+

WO2018038160A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2018038160A1
WO2018038160A1 PCT/JP2017/030130 JP2017030130W WO2018038160A1 WO 2018038160 A1 WO2018038160 A1 WO 2018038160A1 JP 2017030130 W JP2017030130 W JP 2017030130W WO 2018038160 A1 WO2018038160 A1 WO 2018038160A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
solvent
group
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2017/030130
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 山極
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020197008452A priority Critical patent/KR102430123B1/en
Priority to CN201780051793.1A priority patent/CN109643038B/en
Priority to JP2018535735A priority patent/JP6974800B2/en
Publication of WO2018038160A1 publication Critical patent/WO2018038160A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent suitable for application by an inkjet method, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
  • liquid crystal alignment film a so-called polyimide liquid crystal alignment film obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is widely used.
  • a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide
  • film formation methods spin coating, dip coating, flexographic printing, and the like are generally known. Actually, there are many applications by flexographic printing. In addition, flexographic printing requires various resin plates due to the different types of liquid crystal panels, the plate replacement in the manufacturing process is complicated, and film formation on a dummy substrate is performed to stabilize the film formation process.
  • ink jet application has been attracting attention because there are problems such as the necessity of manufacturing the plate and the manufacturing cost of the liquid crystal display panel.
  • a liquid crystal alignment film formed by various coating methods is required to have uniform film thickness unevenness inside the coating surface and high film forming accuracy in the periphery of the coating because of uniform display and influence on electrical characteristics.
  • the film thickness is uneven, the display quality is different due to the unevenness, which can be a main cause of display defects.
  • the total amount of ionic impurities that can be generated from the film may be a main factor affecting the alignment film.
  • the solvent contained in the aligning agent does not cause coating unevenness and can be applied uniformly.
  • Patent Document 1 Patent Document 2, Patent Document 3
  • Patent Document 2 Patent Document 3
  • the present invention provides a polyimide-based liquid crystal aligning agent that can form a coating film with excellent uniformity of the film thickness within the coating surface and linearity of the peripheral portion of the coating, and that has excellent electrical characteristics of the liquid crystal display element. Objective.
  • the inventor has conducted research to achieve the above object, and has reached the present invention having the following summary.
  • a first aspect of the present invention that achieves the above-described object is a solvent containing at least one polymer selected from the group consisting of a polyimide and a polyimide precursor, and a solvent of the following groups (A) and (B): In a liquid crystal aligning agent characterized by containing.
  • B) group 4-methoxy-4-methyl-2-pentanone, 4 At least one solvent selected from -hydroxy-2-butanone and 2-methyl-2-hexanol
  • the second aspect of the present invention that achieves the above object is characterized in that the solvent of the group (A) contains at least one selected from the group consisting of N-methylpyrrolidone and ⁇ -butyrolactone. It exists in the liquid crystal aligning agent of an aspect.
  • the solvent of the group (A) is 50% by weight to 95% by weight with respect to the total amount of the solvent.
  • the liquid crystal aligning agent of the embodiment In the liquid crystal aligning agent of the embodiment.
  • the solvent of the group (B) is 5 to 50% by weight based on the total amount of the solvent.
  • the liquid crystal aligning agent according to any one of the embodiments is provided.
  • the polymer in the liquid crystal aligning agent according to any one of the first to fourth aspects, is contained in an amount of 1% by mass to 5% by mass. is there.
  • liquid crystal aligning agent according to any one of the first to fifth aspects, wherein the solvent is contained in an amount of 95% by mass to 99% by mass. .
  • the seventh aspect of the present invention that achieves the above object is a liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of the first to sixth aspects.
  • An eighth aspect of the present invention that achieves the above object is a liquid crystal display element comprising the liquid crystal alignment film of the seventh aspect.
  • the liquid crystal aligning agent of the present invention can provide a coating film having excellent linearity at the periphery of the coating, particularly when inkjet coating is applied. Furthermore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of this invention is excellent in a voltage holding characteristic.
  • the liquid crystal aligning agent of this invention contains at least 1 sort (s) of polymer chosen from the group which consists of a polyimide and a polyimide precursor, and the organic solvent containing the solvent of the following (A) group and (B) group.
  • the liquid crystal aligning agent of this invention contains the organic solvent containing the solvent of the following (A) group and the following (B) group.
  • the group (A) solvent contained in the organic solvent of the present invention is at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and ⁇ -butyrolactone. These are mainly solvents for dissolving the polymer. Among these, from the viewpoint of solubility, at least one selected from the group consisting of N-methylpyrrolidone and ⁇ -butyrolactone is preferable.
  • the content of the solvent in the group (A) is preferably 50% by weight to 95% by weight with respect to the total amount of the solvent from the viewpoint of the solubility of the aligning agent.
  • the solvent of group (B) contained in the organic solvent of the present invention is at least one selected from 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone and 2-methyl-2-hexanol. It is a solvent. These are mainly solvents for providing good coating properties.
  • the content of the solvent in the group (B) is preferably 5% by weight to 50% by weight with respect to the total solvent amount from the viewpoint of the stability of the solution.
  • the liquid crystal aligning agent of the present invention can contain a solvent other than the above solvents (hereinafter also referred to as other solvents) to the extent that the effects of the present invention are exhibited.
  • solvents are listed below, but are not limited thereto.
  • N N-dimethylformamide, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, diisobutyl carbinol, diisopropyl ether, diisobutyl ketone, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2 -Propanol, 1-butoxy-2-propanol, 2-butoxy-1-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene Glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol, dipropylene glycol dimethyl ether, Propylene glycol dimethyl -n- propyl ether and the like.
  • the polymer contained in the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of polyimide and polyimide precursor.
  • the polyimide precursor can be represented by the following formula (1). *
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a diamine
  • R 1 is a hydrogen atom or a carbon atom number of 1 Represents an alkylene of .about.5.
  • R 1 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • the structure of the diamine component used for the liquid crystal aligning agent of this invention is not specifically limited.
  • the diamine used for the polymerization of the polymer having the structure of the above formula (1) can be generalized by the following formula (2). *
  • a 1 and A 2 in the above formula (2) have the same definitions as A 1 and A 2 in the above formula (1), including preferred examples.
  • An example of the structure of Y 1 is as follows.
  • n is an integer of 1-6.
  • Boc represents a tert-butoxycarbonyl group.
  • the tetracarboxylic acid derivative component for producing the polymer having the structural unit of the above formula (1), which is contained in the liquid crystal aligning agent of the present invention includes not only tetracarboxylic dianhydride but also its tetracarboxylic acid.
  • Derivatives such as tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound can also be used.
  • tetracarboxylic dianhydride or a derivative thereof it is more preferable to use at least one selected from the tetracarboxylic dianhydrides represented by the following formula (3) or a derivative thereof. *
  • X 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited. Specific examples include the following formula (X1-1) to the following formula (X1-44).
  • R 3 to R 23 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms.
  • R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • Specific examples of the structure of the above formula (X1-1) include structures represented by the following formulas (X1-1-1) to (X1-1-6). The following formula (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and photoreaction sensitivity.
  • the polyamic acid ester which is one of the polyimide precursors used in the present invention can be synthesized by the following method (1), (2) or (3).
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
  • the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit. *
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. It can synthesize
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 hours to It can be synthesized by reacting for 15 hours.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times mol with respect to the tetracarboxylic acid diester. *
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 mols relative to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
  • tetracarboxylic dianhydride and diamine are -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C in the presence of an organic solvent, for 30 minutes to 24 hours, preferably 1 hour to 12 hours. It can be synthesized by reacting.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used.
  • the concentration of the polymer is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 hour to 100 hours.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent. *
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. *
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 hour to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times the amic acid group, The amount is preferably 3 mole times to 30 mole times.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. *
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent.
  • the molecular weight of the polyimide precursor and polyimide described in the present invention is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100. , 000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less. *
  • the liquid crystal aligning agent of the present invention may contain various additives such as a silane coupling agent and a crosslinking agent.
  • the silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon. Existing silane coupling agents are added. *
  • the amount of the silane coupling agent added is too large, unreacted ones may adversely affect the liquid crystal orientation, and if too small, the effect on adhesion will not appear, so the amount of the silane coupling agent is 0 with respect to the solid content of the polymer. 0.01 wt% to 5.0 wt% is preferable, and 0.1 wt% to 1.0 wt% is more preferable.
  • adding the said silane coupling agent in order to prevent precipitation of a polymer, it is preferable to add before adding the solvent for improving the above-mentioned coating-film uniformity.
  • an imidization accelerator may be added to the liquid crystal aligning agent of the present invention in order to efficiently advance the imidization of the polyimide precursor when the coating film is baked.
  • Existing imidation accelerators are used. *
  • imidization accelerator since imidization may proceed by heating, it is preferably added after dilution with a good solvent and a poor solvent.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
  • the liquid crystal aligning agent of the present invention As a method for applying the liquid crystal aligning agent of the present invention, a spin coating method, a printing method, or the like can be used. As described above, the liquid crystal aligning agent of the present invention is particularly suitable for the ink jet method. When the liquid crystal aligning agent of this invention is apply
  • a coating film is formed (inkjet application
  • any temperature and time can be selected.
  • drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 nm to 300 nm, preferably 10 nm to 200 nm. *
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate, then subjected to alignment treatment by rubbing treatment, photo-alignment treatment, or the like, or without alignment treatment in vertical alignment applications. it can.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, performing an alignment treatment, and then preparing a liquid crystal cell by a known method. It is.
  • the manufacturing method of the liquid crystal cell is not particularly limited.
  • a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m with the liquid crystal alignment film surface inside.
  • a method is generally employed in which the spacer is fixed with a sealing agent after the spacer is sandwiched, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • 1,3DMCBDA 1,3-dimethyl 1,2,3,4 cyclobutanetetracarboxylic dianhydride
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DA-1 of the following formula DA-1
  • Diamine DA-2 Diamine DA-3 of formula DA-2 below: Diamine of formula DA-3 below
  • Boc in the above formula DA-2 and the above formula DA-3 represents a tert-butoxycarbonyl group.
  • NMP N-methyl-2-pyrrolidone
  • BCS butyl cellosolve
  • GBL ⁇ -butyrolactone
  • BCA butyl cellosolve acetate
  • PB propylene glycol monobutyl ether
  • DME dipropylene glycol dimethyl ether
  • DEDG diethylene glycol diethyl ether
  • DAA diacetone alcohol
  • 4M4M2P 4-methoxy-4 -Methyl-2-pentanone
  • 4H2B 4-hydroxy-2-butanone 2M2H: 2-methyl-2-hexanol
  • ⁇ Viscosity> the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
  • the molecular weight of the polymer is measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) in terms of polyethylene glycol and polyethylene oxide. Say).
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000
  • NMP was added so that it might become the mass%, and it stirred at room temperature for 24 hours, and obtained the solution of polyamic acid (PAA-1).
  • PAA-1 polyamic acid
  • the viscosity of this polyamic acid solution at 25 ° C. was 212 mPa ⁇ S.
  • Synthesis Example 2 30 g of PAA-1 obtained in Synthesis Example 1 was weighed into a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and diluted with NMP so that the solid content concentration was 8% by mass.
  • the PWD-1 obtained above was dissolved in NMP to obtain a polyamic acid-soluble polyimide resin powder solution (SPI-1) having a solid content concentration of 12% by mass.
  • Example 1 To a 20 ml sample tube containing a stir bar, 6.75 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was weighed and diluted to 1.0% by mass with NMP. 0.81 g of ethoxysilane solution and 6.84 g of NMP were added. Thereafter, 3.60 g of DAA was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1). When the liquid crystal aligning agent A-1 was stored at ⁇ 20 ° C. for 1 week, precipitation of solid matter was not observed, and the solution was uniform.
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1 was weighed and diluted to 1.0% by mass with NMP. 0.81 g of ethoxysilane solution and 6.84 g of NMP were added. Thereafter, 3.60 g of DAA was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1). When the liquid crystal aligning
  • Example 1 Example 1 except that a polyamic acid-soluble polyimide resin powder solution (SPI-1) was used instead of polyamic acid (PAA-1), or the solvent shown in the table below was used instead of DAA as the solvent.
  • SPI-1 polyamic acid-soluble polyimide resin powder solution
  • DAA solvent shown in the table below
  • the substrate is a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 1.1 mm.
  • An ITO electrode having a film thickness of 35 nm is formed on the substrate, and the electrode is a stripe pattern having a length of 40 mm and a width of 10 mm.
  • the liquid crystal aligning agent was filtered through a 1.0 ⁇ m filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on a hot plate at 50 ° C. for 5 minutes, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
  • This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. After washing and removing water droplets by air blow, drying was performed at 80 ° C.
  • Example 6 A voltage of 1 V was applied to the liquid crystal cell at a temperature of 60 ° C. for 60 ⁇ s, the voltage after 50 ms was measured, and how much the voltage was held was calculated as a voltage holding ratio.
  • the voltage holding ratio at 60 ° C. of the alignment film made of the alignment agent A-1 was 96.7%.
  • Alignment agent (A-2) to Alignment agent (A-5) and Alignment agent (B-1) to Alignment agent (B-6) obtained in Examples 2 to 5 and Comparative Examples 1 to 6 A liquid crystal cell was prepared by the same method, and the voltage holding ratio was measured by the measurement method described in Example 6. Each result is shown in Table 2 below.
  • TN elements Widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This liquid crystal alignment agent is characterized by containing: at least one type of polymer selected from the group consisting of polyimides and polyimide precursors; and an organic solvent containing solvents specified by group (A) and group (B). Group (A): at least one type of solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone. Group (B): at least one type of solvent selected from 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, and 2-methyl-2-hexanol.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、インクジェット法による塗布に適する液晶配向剤、該液晶配向剤から得られる液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent suitable for application by an inkjet method, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
 液晶配向膜としては、ポリアミド酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤を塗布し焼成した、いわゆるポリイミド系の液晶配向膜が広く使用されているが、かかる液晶配向膜の成膜法としては、一般に、スピンコート、ディップコート、フレキソ印刷などが知られている。実際にはフレキソ印刷による塗布が多い。また、フレキソ印刷では液晶パネルの品種違いにより様々な樹脂版が必要となること、製造工程ではその版交換が煩雑であるということ、成膜工程を安定させるためにダミー基板への成膜をしなければならないこと、版の製作が液晶表示パネルの製造コスト上昇の一因になることなどの問題があるため、近年ではインクジェット法による塗布(以下、インクジェット塗布という。)が注目を浴びつつある。  As the liquid crystal alignment film, a so-called polyimide liquid crystal alignment film obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is widely used. As film formation methods, spin coating, dip coating, flexographic printing, and the like are generally known. Actually, there are many applications by flexographic printing. In addition, flexographic printing requires various resin plates due to the different types of liquid crystal panels, the plate replacement in the manufacturing process is complicated, and film formation on a dummy substrate is performed to stabilize the film formation process. In recent years, application by an ink jet method (hereinafter referred to as ink jet application) has been attracting attention because there are problems such as the necessity of manufacturing the plate and the manufacturing cost of the liquid crystal display panel. *
 種々の塗布法により形成される液晶配向膜は、表示均一化および、電気特性への影響から塗布面内部の膜厚ムラが小さく、かつ塗布周辺部の成膜精度が高いことが要求される。特に膜厚ムラがあると、ムラにより表示品位に差が生じ、表示不良発生の主要因になり得る。また、膜から発生しうるイオン性不純物の総量も配向膜に影響を与える主要因になりかねない。  A liquid crystal alignment film formed by various coating methods is required to have uniform film thickness unevenness inside the coating surface and high film forming accuracy in the periphery of the coating because of uniform display and influence on electrical characteristics. In particular, when the film thickness is uneven, the display quality is different due to the unevenness, which can be a main cause of display defects. In addition, the total amount of ionic impurities that can be generated from the film may be a main factor affecting the alignment film. *
 以上の理由より、配向剤に含まれる溶剤には、塗布ムラが発生しづらく、均一に塗布が可能なものが好ましい。  For the above reasons, it is preferable that the solvent contained in the aligning agent does not cause coating unevenness and can be applied uniformly. *
 塗布周辺部の成膜精度を高めるため、構造物によって配向膜を所定の範囲に閉じ込める方法が提案されている(特許文献1、特許文献2、特許文献3)。しかしながら、これらの方法は追加の構造物が必要になるという欠点を有する。 In order to increase the film forming accuracy in the periphery of the coating, methods for confining the alignment film within a predetermined range with a structure have been proposed (Patent Document 1, Patent Document 2, and Patent Document 3). However, these methods have the disadvantage that additional structures are required.
特開2004-361623号公報JP 2004-361623 A 特開2008-145461号公報JP 2008-145461 A 特開2010-281925号公報JP 2010-281925 A
 そこで本発明は、塗布面内の膜厚の均一性や、塗布周辺部の直線性に優れる塗布膜を形成でき、かつ液晶表示素子の電気特性に優れるポリイミド系の液晶配向剤を提供することを目的とする。 Therefore, the present invention provides a polyimide-based liquid crystal aligning agent that can form a coating film with excellent uniformity of the film thickness within the coating surface and linearity of the peripheral portion of the coating, and that has excellent electrical characteristics of the liquid crystal display element. Objective.
 本発明者は、上記の目的を達成すべく研究を重ねたところ、以下を要旨とする本発明に到達した。 The inventor has conducted research to achieve the above object, and has reached the present invention having the following summary.
 上記目的を達成する本発明の第1の態様は、ポリイミド及びポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体と、下記(A)群及び(B)群の溶媒を含む溶媒と、を含有することを特徴とする液晶配向剤にある。
(A)群:N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンから選ばれる少なくとも1種の溶媒
(B)群:4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン及び2-メチル-2-ヘキサノールから選ばれる少なくとも1種の溶媒
A first aspect of the present invention that achieves the above-described object is a solvent containing at least one polymer selected from the group consisting of a polyimide and a polyimide precursor, and a solvent of the following groups (A) and (B): In a liquid crystal aligning agent characterized by containing.
Group (A): at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone (B) group: 4-methoxy-4-methyl-2-pentanone, 4 At least one solvent selected from -hydroxy-2-butanone and 2-methyl-2-hexanol
 上記目的を達成する本発明の第2の態様は、前記(A)群の溶媒が、N-メチルピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも一種を含有することを特徴とする第1の態様の液晶配向剤にある。 The second aspect of the present invention that achieves the above object is characterized in that the solvent of the group (A) contains at least one selected from the group consisting of N-methylpyrrolidone and γ-butyrolactone. It exists in the liquid crystal aligning agent of an aspect.
 上記目的を達成する本発明の第3の態様は、前記(A)群の溶媒が、全溶媒量に対し50重量%~95重量%であることを特徴とする、第1の態様または第2の態様の液晶配向剤にある。 According to a third aspect of the present invention for achieving the above object, the solvent of the group (A) is 50% by weight to 95% by weight with respect to the total amount of the solvent. In the liquid crystal aligning agent of the embodiment.
 上記目的を達成する本発明の第4の態様は、前記(B)群の溶媒が、全溶媒量に対し5重量%~50重量%であることを特徴とする、第1の態様から第3の態様のいずれかの液晶配向剤にある。 According to a fourth aspect of the present invention for achieving the above object, the solvent of the group (B) is 5 to 50% by weight based on the total amount of the solvent. The liquid crystal aligning agent according to any one of the embodiments is provided.
 上記目的を達成する本発明の第5の態様は、前記重合体を1質量%~5質量%含有することを特徴とする、第1の態様から第4の態様のいずれかの液晶配向剤にある。 According to a fifth aspect of the present invention for achieving the above object, in the liquid crystal aligning agent according to any one of the first to fourth aspects, the polymer is contained in an amount of 1% by mass to 5% by mass. is there.
 上記目的を達成する本発明の第6の態様は、前記溶媒を95質量%~99質量%含有することを特徴とする、第1の態様から第5の態様のいずれかの液晶配向剤にある。 According to a sixth aspect of the present invention for achieving the above object, there is provided the liquid crystal aligning agent according to any one of the first to fifth aspects, wherein the solvent is contained in an amount of 95% by mass to 99% by mass. .
 上記目的を達成する本発明の第7の態様は、第1の態様から第6の態様のいずれかの液晶配向剤から得られることを特徴とする液晶配向膜にある。 The seventh aspect of the present invention that achieves the above object is a liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of the first to sixth aspects.
 上記目的を達成する本発明の第8の態様は、第7の態様の液晶配向膜を具備することを特徴とする液晶表示素子にある。 An eighth aspect of the present invention that achieves the above object is a liquid crystal display element comprising the liquid crystal alignment film of the seventh aspect.
 本発明の液晶配向剤は、特に、インクジェット塗布を適用した場合に塗布周辺部の直線性に優れる塗布膜が得られる。さらに、本発明の液晶配向剤から得られた液晶配向膜は、電圧保持特性に優れる。 The liquid crystal aligning agent of the present invention can provide a coating film having excellent linearity at the periphery of the coating, particularly when inkjet coating is applied. Furthermore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of this invention is excellent in a voltage holding characteristic.
 本発明の液晶配向剤は、ポリイミド及びポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体と、下記(A)群及び(B)群の溶媒を含む有機溶媒と、を含有することを特徴とする。以下、本発明の液晶配向剤につき詳述する。 The liquid crystal aligning agent of this invention contains at least 1 sort (s) of polymer chosen from the group which consists of a polyimide and a polyimide precursor, and the organic solvent containing the solvent of the following (A) group and (B) group. Features. Hereinafter, the liquid crystal aligning agent of the present invention will be described in detail.
<有機溶媒>
 本発明の液晶配向剤には、下記(A)群及び下記(B)群の溶媒を含む有機溶媒を含有する。
(A)群:N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンから選ばれる少なくとも1種の溶媒である。
(B)群:4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン及び2-メチル-2-ヘキサノールから選ばれる少なくとも1種の溶媒である。
<Organic solvent>
The liquid crystal aligning agent of this invention contains the organic solvent containing the solvent of the following (A) group and the following (B) group.
Group (A): At least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone.
Group (B): At least one solvent selected from 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone and 2-methyl-2-hexanol.
<(A)群の溶媒>
 本発明の有機溶媒に含有される(A)群の溶媒は、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンから選ばれる少なくとも1種の溶媒である。これらは、主に重合体を溶解させるための溶媒である。その中でも、溶解性の観点から、N-メチルピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも一種であることが好ましい。 
<Solvent of Group (A)>
The group (A) solvent contained in the organic solvent of the present invention is at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone. These are mainly solvents for dissolving the polymer. Among these, from the viewpoint of solubility, at least one selected from the group consisting of N-methylpyrrolidone and γ-butyrolactone is preferable.
 前記(A)群の溶媒の含有量は、全溶媒量に対し、50重量%~95重量%であることが配向剤の溶解性の観点から好ましい。 The content of the solvent in the group (A) is preferably 50% by weight to 95% by weight with respect to the total amount of the solvent from the viewpoint of the solubility of the aligning agent.
<(B)群の溶媒>
 本発明の有機溶媒に含有される(B)群の溶媒は、4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン及び2-メチル-2-ヘキサノールから選ばれる少なくとも1種の溶媒である。これらは、主に良好な塗布性を具備させるための溶媒である。 
<Solvent of Group (B)>
The solvent of group (B) contained in the organic solvent of the present invention is at least one selected from 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone and 2-methyl-2-hexanol. It is a solvent. These are mainly solvents for providing good coating properties.
 前記(B)群の溶媒の含有量は、全溶媒量に対し、5重量%~50重量%であることが、溶液の安定性の観点から好ましい。 The content of the solvent in the group (B) is preferably 5% by weight to 50% by weight with respect to the total solvent amount from the viewpoint of the stability of the solution.
<その他の溶媒>
 本発明の液晶配向剤には、本発明の効果を奏する程度において、上記の溶媒以外の溶媒(以下、その他の溶媒とも言う)を含有させることが出来る。以下にその他の溶媒の例を列挙するが、これらに限定されるものではない。
<Other solvents>
The liquid crystal aligning agent of the present invention can contain a solvent other than the above solvents (hereinafter also referred to as other solvents) to the extent that the effects of the present invention are exhibited. Examples of other solvents are listed below, but are not limited thereto.
 例えば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ダイアセトンアルコール等が挙げられる。 For example, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide Dimethylsulfone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1 -Methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 2-butoxy-1-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol Diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, methyl lactate, lactic acid Examples include ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester, and diacetone alcohol.
 その他の溶媒として好ましい溶媒及び、前記(A)群、前記(B)群との組み合わせが好ましい溶媒の組み合わせを以下に例示する。  Examples of preferable solvents as other solvents and combinations of solvents that are preferably combined with the group (A) and the group (B) are shown below. *
 例えば、N,N-ジメチルホルムアミド、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ジイソブチルカービノール、ジイソプロピルエーテル、ジイソブチルケトン、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジメチル-n-プロピルエーテル等が挙げられる。 For example, N, N-dimethylformamide, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, diisobutyl carbinol, diisopropyl ether, diisobutyl ketone, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2 -Propanol, 1-butoxy-2-propanol, 2-butoxy-1-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene Glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol, dipropylene glycol dimethyl ether, Propylene glycol dimethyl -n- propyl ether and the like.
<重合体>
 本発明の液晶配向剤に含有される重合体は、ポリイミド及びポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体である。 
<Polymer>
The polymer contained in the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of polyimide and polyimide precursor.
 ポリイミド前駆体は、以下の式(1)で表すことが出来る。  The polyimide precursor can be represented by the following formula (1). *
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Xは、テトラカルボン酸誘導体由来の4価の有機基であり、Yはジアミン由来の2価の有機基であり、Rは、水素原子又は炭素原子数1~5のアルキレンを表す。加熱時のイミド化反応の進行のしやすさの観点から、Rは水素原子、メチル基、エチル基が好ましく、水素原子又はメチル基がより好ましい。
 A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基である。液晶配向性の観点から、A及びAは水素原子、又はメチル基が好ましい。
In the above formula (1), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, Y 1 is a divalent organic group derived from a diamine, and R 1 is a hydrogen atom or a carbon atom number of 1 Represents an alkylene of .about.5. From the viewpoint of easy progress of the imidization reaction during heating, R 1 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
 以下、重合体をなす原料となる各成分について詳述する。 Hereafter, each component used as the raw material which forms a polymer is explained in full detail.
<ジアミン>
 本発明の液晶配向剤に用いられるジアミン成分の構造は特に限定されない。 
<Diamine>
The structure of the diamine component used for the liquid crystal aligning agent of this invention is not specifically limited.
 上記式(1)の構造を持つ重合体の重合に用いられるジアミンは以下の式(2)で一般式化することが出来る。  The diamine used for the polymerization of the polymer having the structure of the above formula (1) can be generalized by the following formula (2). *
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(2)のA及びAは好ましい例も含めて、上記式(1)のA及びAと同様の定義である。Yの構造を例示すると、以下の通りである。  A 1 and A 2 in the above formula (2) have the same definitions as A 1 and A 2 in the above formula (1), including preferred examples. An example of the structure of Y 1 is as follows.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(Y-165)及び上記式(Y-166)中、nは、1~6の整数である。  In the above formula (Y-165) and the above formula (Y-166), n is an integer of 1-6. *
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(Y-175)、上記式(Y-176)、上記式(Y-179)及び上記式(Y-180)中のBocは、tert-ブトキシカルボニル基を表す。 In the above formula (Y-175), the above formula (Y-176), the above formula (Y-179) and the above formula (Y-180), Boc represents a tert-butoxycarbonyl group.
<テトラカルボン酸誘導体>
 本発明の液晶配向剤に含有される、上記式(1)の構造単位を有する重合体を作製するためのテトラカルボン酸誘導体成分としては、テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物を用いることもできる。 
<Tetracarboxylic acid derivative>
The tetracarboxylic acid derivative component for producing the polymer having the structural unit of the above formula (1), which is contained in the liquid crystal aligning agent of the present invention, includes not only tetracarboxylic dianhydride but also its tetracarboxylic acid. Derivatives such as tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound can also be used.
 テトラカルボン酸二無水物又はその誘導体としては、下記式(3)で示されるテトラカルボン酸二無水物又はその誘導体から選ばれる少なくとも1つを用いることがより好ましい。  As the tetracarboxylic dianhydride or a derivative thereof, it is more preferable to use at least one selected from the tetracarboxylic dianhydrides represented by the following formula (3) or a derivative thereof. *
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(3)中、Xは、脂環式構造を有する4価の有機基であり、その構造は特に限定されない。具体例としては、下記式(X1-1)~下記式(X1-44)が挙げられる。  In the above formula (3), X 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited. Specific examples include the following formula (X1-1) to the following formula (X1-44).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(X1-1)~上記式(X1-4)において、RからR23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、RからR23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。上記式(X1-1)の具体的な構造としては、下記式(X1-1-1)~下記式(X1-1-6)で表される構造が挙げられる。液晶配向性及び光反応の感度の観点から、下記式(X1-1-1)が特に好ましい。  In the above formulas (X1-1) to (X1-4), R 3 to R 23 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms. An alkenyl group, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group. Specific examples of the structure of the above formula (X1-1) include structures represented by the following formulas (X1-1-1) to (X1-1-6). The following formula (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and photoreaction sensitivity.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025



Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体の一つであるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の方法で合成することができる。
<Method for producing polyamic acid ester>
The polyamic acid ester which is one of the polyimide precursors used in the present invention can be synthesized by the following method (1), (2) or (3).
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。 
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって合成することができる。  Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be synthesized. *
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2モル当量~6モル当量が好ましい。  The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit. *
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。 
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって合成することができる。  Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. It can synthesize | combine by making it react for time. *
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2倍モル~4倍モルであることが好ましい。  As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times mol with respect to tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight. *
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸エステルを合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。 
(3) When synthesizing polyamic acid ester from tetracarboxylic acid diester and diamine Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3時間~15時間反応させることによって合成することができる。  Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 hours to It can be synthesized by reacting for 15 hours. *
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2倍モル~3倍モルが好ましい。  Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times mol with respect to the tetracarboxylic acid diester. *
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2倍モル~4倍モルが好ましい。  As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 mols relative to the diamine component from the viewpoint of easy removal and high molecular weight. *
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0倍モル~1.0倍モルが好ましい。  In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component. *
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。  Among the methods for synthesizing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable. *
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。 
<Method for producing polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~12時間反応させることによって合成できる。  Specifically, tetracarboxylic dianhydride and diamine are -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C in the presence of an organic solvent, for 30 minutes to 24 hours, preferably 1 hour to 12 hours. It can be synthesized by reacting. *
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。  The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used. The concentration of the polymer is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained. *
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。 
<Production method of polyimide>
The polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。  Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed. *
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1時間~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。  The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 hour to 100 hours. The amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent. *
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。  When a polyimide is produced from a polyamic acid, chemical imidization in which a catalyst is added to the polyamic acid solution obtained by the reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process. *
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。  Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. *
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1時間~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミック酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。  The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 hour to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times the amic acid group, The amount is preferably 3 mole times to 30 mole times. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. *
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。  In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable. *
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。  The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. *
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。 The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明に用いられる液晶配向剤は、特定構造の重合体が有機溶媒中に溶解された溶液の形態を有する。本発明に記載のポリイミド前駆体及びポリイミドの分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。 
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent. The molecular weight of the polyimide precursor and polyimide described in the present invention is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100. , 000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。  The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less. *
 本発明の液晶配向剤は、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向剤が塗布される基板と、そこに形成される液晶配向膜との密着性を向上させる目的で添加される。シランカップリング剤は既存のものが添加される。  The liquid crystal aligning agent of the present invention may contain various additives such as a silane coupling agent and a crosslinking agent. The silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon. Existing silane coupling agents are added. *
 上記シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01重量%~5.0重量%が好ましく、0.1重量%~1.0重量%がより好ましい。上記シランカップリング剤を添加する場合は、ポリマーの析出を防ぐために、前記した塗膜均一性を向上させるための溶媒を加える前に添加するのが好ましい。  If the amount of the silane coupling agent added is too large, unreacted ones may adversely affect the liquid crystal orientation, and if too small, the effect on adhesion will not appear, so the amount of the silane coupling agent is 0 with respect to the solid content of the polymer. 0.01 wt% to 5.0 wt% is preferable, and 0.1 wt% to 1.0 wt% is more preferable. When adding the said silane coupling agent, in order to prevent precipitation of a polymer, it is preferable to add before adding the solvent for improving the above-mentioned coating-film uniformity. *
 また、本発明の液晶配向剤には、塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。イミド化促進剤としては既存のものが使用される。  In addition, an imidization accelerator may be added to the liquid crystal aligning agent of the present invention in order to efficiently advance the imidization of the polyimide precursor when the coating film is baked. Existing imidation accelerators are used. *
 イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。 In the case of adding an imidization accelerator, since imidization may proceed by heating, it is preferably added after dilution with a good solvent and a poor solvent.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。 
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法なども使用できるが、上記したように、特に、本発明の液晶配向剤は、インクジェット法に特に適する。本発明の液晶配向剤をインクジェット法により塗布して塗布膜を形成する場合(インクジェット塗布)、塗布面内の膜厚の均一性や、塗布周辺部の直線性に優れる塗布膜が得られる。  As a method for applying the liquid crystal aligning agent of the present invention, a spin coating method, a printing method, or the like can be used. As described above, the liquid crystal aligning agent of the present invention is particularly suitable for the ink jet method. When the liquid crystal aligning agent of this invention is apply | coated by the inkjet method and a coating film is formed (inkjet application | coating), the coating film excellent in the uniformity of the film thickness in a coating surface and the linearity of a coating peripheral part is obtained. *
 本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5nm~300nm、好ましくは10nm~200nmである。  In the drying and baking process after applying the liquid crystal aligning agent of the present invention, any temperature and time can be selected. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes. The thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 nm to 300 nm, preferably 10 nm to 200 nm. *
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光配向処理などで配向処理をして、または垂直配向用途などでは配向処理無しで、液晶配向膜として用いることができる。 The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate, then subjected to alignment treatment by rubbing treatment, photo-alignment treatment, or the like, or without alignment treatment in vertical alignment applications. it can.
<液晶表示素子>
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得、配向処理を行った後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。 
<Liquid crystal display element>
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, performing an alignment treatment, and then preparing a liquid crystal cell by a known method. It is.
 液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を液晶配向膜面を内側にして、好ましくは1μm~30μm、より好ましくは2μm~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。 The manufacturing method of the liquid crystal cell is not particularly limited. For example, a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm with the liquid crystal alignment film surface inside. A method is generally employed in which the spacer is fixed with a sealing agent after the spacer is sandwiched, and liquid crystal is injected and sealed. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
 以下に実施例を挙げて、さらに、本発明を具体的に説明する。但し、本発明はこれらの実施例に限定して解釈されないことはもちろんである。  Hereinafter, the present invention will be described more specifically with reference to examples. However, it is needless to say that the present invention is not construed as being limited to these examples. *
 なお、実施例及び比較例で使用する略号、及び各特性の測定方法は以下の通りである。
1,3DMCBDA:1,3-ジメチル1,2,3,4シクロブタンテトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DA-1:下記式DA-1のジアミン
DA-2:下記式DA-2のジアミン
DA-3:下記式DA-3のジアミン
In addition, the symbol used by an Example and a comparative example and the measuring method of each characteristic are as follows.
1,3DMCBDA: 1,3-dimethyl 1,2,3,4 cyclobutanetetracarboxylic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride DA-1: of the following formula DA-1 Diamine DA-2: Diamine DA-3 of formula DA-2 below: Diamine of formula DA-3 below
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式DA-2及び上記式DA-3中のBocは、tert-ブトキシカルボニル基を表す。 Boc in the above formula DA-2 and the above formula DA-3 represents a tert-butoxycarbonyl group.
<溶剤>
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
GBL:γ-ブチロラクトン
BCA:ブチルセロソルブアセテート
PB:プロピレングリコールモノブチルエーテル
DME:ジプロピレングリコールジメチルエーテル
DEDG:ジエチレングリコールジエチルエーテル
DAA:ダイアセトンアルコール
4M4M2P:4-メトキシ-4-メチル-2-ペンタノン
4H2B:4-ヒドロキシ-2-ブタノン
2M2H:2-メチル-2-ヘキサノール
<Solvent>
NMP: N-methyl-2-pyrrolidone BCS: butyl cellosolve GBL: γ-butyrolactone BCA: butyl cellosolve acetate PB: propylene glycol monobutyl ether DME: dipropylene glycol dimethyl ether DEDG: diethylene glycol diethyl ether DAA: diacetone alcohol 4M4M2P: 4-methoxy-4 -Methyl-2-pentanone 4H2B: 4-hydroxy-2-butanone 2M2H: 2-methyl-2-hexanol
<粘度>
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<Viscosity>
In the synthesis example, the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
<分子量>
 合成例において、重合体の分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
<Molecular weight>
In the synthesis examples, the molecular weight of the polymer is measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) in terms of polyethylene glycol and polyethylene oxide. Say).
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
<合成例>
(合成例1)
 撹拌装置及び窒素導入管付きの50mLの四つ口フラスコに、DA-1を1.88g(7.70mmol)及びDA-3を1.17g(2.11mmol)、DA-2を1.67g(4.20mmol)取り、NMPを40.00g加えて、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら1,3DMCBDAを2.04g(9.10mmol)加えてさらに撹拌し、粘度の安定したところでCBDAを0.62g(3.16mmol)を添加し、さらに固形分濃度が15質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の25℃における粘度は212mPa・Sであった。
<Synthesis example>
(Synthesis Example 1)
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.88 g (7.70 mmol) of DA-1, 1.17 g (2.11 mmol) of DA-3, 1.67 g of DA-2 ( 4.20 mmol), 40.00 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.04 g (9.10 mmol) of 1,3DMCBDA was added and further stirred. When the viscosity was stabilized, 0.62 g (3.16 mmol) of CBDA was added, and the solid content concentration was 15%. NMP was added so that it might become the mass%, and it stirred at room temperature for 24 hours, and obtained the solution of polyamic acid (PAA-1). The viscosity of this polyamic acid solution at 25 ° C. was 212 mPa · S.
(合成例2)
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに合成例1で得られたPAA-1を30g量り取り、固形分濃度が8質量%になるようにNMPを加えて希釈した。 
(Synthesis Example 2)
30 g of PAA-1 obtained in Synthesis Example 1 was weighed into a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and diluted with NMP so that the solid content concentration was 8% by mass.
 次に無水酢酸2.61g(25.5mmol)、ピリジン0.67g(8.47mmol)を加えて、溶解させた。次に、この溶液を撹拌しながら55℃に加熱し、3時間反応させた。得られたポリアミド酸-可溶性ポリイミド酸溶液を全溶液の3.5倍等量のメタノールに撹拌しながら投入し再沈殿させた。再沈殿後の粉体は自然濾過もしくは吸引濾過によってろ取し、この後さらに、それぞれ0.188l(5.86mmol)のメタノールを2回に分けて洗浄し、乾燥させることにより白色のポリアミド酸-可溶性ポリイミド樹脂粉末(PWD-1)を得た。この樹脂粉末の分子量はMn=13,493であり、Mw=27,207であった。  Next, 2.61 g (25.5 mmol) of acetic anhydride and 0.67 g (8.47 mmol) of pyridine were added and dissolved. Next, this solution was heated to 55 ° C. with stirring and reacted for 3 hours. The obtained polyamic acid-soluble polyimide acid solution was poured into methanol in an amount equivalent to 3.5 times the total solution while stirring to cause reprecipitation. The powder after reprecipitation is filtered by natural filtration or suction filtration, and then further washed with 0.188 l (5.86 mmol) of methanol in two portions and dried to give white polyamic acid- A soluble polyimide resin powder (PWD-1) was obtained. The molecular weight of this resin powder was Mn = 13,493 and Mw = 27,207. *
 上記で得られたPWD-1をNMPに溶解させ、固形分濃度12質量%のポリアミド酸-可溶性ポリイミド樹脂粉末溶液(SPI-1)を得た。 The PWD-1 obtained above was dissolved in NMP to obtain a polyamic acid-soluble polyimide resin powder solution (SPI-1) having a solid content concentration of 12% by mass.
(実施例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を6.75g量り取り、NMPで1.0質量%に希釈した3-グリシドキシプロピルメチルジエトキシシラン溶液を0.81g、NMPを6.84g加えた。その後、DAAを3.60g加えてマグネチックスターラーで30分間撹拌し、液晶配向剤(A-1)を得た。液晶配向剤A-1を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
(Example 1)
To a 20 ml sample tube containing a stir bar, 6.75 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was weighed and diluted to 1.0% by mass with NMP. 0.81 g of ethoxysilane solution and 6.84 g of NMP were added. Thereafter, 3.60 g of DAA was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1). When the liquid crystal aligning agent A-1 was stored at −20 ° C. for 1 week, precipitation of solid matter was not observed, and the solution was uniform.
(実施例2~実施例5、比較例1~比較例6)
 ポリアミック酸(PAA-1)の代わりに、ポリアミド酸-可溶性ポリイミド樹脂粉末溶液(SPI-1)を用いるか、もしくは溶剤としてDAAの代わりに下記表の溶剤を使用した以外は、実施例1と同様の操作を行い、それぞれ液晶配向剤(A-2)~(A-5)、(B-1)~(B-6)を得た。上記により得られた全ての液晶配向剤を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。各々の結果は下記表1に示す。 
(Examples 2 to 5, Comparative Examples 1 to 6)
Example 1 except that a polyamic acid-soluble polyimide resin powder solution (SPI-1) was used instead of polyamic acid (PAA-1), or the solvent shown in the table below was used instead of DAA as the solvent. Thus, liquid crystal aligning agents (A-2) to (A-5) and (B-1) to (B-6) were obtained. When all the liquid crystal aligning agents obtained as described above were stored at −20 ° C. for 1 week, no solid precipitate was observed and the solution was uniform. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 液晶セルの電気特性を評価するため、初めに電極付きの基板を準備した。基板は、30mm×40mmの大きさで、厚さが1.1mmのガラス基板である。基板上には膜厚35nmのITO電極が形成されており、電極は縦40mm、横10mmのストライプパターンである。  In order to evaluate the electrical characteristics of the liquid crystal cell, a substrate with electrodes was first prepared. The substrate is a glass substrate having a size of 30 mm × 40 mm and a thickness of 1.1 mm. An ITO electrode having a film thickness of 35 nm is formed on the substrate, and the electrode is a stripe pattern having a length of 40 mm and a width of 10 mm. *
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。50℃のホットプレート上で5分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶ML-7026-100(メルク・ジャパン製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを120℃で60分間加熱し、その後室温まで除冷してセルの観察を行ったところ配向性は良好であった。 Next, the liquid crystal aligning agent was filtered through a 1.0 μm filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on a hot plate at 50 ° C. for 5 minutes, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film. This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. After washing and removing water droplets by air blow, drying was performed at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film. Prepare two substrates with this liquid crystal alignment film, spray a 4μm spacer on the surface of one liquid crystal alignment film, print a sealant on it, and reverse the rubbing direction of the other substrate. And after bonding together so that the film surfaces face each other, the sealing agent was cured to produce an empty cell. Liquid crystal ML-7026-100 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 60 minutes, then cooled to room temperature and the cell was observed. The orientation was good.
<電圧保持率の測定>
(実施例6)
 上記液晶セルに60℃の温度下で1Vの電圧を60μs間印加し、50ms後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として計算した。 
<Measurement of voltage holding ratio>
(Example 6)
A voltage of 1 V was applied to the liquid crystal cell at a temperature of 60 ° C. for 60 μs, the voltage after 50 ms was measured, and how much the voltage was held was calculated as a voltage holding ratio.
 この結果、配向剤A-1からなる配向膜の60℃における電圧保持率は96.7%であった。 As a result, the voltage holding ratio at 60 ° C. of the alignment film made of the alignment agent A-1 was 96.7%.
(実施例7~実施例10、比較例7~比較例12)
 実施例2~実施例5、比較例1~比較例6で得られた配向剤(A-2)~配向剤(A-5)及び配向剤(B-1)~配向剤(B-6)に対しても同様の手法により液晶セルを作成し、実施例6に記載の測定方法により、電圧保持率を測定した。各々の結果は下記表2に示す。 
(Examples 7 to 10 and Comparative Examples 7 to 12)
Alignment agent (A-2) to Alignment agent (A-5) and Alignment agent (B-1) to Alignment agent (B-6) obtained in Examples 2 to 5 and Comparative Examples 1 to 6 A liquid crystal cell was prepared by the same method, and the voltage holding ratio was measured by the measurement method described in Example 6. Each result is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。 Widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.

Claims (8)

  1.  ポリイミド及びポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体と、下記(A)群及び(B)群の溶媒を含む有機溶媒と、を含有することを特徴とする液晶配向剤。
    (A)群:N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンから選ばれる少なくとも1種の溶媒
    (B)群:4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン及び2-メチル-2-ヘキサノールから選ばれる少なくとも1種の溶媒
    A liquid crystal aligning agent comprising at least one polymer selected from the group consisting of a polyimide and a polyimide precursor, and an organic solvent containing a solvent of the following groups (A) and (B).
    Group (A): at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone (B) group: 4-methoxy-4-methyl-2-pentanone, 4 At least one solvent selected from -hydroxy-2-butanone and 2-methyl-2-hexanol
  2.  前記(A)群の溶媒が、N-メチルピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも一種を含有することを特徴とする請求項1に記載の液晶配向剤。 2. The liquid crystal aligning agent according to claim 1, wherein the solvent of the group (A) contains at least one selected from the group consisting of N-methylpyrrolidone and γ-butyrolactone.
  3.  前記(A)群の溶媒が、全溶媒量に対し50重量%~95重量%であることを特徴とする、請求項1または請求項2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the solvent of the group (A) is 50% by weight to 95% by weight with respect to the total amount of the solvent.
  4.  前記(B)群の溶媒が、全溶媒量に対し5重量%~50重量%であることを特徴とする、請求項1から請求項3のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the solvent of the group (B) is 5 to 50% by weight based on the total amount of the solvent.
  5.  前記重合体を1質量%~5質量%含有することを特徴とする、請求項1から請求項4のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the polymer is contained in an amount of 1% by mass to 5% by mass.
  6.  前記溶媒を95質量%~99質量%含有することを特徴とする、請求項1から請求項5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the solvent contains 95% by mass to 99% by mass.
  7.  請求項1から請求項6のいずれか一項に記載の液晶配向剤から得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 6.
  8.  請求項7に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 7.
PCT/JP2017/030130 2016-08-24 2017-08-23 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2018038160A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197008452A KR102430123B1 (en) 2016-08-24 2017-08-23 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
CN201780051793.1A CN109643038B (en) 2016-08-24 2017-08-23 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2018535735A JP6974800B2 (en) 2016-08-24 2017-08-23 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-163463 2016-08-24
JP2016163463 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018038160A1 true WO2018038160A1 (en) 2018-03-01

Family

ID=61245222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030130 WO2018038160A1 (en) 2016-08-24 2017-08-23 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6974800B2 (en)
KR (1) KR102430123B1 (en)
CN (1) CN109643038B (en)
TW (1) TWI735635B (en)
WO (1) WO2018038160A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566554A (en) * 2018-03-07 2020-08-21 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
WO2021106979A1 (en) * 2019-11-26 2021-06-03 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
US12228755B2 (en) 2019-04-25 2025-02-18 3M Innovative Properties Company Retroreflective article comprising multiple locally-laminated layers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102267591B1 (en) * 2018-11-20 2021-06-18 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338880A (en) * 1997-06-09 1998-12-22 Jsr Corp Liquid crystal aligning agent
JP2001305549A (en) * 2000-04-24 2001-10-31 Jsr Corp Aligning agent for liquid crystal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156445B2 (en) 2003-06-04 2008-09-24 株式会社 日立ディスプレイズ Manufacturing method of liquid crystal display device
CN101405349A (en) * 2006-03-20 2009-04-08 三菱化学株式会社 Phthalocyanine crystal, electrophotographic photoreceptor utilizing the same, electrophotographic photoreceptor cartridge and image forming apparatus
JP4869892B2 (en) 2006-12-06 2012-02-08 株式会社 日立ディスプレイズ Liquid crystal display
JP5532195B2 (en) * 2008-06-10 2014-06-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5553531B2 (en) 2009-06-03 2014-07-16 株式会社ジャパンディスプレイ Liquid crystal display
EP2690123B1 (en) * 2011-03-25 2017-03-01 I.S.T. Corporation Polyimide precursor solution, polyimide precursor, polyimide resin, mixture slurry, electrode, mixture slurry production method, and electrode formation method
JP6165153B2 (en) * 2012-09-19 2017-07-19 本州化学工業株式会社 Polyimide and molded body thereof
CN105683829B (en) * 2013-09-03 2019-08-20 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
JP6668754B2 (en) * 2013-10-10 2020-03-18 日産化学株式会社 Composition, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
TWI669378B (en) * 2014-09-25 2019-08-21 日商日產化學工業股份有限公司 Liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338880A (en) * 1997-06-09 1998-12-22 Jsr Corp Liquid crystal aligning agent
JP2001305549A (en) * 2000-04-24 2001-10-31 Jsr Corp Aligning agent for liquid crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566554A (en) * 2018-03-07 2020-08-21 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
TWI800603B (en) * 2018-03-07 2023-05-01 日商Jsr股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and manufacturing method thereof
US12228755B2 (en) 2019-04-25 2025-02-18 3M Innovative Properties Company Retroreflective article comprising multiple locally-laminated layers
WO2021106979A1 (en) * 2019-11-26 2021-06-03 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7620264B2 (en) 2019-11-26 2025-01-23 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2018038160A1 (en) 2019-06-24
CN109643038B (en) 2022-01-25
KR20190044642A (en) 2019-04-30
JP6974800B2 (en) 2021-12-01
CN109643038A (en) 2019-04-16
TWI735635B (en) 2021-08-11
TW201825658A (en) 2018-07-16
KR102430123B1 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
JP5870487B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5771948B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP6064900B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP6372009B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2020040089A1 (en) Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
JP6974800B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6597645B2 (en) Liquid crystal alignment agent
JP7239872B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5630625B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI839328B (en) Polymer and liquid crystal alignment agent using the same
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
CN111263913B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN114479077B (en) Polyamic acid ester and application thereof in liquid crystal aligning agent, liquid crystal aligning film and liquid crystal unit
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI744574B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008452

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17843638

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载