3cm 3 /g to 0.6cm 3 /g.
  • the total pore volume may be measured by N 2 adsorption at 77.4 K at a P/P 0 value of 0.99, where P is the N 2 pressure and P 0 is the saturation vapor pressure of N 2 .
  • This first reactant may notably be a compound of formula (I) :
  • R 1 is a straight, branched or cyclic C 2 -C 30 hydrocarbon group
  • R 1 may represent straight, branched or cyclic C 2 -C 30 hydrocarbon group that can be an alkyl, alkenyl, aryl, cycloalkyl or heterocyclic group, eventually comprising one or several heteroatoms such as O, S, F, and N. More preferred groups for R 1 may be for example C 2 -C 12 straight aliphatic hydrocarbon group, benzyl, furfuryl, and tetrahydrofurfuryl.
  • the first reactant may comprise additional functionalities.
  • the additional functionalities may behave as electron donating or electron withdrawing groups as long as their presence does not prevent reaction with the amine to form the imine intermediate.
  • Preferred first reactant of the present invention is chosen in the group consisting of: n-ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol and n-decanol, furfuryl alcohol, 2, 5-furandimethanol, 2, 5-tetrahydrofuranedimethanol, benzyl alcohol, 1, 6-hexandiol and 1, 7-heptandiol.
  • the first reactant could be a primary alcohol, which is chosen in the group consisting of n-ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol and n-decanol, furfuryl alcohol and benzyl alcohol.
  • a primary alcohol which is chosen in the group consisting of n-ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol and n-decanol, furfuryl alcohol and benzyl alcohol.
  • This second reactant may notably be a compound of formula (II) :
  • R 2 is H or a straight, branched or cyclic hydrocarbon group.
  • R 2 may represent straight, branched or cyclic hydrocarbon group that can be an alkyl, alkenyl, aryl, cycloalkyl or heterocyclic group, eventually comprising one or several heteroatoms such as O, S, F, and N.
  • Preferred groups for R 2 may be for example: H, alkyl, phenyl, benzyl, cycloalkyl, and cycloalkene. More preferred groups for R 2 may be H or alkyl. More preferred groups for R 2 may be H or C 1 -C 5 alkyl.
  • the second reactant may comprise additional functionalities.
  • the additional functionalities may behave as electron donating or electron withdrawing groups as long as their presence does not prevent reaction with the amine to form the imine intermediate.
  • Preferred second reactant of the present invention such as compounds of formula (II) , is chosen in the group consisting of: NH 3 , methylamine, ethylamine, propylamine and aniline. NH 3 is more preferable among these compounds.
  • the amine produced by the method of present invention could be chosen in the group consisting of primary, secondary and tertiary amine.
  • the amine is a primary amine.
  • the so prepared amine is or includes a primary amine and the selectivity of the primary amine is of at least 40%and preferably is comprised from40%to 95%and more preferably from 60%to 80%.
  • the amine produced by the method of the present invention may notably be a compound of formula (III) :
  • x and R 1 have the same meaning as above defined.
  • Preferred amine produced in present invention could be chosen in the group consisting of: n-ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, benzylamine, furan-2-ylmethanamine, (tetrahydrofuran-2, 5-diyl) dimethanamine, (furan-2, 5-diyl) dimethanamine, 1, 6-hexamethylenediamine, 1, 7-heptamethylenediamine, N-phenylbenzylamine and N, N-Dibenylaniline.
  • amine produced such as compounds of formula (III)
  • amine produced could be chosen in the group consisting of n-ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine and benzylamine.
  • Preferred reactions of the present invention are the following:
  • the molar percentage of supported catalyst may be comprised from 0.5%to 5%with respect to alcohol introduced.
  • the method for forming an amine might be performed at a temperature and for a time sufficient for the primary amine, secondary amine or tertiary amine to be produced.
  • the reaction temperature may be comprised between-100°C and 280°C, preferably between 0°C and 250°C, more preferably between 150°C and 200°C.
  • the reaction may be carried out in liquid or gas phase. In liquid phase, the reaction may be performed in the absence or presence of a solvent.
  • the solvent is typically chosen based on its ability to dissolve the reactants.
  • the solvent may be protic, aprotic or a combination of protic and aprotic solvents.
  • Exemplary solvents include toluene, octane, xylene, benzene, n-butanol, and acetonitrile.
  • the solvent is a non-polar, aprotic solvent such as toluene. Solvents comprising hydroxyl functionalities or amine functionalities may be used as long as the solvent does not participate in the reaction in place of the reactant.
  • the reactants, with an optional solvent, and the catalyst are typically combined in a reaction vessel and stirred to constitute the reaction mixture.
  • the reaction mixture is typically maintained at the desired reaction temperature under stirring for a time sufficient to form the amines in the desired quantity and yield.
  • Hydrogen could be optionally introduced into the reaction medium in this invention.
  • NH 3 and H 2 might be mixed and introduced into reaction medium in one embodiment.
  • the reaction may be performed under a pressure comprised between 1 and 100 bars, preferably between 2 and 20 bars.
  • the reaction may be carried out in the presence of air but preferably with an inert atmosphere, such as N 2 , Ar, or CO 2 . Those atmospheres may be introduced to the reaction mixture solely or in a form of mixture with NH 3 and/or H 2 .
  • the catalyst is typically removed from the reaction mixture using any solid/liquid separation technique such as filtration, centrifugation, and the like or a combination of separation methods.
  • the product may be isolated using standard isolation techniques, such as distillation.
  • the catalyst can be reused. If desired, the catalyst can be regenerated by washing with methanol, water or a combination of water and methanol and subjecting the washed catalyst to a temperature of about 100°C to about 500°Cfor about 2 to 24 hours in the presence of oxygen.
  • the conversion of first reactant could reach at least 70%.
  • the conversion of first reactant may be comprised from 70%to 100%and more preferably from 75%and 90%.
  • the invention also concerns a composition
  • a composition comprising:
  • a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M 1 and at least one metal oxide M 2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
  • EXAMPLE 1 Cerium-aluminum mixed oxides prepared by wet chemical method (WI)
  • EXAMPLE 2 Cerium-aluminum mixed oxides prepared by precipitation method (PPT)
  • EXAMPLE 3 Cerium-titanium mixed oxides prepared by wet chemical method (WI)
  • Cerium-titanium mixed oxides was prepared by the same way as EXAMPLE 1. Titanium oxide was available from Evonik.
  • EXAMPLE 4 Cerium-zirconium mixed oxides prepared by wet chemical method (WI)
  • Cerium-zirconium mixed oxides was prepared by the same way as EXAMPLE 1. Zirconium oxide was available from Evonik.
  • Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL of distilled H 2 O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 1 was directly impregnated with nickel nitrate solution and then calcined at 500°C for 6 hours in a muffle furnace.
  • IWI Incipient Wetness Impregnation
  • Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method.
  • IWI Incipient Wetness Impregnation
  • 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL of distilled H 2 O to get an aqueous solution.
  • 3 g mixed oxides of EXAMPLE 1 was first calcined at 500°C and then impregnated with nickel nitrate solution and further calcined at 500°C for 6 hours in a muffle furnace.
  • Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL of distilled H 2 O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 2 was directly impregnated with nickel nitrate solution and then calcined at 500°C for 6 hours in a muffle furnace.
  • IWI Incipient Wetness Impregnation
  • Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL ofdistilled H 2 O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 2 was first calcined at 500°C and then impregnated with nickel nitrate solution and further calcined at 500°C for 6 hours in a muffle furnace.
  • IWI Incipient Wetness Impregnation
  • Ni supported by cerium-titanium mixed oxides was prepared by the same way as EXAMPLE 5.
  • Solvay CeO 2 Actalys HSA5 was pre-calcined at 600°C and labelled as CeO 2 _600.
  • Ni supportedby CeO 2 _600 was prepared by the same way as EXAMPLE 5.
  • Ni supported by aluminum mixed oxide was prepared by the same way as EXAMPLE 5.
  • Ni supported by aluminum mixed oxide was prepared by the same way as EXAMPLE 5.
  • the catalytic tests were carried out in 30 mL stainless steel autoclaves geared with a pressure gauge a safety rupture disk.
  • the reactor was charged with 1.3 mmol 1-octanol, 3mL o-xylene as solvent and 65 mg catalyst of EXAMPLE 5 pre-reduced (ex-situ) under H 2 at 580°C for 30 minutes.
  • the reactor was sealed and evacuated by applying vacuum followed by charging NH 3 (7 bar) into the reactor.
  • the reactor was then placed on a hot plate equipped with a magnetic stirrer for 4 h at 180°C. After the reaction, the reactor was cooled down to room temperature and the mixture was analyzed on an Agilent 7890 GC equipped with a HP-5 capillary column with 5 wt%phenyl groups using biphenyl as the internal standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is an effective process for converting alcohols to an amine, notably primary, with desired characteristics such as inexpensiveness, high selectivity and conversion. Specifically, the reaction is performed in the presence of a low loading transition metal catalyst, notably noble metal-free metal.

Description

[Title established by the ISA under Rule 37.2] PROCESS FOR PREPARING AMINE VIA DIRECT AMINATION REACTION
This invention provides an effective process for converting alcohols to an amine. This invention provides an effective process for converting alcohols to an amine, notably primary, with desired characteristics such as inexpensiveness, high selectivity and conversion. Specifically, the reaction is performed in the presence of a low loading transition metal catalyst, notably noble metal-free metal.
PRIOR ART
The following discussion of the prior art is provided to place the invention in an appropriate technical context and enable the advantages of it to be more fully understood. It should be appreciated, however, that any discussion of the prior art throughout the specification should not be considered as an express or implied admission that such prior art is widely known or forms part of common general knowledge in the field.
Heterogeneous catalyst used in direct amination reaction is very attractive technology nowadays for its ease of separation and recyclability. There are lots of studies focusing on amination reaction using metals prepared on the support as catalyst.
Rare earth oxides, such as cerium oxide is always used in the catalytic amination reactions. For example, WO15054828 A1 discloses cerium oxide is used as a support to noble metal in the direct amination reaction.
US2013178656 reports a process for preparing secondary amines by aminating excess primary or secondary alcohols with primary amines in the liquid phase in the presence of copper-comprising catalysts. Said oxidic support could be aluminum oxides, silicon dioxide, titanium dioxides, zirconium dioxide, lanthanum oxide, molybdenum oxide, tungsten oxide or mixtures of these oxides. However, it only links to high copper loading alumina supporting catalyst.
Ken-ichi Shimizu et al. ACS Catalysis (2013) , 3 (1) , 112-117 reports a noble metal-free catalytic system for synthesis of primary amines from alcohols and  NH3 by Al2O3 supported Ni catalysts. Various Ni loadings were tested according to this paper (1-20%) and catalysts with 5wt%and 10 wt%are found to be optimal.
US4209424 teaches a catalyst for implementing a process for manufacturing amines from alcohols is composed of an active element in the transition metals family uniformly combined with a refractory porous structure with a specific surface of between 10 and 300m2/g and with a pore diameter less than 5000 A, wherein the transition metal content represents 30-70%of the total catalyst weight. The catalyst and the process are specifically applicable to the ethanolamine-ammonia reaction with a view to producing ethylenediamine, piperazine, and useful byproducts and the conversion of reactant is not quite good.
Nevertheless, abovementioned amination catalysts are still not ideal as they have the disadvantages of high commercialization cost, high metal loading, low catalytic activity and/or selectivity.
INVENTION
It is therefore an objective of this invention to provide an effective process for converting alcohols to an amine, notably primary amine, with desired characteristics such as inexpensiveness, high selectivity and conversion and overcome the drawbacks in prior arts. Specifically, the reaction is performed in the presence of a low loading transition metal catalyst, notably noble metal-free metal.
According to a first aspect, the present invention pertains to a process for preparing an amine, comprising reacting:
- a first reactant having 2-30 carbon atoms and one or two primary hydroxyl or formyl functionalities, with
- a second reactant being NH3 or a reactant having at least one primary amine functionality,
in the presence of a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M1 and at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide,  zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
The invention also concerns a composition comprising:
- a first reactant having 2-30 carbon atoms and one or two primary hydroxyl or formyl functionalities,
- a second reactant being NH3 or a reactant having at least one primary amine functionality, and
- a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M1 and at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
Other characteristics, details and advantages of the invention will emerge more fully upon reading the description which follows.
DEFINITIONS
For convenience, before further description of the present disclosure, certain terms employed in the specification, and examples are collected here. These definitions should be read in the light of the remainder of the disclosure and understood as by a person of skill in the art. The terms used herein have the meanings recognized and known to those of skill in the art, however, for convenience and completeness, particular terms and their meanings are set forth below.
The articles “a” , “an” and “the” are used to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.
The term “and/or” includes the meanings “and” , “or” and also all the other possible combinations of the elements connected to this term.
Throughout the description, including the claims, the term "comprising one" should be understood as being synonymous with the term "comprising at least  one" , unless otherwise specified, and "between" should be understood as being inclusive of the limits.
It should be noted that in specifying any range of concentration, any particular upper concentration can be associated with any particular lower concentration.
It is specified that, in the continuation of the description, unless otherwise indicated, the values at the limits are included in the ranges of values which are given.
As used herein, metals of group IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB are often referred to as transition metals. This group comprises the elements with atomic number 21 to 30 (Sc to Zn) , 39 to 48 (Y to Cd) , 72 to 80 (Hf to Hg) and 104 to 112 (Rf to Cn) .
As used herein, the term “Lanthanides” refer to metals with atomic number 57 to 71.
As used herein, rare earth metal (REM) , as defined by IUPAC, is one of a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides, as well as scandium and yttrium. Rare earth elements are cerium (Ce) , dysprosium (Dy) , erbium (Er) , europium (Eu) , gadolinium (Gd) , holmium (Ho) , lanthanum (La) , lutetium (Lu) , neodymium (Nd) , praseodymium (Pr) , promethium (Pm) , samarium (Sm) , scandium (Sc) , terbium (Tb) , thulium (Tm) , ytterbium (Yb) and yttrium (Y) .
The term “specific surface area” is understood to mean the BET specific surface area determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 laid down from the Brunauer-Emmett-Teller method described in the periodical “The Journal of the American Chemical Society, 60, 309 (1938) ” . Specific surface areas are expressed for a designated calcination temperature and time.
As used herein, the term "hydrocarbon group" refers to a group mainly consisting of carbon atoms and hydrogen atoms, which group may be saturated or unsaturated, linear, branched or cyclic, aliphatic or aromatic.
As used herein, the term “alkyl” refers to a monovalent saturated aliphatic (i.e. non-aromatic) acyclic hydrocarbon group which may be linear or branched and does not comprise any carbon-to-carbon double bond or any carbon-to-carbon triple bond. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like.
As used herein, the term "alkenyl" refers to a monovalent unsaturated aliphatic acyclic hydrocarbon group which may be linear or branched and comprises at least one carbon-to-carbon double bond while it does not comprise any carbon-to-carbon triple bond. Representative unsaturated straight chain alkenyls include ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl and the like.
As used herein, the term "aryl" refers to a monovalent aromatic hydrocarbon group, including bridged ring and/or fused ring systems, containing at least one aromatic ring. Examples of aryl groups include phenyl, naphthyl and the like. The term "arylalkyl" or the term "aralkyl" refers to alkyl substituted with an aryl. The term "arylalkoxy" refers to an alkoxy substituted with aryl.
As used herein, the term "cyclic group" means a closed ring hydrocarbon group that is classified as an alicyclic group, aromatic group, or heterocyclic group. The term "alicyclic group" means a cyclic hydrocarbon group having properties resembling those of aliphatic groups.
As used herein, the term "cycloalkyl" as used herein means cycloalkyl groups containing from 3 to 8 carbon atoms, such as for example cyclohexyl.
As used herein, the term “heterocyclic" as used herein means heterocyclic groups containing up to 6 carbon atoms together with 1 or 2 heteroatoms which are usually selected from O, N and S, such as for example radicals of: oxirane, oxirene, oxetane, oxete, oxetium, oxalane (tetrahydrofurane) , oxole, furane, oxane, pyrane, dioxine, pyranium, oxepane, oxepine, oxocane, oxocinc groups, aziridine, azirine, azirene, azetidine, azetine, azete, azolidine, azoline, azole, azinane, tetrahydropyridine, tetrahydrotetrazine, dihydroazine, azine, azepane,  azepine, azocane, dihydroazocine, azocinic groups and thiirane, thiirene, thiethane, thiirene, thietane, thiete, thietium, thiolane, thiole, thiophene, thiane, thiopyrane, thiine, thiinium, thiepane, thiepine, thiocane, thiocinic groups.
"Heterocyclic" may also mean a heterocyclic group fused with a benzene-ring wherein the fused rings contain carbon atoms together with 1 or 2 heteroatom’s which are selected from N, O and S.
As used herein, the terminology " (Cn-Cm) " in reference to an organic group, wherein n and m are each integers, indicates that the group may contain from n carbon atoms to m carbon atoms per group.
Should the disclosure of any patents, patent applications, and publications which are incorporated herein by reference conflict with the description of the present application to the extent that it may render a term unclear, the present description shall take precedence.
DETAILS OF THE INVENTION
The present invention provides a process for preparing an amine, comprising reacting:
- a first reactant having 2-30 carbon atoms and one or two primary hydroxyl or formyl functionalities, with
- a second reactant being NH3 or a reactant having at least one primary amine functionality,
in the presence of a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M1 and at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
Preferably, the transition metal of present invention is Ni.
The loading amount of metal on support of present invention could preferably be comprised from 0.50wt%to 4.50wt%with respect to total weight of catalyst and more preferably from 1.50wt%to 2.50wt%.
Preferably, the rare earth metal oxide M1 could be chosen in the group consisting of lanthanum oxide (La2O3) , cerium oxide (CeO2) , praseodymium oxide (Pr6O11) , neodymium oxide (Nd2O3) and samarium oxide (Sm2O3) and more preferably cerium oxide (CeO2) .
As previously expressed, the support also comprises at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide and zirconia. Preferably, the metal oxide could be alumina and more preferably γ-Al2O3.
The weight ratio of metal oxide M1 to metal oxide M2 of present invention may be comprised from 0.05 to 0.50 and preferably from 0.10 to 0.30 and more preferably from 0.11 to 0.17.
The content of metal oxide M1 and metal oxide M2 in the support could be comprised from 80.00wt%to 100.00wt%with respect to total weight of support and preferably from 95.00wt%to 100.00wt%.
In a preferred embodiment, the support of present invention is composed of a mixture of metal oxide M1 and metal oxide M2.
The mixture of metal oxide M1 and metal oxide M2 above mentioned could be prepared by all well-known ways, such as wet chemical method and precipitation method.
As used herein, “wet chemical method” refers to impregnation of metal precursor on an oxide support in the excess of solvent thermally treated at a particular temperature. Typically, a known concentration of metal precursor solution is added to the support solution (thermally treated at a particular temperature) over a period of time and mixture is allowed to stir for another few hours at that temperature.
As used herein, “precipitation method” refers to precipitating a known metal precursor or solutions over the oxide support in the presence of acid-base with a thermal treatment. Typically, first a known concentration of metal precursor is added to the support over a period of time followed by the addition of acid-base  solution slowly to the solution and mixture is aged for few hours at that temperature.
Catalyst of present invention could be prepared by well-known ways, such as incipient wetness impregnation (IWI) method.
Incipient wetness impregnation, also called capillary impregnation or dry impregnation, is a commonly used technique for the synthesis of heterogeneous catalysts. Typically, the active metal precursor is dissolved in an aqueous or organic solution. Then the metal-containing solution is added to a catalyst support containing the same pore volume as the volume of the solution that was added. Solution added in excess of the support pore volume causes the solution transport to change from a capillary action process to a diffusion process, which is much slower. The catalyst can then be dried and calcined to drive off the volatile components within the solution, depositing the metal on the catalyst surface. The maximum loading is limited by the solubility of the precursor in the solution. The concentration profile of the impregnated compound depends on the mass transfer conditions within the pores during impregnation and drying.
In one specific embodiment, the mixture of metal oxide M1 and metal oxide M2 comprised in support could be calcined before being prepared into catalyst.
In a preferred embodiment, the support comprising mixture of metal oxide M1 and metal oxide M2 prepared by wet chemical method could be directly prepared into catalyst by the way of incipient wetness impregnation (IWI) method.
In another preferred embodiment, the support comprising mixture of metal oxide M1 and metal oxide M2 prepared by precipitation method could be calcined at a temperature from 300℃ to 800℃ before being prepared into catalyst by the way of incipient wetness impregnation (IWI) method.
The catalyst of present invention may have a specific surface area (SBET) comprised from 100m2/g to 300m2/g and preferably from 120m2/g to 150m2/g. The specific surface area referred to in the present specification is measured according to the BET method utilizing absorption of nitrogen gas, which is the most standard method for measuring the specific surface area of powders.
The pore volume of catalyst may be comprised from 0.2cm3/g to 0.7cm3/g and preferably from 0.3cm3/g to 0.6cm3/g. The total pore volume may be measured by N2 adsorption at 77.4 K at a P/P0 value of 0.99, where P is the N2 pressure and P0 is the saturation vapor pressure of N2.
This first reactant may notably be a compound of formula (I) :
R1 (-OH) x   (I)
Wherein:
- x is 1 or 2
- R1 is a straight, branched or cyclic C2-C30 hydrocarbon group
R1 may represent straight, branched or cyclic C2-C30 hydrocarbon group that can be an alkyl, alkenyl, aryl, cycloalkyl or heterocyclic group, eventually comprising one or several heteroatoms such as O, S, F, and N. More preferred groups for R1 may be for example C2-C12 straight aliphatic hydrocarbon group, benzyl, furfuryl, and tetrahydrofurfuryl.
In addition, the first reactant may comprise additional functionalities. The additional functionalities may behave as electron donating or electron withdrawing groups as long as their presence does not prevent reaction with the amine to form the imine intermediate. There is no particular limitation on the number of carbon atoms present in the reactant as long as its structure does not prevent the formation of the imine intermediate.
Preferred first reactant of the present invention, such as compounds of formula (I) , is chosen in the group consisting of: n-ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol and n-decanol, furfuryl alcohol, 2, 5-furandimethanol, 2, 5-tetrahydrofuranedimethanol, benzyl alcohol, 1, 6-hexandiol and 1, 7-heptandiol. In one preferred embodiment, the first reactant could be a primary alcohol, which is chosen in the group consisting of n-ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol and n-decanol, furfuryl alcohol and benzyl alcohol.
This second reactant may notably be a compound of formula (II) :
R2-NH2   (II)
Wherein: R2 is H or a straight, branched or cyclic hydrocarbon group. R2 may represent straight, branched or cyclic hydrocarbon group that can be an alkyl, alkenyl, aryl, cycloalkyl or heterocyclic group, eventually comprising one or several heteroatoms such as O, S, F, and N. Preferred groups for R2 may be for example: H, alkyl, phenyl, benzyl, cycloalkyl, and cycloalkene. More preferred groups for R2 may be H or alkyl. More preferred groups for R2 may be H or C1-C5 alkyl.
In addition, the second reactant may comprise additional functionalities. The additional functionalities may behave as electron donating or electron withdrawing groups as long as their presence does not prevent reaction with the amine to form the imine intermediate. There is no particular limitation on the number of carbon atoms present in the reactant as long as its structure does not prevent the formation of the imine intermediate.
Preferred second reactant of the present invention, such as compounds of formula (II) , is chosen in the group consisting of: NH3, methylamine, ethylamine, propylamine and aniline. NH3 is more preferable among these compounds.
The amine produced by the method of present invention could be chosen in the group consisting of primary, secondary and tertiary amine. Preferably, the amine is a primary amine.
In one embodiment, the so prepared amine is or includes a primary amine and the selectivity of the primary amine is of at least 40%and preferably is comprised from40%to 95%and more preferably from 60%to 80%.
The amine produced by the method of the present invention may notably be a compound of formula (III) :
R1 (-NH2x   (III)
x and R1 have the same meaning as above defined.
Preferred amine produced in present invention, could be chosen in the group consisting of: n-ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, benzylamine, furan-2-ylmethanamine, (tetrahydrofuran-2, 5-diyl) dimethanamine,  (furan-2, 5-diyl) dimethanamine, 1, 6-hexamethylenediamine, 1, 7-heptamethylenediamine, N-phenylbenzylamine and N, N-Dibenylaniline. More preferably, amine produced, such as compounds of formula (III) , could be chosen in the group consisting of n-ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine and benzylamine.
Preferred reactions of the present invention are the following:
- Reaction of n-pentanol with NH3 to produce n-pentylamine;
- Reaction of n-hexanol with NH3 to produce n-hexylamine;
- Reaction of n-heptanol with NH3 to produce n-heptylamine;
- Reaction of n-octanol with NH3 to produce n-octylamine;
- Reaction of n-nonanol with NH3 to produce n-nonylamine;
- Reaction of n-decanol with NH3 to produce n-decylamine.
The molar percentage of supported catalyst may be comprised from 0.5%to 5%with respect to alcohol introduced.
The method for forming an amine might be performed at a temperature and for a time sufficient for the primary amine, secondary amine or tertiary amine to be produced.
The reaction temperature may be comprised between-100℃ and 280℃, preferably between 0℃ and 250℃, more preferably between 150℃ and 200℃. The reaction may be carried out in liquid or gas phase. In liquid phase, the reaction may be performed in the absence or presence of a solvent. The solvent is typically chosen based on its ability to dissolve the reactants.
The solvent may be protic, aprotic or a combination of protic and aprotic solvents. Exemplary solvents include toluene, octane, xylene, benzene, n-butanol, and acetonitrile. In some embodiments the solvent is a non-polar, aprotic solvent such as toluene. Solvents comprising hydroxyl functionalities or amine functionalities may be used as long as the solvent does not participate in the reaction in place of the reactant.
The reactants, with an optional solvent, and the catalyst are typically combined in a reaction vessel and stirred to constitute the reaction mixture. The reaction mixture is typically maintained at the desired reaction temperature under stirring for a time sufficient to form the amines in the desired quantity and yield.
Hydrogen could be optionally introduced into the reaction medium in this invention. When the reaction is performed in liquid phase, NH3 and H2 might be mixed and introduced into reaction medium in one embodiment. In gas phase, the reaction may be performed under a pressure comprised between 1 and 100 bars, preferably between 2 and 20 bars.
The reaction may be carried out in the presence of air but preferably with an inert atmosphere, such as N2, Ar, or CO2. Those atmospheres may be introduced to the reaction mixture solely or in a form of mixture with NH3 and/or H2.
The catalyst is typically removed from the reaction mixture using any solid/liquid separation technique such as filtration, centrifugation, and the like or a combination of separation methods. The product may be isolated using standard isolation techniques, such as distillation.
In addition, the catalyst can be reused. If desired, the catalyst can be regenerated by washing with methanol, water or a combination of water and methanol and subjecting the washed catalyst to a temperature of about 100℃ to about 500℃for about 2 to 24 hours in the presence of oxygen.
Advantageously, the conversion of first reactant could reach at least 70%. Preferably, the conversion of first reactant may be comprised from 70%to 100%and more preferably from 75%and 90%.
The invention also concerns a composition comprising:
- a first reactant having 2-30 carbon atoms and one or two primary hydroxyl or formyl functionalities,
- a second reactant being NH3 or a reactant having at least one primary amine functionality, and
- a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support  comprising at least one rare earth metal oxide M1 and at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt%to 5.00wt%with respect to total weight of the catalyst.
The following examples are included to illustrate embodiments of the invention. Needless to say, the invention is not limited to the described examples.
EXPERIMENTAL PART
EXAMPLE 1: Cerium-aluminum mixed oxides prepared by wet chemical method (WI)
In a given wet chemical synthesis experiment a 5g of γ-Al2O3 (SASOL) was dissolved in 70mL of distilled water in a two neck round bottom flask and thermally treated at 145℃ for 1 h. A 20mL solution of cerium nitrate (2.6g in 20mL) (Sigma Aldrich) was added through dropping funnel at a constant stirring speed of 600rpm. The mixture was aged for 2h and then allowed to cool down to room temperature. The excess water is slowly removed over Rota Vapor at 60℃. The solid is dried in oven overnight at 120℃ and further calcined at 500℃ for 6h at heating rate of 3℃/min in a muffle furnace under static air.
EXAMPLE 2: Cerium-aluminum mixed oxides prepared by precipitation method (PPT)
In a given precipitation method, 5 g of γ-Al2O3 (SASOL) dissolved in 50 mL of distilled water taken in two neck round bottom flask was thermally treated at 80℃ for 1h. A 20mL solution of cerium nitrate (Sigma Aldrich) solution was added to above solution and stirred for 5 minutes. To this a 25mL solution of NaOH and Citric acid (J&K China) (molar ratio NaOH/Citric acid = 1) was added through dropping funnel over a time of 15 minutes. The solution is further aged for 2.5 h. Finally mixture is cooled down to room temperature and vacuum filtered. Several washings (2L distilled H2O) were given till the neutral pH is attained. The so obtained solid cake was dried in oven overnight at 120℃ and further calcined at 500℃ for 6h at heating rate of 3℃/min in a muffle furnace under static air.
EXAMPLE 3: Cerium-titanium mixed oxides prepared by wet chemical method (WI)
Cerium-titanium mixed oxides was prepared by the same way as EXAMPLE 1. Titanium oxide was available from Evonik.
EXAMPLE 4: Cerium-zirconium mixed oxides prepared by wet chemical method (WI)
Cerium-zirconium mixed oxides was prepared by the same way as EXAMPLE 1. Zirconium oxide was available from Evonik.
EXAMPLE 5: 2 wt%Ni/CeO2-γ-Al2O3 WI (B) preparation
Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL of distilled H2O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 1 was directly impregnated with nickel nitrate solution and then calcined at 500℃ for 6 hours in a muffle furnace.
EXAMPLE 6: 2 wt%Ni/CeO2-γ-Al2O3 WI (A) preparation
Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL of distilled H2O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 1 was first calcined at 500℃ and then impregnated with nickel nitrate solution and further calcined at 500℃ for 6 hours in a muffle furnace.
EXAMPLE 7: 2 wt%Ni/CeO2-γ-Al2O3 PPT (B) preparation
Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL of distilled H2O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 2 was directly impregnated with nickel nitrate solution and then calcined at 500℃ for 6 hours in a muffle furnace.
EXAMPLE 8: 2 wt%Ni/CeO2-γ-Al2O3 PPT (A) preparation
Nickel was impregnated on prepared mixed oxides by Incipient Wetness Impregnation (IWI) method. 0.3032 g of nickel nitrate hexahydrate salt (Sigma Aldrich) was dissolved in 1.53 mL ofdistilled H2O to get an aqueous solution. 3 g mixed oxides of EXAMPLE 2 was first calcined at 500℃ and then impregnated with nickel nitrate solution and further calcined at 500℃ for 6 hours in a muffle furnace.
EXAMPLE 9: _2 wt%Ni/CeO2-TiO2 WI (B) preparation
Ni supported by cerium-titanium mixed oxides was prepared by the same way as EXAMPLE 5.
EXAMPLE 10: 2 wt%Ni/CeO2-ZrO2 WI (B) preparation
Ni supported by cerium-zirconium mixed oxides was prepared by the same way as EXAMPLE 5.
EXAMPLE 11: 2 wt%Ni/CeO2 preparation
Ni supported by cerium oxide (Actalys HSA5 available from Solvay) was prepared by the same way as EXAMPLE 5.
EXAMPLE 12: 2 wt%Ni/CeO2_600 preparation
Solvay CeO2 Actalys HSA5 was pre-calcined at 600℃ and labelled as CeO2_600.
Ni supportedby CeO2_600 was prepared by the same way as EXAMPLE 5.
EXAMPLE 13: 2 wt%Ni/γ-Al2O3 preparation
Ni supported by aluminum mixed oxide was prepared by the same way as EXAMPLE 5.
EXAMPLE 14: 8 wt%Ni/γ-Al2O3 preparation
Ni supported by aluminum mixed oxide was prepared by the same way as EXAMPLE 5.
EXAMPLE 15: Amination reaction (Octanol&NH3
In this example, supports with no Ni loading (γ-Al2O3, EXAMPLE 1&2) and catalysts supported by only one metal oxide support (EXAMPLE 11 to 14) were tried. Catalysts of EXAMPLE 5, 8 to10 were also tried by the same way as follows.
The catalytic tests were carried out in 30 mL stainless steel autoclaves geared with a pressure gauge a safety rupture disk. In a given experiment, the reactor was charged with 1.3 mmol 1-octanol, 3mL o-xylene as solvent and 65 mg catalyst of EXAMPLE 5 pre-reduced (ex-situ) under H2 at 580℃ for 30 minutes. The reactor was sealed and evacuated by applying vacuum followed by charging NH3 (7 bar) into the reactor. The reactor was then placed on a hot plate equipped with a magnetic stirrer for 4 h at 180℃. After the reaction, the reactor was cooled down to room temperature and the mixture was analyzed on an Agilent 7890 GC equipped with a HP-5 capillary column with 5 wt%phenyl groups using biphenyl as the internal standard.
As shown in table 1, supports with no Ni loading had no catalytic activity. When γ-When Al2O3 was used as the only support, high Ni loading was necessary for the catalytic reaction. However, after 24 h reaction, 8Ni/γ-Al2O3 gave good octanol conversion (97%) but very low selectivity to primary amine (26%) , in contrast for (2Ni/Ce-Al_WI (B) ) tested under similar conditions rendered 55%conversion and 77%selectivity to octylamine. When CeO2 was used as the support, the surface area of support was much higher than mixed oxides to achieve similar performance. Therefore, low transition metal loading catalyst that was supported by mixed oxide is more economical and suitable for industrialization.
Table-1: Results for different catalysts screened for amination of 1-octanol with NH3a
Figure PCTCN2017072998-appb-000001
a Reaction conditions: 1-octanol-1.3 mmol, NH3-7bar, Temp. -180℃, Cat-65 mg, Solvent-3 mL o-xylene, RPM-600.
b Estimated from GC
c TON: moles of OA formed per moles of surface Ni
d 5 mol%catalyst (235 mg)
e Cat-110 mg
Abbreviations: ON= octylnitrile, OA= octylamine, DOA= dioctylamine, TOA= trioctylamine, DOI= dioctylimine

Claims (16)

  1. A process for preparing an amine, comprising reacting:
    - a first reactant having 2-30 carbon atoms and one or two primary hydroxyl or formyl functionalities, with
    - a second reactant being NH3 or a reactant having at least one primary amine functionality,
    in the presence of a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M1 and at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt% to 5.00wt% with respect to total weight of the catalyst.
  2. The process according to claim 1, wherein the loading of transition metal is comprised from 1.50wt% to 2.50wt% with respect to total weight of catalyst.
  3. The process according to claim 1 or 2, wherein the weight ratio of metal oxide M1 to metal oxide M2 is comprised from 0.05 to 0.50.
  4. The process according to any one of claims 1 to 3, wherein the transition metal is Ni.
  5. The process according to any one of claims 1 to 4, wherein the rare earth metal oxide M1 is cerium oxide.
  6. The process according to any one of claims 1 to 5, wherein the metal oxide M2 is alumina.
  7. The process according to any one of claims 1 to 6, wherein the catalyst has a specific surface area (SBET) comprised from 100 m2/g to 300m2/g and preferably from 120m2/g to 150m2/g.
  8. The process according to any one of claims 1 to 7, wherein the first reactant is a compound of formula (I) :
    R1 (-OH) x (I)
    Wherein:
    - x is 1 or 2
    - R1 is a straight, branched or cyclic C2-C30hydrocarbon group.
  9. The process according to claim 8, wherein the first reactant is a primary alcohol, which is chosen in the group consisting of n-ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, furfuryl alcohol and benzyl alcohol.
  10. The process according to any one of claims 1 to 9, wherein second reactant is a compound of formula (II) :
    R2-NH2 (II)
    Wherein: R2 is H or a straight, branched or cyclic hydrocarbon group.
  11. The process according to claim 10, wherein the second reactant is chosen in the group consisting of NH3, methylamine, ethylamine, propylamine and aniline.
  12. The process according to any one of claims 1 to 11, wherein amine produced is a compound of formula (III) :
    R1 (-NH2x (III)
    Wherein:
    - x is 1 or 2
    - R1 is a straight, branched or cyclic C2-C30hydrocarbon group.
  13. The process according to claim 12, wherein amine produced is chosen in the group consisting of n-ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine and benzylamine.
  14. The process according to any one of claims 1 to 13, wherein the so prepared amine is or includes a primary amine and the selectivity of the primary amine is of at least 40% and preferably is comprised from 40% to 95%.
  15. The process according to any one of claims 1 to 14, wherein the molar percentage of supported catalyst is comprised from 0.5 to 5 with respect to alcohol introduced.
  16. A composition comprising:
    - a first reactant having 2-30 carbon atoms and one or two primary hydroxyl or formyl functionalities,
    - a second reactant being NH3 or a reactant having at least one primary amine functionality, and
    - a catalyst comprising at least one transition metal chosen in the group consisting of Fe, Co, Ni, Cu, Zn and combinations thereof, and a support comprising at least one rare earth metal oxide M1 and at least one metal oxide M2 chosen in the group consisting of magnesia, alumina, silica, titanium oxide, zirconia and combinations thereof; wherein the loading of the transition metal is comprised from 0.10wt% to 5.00wt% with respect to total weight of the catalyst.
PCT/CN2017/072998 2017-02-06 2017-02-06 Process for preparing amine via direct amination reaction WO2018141113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072998 WO2018141113A1 (en) 2017-02-06 2017-02-06 Process for preparing amine via direct amination reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072998 WO2018141113A1 (en) 2017-02-06 2017-02-06 Process for preparing amine via direct amination reaction

Publications (1)

Publication Number Publication Date
WO2018141113A1 true WO2018141113A1 (en) 2018-08-09

Family

ID=63040257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072998 WO2018141113A1 (en) 2017-02-06 2017-02-06 Process for preparing amine via direct amination reaction

Country Status (1)

Country Link
WO (1) WO2018141113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539071A (en) * 2022-03-09 2022-05-27 天津大学 Method for preparing n-hexylamine through amination reaction of n-hexylalcohol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760190A (en) * 1985-08-01 1988-07-26 Imperial Chemical Industries Plc Amine production
CN103724210A (en) * 2012-10-11 2014-04-16 浙江新化化工股份有限公司 Production method of N-ethyl-n-butylamine
CN104039752A (en) * 2012-01-11 2014-09-10 巴斯夫欧洲公司 Method for producing secondary amines in the liquid phase
CN104549314A (en) * 2015-01-19 2015-04-29 南京大学连云港高新技术研究院 Catalyst for preparing isopropylamine and method for preparing catalyst for preparing isopropylamine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760190A (en) * 1985-08-01 1988-07-26 Imperial Chemical Industries Plc Amine production
CN104039752A (en) * 2012-01-11 2014-09-10 巴斯夫欧洲公司 Method for producing secondary amines in the liquid phase
CN103724210A (en) * 2012-10-11 2014-04-16 浙江新化化工股份有限公司 Production method of N-ethyl-n-butylamine
CN104549314A (en) * 2015-01-19 2015-04-29 南京大学连云港高新技术研究院 Catalyst for preparing isopropylamine and method for preparing catalyst for preparing isopropylamine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN MING: "A study of amination of alcohols to amines over supported nickel catalysts", CHINESE MASTER'S THESES FULL-TEXT DATABASE ENGINEERING SCIENCE AND TECHNOLOGY, vol. I, no. 10, 15 October 2016 (2016-10-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539071A (en) * 2022-03-09 2022-05-27 天津大学 Method for preparing n-hexylamine through amination reaction of n-hexylalcohol
CN114539071B (en) * 2022-03-09 2024-05-03 天津大学 Method for preparing n-hexylamine by amination reaction of n-hexanol

Similar Documents

Publication Publication Date Title
US6514902B1 (en) Method for producing an oxide catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
WO2008099961A9 (en) Catalyst for alcohol production
JP2015523197A (en) Reduction catalyst
US10662142B2 (en) Process for production of aromatic compounds comprising at least two amine functions
US20080146846A1 (en) Direct Amination of Hydrocarbons
Lin et al. Supported vanadium oxide catalysts in selective oxidation of ethanol: Comparison of TiO2/SiO2 and ZrO2/SiO2 as supports
Thrilokraj et al. A sustainable approach for nickel nanoparticles synthesis: expeditious access to N-heterocycles under heterogeneous condition and photophysical studies
US5248827A (en) Process for producing an ethylenamine
WO2018094683A1 (en) A process for producing a supported amination catalyst
WO2018141113A1 (en) Process for preparing amine via direct amination reaction
JP6114307B2 (en) Formation of high molecular weight cyclic polyamine compounds from cyclic polyamine compounds.
ES2207226T3 (en) PROCEDURE FOR THE RECOVERY OF OPTICALLY ACTIVE AMINAS.
JP2016532704A (en) Formation of 1,6-hexanediol from adipic acid
US9469620B2 (en) Process for forming a primary, a secondary or a tertiary amine via a direct amination reaction
JP2007513905A (en) Method for producing isocyanatoorganosilane
CN113877560A (en) Synthesis method of methyl acrylate and solid base catalyst thereof
JP4641497B2 (en) Aliphatic alcohol amination catalyst and method for producing amine using the catalyst
CN103357439A (en) Carrier of silver catalyst for olefin epoxidation, preparation method and application
WO2014059574A1 (en) Direct amination reaction to produce primary or secondary amine
CN106316866A (en) Preparation method of N-methylamine compound
CN107915710B (en) Method for producing ethylene carbonate
EP4115974A1 (en) Oxide-supported cobalt catalyst capable of accelerating reductive amination
CN109675630B (en) Preparation and application of monodisperse solid catalyst for preparing diphenyl carbonate by ester exchange
JP2013212499A (en) Palladium hydroxide-supporting solid catalyst, method for producing the same, and method for producing condensed-ring compound
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894893

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载