WO2018140923A1 - Methods of treating cancer - Google Patents
Methods of treating cancer Download PDFInfo
- Publication number
- WO2018140923A1 WO2018140923A1 PCT/US2018/015874 US2018015874W WO2018140923A1 WO 2018140923 A1 WO2018140923 A1 WO 2018140923A1 US 2018015874 W US2018015874 W US 2018015874W WO 2018140923 A1 WO2018140923 A1 WO 2018140923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tumor
- pharmaceutical composition
- fenoterol
- cancer
- expression
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 74
- 201000011510 cancer Diseases 0.000 title claims abstract description 57
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical class C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 claims abstract description 85
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims abstract description 38
- 229940116871 l-lactate Drugs 0.000 claims abstract description 37
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 24
- 230000004044 response Effects 0.000 claims abstract description 10
- 230000005746 immune checkpoint blockade Effects 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims description 55
- 230000014509 gene expression Effects 0.000 claims description 43
- 230000000694 effects Effects 0.000 claims description 33
- 239000008194 pharmaceutical composition Substances 0.000 claims description 32
- 238000011282 treatment Methods 0.000 claims description 30
- 102100029242 Hexokinase-2 Human genes 0.000 claims description 20
- 101710198385 Hexokinase-2 Proteins 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 102000052403 Monocarboxylate transporter 4 Human genes 0.000 claims description 18
- 108091006601 SLC16A3 Proteins 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 17
- 230000001965 increasing effect Effects 0.000 claims description 16
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 15
- 201000002528 pancreatic cancer Diseases 0.000 claims description 15
- 239000003937 drug carrier Substances 0.000 claims description 14
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 14
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 14
- 230000001225 therapeutic effect Effects 0.000 claims description 14
- 206010006187 Breast cancer Diseases 0.000 claims description 12
- 208000026310 Breast neoplasm Diseases 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 claims description 5
- 239000005557 antagonist Substances 0.000 claims description 4
- 230000030833 cell death Effects 0.000 claims description 4
- 230000004153 glucose metabolism Effects 0.000 claims description 4
- 239000000411 inducer Substances 0.000 claims description 4
- 102000018711 Facilitative Glucose Transport Proteins Human genes 0.000 claims description 3
- 108091052347 Glucose transporter family Proteins 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 101001091538 Homo sapiens Pyruvate kinase PKM Proteins 0.000 claims 1
- 102100034911 Pyruvate kinase PKM Human genes 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 25
- -1 for example Chemical class 0.000 abstract description 17
- 201000010099 disease Diseases 0.000 abstract description 14
- 208000035475 disorder Diseases 0.000 abstract description 11
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 59
- 239000000203 mixture Substances 0.000 description 53
- 102000005962 receptors Human genes 0.000 description 26
- 108020003175 receptors Proteins 0.000 description 26
- 150000003839 salts Chemical class 0.000 description 25
- 229930003827 cannabinoid Natural products 0.000 description 24
- 239000003557 cannabinoid Substances 0.000 description 24
- 125000000217 alkyl group Chemical group 0.000 description 20
- 239000003814 drug Substances 0.000 description 17
- 102000001301 EGF receptor Human genes 0.000 description 16
- 108060006698 EGF receptor Proteins 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 229960001022 fenoterol Drugs 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 14
- 102100033061 G-protein coupled receptor 55 Human genes 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 13
- 101000871151 Homo sapiens G-protein coupled receptor 55 Proteins 0.000 description 12
- 239000002246 antineoplastic agent Substances 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 208000024891 symptom Diseases 0.000 description 12
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 10
- 229940127089 cytotoxic agent Drugs 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 230000002401 inhibitory effect Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229940124597 therapeutic agent Drugs 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 239000008103 glucose Substances 0.000 description 9
- 239000012453 solvate Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 8
- 238000007912 intraperitoneal administration Methods 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 8
- 206010027476 Metastases Diseases 0.000 description 7
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000009401 metastasis Effects 0.000 description 7
- 231100000252 nontoxic Toxicity 0.000 description 7
- 230000003000 nontoxic effect Effects 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 229940065144 cannabinoids Drugs 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000034659 glycolysis Effects 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 229940002612 prodrug Drugs 0.000 description 6
- 239000000651 prodrug Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000004614 tumor growth Effects 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 5
- 108050007331 Cannabinoid receptor Proteins 0.000 description 5
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 5
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 5
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 5
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 230000004190 glucose uptake Effects 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229960005322 streptomycin Drugs 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 108060000903 Beta-catenin Proteins 0.000 description 4
- 102000015735 Beta-catenin Human genes 0.000 description 4
- 208000003174 Brain Neoplasms Diseases 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 230000006682 Warburg effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 238000001378 electrochemiluminescence detection Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108010074708 B7-H1 Antigen Proteins 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 3
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 3
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 3
- 108091022875 Microtubule Proteins 0.000 description 3
- 150000001200 N-acyl ethanolamides Chemical class 0.000 description 3
- 229930012538 Paclitaxel Natural products 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 230000006536 aerobic glycolysis Effects 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000002621 endocannabinoid Substances 0.000 description 3
- 229930013356 epothilone Natural products 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 210000004688 microtubule Anatomy 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002098 selective ion monitoring Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 3
- 125000005309 thioalkoxy group Chemical group 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 230000005748 tumor development Effects 0.000 description 3
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 2
- PHIQHXFUZVPYII-ZCFIWIBFSA-O (R)-carnitinium Chemical compound C[N+](C)(C)C[C@H](O)CC(O)=O PHIQHXFUZVPYII-ZCFIWIBFSA-O 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- VFIDUCMKNJIJTO-UHFFFAOYSA-N 1-[(7-methyl-2,3-dihydro-1H-inden-4-yl)oxy]-3-(propan-2-ylamino)-2-butanol Chemical compound CC(C)NC(C)C(O)COC1=CC=C(C)C2=C1CCC2 VFIDUCMKNJIJTO-UHFFFAOYSA-N 0.000 description 2
- RCRCTBLIHCHWDZ-UHFFFAOYSA-N 2-Arachidonoyl Glycerol Chemical compound CCCCCC=CCC=CCC=CCC=CCCCC(=O)OC(CO)CO RCRCTBLIHCHWDZ-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- 108060003345 Adrenergic Receptor Proteins 0.000 description 2
- 102000017910 Adrenergic receptor Human genes 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 238000011729 BALB/c nude mouse Methods 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 2
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical group ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 102100032218 Cytokine-inducible SH2-containing protein Human genes 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 239000012625 DNA intercalator Substances 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 102000030782 GTP binding Human genes 0.000 description 2
- 108091000058 GTP-Binding Proteins 0.000 description 2
- 102000005548 Hexokinase Human genes 0.000 description 2
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 108091092878 Microsatellite Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- HSMNQINEKMPTIC-UHFFFAOYSA-N N-(4-aminobenzoyl)glycine Chemical compound NC1=CC=C(C(=O)NCC(O)=O)C=C1 HSMNQINEKMPTIC-UHFFFAOYSA-N 0.000 description 2
- 102100023414 N-arachidonyl glycine receptor Human genes 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 101000840556 Oryza sativa subsp. japonica Hexokinase-4, chloroplastic Proteins 0.000 description 2
- 239000012271 PD-L1 inhibitor Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 102000013009 Pyruvate Kinase Human genes 0.000 description 2
- 108020005115 Pyruvate Kinase Proteins 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229960004567 aminohippuric acid Drugs 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 229960005261 aspartic acid Drugs 0.000 description 2
- 239000003855 balanced salt solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 229960005243 carmustine Drugs 0.000 description 2
- 229960004203 carnitine Drugs 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000010109 chemoembolization Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 235000013985 cinnamic acid Nutrition 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000315 cryotherapy Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 2
- 108010012154 cytokine inducible SH2-containing protein Proteins 0.000 description 2
- 238000000326 densiometry Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000000132 electrospray ionisation Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 2
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- WGSPBWSPJOBKNT-UHFFFAOYSA-N iodocyanopindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=C1C(I)=C(C#N)N2 WGSPBWSPJOBKNT-UHFFFAOYSA-N 0.000 description 2
- TWBYWOBDOCUKOW-UHFFFAOYSA-N isonicotinic acid Chemical compound OC(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-N 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229960002247 lomustine Drugs 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 229960002510 mandelic acid Drugs 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 239000003865 nucleic acid synthesis inhibitor Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000010627 oxidative phosphorylation Effects 0.000 description 2
- 239000006179 pH buffering agent Substances 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 229940121656 pd-l1 inhibitor Drugs 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000003044 randomized block design Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- KBXMBGWSOLBOQM-LINSIKMZSA-N (2r,3s)-1-[(7-methyl-2,3-dihydro-1h-inden-4-yl)oxy]-3-(propan-2-ylamino)butan-2-ol;hydrochloride Chemical compound Cl.CC(C)N[C@@H](C)[C@@H](O)COC1=CC=C(C)C2=C1CCC2 KBXMBGWSOLBOQM-LINSIKMZSA-N 0.000 description 1
- IWYDHOAUDWTVEP-ZETCQYMHSA-N (S)-mandelic acid Chemical compound OC(=O)[C@@H](O)C1=CC=CC=C1 IWYDHOAUDWTVEP-ZETCQYMHSA-N 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N (e)-2-hydroxybut-2-enedioic acid Chemical compound OC(=O)\C=C(\O)C(O)=O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- BNYCHCAYYYRJSH-UHFFFAOYSA-N 1h-pyrazole-5-carboxamide Chemical compound NC(=O)C1=CC=NN1 BNYCHCAYYYRJSH-UHFFFAOYSA-N 0.000 description 1
- CUJUUWXZAQHCNC-DOFZRALJSA-N 2-arachidonyl glyceryl ether Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCCOC(CO)CO CUJUUWXZAQHCNC-DOFZRALJSA-N 0.000 description 1
- DETXZQGDWUJKMO-UHFFFAOYSA-N 2-hydroxymethanesulfonic acid Chemical compound OCS(O)(=O)=O DETXZQGDWUJKMO-UHFFFAOYSA-N 0.000 description 1
- PKRSYEPBQPFNRB-UHFFFAOYSA-N 2-phenoxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OC1=CC=CC=C1 PKRSYEPBQPFNRB-UHFFFAOYSA-N 0.000 description 1
- GXIURPTVHJPJLF-UHFFFAOYSA-N 2-phosphoglyceric acid Chemical compound OCC(C(O)=O)OP(O)(O)=O GXIURPTVHJPJLF-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 1
- QXIUMMLTJVHILT-UHFFFAOYSA-N 4-[3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile Chemical compound CC(C)(C)NCC(O)COC1=CC=CC2=C1C=C(C#N)N2 QXIUMMLTJVHILT-UHFFFAOYSA-N 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- LSLYOANBFKQKPT-APPDUMDISA-N 5-[(1s)-1-hydroxy-2-[[(2s)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@H](C)NC[C@@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-APPDUMDISA-N 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Chemical group CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- LQKSHSFQQRCAFW-UHFFFAOYSA-N Dolastatin 15 Natural products COC1=CC(=O)N(C(=O)C(OC(=O)C2N(CCC2)C(=O)C2N(CCC2)C(=O)C(C(C)C)N(C)C(=O)C(NC(=O)C(C(C)C)N(C)C)C(C)C)C(C)C)C1CC1=CC=CC=C1 LQKSHSFQQRCAFW-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 101710108869 G-protein coupled receptor 55 Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102100033839 Glucose-dependent insulinotropic receptor Human genes 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010019695 Hepatic neoplasm Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000996752 Homo sapiens Glucose-dependent insulinotropic receptor Proteins 0.000 description 1
- 101000829761 Homo sapiens N-arachidonyl glycine receptor Proteins 0.000 description 1
- 101001003584 Homo sapiens Prelamin-A/C Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- JWZZKOKVBUJMES-NSHDSACASA-N L-isoprenaline Chemical compound CC(C)NC[C@H](O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-NSHDSACASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 101710095917 L-lactate transporter Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 101710140888 N-arachidonyl glycine receptor Proteins 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 1
- 239000012270 PD-1 inhibitor Substances 0.000 description 1
- 239000012668 PD-1-inhibitor Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102100026531 Prelamin-A/C Human genes 0.000 description 1
- 208000006399 Premature Obstetric Labor Diseases 0.000 description 1
- 206010036600 Premature labour Diseases 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- 101150010197 SLC2A8 gene Proteins 0.000 description 1
- 241000862969 Stella Species 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- HQVHOQAKMCMIIM-HXUWFJFHSA-N WIN 55212-2 Chemical compound C([C@@H]1COC=2C=CC=C3C(C(=O)C=4C5=CC=CC=C5C=CC=4)=C(N1C3=2)C)N1CCOCC1 HQVHOQAKMCMIIM-HXUWFJFHSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- LQKSHSFQQRCAFW-CCVNJFHASA-N [(2s)-1-[(2s)-2-benzyl-3-methoxy-5-oxo-2h-pyrrol-1-yl]-3-methyl-1-oxobutan-2-yl] (2s)-1-[(2s)-1-[(2s)-2-[[(2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-3-methylbutanoyl]-methylamino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carboxyl Chemical compound C([C@@H]1N(C(=O)C=C1OC)C(=O)[C@@H](OC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)[C@H](C(C)C)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C)C(C)C)C(C)C)C1=CC=CC=C1 LQKSHSFQQRCAFW-CCVNJFHASA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- LGEQQWMQCRIYKG-DOFZRALJSA-N anandamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCO LGEQQWMQCRIYKG-DOFZRALJSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 1
- 229940117893 apigenin Drugs 0.000 description 1
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 1
- 235000008714 apigenin Nutrition 0.000 description 1
- LGEQQWMQCRIYKG-UHFFFAOYSA-N arachidonic acid ethanolamide Natural products CCCCCC=CCC=CCC=CCC=CCCCC(=O)NCCO LGEQQWMQCRIYKG-UHFFFAOYSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229960003852 atezolizumab Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006470 autoimmune attack Effects 0.000 description 1
- 229950002916 avelumab Drugs 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 1
- MIAUJDCQDVWHEV-UHFFFAOYSA-N benzene-1,2-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1S(O)(=O)=O MIAUJDCQDVWHEV-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 1
- 125000005620 boronic acid group Chemical group 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 1
- 229950011318 cannabidiol Drugs 0.000 description 1
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 102000013515 cdc42 GTP-Binding Protein Human genes 0.000 description 1
- 108010051348 cdc42 GTP-Binding Protein Proteins 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 108010045552 dolastatin 15 Proteins 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 229950009791 durvalumab Drugs 0.000 description 1
- 230000001819 effect on gene Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 150000003883 epothilone derivatives Chemical class 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 description 1
- 229960004421 formestane Drugs 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 229940125425 inverse agonist Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- LYBKPDDZTNUNNM-UHFFFAOYSA-N isopropylbenzylamine Chemical class CC(C)NCC1=CC=CC=C1 LYBKPDDZTNUNNM-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 240000004308 marijuana Species 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- VKHAHZOOUSRJNA-GCNJZUOMSA-N mifepristone Chemical compound C1([C@@H]2C3=C4CCC(=O)C=C4CC[C@H]3[C@@H]3CC[C@@]([C@]3(C2)C)(O)C#CC)=CC=C(N(C)C)C=C1 VKHAHZOOUSRJNA-GCNJZUOMSA-N 0.000 description 1
- 229960003248 mifepristone Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- YCZYWVSNLFQMFI-UHFFFAOYSA-N n-benzylheptan-2-amine Chemical compound CCCCCC(C)NCC1=CC=CC=C1 YCZYWVSNLFQMFI-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 229950006344 nocodazole Drugs 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940121655 pd-1 inhibitor Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960002621 pembrolizumab Drugs 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000017363 positive regulation of growth Effects 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000026440 premature labor Diseases 0.000 description 1
- 238000012746 preparative thin layer chromatography Methods 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003156 radioimmunoprecipitation Methods 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 238000011867 re-evaluation Methods 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 108091006073 receptor regulators Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- 102000009099 rhoA GTP Binding Protein Human genes 0.000 description 1
- 108010087917 rhoA GTP Binding Protein Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical class CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 229930185603 trichostatin Natural products 0.000 description 1
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000000107 tumor biomarker Substances 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- RPQZTTQVRYEKCR-WCTZXXKLSA-N zebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)N=CC=C1 RPQZTTQVRYEKCR-WCTZXXKLSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
Definitions
- the present disclosure relates to methods of treating cancer by reducing tumor generated L-lactate in the microenvironment surrounding a tumor by administration of at least one agent, such as for example a fenoterol analogue.
- Cancer is the second leading cause of human death next to coronary disease in the
- fenoterol analogues are used to improve the effectiveness of one or more immune checkpoint blockade therapy by reducing tumor generated L-lactate in the microenvironment surrounding a tumor.
- the exemplary methods described herein can be used, for example, to improve the effectiveness of an immune checkpoint blockade therapy in the treatment of pancreatic cancer, breast cancer, or other cancers.
- the method includes administering a therapeutically effective amount of a fenoterol analogue to a cancer patient to improve the effectiveness of one or more immune checkpoint blockade therapies.
- the fenoterol analogue is an antagonist of pyruvate kinase M2 (PKM2). In embodiments, the fenoterol analogue is an antagonist of hexokinase-2 (HK2). In embodiments, the fenoterol analogue is a compound that attenuates monocarboxylate transporter 4 (MCT4) expression and/or function, thereby decreasing L-lactate export and increasing L-lactate concentrations within the tumor.
- PLM2 pyruvate kinase M2
- HK2 hexokinase-2
- MCT4 monocarboxylate transporter 4
- fenoterol analogues include one or more compounds selected from the group consisting of (R,R')-4'-methoxy- 1-naphthylfenoterol ("MNF"), (R,S')-4'- methoxy- 1-naphthylfenoterol, (R,R')-ethylMNF, (R,R')-napthylfenoterol, (R,S napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R')-4' -amino- 1-naphthylfenoterol, (R,R')- 4'-hydroxy-l-naphthylfenoterol, (R,R')-4-methoxy-ethylfenoterol, (R,R')-methoxyfenoterol, (R,R')- ethylf
- the fenoterol analogue is (R,R')-4'-methoxy- 1-naphthylfenoterol (MNF), a compound having the formula:
- the presently described methods include administering a therapeutically effective amount of a pharmaceutical composition containing a fenoterol analogue and a pharmaceutically acceptable carrier to a cancer patient to decrease the amount of L-lactate in a tumor microenvironment.
- the cancer patient is known to have pancreatic or breast cancer.
- the method includes administering one or more therapeutic agents in addition to a fenoterol analogue.
- the methods can include administration of the one or more therapeutic agents separately, sequentially or concurrently, for example in a combined composition with a fenoterol analogue.
- the one or more therapeutic agents administered in addition to a fenoterol analogue may be one or more immune checkpoint blockade therapy.
- a method of attenuating monocarboxylate transporter 4 (MCT4) expression and/or function is described. Attenuating MCT4 expression and/or function decreases L-lactate export out of cancer cells and increases L-lactate concentrations in cancer cells.
- the method includes administering a therapeutically effective amount of a fenoterol analogue to attenuate MCT4 expression and/or function.
- a method of decreasing the amount (and hence activity) of hexokinase-2 (HK2) in cancer cells showing increased HK2 expression is described. Decreasing the amount HK2 decreases glucose metabolism and glycolysis and increases the sensitivity of cancer cells to cell death inducers.
- the method includes administering a therapeutically effective amount of a fenoterol analogue to decrease expression of HK2.
- a method of decreasing the amount (and hence activity) of glucose transporter facilitators e.g., Glut-1, Glut-8, and others
- the method includes administering a therapeutically effective amount of a fenoterol analogue to decrease expression of one or more glucose transporter facilitators.
- Fig. 1 shows that (R,S')-MNF reduces plasma L-lactate concentrations in mice bearing PANC-1 tumor xenografts
- Fig. 2 shows that (R,S')-MNF dose-dependently reduces ⁇ -catenin expression in
- Fig. 3 shows that (R,R')-MNF inhibits glucose uptake and lactate production in
- FIG. 4 shows that (R,R')-MNF reduces lactate production in the breast cancer cell lines MCF-7 and MDA-MB-231;
- Figure 5 shows the pathway of aerobic glycolysis in cancer cells resulting in an enhanced uptake of glucose and production of L-lactate ("the Warburg effect");
- FIG. 6 shows that (R,R')-MNF reduces the expression of HK2 and the L-lactate transporter MCT4 in tumor tissue obtained from the PANC1 xenograft;
- Figure 7 shows that (R,R')-MNF reduces the expression of ⁇ -catenin in tumor tissues obtained from mice bearing a PANC-1 xenograft;
- Figure 8 shows that in mice with a PANC-1 xenograft tumor, (R,R')-MNF decreases the plasma concentration of L-lactate and increases the tumor L-lactate concentration;
- Figure 9 shows the impact of lactate on tumor microenvironment. .
- Cancer cells evolve several alterations in their metabolism to survive in unfavorable microenvironments, while retaining their ability to proliferate.
- metabolic reprogramming is a key aspect of tumorigenesis and has a profound effect on gene expression, cellular differentiation, metastasis, and tumor microenvironment.
- One metabolic adaptation of tumor cells is a shift to aerobic glycolysis as a main source of ATP, rather than oxidative phosphorylation (OXPHOS), irrespective of oxygen availability, a phenomenon referred to as the Warburg effect.
- This phenotype may promote a state of apoptosis resistance, the generation of biosynthetic precursors for proliferation, and increased invasive ability.
- aerobic glycolysis is a major component of metabolic reprograming and is characterized by enhanced glucose uptake and its conversion to L-lactate via the glycolytic pathway.
- PKM2 pyruvate kinase M2
- HK2 glycolytic enzyme hexokinase 2
- Warburg effect in cancer cells showing increased HK2 expression. Depletion of HK2 has been shown to restore oxidative glucose metabolism and increase sensitivity to cell death inducers such as radiation and chemotherapies.
- Another key aspect of metabolic reprogramming is the MCT4-mediated export of
- L-lactate In pancreatic cancer, increased expression of MCT4 is associated with a poor prognosis due to the role that increased L-lactate concentration plays in immunoresistance. Tumor-generated L-lactate inhibits anticancer immune response through decreased cytotoxic activity of T lymphocytes and natural killer cells.
- pancreatic cancer cells e.g., PANC-1 cells
- a fenoterol analog in accordance with the methods of the present disclosure attenuates glycolysis by reducing the expression of Glut-1, hexokinase II, PKM2, and lactate dehydrogenase.
- Administration of a fenoterol analog in accordance with the methods of the present disclosure reduces L-lactate plasma concentration relative to pre-dose concentrations. Since immunotherapy lacks therapeutic efficacy in pancreatic cancer and some of the observed resistance has been attributed to the tumor microenvironment, reduction of L-lactate concentration in the tumor microenvironment in accordance with the presently described methods potentiates the effect of checkpoint inhibitors and therapeutic vaccines.
- a PKM2 antagonist such as a fenoterol analogue
- a disease state by reducing tumor generated L-lactate in the environment surrounding a tumor.
- This change in the microenvironment surrounding the tumor may reduce cellular proliferation, the expression of proteins key to the survival of cancer cells, and the resistance of cancer cells to treatment by anticancer drugs (known as multidrug resistance).
- a compound that decreases HK2 expression and activity such as a fenoterol analogue, is used to treat a disease state.
- cancer is treated by restoring oxidative glucose metabolism and increasing sensitivity of cancer cells to cell death inducers.
- a compound that attenuates MCT4 expression and/or function such as a fenoterol analogue, is used to treat a disease state.
- the MCT4-mediated export of L-lactate is reduced, thereby reducing tumor-generated L-lactate in the environment surrounding a tumor enhancing anticancer immune response and increasing cytotoxic activity of T lymphocytes and natural killer cells.
- the compounds described herein can be used to treat pancreatic or breast cancer as well as other forms of cancer. Based upon these findings, methods of treating disorders and diseases modulated by glycolysis are described.
- AM251 l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(l-piperidyl)pyrazole- 3- carboxamide
- AM630 l-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole
- AR adrenergic receptor
- EGFR epidermal growth factor receptor
- ERK extracellular regulated kinase
- GPR55 G protein-coupled receptor 55
- GPCR G protein-coupled receptor
- ICI 118,551 3-(isopropylamino)-l-[(7-methyl-4-indanyl)oxy]butan-2-ol
- IP intraperitoneal
- IV intravenous
- UV ultraviolet
- Acyl A group of the formula RC(O)- wherein R is an organic group.
- Acyloxy A group having the structure -OC(0)R, where R may be an optionally substituted alkyl or optionally substituted aryl. "Lower acyloxy” groups are those where R contains from 1 to 10 (such as from 1 to 6) carbon atoms.
- Administration To provide or give a subject a composition, such as a pharmaceutical composition including one or more fenoterol analogues by any effective route. Exemplary routes of administration include, but are not limited to, injection (such as subcutaneous, intramuscular, intradermal, intraperitoneal (“IP”), and intravenous (“IV”)), oral, sublingual, rectal, transdermal, intranasal, vaginal and inhalation routes.
- injection such as subcutaneous, intramuscular, intradermal, intraperitoneal (“IP”), and intravenous (“IV”)
- oral sublingual, rectal, transdermal, intranasal, vaginal and inhalation routes.
- Alkoxy A radical (or substituent) having the structure -O-R, where R is a substituted or unsubstituted alkyl.
- Methoxy (-OCH 3 ) is an exemplary alkoxy group.
- R is alkyl substituted with a non-interfering substituent.
- Thioalkoxy refers to -S-R, where R is substituted or unsubstituted alkyl.
- Haloalkyloxy means a radical -OR where R is a haloalkyl.
- Alkoxy carbonyl A group of the formula -C(0)OR, where R may be an optionally substituted alkyl or optionally substituted aryl.
- “Lower alkoxy carbonyl” groups are those where R contains from 1 to 10 (such as from 1 to 6) carbon atoms.
- Alkyl An acyclic, saturated, branched- or straight-chain hydrocarbon radical, which, unless expressly stated otherwise, contains from one to fifteen carbon atoms; for example, from one to ten, from one to six, or from one to four carbon atoms. This term includes, for example, groups such as methyl, ethyl, n-propyl, isopropyl, isobutyl, t-butyl, pentyl, heptyl, octyl, nonyl, decyl, or dodecyl.
- the term "lower alkyl” refers to an alkyl group containing from one to ten carbon atoms.
- alkyl groups can either be unsubstituted or substituted.
- An alkyl group can be substituted with one or more substituents (for example, up to two substituents for each methylene carbon in an alkyl chain).
- alkyl substituents include, for instance, amino groups, amide, sulfonamide, halogen, cyano, carboxy, hydroxy, mercapto, trifluorom ethyl, alkyl, alkoxy (such as methoxy), alkylthio, thioalkoxy, arylalkyl, heteroaryl, alkylamino, dialkylamino, alkylsulfano, keto, or other functionality.
- Amino carbonyl (carbamoyl): A group of the formula C(0)N(R)R', wherein R and R are independently of each other hydrogen or a lower alkyl group.
- p2-adrenergic receptor A subtype of adrenergic receptors that are members of the G-protein coupled receptor family. P2-AR subtype is involved in respiratory diseases, cardiovascular diseases, premature labor and, as disclosed herein, tumor development. Increased expression of p2-ARs can serve as therapeutic targets.
- Cannabinoid Receptors A class of cell membrane receptors under the G protein- coupled receptor superfamily. The cannabinoid receptors contain seven transmembrane spanning domains. Cannabinoid receptors are activated by three major groups of ligands, endocannabinoids (produced by the mammalian body), plant cannabinoids (such as THC, produced by the cannabis plant) and synthetic cannabinoids (such as HU-210). All of the endocannabinoids and plant cannabinoids are lipophilic, i.e., fat soluble, compounds. Two subtypes of cannabinoid receptors are CBi (see GenBank Accession No.
- the CB 2 receptor is expressed mainly in the immune system and in hematopoietic cells. Additional non-CBi and non-CB 2 include GPR55 (GenBank Accession No. NM_005683.3 or NP_005674.2 protein, each of which is hereby incorporated by reference as of May 23, 2012), GPR119 (GenBank Accession No.
- NM_178471.2 or NP_848566.1 protein each of which is hereby incorporated by reference as of May 23, 2012
- GPR18 also known as N- arachidonyl glycine receptor and involved in microglial migration, GenBank Accession No. NM_001098200 mRNA, NP_001091670.1, each of which is hereby incorporated by reference as of May 23, 2012).
- CBi and CB 2 receptors are about 44% similar. When only the transmembrane regions of the receptors are considered, amino acid similarity between the two receptor subtypes is approximately 68%. In addition, minor variations in each receptor have been identified. Cannabinoids bind reversibly and stereo-selectively to the cannabinoid receptors. The affinity of an individual cannabinoid to each receptor determines the effect of that cannabinoid. Cannabinoids that bind more selectively to certain receptors are more desirable for medical usage.
- GPR55 is coupled to the G-protein G i3 and/or Gn and activation of the receptor leads to stimulation of rhoA, cdc42 and rack GPR55 is activated by the plant cannabinoids A 9 - THC and cannabidiol, and the endocannabinoids anandamide, 2-AG, noladin ether in the low nanomolar range.
- CBi and CB 2 receptors are coupled to inhibitory G proteins. This indicates that both types of receptors will have different readouts. For example, activation of CBi causes apoptosis whereas increase in GPR55 activity is oncogenic.
- the CBi receptor antagonist (also termed 'inverse agonist') compound, AM251 is, in fact, an agonist for GPR55. It binds GPR55 and is readily internalized. This illustrates the opposite behavior of these two GPCRs.
- Carbamate A group of the formula -OC(0)N(R)-, wherein R is H, or an aliphatic group, such as a lower alkyl group or an aralkyl group.
- Chemotherapy; chemotherapeutic agents any chemical agent with therapeutic usefulness in the treatment of diseases characterized by abnormal cell growth. Such diseases include tumors, neoplasms, and cancer as well as diseases characterized by hyperplastic growth.
- a chemotherapeutic agent is an agent of use in treating neoplasms such as solid tumors, including a tumor associated with CB receptor activity and/or expression.
- a chemotherapeutic agent is radioactive molecule.
- a CB receptor regulator such as one or more fenoterol analogues or a combination thereof is a chemotherapeutic agent.
- a chemotherapeutic agent is carmustine, lomustine, procarbazine, streptozocin, or a combination thereof.
- a chemotherapeutic agent of use e.g., see Slapak and Kufe, Principles of Cancer Therapy, Chapter 86 in Harrison's Principles of Internal Medicine, 14th edition; Perry et al., Chemotherapy, Ch. 17 in Abel off, Clinical Oncology 2 nd ed., ⁇ 2000 Churchill Livingstone, Inc; Baltzer L., Berkery R.
- control or Reference Value A "control” refers to a sample or standard used for comparison with a test sample.
- the control is a sample obtained from a healthy subject or a tissue sample obtained from a patient diagnosed with a disorder or disease, such as a tumor, that did not respond to treatment with a p2-agonist.
- the control is a historical control or standard reference value or range of values.
- Derivative A chemical substance that differs from another chemical substance by one or more functional groups. In embodiments, a derivative retains a biological activity of a molecule from which it was derived.
- Effective amount An amount of agent that is sufficient to generate a desired response, such as reducing or inhibiting one or more signs or symptoms associated with a condition or disease. When administered to a subject, a dosage will generally be used that will achieve target tissue concentrations. In some examples, an "effective amount" is one that treats one or more symptoms and/or underlying causes of any of a disorder or disease.
- an "effective amount” is a "therapeutically effective amount” in which the agent alone with an additional therapeutic agent(s) (for example a chemotherapeutic agent) induces the desired response such as treatment of a tumor.
- a desired response is to decrease tumor size or metastasis in a subject to whom the therapy is administered. Tumor metastasis does not need to be completely eliminated for the composition to be effective.
- a composition can decrease metastasis by a desired amount, for example by at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or even at least 100%) (elimination of the tumor), as compared to metastasis in the absence of the composition.
- a composition can decrease the number of cancer cells by a desired amount, for example by at least 20%, at least 50%, at least 60%>, at least 70%, at least 80%), at least 90%, at least 95%, at least 98%, or even at least 100% (elimination of detectable cancer cells), as compared to the number of cancer cells in the absence of the composition.
- the effective amount of a composition useful for reducing, inhibiting, and/or treating a disorder in a subject will be dependent on the subject being treated, the severity of the disorder, and the manner of administration of the therapeutic composition.
- Effective amounts a therapeutic agent can be determined in many different ways, such as assaying for a reduction in tumor size or improvement of physiological condition of a subject having a tumor, such as a brain tumor. Effective amounts also can be determined through various in vitro, in vivo or in situ assays.
- Fenoterol analogues include (R,R')-4'-methoxy-l- naphthylfenoterol ("MNF"), (R,S')-4'-methoxy-l-naphthylfenoterol, (R,R')-ethylMNF, (R,R')- napthylfenoterol, (R,S')-napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R' )-4' -amino- 1- naphthylfenoterol, (R,R')-4'-hydroxy-l-naphthylfenoterol, (R,R')-4'-methoxy-ethylfenoterol, (R,R')-methoxyfenoterol, (R,R')-ethylfenoterol, (R,R'')-ethylfenote
- Inflammation When damage to tissue occurs, the body's response to the damage is usually inflammation.
- the damage may be due to trauma, lack of blood supply, hemorrhage, autoimmune attack, transplanted exogenous tissue or infection.
- This generalized response by the body includes the release of many components of the immune system (for instance, IL-1 and TNF), attraction of cells to the site of the damage, swelling of tissue due to the release of fluid and other processes.
- Isomers Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers”. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that contain two or more chiral centers and are not mirror images of one another are termed “diastereomers.” Steroisomers that are non-superimposable mirror images of each other are termed "enantiomers.” When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible.
- An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-) isomers, respectively).
- a chiral compound can exist as either an individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a "racemic mixture.”
- the compounds described herein may possess one or more asymmetric centers; such compounds can therefore be produced as individual (R), (S), (R,R), (R,S'), (S,R') and (S,S')-stereoisomers or as mixtures thereof.
- R the description or naming of a particular compound in the specification and claims is intended to include both individual enantiomers and mixtures, racemic or otherwise, thereof.
- the methods for the determination of stereochemistry and the separation of stereoisomers are well known in the art (see, e.g., March, Advanced Organic Chemistry, 4th edition, New York: John Wiley and Sons, 1992, Chapter 4).
- compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compounds or molecules such as one or more nucleic acid molecules, proteins or antibodies that bind these proteins, and additional pharmaceutical agents.
- parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like
- solid compositions for example, powder, pill, tablet, or capsule forms
- conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate.
- compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- non-toxic auxiliary substances such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- Phenyl groups may be unsubstituted or substituted with one, two or three substituents, with substituent(s) independently selected from alkyl, heteroalkyl, aliphatic, heteroaliphatic, thioalkoxy, halo, haloalkyl (such as -CF 3 ), nitro, cyano, -OR (where R is hydrogen or alkyl), -N(R)R (where R and R are independently of each other hydrogen or alkyl), -COOR (where R is hydrogen or alkyl) or -C(0)N(R)R" (where R and R" are independently selected from hydrogen or alkyl).
- purified does not require absolute purity; rather, it is intended as a relative term.
- a purified preparation is one in which a desired component such as an (R,R ')-enantiomer of fenoterol is more enriched than it was in a preceding environment such as in a (+)-fenoterol mixture.
- a desired component such as (R,R')-enantiomer of fenoterol is considered to be purified, for example, when at least about 70%, 80%, 85%, 90%, 92%), 95%), 97%), 98%), or 99% of a sample by weight is composed of the desired component.
- Purity of a compound may be determined, for example, by high performance liquid chromatography (HPLC) or other conventional methods.
- HPLC high performance liquid chromatography
- the fenoterol analogue enantiomers are purified to represent greater than 90%, often greater than 95% of the other enantiomers present in a purified preparation.
- the purified preparation may be essentially homogeneous, wherein other stereoisomers are less than 1%.
- a compound described herein may be obtained in a purified form or purified by any of the means known in the art, including silica gel and/or alumina chromatography. See, e.g., Introduction to Modern Liquid Chromatography, 2nd Edition, ed. by Snyder and Kirkland, New York: John Wiley and Sons, 1979; and Thin Layer Chromatography, ed. by Stahl, New York: Springer Verlag, 1969.
- a compound includes purified fenoterol or fenoterol analogue with a purity of at least about 70%, 80%, 85%, 90%, 92%, 95%, 97%, 98%, or 99% of a sample by weight relative to other contaminants.
- a compound includes at least two purified stereoisomers each with a purity of at least about 70%, 80%, 85%, 90%, 92%, 95%), 97%), 98%), or 99% of a sample by weight relative to other contaminants.
- a compound can include a substantially purified (R,R')-fenoterol analogue and a substantially purified (R,S')-fenoterol analogue.
- Subject includes both human and veterinary subjects, for example, humans, non-human primates, dogs, cats, horses, rats, mice, and cows.
- mammal includes both human and non-human mammals.
- Tissue A plurality of functionally related cells.
- a tissue can be a suspension, a semi-solid, or solid.
- Tissue includes cells collected from a subject such as the brain or a portion thereof.
- Tumor All neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
- a primary tumor is tumor growing at the anatomical site where tumor progression began and proceeded to yield this mass.
- under conditions sufficient for includes administering one or more fenoterol analogues to a subject to at a concentration sufficient to allow the desired activity.
- the desired activity is reducing or inhibiting a sign or symptom associated with a disorder or disease, such as a breast or pancreatic, can be evidenced, for example, by a delayed onset of clinical symptoms of the tumor in a susceptible subject, a reduction in severity of some or all clinical symptoms of the tumor, a slower progression of the tumor (for example by prolonging the life of a subject having the tumor), a reduction in the number of tumor reoccurrence, an improvement in the overall health or well-being of the subject, or by other parameters well known in the art that are specific to the particular disease.
- the desired activity is preventing or inhibiting tumor growth, such as breast cancer or pancreatic cancer growth.
- Tumor growth does not need to be completely inhibited for the treatment to be considered effective.
- a partial reduction or slowing of growth such as at least about a 10% reduction, such as at least 20%, at least about 30%, at least about 40%, at least about 50% or greater is considered to be effective.
- Fenoterol analogues useful in the methods herein include (R,R')-4'-methoxy-l- naphthylfenoterol ("MNF"), (R,S')-4'-methoxy-l-naphthylfenoterol, (R,R')-ethylMNF, (R,R')- napthylfenoterol, (R,S')-napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R' )-4' -amino- 1- naphthylfenoterol, (R,R')-4'-hydroxy-l-naphthylfenoterol, (R,R')-4'-methoxy-ethylfenoterol, (R,R')-4'-methoxyfenoterol, (R,R')-ethylfenoterol, (R,R,R,
- Examples of suitable groups for R1-R3 that can be cleaved in vivo to provide a hydroxy group include, without limitation, acyl, acyloxy and alkoxy carbonyl groups.
- Compounds having such cleavable groups are referred to as "prodrugs.”
- the term "prodrug,” as used herein, means a compound that includes a substituent that is convertible in vivo (e.g., by hydrolysis) to a hydroxyl group.
- Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, Vol.
- administering comprises administering a therapeutically effective amount of MNF, NF or a combination thereof. In some embodiments, administering comprises administering a therapeutically effective amount of MNF.
- Solvate means a physical association of a compound with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including by way of example covalent adducts and hydrogen bonded solvates. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate” encompasses both solution-phase and isolable solvates. Representative solvates include ethanol- associated compound, methanol-associated compounds, and the like. "Hydrate” is a solvate wherein the solvent molecule(s) is/are H 2 0.
- the disclosed compounds also encompass salts including, if several salt-forming groups are present, mixed salts and/or internal salts.
- the salts are generally pharmaceutically acceptable salts that are non-toxic. Salts may be of any type (both organic and inorganic), such as fumarates, hydrobromides, hydrochlorides, sulfates and phosphates. In an example, salts include non-metals (e.g., halogens) that form group VII in the periodic table of elements. For example, compounds may be provided as a hydrobromide salt.
- Additional examples of salt-forming groups include, but are not limited to, a carboxyl group, a phosphonic acid group or a boronic acid group, that can form salts with suitable bases.
- salts can include, for example, nontoxic metal cations, which are derived from metals of groups IA, IB, IIA and IIB of the periodic table of the elements.
- alkali metal cations such as lithium, sodium or potassium ions, or alkaline earth metal cations such as magnesium or calcium ions can be used.
- the salt can also be a zinc or an ammonium cation.
- the salt can also be formed with suitable organic amines, such as unsubstituted or hydroxyl -substituted mono-, di- or tri-alkylamines, in particular mono-, di- or tri-alkylamines, or with quaternary ammonium compounds, for example with N-methyl-N- ethylamine, diethylamine, triethylamine, mono-, bis- or tris- (2-hydroxy-lower alkyl)amines, such as mono-, bis- or tris- (2- hydroxyethyl)amine, 2-hydroxy-tert-butylamine or tris(hydroxymethyl)methylamine, N,N-di-lower alkyl-N-(hydroxy-lower alkyl)amines, such as N,N-dimethyl-N-(2-hydroxyethyl)amine or tri-(2- hydroxyethyl)amine, or N-methyl-D- glucamine, or quaternary ammonium compounds such as te
- Exemplary compounds disclosed herein possess at least one basic group that can form acid- base salts with inorganic acids.
- basic groups include, but are not limited to, an amino group or imino group.
- inorganic acids that can form salts with such basic groups include, but are not limited to, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid.
- Basic groups also can form salts with organic carboxylic acids, sulfonic acids, sulfo acids or phospho acids or N-substituted sulfamic acid, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2- phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid, and, in addition, with amino acids, for example with a-amino acids, and also with methanesulfonic acid, ethanesulfonic acid, 2-hydroxymethanesulfonic acid, ethane- 1,2-disulfonic
- employing a pharmaceutically acceptable salt may also serve to adjust the osmotic pressure of a composition.
- the compounds used in the method are provided are polymorphous.
- the compounds can be provided in two or more physical forms, such as different crystal forms, crystalline, liquid crystalline or non-crystalline (amorphous) forms.
- any of the above described compounds e.g., (R,R') and/or (R,S') fenoterol analogues or a hydrate or pharmaceutically acceptable salt thereof
- combinations thereof are intended for use in the manufacture of a medicament for treatment of breast or pancreatic cancer.
- the disclosed fenoterol analogues can be synthesized by any method known in the art including those described in U.S. Patent Application Publication No. US 2010-0168245 Al, U.S. Patent Application Publication No. US 2012-0157543 Al and International Patent Publication No. WO 2011/112867, each of which is hereby incorporated by reference in its entirety.
- Many general references providing commonly known chemical synthetic schemes and conditions useful for synthesizing the disclosed compounds are available (see, e.g., Smith and March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Fifth Edition, Wiley- Interscience, 2001; or Vogel, A Textbook of Practical Organic Chemistry, Including Qualitative Organic Analysis, Fourth Edition, New York: Longman, 1978).
- Compounds as described herein may be purified by any of the means known in the art, including chromatographic means, such as UPLC (including chiral UPLC), preparative thin layer chromatography, flash column chromatography and ion exchange chromatography. Any suitable stationary phase can be used, including normal and reversed phases as well as ionic resins. Most typically the disclosed compounds are purified via open column chromatography or prep chromatography.
- chromatographic means such as UPLC (including chiral UPLC), preparative thin layer chromatography, flash column chromatography and ion exchange chromatography.
- Any suitable stationary phase can be used, including normal and reversed phases as well as ionic resins.
- Most typically the disclosed compounds are purified via open column chromatography or prep chromatography.
- Scheme I An exemplary synthesis of 4 stereoisomers of 1 - 6 including the coupling of the epoxide formed from either (R)- or (S)-3',5'-dibenzyloxyphenyl bromohydrin with the (R)- or (S)- enantiomer of the appropriate benzyl -protected 2-amino-3-benzylpropane (1 - 5) or the (R)- or (S)- enantiomer of N-benzyl-2-aminoheptane (6).
- Scheme II Exemplary synthesis of (R)-7 and (S)-7 using 2-phenethylamine. resulting compounds may be deprotected by hydrogenation over Pd/C and purified as fumarate salts.
- Scheme III describes an exemplary synthesis for the chiral building blocks used in
- the disclosed fenoterol analogues can be useful, at least, for reducing or inhibiting one or more symptoms or signs associated with cancer. Accordingly, pharmaceutical compositions comprising at least one disclosed fenoterol analogue are also described herein.
- Formulations for pharmaceutical compositions are well known in the art. For example, Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 19th Edition, 1995, describes exemplary formulations (and components thereof) suitable for pharmaceutical delivery of (R,R')-fenoterol and disclosed fenoterol analogues. Pharmaceutical compositions comprising at least one of these compounds can be formulated for use in human or veterinary medicine. Particular formulations of a disclosed pharmaceutical composition may depend, for example, on the mode of administration (e.g., oral or parenteral) and/or on the disorder to be treated. In some embodiments, formulations include a pharmaceutically acceptable carrier in addition to at least one active ingredient, such as a fenoterol compound.
- compositions useful for the disclosed methods and compositions are conventional in the art.
- the nature of a pharmaceutical carrier will depend on the particular mode of administration being employed.
- parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate.
- pharmaceutical compositions to be administered can optionally contain minor amounts of non-toxic auxiliary substances or excipients, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like; for example, sodium acetate or sorbitan monolaurate.
- non-limiting excipients include, nonionic solubilizers, such as cremophor, or proteins, such as human serum albumin or plasma preparations.
- compositions may be formulated as a pharmaceutically acceptable salt.
- Pharmaceutically acceptable salts are non-toxic salts of a free base form of a compound that possesses the desired pharmacological activity of the free base. These salts may be derived from inorganic or organic acids. Non-limiting examples of suitable inorganic acids are hydrochloric acid, nitric acid, hydrobromic acid, sulfuric acid, hydriodic acid, and phosphoric acid.
- Non-limiting examples of suitable organic acids are acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, methyl sulfonic acid, salicylic acid, formic acid, trichloroacetic acid, trifluoroacetic acid, gluconic acid, asparagic acid, aspartic acid, benzenesulfonic acid, p- toluenesulfonic acid, naphthalenesulfonic acid, and the like. Lists of other suitable pharmaceutically acceptable salts are found in Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing Company, Easton, PA, 1995. A pharmaceutically acceptable salt may also serve to adjust the
- the dosage form of a disclosed pharmaceutical composition will be determined by the mode of administration chosen.
- oral dosage forms may be employed.
- Oral formulations may be liquid such as syrups, solutions or suspensions or solid such as powders, pills, tablets, or capsules. Methods of preparing such dosage forms are known, or will be apparent, to those skilled in the art.
- compositions comprising a disclosed compound may be formulated in unit dosage form suitable for individual administration of precise dosages.
- amount of active ingredient such as (R,R')-MNF or F administered will depend on the subject being treated, the severity of the disorder, and the manner of administration, and is known to those skilled in the art.
- the formulation to be administered will contain a quantity of the extracts or compounds disclosed herein in an amount effective to achieve the desired effect in the subject being treated.
- compositions are provided in the form of a tablet containing from about 1.0 to about 50 mg of the active ingredient, particularly about 2.0 mg, about 2.5 mg, 5 mg, about 10 mg, or about 50 mg of the active ingredient for the symptomatic adjustment of the dosage to the subject being treated.
- a tablet containing from about 1 mg to about 50 mg (such as about 2 mg to about 10 mg) active ingredient is administered two to four times a day, such as two times, three times or four times.
- a suitable dose for parental administration is about 1 milligram per kilogram (mg/kg) to about 100 mg/kg, such as a dose of about 10 mg/kg to about 80 mg/kg, such including about 1 mg/kg, about 2 mg/kg, about 5 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg or about 100 mg/kg administered parenterally.
- mg/kg milligram per kilogram
- a dose of about 10 mg/kg to about 80 mg/kg such including about 1 mg/kg, about 2 mg/kg, about 5 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg or about 100 mg/kg administered parenterally.
- other higher or lower dosages also could be used, such as from about 0.001 mg/kg to about 1 g/kg, such as about 0.1 to about 500 mg/kg, including about 0.5 mg/kg to about 200 mg/kg.
- compositions comprising one or more of the disclosed compositions can be carried out with dose levels and pattern being selected by the treating physician.
- multiple doses are administered.
- the composition is administered parenterally once per day.
- the composition can be administered twice per day, three times per day, four times per day, six times per day, every other day, twice a week, weekly, or monthly. Treatment will typically continue for at least a month, more often for two or three months, sometimes for six months or a year, and may even continue indefinitely, i.e., chronically. Repeat courses of treatment are also possible.
- the pharmaceutical composition is administered without concurrent administration of a second agent for the treatment of breast or pancreatic cancer.
- one or more of the disclosed compositions is administered without concurrent administration of other agents, such as without concurrent administration of an additional agent also known to target the tumor.
- a therapeutically effective amount of a disclosed pharmaceutical composition is administered concurrently with an additional agent, including an additional therapy.
- the disclosed compounds are administered in combination with a chemotherapeutic agent, antioxidants, anti-inflammatory drugs or combinations thereof.
- the disclosed compounds are administered in combination with an immune checkpoint therapy.
- Immune checkpoints affect immune system functioning and can be stimulatory or inhibitory. Tumors can use these checkpoints to protect themselves from immune system attacks.
- Checkpoint therapy can block inhibitory checkpoints, restoring immune system function.
- the immune checkpoint therapy may impact the interaction between the transmembrane programmed cell death 1 protein (PDCDl, PD-1; also known as CD279) and its ligand, PD-1 ligand 1 (PD-L1, CD274). Cancer-mediated upregulation of PD-L1 on the cell surface may inhibit T cells that might otherwise attack.
- PDCDl transmembrane programmed cell death 1 protein
- PD-1 also known as CD279
- PD-1 ligand 1 PD-1 ligand 1
- Cancer-mediated upregulation of PD-L1 on the cell surface may inhibit T cells that might otherwise attack.
- the presently disclosed fenoterol analogues may be administered with antibodies that bind to either PD-1 or PD-L1 and therefore block the interaction and thereby allow the T-cells to attack the tumor.
- the presently disclosed fenoterol analogues may be administered with IgG4 PD1 antibody (such as, for example, antibody BGB-A317, Nivolumab or Pembrolizumab which may provide benefits with respect to one or more of melanoma, lung cancer, kidney cancer and Hodgkin's lymphoma).
- the presently disclosed fenoterol analogues may be administered with a PD-L1 inhibitor, such as, for example, atezolizumab, avelumab, or and durvalumab.
- a PD-L1 inhibitor such as, for example, atezolizumab, avelumab, or and durvalumab.
- the presently disclosed fenoterol analogues may be administered with antibodies that block the immune checkpoint molecule CTLA-4, (such as, for example, ipilimumab, which may provide benefits with respect to lung cancer or pancreatic cancer, specifically in combination with other drugs).
- CTLA-4 such as, for example, ipilimumab, which may provide benefits with respect to lung cancer or pancreatic cancer, specifically in combination with other drugs.
- the presently disclosed fenoterol analogues may be administered with a combination of CTLA-4 blockade with PD-1 or PD-L1 inhibitors.
- the presently disclosed fenoterol analogues may be administered with a therapeutic agent that targets an intrinsic checkpoint blockade, such as, for example, the gene encoding Cytokine-inducible SH2-containing protein (CISH).
- a therapeutic agent that targets an intrinsic checkpoint blockade such as, for example, the gene encoding Cytokine-inducible SH2-containing protein (CISH).
- a disclosed pharmaceutical composition is administered as adjuvant therapy.
- a pharmaceutical composition containing one or more of the disclosed compounds is administered orally daily to a subject in order to prevent or retard tumor growth.
- a composition containing equal portions of two or more disclosed compounds is provided to a subject.
- a composition containing unequal portions of two or more disclosed compounds is provided to the subject.
- a composition contains unequal portions of a (R,R')-fenoterol derivative and a (S,R')-fenoterol derivative and/or a (R,S') -derivative.
- the composition includes a greater amount of the (S,R)- or (R,S')-fenoterol derivative.
- Such therapy can be given to a subject for an indefinite period of time to inhibit, prevent, or reduce tumor reoccurrence.
- the present disclosure includes methods of treating disorders including reducing or inhibiting one or more signs or symptoms associated with cancer, such as pancreatic cancer or breast cancer.
- Presently disclosed methods include administering fenoterol, such as (R,R)- fenoterol, a disclosed fenoterol analogue or a combination thereof (and, optionally, one or more other pharmaceutical agents) depending upon the receptor population of the tumor, to a subject in a pharmaceutically acceptable carrier and in an amount effective to reduce tumor generated L- lactate in the environment surrounding cancer cells.
- Treatment of a tumor includes preventing or reducing signs or symptoms associated with the presence of such tumor (for example, by reducing the size or volume of the tumor or a metastasis thereof).
- Such reduced growth can in some examples decrease or slow metastasis of the tumor, or reduce the size or volume of the tumor by at least 10%, at least 20%, at least 50%, or at least 75%, such as between 10%-90%, 20%-80%, 30%- 70%, 40%-60%, including a 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, or 95% reduction.
- treatment includes reducing the invasive activity of the tumor in the subject, for example by reducing the ability of the tumor to metastasize.
- treatment using the methods disclosed herein prolongs the time of survival of the subject.
- Routes of administration useful in the disclosed methods include but are not limited to oral and parenteral routes, such as intravenous (IV), intraperitoneal (IP), rectal, topical, ophthalmic, nasal, and transdermal as described in detail above.
- IV intravenous
- IP intraperitoneal
- rectal topical
- ophthalmic nasal
- transdermal transdermal
- an effective amount of a disclosed fenoterol analogue will depend, at least, on the particular method of use, the subject being treated, the severity of the tumor, and the manner of administration of the therapeutic composition.
- a "therapeutically effective amount" of a composition is a quantity of a specified compound sufficient to achieve a desired effect in a subject being treated. For example, this may be the amount of a fenoterol analogue necessary to prevent or inhibit tumor growth and/or one or more symptoms associated with the tumor in a subject.
- a therapeutically effective amount of a disclosed fenoterol analogue is an amount sufficient to prevent or inhibit a tumor, such as a brain or liver tumor growth and/or one or more symptoms associated with the tumor in a subject without causing a substantial cytotoxic effect on host cells.
- Therapeutically effective doses of a disclosed fenoterol compound or pharmaceutical composition can be determined by one of skill in the art, with a goal of achieving concentrations that are at least as high as the IC 50 of the applicable compound disclosed in the examples herein.
- An example of a dosage range is from about 0.001 to about 10 mg/kg body weight orally in single or divided doses.
- a dosage range is from about 0.005 to about 5 mg/kg body weight orally in single or divided doses (assuming an average body weight of approximately 70 kg; values adjusted accordingly for persons weighing more or less than average).
- compositions are, for example, provided in the form of a tablet containing from about 1.0 to about 50 mg of the active ingredient, particularly about 2.5 mg, about 5 mg, about 10 mg, or about 50 mg of the active ingredient for the symptomatic adjustment of the dosage to the subject being treated.
- a tablet containing from about 1 mg to about 50 mg active ingredient is administered two to four times a day, such as two times, three times or four times.
- a suitable dose for parental administration is about 1 milligram per kilogram (mg/kg) to about 100 mg/kg, such as a dose of about 10 mg/kg to about 80 mg/kg, such including about 1 mg/kg, about 2 mg/kg, about 5 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg or about 100 mg/kg administered parenterally.
- mg/kg milligram per kilogram
- a dose of about 10 mg/kg to about 80 mg/kg such including about 1 mg/kg, about 2 mg/kg, about 5 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg or about 100 mg/kg administered parenterally.
- other higher or lower dosages also could be used, such as from about 0.001 mg/kg to about 1 g/kg, such as about 0.1 to about 500 mg/kg, including about 0.5 mg/kg to about 200 mg/kg.
- compositions comprising one or more of the disclosed compositions can be carried out with dose levels and pattern being selected by the treating physician.
- multiple doses are administered.
- the composition is administered parenterally once per day.
- the composition can be administered twice per day, three times per day, four times per day, six times per day, every other day, twice a week, weekly, or monthly. Treatment will typically continue for at least a month, more often for two or three months, sometimes for six months or a year, and may even continue indefinitely, i.e., chronically. Repeat courses of treatment are also possible.
- the specific dose level and frequency of dosage for any particular subject may be varied and will depend upon a variety of factors, including the activity of the specific compound, the metabolic stability and length of action of that compound, the age, body weight, general health, sex and diet of the subject, mode and time of administration, rate of excretion, drug combination, and severity of the condition of the subject undergoing therapy.
- Subjects can be screened prior to initiating the disclosed therapies, for example to select a subject in need of or at risk of developing cancer.
- the method can include screening subjects to determine if they have or are at risk of developing cancer, such as if the subject is in need of pancreatic cancer or breast cancer inhibition.
- the cancer is regulated by at least one of B2-adrenergic receptor (AR) activity or expression, cannabinoid (CB) receptor activity or expression, or epidermal growth factor receptor (EGFR) activity or expression.
- AR B2-adrenergic receptor
- CB cannabinoid
- EGFR epidermal growth factor receptor
- Such cancers include, but are not limited to various types of breast cancer.
- Subjects having a tumor that expresses B2-adrenergic receptor (AR), cannabinoid (CB) receptor (including but not limited to GPR55), and epidermal growth factor receptor (EGFR) or at risk of developing such a tumor are selected.
- subjects are diagnosed with the tumor by clinical signs, laboratory tests, or both.
- a subject in need of the disclosed therapies is selected by detecting a tumor expressing B2-adrenergic receptor (AR), cannabinoid (CB) receptor (including but not limited to GPR55), and epidermal growth factor receptor (EGFR) or regulated by their activity, such as by detecting B2-adrenergic receptor (AR) activity, cannabinoid (CB) receptor (including but not limited to GPR55) activity, and epidermal growth factor receptor (EGFR) activity or expression in a sample obtained from a subject identified as having, suspected of having or at risk of acquiring such a tumor.
- AR B2-adrenergic receptor
- CB cannabinoid receptor
- EGFR epidermal growth factor receptor
- detection of altered such as at least a 10% alteration, including a 10%-90%, 20%-80%, 30%-70%, 40%-60%, such as a 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95% alteration or more in B2-adrenergic receptor (AR) expression or activity, cannabinoid (CB) receptor (including but not limited to GPR55) expression or activity, and epidermal growth factor receptor (EGFR) expression or activity as compared to B2-adrenergic receptor (AR) expression or activity, cannabinoid (CB) receptor (including but not limited to GPR55) expression or activity, and epidermal growth factor receptor (EGFR) expression or activity in the absence of a primary tumor, indicates that the tumor can be treated using the fenoterol compositions and methods provided herein.
- Pre-screening is not required prior to administration of the therapeutic agents disclosed herein (such as those including fenoterol, a fenoterol analogue or a combination thereof).
- subjects can be monitored for decreases in tumor growth, tumor volume or in one or more clinical symptoms associated with the tumor.
- subjects are analyzed one or more times, starting 7 days following treatment.
- Subjects can be monitored using any method known in the art including those described herein including imaging analysis. Additional Treatments and Additional Therapeutic Agents
- a partial response is a reduction, such as at least a 10%, at least a 20%), at least a 30%>, at least a 40%, at least a 50%, or at least a 70% reduction in one or more signs or symptoms associated with the disorder or disease, or activity, including tumor size or volume.
- the method further includes administering a therapeutic effective amount of a fenoterol analogue with additional therapeutic treatments.
- the subject prior to, during, or following administration of a therapeutic amount of an agent that reduces tumor generated L-lactate in the environment surrounding the tumor, the subject can receive one or more other therapies.
- the subject receives one or more treatments to remove or reduce the tumor prior to administration of a therapeutic amount of a composition including fenoterol, a fenoterol analogue or combination thereof.
- Examples of such therapies include, but are not limited to, surgical treatment for removal or reduction of the tumor (such as surgical resection, cryotherapy, or chemoembolization), as well as anti-tumor pharmaceutical treatments which can include radiotherapeutic agents, anti-neoplastic chemotherapeutic agents, antibiotics, alkylating agents and antioxidants, kinase inhibitors, and other agents.
- additional therapeutic agents include microtubule-binding agents, DNA intercalators or cross-linkers, DNA synthesis inhibitors, DNA and/or RNA transcription inhibitors, antibodies, enzymes, enzyme inhibitors, and gene regulators. These agents (which are administered at a therapeutically effective amount) and treatments can be used alone or in combination. Methods and therapeutic dosages of such agents are known to those skilled in the art, and can be determined by a skilled clinician.
- Microtubule-binding agent refers to an agent that interacts with tubulin to stabilize or destabilize microtubule formation thereby inhibiting cell division.
- microtubule-binding agents that can be used in conjunction with the disclosed therapy include, without limitation, paclitaxel, docetaxel, vinblastine, vindesine, vinorelbine (navelbine), the epothilones, colchicine, dolastatin 15, nocodazole, podophyllotoxin and rhizoxin. Analogs and derivatives of such compounds also can be used and are known to those of ordinary skill in the art. For example, suitable epothilones and epothilone analogs are described in International Publication No.
- Taxoids such as paclitaxel and docetaxel, as well as the analogs of paclitaxel taught by U.S. Patent Nos. 6,610,860; 5,530,020; and/or 5,912,264 can be used.
- DNA and/or RNA transcription regulators including, without limitation, actinomycin D, daunorubicin, doxorubicin and derivatives and analogs thereof also are suitable for use in combination with the disclosed therapies
- DNA intercalators and cross-linking agents that can be administered to a subject include, without limitation, cisplatin, carboplatin, oxaliplatin, mitomycins, such as mitomycin C, bleomycin, chlorambucil, cyclophosphamide and derivatives and analogs thereof
- DNA synthesis inhibitors suitable for use as therapeutic agents include, without limitation, methotrexate, 5-fluoro-5'-deoxyuridine, 5-fluorouracil and analogs thereof.
- suitable enzyme inhibitors include, without limitation, camptothecin, etoposide, formestane, trichostatin and derivatives and analogs thereof.
- alkylating agents include carmustine or lomustine.
- compounds that affect gene regulation include agents that result in increased or decreased expression of one or more genes, such as raloxifene, 5- azacytidine, 5-aza-2'-deoxycytidine, tamoxifen, 4-hydroxytamoxifen, mifepristone and derivatives and analogs thereof; and kinase inhibitors include Gleevac, Iressa, and Tarceva that prevent phosphorylation and activation of growth factors.
- anti -tumor agents for example anti -tumor agents, that may or may not fall under one or more of the classifications above, also are suitable for administration in combination with the disclosed therapies.
- such agents include adriamycin, apigenin, rapamycin, zebularine, cimetidine, and derivatives and analogues thereof.
- At least a portion of the tumor is surgically removed (for example via cryotherapy), irradiated, chemically treated (for example via chemoembolization) or combinations thereof, prior to administration of the disclosed therapies (such as administration of fenoterol, a fenoterol analogue or a combination thereof).
- a subject can have at least a portion of the tumor surgically excised prior to administration of the disclosed therapies.
- one or more chemotherapeutic agents are administered following treatment with a composition including fenoterol, a fenoterol analogue or a combination thereof.
- [ 3 H]-Thymidine (70-90 Ci/mmol) was purchased from PerkinElmer Life and Analytical Sciences (Waltham, MA).
- Eagle's Minimum Essential Medium (E-MEM) trypsin solution
- PBS phosphate-buffered saline
- FBS fetal bovine serum
- L-glutamine (200 mM) 100X solutions of sodium pyruvate
- 200 mM fetal bovine serum
- penicillin/streptomycin a mixture of 10,000 units/ml penicillin and 10,000 ⁇ g/ml streptomycin
- Quality Biological Gaithersburg, MD
- WIN 55,212-2, AM251, and AM630 were purchased from Cayman Chemical (Ann Arbor, MI).
- ICI 118,551 hydrochloride and (R)-isoproterenol were obtained from Sigma-Aldrich (St. Louis, MO). Phenylmethylsulfonyl fluoride (PMSF), benzamidine, leupeptin, pepstatin A, MgCl 2 , EDTA, Trizma-Hydrochloride (Tris-HCl), ( ⁇ ) -propranolol and minimal essential medium (MEM) were obtained from Sigma Aldrich (St. Louis, MO). Egg phosphatidylcholine lipids (PC) were obtained from Avanti Polar Lipids (Alabaster, AL).
- ( ⁇ )-fenoterol was purchased from Sigma - Aldrich and [ 3 H]-( ⁇ )-fenoterol was acquired from Amersham Biosciences (Boston, MA).
- the organic solvents n-hexane, 2-propanol and triethylamine were obtained as ultra pure HPLC grade solvents from Carlo Erba (Milan, Italy).
- Fetal bovine serum and penicillin-streptomycin were purchased from Life Technologies (Gaithersburg, MD), and [ 125 I]- (i)-iodocyanopindolol (ICYP) was purchased from NEN Life Science Products, Inc. (Boston, MA).
- PANC-1 cells were incubated with media containing vehicle (0.01% DMSO) or (R,S')-MNF (0- 10 ⁇ ) for 24h. The medium was removed, and cells were collected and processed for immunoblot analysis as recently described (Singh et al., Pharmacological Research 111, pages 757-766, 2016). All membrane-bound primary antibodies were detected with horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Dallas, TX) and visualized by enhanced chemiluminescence (ECL Plus, GE Healthcare, Piscataway, NT).
- Quantification of the protein bands was performed by volume densitometry using ImageJ software (National Institutes of Health, Bethesda, MD) and normalization to ⁇ -actin or Lamin A/C.
- Primary antibodies used in this study were raised against EGFR (sc-03) and ⁇ -catenin (sc- 7199) (Santa Cruz Biotechnology); PKM2 (ab38237) and ⁇ -actin (ab6276) (Abeam, Cambridge, MA). Three independent experiments were conducted on three separate days.
- mice Female Balb/c nude mice (aged between 6-8 weeks, weight 18-20 g) were purchased from HFK Bioscience Co., Ltd. (Beijing, China) and maintained under pathogen-free conditions with a 12-hour light/12-hour dark cycle. Animals had free access to drinking water and were fed ad libitum with normal chow. Each mouse was inoculated subcutaneously at the right flank region with PANC-1 cells (5 x 10 6 ) in O. lmL of PBS for tumor development.
- the treatments were started at Day 8 when the mean tumor size reached 139 ⁇ 34 mm 3 and the mice weighed 21.1 ⁇ 1.1 g.
- mice received a single intraperitoneal (ip) injection 5 days per week for 3 treatment cycles of either vehicle (1% hydroxypropyl-P-cyclodextrin) (Control), 20mg-kg _1 (R,S')-MNF (Arm 2) or 40mg-kg _1 (R,S')-MNF (Arm 2).
- the dosing volume was adjusted according to weight (lC ⁇ L/g). Tumor volumes and weights were determined at the beginning and end of each dosing cycle, while visual estimation of food and water consumption, eye/hair matting, and behavior such as mobility were determined daily.
- the animals were euthanized by cervical extension 5 days after the end of the last dosing cycle.
- Plasma samples were collected at the conclusion of the studies and, after collection of plasma samples, the tumors were excised, weighed, divided into three portions and snap frozen.
- the xenograft studies were conducted at the Crown Biosciences, Ltd. facilities and all protocols were approved by the Animal Care and Use Committee at CrownBio (AN- 1407-009- 164), which are based on "the Guide for the Care and Use of Laboratory Animals” (NRC 2011).
- Statistical analysis Sigmoidal dose-response curves (IC 50 curves) were determined using the 'nonlinear regression (curve fit)' model contained within the Prism 4 software package (GraphPad Software, Inc) running on a personal computer. For immunoblot analyses, tumor volume, and animal weight analyses, statistical comparisons between treated and control groups were performed using unpaired Student's t-tests. P values ⁇ 0.05 were considered significant.
- mice Female Balb/c nude mice (aged between 6-8 weeks, weight 18-20 g) were purchased from HFK Bioscience Co., Ltd. (Beijing, China) and maintained under pathogen-free conditions with a 12-h light/12-h dark cycle. Animals had free access to drinking water and were fed ad libitum with normal chow. Each mouse was inoculated subcutaneously at the right flank region with PANC-1 cells (5- 106) in O. lmL of PBS for tumor development.
- mice received an i.p. injection of either vehicle (20% hydroxypropyl-P-cyclodextrin) (Control) or 10 mg-kg "1 MNF once daily for 16 days adjusted to 25 mg-kg "1 for the last 5 days (Experimental).
- Protein concentration in clarified lysates was determined using the bicinchoninic acid reagent (Thermo Fisher Scientific, Waltham, MA, USA). Proteins (20 ⁇ g/well) were separated on 4-12% precast gels (Invitrogen, Carlsbad, CA, USA) using SDS-polyacrylamide gel electrophoresis under reducing conditions and then electrophoretically transferred onto polyvinylidene fluoride membrane (Invitrogen). Western blots were performed according to standard methods, which involved a blocking step in Tris-buffered saline/0.1% Tween-20 (TBS-T) supplemented with 5% non-fat milk and incubation with primary antibodies of interest.
- TBS-T Tris-buffered saline/0.1% Tween-20
- the primary antibodies used in this study were raised against EGFR (sc-03), MCT4 (sc- 50329), Glut8 (sc-30108), and ⁇ -catenin (sc-7199) (Santa Cruz Biotechnology); PKM2 (ab38237) and ⁇ -actin (ab6276) (Abeam, Cambridge, MA, USA); hexokinase II (cat. #2867) and PDKl (cat. #3062S) (Cell Signaling Technology, Beverly, MA, USA). The antibodies were used at the dilution recommended by the manufacturers.
- the mixture was centrifuged for 15 min at 14000 rpm at 4 °C and the supernatant collected and analyzed using a system composed of an Agilent Technologies 1100 LC/MSD equipped with a G1322A degasser, G1312A quaternary pump, G1367A autosampler, G1316A column thermostat and G1946D mass spectrometer supplied with electrospray ionization (ESI).
- ESI electrospray ionization
- SIM Selected ion monitoring
- the compounds of interest were monitored in the positive-ion mode for SIM at m/z 162.1 (carnitine), m/z 90.1 (lactate) and m/z 105.1 (3-hydroxybutyrate).
- the internal standard was monitored at m/z 195.1 (p-aminohippuric acid).
- the C6 cell line is derived from a rat glioblastoma brain tumor and is a standard model for brain tumors.
- (R,R')-M F decreases glucose uptake and L-lactate output in this cell line, expanding the effect to more than one type of tumor.
- the human pancreatic tumor cell line, PANC-1, breast cancer cell lines MDA-MB-231 and MCF-7, and rat-derived C6 glioblastoma cell line were purchased from ATCC (Manassas, VA, USA). Upon receipt of the three cell lines, cells were expanded for a few passages to enable the generation of new frozen stocks. Cells were resuscitated as needed and used for fewer than 6 months after resuscitation (no more than 10 passages). ATCC performs thorough cell line authentication utilizing Short Tandem Repeat (STR) profiling.
- STR Short Tandem Repeat
- PANC-1 and C6 cells were maintained in DMEM with L-glutamine supplemented with 10% FBS and 1% penicillin/streptomycin.
- MDA-MB-231 cells were maintained in RPMI- 1640 supplemented with 10% FBS and 1% penicillin/streptomycin and MCF-7 cells were maintained in EMEM with L-glutamine supplemented with 10% FBS and 0.01 mg-ml "1 human recombinant insulin.
- Cells were maintained in a controlled environment (37 °C under humidified 5% C02 in air), and the medium was replaced every 2-3 days. Prior to experiments, cells were seeded on 100 x 20 mm tissue culture plates and grown to -70% confluency unless stated otherwise.
- C6 cells Glucose consumption and lactate production in C6 cells.
- C6 cells were culture in 48-well plates and treated with MNF (0.02 or 0.20 ⁇ ) or vehicle (DMSO, 0.1%) and glucose and lactate concentrations in the incubation media were periodically monitored for 48 h.
- MNF 0.02 or 0.20 ⁇
- DMSO vehicle
- glucose and lactate concentrations in the incubation media were periodically monitored for 48 h.
- the culture media were collected to determine glucose and lactate content using the Liquick Cor-Glucose and Liquick Cor-Lactate Diagnostic Kits (Cormay, Lublin, Poland). Measurements were carried out according to the manufacturer's protocols.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Methods of regulating disorders and diseases by reducing tumor generated L-lactate in an environment surrounding a tumor, include administration of a fenoterol analogue, such as for example, MNF. The method may increase a cancer patient's response to an immune checkpoint blockade therapy.
Description
METHODS OF TREATING CANCER
TECHNICAL FIELD
[0001] The present disclosure relates to methods of treating cancer by reducing tumor generated L-lactate in the microenvironment surrounding a tumor by administration of at least one agent, such as for example a fenoterol analogue.
BACKGROUND
[0002] Cancer is the second leading cause of human death next to coronary disease in the
United States. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half- million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. Cancer is soon predicted to become the leading cause of death.
SUMMARY
[0003] This disclosure concerns the discovery that the response to immune checkpoint blockade therapies in cancer patients can be increased by reducing tumor generated L-lactate in the microenvironment surrounding a tumor. In embodiments, fenoterol analogues are used to improve the effectiveness of one or more immune checkpoint blockade therapy by reducing tumor generated L-lactate in the microenvironment surrounding a tumor. The exemplary methods described herein can be used, for example, to improve the effectiveness of an immune checkpoint blockade therapy in the treatment of pancreatic cancer, breast cancer, or other cancers.
[0004] In embodiments, the method includes administering a therapeutically effective amount of a fenoterol analogue to a cancer patient to improve the effectiveness of one or more immune checkpoint blockade therapies. In embodiments, the fenoterol analogue is an antagonist of pyruvate kinase M2 (PKM2). In embodiments, the fenoterol analogue is an antagonist of hexokinase-2 (HK2). In embodiments, the fenoterol analogue is a compound that attenuates monocarboxylate transporter 4 (MCT4) expression and/or function, thereby decreasing L-lactate export and increasing L-lactate concentrations within the tumor.
[0005] In embodiments, fenoterol analogues include one or more compounds selected from the group consisting of (R,R')-4'-methoxy- 1-naphthylfenoterol ("MNF"), (R,S')-4'- methoxy- 1-naphthylfenoterol, (R,R')-ethylMNF, (R,R')-napthylfenoterol, (R,S napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R')-4' -amino- 1-naphthylfenoterol, (R,R')- 4'-hydroxy-l-naphthylfenoterol, (R,R')-4-methoxy-ethylfenoterol, (R,R')-methoxyfenoterol, (R,R')- ethylfenoterol, (R,R')-fenoterol and their respective stereoisomers.
[0006] In embodiments, the fenoterol analogue is (R,R')-4'-methoxy- 1-naphthylfenoterol (MNF), a compound having the formula:
[0007] In embodiments, the presently described methods include administering a therapeutically effective amount of a pharmaceutical composition containing a fenoterol analogue and a pharmaceutically acceptable carrier to a cancer patient to decrease the amount of L-lactate in a tumor microenvironment. In embodiments, the cancer patient is known to have pancreatic or breast cancer. In embodiments, the method includes administering one or more
therapeutic agents in addition to a fenoterol analogue. The methods can include administration of the one or more therapeutic agents separately, sequentially or concurrently, for example in a combined composition with a fenoterol analogue. In embodiments, the one or more therapeutic agents administered in addition to a fenoterol analogue may be one or more immune checkpoint blockade therapy.
[0008] In another aspect, a method of attenuating monocarboxylate transporter 4 (MCT4) expression and/or function is described. Attenuating MCT4 expression and/or function decreases L-lactate export out of cancer cells and increases L-lactate concentrations in cancer cells. In embodiments, the method includes administering a therapeutically effective amount of a fenoterol analogue to attenuate MCT4 expression and/or function.
[0009] In another aspect, a method of decreasing the amount (and hence activity) of hexokinase-2 (HK2) in cancer cells showing increased HK2 expression is described. Decreasing the amount HK2 decreases glucose metabolism and glycolysis and increases the sensitivity of cancer cells to cell death inducers. In embodiments, the method includes administering a therapeutically effective amount of a fenoterol analogue to decrease expression of HK2.
[0010] In another aspect, a method of decreasing the amount (and hence activity) of glucose transporter facilitators (e.g., Glut-1, Glut-8, and others) in cancer cells is described. In embodiments, the method includes administering a therapeutically effective amount of a fenoterol analogue to decrease expression of one or more glucose transporter facilitators.
[0011] The foregoing simplified summary of the claimed subject matter is presented in order to provide a basic understanding of some aspects of the claimed subject matter. The foregoing summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope of
the claimed subject matter. Its sole purpose is to present some concepts of the claimed subject matter in a simplified form as a prelude to the more detailed description that is presented hereinbelow. Further scope of applicability of the present disclosure will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating specific embodiments of the present disclosure, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present disclosure will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Fig. 1 shows that (R,S')-MNF reduces plasma L-lactate concentrations in mice bearing PANC-1 tumor xenografts;
[0013] Fig. 2 shows that (R,S')-MNF dose-dependently reduces β-catenin expression in
PANC-1 tumor cells;
[0014] Fig. 3 shows that (R,R')-MNF inhibits glucose uptake and lactate production in
C6 glioma cells ;
[0015] Figure 4 shows that (R,R')-MNF reduces lactate production in the breast cancer cell lines MCF-7 and MDA-MB-231;
[0016] Figure 5 shows the pathway of aerobic glycolysis in cancer cells resulting in an enhanced uptake of glucose and production of L-lactate ("the Warburg effect");
[0017] Fig. 6 shows that (R,R')-MNF reduces the expression of HK2 and the L-lactate transporter MCT4 in tumor tissue obtained from the PANC1 xenograft;
[0018] Figure 7 shows that (R,R')-MNF reduces the expression of β-catenin in tumor tissues obtained from mice bearing a PANC-1 xenograft;
[0019] Figure 8 shows that in mice with a PANC-1 xenograft tumor, (R,R')-MNF decreases the plasma concentration of L-lactate and increases the tumor L-lactate concentration; and
[0020] Figure 9 shows the impact of lactate on tumor microenvironment. .
DETAILED DESCRIPTION
Introduction
[0021] Cancer cells evolve several alterations in their metabolism to survive in unfavorable microenvironments, while retaining their ability to proliferate. In pancreatic cancer, metabolic reprogramming is a key aspect of tumorigenesis and has a profound effect on gene expression, cellular differentiation, metastasis, and tumor microenvironment. One metabolic adaptation of tumor cells is a shift to aerobic glycolysis as a main source of ATP, rather than oxidative phosphorylation (OXPHOS), irrespective of oxygen availability, a phenomenon referred to as the Warburg effect. This phenotype may promote a state of apoptosis resistance, the generation of biosynthetic precursors for proliferation, and increased invasive ability. Thus, aerobic glycolysis is a major component of metabolic reprograming and is characterized by enhanced glucose uptake and its conversion to L-lactate via the glycolytic pathway.
[0022] The dimeric form of pyruvate kinase M2 ("PKM2") is a key regulator of cancer metabolism, driving both lactate formation and upregulation of genes associated with glycolysis, tumor proliferation, and autoinduction of PKM2 expression.
[0023] The glycolytic enzyme hexokinase 2 (HK2) may also impact the Warburg effect in cancer cells showing increased HK2 expression. Depletion of HK2 has been shown to restore oxidative glucose metabolism and increase sensitivity to cell death inducers such as radiation and chemotherapies.
[0024] Another key aspect of metabolic reprogramming is the MCT4-mediated export of
L-lactate. In pancreatic cancer, increased expression of MCT4 is associated with a poor prognosis due to the role that increased L-lactate concentration plays in immunoresistance. Tumor-generated L-lactate inhibits anticancer immune response through decreased cytotoxic activity of T lymphocytes and natural killer cells.
[0025] Thus, therapeutic strategies to modulate the Warburg effect may interfere with growth and therapeutic sensitivity of some cancer cells.
[0026] Incubation of pancreatic cancer cells (e.g., PANC-1 cells) with a fenoterol analog in accordance with the methods of the present disclosure attenuates glycolysis by reducing the expression of Glut-1, hexokinase II, PKM2, and lactate dehydrogenase. Administration of a fenoterol analog in accordance with the methods of the present disclosure reduces L-lactate plasma concentration relative to pre-dose concentrations. Since immunotherapy lacks therapeutic efficacy in pancreatic cancer and some of the observed resistance has been attributed to the tumor microenvironment, reduction of L-lactate concentration in the tumor microenvironment in accordance with the presently described methods potentiates the effect of checkpoint inhibitors and therapeutic vaccines.
[0027] In accordance with exemplary embodiments of the present disclosure, a PKM2 antagonist, such as a fenoterol analogue, is used to treat a disease state by reducing tumor
generated L-lactate in the environment surrounding a tumor. This change in the microenvironment surrounding the tumor may reduce cellular proliferation, the expression of proteins key to the survival of cancer cells, and the resistance of cancer cells to treatment by anticancer drugs (known as multidrug resistance).
[0028] In accordance with other exemplary embodiments of the present disclosure, a compound that decreases HK2 expression and activity, such as a fenoterol analogue, is used to treat a disease state. In such embodiments, cancer is treated by restoring oxidative glucose metabolism and increasing sensitivity of cancer cells to cell death inducers.
[0029] In accordance with other exemplary embodiments of the present disclosure, a compound that attenuates MCT4 expression and/or function, such as a fenoterol analogue, is used to treat a disease state. In such embodiments, the MCT4-mediated export of L-lactate is reduced, thereby reducing tumor-generated L-lactate in the environment surrounding a tumor enhancing anticancer immune response and increasing cytotoxic activity of T lymphocytes and natural killer cells.
[0030] Thus, the compounds described herein can be used to treat pancreatic or breast cancer as well as other forms of cancer. Based upon these findings, methods of treating disorders and diseases modulated by glycolysis are described.
Abbreviations and Terms
[0031] Abbreviations:
AM251 : l-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(l-piperidyl)pyrazole- 3- carboxamide
AM630: l-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole AR: adrenergic receptor
2-AR: 2-adrenergic receptor
CB: cannabinoid
EGFR: epidermal growth factor receptor
ERK: extracellular regulated kinase
GPR55: G protein-coupled receptor 55
GPCR: G protein-coupled receptor
HPLC: high performance liquid chromatography
ICI 118,551 : 3-(isopropylamino)-l-[(7-methyl-4-indanyl)oxy]butan-2-ol
ICYP: [125I]cyanopindolol
IP: intraperitoneal
IV: intravenous
MNF : (R,R' )-4-methoxy- 1 -naphthylfenoterol
NF: naphthylfenoterol
UV: ultraviolet
[0032] Terms:
[0033] Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosed
subject matter belongs. Definitions of common terms in chemistry may be found in The McGraw-Hill Dictionary of Chemical Terms, 1985, and The Condensed Chemical Dictionary, 1981.
[0034] Except as otherwise noted, any quantitative values are approximate whether the word "about" or "approximately" or the like are stated or not. The materials, methods, and examples described herein are illustrative only and not intended to be limiting. Any molecular weight or molecular mass values are approximate and are provided only for description. Except as otherwise noted, the methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See, e.g., Loudon, Organic Chemistry, Fourth Edition, New York: Oxford University Press, 2002, pp. 360-361, 1084-1085; Smith and March, March' s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Fifth Edition, Wiley- Interscience, 2001; or Vogel, A Textbook of Practical Organic Chemistry, Including Qualitative Organic Analysis, Fourth Edition, New York: Longman, 1978.
[0035] In order to facilitate review of the various embodiments disclosed herein, the following explanations of specific terms are provided:
[0036] Acyl: A group of the formula RC(O)- wherein R is an organic group.
[0037] Acyloxy: A group having the structure -OC(0)R, where R may be an optionally substituted alkyl or optionally substituted aryl. "Lower acyloxy" groups are those where R contains from 1 to 10 (such as from 1 to 6) carbon atoms.
[0038] Administration: To provide or give a subject a composition, such as a pharmaceutical composition including one or more fenoterol analogues by any effective route. Exemplary routes of administration include, but are not limited to, injection (such as subcutaneous, intramuscular, intradermal, intraperitoneal ("IP"), and intravenous ("IV")), oral, sublingual, rectal, transdermal, intranasal, vaginal and inhalation routes.
[0039] Alkoxy: A radical (or substituent) having the structure -O-R, where R is a substituted or unsubstituted alkyl. Methoxy (-OCH3) is an exemplary alkoxy group. In a substituted alkoxy, R is alkyl substituted with a non-interfering substituent. "Thioalkoxy" refers to -S-R, where R is substituted or unsubstituted alkyl. "Haloalkyloxy" means a radical -OR where R is a haloalkyl.
[0040] Alkoxy carbonyl: A group of the formula -C(0)OR, where R may be an optionally substituted alkyl or optionally substituted aryl. "Lower alkoxy carbonyl" groups are those where R contains from 1 to 10 (such as from 1 to 6) carbon atoms.
[0041] Alkyl: An acyclic, saturated, branched- or straight-chain hydrocarbon radical, which, unless expressly stated otherwise, contains from one to fifteen carbon atoms; for example, from one to ten, from one to six, or from one to four carbon atoms. This term includes, for example, groups such as methyl, ethyl, n-propyl, isopropyl, isobutyl, t-butyl, pentyl, heptyl, octyl, nonyl, decyl, or dodecyl. The term "lower alkyl" refers to an alkyl group containing from one to ten carbon atoms. Unless expressly referred to as an "unsubstituted alkyl," alkyl groups can either be unsubstituted or substituted. An alkyl group can be substituted with one or more substituents (for example, up to two substituents for each methylene carbon in an alkyl chain). Exemplary alkyl substituents include, for instance, amino groups, amide, sulfonamide, halogen,
cyano, carboxy, hydroxy, mercapto, trifluorom ethyl, alkyl, alkoxy (such as methoxy), alkylthio, thioalkoxy, arylalkyl, heteroaryl, alkylamino, dialkylamino, alkylsulfano, keto, or other functionality.
[0042] Amino carbonyl (carbamoyl): A group of the formula C(0)N(R)R', wherein R and R are independently of each other hydrogen or a lower alkyl group.
[0043] p2-adrenergic receptor (P2-AR): A subtype of adrenergic receptors that are members of the G-protein coupled receptor family. P2-AR subtype is involved in respiratory diseases, cardiovascular diseases, premature labor and, as disclosed herein, tumor development. Increased expression of p2-ARs can serve as therapeutic targets.
[0044] Cannabinoid Receptors: A class of cell membrane receptors under the G protein- coupled receptor superfamily. The cannabinoid receptors contain seven transmembrane spanning domains. Cannabinoid receptors are activated by three major groups of ligands, endocannabinoids (produced by the mammalian body), plant cannabinoids (such as THC, produced by the cannabis plant) and synthetic cannabinoids (such as HU-210). All of the endocannabinoids and plant cannabinoids are lipophilic, i.e., fat soluble, compounds. Two subtypes of cannabinoid receptors are CBi (see GenBank Accession No. NM_033181 mRNA and UniProt P21554, each of which is hereby incorporated by reference as of May 23, 2012) and CB2 (see GenBank Accession No. NM_001841 mRNA and UniProt P34972, each of which is hereby incorporated by reference as of May 23, 2012). The CB2 receptor is expressed mainly in the immune system and in hematopoietic cells. Additional non-CBi and non-CB2 include GPR55 (GenBank Accession No. NM_005683.3 or NP_005674.2 protein, each of which is hereby incorporated by reference as of May 23, 2012), GPR119 (GenBank Accession No.
NM_178471.2 or NP_848566.1 protein, each of which is hereby incorporated by reference as of May 23, 2012) and GPR18 (also known as N- arachidonyl glycine receptor and involved in microglial migration, GenBank Accession No. NM_001098200 mRNA, NP_001091670.1, each of which is hereby incorporated by reference as of May 23, 2012).
[0045] The protein sequences of CBi and CB2 receptors are about 44% similar. When only the transmembrane regions of the receptors are considered, amino acid similarity between the two receptor subtypes is approximately 68%. In addition, minor variations in each receptor have been identified. Cannabinoids bind reversibly and stereo-selectively to the cannabinoid receptors. The affinity of an individual cannabinoid to each receptor determines the effect of that cannabinoid. Cannabinoids that bind more selectively to certain receptors are more desirable for medical usage. GPR55 is coupled to the G-protein Gi3 and/or Gn and activation of the receptor leads to stimulation of rhoA, cdc42 and rack GPR55 is activated by the plant cannabinoids A9- THC and cannabidiol, and the endocannabinoids anandamide, 2-AG, noladin ether in the low nanomolar range. In contrast, CBi and CB2 receptors are coupled to inhibitory G proteins. This indicates that both types of receptors will have different readouts. For example, activation of CBi causes apoptosis whereas increase in GPR55 activity is oncogenic. The CBi receptor antagonist (also termed 'inverse agonist') compound, AM251, is, in fact, an agonist for GPR55. It binds GPR55 and is readily internalized. This illustrates the opposite behavior of these two GPCRs.
[0046] Carbamate: A group of the formula -OC(0)N(R)-, wherein R is H, or an aliphatic group, such as a lower alkyl group or an aralkyl group.
[0047] Chemotherapy; chemotherapeutic agents: As used herein, any chemical agent with therapeutic usefulness in the treatment of diseases characterized by abnormal cell growth. Such diseases include tumors, neoplasms, and cancer as well as diseases characterized by hyperplastic growth. In one embodiment, a chemotherapeutic agent is an agent of use in treating neoplasms such as solid tumors, including a tumor associated with CB receptor activity and/or expression. In embodiments, a chemotherapeutic agent is radioactive molecule. In embodiments, a CB receptor regulator, such as one or more fenoterol analogues or a combination thereof is a chemotherapeutic agent. In one example, a chemotherapeutic agent is carmustine, lomustine, procarbazine, streptozocin, or a combination thereof. One of skill in the art can readily identify a chemotherapeutic agent of use (e.g., see Slapak and Kufe, Principles of Cancer Therapy, Chapter 86 in Harrison's Principles of Internal Medicine, 14th edition; Perry et al., Chemotherapy, Ch. 17 in Abel off, Clinical Oncology 2nd ed., © 2000 Churchill Livingstone, Inc; Baltzer L., Berkery R. (eds): Oncology Pocket Guide to Chemotherapy, 2nd ed. St. Louis, Mosby-Year Book, 1995; Fischer DS, Knobf MF, Durivage HJ (eds): The Cancer Chemotherapy Handbook, 4th ed. St. Louis, Mosby-Year Book, 1993).
[0048] Control or Reference Value: A "control" refers to a sample or standard used for comparison with a test sample. In some embodiments, the control is a sample obtained from a healthy subject or a tissue sample obtained from a patient diagnosed with a disorder or disease, such as a tumor, that did not respond to treatment with a p2-agonist. In some embodiments, the control is a historical control or standard reference value or range of values.
[0049] Derivative: A chemical substance that differs from another chemical substance by one or more functional groups. In embodiments, a derivative retains a biological activity of a molecule from which it was derived.
[0050] Effective amount: An amount of agent that is sufficient to generate a desired response, such as reducing or inhibiting one or more signs or symptoms associated with a condition or disease. When administered to a subject, a dosage will generally be used that will achieve target tissue concentrations. In some examples, an "effective amount" is one that treats one or more symptoms and/or underlying causes of any of a disorder or disease. In some examples, an "effective amount" is a "therapeutically effective amount" in which the agent alone with an additional therapeutic agent(s) (for example a chemotherapeutic agent) induces the desired response such as treatment of a tumor. In one example, a desired response is to decrease tumor size or metastasis in a subject to whom the therapy is administered. Tumor metastasis does not need to be completely eliminated for the composition to be effective. For example, a composition can decrease metastasis by a desired amount, for example by at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or even at least 100%) (elimination of the tumor), as compared to metastasis in the absence of the composition.
[0051] In particular examples, it is an amount of an agent effective to decrease a number of carcinoma cells, such as in a subject to whom it is administered, for example a subject having one or more carcinomas. The cancer cells do not need to be completely eliminated for the composition to be effective. For example, a composition can decrease the number of cancer cells by a desired amount, for example by at least 20%, at least 50%, at least 60%>, at least 70%, at least 80%), at least 90%, at least 95%, at least 98%, or even at least 100% (elimination of detectable cancer cells), as compared to the number of cancer cells in the absence of the composition.
[0052] The effective amount of a composition useful for reducing, inhibiting, and/or treating a disorder in a subject will be dependent on the subject being treated, the severity of the disorder, and the manner of administration of the therapeutic composition. Effective amounts a therapeutic agent can be determined in many different ways, such as assaying for a reduction in tumor size or improvement of physiological condition of a subject having a tumor, such as a brain tumor. Effective amounts also can be determined through various in vitro, in vivo or in situ assays.
[0053] Fenoterol Analogues: Fenoterol analogues include (R,R')-4'-methoxy-l- naphthylfenoterol ("MNF"), (R,S')-4'-methoxy-l-naphthylfenoterol, (R,R')-ethylMNF, (R,R')- napthylfenoterol, (R,S')-napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R' )-4' -amino- 1- naphthylfenoterol, (R,R')-4'-hydroxy-l-naphthylfenoterol, (R,R')-4'-methoxy-ethylfenoterol, (R,R')-methoxyfenoterol, (R,R')-ethylfenoterol, (R,R')-fenoterol and their respective stereoisomers.
[0054] Inflammation: When damage to tissue occurs, the body's response to the damage is usually inflammation. The damage may be due to trauma, lack of blood supply, hemorrhage, autoimmune attack, transplanted exogenous tissue or infection. This generalized response by the body includes the release of many components of the immune system (for instance, IL-1 and TNF), attraction of cells to the site of the damage, swelling of tissue due to the release of fluid and other processes.
[0055] Isomers: Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed "isomers". Isomers that differ in the arrangement of their atoms in space are termed
"stereoisomers". Stereoisomers that contain two or more chiral centers and are not mirror images of one another are termed "diastereomers." Steroisomers that are non-superimposable mirror images of each other are termed "enantiomers." When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-) isomers, respectively). A chiral compound can exist as either an individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a "racemic mixture."
[0056] The compounds described herein may possess one or more asymmetric centers; such compounds can therefore be produced as individual (R), (S), (R,R), (R,S'), (S,R') and (S,S')-stereoisomers or as mixtures thereof. Unless indicated otherwise, the description or naming of a particular compound in the specification and claims is intended to include both individual enantiomers and mixtures, racemic or otherwise, thereof. The methods for the determination of stereochemistry and the separation of stereoisomers are well known in the art (see, e.g., March, Advanced Organic Chemistry, 4th edition, New York: John Wiley and Sons, 1992, Chapter 4).
[0057] Optional: "Optional" or "optionally" means that the subsequently described event or circumstance can but need not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
[0058] Pharmaceutically Acceptable Carriers: The pharmaceutically acceptable carriers
(vehicles) useful in this disclosure are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 19th Edition (1995), describes compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compounds or molecules, such as one or more nucleic acid molecules, proteins or antibodies that bind these proteins, and additional pharmaceutical agents.
[0059] In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
[0060] Phenyl: Phenyl groups may be unsubstituted or substituted with one, two or three substituents, with substituent(s) independently selected from alkyl, heteroalkyl, aliphatic, heteroaliphatic, thioalkoxy, halo, haloalkyl (such as -CF3), nitro, cyano, -OR (where R is hydrogen or alkyl), -N(R)R (where R and R are independently of each other hydrogen or alkyl), -COOR (where R is hydrogen or alkyl) or -C(0)N(R)R" (where R and R" are independently selected from hydrogen or alkyl).
[0061] Purified: The term "purified" does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified preparation is one in which a desired component such as an (R,R ')-enantiomer of fenoterol is more enriched than it was in a preceding environment such as in a (+)-fenoterol mixture. A desired component such as (R,R')-enantiomer of fenoterol is considered to be purified, for example, when at least about 70%, 80%, 85%, 90%, 92%), 95%), 97%), 98%), or 99% of a sample by weight is composed of the desired component. Purity of a compound may be determined, for example, by high performance liquid chromatography (HPLC) or other conventional methods. In an example, the fenoterol analogue enantiomers are purified to represent greater than 90%, often greater than 95% of the other enantiomers present in a purified preparation. In other cases, the purified preparation may be essentially homogeneous, wherein other stereoisomers are less than 1%.
[0062] Compounds described herein may be obtained in a purified form or purified by any of the means known in the art, including silica gel and/or alumina chromatography. See, e.g., Introduction to Modern Liquid Chromatography, 2nd Edition, ed. by Snyder and Kirkland, New York: John Wiley and Sons, 1979; and Thin Layer Chromatography, ed. by Stahl, New York: Springer Verlag, 1969. In an example, a compound includes purified fenoterol or fenoterol analogue with a purity of at least about 70%, 80%, 85%, 90%, 92%, 95%, 97%, 98%, or 99% of a sample by weight relative to other contaminants. In a further example, a compound includes at least two purified stereoisomers each with a purity of at least about 70%, 80%, 85%, 90%, 92%, 95%), 97%), 98%), or 99% of a sample by weight relative to other contaminants. For instance, a compound can include a substantially purified (R,R')-fenoterol analogue and a substantially purified (R,S')-fenoterol analogue.
[0063] Subject: The term "subject" includes both human and veterinary subjects, for example, humans, non-human primates, dogs, cats, horses, rats, mice, and cows. Similarly, the term mammal includes both human and non-human mammals.
[0064] Tissue: A plurality of functionally related cells. A tissue can be a suspension, a semi-solid, or solid. Tissue includes cells collected from a subject such as the brain or a portion thereof.
[0065] Tumor: All neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. A primary tumor is tumor growing at the anatomical site where tumor progression began and proceeded to yield this mass.
[0066] Under conditions sufficient for: A phrase that is used to describe any environment that permits the desired activity. In one example, under conditions sufficient for includes administering one or more fenoterol analogues to a subject to at a concentration sufficient to allow the desired activity. In some examples, the desired activity is reducing or inhibiting a sign or symptom associated with a disorder or disease, such as a breast or pancreatic, can be evidenced, for example, by a delayed onset of clinical symptoms of the tumor in a susceptible subject, a reduction in severity of some or all clinical symptoms of the tumor, a slower progression of the tumor (for example by prolonging the life of a subject having the tumor), a reduction in the number of tumor reoccurrence, an improvement in the overall health or well-being of the subject, or by other parameters well known in the art that are specific to the particular disease. In one particulate example, the desired activity is preventing or inhibiting tumor growth, such as breast cancer or pancreatic cancer growth. Tumor growth does not need to be completely inhibited for the treatment to be considered effective. For example, a partial
reduction or slowing of growth such as at least about a 10% reduction, such as at least 20%, at least about 30%, at least about 40%, at least about 50% or greater is considered to be effective.
Chemical Structure of fenoterol analogues
[0067] Fenoterol analogues useful in the methods herein include (R,R')-4'-methoxy-l- naphthylfenoterol ("MNF"), (R,S')-4'-methoxy-l-naphthylfenoterol, (R,R')-ethylMNF, (R,R')- napthylfenoterol, (R,S')-napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R' )-4' -amino- 1- naphthylfenoterol, (R,R')-4'-hydroxy-l-naphthylfenoterol, (R,R')-4'-methoxy-ethylfenoterol, (R,R')-4'-methoxyfenoterol, (R,R')-ethylfenoterol, (R,R')-fenoterol and their respective stereoisomers.
[0068] Examples of suitable groups for R1-R3 that can be cleaved in vivo to provide a hydroxy group include, without limitation, acyl, acyloxy and alkoxy carbonyl groups. Compounds having such cleavable groups are referred to as "prodrugs." The term "prodrug," as used herein, means a compound that includes a substituent that is convertible in vivo (e.g., by hydrolysis) to a hydroxyl group. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, Vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed), Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113 191 (1991); Bundgaard, et al., Journal of Drug Delivery Reviews, 8: 1 38(1992); Bundgaard, Pharmaceutical Sciences, 77:285 et seq. (1988); and Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975).
[0069] In embodiments, administering comprises administering a therapeutically effective amount of MNF, NF or a combination thereof. In some embodiments, administering comprises administering a therapeutically effective amount of MNF.
[0070] Particular method embodiments contemplate the use of solvates (such as hydrates), pharmaceutically acceptable salts and/or different physical forms of the fenoterol analogues herein described.
Solvates, Salts and Physical Forms
[0071] "Solvate" means a physical association of a compound with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including by way of example covalent adducts and hydrogen bonded solvates. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Representative solvates include ethanol- associated compound, methanol-associated compounds, and the like. "Hydrate" is a solvate wherein the solvent molecule(s) is/are H20.
[0072] The disclosed compounds also encompass salts including, if several salt-forming groups are present, mixed salts and/or internal salts. The salts are generally pharmaceutically acceptable salts that are non-toxic. Salts may be of any type (both organic and inorganic), such as fumarates, hydrobromides, hydrochlorides, sulfates and phosphates. In an example, salts include non-metals (e.g., halogens) that form group VII in the periodic table of elements. For example, compounds may be provided as a hydrobromide salt.
[0073] Additional examples of salt-forming groups include, but are not limited to, a carboxyl group, a phosphonic acid group or a boronic acid group, that can form salts with suitable bases. These salts can include, for example, nontoxic metal cations, which are derived from metals of groups IA, IB, IIA and IIB of the periodic table of the elements. In one embodiment, alkali metal cations such as lithium, sodium or potassium ions, or alkaline earth metal cations such as magnesium or calcium ions can be used. The salt can also be a zinc or an ammonium cation. The salt can also be formed with suitable organic amines, such as unsubstituted or hydroxyl -substituted mono-, di- or tri-alkylamines, in particular mono-, di- or tri-alkylamines, or with quaternary ammonium compounds, for example with N-methyl-N- ethylamine, diethylamine, triethylamine, mono-, bis- or tris- (2-hydroxy-lower alkyl)amines, such as mono-, bis- or tris- (2- hydroxyethyl)amine, 2-hydroxy-tert-butylamine or tris(hydroxymethyl)methylamine, N,N-di-lower alkyl-N-(hydroxy-lower alkyl)amines, such as N,N-dimethyl-N-(2-hydroxyethyl)amine or tri-(2- hydroxyethyl)amine, or N-methyl-D- glucamine, or quaternary ammonium compounds such as tetrabutylammonium salts.
[0074] Exemplary compounds disclosed herein possess at least one basic group that can form acid- base salts with inorganic acids. Examples of basic groups include, but are not limited to, an amino group or imino group. Examples of inorganic acids that can form salts with such basic groups include, but are not limited to, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid. Basic groups also can form salts with organic carboxylic acids, sulfonic acids, sulfo acids or phospho acids or N-substituted sulfamic acid, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic
acid, 4-aminosalicylic acid, 2- phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid, and, in addition, with amino acids, for example with a-amino acids, and also with methanesulfonic acid, ethanesulfonic acid, 2-hydroxymethanesulfonic acid, ethane- 1,2-disulfonic acid, benzenedisulfonic acid, 4-methylbenzenesulfonic acid, naphthalene- 2-sulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate or N-cyclohexylsulfamic acid (with formation of the cyclamates) or with other acidic organic compounds, such as ascorbic acid. In a currently preferred embodiment, fenoterol is provided as a hydrobromide salt and exemplary fenoterol analogues are provided as their fumarate salts.
[0075] Additional counterions for forming pharmaceutically acceptable salts are found in
Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing Company, Easton, PA, 1995. In one aspect, employing a pharmaceutically acceptable salt may also serve to adjust the osmotic pressure of a composition.
[0076] In certain embodiments the compounds used in the method are provided are polymorphous. As such, the compounds can be provided in two or more physical forms, such as different crystal forms, crystalline, liquid crystalline or non-crystalline (amorphous) forms.
Use for the Manufacture of a Medicament
[0077] Any of the above described compounds (e.g., (R,R') and/or (R,S') fenoterol analogues or a hydrate or pharmaceutically acceptable salt thereof) or combinations thereof are intended for use in the manufacture of a medicament for treatment of breast or pancreatic cancer.
[0078] Formulations suitable for such medicaments, subjects who may benefit from same and other related features are described elsewhere herein.
Methods of Synthesis
[0079] The disclosed fenoterol analogues can be synthesized by any method known in the art including those described in U.S. Patent Application Publication No. US 2010-0168245 Al, U.S. Patent Application Publication No. US 2012-0157543 Al and International Patent Publication No. WO 2011/112867, each of which is hereby incorporated by reference in its entirety. Many general references providing commonly known chemical synthetic schemes and conditions useful for synthesizing the disclosed compounds are available (see, e.g., Smith and March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Fifth Edition, Wiley- Interscience, 2001; or Vogel, A Textbook of Practical Organic Chemistry, Including Qualitative Organic Analysis, Fourth Edition, New York: Longman, 1978).
[0080] Compounds as described herein may be purified by any of the means known in the art, including chromatographic means, such as UPLC (including chiral UPLC), preparative thin layer chromatography, flash column chromatography and ion exchange chromatography. Any suitable stationary phase can be used, including normal and reversed phases as well as ionic resins. Most typically the disclosed compounds are purified via open column chromatography or prep chromatography.
[0081] Suitable exemplary syntheses of fenoterol analogues are provided below:
[0082] Scheme I: An exemplary synthesis of 4 stereoisomers of 1 - 6 including the coupling of the epoxide formed from either (R)- or (S)-3',5'-dibenzyloxyphenyl bromohydrin with the (R)- or (S)- enantiomer of the appropriate benzyl -protected 2-amino-3-benzylpropane (1 - 5) or the (R)- or (S)- enantiomer of N-benzyl-2-aminoheptane (6).
[0083] Scheme II: Exemplary synthesis of (R)-7 and (S)-7 using 2-phenethylamine. resulting compounds may be deprotected by hydrogenation over Pd/C and purified as fumarate salts.
[0084] Scheme III describes an exemplary synthesis for the chiral building blocks used in
Scheme II. The (R)- and (S)-3',5'-dibenzyloxyphenyl-bromohydrin enantiomers were obtained by the enantio specific reduction of 3,5-dibenzyloxy-a-bromoacetophenone using boron-methyl sulfide complex (BH3SCH3) and either (1R,2S)- or (1 S,2R)- cis-l-amino-2-indanol. The required (R)- and (S)-2-benzylaminopropanes were prepared by enantioselective crystallization of the rac-2-benzylaminopropanes using either (R)- or (S)-mandelic acid as the counter ion.
Pharmaceutical Compositions
[0085] The disclosed fenoterol analogues can be useful, at least, for reducing or inhibiting one or more symptoms or signs associated with cancer. Accordingly, pharmaceutical compositions comprising at least one disclosed fenoterol analogue are also described herein.
[0086] Formulations for pharmaceutical compositions are well known in the art. For example, Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 19th Edition, 1995, describes exemplary formulations (and components thereof) suitable for pharmaceutical delivery of (R,R')-fenoterol and disclosed fenoterol analogues. Pharmaceutical compositions comprising at least one of these compounds can be formulated for use in human or veterinary medicine. Particular formulations of a disclosed pharmaceutical composition may depend, for example, on the mode of administration (e.g., oral or parenteral) and/or on the disorder to be treated. In some embodiments, formulations include a pharmaceutically acceptable carrier in addition to at least one active ingredient, such as a fenoterol compound.
[0087] Pharmaceutically acceptable carriers useful for the disclosed methods and compositions are conventional in the art. The nature of a pharmaceutical carrier will depend on the particular mode of administration being employed. For example, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
[0088] For solid compositions such as powder, pill, tablet, or capsule forms conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically neutral carriers, pharmaceutical
compositions to be administered can optionally contain minor amounts of non-toxic auxiliary substances or excipients, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like; for example, sodium acetate or sorbitan monolaurate. Other non-limiting excipients include, nonionic solubilizers, such as cremophor, or proteins, such as human serum albumin or plasma preparations.
[0089] The disclosed pharmaceutical compositions may be formulated as a pharmaceutically acceptable salt. Pharmaceutically acceptable salts are non-toxic salts of a free base form of a compound that possesses the desired pharmacological activity of the free base. These salts may be derived from inorganic or organic acids. Non-limiting examples of suitable inorganic acids are hydrochloric acid, nitric acid, hydrobromic acid, sulfuric acid, hydriodic acid, and phosphoric acid. Non-limiting examples of suitable organic acids are acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, methyl sulfonic acid, salicylic acid, formic acid, trichloroacetic acid, trifluoroacetic acid, gluconic acid, asparagic acid, aspartic acid, benzenesulfonic acid, p- toluenesulfonic acid, naphthalenesulfonic acid, and the like. Lists of other suitable pharmaceutically acceptable salts are found in Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing Company, Easton, PA, 1995. A pharmaceutically acceptable salt may also serve to adjust the osmotic pressure of the composition.
[0090] The dosage form of a disclosed pharmaceutical composition will be determined by the mode of administration chosen. For example, in addition to injectable fluids, oral dosage forms may be employed. Oral formulations may be liquid such as syrups, solutions or
suspensions or solid such as powders, pills, tablets, or capsules. Methods of preparing such dosage forms are known, or will be apparent, to those skilled in the art.
[0091] Certain embodiments of the pharmaceutical compositions comprising a disclosed compound may be formulated in unit dosage form suitable for individual administration of precise dosages. The amount of active ingredient such as (R,R')-MNF or F administered will depend on the subject being treated, the severity of the disorder, and the manner of administration, and is known to those skilled in the art. Within these bounds, the formulation to be administered will contain a quantity of the extracts or compounds disclosed herein in an amount effective to achieve the desired effect in the subject being treated.
[0092] In particular examples, for oral administration the compositions are provided in the form of a tablet containing from about 1.0 to about 50 mg of the active ingredient, particularly about 2.0 mg, about 2.5 mg, 5 mg, about 10 mg, or about 50 mg of the active ingredient for the symptomatic adjustment of the dosage to the subject being treated. In one exemplary oral dosage regimen, a tablet containing from about 1 mg to about 50 mg (such as about 2 mg to about 10 mg) active ingredient is administered two to four times a day, such as two times, three times or four times.
[0093] In other examples, a suitable dose for parental administration is about 1 milligram per kilogram (mg/kg) to about 100 mg/kg, such as a dose of about 10 mg/kg to about 80 mg/kg, such including about 1 mg/kg, about 2 mg/kg, about 5 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg or about 100 mg/kg administered parenterally. However, other higher or lower dosages also could be used, such as from about 0.001 mg/kg to
about 1 g/kg, such as about 0.1 to about 500 mg/kg, including about 0.5 mg/kg to about 200 mg/kg.
[0094] Single or multiple administrations of the composition comprising one or more of the disclosed compositions can be carried out with dose levels and pattern being selected by the treating physician. Generally, multiple doses are administered. In a particular example, the composition is administered parenterally once per day. However, the composition can be administered twice per day, three times per day, four times per day, six times per day, every other day, twice a week, weekly, or monthly. Treatment will typically continue for at least a month, more often for two or three months, sometimes for six months or a year, and may even continue indefinitely, i.e., chronically. Repeat courses of treatment are also possible.
[0095] In embodiments, the pharmaceutical composition is administered without concurrent administration of a second agent for the treatment of breast or pancreatic cancer. In one specific, non-limiting example, one or more of the disclosed compositions is administered without concurrent administration of other agents, such as without concurrent administration of an additional agent also known to target the tumor. In other specific non-limiting examples, a therapeutically effective amount of a disclosed pharmaceutical composition is administered concurrently with an additional agent, including an additional therapy. For example, the disclosed compounds are administered in combination with a chemotherapeutic agent, antioxidants, anti-inflammatory drugs or combinations thereof.
[0096] In embodiments, the disclosed compounds are administered in combination with an immune checkpoint therapy. Immune checkpoints affect immune system functioning and can be stimulatory or inhibitory. Tumors can use these checkpoints to protect themselves from
immune system attacks. Checkpoint therapy can block inhibitory checkpoints, restoring immune system function. For example, the immune checkpoint therapy may impact the interaction between the transmembrane programmed cell death 1 protein (PDCDl, PD-1; also known as CD279) and its ligand, PD-1 ligand 1 (PD-L1, CD274). Cancer-mediated upregulation of PD-L1 on the cell surface may inhibit T cells that might otherwise attack. Thus, the presently disclosed fenoterol analogues may be administered with antibodies that bind to either PD-1 or PD-L1 and therefore block the interaction and thereby allow the T-cells to attack the tumor. In embodiments, the presently disclosed fenoterol analogues may be administered with IgG4 PD1 antibody (such as, for example, antibody BGB-A317, Nivolumab or Pembrolizumab which may provide benefits with respect to one or more of melanoma, lung cancer, kidney cancer and Hodgkin's lymphoma). In embodiments, the presently disclosed fenoterol analogues may be administered with a PD-L1 inhibitor, such as, for example, atezolizumab, avelumab, or and durvalumab. Alternatively or additionally, the presently disclosed fenoterol analogues may be administered with antibodies that block the immune checkpoint molecule CTLA-4, (such as, for example, ipilimumab, which may provide benefits with respect to lung cancer or pancreatic cancer, specifically in combination with other drugs). In embodiments, the presently disclosed fenoterol analogues may be administered with a combination of CTLA-4 blockade with PD-1 or PD-L1 inhibitors. In yet other embodiments, the presently disclosed fenoterol analogues may be administered with a therapeutic agent that targets an intrinsic checkpoint blockade, such as, for example, the gene encoding Cytokine-inducible SH2-containing protein (CISH).
[0097] In other examples, a disclosed pharmaceutical composition is administered as adjuvant therapy. For example, a pharmaceutical composition containing one or more of the disclosed compounds is administered orally daily to a subject in order to prevent or retard tumor
growth. In one particular example, a composition containing equal portions of two or more disclosed compounds is provided to a subject. In one example, a composition containing unequal portions of two or more disclosed compounds is provided to the subject. For example, a composition contains unequal portions of a (R,R')-fenoterol derivative and a (S,R')-fenoterol derivative and/or a (R,S') -derivative. In one particular example, the composition includes a greater amount of the (S,R)- or (R,S')-fenoterol derivative. Such therapy can be given to a subject for an indefinite period of time to inhibit, prevent, or reduce tumor reoccurrence.
Methods of Use
[0098] The present disclosure includes methods of treating disorders including reducing or inhibiting one or more signs or symptoms associated with cancer, such as pancreatic cancer or breast cancer. Presently disclosed methods include administering fenoterol, such as (R,R)- fenoterol, a disclosed fenoterol analogue or a combination thereof (and, optionally, one or more other pharmaceutical agents) depending upon the receptor population of the tumor, to a subject in a pharmaceutically acceptable carrier and in an amount effective to reduce tumor generated L- lactate in the environment surrounding cancer cells. Treatment of a tumor includes preventing or reducing signs or symptoms associated with the presence of such tumor (for example, by reducing the size or volume of the tumor or a metastasis thereof). Such reduced growth can in some examples decrease or slow metastasis of the tumor, or reduce the size or volume of the tumor by at least 10%, at least 20%, at least 50%, or at least 75%, such as between 10%-90%, 20%-80%, 30%- 70%, 40%-60%, including a 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, or 95% reduction. In another example, treatment includes reducing the invasive activity of the tumor in the subject, for example by reducing the
ability of the tumor to metastasize. In some examples, treatment using the methods disclosed herein prolongs the time of survival of the subject.
[0099] Routes of administration useful in the disclosed methods include but are not limited to oral and parenteral routes, such as intravenous (IV), intraperitoneal (IP), rectal, topical, ophthalmic, nasal, and transdermal as described in detail above.
[00100] An effective amount of a disclosed fenoterol analogue will depend, at least, on the particular method of use, the subject being treated, the severity of the tumor, and the manner of administration of the therapeutic composition. A "therapeutically effective amount" of a composition is a quantity of a specified compound sufficient to achieve a desired effect in a subject being treated. For example, this may be the amount of a fenoterol analogue necessary to prevent or inhibit tumor growth and/or one or more symptoms associated with the tumor in a subject. Ideally, a therapeutically effective amount of a disclosed fenoterol analogue is an amount sufficient to prevent or inhibit a tumor, such as a brain or liver tumor growth and/or one or more symptoms associated with the tumor in a subject without causing a substantial cytotoxic effect on host cells.
[00101] Therapeutically effective doses of a disclosed fenoterol compound or pharmaceutical composition can be determined by one of skill in the art, with a goal of achieving concentrations that are at least as high as the IC50 of the applicable compound disclosed in the examples herein. An example of a dosage range is from about 0.001 to about 10 mg/kg body weight orally in single or divided doses. In particular examples, a dosage range is from about 0.005 to about 5 mg/kg body weight orally in single or divided doses (assuming an average body weight of approximately 70 kg; values adjusted accordingly for persons weighing more or less
than average). For oral administration, the compositions are, for example, provided in the form of a tablet containing from about 1.0 to about 50 mg of the active ingredient, particularly about 2.5 mg, about 5 mg, about 10 mg, or about 50 mg of the active ingredient for the symptomatic adjustment of the dosage to the subject being treated. In one exemplary oral dosage regimen, a tablet containing from about 1 mg to about 50 mg active ingredient is administered two to four times a day, such as two times, three times or four times.
[00102] In other examples, a suitable dose for parental administration is about 1 milligram per kilogram (mg/kg) to about 100 mg/kg, such as a dose of about 10 mg/kg to about 80 mg/kg, such including about 1 mg/kg, about 2 mg/kg, about 5 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg or about 100 mg/kg administered parenterally. However, other higher or lower dosages also could be used, such as from about 0.001 mg/kg to about 1 g/kg, such as about 0.1 to about 500 mg/kg, including about 0.5 mg/kg to about 200 mg/kg.
[00103] Single or multiple administrations of the composition comprising one or more of the disclosed compositions can be carried out with dose levels and pattern being selected by the treating physician. Generally, multiple doses are administered. In a particular example, the composition is administered parenterally once per day. However, the composition can be administered twice per day, three times per day, four times per day, six times per day, every other day, twice a week, weekly, or monthly. Treatment will typically continue for at least a month, more often for two or three months, sometimes for six months or a year, and may even continue indefinitely, i.e., chronically. Repeat courses of treatment are also possible.
[00104] The specific dose level and frequency of dosage for any particular subject may be varied and will depend upon a variety of factors, including the activity of the specific compound, the metabolic stability and length of action of that compound, the age, body weight, general health, sex and diet of the subject, mode and time of administration, rate of excretion, drug combination, and severity of the condition of the subject undergoing therapy.
Selecting a Subject
[00105] Subjects can be screened prior to initiating the disclosed therapies, for example to select a subject in need of or at risk of developing cancer. Briefly, the method can include screening subjects to determine if they have or are at risk of developing cancer, such as if the subject is in need of pancreatic cancer or breast cancer inhibition. In embodiments, the cancer is regulated by at least one of B2-adrenergic receptor (AR) activity or expression, cannabinoid (CB) receptor activity or expression, or epidermal growth factor receptor (EGFR) activity or expression. Such cancers include, but are not limited to various types of breast cancer. Subjects having a tumor that expresses B2-adrenergic receptor (AR), cannabinoid (CB) receptor (including but not limited to GPR55), and epidermal growth factor receptor (EGFR) or at risk of developing such a tumor are selected. In one example, subjects are diagnosed with the tumor by clinical signs, laboratory tests, or both.
[00106] In exemplary embodiments, a subject in need of the disclosed therapies is selected by detecting a tumor expressing B2-adrenergic receptor (AR), cannabinoid (CB) receptor (including but not limited to GPR55), and epidermal growth factor receptor (EGFR) or regulated by their activity, such as by detecting B2-adrenergic receptor (AR) activity, cannabinoid (CB) receptor (including but not limited to GPR55) activity, and epidermal growth factor receptor
(EGFR) activity or expression in a sample obtained from a subject identified as having, suspected of having or at risk of acquiring such a tumor. For example, detection of altered, such as at least a 10% alteration, including a 10%-90%, 20%-80%, 30%-70%, 40%-60%, such as a 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95% alteration or more in B2-adrenergic receptor (AR) expression or activity, cannabinoid (CB) receptor (including but not limited to GPR55) expression or activity, and epidermal growth factor receptor (EGFR) expression or activity as compared to B2-adrenergic receptor (AR) expression or activity, cannabinoid (CB) receptor (including but not limited to GPR55) expression or activity, and epidermal growth factor receptor (EGFR) expression or activity in the absence of a primary tumor, indicates that the tumor can be treated using the fenoterol compositions and methods provided herein.
[00107] Pre-screening is not required prior to administration of the therapeutic agents disclosed herein (such as those including fenoterol, a fenoterol analogue or a combination thereof).
Assessment
[00108] Following the administration of one or more therapies, subjects can be monitored for decreases in tumor growth, tumor volume or in one or more clinical symptoms associated with the tumor. In particular examples, subjects are analyzed one or more times, starting 7 days following treatment. Subjects can be monitored using any method known in the art including those described herein including imaging analysis.
Additional Treatments and Additional Therapeutic Agents
[00109] In particular examples, if subjects are stable or have a minor, mixed or partial response to treatment, they can be re-treated after re-evaluation with the same schedule and preparation of agents that they previously received for the desired amount of time, including the duration of a subject's lifetime. A partial response is a reduction, such as at least a 10%, at least a 20%), at least a 30%>, at least a 40%, at least a 50%, or at least a 70% reduction in one or more signs or symptoms associated with the disorder or disease, or activity, including tumor size or volume.
[00110] In some examples, the method further includes administering a therapeutic effective amount of a fenoterol analogue with additional therapeutic treatments. In particular examples, prior to, during, or following administration of a therapeutic amount of an agent that reduces tumor generated L-lactate in the environment surrounding the tumor, the subject can receive one or more other therapies. In one example, the subject receives one or more treatments to remove or reduce the tumor prior to administration of a therapeutic amount of a composition including fenoterol, a fenoterol analogue or combination thereof.
[00111] Examples of such therapies include, but are not limited to, surgical treatment for removal or reduction of the tumor (such as surgical resection, cryotherapy, or chemoembolization), as well as anti-tumor pharmaceutical treatments which can include radiotherapeutic agents, anti-neoplastic chemotherapeutic agents, antibiotics, alkylating agents and antioxidants, kinase inhibitors, and other agents. Particular examples of additional therapeutic agents that can be used include microtubule-binding agents, DNA intercalators or cross-linkers, DNA synthesis inhibitors, DNA and/or RNA transcription inhibitors, antibodies,
enzymes, enzyme inhibitors, and gene regulators. These agents (which are administered at a therapeutically effective amount) and treatments can be used alone or in combination. Methods and therapeutic dosages of such agents are known to those skilled in the art, and can be determined by a skilled clinician.
[00112] "Microtubule-binding agent" refers to an agent that interacts with tubulin to stabilize or destabilize microtubule formation thereby inhibiting cell division. Examples of microtubule- binding agents that can be used in conjunction with the disclosed therapy include, without limitation, paclitaxel, docetaxel, vinblastine, vindesine, vinorelbine (navelbine), the epothilones, colchicine, dolastatin 15, nocodazole, podophyllotoxin and rhizoxin. Analogs and derivatives of such compounds also can be used and are known to those of ordinary skill in the art. For example, suitable epothilones and epothilone analogs are described in International Publication No. WO 2004/018478. Taxoids, such as paclitaxel and docetaxel, as well as the analogs of paclitaxel taught by U.S. Patent Nos. 6,610,860; 5,530,020; and/or 5,912,264 can be used.
[00113] The following classes of compounds may be of use in the methods described herein: DNA and/or RNA transcription regulators, including, without limitation, actinomycin D, daunorubicin, doxorubicin and derivatives and analogs thereof also are suitable for use in combination with the disclosed therapies; DNA intercalators and cross-linking agents that can be administered to a subject include, without limitation, cisplatin, carboplatin, oxaliplatin, mitomycins, such as mitomycin C, bleomycin, chlorambucil, cyclophosphamide and derivatives and analogs thereof; DNA synthesis inhibitors suitable for use as therapeutic agents include, without limitation, methotrexate, 5-fluoro-5'-deoxyuridine, 5-fluorouracil and analogs thereof. (Examples of suitable enzyme inhibitors include, without limitation, camptothecin, etoposide,
formestane, trichostatin and derivatives and analogs thereof. Examples of alkylating agents include carmustine or lomustine.); compounds that affect gene regulation include agents that result in increased or decreased expression of one or more genes, such as raloxifene, 5- azacytidine, 5-aza-2'-deoxycytidine, tamoxifen, 4-hydroxytamoxifen, mifepristone and derivatives and analogs thereof; and kinase inhibitors include Gleevac, Iressa, and Tarceva that prevent phosphorylation and activation of growth factors.
[00114] Other therapeutic agents, for example anti -tumor agents, that may or may not fall under one or more of the classifications above, also are suitable for administration in combination with the disclosed therapies. By way of example, such agents include adriamycin, apigenin, rapamycin, zebularine, cimetidine, and derivatives and analogues thereof.
[00115] In one example, at least a portion of the tumor is surgically removed (for example via cryotherapy), irradiated, chemically treated (for example via chemoembolization) or combinations thereof, prior to administration of the disclosed therapies (such as administration of fenoterol, a fenoterol analogue or a combination thereof). For example, a subject can have at least a portion of the tumor surgically excised prior to administration of the disclosed therapies. In an example, one or more chemotherapeutic agents are administered following treatment with a composition including fenoterol, a fenoterol analogue or a combination thereof.
[00116] The subject matter of the present disclosure is further illustrated by the following non- limiting Examples.
[00117] Materials and Methods
[00118] The material and methods used for the following Examples were as follows:
[00119] Materials. (R,R ')-, (R,S)' -, (S,R )- and (S,S')-fenoterol and the fenoterol analogs, (R,R')-ethylfenoterol, (R,R')-4'-aminofenoterol, (R,R')-l-naphthylfenoterol and (R,R)- and (R,S')-4'-methoxy-l-naphthylfenoterol, were synthesized as previously described (Jozwiak et al, J Med Chem 50:2903-2915, 2007; Jozwiak et al, Bioorg Med Chem 18:728-736, 2010; each of which is incorporated by reference in its entirety). [3H]-Thymidine (70-90 Ci/mmol) was purchased from PerkinElmer Life and Analytical Sciences (Waltham, MA). Eagle's Minimum Essential Medium (E-MEM), trypsin solution, phosphate-buffered saline (PBS), fetal bovine serum (FBS), 100X solutions of sodium pyruvate (100 mM), L-glutamine (200 mM), and penicillin/streptomycin (a mixture of 10,000 units/ml penicillin and 10,000 μg/ml streptomycin) were obtained from Quality Biological (Gaithersburg, MD). WIN 55,212-2, AM251, and AM630 were purchased from Cayman Chemical (Ann Arbor, MI). ICI 118,551 hydrochloride and (R)-isoproterenol were obtained from Sigma-Aldrich (St. Louis, MO). Phenylmethylsulfonyl fluoride (PMSF), benzamidine, leupeptin, pepstatin A, MgCl2, EDTA, Trizma-Hydrochloride (Tris-HCl), (±) -propranolol and minimal essential medium (MEM) were obtained from Sigma Aldrich (St. Louis, MO). Egg phosphatidylcholine lipids (PC) were obtained from Avanti Polar Lipids (Alabaster, AL). (±)-fenoterol was purchased from Sigma - Aldrich and [3H]-(±)-fenoterol was acquired from Amersham Biosciences (Boston, MA). The organic solvents n-hexane, 2-propanol and triethylamine were obtained as ultra pure HPLC grade solvents from Carlo Erba (Milan, Italy). Fetal bovine serum and penicillin-streptomycin were purchased from Life Technologies (Gaithersburg, MD), and [125I]- (i)-iodocyanopindolol (ICYP) was purchased from NEN Life Science Products, Inc. (Boston, MA).
Methods
[00120] Effect of (R.S VMNF on Cancer Biomarker Expression in PANC-1 cells.
PANC-1 cells were incubated with media containing vehicle (0.01% DMSO) or (R,S')-MNF (0- 10 μΜ) for 24h. The medium was removed, and cells were collected and processed for immunoblot analysis as recently described (Singh et al., Pharmacological Research 111, pages 757-766, 2016). All membrane-bound primary antibodies were detected with horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Dallas, TX) and visualized by enhanced chemiluminescence (ECL Plus, GE Healthcare, Piscataway, NT). Quantification of the protein bands was performed by volume densitometry using ImageJ software (National Institutes of Health, Bethesda, MD) and normalization to β-actin or Lamin A/C. Primary antibodies used in this study were raised against EGFR (sc-03) and β-catenin (sc- 7199) (Santa Cruz Biotechnology); PKM2 (ab38237) and β-actin (ab6276) (Abeam, Cambridge, MA). Three independent experiments were conducted on three separate days.
[00121] PANC-1 tumor xenografts in mice. Female Balb/c nude mice (aged between 6-8 weeks, weight 18-20 g) were purchased from HFK Bioscience Co., Ltd. (Beijing, China) and maintained under pathogen-free conditions with a 12-hour light/12-hour dark cycle. Animals had free access to drinking water and were fed ad libitum with normal chow. Each mouse was inoculated subcutaneously at the right flank region with PANC-1 cells (5 x 106) in O. lmL of PBS for tumor development. All animals were weighed and the tumor volumes measured in two dimensions using a caliper, and the volume expressed in mm3 using the formula: V = 0.5 a x b2, where a and b are the long and short diameters of the tumor, respectively. The treatments were started at Day 8 when the mean tumor size reached 139 ± 34 mm3 and the mice weighed 21.1 ± 1.1 g. The mice were assigned into groups (n = 10) using randomized block design based on
their tumor volumes. The mice received a single intraperitoneal (ip) injection 5 days per week for 3 treatment cycles of either vehicle (1% hydroxypropyl-P-cyclodextrin) (Control), 20mg-kg_1 (R,S')-MNF (Arm 2) or 40mg-kg_1 (R,S')-MNF (Arm 2). The dosing volume was adjusted according to weight (lC^L/g). Tumor volumes and weights were determined at the beginning and end of each dosing cycle, while visual estimation of food and water consumption, eye/hair matting, and behavior such as mobility were determined daily. The animals were euthanized by cervical extension 5 days after the end of the last dosing cycle. Plasma samples were collected at the conclusion of the studies and, after collection of plasma samples, the tumors were excised, weighed, divided into three portions and snap frozen. The xenograft studies were conducted at the Crown Biosciences, Ltd. facilities and all protocols were approved by the Animal Care and Use Committee at CrownBio (AN- 1407-009- 164), which are based on "the Guide for the Care and Use of Laboratory Animals" (NRC 2011).
[00122] Determination of (R,S')-MNF concentrations in plasma and tumor tissues. The concentrations of (R,S')-MNF in plasma and tumor samples obtained from Arm 2 and Arm 3 were analyzed by LC-MS as described below.
[00123] Determination of L-lactate plasma concentrations. The concentration of L-lactate in plasma samples obtained from Control 1, Arm 1 and Arm 2 of the study were measured using the Lactate Colorimetric Assay Kit II (Sigma-Aldrich, St. Louis, MO). The determinations were carried out according to the manufacturer's instructions.
[00124] Statistical analysis. Sigmoidal dose-response curves (IC50 curves) were determined using the 'nonlinear regression (curve fit)' model contained within the Prism 4 software package (GraphPad Software, Inc) running on a personal computer. For immunoblot
analyses, tumor volume, and animal weight analyses, statistical comparisons between treated and control groups were performed using unpaired Student's t-tests. P values < 0.05 were considered significant.
[00125] Experimental Methods used in studies with (RiO-MNF. PANC-1 Tumor
Xenograft in Mice. Female Balb/c nude mice (aged between 6-8 weeks, weight 18-20 g) were purchased from HFK Bioscience Co., Ltd. (Beijing, China) and maintained under pathogen-free conditions with a 12-h light/12-h dark cycle. Animals had free access to drinking water and were fed ad libitum with normal chow. Each mouse was inoculated subcutaneously at the right flank region with PANC-1 cells (5- 106) in O. lmL of PBS for tumor development. All animals were weighed and the tumor volumes measured in two dimensions using a caliper, and the volume expressed in mm3 using the formula: V = 0.5 a x b2, where a and b are the long and short diameters of the tumor, respectively. The treatments were started at day 8 when the mean tumor size reached 164 mm3, at which time the mice were assigned into two groups (n = 10) using randomized block design based on their tumor volumes. Mice received an i.p. injection of either vehicle (20% hydroxypropyl-P-cyclodextrin) (Control) or 10 mg-kg"1 MNF once daily for 16 days adjusted to 25 mg-kg"1 for the last 5 days (Experimental). The dosing volume was adjusted according to weight (10 μΕ-g-l). At the end of the study, the animals were euthanized by cervical extension and the tumors were collected, weighed, divided into three portions and snap frozen. All protocols were approved by the Animal Care and Use Committee at CrownBio (AN- 1407-009-164), which are based on "the Guide for the Care and Use of Laboratory Animals" (NRC 2011).
[00126] Western Blot Analysis. Cells and frozen tumor tissues were lysed in radioimmunoprecipitation buffer containing EGTA and EDTA (Boston BioProducts, Ashland, MA, USA) supplemented with protease inhibitor cocktail (Sigma-Aldrich). Protein concentration in clarified lysates was determined using the bicinchoninic acid reagent (Thermo Fisher Scientific, Waltham, MA, USA). Proteins (20 μg/well) were separated on 4-12% precast gels (Invitrogen, Carlsbad, CA, USA) using SDS-polyacrylamide gel electrophoresis under reducing conditions and then electrophoretically transferred onto polyvinylidene fluoride membrane (Invitrogen). Western blots were performed according to standard methods, which involved a blocking step in Tris-buffered saline/0.1% Tween-20 (TBS-T) supplemented with 5% non-fat milk and incubation with primary antibodies of interest. All antibodies were detected with horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Dallas, TX, USA) and visualized by enhanced chemiluminescence (ECL Plus, GE Healthcare, Piscataway, NJ, USA). Quantification of the protein bands was performed by volume densitometry using ImageJ software (National Institutes of Health, Bethesda, MD, USA) and normalization to β- actin. The primary antibodies used in this study were raised against EGFR (sc-03), MCT4 (sc- 50329), Glut8 (sc-30108), and β-catenin (sc-7199) (Santa Cruz Biotechnology); PKM2 (ab38237) and β-actin (ab6276) (Abeam, Cambridge, MA, USA); hexokinase II (cat. #2867) and PDKl (cat. #3062S) (Cell Signaling Technology, Beverly, MA, USA). The antibodies were used at the dilution recommended by the manufacturers.
[00127] Liquid Chromatography-Mass Spectrometry (LC/MS) Analysis. For the determination of intracellular lactate, 3-hydroxbutyrate and carnitine, PANC-1 cells were collected by scrapping in PBS and centrifuged at 1000 rpm for 5 min. Cell pellets were suspended in 20 μΙ_, water followed by the addition of 10 μΙ_, of 100 μΜ p-aminohippuric acid as
an internal standard. The resulting mixture was vortexed for 1 min and then 80 μΙ_, of methanol was added prior to sonication (PRO200 homogenizer, PRO Scientific, Oxford, CT, USA) for 10 min on ice. The mixture was centrifuged for 15 min at 14000 rpm at 4 °C and the supernatant collected and analyzed using a system composed of an Agilent Technologies 1100 LC/MSD equipped with a G1322A degasser, G1312A quaternary pump, G1367A autosampler, G1316A column thermostat and G1946D mass spectrometer supplied with electrospray ionization (ESI). Selected ion monitoring (SIM) chromatograms were acquired using ChemStation software. For the separation of compounds, a reverse phase Zorbax SB C18 column (150 x 2.1 mm, Agilent Technologies, Palo Alto, CA, USA) was used and operated at 25 °C. Gradient elution was used for the separation, with solvent (A) composed of 0.1 % formic acid in water and solvent (B) 0.1 % formic acid in acetonitrile. The solvent gradient in volumetric ratios of solvents A and B was as followed: 0-2 min, 100 A/0 B; 2-20 min, 20 A/80 B; 20-27 min, 20 A/80 B; 27-38 min, 100 A/0 B; 38-50 min, 100 A/0 B. The flow rate was 0.8 mL-min"1 and the injection volume was 20 μΐ,. The compounds of interest were monitored in the positive-ion mode for SIM at m/z 162.1 (carnitine), m/z 90.1 (lactate) and m/z 105.1 (3-hydroxybutyrate). The internal standard was monitored at m/z 195.1 (p-aminohippuric acid).
[00128] The C6 cell line is derived from a rat glioblastoma brain tumor and is a standard model for brain tumors. In accordance with the methods described herein (R,R')-M F decreases glucose uptake and L-lactate output in this cell line, expanding the effect to more than one type of tumor.
Experimental
[00129] Cell Culture. The human pancreatic tumor cell line, PANC-1, breast cancer cell lines MDA-MB-231 and MCF-7, and rat-derived C6 glioblastoma cell line were purchased from ATCC (Manassas, VA, USA). Upon receipt of the three cell lines, cells were expanded for a few passages to enable the generation of new frozen stocks. Cells were resuscitated as needed and used for fewer than 6 months after resuscitation (no more than 10 passages). ATCC performs thorough cell line authentication utilizing Short Tandem Repeat (STR) profiling.
[00130] PANC-1 and C6 cells were maintained in DMEM with L-glutamine supplemented with 10% FBS and 1% penicillin/streptomycin. MDA-MB-231 cells were maintained in RPMI- 1640 supplemented with 10% FBS and 1% penicillin/streptomycin and MCF-7 cells were maintained in EMEM with L-glutamine supplemented with 10% FBS and 0.01 mg-ml"1 human recombinant insulin. Cells were maintained in a controlled environment (37 °C under humidified 5% C02 in air), and the medium was replaced every 2-3 days. Prior to experiments, cells were seeded on 100 x 20 mm tissue culture plates and grown to -70% confluency unless stated otherwise.
[00131] Cell Treatment. In the first series of experiments, the original media was replaced with media containing vehicle (0.01% DMSO) or MNF (0.01, 0.10, 0.50 and 1.00 μΜ) for 24 h. The medium was removed, and cells were collected and processed for immunoblot analysis. In a second series of experiments, PANC-1 cells were treated with vehicle (0.01% DMSO) or MNF (0.50 and 1.00 μΜ) for 24 h after which cells were washed, and then collected and processed for NMR or LC/MS analysis. In the last series of experiments, MDA-MB-231 and MCF-7 cells were treated with vehicle (0.01% DMSO) or MNF (1.00 μΜ) for 24 h and processed for LC/MS
analysis. All experiments were repeated three times on three separate days, unless stated otherwise.
[00132] Glucose consumption and lactate production in C6 cells. To assess glucose consumption and lactate production, C6 cells were culture in 48-well plates and treated with MNF (0.02 or 0.20 μΜ) or vehicle (DMSO, 0.1%) and glucose and lactate concentrations in the incubation media were periodically monitored for 48 h. At the end of each incubation, the culture media were collected to determine glucose and lactate content using the Liquick Cor-Glucose and Liquick Cor-Lactate Diagnostic Kits (Cormay, Lublin, Poland). Measurements were carried out according to the manufacturer's protocols.
Results
[00133] Functional effects of MNF on glucose uptake and L-lactate output in C6 cells. C6 cells were incubated with MNF (0.02 and 0.2 mM) and aliquots of the spent medium were collected at various time points over a 48-h period for the measure of glucose and L-lactate. Glucose uptake and L-lactate output are two classical readouts of the glycolytic pathway. Treatment with MNF elicited an accumulation of glucose in the spent media of C6 together with reduction in L-lactate levels (Figure 3) compared with the spent media from untreated cells (P < 0.001 for both metabolites). The same profile of glucose consumption and L-lactate output was obtained regardless of the MNF dose.
[00134] There was no significant difference in pre-dose L-lactate concentrations between control animals and experimental cohorts and there was no significant change in L-lactate concentration from pre-dose to termination in control animals.
[00135] While several embodiments of the disclosure have been described, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of presently disclosed embodiments. Thus the scope of the embodiments should be determined by the appended claims and their legal equivalents, rather than by the examples given.
[00136] Persons skilled in the art will understand that the materials and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the present disclosure based on the above-described embodiments. Accordingly, the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
Claims
1. A method comprising:
increasing a patient's response to an immune checkpoint blockade therapy by administering a therapeutically effective amount of a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
2. A method comprising:
reducing tumor generated L-lactate in a microenvironment surrounding a tumor by administering a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
3. The method of claim 2 wherein the fenoterol analogue is a PKM2 antagonist.
4. The method of claim 2 wherein the fenoterol analogue decreases HK2 expression and activity.
5. The method of claim 2 wherein the fenoterol analogue attenuates monocarboxylate transporter 4 (MCT4) expression and/or function.
6. The method of claim 2 wherein the pharmaceutical composition reduces tumor generated L-lactate in the microenvironment of either a breast cancer tumor or a pancreatic cancer tumor.
7. The method of claim 2 further comprising administering an immune checkpoint blockade therapy before, during or after administration of the pharmaceutical composition.
8. A method comprising:
decreasing L-lactate export out of cancer cells by administering a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
9. The method of claim 8 wherein the fenoterol analogue attenuates monocarboxylate transporter 4 (MCT4) expression and/or function.
10. A method comprising:
increasing L-lactate concentrations in cancer cells by administering a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
11. The method of claim 10 wherein the fenoterol analogue attenuates monocarboxylate transporter 4 (MCT4) expression and/or function.
12. A method comprising:
restoring oxidative glucose metabolism in a cancer cell by administering a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
13. The method of claim 12 wherein the fenoterol analogue inhibits expression of hexokinase-2 (HK2) in cancer cells showing increased HK2 expression.
14. A method comprising:
increasing the sensitivity of cancer cells to a cell death inducer by administering a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
15. The method of claim 14 wherein the fenoterol analogue inhibits expression of hexokinase-2 (HK2) in cancer cells showing increased HK2 expression.
16. A method comprising:
decreasing expression of one or more glucose transporter facilitator in cancer cells by administering a pharmaceutical composition containing a pharmaceutically acceptable carrier and a fenoterol analogue to a subject to treat cancer.
17. The method of claim 16 wherein the pharmaceutical composition decreases expression of Glut-1.
18. The method of claim 16 wherein the pharmaceutical composition decreases expression of Glut-8.
19. The method of any of the preceding claims wherein the pharmaceutical composition administered contains one or more compounds selected from the group consisting of (R,R')-4'- methoxy-l-naphthylfenoterol ("MNF"), (R,S')-4'-methoxy-l-naphthylfenoterol, (R,R')- ethylMNF, (R,R')-napthylfenoterol, (R,S')-napthylfenoterol, (R,R')-ethyl-naphthylfenoterol, (R,R' )-4 ' -amino- 1 -naphthylfenoterol, (R,R' )-4 ' -hydroxy- 1 -naphthylfenoterol, (R,R' )-4 ' - methoxy-ethylfenoterol, (R,R')-4'-methoxyfenoterol, (R,R')-ethylfenoterol, (R,R')-fenoterol and their respective stereoisomers.
20. The method of any of the preceding claims wherein the pharmaceutical composition administered contains a compound of the formula:
21. The method of any of the preceding claims further comprising administering an additional therapeutic treatment before, during or after administration of the pharmaceutical composition.
22. The method of any of the preceding claims further comprising administering an additional agent for the treatment of cancer before, during or after administration of the pharmaceutical composition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762451847P | 2017-01-30 | 2017-01-30 | |
US62/451,847 | 2017-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018140923A1 true WO2018140923A1 (en) | 2018-08-02 |
Family
ID=62978734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/015874 WO2018140923A1 (en) | 2017-01-30 | 2018-01-30 | Methods of treating cancer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018140923A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016144371A1 (en) * | 2015-03-06 | 2016-09-15 | Mitchell Woods Pharmaceuticals, Inc. | Methods of treating cancer |
WO2016145427A1 (en) * | 2015-03-12 | 2016-09-15 | Health Research, Inc. | COMBINATION OF β-ADRENERGIC RECEPTOR ANTAGONISTS AND CHECK POINT INHIBITORS FOR IMPROVED EFFICACY AGAINST CANCER |
-
2018
- 2018-01-30 WO PCT/US2018/015874 patent/WO2018140923A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016144371A1 (en) * | 2015-03-06 | 2016-09-15 | Mitchell Woods Pharmaceuticals, Inc. | Methods of treating cancer |
WO2016145427A1 (en) * | 2015-03-12 | 2016-09-15 | Health Research, Inc. | COMBINATION OF β-ADRENERGIC RECEPTOR ANTAGONISTS AND CHECK POINT INHIBITORS FOR IMPROVED EFFICACY AGAINST CANCER |
Non-Patent Citations (8)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10617654B2 (en) | Use of fenoterol and fenoterol analogues in the treatment of glioblastomas and astrocytomas | |
JP6193268B2 (en) | CDK8 / CDK19 selective inhibitors and their use in methods of anti-metastasis and chemoprotection for cancer | |
US10772849B2 (en) | Methods of regulating cannabinoid receptor activity-related disorders and diseases | |
US20180042867A1 (en) | Methods of treating cancer | |
WO2017059268A1 (en) | Methods of reducing chemoresistance and treating cancer | |
US20190076379A1 (en) | Methods of treating breast cancer | |
WO2018140923A1 (en) | Methods of treating cancer | |
US8729053B2 (en) | Nuclear factor kappa B pathway inhibitor composition and use of same | |
US20170172944A1 (en) | Methods of treating melanoma | |
AU2016341109A1 (en) | Compositions and methods of regulating cancer related disorders and diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18745187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18745187 Country of ref document: EP Kind code of ref document: A1 |