+

WO2018037982A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2018037982A1
WO2018037982A1 PCT/JP2017/029466 JP2017029466W WO2018037982A1 WO 2018037982 A1 WO2018037982 A1 WO 2018037982A1 JP 2017029466 W JP2017029466 W JP 2017029466W WO 2018037982 A1 WO2018037982 A1 WO 2018037982A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
guard
unit
upper position
liquid
Prior art date
Application number
PCT/JP2017/029466
Other languages
French (fr)
Japanese (ja)
Inventor
昌之 林
敬次 岩田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201780047398.6A priority Critical patent/CN109564862B/en
Priority to KR1020197002420A priority patent/KR102208292B1/en
Priority to KR1020217001696A priority patent/KR102262348B1/en
Publication of WO2018037982A1 publication Critical patent/WO2018037982A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate using a chemical solution.
  • the substrate include a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an FED (Field ⁇ EmissionFDisplay) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, Ceramic substrates, solar cell substrates and the like are included.
  • a single wafer processing apparatus for processing substrates one by one may be used to perform processing with a chemical on the surface of a substrate such as a semiconductor substrate.
  • This single-wafer type substrate processing apparatus includes, for example, a spin chuck that rotates while holding the substrate substantially horizontal in a chamber, a nozzle for supplying a chemical to the substrate rotated by the spin chuck, and a substrate. It includes a processing cup for receiving and draining the scattered processing liquid, and a disc-shaped blocking plate disposed to face the surface (upper surface) of the substrate held by the spin chuck.
  • the processing cup has, for example, a substantially cylindrical shape with the rotation axis of the substrate by the spin chuck as the central axis, and an opening (upper opening) is provided at the upper end thereof.
  • the processing cup includes a cup accommodated in a fixed manner and a guard that can be moved up and down with respect to the cup and that can catch a chemical liquid scattered from a substrate rotated by a spin chuck.
  • a guard that can be moved up and down with respect to the cup and that can catch a chemical liquid scattered from a substrate rotated by a spin chuck.
  • at least the height position of the outermost guard is set to a predetermined liquid receiving position where the chemical liquid splashing from the substrate can be received by the guard.
  • the chemical solution is supplied to the surface of the substrate by supplying the chemical solution from the nozzle to the surface of the substrate.
  • the chemical solution supplied to the surface of the substrate receives a centrifugal force due to the rotation of the substrate and scatters laterally from the peripheral edge of the substrate.
  • medical solution which scattered to the side is received by the guard, is supplied to a cup along the inner wall of a guard, and is drained after that.
  • the processing cup is Even if the inside is evacuated by the exhaust mechanism, the atmosphere containing the chemical mist or the like inside the processing cup may flow out of the processing cup through the upper opening of the processing cup and diffuse into the chamber. .
  • the atmosphere containing chemical mist, etc. becomes particles and adheres to the substrate, contaminating the substrate, and contaminating the inner wall of the chamber. Or it is desirable to prevent.
  • an object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of suppressing the diffusion of the atmosphere containing the chemical solution supplied to the main surface of the substrate to the surroundings.
  • the present invention includes a chamber, a substrate holding unit that is accommodated in the chamber and holds the substrate in a horizontal posture, a rotation unit that rotates the substrate held by the substrate holding unit around a vertical rotation axis, A nozzle for discharging liquid from the discharge port toward the main surface of the substrate that has a discharge port and is held by the rotating unit, and a first for supplying a first chemical to the nozzle
  • a plurality of cylindrical guards including a chemical solution supply unit, a cylindrical first guard surrounding the periphery of the substrate holding unit, and a cylindrical second guard surrounding the periphery of the first guard;
  • a processing cup for accommodating the substrate holding unit; an elevating unit for elevating and lowering at least one of the plurality of guards; the rotating unit; and the first chemical solution supply unit.
  • a control device for controlling the lifting unit, wherein the control device is configured to remove at least one of the plurality of guards from a substrate at a predetermined upper position and rotated by the rotating unit.
  • An upper position arrangement that is set above a predetermined liquid receiving position where the first chemical liquid to be scattered can be received by the guard, and is arranged at an upper position where the liquid scattered from the substrate can be received by the guard.
  • a processing device is provided.
  • the first chemical liquid is disposed on the main surface of the substrate in the rotating state in a state where at least one of the plurality of guards is disposed at the upper position set higher than the liquid receiving position. Is supplied. In a state where at least one of the plurality of guards is disposed at the upper position, a large distance is ensured between the upper opening of the processing cup and the substrate.
  • mist of the chemical solution is generated by supplying the first chemical solution to the substrate.
  • the chemical solution It is difficult for the atmosphere containing the mist to flow out of the processing cup through the upper opening of the processing cup.
  • the substrate processing apparatus which can suppress the spreading
  • a facing member that has a substrate facing surface facing upward with respect to the upper surface of the substrate held by the substrate holding unit, and is disposed above the guard, It further includes an opposing member that forms an annular gap with the upper end of the guard in a state where the guard is disposed at the upper position.
  • the atmosphere in the processing cup in order for the atmosphere inside the processing cup to flow out into the chamber, the atmosphere in the processing cup not only flows out of the processing cup through the upper opening, but is further arranged at the upper position. It is necessary to reach the inside of the chamber through an annular gap between the upper end of the guard in the state of being placed and the substrate facing surface. In this case, by setting the upper position of the guard so that the annular gap is narrowed, the amount of atmosphere flowing out into the chamber through the annular gap can be effectively suppressed or prevented.
  • the apparatus holds the nozzle and moves around the predetermined swing axis set outside the rotation range of the substrate so as to move the nozzle along the main surface of the substrate held by the substrate holding unit. It may further include a nozzle arm provided to be swingable. In this case, the annular gap may be set larger than the vertical width of the nozzle arm so that the nozzle arm can straddle the inside and outside of the rotation range.
  • the nozzle arm can be straddled inside and outside the rotation range while passing through the annular gap. Then, by making the annular gap as small as possible, the annular gap can be set to a minimum size within a range that allows passage of the nozzle arm. In this case, the amount of atmosphere flowing out from the inside of the processing cup to the inside of the chamber can be effectively reduced. Thereby, the spreading
  • the substrate processing apparatus holds the nozzle, and moves the nozzle along a main surface of the substrate held by the substrate holding unit. It may further include a nozzle arm provided so as to be swingable around the movement axis. In this case, the first position between the upper end of the guard and the lower end of the nozzle arm in a state where the upper position is located is between the lower end of the nozzle arm and the discharge port. The position may be narrower than the second interval.
  • the upper end of the guard in the upper position is higher than the intermediate position between the lower end of the nozzle arm and the main surface of the substrate held by the substrate holding unit.
  • the position may be a position.
  • the amount of the atmosphere flowing out from the processing cup into the chamber can be effectively reduced by setting the upper position to the position as described above. Thereby, the spreading
  • medical solution can be suppressed much more effectively.
  • the apparatus may further include a second chemical solution supply unit for supplying a second chemical solution different in type from the first chemical solution to the main surface of the substrate.
  • the control device further controls the second chemical solution supply unit, and the control device lowers the upper end of the first guard from the substrate held by the substrate holding unit.
  • a second chemical supply step for supplying a second chemical to the main surface of the substrate while rotating the substrate by the rotating unit.
  • the second chemical liquid supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the second chemical solution supply step, the second chemical solution scattered from the substrate can be satisfactorily received by the second guard at the liquid receiving position.
  • the control device may execute the step of arranging the first and second guards at the upper position as the upper position arranging step.
  • the first chemical solution supply step is executed in a state where the first and second guards are arranged at the upper position. Therefore, in the first chemical liquid supply step, the first chemical liquid scattered from the substrate can be satisfactorily received by the first guard while arranging the first guard as high as possible. Thereby, in the 1st chemical
  • the apparatus may further include a water supply unit for supplying water to the nozzle.
  • the control device may further control the water supply unit.
  • the control device includes the step of disposing the first and second guards at the liquid receiving position, and the rotating unit by the rotating unit in a state where the first and second guards are disposed at the liquid receiving position. You may further perform the water supply process which supplies water to the main surface of the said board
  • the water supply step is executed in a state where the first and second guards are arranged at the liquid receiving position. Therefore, in the water supply step, water scattered from the substrate can be received well by the first guard at the liquid receiving position.
  • the control device may execute a step of arranging the first guard at the liquid receiving position and arranging the second guard at the upper position as the upper position arranging step.
  • the first chemical liquid supply step is executed in a state where the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position.
  • the second guard By disposing the second guard in the upper position as high as possible, it is possible to suppress the mist of the first chemical liquid from flowing out of the processing cup. Therefore, in the first chemical solution supply step, the first chemical solution scattered from the substrate is received by the first guard at the liquid receiving position, and the outflow of the atmosphere containing the mist of the first chemical solution to the outside of the processing cup is prevented. Can be suppressed.
  • medical solution can be suppressed more effectively.
  • the apparatus may further include a water supply unit for supplying water to the nozzle.
  • the control device may further control the water supply unit.
  • the control device arranges the first guard at a lower position where an upper end of the first guard is located below the substrate held by the substrate holding unit, and arranges the second guard at the liquid receiving position. And a main unit of the substrate while rotating the substrate by the rotating unit in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. You may further perform the water supply process which supplies water to a surface.
  • the water supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the water supply process, the water scattered from the substrate can be received well by the second guard at the liquid receiving position.
  • the first guard In the first chemical supply process, the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position. Therefore, after the first chemical supply process, the first guard and the second guard are disposed. There is a possibility that the mist of the first chemical solution is attached to the wall of the internal space partitioned between the two guards.
  • the water can be supplied to the internal space defined between the first guard and the second guard. Therefore, even if the mist of the 1st chemical
  • the control device executes the water supply step before and / or after the execution of the first chemical solution supply step and / or before and / or after the execution of the second chemical solution supply step. Also good.
  • the first and second chemical liquid supply steps using different types of chemical liquids are performed in a common chamber. Further, the water supply process is executed before and / or after the first chemical liquid supply process and / or before and / or after the second chemical liquid supply process.
  • the mist of the first chemical solution is formed on the wall of the internal space defined between the first guard and the second guard. May adhere.
  • water can be supplied to the internal space by performing the water supply step after the end of the first chemical solution supply step and / or before the start of the second chemical solution supply step.
  • medical solution adhering to the wall can be washed away. Therefore, at the start of the second chemical liquid supply process, no mist of the first chemical liquid remains on the wall of the internal space. Therefore, even if the second chemical liquid enters the internal space in the second chemical liquid supply step, the second chemical liquid does not come into contact with the first chemical liquid. Thereby, the contact with the 1st chemical
  • the apparatus may include a partition plate that vertically divides a side region of the substrate holding unit into an upper space on the upper side and a lower space on the lower side in the chamber.
  • an exhaust port is opened in the lower space, and a gap may be formed between the second guard and the partition plate.
  • the second guard may have a closing portion for closing the gap. Further, in a state where the second guard is disposed at the upper position, the closing portion closes the gap, and the second guard is set below the upper position.
  • the said clearance gap may be formed in the state arrange
  • the first chemical solution may include a mixed solution of sulfuric acid and hydrogen peroxide solution.
  • the present invention includes a chamber, a substrate holding unit that is accommodated in the chamber and holds the substrate in a horizontal posture, a rotation unit that rotates the substrate held by the substrate holding unit around a vertical rotation axis, Substrate processing performed in a substrate processing apparatus including a cylindrical first guard surrounding the periphery of the substrate holding unit and a plurality of guards including a cylindrical second guard surrounding the periphery of the first guard A substrate holding step of holding the substrate by the substrate holding unit; and at least one of the plurality of guards is scattered from the substrate at a predetermined upper position and rotated by the rotating unit.
  • a substrate processing method including a first chemical supply step for supplying a chemical.
  • the substrate is rotated and at least one of the plurality of guards is disposed at the upper position set above the liquid receiving position, and the first surface is provided on the main surface of the substrate.
  • the chemical solution is supplied.
  • mist of the chemical solution is generated by supplying the first chemical solution to the substrate.
  • the substrate processing method which can suppress the spreading
  • the first guard in the method, is disposed at a lower position where an upper end of the first guard is positioned lower than a substrate held by the substrate holding unit, and the second guard is disposed.
  • the substrate In the liquid receiving position, and in the state where the first guard is arranged at the lower position and the second guard is arranged at the liquid receiving position, the substrate is moved by the rotating unit.
  • the second chemical liquid supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the second chemical solution supply step, the second chemical solution scattered from the substrate can be satisfactorily received by the second guard at the liquid receiving position.
  • the upper position arranging step may include a step of arranging the first and second guards at the upper position.
  • the first chemical solution supply step is executed in a state where the first and second guards are arranged at the upper position. Therefore, in the first chemical liquid supply step, the first chemical liquid scattered from the substrate can be satisfactorily received by the first guard while arranging the first guard as high as possible. Thereby, in the 1st chemical
  • the method includes the steps of disposing the first and second guards at the liquid receiving position, and the substrate by the rotating unit in a state where the first and second guards are disposed at the liquid receiving position.
  • the water supply step is executed in a state where the first and second guards are arranged at the liquid receiving position. Therefore, in the water supply step, water scattered from the substrate can be received well by the first guard at the liquid receiving position.
  • the upper position arranging step may include a step of arranging the first guard at the liquid receiving position and arranging the second guard at the upper position.
  • the first chemical liquid supply step is executed in a state where the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position.
  • the second guard By disposing the second guard in the upper position as high as possible, it is possible to suppress the mist of the first chemical liquid from flowing out of the processing cup. Therefore, in the first chemical solution supply step, the first chemical solution scattered from the substrate is received by the first guard at the liquid receiving position, and the outflow of the atmosphere containing the mist of the first chemical solution to the outside of the processing cup is prevented. Can be suppressed.
  • medical solution can be suppressed more effectively.
  • the method includes the steps of disposing the first and second guards at the liquid receiving position, and lowering the upper end of the first guard below the substrate held by the substrate holding unit. Disposing the second guard at the liquid receiving position, the first guard disposed at the lower position, and the second guard disposed at the liquid receiving position. And a water supply step of supplying water to the main surface of the substrate while rotating the substrate by the rotating unit.
  • the water supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the water supply process, the water scattered from the substrate can be received well by the second guard at the liquid receiving position.
  • the first guard In the first chemical supply process, the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position. Therefore, after the first chemical supply process, the first guard and the second guard are disposed. There is a possibility that the mist of the first chemical solution is attached to the wall of the internal space partitioned between the two guards.
  • the water can be supplied to the internal space defined between the first guard and the second guard. Therefore, even if the mist of the 1st chemical
  • the water supply step may be executed before and / or after the execution of the first chemical solution supply step and / or before and / or after the execution of the second chemical solution supply step.
  • the first and second chemical liquid supply steps using different types of chemical liquids are performed in a common chamber. Further, the water supply process is executed before and / or after the first chemical liquid supply process and / or before and / or after the second chemical liquid supply process.
  • the mist of the first chemical solution is formed on the wall of the internal space defined between the first guard and the second guard. May adhere.
  • water can be supplied to the internal space by performing the water supply step after the end of the first chemical solution supply step and / or before the start of the second chemical solution supply step.
  • medical solution adhering to the wall can be washed away. Therefore, at the start of the second chemical liquid supply process, no mist of the first chemical liquid remains on the wall of the internal space. Therefore, even if the second chemical liquid enters the internal space in the second chemical liquid supply step, the second chemical liquid does not come into contact with the first chemical liquid. Thereby, the contact with the 1st chemical
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 2B is a diagram for specifically explaining a configuration around a counter member included in the processing unit.
  • FIG. 3A is an illustrative view for describing the flow of airflow inside the chamber in a state where the second guard shown in FIG. 2A is in the lower position.
  • FIG. 3B is an illustrative view for explaining the flow of airflow inside the chamber in a state where the second guard is in the liquid receiving position.
  • FIG. 3A is an illustrative view for describing the flow of airflow inside the chamber in a state where the second guard shown in FIG. 2A is in the lower position.
  • FIG. 3B is an illustrative view for explaining the flow of airflow inside the chamber in a state where the second guard is
  • FIG. 3C is an illustrative view for explaining the flow of airflow inside the chamber in a state where the second guard is in the upper position.
  • FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 5 is a flowchart for explaining a first substrate processing example by the processing unit.
  • 6A-6B are schematic diagrams for explaining the first substrate processing example.
  • FIG. 6C-6D are schematic diagrams for explaining the process subsequent to FIG. 6B.
  • FIG. 6E is an illustrative view for describing a step following FIG. 6D.
  • FIG. 7 is an illustrative sectional view showing an enlarged configuration example of the lower part of the processing unit.
  • 8A-8B are illustrative views for explaining a second substrate processing example by the processing unit.
  • FIG. 8C is an illustrative view for explaining a second substrate processing example by the processing unit.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port It includes transfer robots IR and CR that transfer the substrate W between the LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1.
  • the transfer robot IR transfers the substrate W between the carrier C and the substrate transfer robot CR.
  • the substrate transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2A is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a box-shaped chamber 4 and a spin chuck that holds a single substrate W in the chamber 4 in a horizontal posture and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W.
  • (Substrate holding unit) 5 an opposing member 7 having a substrate facing surface 6 facing the upper surface (main surface) of the substrate W held by the spin chuck 5, and a substrate W held by the spin chuck 5,
  • SPM supply unit (first chemical supply unit) 8 for supplying a sulfuric acid / hydrogen peroxide / mixture (SPM) as a first chemical solution and a spin chuck 5
  • Organic for supplying an isopropyl alcohol (IPA) liquid as an example of an organic solvent (an organic solvent having a low surface tension) as the second chemical liquid to the surface (upper surface) of the substrate W
  • An agent supply unit (second chemical supply unit) 10 a water supply unit 11 for supplying water as a rinsing liquid to the surface (upper surface) of the substrate W
  • the chamber 4 includes a box-shaped partition wall 13 that accommodates the spin chuck 5 and the nozzles, and an FFU (fan filter filter) as a blower unit that sends clean air (air filtered by a filter) into the partition wall 13 from above the partition wall 13.
  • Unit 14 and a partition plate 16 that vertically divides the side region 15 of the processing cup 12 in the chamber 4 into an upper region 15a and a lower region 15b.
  • the FFU 14 is disposed above the partition wall 13 and attached to the ceiling of the partition wall 13.
  • the control device 3 controls the FFU 14 so that the FFU 14 sends clean air downward from the ceiling of the partition wall 13 into the chamber 4.
  • An exhaust port 9 is opened at the bottom or bottom of the partition wall 13.
  • An exhaust duct 9 a is connected to the exhaust port 9. The exhaust device sucks the atmosphere of the lower space 4a inside the chamber 4 (the space below the partition plate 16 in the vertical direction in the internal space of the chamber 4) and exhausts the lower space 4a.
  • the exhaust device exhausts the lower space 4 a of the chamber 4, whereby a downflow (downflow) is formed in the chamber 4.
  • the processing of the substrate W is performed in a state where a down flow is formed in the chamber 4.
  • the partition plate 16 is disposed between the outer wall of the processing cup 12 and the partition wall 13 (side partition wall) of the chamber 4.
  • the inner end portion of the partition plate 16 is disposed along the outer peripheral surface of the outer wall of the processing cup 12.
  • the outer end portion of the partition plate 16 is disposed along the inner surface of the partition wall 13 (side partition wall) of the chamber 4.
  • An SPM nozzle 28 and a nozzle arm 29 described later are disposed above the partition plate 16.
  • the partition plate 16 may be a single plate or a plurality of plates disposed at the same height.
  • the upper surface of the partition plate 16 may be horizontal or may extend obliquely upward toward the rotation axis A1.
  • the spin chuck 5 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed. Specifically, the spin chuck 5 is mounted substantially horizontally on a spin motor (rotary unit) 17, a lower spin shaft 18 integrated with a drive shaft of the spin motor 17, and an upper end of the lower spin shaft 18. Disc-shaped spin base 19.
  • the spin base 19 has an upper surface 19a made of a flat surface.
  • a plurality of (three or more, for example, six) clamping members 20 are arranged on the peripheral edge thereof.
  • the plurality of clamping members 20 are arranged at appropriate intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the peripheral edge of the upper surface of the spin base 19.
  • the spin chuck 5 is not limited to a sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum-sucking the back surface of the substrate W, and further rotated around a vertical rotation axis in that state.
  • a vacuum suction type vacuum chuck
  • the substrate W held on the spin chuck 5 may be employed.
  • the facing member 7 includes a blocking plate 21 and an upper spin shaft 22 provided coaxially with the blocking plate 21.
  • the blocking plate 21 has a disc shape having a diameter substantially equal to or larger than that of the substrate W.
  • the substrate facing surface 6 forms a lower surface of the blocking plate 21 and has a circular shape facing the entire upper surface of the substrate W.
  • a cylindrical through hole 23 penetrating the blocking plate 21 and the upper spin shaft 22 up and down is formed at the center of the substrate facing surface 6.
  • the inner peripheral wall of the through hole 23 is partitioned by a cylindrical surface.
  • a first nozzle 24 and a second nozzle 25 extending vertically are inserted through the through hole 23.
  • the upper spin shaft 22 is coupled with a blocking plate rotating unit 26.
  • the shielding plate rotating unit 26 rotates the upper spin shaft 22 around the rotational axis A2 together with the shielding plate 21.
  • a shield plate lifting / lowering unit 27 having a configuration including an electric motor, a ball screw, and the like is coupled to the shield plate 21.
  • the blocking plate lifting / lowering unit 27 moves the blocking plate 21 in the vertical direction together with the first and second nozzles 24 and 25.
  • the shield plate lifting / lowering unit 27 includes a proximity position (see FIG. 6D and the like) in which the substrate facing surface 6 of the shield plate 21 is close to the upper surface of the substrate W held by the spin chuck 5 and a retreat provided above the proximity position.
  • the blocking plate 21 and the first and second nozzles 24, 25 are moved up and down between positions (see FIG. 2A, FIG. 6A, etc.).
  • the shield plate lifting / lowering unit 27 can hold the shield plate 21 at each position between the proximity position and the retracted position.
  • the SPM supply unit 8 includes an SPM nozzle (nozzle) 28, a nozzle arm 29 to which the SPM nozzle 28 is attached at the tip, an SPM pipe 30 connected to the SPM nozzle 28, and an SPM interposed in the SPM pipe 30.
  • the valve 31 includes a nozzle moving unit 32 that is connected to the nozzle arm 29 and moves the SPM nozzle 28 by swinging the nozzle arm 29 around the swing axis A3.
  • the nozzle moving unit 32 includes a motor and the like.
  • the SPM nozzle 28 is, for example, a straight nozzle that discharges liquid in a continuous flow state.
  • the discharge port 28a is formed in the outer peripheral surface of the body of the SPM nozzle 28, and SPM is discharged from the discharge port 28a sideways.
  • a configuration may be employed in which a discharge port is formed at the lower end of the body of the SPM nozzle 28 and SPM is discharged downward from the discharge port 28a.
  • the SPM pipe 30 is supplied with a sulfuric acid hydrogen peroxide solution mixture (sulfuric acid / hydrogen peroxide mixture: SPM) from a sulfuric acid hydrogen peroxide supply source.
  • SPM sulfuric acid hydrogen peroxide solution mixture
  • the SPM supplied to the SPM pipe 30 is at a high temperature (eg, about 170 ° C. to about 180 ° C.).
  • the SPM that has been heated to the high temperature by the heat of reaction between sulfuric acid and hydrogen peroxide is supplied to the SPM pipe 30.
  • the SPM valve 31 When the SPM valve 31 is opened, the high-temperature SPM supplied from the SPM pipe 30 to the SPM nozzle 28 is discharged from the discharge port 28a of the SPM nozzle 28.
  • the SPM valve 31 When the SPM valve 31 is closed, high temperature SPM discharge from the SPM nozzle 28 is stopped.
  • the nozzle moving unit 32 is located between the processing position where the high temperature SPM discharged from the SPM nozzle 28 is supplied to the upper surface of the substrate W and the retreat position where the SPM nozzle 28 retreats to the side of the spin chuck 5 in plan view. Then, the SPM nozzle 28 is moved.
  • FIG. 2B is a diagram for specifically explaining the configuration around the opposing member 7 included in the processing unit 2.
  • a central axis nozzle 33 extending vertically extends through the through hole 23.
  • the central shaft nozzle 33 includes first and second nozzles 24 and 25 and a cylindrical casing 34 surrounding the first and second nozzles 24 and 25.
  • a first discharge port 35 for discharging a liquid downward is formed at the lower end of the first nozzle 24.
  • a second discharge port 36 for discharging the liquid downward is formed at the lower end of the second nozzle 25.
  • each of the first and second nozzles 24 and 25 is an inner tube.
  • the casing 34 extends in the vertical direction along the rotation axis A2.
  • the casing 34 is inserted into the through hole 23 in a non-contact state. Therefore, the inner periphery of the shielding plate 21 surrounds the outer periphery of the casing 34 with a gap in the radial direction.
  • the organic solvent supply unit 10 is connected to the first nozzle 24, the organic solvent pipe 37 connected to the first nozzle 24, and the inside communicating with the first discharge port 35, and the organic solvent pipe 37.
  • a first organic solvent valve 38 that opens and closes the solvent and a second organic solvent valve 39 that is interposed in the organic solvent pipe 37 on the downstream side of the first organic solvent valve 38 and opens and closes the organic solvent are included.
  • a suction pipe 41 having a suction device (not shown) connected to the tip thereof. Branch connected.
  • the suction pipe 41 is provided with a suction valve 42 for opening and closing the suction pipe 41.
  • the organic solvent from the organic solvent supply source is supplied to the second organic solvent valve 39.
  • the organic solvent supplied to the second organic solvent valve 39 is discharged from the first discharge port 35 toward the center of the upper surface of the substrate W.
  • organic solvent downstream portion 43 The inside of the downstream portion 43 (hereinafter referred to as “organic solvent downstream portion 43”) downstream of the branch position 40 in the pipe 37 is exhausted, and the organic solvent contained in the organic solvent downstream portion 43 passes to the suction pipe 41. And drawn.
  • the suction device and suction valve 42 are included in the suction unit 44.
  • the water supply unit 11 is connected to the second nozzle 25, the water nozzle 46 connected to the second nozzle 25, and the inside communicating with the second outlet 36. And a water valve 47 for switching supply and stop of water supply to the second nozzle 25.
  • a water valve 47 for switching supply and stop of water supply to the second nozzle 25.
  • the water supplied to the water pipe 46 is, for example, carbonated water, but is not limited to carbonated water, and is not limited to deionized water (DIW), electrolytic ion water, hydrogen water, ozone water, and diluted concentration (for example, about 10 ppm to 100 ppm). Any of aqueous hydrochloric acid may be used.
  • the processing unit 2 is further interposed in an inert gas pipe 48 that supplies an inert gas to a cylindrical space between the outer periphery of the casing 34 and the inner periphery of the blocking plate 21, and the inert gas pipe 48. And an inert gas valve 49.
  • the inert gas valve 49 When the inert gas valve 49 is opened, the inert gas from the inert gas supply source passes between the outer periphery of the casing 34 and the inner periphery of the blocking plate 21 and is discharged downward from the center of the lower surface of the blocking plate 21. Is done.
  • the inert gas valve 49 when the inert gas valve 49 is opened in a state where the shielding plate 21 is disposed in the proximity position, the inert gas discharged from the center of the lower surface of the shielding plate 21 and the substrate of the shielding plate 21 are discharged.
  • the inert gas flowing through the inert gas pipe 48 is, for example, nitrogen gas.
  • the inert gas is not limited to nitrogen gas, but may be other inert gas such as helium gas or argon gas.
  • the processing cup 12 includes a plurality of cups (first and second cups 51 and 52) fixedly disposed so as to surround the spin chuck 5 in a double manner, and a periphery of the substrate W.
  • a plurality of guards (first and second guards 53 and 54) for receiving the scattered processing liquid (SPM, organic solvent or water), and a guard lifting / lowering unit (lifting / lowering unit) 55 for lifting and lowering each guard independently.
  • the guard elevating unit 55 is configured to include a ball screw mechanism, for example.
  • the processing cup 12 can be accommodated so as to overlap in the vertical direction, and the guard elevating unit 55 moves up and down at least one of the first and second guards 53, 54, so that the processing cup 12 is expanded and folded. Is called.
  • the first cup 51 has an annular shape and surrounds the spin chuck 5 between the spin chuck 5 and the cylindrical member 50.
  • the first cup 51 has a substantially rotationally symmetric shape with respect to the rotation axis A1 of the substrate W.
  • the first cup 51 has a U-shaped cross section and defines a first drainage groove 59 for draining the processing liquid used for processing the substrate W.
  • a first drainage port (not shown) is opened at the lowest portion of the bottom of the first drainage groove 59, and a first drainage pipe 61 is connected to the first drainage port.
  • the treatment liquid drained through the first drain pipe 61 is sent to a predetermined recovery device or disposal device and processed by the device. *
  • the second cup 52 has an annular shape and surrounds the first cup 51.
  • the second cup 52 has a shape that is substantially rotationally symmetric with respect to the rotation axis A ⁇ b> 1 of the substrate W.
  • the second cup 52 has a U-shaped cross section, and defines a second drainage groove 62 for collecting and collecting the processing liquid used for processing the substrate W.
  • a second drainage port (not shown) is opened at the lowest portion of the bottom of the second drainage groove 62, and a second drainage pipe 64 is connected to the second drainage port. Has been.
  • the processing liquid drained through the second drainage pipe 64 is sent to a predetermined recovery device or disposal device and processed by the device.
  • the inner first guard 53 surrounds the periphery of the spin chuck 5 and has a substantially rotationally symmetric shape with respect to the rotation axis A 1 of the substrate W by the spin chuck 5.
  • the first guard 53 is integrally provided with a cylindrical guide portion 66 surrounding the spin chuck 5 and a cylindrical processing liquid separation wall 67 connected to the guide portion 66.
  • the guide portion 66 includes a cylindrical lower end 68 that surrounds the periphery of the spin chuck 5, a cylindrical thick portion 69 that extends outward from the upper end of the lower end 68 (in a direction away from the rotation axis A1 of the substrate W), A cylindrical middle step 70 extending vertically upward from the outer peripheral portion of the upper surface of the thick portion 69, and an annular shape extending obliquely upward from the upper end of the middle step 70 inward (in the direction approaching the rotation axis A1 of the substrate W). And an upper end 71.
  • the treatment liquid separation wall 67 extends vertically downward from the outer peripheral part of the thick part 69 and is located on the second drainage groove 62.
  • the lower end 68 of the guide portion 66 is positioned on the first drainage groove 59, and the first guard 53 and the first cup 51 are closest to each other in the first drainage groove 59. Housed inside.
  • the inner peripheral end of the upper end portion 71 of the guide portion 66 has a circular shape with a larger diameter than the substrate W held by the spin chuck 5 in plan view. Further, the upper end portion 71 of the guide portion 66 may have a straight cross-sectional shape as shown in FIG. 2A or the like, or may extend while drawing a smooth arc, for example.
  • the outer second guard 54 surrounds the periphery of the spin chuck 5 outside the first guard 53 and has a substantially rotationally symmetric shape with respect to the rotation axis A 1 of the substrate W by the spin chuck 5.
  • the second guard 54 includes a cylindrical portion 72 that is coaxial with the first guard 53, an upper end portion 73 that extends obliquely upward from the upper end of the cylindrical portion 72 toward the center side (a direction approaching the rotation axis A1 of the substrate W), and a cylindrical portion.
  • the lower end portion of 72 has an annular protrusion (blocking portion) 75 protruding outward.
  • the inner peripheral end of the upper end portion 73 has a circular shape with a larger diameter than the substrate W held by the spin chuck 5 in plan view.
  • the upper end portion 73 may have a straight cross-sectional shape as shown in FIG. 2A or the like, or may extend, for example, while drawing a smooth arc.
  • the tip of the upper end 73 defines an upper opening 12a (see FIG. 2A) of the processing cup 12.
  • the cylindrical portion 72 is located on the second drainage groove 62.
  • the upper end portion 73 is provided so as to overlap the upper end portion 71 of the guide portion 66 of the first guard 53 in the vertical direction, and the first guard 53 and the second guard 54 are closest to each other in the guide. It is formed so as to be close to the upper end 71 of the portion 66 with a minute gap.
  • the folded portion 74 is formed to overlap the upper end portion 71 of the guide portion 66 in the horizontal direction in a state where the first guard 53 and the second guard 54 are closest to each other.
  • the protrusion 75 has an annular upper surface formed of a flat horizontal surface.
  • the guard lifting / lowering unit 55 lifts and lowers each guard between an upper position P1 (see FIG. 3B and the like) described below and a lower position P3 (see FIG. 3C and the like) where the upper end of the guard is positioned below the substrate W.
  • the upper position P1 of the first and second guards 53 and 54 is a height position set above a liquid receiving position P2 (see FIG. 3A and the like) described below.
  • the upper position P1 of each guard is the size of an annular gap 86 (see FIG. 6B) formed between the upper end of the guard and the facing member 7 (substrate facing surface 6). This is the position where the vertical width is larger than the vertical width W1 of the nozzle arm 29.
  • the upper position P1 of each guard is a position below the lower end surface 29a of the nozzle arm 29 and above the discharge port 28a. More specifically, the upper position P1 of each guard indicates that the first interval 87 (see FIG. 6B) between the upper end of the guard and the lower end surface 29a of the nozzle arm 29 (lower end of the nozzle arm 29) is the nozzle arm. 29 is a position that is equal to or narrower than the second interval 88 (see FIGS. 6A and 6B) 88 between the lower end surface 29a of the SPM 29 and the discharge port 28a of the SPM nozzle 28. .
  • the upper position P1 of each guard is such that the upper end of the guard is an intermediate position M between the lower end surface 29a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5 (see FIG. 3B). ) Above.
  • the guard lifting / lowering unit 55 can hold the first and second guards 53 and 54 at an arbitrary position between the upper position P1 and the lower position P3. Specifically, the guard lifting / lowering unit 55 sets the first and second guards 53 and 54 to liquids set between the upper position P1, the lower position P3, and the upper position P1 and the lower position P3, respectively. It is held at the receiving position P2.
  • the liquid receiving position P2 of the first and second guards 53 and 54 is a height position at which the upper end of the guard is located above the substrate W.
  • the supply of the processing liquid to the substrate W and the drying of the substrate W are performed in a state where any one of the guards (first and second guards 53 and 54) faces the peripheral end surface of the substrate W.
  • FIG. 3A to 3C are schematic diagrams for explaining the height positions of the first and second guards 53 and 54 and the flow of the airflow in the chamber 4.
  • FIG. 3A shows a state in which the second guard 54 is disposed at the liquid receiving position P2.
  • FIG. 3B shows a state in which the second guard 54 is disposed at the upper position P1.
  • FIG. 3C shows a state where the second guard 54 is disposed at the lower position P3.
  • the first and second guards 53 and 54 are both arranged at the upper position P1.
  • Such a state of the processing cup 12 is hereinafter referred to as a “first upper position state”.
  • the folded-back portion 74 overlaps the upper end portion 71 of the guide portion 66 in the horizontal direction, that is, the first and second guards 53 and 54 overlap at a narrow interval. .
  • both the first and second guards 53 and 54 are arranged at the liquid receiving position P2.
  • a state of the processing cup 12 is hereinafter referred to as a “first liquid receiving position state”.
  • the folded-back portion 74 overlaps the upper end portion 71 of the guide portion 66 in the horizontal direction, that is, the first and second guards 53 and 54 overlap each other with a narrow interval. Yes.
  • the first is a technique in which the first guard 53 is disposed at the lower position P3 and the second guard 54 is disposed at the upper position P1, as indicated by a two-dot chain line in FIG. 3B.
  • Such a state of the processing cup 12 is hereinafter referred to as a “second upper position state”.
  • the second is a technique in which the first guard 53 is disposed at the lower position P3 and the second guard 54 is disposed at the liquid receiving position P2, as indicated by a two-dot chain line in FIG. 3A.
  • Such a state of the processing cup 12 is hereinafter referred to as a “second liquid receiving position state”.
  • the distance between the first and second guards 53 and 54 is wide vertically.
  • the processing cup 12 can be configured such that none of the guards (first and second guards 53 and 54) is opposed to the peripheral end surface of the substrate W. In this state, both the first and second guards 53 and 54 are disposed at the lower position P3. Such a state of the processing cup 12 is hereinafter referred to as a “retracted state”.
  • the protrusion 75 (the upper surface thereof) of the second guard 54 and the lower surface of the partition plate 16 (the lower surface thereof).
  • the vertical interval is about 30 mm and the horizontal interval is about 2 mm. Therefore, the pressure loss at which the gas passes through the gap S between the protrusion 75 and the partition plate 16 is larger than that in the retracted state.
  • the gap S0 between the spin chuck 5 and the tip of the second guard 54 is more than in the retracted state.
  • the pressure loss when the gas passes between the spin chuck 5 and the tip of the second guard 54 is smaller than that in the retracted state (that is, exists to some extent). Accordingly, in the first liquid receiving position state or the second liquid receiving position state of the processing cup 12, the downflow DF2 flowing inside the chamber 4 causes the clearance S between the protrusion 75 and the partition plate 16 and the spin. It enters the lower space 4a of the chamber 4 through both the gap S0 between the chuck 5 and the tip of the second guard 54.
  • the processing cup 12 when the processing cup 12 is in the first upper position state or the second upper position state, the upper surface of the protrusion 75 of the second guard 54 and the lower surface of the partition plate 16 are in contact with each other.
  • the gap S between the protrusion 75 and the partition plate 16 is substantially zero (substantially closed. More strictly speaking, the vertical interval is about 3 mm and the horizontal interval is about 2 mm). .
  • FIG. 4 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the control device 3 is configured using, for example, a microcomputer.
  • the control device 3 includes an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit.
  • the storage unit stores a program executed by the arithmetic unit.
  • the control device 3 controls operations of the spin motor 17, the nozzle moving unit 32, the shielding plate rotating unit 26, the shielding plate lifting / lowering unit 27, the guard lifting / lowering unit 55, and the like.
  • the control device 3 opens and closes the SPM valve 31, the first organic solvent valve 38, the second organic solvent valve 39, the suction valve 42, the water valve 47, the inert gas valve 49, and the like.
  • FIG. 5 is a flowchart for explaining a first substrate processing example by the processing unit 2.
  • 6A to 6E are schematic diagrams for explaining a first substrate processing example.
  • the first substrate processing example is a resist removal process for removing the resist formed on the upper surface of the substrate W.
  • the first substrate processing example includes an SPM supply step (first chemical solution supply step) S3 for supplying SPM to the upper surface of the substrate W, and a liquid organic solvent such as IPA on the upper surface of the substrate W.
  • SPM and an organic solvent are a combination of chemicals that are dangerous (in this case, rapid reaction) due to contact.
  • the substrate W after the ion implantation process at a high dose is carried into the chamber 4 (step S1 in FIG. 5). It is assumed that the loaded substrate W has not been subjected to a process for ashing the resist. A fine pattern with a fine and high aspect ratio is formed on the surface of the substrate W.
  • the opposing member 7 (that is, the blocking plate 21 and the central axis nozzle 33) is retracted to the retracted position, the SPM nozzle 28 is retracted from above the spin chuck 5, and the first and second guards 53, 54 are in the lower position.
  • the control device 3 holds the substrate W
  • the hand H (see FIG. 1) of the transfer robot CR (see FIG. 1) enters the chamber 4.
  • the substrate W is delivered to the spin chuck 5 with its surface (resist formation surface) facing upward. Thereafter, the substrate W is held on the spin chuck 5.
  • control device 3 starts the rotation of the substrate W by the spin motor 17 (step S2 in FIG. 5).
  • the substrate W is raised to a predetermined liquid processing speed (in the range of about 10-500 rpm, for example, about 400 rpm), and is maintained at the liquid processing speed.
  • control device 3 performs an SPM supply process (step S3 in FIG. 5) for supplying a high temperature SPM to the upper surface of the substrate W.
  • SPM supply step S ⁇ b> 3 the control device 3 supplies the high temperature SPM from the SPM nozzle 28 to the center of the upper surface of the substrate W, for example, in order to peel the resist from the surface of the substrate W.
  • control device 3 controls the nozzle moving unit 32 to move the SPM nozzle 28 from the retracted position to the processing position.
  • the SPM nozzle 28 is disposed above the central portion of the substrate W.
  • the control device 3 controls the guard lifting / lowering unit 55 to raise the first and second guards 53 and 54 to the upper position ( The state of the processing cup 12 is changed to the first upper position state), and the first guard 53 is opposed to the peripheral end surface of the substrate W.
  • a first interval 87 (for example, substantially zero) between the upper end of the second guard 54 and the lower end surface 29a of the nozzle arm 29 is It becomes narrower than a second distance 88 (for example, about 5 mm) between the lower end surface 29a of the nozzle arm 29 and the discharge port 28a of the SPM nozzle 28.
  • the upper end of the second guard 54 is intermediate between the lower end surface 29 a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5. It is a position located above the position M (see FIG. 3B).
  • the control device 3 opens the SPM valve 31.
  • high temperature for example, about 170 ° C. to about 180 ° C.
  • SPM is supplied from the SPM pipe 30 to the SPM nozzle 28, and high temperature SPM is discharged from the discharge port 28a of the SPM nozzle 28 as shown in FIG. 6B.
  • the high-temperature SPM discharged from the SPM nozzle 28 is deposited on the center of the upper surface of the substrate W, receives centrifugal force due to the rotation of the substrate W, and flows outward along the upper surface of the substrate W. Thereby, the entire upper surface of the substrate W is covered with the liquid film of SPM.
  • the resist is peeled off from the surface of the substrate W and removed from the surface of the substrate W by the high temperature SPM. Further, the supply position of the high-temperature SPM from the SPM nozzle 28 may be moved (scanned) between the center portion of the upper surface of the substrate W and the peripheral portion of the upper surface.
  • the SPM supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 53.
  • the SPM flowing down along the inner wall of the first guard 53 is collected in the first drainage groove 59 and then guided to the first drainage pipe 61 to drain the SPM. Guided to a processor (not shown).
  • the SPM used is extremely high (for example, about 170 ° C. to about 180 ° C.)
  • a large amount of SPM mist MI is generated. Due to the supply of the SPM to the substrate W, a large amount of SPM mist MI generated around the upper surface of the substrate W floats on the upper surface of the substrate W.
  • the height position of the guard (at least the second guard 54) is high enough to achieve the purpose of catching the chemical liquid scattered from the substrate W, the height of the lower height
  • the atmosphere containing the SPM mist MI inside the processing cup 12 may flow out of the processing cup 12 through the upper opening 12 a of the processing cup 12 and diffuse into the chamber 4. is there.
  • the atmosphere containing the SPM mist MI becomes particles and adheres to the substrate W to contaminate the substrate W or contaminate the inner wall of the partition wall 13 of the chamber 4. It is not desirable to diffuse into
  • the gap S between the protrusion 75 and the partition plate 16 becomes substantially zero, so the downflow DF3 (see FIG. 3B) flowing inside the chamber 4 is It passes between the spin chuck 5 and the tip of the second guard 54 and enters the lower space 4 a of the chamber 4. Thereby, the outflow of the atmosphere containing the mist MI of SPM from the processing cup 12 to the inside of the chamber 4 can be more effectively suppressed.
  • the first guard 53 and the second guard 54 are closest to each other.
  • the folded portion 74 overlaps the upper end portion 71 of the guide portion 66 in the horizontal direction. Therefore, the SPM mist MI floating on the upper surface of the substrate W does not enter between the first guard 53 and the second guard 54 in the SPM supply step S3.
  • IPA may adhere to the inner wall of the second guard 54.
  • the SPM mist MI does not enter between the first guard 53 and the second guard 54, it is possible to suppress or prevent the SPM and IPA from being mixed in the processing cup 12 in the SPM supply step S3. it can. Thereby, it can suppress or prevent that the inside of the processing cup 12 becomes a particle generation source.
  • the SPM supply step S3 ends. Specifically, the control device 3 closes the SPM valve 31 and stops discharging hot SPM from the SPM nozzle 28. Further, the control device 3 controls the guard lifting unit 55 to lower the first and second guards 53 and 54 to the liquid receiving position P2, respectively. After starting the lowering of the first and second guards 53 and 54, the control device 3 controls the nozzle moving unit 32 to retract the SPM nozzle 28 to the retracted position.
  • a water supply process for supplying water as a rinsing liquid to the upper surface of the substrate W is performed.
  • the control device 3 opens the water valve 47.
  • water is discharged from the central axis nozzle 33 (second nozzle 25 (see FIG. 2B)) toward the center of the upper surface of the substrate W.
  • the water discharged from the central axis nozzle 33 is deposited on the central portion of the upper surface of the substrate W, and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
  • This water causes the SPM on the substrate W to flow outward and is discharged around the substrate W.
  • the liquid film of SPM on the substrate W is replaced with a liquid film of water covering the entire upper surface of the substrate W. That is, the SPM is washed away from the upper surface of the substrate W with water as the rinse liquid.
  • the water flowing on the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 53. Then, the water flowing down along the inner wall of the first guard 53 is collected in the first drainage groove 59 and then guided to the first drainage pipe 61 to drain the water. Guided to a processor (not shown). If the SPM liquid used in the SPM supply step S3 adheres to the inner wall of the first guard 53, the first drain groove 59, and the pipe wall of the first drain pipe 61, the SPM liquid Is washed away by water.
  • control device 3 closes the water valve 47 and stops water discharge from the second nozzle 25. Thereby, water supply process S4 is complete
  • step S5 in FIG. 5 an organic solvent process for supplying IPA as an organic solvent to the upper surface of the substrate W is performed.
  • the control device 3 controls the shield plate lifting / lowering unit 27 to place the shield plate 21 in the proximity position.
  • the blocking plate 21 blocks the upper surface of the substrate W from the surrounding space.
  • control device 3 controls the guard lifting / lowering unit 55 so that the first guard 53 remains at the lower position P3, the second guard 54 is disposed at the upper position P1, and the second guard 54 is placed on the substrate W. It is made to oppose to the peripheral end surface.
  • control device 3 decelerates the rotation of the substrate W to a predetermined paddle speed.
  • This paddle speed means that when the substrate W is rotated at the paddle speed, the centrifugal force acting on the liquid on the upper surface of the substrate W is smaller than the surface tension acting between the rinse liquid and the upper surface of the substrate W, Alternatively, the speed is such that the centrifugal force and the surface tension almost antagonize.
  • the control device 3 opens the first organic solvent valve 38 while opening the second organic solvent valve 39 and closing the suction valve 42.
  • IPA from the organic solvent supply source is supplied to the first nozzle 24, and IPA is discharged from the first nozzle 24 to land on the upper surface of the substrate W.
  • the organic solvent step S5 water contained in the liquid film on the upper surface of the substrate W is sequentially replaced with IPA by discharging IPA from the first nozzle 24.
  • the IPA liquid film covering the entire upper surface of the substrate W is held on the upper surface of the substrate W in a paddle shape.
  • the supply of IPA to the upper surface of the substrate W is continued. Therefore, IPA is discharged from the peripheral edge of the substrate W.
  • IPA discharged from the peripheral edge of the substrate W is received by the inner wall of the second guard 54. Then, the IPA that flows down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64 to drain the IPA. (Not shown).
  • the IPA discharged from the peripheral portion of the substrate W is received by the inner wall of the second guard 54 facing the peripheral end surface of the substrate W, and retreats downward with respect to the peripheral end surface of the substrate W. It is not received by the inner wall of the guard 53.
  • the organic solvent step S ⁇ b> 5 a small amount of IPA mist is generated around the substrate W, and the IPA mist is not guided to the inner wall of the first guard 53.
  • the SPM attached to the first guard 53 in the SPM supply step S3 is washed away by the water supply in the water supply step S4. Therefore, in the organic solvent step S5, the contact of IPA and SPM does not occur.
  • control device 3 closes the first organic solvent valve 38 and stops IPA discharge from the second nozzle 25. Thereby, organic solvent process S5 is complete
  • a spin dry process for drying the substrate W is performed.
  • the control device 3 controls the spin motor 17 with the blocking plate 21 being placed in the proximity position, thereby controlling the organic solvent from the SPM supply step S3 as shown in FIG. 6E.
  • the substrate W is accelerated to a drying rotation speed (for example, several thousand rpm) larger than the rotation speed in each step up to step S5, and the substrate W is rotated at the drying rotation speed.
  • a drying rotation speed for example, several thousand rpm
  • the control device 3 controls the shielding plate rotating unit 26 to rotate the shielding plate 21 in the rotation direction of the substrate W at a high speed.
  • an organic solvent suction process for sucking the organic solvent in the organic solvent pipe 37 is executed.
  • the organic solvent suction step the organic solvent present in the organic solvent pipe 37 after the organic solvent step S5 is sucked by the suction unit 44.
  • the control device 3 opens the suction valve 42 while opening the second organic solvent valve 39 and closing the first organic solvent valve 38.
  • the inside of the organic solvent downstream portion 43 is exhausted, and IPA present in the organic solvent downstream portion 43 is drawn into the suction pipe 41 (suction).
  • the suction of IPA is performed until the tip surface of the IPA moves back to a predetermined standby position in the pipe.
  • the control device 3 closes the suction valve 42. Thereby, it is possible to prevent the IPA from dropping from the organic solvent pipe 37 in the spin drying step S6.
  • control device 3 controls the spin motor 17 to stop the rotation of the substrate W by the spin chuck 5 (step S7 in FIG. 5), and the blocking plate rotation unit 26 is moved.
  • the rotation of the blocking plate 21 is stopped by controlling.
  • the substrate W is unloaded from the chamber 4 (step S8 in FIG. 5). Specifically, the control device 3 raises the blocking plate 21 to place it in the retracted position, lowers the second guard 54 to the lower position P3, and moves the first and second guards 53, 54 to the substrate. It is arranged below the W holding position. Thereafter, the control device 3 causes the hand H of the substrate transport robot CR to enter the chamber 4. Then, the control device 3 causes the hand of the substrate transport robot CR to hold the substrate W on the spin chuck 5 and retracts the hand H of the substrate transport robot CR from the chamber 4. Thereby, the substrate W from which the resist is removed from the surface is carried out of the chamber 4. *
  • the SPM supply step S3 is executed in the first upper position state of the processing cup 12. Therefore, in the SPM supply step S3, the first chemical solution scattered from the substrate can be satisfactorily received by the first guard 53 while the first guard 53 is disposed as high as possible.
  • the guard first and second guards 53 and 54
  • the SPM and the IPA are mixed in the processing cup 12. Can be suppressed or prevented. Thereby, it can suppress or prevent that the inside of the processing cup 12 becomes a particle generation source.
  • FIG. 7 is an illustrative sectional view showing an example of a configuration example of the lower part of the processing unit 2 in an enlarged manner. *
  • the water branch pipe 102 and the IPA branch pipe 103 may be connected to the tip of the second drainage pipe 64 of the second cup 52. That is, the distribution destination of the liquid flowing through the second drainage pipe 64 (the distribution destination of the liquid passing through the internal space defined between the first guard 53 and the second guard 54) has two branch pipes ( Branching into a water branch pipe 102 and an IPA branch pipe 103). The case where such two branch piping is employ
  • the water branch pipe 102 is provided with a water open / close valve 105 for opening and closing the water branch pipe 102.
  • the IPA branch pipe 103 is provided with an IPA on / off valve 106 for opening and closing the IPA branch pipe 103.
  • the flow destination of the liquid flowing through the second drainage pipe 64 is set to the water branch pipe 102.
  • the IPA on / off valve 106 is opened while the water on / off valve 105 is closed, the flow destination of the liquid flowing through the second drainage pipe 64 is set to the IPA branch pipe 103.
  • FIGS. 8A to 8C are schematic diagrams for explaining the second substrate processing example.
  • the second substrate processing example is the same as the first substrate processing example in the basic processing flow.
  • a second substrate processing example will be described with reference to FIGS. 2A, 2B, 5 and 7.
  • FIG. 8A to 8C will be referred to as appropriate.
  • the second substrate processing example is different from the first substrate processing example in that the state of the processing cup 12 is arranged in the second upper position state instead of the first upper position state in the SPM supply step S3. ing.
  • the second upper position state of the processing cup 12 is a state in which the first guard 53 is disposed at the liquid receiving position P2 and the second guard 54 is disposed at the upper position. Further, by placing the processing cup 12 in the second upper position in the SPM supply step S3, the wall of the internal space defined between the first guard 53 and the second guard 54 (second guard 54).
  • SPM mist MI may adhere to the inner wall of the first guard 53, the outer wall of the first guard 53, etc., but in the water supply step S4, the processing cup 12 is brought into the second liquid receiving position to start from the peripheral edge of the substrate W.
  • the walls of the internal space (the inner walls of the second guard 54 and the first guard 53
  • the SPM supply step S3 according to the second substrate processing example will be described in detail.
  • the control device 3 controls the guard lifting unit 55 to raise the first guard 53 to the liquid receiving position P2, and to The guard 54 is raised to the upper position P1, and the second guard 54 is opposed to the peripheral end surface of the substrate W.
  • the first gap 87 (between the upper end of the second guard 54 and the lower end surface 29 a of the nozzle arm 29 is provided.
  • substantially zero is narrower than a second distance 88 (for example, about 5 mm) between the lower end surface 29a of the nozzle arm 29 and the discharge port 28a of the SPM nozzle 28.
  • the second upper position state of the processing cup 12 is such that the upper end of the second guard 54 is intermediate between the lower end surface 29 a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5. It is a position located above the position M (see FIG. 3B). After the second guard 54 is raised, the control device 3 opens the SPM valve 31 (see FIG. 2A).
  • the first guard 53 is disposed at the liquid receiving position P2 and the second guard 54 is disposed at the upper position P1 ( That is, in the second upper position state of the processing cup 12, the high temperature SPM is supplied to the upper surface of the substrate W in the rotating state.
  • the SPM supplied to the upper surface of the substrate W receives a centrifugal force due to the rotation of the substrate W and scatters laterally from the peripheral edge of the substrate W.
  • the SPM scattered to the side is received by the first guard 53 at the liquid receiving position P ⁇ b> 2 and flows down along the inner wall of the first guard 53.
  • the SPM flowing down the first guard 53 is led to the first drainage pipe 61 and led to a drainage treatment apparatus (not shown) for draining the SPM.
  • the SPM used is extremely high temperature (for example, about 170 ° C. to about 180 ° C.), a large amount of SPM mist MI is generated. Due to the supply of the SPM to the substrate W, a large amount of SPM mist MI generated around the upper surface of the substrate W floats on the upper surface of the substrate W.
  • annular gap 86 (see FIG. 5) formed between the upper end of the second guard 54 and the substrate facing surface 6 of the blocking plate 21 in the state of being disposed at the upper position P1. 3B) is set narrowly. Therefore, it is difficult for the atmosphere in the processing cup 12 to flow out into the chamber 4 through the annular gap 86. Thereby, it is possible to suppress or prevent the atmosphere containing the SPM mist MI inside the processing cup 12 from flowing into the chamber 4.
  • the gap S between the projection 75 and the partition plate 16 becomes substantially zero, so the downflow DF3 (see FIG. 3B) flowing inside the chamber 4 is By passing between the spin chuck 5 and the tip of the second guard 54 and entering the lower space 4a of the chamber 4, the outflow of the atmosphere containing the SPM mist MI from the processing cup 12 into the chamber 4 is prevented. Can be suppressed more effectively.
  • the SPM mist MI enters the internal space defined between the first guard 53 and the second guard 54, and as a result, the SPM mist There is a risk that MI may adhere to the walls of the internal space (the inner wall of the second guard 54, the outer wall of the first guard 53, etc.).
  • the control device 3 controls the guard lifting / lowering unit 55 to lower the first guard 53 from the liquid receiving position P2 to the lower position P3 and to move the second guard 54 to the upper position P1.
  • the state of the processing cup 12 is changed to the second liquid receiving position state.
  • the second guard 54 faces the peripheral end surface of the substrate W.
  • the control device 3 opens the water on-off valve 105 while closing the IPA on-off valve 106, thereby controlling the flow destination of the liquid flowing through the second drainage pipe 64. Set to 102.
  • the control device 3 controls the nozzle moving unit 32 to retract the SPM nozzle 28 to the retracted position.
  • a water supply process (step S4 in FIG. 5) is performed. Specifically, the control device 3 opens the water valve 47. 8B, water is discharged from the center axis nozzle 33 (from the second nozzle 25 (see FIG. 2B) toward the center of the upper surface of the substrate W. The water is discharged from the center axis nozzle 33. The water is deposited on the central portion of the upper surface of the substrate W, and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
  • the water supplied to the upper surface of the substrate W scatters from the peripheral edge of the substrate W toward the side of the substrate W, and is an internal space (first space) defined between the first guard 53 and the second guard 54.
  • the water flowing down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64.
  • the second drainage pipe The water flowing through 64 is supplied to the water branch pipe 102 and then sent to a treatment device (not shown) for draining the water.
  • step S5 in FIG. 5 an organic solvent process for supplying IPA as an organic solvent to the upper surface of the substrate W is performed.
  • the control device 3 opens the IPA on-off valve 106 while closing the water on-off valve 105, thereby controlling the flow destination of the liquid flowing through the second drainage pipe 64 to the IPA branch pipe 103 ( (See FIG. 7).
  • Other controls in the organic solvent step S5 are the same as those in the first substrate processing example.
  • the organic solvent step S5 in the second substrate processing example since the distribution destination of the liquid flowing through the second drainage pipe 64 is set to the IPA branch pipe 103, the IPA flowing through the second drainage pipe 64 is Are supplied to the branch pipe 103 for IPA and then sent to a processing device (not shown) for draining the IPA.
  • the organic solvent step S5 ends.
  • step S6 the control device 3 executes a spin dry process (step S6 in FIG. 5).
  • the control device 3 stops the rotation of the substrate W by the spin chuck 5 (step S7 in FIG. 5) and stops the rotation of the blocking plate 21.
  • the substrate W is unloaded from the chamber 4 (step S8 in FIG. 5).
  • a cup cleaning process for cleaning the processing cup 12 is executed.
  • water is used as the cleaning liquid.
  • control device 3 starts the rotation of the spin base 19 by the spin motor 17 (see FIG. 2A).
  • the control device 3 Prior to the start of water supply to the spin base 19, the control device 3 controls the guard lifting / lowering unit 55 (see FIG. 2A) to keep the first guard 53 at the lower position P3 while maintaining the second guard 54. Is raised to the liquid receiving position P2. That is, as shown in FIG. 8C, the state of the processing cup 12 is changed to the second liquid receiving position state. In the second liquid receiving position state of the processing cup 12, the second guard 54 faces the peripheral edge portion of the upper surface 19 a of the spin base 19.
  • the control device 3 Prior to the start of water supply to the spin base 19, the control device 3 opens the water on-off valve 105 (see FIG. 7) while closing the IPA on-off valve 106 (see FIG. 7), thereby The flow destination of the liquid flowing through the drainage pipe 64 is set to the water branch pipe 102 (see FIG. 7).
  • the control device 3 opens the water valve 47 (see FIG. 2). Thereby, as shown in FIG. 8C, water is discharged from the central axis nozzle 33 (second nozzle 25 (see FIG. 2B)).
  • the water discharged from the central axis nozzle 33 is deposited on the central portion of the upper surface 19a of the spin base 19 and receives a centrifugal force due to the rotation of the spin base 19, and the peripheral portion of the spin base 19 on the upper surface 19a of the spin base 19. And scatters from the peripheral edge of the spin base 19 to the side.
  • the water scattered from the peripheral edge of the spin base 19 is an internal space defined between the first guard 53 and the second guard 54 (the inner wall of the second guard 54, the outer wall of the first guard 53, etc.). And is received by the inner wall of the second guard 54.
  • the water flowing down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64 (see FIG. 7).
  • the water flowing through the second drainage pipe 64 is used for water. It is supplied to the branch pipe 102 and then sent to a treatment device (not shown) for draining water.
  • the walls of the internal space defined between the first guard 53 and the second guard 54 (the inner wall of the second guard 54 and the outer wall of the first guard 53), the second The IPA liquid adheres to the drainage groove 62 and the second drainage pipe 64, and the IPA liquid is washed away with water by the cup cleaning process.
  • the control device 3 closes the water valve 47 and stops the supply of water to the upper surface 19a of the spin base 19. Further, the control device 3 controls the spin motor 17 to stop the rotation of the spin base 19. Thereby, a cup washing
  • a dummy substrate made of SiC or the like (having the same diameter as the substrate W) is held by the spin chuck 5 and a cleaning solution such as water is used for the rotating dummy substrate.
  • a cleaning solution such as water
  • water may be scattered from the periphery of the dummy substrate to the side of the dummy substrate.
  • the SPM supply step S3 is executed in the second upper position state of the processing cup 12. Therefore, in the SPM supply step S3, the first chemical liquid scattered from the substrate can be satisfactorily received by the second guard 53 while arranging the second guard 53 as high as possible.
  • the wall of the internal space where the mist MI of the SPM generated in the SPM supply step S3 is partitioned between the first guard 53 and the second guard 54 (the inner wall of the second guard 54 or the first guard 53).
  • the internal space (the second space) in which the water scattered from the peripheral portion of the substrate W is partitioned between the first guard 53 and the second guard 54.
  • SPM adhering to the inner wall of the internal space can be washed away by supplying it to the inner wall of the guard 54 or the outer wall of the first guard 53. Therefore, it is possible to suppress or prevent the SPM and IPA from being mixed in the processing cup 12. Thereby, it can suppress or prevent that the inside of the processing cup 12 becomes a particle generation source.
  • the processing liquid discharged from the substrate W is received by the inner wall of the second guard 54. Therefore, after the organic solvent supply step S ⁇ b> 5 is finished, the IPA liquid adheres to the wall of the internal space defined between the first guard 53 and the second guard 54.
  • the wall of the internal space defined between the first guard 53 and the second guard 54 (the inner wall of the second guard 54 and the like)
  • the IPA liquid adhering to the outer wall of the first guard 53), the second drainage groove 62, and the second drainage pipe 64 can be washed away with water. Therefore, it is possible to suppress or prevent the SPM and IPA from coming into contact with each other inside the processing cup 12, thereby suppressing or preventing the inside of the processing cup 12 from becoming a particle generation source.
  • the water supply step S4 may be performed before the start of the SPM supply step S3.
  • the high temperature SPM is supplied to the upper surface of the substrate W in the rotating state with the second guard 54 disposed at the upper position P1.
  • a large distance is ensured between the upper opening 12a of the processing cup 12 and the substrate W.
  • mist of SPM is generated by supplying the high-temperature SPM to the substrate W.
  • the distance between the upper opening 12a of the processing cup 12 and the substrate W is secured large, It is difficult for the atmosphere containing mist to flow out of the processing cup 12 through the upper opening 12 a of the processing cup 12.
  • the upper position P1 of each of the guards 53 and 54 is such that the annular gap 86 formed between the upper end of the guard and the facing member 7 (substrate facing surface 6) is larger than the vertical width W1 of the nozzle arm 29.
  • the position is large and narrow as much as possible.
  • the annular gap 86 can be set to a minimum size within a range that allows passage of the nozzle arm 29. In this case, the amount of atmosphere flowing out from the inside of the processing cup 12 to the inside of the chamber 4 can be effectively reduced. Thereby, the spreading
  • the upper position P1 of each of the guards 53 and 54 is a position below the lower end surface 29a of the nozzle arm 29 and above the discharge port 28a. More specifically, the upper position P ⁇ b> 1 of each guard 53, 54 is such that the first gap 87 between the upper end of the guard and the lower end surface 38 a of the nozzle arm 29 is such that the lower end surface 29 a of the nozzle arm 29 and the SPM nozzle 28. This position is narrower than the second distance 88 between the discharge port 34a.
  • each of the guards 53 and 54 is such that the upper end of the guard is an intermediate position M between the lower end surface 38a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5 (see FIG. 3B). ) Above.
  • the upper position P1 By setting the upper position P1 to such a position, the amount of atmosphere flowing out from the processing cup 12 into the chamber 4 can be effectively reduced. Thereby, the spreading
  • a cleaning chemical supply process for supplying a cleaning chemical to the upper surface of the substrate W may be performed after the water supply process S4 is completed.
  • hydrofluoric acid and SC1 mixed solution containing NH 4 OH and H 2 O 2
  • SC1 mixed solution containing NH 4 OH and H 2 O 2
  • hydrogen peroxide solution (H 2 O 2 ) is supplied to the upper surface (front surface) of the substrate W after the SPM supply step S3 or the cleaning chemical solution supply step. You may perform the hydrogen peroxide solution supply process.
  • IPA is exemplified as an example of the organic solvent used as an example of the second chemical solution, but methanol, ethanol, HFE (hydrofluoroether), acetone, and the like can be exemplified as the organic solvent.
  • the organic solvent may be a liquid mixed with other components as well as a case where it is composed of only a single component.
  • a mixed solution of IPA and acetone or a mixed solution of IPA and methanol may be used.
  • substrate processing apparatus 4 chamber 5: spin chuck (substrate holding unit) 6: Substrate facing surface 7: Opposing member 8: SPM supply unit (first chemical solution supply unit) 10: Organic solvent supply unit (second chemical supply unit) 11: Water supply unit 12: Processing cup 17: Spin motor (rotary unit) 28: SPM nozzle (nozzle) 28a: Discharge port 29: Nozzle arm 29a: Lower end surface (lower end of nozzle arm) 55: Guard lifting unit (lifting unit) 75: Projection (occlusion) 86: Annular gap A3: Oscillating axis P1: Upper position P2: Liquid receiving position M: Intermediate position

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A substrate processing device comprises: a rotating unit which rotates a substrate being held on a substrate holding unit accommodated in a chamber about a vertical rotating axis; a nozzle which includes an ejection opening and which ejects, toward a main surface of the substrate being held on the rotating unit, a liquid via the ejection opening; a first chemical liquid supply unit for supplying a first chemical liquid to the nozzle; a processing cup which includes a plurality of tubular guards including a tubular first guard surrounding the substrate holding unit, and a tubular second guard surrounding the first guard, and which accommodates the substrate holding unit; a raising/lowering unit for raising/lowering at least one guard among the plurality of guards; and a control device which controls the rotating unit, the first chemical liquid supply unit, and the raising/lowering unit. The control device executes: an upper position arranging step of arranging at least one guard among the plurality of guards at an upper position which is a predetermined upper position that is set above a predetermined liquid reception position at which the first chemical liquid flying off the substrate being rotated by the rotating unit can be received by the guard, the upper position enabling the liquid flying off the substrate to be received by the guard; and a first chemical liquid supplying step of supplying the first chemical liquid to the main surface of the substrate while the substrate is being rotated by the rotating unit, with the guard arranged at the upper position.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 この発明は、薬液を用いて基板を処理する基板処理装置および基板処理方法に関する。前記基板の例には、半導体基板、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate using a chemical solution. Examples of the substrate include a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an FED (Field 基板 EmissionFDisplay) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, Ceramic substrates, solar cell substrates and the like are included.
 半導体装置液晶表示装置の製造工程では、半導体基板のなどの基板の表面に薬液による処理を施すために、基板を1枚ずつ処理する枚葉式の基板処理装置が用いられることがある。この枚葉式の基板処理装置は、チャンバ内に、たとえば、基板をほぼ水平に保持して回転させるスピンチャックと、このスピンチャックによって回転される基板に薬液を供給するためのノズルと、基板から飛散する処理液を受け止めて排液するための処理カップと、スピンチャックに保持された基板の表面(上面)に対向配置される円板状の遮断板とを含む。 In the manufacturing process of a semiconductor device liquid crystal display device, a single wafer processing apparatus for processing substrates one by one may be used to perform processing with a chemical on the surface of a substrate such as a semiconductor substrate. This single-wafer type substrate processing apparatus includes, for example, a spin chuck that rotates while holding the substrate substantially horizontal in a chamber, a nozzle for supplying a chemical to the substrate rotated by the spin chuck, and a substrate. It includes a processing cup for receiving and draining the scattered processing liquid, and a disc-shaped blocking plate disposed to face the surface (upper surface) of the substrate held by the spin chuck.
 処理カップは、たとえば、スピンチャックによる基板の回転軸線を中心軸線とする略円筒状をなしており、その上端には開口(上部開口)が設けられている。処理カップは、固定的に収容されたカップと、カップに対して昇降可能に設けられ、スピンチャックによって回転させられている基板から飛散する薬液を受け止めることが可能なガードとを備えている。通例、基板の液処理時には、少なくとも最も外側のガードの高さ位置が、基板から飛散する薬液を当該ガードによって受けることが可能な所定の液受け位置に設定される。 The processing cup has, for example, a substantially cylindrical shape with the rotation axis of the substrate by the spin chuck as the central axis, and an opening (upper opening) is provided at the upper end thereof. The processing cup includes a cup accommodated in a fixed manner and a guard that can be moved up and down with respect to the cup and that can catch a chemical liquid scattered from a substrate rotated by a spin chuck. Usually, at the time of liquid processing of the substrate, at least the height position of the outermost guard is set to a predetermined liquid receiving position where the chemical liquid splashing from the substrate can be received by the guard.
 この状態で、スピンチャックによって基板を回転させつつ、ノズルから基板の表面に薬液を供給することにより、基板の表面に薬液による処理が施される。基板の表面に供給された薬液は、基板の回転による遠心力を受けて、基板の周縁部から側方へ飛散する。そして、側方へ飛散した薬液はガードによって受け止められ、ガードの内壁を伝ってカップに供給され、その後排液処理される。 In this state, while the substrate is rotated by the spin chuck, the chemical solution is supplied to the surface of the substrate by supplying the chemical solution from the nozzle to the surface of the substrate. The chemical solution supplied to the surface of the substrate receives a centrifugal force due to the rotation of the substrate and scatters laterally from the peripheral edge of the substrate. And the chemical | medical solution which scattered to the side is received by the guard, is supplied to a cup along the inner wall of a guard, and is drained after that.
特開平9-97757号公報JP-A-9-97757
 ところが、ガードの液受け位置の高さ位置が、基板から飛散する薬液を受け止めるという目的を達成するためには十分な高さではあるものの、低目の高さ位置である場合には、処理カップ内を排気機構によって排気しても、処理カップの内部における、薬液のミスト等を含む雰囲気が、処理カップの上部開口を通って処理カップ外に流出して、チャンバの内部に拡散するおそれがある。薬液のミスト等を含む雰囲気は、パーティクルとなって基板に付着して当該基板を汚染したり、チャンバの内壁を汚染したりする原因となるので、このような雰囲気が周囲に拡散することを抑制または防止することが望ましい。 However, when the height of the liquid receiving position of the guard is high enough to achieve the purpose of catching the chemical liquid splashing from the substrate, the processing cup is Even if the inside is evacuated by the exhaust mechanism, the atmosphere containing the chemical mist or the like inside the processing cup may flow out of the processing cup through the upper opening of the processing cup and diffuse into the chamber. . The atmosphere containing chemical mist, etc. becomes particles and adheres to the substrate, contaminating the substrate, and contaminating the inner wall of the chamber. Or it is desirable to prevent.
 そこで、本発明の目的は、基板の主面に供給される薬液を含む雰囲気の、周囲への拡散を抑制できる基板処理装置および基板処理方法を提供することである。 Therefore, an object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of suppressing the diffusion of the atmosphere containing the chemical solution supplied to the main surface of the substrate to the surroundings.
 この発明は、チャンバと、前記チャンバ内に収容され、基板を水平姿勢に保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板を、鉛直な回転軸線まわりに回転させる回転ユニットと、吐出口を有し、前記回転ユニットに保持されている基板の主面に向けて、前記吐出口から液体を吐出するためのノズルと、前記ノズルに第1の薬液を供給するための第1の薬液供給ユニットと、前記基板保持ユニットの周囲を取り囲む筒状の第1のガード、および前記第1のガードの周囲を取り囲む筒状の第2のガードを含む複数の筒状のガードを有し、前記基板保持ユニットを収容する処理カップと、前記複数のガードのうち少なくとも一つのガードを昇降させるための昇降ユニットと、前記回転ユニット、前記第1の薬液供給ユニットおよび前記昇降ユニットを制御する制御装置とを含み、前記制御装置は、前記複数のガードのうち少なくとも一つのガードを、所定の上位置であって前記回転ユニットによって回転させられている基板から飛散する第1の薬液を当該ガードによって受けることが可能な所定の液受け位置よりも上方に設定され、当該基板から飛散する液体を当該ガードによって受けることが可能な上位置に配置する上位置配置工程と、前記ガードが前記上位置に配置されている状態で、前記回転ユニットによって基板を回転させながら基板の主面に第1の薬液を供給する第1の薬液供給工程とを実行する、基板処理装置を提供する。 The present invention includes a chamber, a substrate holding unit that is accommodated in the chamber and holds the substrate in a horizontal posture, a rotation unit that rotates the substrate held by the substrate holding unit around a vertical rotation axis, A nozzle for discharging liquid from the discharge port toward the main surface of the substrate that has a discharge port and is held by the rotating unit, and a first for supplying a first chemical to the nozzle A plurality of cylindrical guards including a chemical solution supply unit, a cylindrical first guard surrounding the periphery of the substrate holding unit, and a cylindrical second guard surrounding the periphery of the first guard; A processing cup for accommodating the substrate holding unit; an elevating unit for elevating and lowering at least one of the plurality of guards; the rotating unit; and the first chemical solution supply unit. And a control device for controlling the lifting unit, wherein the control device is configured to remove at least one of the plurality of guards from a substrate at a predetermined upper position and rotated by the rotating unit. An upper position arrangement that is set above a predetermined liquid receiving position where the first chemical liquid to be scattered can be received by the guard, and is arranged at an upper position where the liquid scattered from the substrate can be received by the guard. Executing a step and a first chemical supply step of supplying a first chemical to the main surface of the substrate while rotating the substrate by the rotation unit in a state where the guard is disposed at the upper position. A processing device is provided.
 この構成によれば、複数のガードのうち少なくとも一つのガードが、液受け位置よりも上方に設定された上位置に配置されている状態で、回転状態にある基板の主面に第1の薬液が供給される。複数のガードのうち少なくとも一つのガードが上位置に配置されている状態では、処理カップの上部開口と基板との間の距離が大きく確保されている。第1の薬液供給工程では、第1の薬液の基板への供給により薬液のミストが発生するのであるが、処理カップの上部開口と基板との間の距離が大きく確保されているために、薬液のミストを含む雰囲気が、処理カップの上部開口を通って処理カップ外に流出し難い。これにより、基板の主面に供給される第1の薬液を含む雰囲気の、周囲への拡散を抑制できる基板処理装置を提供できる。 According to this configuration, the first chemical liquid is disposed on the main surface of the substrate in the rotating state in a state where at least one of the plurality of guards is disposed at the upper position set higher than the liquid receiving position. Is supplied. In a state where at least one of the plurality of guards is disposed at the upper position, a large distance is ensured between the upper opening of the processing cup and the substrate. In the first chemical solution supply step, mist of the chemical solution is generated by supplying the first chemical solution to the substrate. However, since the distance between the upper opening of the processing cup and the substrate is ensured, the chemical solution It is difficult for the atmosphere containing the mist to flow out of the processing cup through the upper opening of the processing cup. Thereby, the substrate processing apparatus which can suppress the spreading | diffusion to the circumference | surroundings of the atmosphere containing the 1st chemical | medical solution supplied to the main surface of a board | substrate can be provided.
 この発明の一実施形態では、前記基板保持ユニットにより保持されている基板の上面に対して上方に対向する基板対向面を有し、前記ガードよりも上方に配置される対向部材であって、当該ガードが前記上位置に配置されている状態で当該ガードの上端との間に環状隙間を形成する対向部材をさらに含む。 In one embodiment of the present invention, there is provided a facing member that has a substrate facing surface facing upward with respect to the upper surface of the substrate held by the substrate holding unit, and is disposed above the guard, It further includes an opposing member that forms an annular gap with the upper end of the guard in a state where the guard is disposed at the upper position.
 この構成によれば、処理カップの内部の雰囲気がチャンバの内部に流出するためには、処理カップ内の雰囲気が上部開口を通って処理カップ外に流出するだけでなく、さらに、上位置に配置されている状態のガードの上端と基板対向面との間の環状隙間を通ってチャンバの内部へと至る必要がある。この場合、環状隙間が狭くなるようにガードの上位置を設定することにより、環状隙間を通ってチャンバの内部に流出する雰囲気の量を効果的に抑制あるいは防止できる。 According to this configuration, in order for the atmosphere inside the processing cup to flow out into the chamber, the atmosphere in the processing cup not only flows out of the processing cup through the upper opening, but is further arranged at the upper position. It is necessary to reach the inside of the chamber through an annular gap between the upper end of the guard in the state of being placed and the substrate facing surface. In this case, by setting the upper position of the guard so that the annular gap is narrowed, the amount of atmosphere flowing out into the chamber through the annular gap can be effectively suppressed or prevented.
 前記装置は、前記ノズルを保持し、前記基板保持ユニットに保持されている基板の主面に沿って前記ノズルを移動するように、当該基板の回転範囲外に設定された所定の揺動軸線周りに揺動可能に設けられたノズルアームをさらに含んでいてもよい。この場合、前記環状隙間は、前記ノズルアームが前記回転範囲の内外を跨ることができるように、前記ノズルアームの上下幅よりも大きく設定されていてもよい。 The apparatus holds the nozzle and moves around the predetermined swing axis set outside the rotation range of the substrate so as to move the nozzle along the main surface of the substrate held by the substrate holding unit. It may further include a nozzle arm provided to be swingable. In this case, the annular gap may be set larger than the vertical width of the nozzle arm so that the nozzle arm can straddle the inside and outside of the rotation range.
 この構成によれば、環状隙間をこのような大きさに設定することで、ノズルアームを、環状隙間を通過しながら回転範囲の内外を跨らせることができる。そして、環状隙間をできるだけ小さくすることにより、環状隙間を、ノズルアームの通過を許容する範囲で最小限の大きさに設定することもできる。この場合、処理カップの内部からチャンバの内部に流出する雰囲気の量を効果的に削減できる。これにより、第1の薬液を含む雰囲気の、周囲への拡散を、より一層効果的に抑制できる。 According to this configuration, by setting the annular gap to such a size, the nozzle arm can be straddled inside and outside the rotation range while passing through the annular gap. Then, by making the annular gap as small as possible, the annular gap can be set to a minimum size within a range that allows passage of the nozzle arm. In this case, the amount of atmosphere flowing out from the inside of the processing cup to the inside of the chamber can be effectively reduced. Thereby, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed much more effectively.
 前記基板処理装置は、前記ノズルを保持し、前記基板保持ユニットに保持されている基板の主面に沿って前記ノズルを移動するように、前記基板保持ユニットの側方に設定された所定の揺動軸線周りに揺動可能に設けられたノズルアームをさらに含んでいてもよい。この場合、前記上位置は、当該上位置に配置されている状態の前記ガードの上端と前記ノズルアームの下端との間の第1の間隔が、前記ノズルアームの下端と前記吐出口との間の第2の間隔よりも狭くなるような位置であってもよい。 The substrate processing apparatus holds the nozzle, and moves the nozzle along a main surface of the substrate held by the substrate holding unit. It may further include a nozzle arm provided so as to be swingable around the movement axis. In this case, the first position between the upper end of the guard and the lower end of the nozzle arm in a state where the upper position is located is between the lower end of the nozzle arm and the discharge port. The position may be narrower than the second interval.
 この構成によれば、第1の間隔と第2の間隔との大小関係をこのように設定することで、処理カップからチャンバの内部に流出する雰囲気の量を効果的に削減できる。これにより、第1の薬液を含む雰囲気の、周囲への拡散を、より一層効果的に抑制できる。 According to this configuration, by setting the magnitude relationship between the first interval and the second interval in this way, it is possible to effectively reduce the amount of atmosphere flowing out from the processing cup into the chamber. Thereby, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed much more effectively.
 前記上位置は、当該上位置に配置されている状態の前記ガードの上端が、前記ノズルアームの下端と前記基板保持ユニットに保持されている基板の主面との間の中間位置よりも上方に位置するような位置であってもよい。 In the upper position, the upper end of the guard in the upper position is higher than the intermediate position between the lower end of the nozzle arm and the main surface of the substrate held by the substrate holding unit. The position may be a position.
 この構成によれば、上位置を前述のような位置に設定することで、処理カップからチャンバの内部に流出する雰囲気の量を効果的に削減できる。これにより、第1の薬液を含む雰囲気の、周囲への拡散を、より一層効果的に抑制できる。 According to this configuration, the amount of the atmosphere flowing out from the processing cup into the chamber can be effectively reduced by setting the upper position to the position as described above. Thereby, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed much more effectively.
 前記装置は、前記第1の薬液とは種類の異なる第2の薬液を前記基板の主面に供給するための第2の薬液供給ユニットをさらに含んでいてもよい。この場合、前記制御装置は前記第2の薬液供給ユニットをさらに制御するものであり、前記制御装置は、前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に第2の薬液を供給する第2の薬液供給工程とをさらに実行してもよい。 The apparatus may further include a second chemical solution supply unit for supplying a second chemical solution different in type from the first chemical solution to the main surface of the substrate. In this case, the control device further controls the second chemical solution supply unit, and the control device lowers the upper end of the first guard from the substrate held by the substrate holding unit. And a step of disposing the second guard at the liquid receiving position, the first guard is disposed at the lower position, and the second guard is disposed at the liquid receiving position. And a second chemical supply step for supplying a second chemical to the main surface of the substrate while rotating the substrate by the rotating unit.
 この構成によれば、第1のガードが下位置に配置され、かつ第2のガードが液受け位置に配置されている状態で、第2の薬液供給工程が実行される。そのため、第2の薬液供給工程において、基板から飛散する第2の薬液を、液受け位置にある第2のガードで良好に受け止めることができる。 According to this configuration, the second chemical liquid supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the second chemical solution supply step, the second chemical solution scattered from the substrate can be satisfactorily received by the second guard at the liquid receiving position.
 前記制御装置は、前記第1および第2のガードを前記上位置に配置する工程を、前記上位置配置工程として実行してもよい。 The control device may execute the step of arranging the first and second guards at the upper position as the upper position arranging step.
 この構成によれば、第1および第2のガードが上位置に配置されている状態で、第1の薬液供給工程が実行される。そのため、第1の薬液供給工程において、第1のガードをできるだけ上方に配置しながら、当該第1のガードにより、基板から飛散する第1の薬液を良好に受け止めることができる。これにより、第1の薬液供給工程において、第1の薬液を含む雰囲気の、周囲への拡散を、より効果的に抑制できる。 According to this configuration, the first chemical solution supply step is executed in a state where the first and second guards are arranged at the upper position. Therefore, in the first chemical liquid supply step, the first chemical liquid scattered from the substrate can be satisfactorily received by the first guard while arranging the first guard as high as possible. Thereby, in the 1st chemical | medical solution supply process, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed more effectively.
 前記装置は、前記ノズルに水を供給するための水供給ユニットをさらに含んでいてもよい。前記制御装置は前記水供給ユニットをさらに制御するものであってもよい。前記制御装置は、前記第1および第2のガードを前記液受け位置に配置する工程と、前記第1および第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに実行してもよい。 The apparatus may further include a water supply unit for supplying water to the nozzle. The control device may further control the water supply unit. The control device includes the step of disposing the first and second guards at the liquid receiving position, and the rotating unit by the rotating unit in a state where the first and second guards are disposed at the liquid receiving position. You may further perform the water supply process which supplies water to the main surface of the said board | substrate, rotating a board | substrate.
 この構成によれば、第1および第2のガードが液受け位置に配置されている状態で、水供給工程が実行される。そのため、水供給工程において、基板から飛散する水を、液受け位置にある第1のガードで良好に受け止めることができる。 According to this configuration, the water supply step is executed in a state where the first and second guards are arranged at the liquid receiving position. Therefore, in the water supply step, water scattered from the substrate can be received well by the first guard at the liquid receiving position.
 水供給工程では、基板の主面の周囲に薬液ミストがほとんど存在しないので、第1のガードが液受け位置に位置していても、処理カップからチャンバの内部への、薬液ミストの流出はほとんどない。 In the water supply process, since there is almost no chemical mist around the main surface of the substrate, even if the first guard is located at the liquid receiving position, there is almost no chemical mist flowing out of the processing cup into the chamber. Absent.
 前記制御装置は、前記第1のガードを、前記液受け位置に配置し、かつ前記第2のガードを前記上位置に配置する工程を、前記上位置配置工程として実行してもよい。 The control device may execute a step of arranging the first guard at the liquid receiving position and arranging the second guard at the upper position as the upper position arranging step.
 この構成によれば、第1のガードが液受け位置に配置され、かつ第2のガードが上位置に配置されている状態で、第1の薬液供給工程が実行される。上位置にある第2のガードをできるだけ上方に配置することにより、第1の薬液のミストが処理カップ外に流出することを抑制できる。したがって、第1の薬液供給工程において、基板から飛散する第1の薬液を、液受け位置にある第1のガードで受け止めながら、第1の薬液のミストを含む雰囲気の処理カップ外への流出を抑制できる。これにより、第1の薬液供給工程において、第1の薬液を含む雰囲気の、周囲への拡散を、より効果的に抑制できる。 According to this configuration, the first chemical liquid supply step is executed in a state where the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position. By disposing the second guard in the upper position as high as possible, it is possible to suppress the mist of the first chemical liquid from flowing out of the processing cup. Therefore, in the first chemical solution supply step, the first chemical solution scattered from the substrate is received by the first guard at the liquid receiving position, and the outflow of the atmosphere containing the mist of the first chemical solution to the outside of the processing cup is prevented. Can be suppressed. Thereby, in the 1st chemical | medical solution supply process, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed more effectively.
 前記装置は、前記ノズルに水を供給するための水供給ユニットをさらに含んでいてもよい。前記制御装置は前記水供給ユニットをさらに制御してもよい。前記制御装置は、前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに実行してもよい。 The apparatus may further include a water supply unit for supplying water to the nozzle. The control device may further control the water supply unit. The control device arranges the first guard at a lower position where an upper end of the first guard is located below the substrate held by the substrate holding unit, and arranges the second guard at the liquid receiving position. And a main unit of the substrate while rotating the substrate by the rotating unit in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. You may further perform the water supply process which supplies water to a surface.
 この構成によれば、第1のガードが下位置に配置され、かつ第2のガードが液受け位置に配置されている状態で、水供給工程が実行される。そのため、水供給工程において、基板から飛散する水を、液受け位置にある第2のガードで良好に受け止めることができる。    According to this configuration, the water supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the water supply process, the water scattered from the substrate can be received well by the second guard at the liquid receiving position. *
 また、第1の薬液供給工程において、第1のガードを液受け位置に配置しかつ第2のガードを上位置に配置するので、第1の薬液供給工程の後には、第1のガードと第2のガードとの間に区画される内部空間の壁に第1薬液のミストが付着しているおそれがある。しかしながら、水供給工程において、第1のガードと第2のガードとの間に区画される内部空間に供給することができる。そのため、第1のガードと第2のガードとの間に区画される内部空間の壁に第1薬液のミストが付着している場合であっても、水供給工程の実行により、当該第1薬液のミストを水で洗い流すことができる。 In the first chemical supply process, the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position. Therefore, after the first chemical supply process, the first guard and the second guard are disposed. There is a possibility that the mist of the first chemical solution is attached to the wall of the internal space partitioned between the two guards. However, in the water supply step, the water can be supplied to the internal space defined between the first guard and the second guard. Therefore, even if the mist of the 1st chemical | medical solution has adhered to the wall of the internal space divided between the 1st guard and the 2nd guard, the said 1st chemical | medical solution is performed by execution of a water supply process. The mist can be washed away with water.
 前記制御装置は、前記水供給工程を、前記第1の薬液供給工程の実行前および/もしくは実行後、ならびに/または、前記第2の薬液供給工程の実行前および/もしくは実行後において実行してもよい。 The control device executes the water supply step before and / or after the execution of the first chemical solution supply step and / or before and / or after the execution of the second chemical solution supply step. Also good.
 この構成によれば、互いに異なる種類の薬液を用いる第1および第2の薬液供給工程が、共通のチャンバ内において実行される。また、水供給工程が、第1の薬液供給工程の実行前および/もしくは実行後、ならびに/または、第2の薬液供給工程の実行前および/もしくは実行後において実行される。 According to this configuration, the first and second chemical liquid supply steps using different types of chemical liquids are performed in a common chamber. Further, the water supply process is executed before and / or after the first chemical liquid supply process and / or before and / or after the second chemical liquid supply process.
 第1の薬液供給工程の終了後および/または第2の薬液供給工程の開始前に、第1のガードと第2のガードとの間に区画される内部空間の壁に第1薬液のミストが付着していることがある。この場合、第1の薬液供給工程の終了後および/または第2の薬液供給工程の開始前に水供給工程を実施することにより、内部空間に水を供給することができ、これにより内部空間の壁に付着している第1の薬液のミストを洗い流すことができる。そのため、第2の薬液供給工程の開始時に、内部空間の壁に第1の薬液のミストは残留していない。したがって、当該第2の薬液供給工程において第2の薬液が内部空間に進入しても、当該第2の薬液は第1の薬液と混触しない。これにより、内部空間の内部における第1の薬液と第2の薬液との混触を防止できる。 After the end of the first chemical solution supply process and / or before the start of the second chemical solution supply process, the mist of the first chemical solution is formed on the wall of the internal space defined between the first guard and the second guard. May adhere. In this case, water can be supplied to the internal space by performing the water supply step after the end of the first chemical solution supply step and / or before the start of the second chemical solution supply step. The mist of the 1st chemical | medical solution adhering to the wall can be washed away. Therefore, at the start of the second chemical liquid supply process, no mist of the first chemical liquid remains on the wall of the internal space. Therefore, even if the second chemical liquid enters the internal space in the second chemical liquid supply step, the second chemical liquid does not come into contact with the first chemical liquid. Thereby, the contact with the 1st chemical | medical solution and the 2nd chemical | medical solution in the inside of internal space can be prevented.
 前記装置は、前記チャンバ内において、前記基板保持ユニットの側方領域を、上側の上空間と下側の下空間とに上下に仕切る仕切り板とを含んでいてもよい。この場合、前記下空間には、排気口が開口しており、前記第2のガードと前記仕切り板との間には隙間が形成されていてもよい。前記第2のガードは、前記隙間を閉塞するための閉塞部を有していてもよい。さらに、前記第2のガードが前記上位置に配置されている状態で、前記閉塞部が前記隙間を閉塞し、かつ前記第2のガードが、前記上位置よりも下方に設定された所定の下方位置に配置されている状態で前記隙間が形成されていてもよい。 The apparatus may include a partition plate that vertically divides a side region of the substrate holding unit into an upper space on the upper side and a lower space on the lower side in the chamber. In this case, an exhaust port is opened in the lower space, and a gap may be formed between the second guard and the partition plate. The second guard may have a closing portion for closing the gap. Further, in a state where the second guard is disposed at the upper position, the closing portion closes the gap, and the second guard is set below the upper position. The said clearance gap may be formed in the state arrange | positioned in the position.
 この構成によれば、隙間が開口していると、チャンバの内部を流れる気流が、処理カップの内部および下空間の双方に流れる。一方、隙間が閉塞していると、チャンバの内部を流れる気流は下空間には流れず、処理カップの内部に集まる。 According to this configuration, when the gap is open, the airflow flowing inside the chamber flows both inside and below the processing cup. On the other hand, when the gap is closed, the airflow flowing inside the chamber does not flow into the lower space but collects inside the processing cup.
 第2のガードが上位置にある状態で第1の薬液供給工程が実行される場合には、第1の薬液供給工程において、チャンバの内部から処理カップの内部へと向かう気流を形成できる。これにより、処理カップからチャンバの内部への薬液ミストを含む雰囲気の流出を、より効果的に抑制できる。 When the first chemical solution supply process is executed in a state where the second guard is in the upper position, in the first chemical solution supply process, an air flow from the inside of the chamber to the inside of the processing cup can be formed. Thereby, the outflow of the atmosphere containing the chemical mist from the processing cup to the inside of the chamber can be more effectively suppressed.
 また、前記第1の薬液は、硫酸と過酸化水素水との混合液を含んでいてもよい。 Further, the first chemical solution may include a mixed solution of sulfuric acid and hydrogen peroxide solution.
 この発明は、チャンバと、前記チャンバ内に収容され、基板を水平姿勢に保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板を、鉛直な回転軸線まわりに回転させる回転ユニットと、前記基板保持ユニットの周囲を取り囲む筒状の第1のガード、および前記第1のガードの周囲を取り囲む筒状の第2のガードを含む複数のガードとを含む基板処理装置において実行される基板処理方法であって、前記基板保持ユニットによって基板を保持する基板保持工程と、前記複数のガードのうち少なくとも一つのガードを、所定の上位置であって前記回転ユニットによって回転させられている基板から飛散する液体を当該ガードによって受けることが可能な所定の液受け位置よりも上方に設定され、当該基板から飛散する液体を当該ガードによって受けることが可能な上位置に配置する上位置配置工程と、前記ガードが前記上位置に配置されている状態で、前記回転ユニットによって基板を回転させながら基板の主面に第1の薬液を供給する第1の薬液供給工程とを含む、基板処理方法を提供する。 The present invention includes a chamber, a substrate holding unit that is accommodated in the chamber and holds the substrate in a horizontal posture, a rotation unit that rotates the substrate held by the substrate holding unit around a vertical rotation axis, Substrate processing performed in a substrate processing apparatus including a cylindrical first guard surrounding the periphery of the substrate holding unit and a plurality of guards including a cylindrical second guard surrounding the periphery of the first guard A substrate holding step of holding the substrate by the substrate holding unit; and at least one of the plurality of guards is scattered from the substrate at a predetermined upper position and rotated by the rotating unit. Liquid that is set above a predetermined liquid receiving position where the liquid to be received can be received by the guard and splashes from the substrate An upper position arranging step for arranging the first position on the main surface of the substrate while rotating the substrate by the rotating unit in a state in which the guard is disposed at the upper position. There is provided a substrate processing method including a first chemical supply step for supplying a chemical.
 この方法によれば、複数のガードのうち少なくとも一つのガードが、液受け位置よりも上方に設定された上位置に配置されている状態で、基板が回転させられると共に基板の主面に第1の薬液が供給される。複数のガードのうち少なくとも一つのガードが上位置に配置されている状態では、処理カップの上部開口と基板との間の距離が大きく確保されている。第1の薬液供給工程では、第1の薬液の基板への供給により薬液のミストが発生するのであるが、処理カップの上部開口と基板との間の距離が大きく確保されているために、薬液のミストを含む雰囲気が、処理カップの上部開口を通って処理カップ外に流出し難い。これにより、基板の主面に供給される第1の薬液を含む雰囲気の、周囲への拡散を抑制できる基板処理方法を提供できる。 According to this method, the substrate is rotated and at least one of the plurality of guards is disposed at the upper position set above the liquid receiving position, and the first surface is provided on the main surface of the substrate. The chemical solution is supplied. In a state where at least one of the plurality of guards is disposed at the upper position, a large distance is ensured between the upper opening of the processing cup and the substrate. In the first chemical solution supply step, mist of the chemical solution is generated by supplying the first chemical solution to the substrate. However, since the distance between the upper opening of the processing cup and the substrate is ensured, the chemical solution It is difficult for the atmosphere containing the mist to flow out of the processing cup through the upper opening of the processing cup. Thereby, the substrate processing method which can suppress the spreading | diffusion to the circumference | surroundings of the atmosphere containing the 1st chemical | medical solution supplied to the main surface of a board | substrate can be provided.
 この発明の一実施形態では、前記方法は、前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に第2の薬液を供給する第2の薬液供給工程とをさらに含む。 In one embodiment of the present invention, in the method, the first guard is disposed at a lower position where an upper end of the first guard is positioned lower than a substrate held by the substrate holding unit, and the second guard is disposed. In the liquid receiving position, and in the state where the first guard is arranged at the lower position and the second guard is arranged at the liquid receiving position, the substrate is moved by the rotating unit. A second chemical solution supply step of supplying a second chemical solution to the main surface of the substrate while rotating.
 この方法によれば、第1のガードが下位置に配置され、かつ第2のガードが液受け位置に配置されている状態で、第2の薬液供給工程が実行される。そのため、第2の薬液供給工程において、基板から飛散する第2の薬液を、液受け位置にある第2のガードで良好に受け止めることができる。 According to this method, the second chemical liquid supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the second chemical solution supply step, the second chemical solution scattered from the substrate can be satisfactorily received by the second guard at the liquid receiving position.
 前記上位置配置工程は、前記第1および第2のガードを前記上位置に配置する工程を含んでいてもよい。 The upper position arranging step may include a step of arranging the first and second guards at the upper position.
 この方法によれば、第1および第2のガードが上位置に配置されている状態で、第1の薬液供給工程が実行される。そのため、第1の薬液供給工程において、第1のガードをできるだけ上方に配置しながら、当該第1のガードにより、基板から飛散する第1の薬液を良好に受け止めることができる。これにより、第1の薬液供給工程において、第1の薬液を含む雰囲気の、周囲への拡散を、より効果的に抑制できる。 According to this method, the first chemical solution supply step is executed in a state where the first and second guards are arranged at the upper position. Therefore, in the first chemical liquid supply step, the first chemical liquid scattered from the substrate can be satisfactorily received by the first guard while arranging the first guard as high as possible. Thereby, in the 1st chemical | medical solution supply process, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed more effectively.
 前記方法は、前記第1および第2のガードを前記液受け位置に配置する工程と、前記第1および第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに含んでいてもよい。 The method includes the steps of disposing the first and second guards at the liquid receiving position, and the substrate by the rotating unit in a state where the first and second guards are disposed at the liquid receiving position. A water supply step of supplying water to the main surface of the substrate while rotating the substrate.
 この方法によれば、第1および第2のガードが液受け位置に配置されている状態で、水供給工程が実行される。そのため、水供給工程において、基板から飛散する水を、液受け位置にある第1のガードで良好に受け止めることができる。 According to this method, the water supply step is executed in a state where the first and second guards are arranged at the liquid receiving position. Therefore, in the water supply step, water scattered from the substrate can be received well by the first guard at the liquid receiving position.
 水供給工程では、基板の主面の周囲に薬液ミストがほとんど存在しないので、第1のガードが液受け位置に位置していても、処理カップからチャンバの内部への、薬液ミストの流出はほとんどない。 In the water supply process, since there is almost no chemical mist around the main surface of the substrate, even if the first guard is located at the liquid receiving position, there is almost no chemical mist flowing out of the processing cup into the chamber. Absent.
 前記上位置配置工程は、前記第1のガードを前記液受け位置に配置し、かつ前記第2のガードを前記上位置に配置する工程を含んでいてもよい。 The upper position arranging step may include a step of arranging the first guard at the liquid receiving position and arranging the second guard at the upper position.
 この方法によれば、第1のガードが液受け位置に配置され、かつ第2のガードが上位置に配置されている状態で、第1の薬液供給工程が実行される。上位置にある第2のガードをできるだけ上方に配置することにより、第1の薬液のミストが処理カップ外に流出することを抑制できる。したがって、第1の薬液供給工程において、基板から飛散する第1の薬液を、液受け位置にある第1のガードで受け止めながら、第1の薬液のミストを含む雰囲気の処理カップ外への流出を抑制できる。これにより、第1の薬液供給工程において、第1の薬液を含む雰囲気の、周囲への拡散を、より効果的に抑制できる。 According to this method, the first chemical liquid supply step is executed in a state where the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position. By disposing the second guard in the upper position as high as possible, it is possible to suppress the mist of the first chemical liquid from flowing out of the processing cup. Therefore, in the first chemical solution supply step, the first chemical solution scattered from the substrate is received by the first guard at the liquid receiving position, and the outflow of the atmosphere containing the mist of the first chemical solution to the outside of the processing cup is prevented. Can be suppressed. Thereby, in the 1st chemical | medical solution supply process, the spreading | diffusion to the circumference | surroundings of the atmosphere containing a 1st chemical | medical solution can be suppressed more effectively.
 前記方法は、前記第1および第2のガードを前記液受け位置に配置する工程と、前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに含んでいてもよい。 The method includes the steps of disposing the first and second guards at the liquid receiving position, and lowering the upper end of the first guard below the substrate held by the substrate holding unit. Disposing the second guard at the liquid receiving position, the first guard disposed at the lower position, and the second guard disposed at the liquid receiving position. And a water supply step of supplying water to the main surface of the substrate while rotating the substrate by the rotating unit.
 この方法によれば、第1のガードが下位置に配置され、かつ第2のガードが液受け位置に配置されている状態で、水供給工程が実行される。そのため、水供給工程において、基板から飛散する水を、液受け位置にある第2のガードで良好に受け止めることができる。    According to this method, the water supply step is executed in a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position. Therefore, in the water supply process, the water scattered from the substrate can be received well by the second guard at the liquid receiving position. *
 また、第1の薬液供給工程において、第1のガードを液受け位置に配置しかつ第2のガードを上位置に配置するので、第1の薬液供給工程の後には、第1のガードと第2のガードとの間に区画される内部空間の壁に第1薬液のミストが付着しているおそれがある。しかしながら、水供給工程において、第1のガードと第2のガードとの間に区画される内部空間に供給することができる。そのため、第1のガードと第2のガードとの間に区画される内部空間の壁に第1薬液のミストが付着している場合であっても、水供給工程の実行により、当該第1薬液のミストを水で洗い流すことができる。 In the first chemical supply process, the first guard is disposed at the liquid receiving position and the second guard is disposed at the upper position. Therefore, after the first chemical supply process, the first guard and the second guard are disposed. There is a possibility that the mist of the first chemical solution is attached to the wall of the internal space partitioned between the two guards. However, in the water supply step, the water can be supplied to the internal space defined between the first guard and the second guard. Therefore, even if the mist of the 1st chemical | medical solution has adhered to the wall of the internal space divided between the 1st guard and the 2nd guard, the said 1st chemical | medical solution is performed by execution of a water supply process. The mist can be washed away with water.
 前記水供給工程は、前記第1の薬液供給工程の実行前および/もしくは実行後、ならびに/または、前記第2の薬液供給工程の実行前および/もしくは実行後において実行してもよい。 The water supply step may be executed before and / or after the execution of the first chemical solution supply step and / or before and / or after the execution of the second chemical solution supply step.
 この方法によれば、互いに異なる種類の薬液を用いる第1および第2の薬液供給工程が、共通のチャンバ内において実行される。また、水供給工程が、第1の薬液供給工程の実行前および/もしくは実行後、ならびに/または、第2の薬液供給工程の実行前および/もしくは実行後において実行される。 According to this method, the first and second chemical liquid supply steps using different types of chemical liquids are performed in a common chamber. Further, the water supply process is executed before and / or after the first chemical liquid supply process and / or before and / or after the second chemical liquid supply process.
 第1の薬液供給工程の終了後および/または第2の薬液供給工程の開始前に、第1のガードと第2のガードとの間に区画される内部空間の壁に第1薬液のミストが付着していることがある。この場合、第1の薬液供給工程の終了後および/または第2の薬液供給工程の開始前に水供給工程を実施することにより、内部空間に水を供給することができ、これにより内部空間の壁に付着している第1の薬液のミストを洗い流すことができる。そのため、第2の薬液供給工程の開始時に、内部空間の壁に第1の薬液のミストは残留していない。したがって、当該第2の薬液供給工程において第2の薬液が内部空間に進入しても、当該第2の薬液は第1の薬液と混触しない。これにより、内部空間の内部における第1の薬液と第2の薬液との混触を防止できる。 After the end of the first chemical solution supply process and / or before the start of the second chemical solution supply process, the mist of the first chemical solution is formed on the wall of the internal space defined between the first guard and the second guard. May adhere. In this case, water can be supplied to the internal space by performing the water supply step after the end of the first chemical solution supply step and / or before the start of the second chemical solution supply step. The mist of the 1st chemical | medical solution adhering to the wall can be washed away. Therefore, at the start of the second chemical liquid supply process, no mist of the first chemical liquid remains on the wall of the internal space. Therefore, even if the second chemical liquid enters the internal space in the second chemical liquid supply step, the second chemical liquid does not come into contact with the first chemical liquid. Thereby, the contact with the 1st chemical | medical solution and the 2nd chemical | medical solution in the inside of internal space can be prevented.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、本発明の一実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention. 図2Aは、前記基板処理装置に備えられた処理ユニットの構成例を説明するための図解的な断面図である。FIG. 2A is a schematic cross-sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus. 図2Bは、前記処理ユニットに含まれる対向部材の周辺の構成を具体的に説明するための図である。FIG. 2B is a diagram for specifically explaining a configuration around a counter member included in the processing unit. 図3Aは、図2Aに示す第2のガードが下位置にある状態において、前記チャンバの内部の気流の流れを説明するための図解的な図である。FIG. 3A is an illustrative view for describing the flow of airflow inside the chamber in a state where the second guard shown in FIG. 2A is in the lower position. 図3Bは、前記第2のガードが液受け位置にある状態において、前記チャンバの内部の気流の流れを説明するための図解的な図である。FIG. 3B is an illustrative view for explaining the flow of airflow inside the chamber in a state where the second guard is in the liquid receiving position. 図3Cは、前記第2のガードが上位置にある状態において、前記チャンバの内部の気流の流れを説明するための図解的な図である。FIG. 3C is an illustrative view for explaining the flow of airflow inside the chamber in a state where the second guard is in the upper position. 図4は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus. 図5は、前記処理ユニットによる第1の基板処理例を説明するための流れ図である。FIG. 5 is a flowchart for explaining a first substrate processing example by the processing unit. 図6A-6Bは、前記第1の基板処理例を説明するための図解的な図である。6A-6B are schematic diagrams for explaining the first substrate processing example. FIG. 図6C-6Dは、図6Bに続く工程を説明するための図解的な図である。6C-6D are schematic diagrams for explaining the process subsequent to FIG. 6B. 図6Eは、図6Dに続く工程を説明するための図解的な図である。FIG. 6E is an illustrative view for describing a step following FIG. 6D. 図7は、前記処理ユニットの下部の構成例を拡大して示す図解的な断面図である。FIG. 7 is an illustrative sectional view showing an enlarged configuration example of the lower part of the processing unit. 図8A-8Bは、前記処理ユニットによる第2の基板処理例を説明するための図解図である。8A-8B are illustrative views for explaining a second substrate processing example by the processing unit. 図8Cは、前記処理ユニットによる第2の基板処理例を説明するための図解図である。FIG. 8C is an illustrative view for explaining a second substrate processing example by the processing unit.
 図1は、本発明の一実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、処理液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御する制御装置3とを含む。搬送ロボットIRは、キャリヤCと基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。 FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to an embodiment of the present invention. The substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a disk-shaped substrate. The substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port It includes transfer robots IR and CR that transfer the substrate W between the LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1. The transfer robot IR transfers the substrate W between the carrier C and the substrate transfer robot CR. The substrate transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2. The plurality of processing units 2 have the same configuration, for example.
 図2Aは、処理ユニット2の構成例を説明するための図解的な断面図である。 FIG. 2A is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
 処理ユニット2は、箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの上面(主面)に対向する基板対向面6を有する対向部材7と、スピンチャック5に保持されている基板Wに、第1の薬液としての硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM)を供給するためのSPM供給ユニット(第1の薬液供給ユニット)8と、スピンチャック5に保持されている基板Wの表面(上面)に、第2の薬液としての有機溶剤(低表面張力を有する有機溶剤)の一例のイソプロピルアルコール(isopropyl alcohol:IPA)液を供給するための有機溶剤供給ユニット(第2の薬液供給ユニット)10と、スピンチャック5に保持されている基板Wの表面(上面)に、リンス液としての水を供給するための水供給ユニット11と、スピンチャック5を取り囲む筒状の処理カップ12とを含む。 The processing unit 2 includes a box-shaped chamber 4 and a spin chuck that holds a single substrate W in the chamber 4 in a horizontal posture and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W. (Substrate holding unit) 5, an opposing member 7 having a substrate facing surface 6 facing the upper surface (main surface) of the substrate W held by the spin chuck 5, and a substrate W held by the spin chuck 5, SPM supply unit (first chemical supply unit) 8 for supplying a sulfuric acid / hydrogen peroxide / mixture (SPM) as a first chemical solution and a spin chuck 5 Organic for supplying an isopropyl alcohol (IPA) liquid as an example of an organic solvent (an organic solvent having a low surface tension) as the second chemical liquid to the surface (upper surface) of the substrate W An agent supply unit (second chemical supply unit) 10, a water supply unit 11 for supplying water as a rinsing liquid to the surface (upper surface) of the substrate W held by the spin chuck 5, and the spin chuck 5 And a cylindrical processing cup 12 surrounding the container.
 チャンバ4は、スピンチャック5やノズルを収容する箱状の隔壁13と、隔壁13の上部から隔壁13内に清浄空気(フィルタによってろ過された空気)を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)14と、チャンバ4の内部において、チャンバ4内における処理カップ12の側方領域15を、上部領域15aと下部領域15bとに上下に仕切る仕切り板16とを含む。 The chamber 4 includes a box-shaped partition wall 13 that accommodates the spin chuck 5 and the nozzles, and an FFU (fan filter filter) as a blower unit that sends clean air (air filtered by a filter) into the partition wall 13 from above the partition wall 13. Unit) 14 and a partition plate 16 that vertically divides the side region 15 of the processing cup 12 in the chamber 4 into an upper region 15a and a lower region 15b.
 FFU14は、隔壁13の上方に配置されており、隔壁13の天井に取り付けられている。制御装置3は、FFU14が隔壁13の天井からチャンバ4内に下向きに清浄空気を送るようにFFU14を制御する。 The FFU 14 is disposed above the partition wall 13 and attached to the ceiling of the partition wall 13. The control device 3 controls the FFU 14 so that the FFU 14 sends clean air downward from the ceiling of the partition wall 13 into the chamber 4.
 隔壁13の下部または底部には、排気口9が開口している。排気口9には、排気ダクト9aが接続されている。排気装置は、チャンバ4の内部の下部空間4a(チャンバ4の内部空間のうち、上下方向に関し仕切り板16よりも下方の空間)の雰囲気を吸引して、当該下部空間4aを排気する。 An exhaust port 9 is opened at the bottom or bottom of the partition wall 13. An exhaust duct 9 a is connected to the exhaust port 9. The exhaust device sucks the atmosphere of the lower space 4a inside the chamber 4 (the space below the partition plate 16 in the vertical direction in the internal space of the chamber 4) and exhausts the lower space 4a.
 FFU14がチャンバ4の内部に清浄空気を供給しながら、排気装置がチャンバ4の下部空間4aを排気することにより、チャンバ4内にダウンフロー(下降流)が形成される。基板Wの処理は、チャンバ4内にダウンフローが形成されている状態で行われる。 While the FFU 14 supplies clean air to the inside of the chamber 4, the exhaust device exhausts the lower space 4 a of the chamber 4, whereby a downflow (downflow) is formed in the chamber 4. The processing of the substrate W is performed in a state where a down flow is formed in the chamber 4.
 仕切り板16は、処理カップ12の外壁とチャンバ4の隔壁13(側方の隔壁)との間に配置されている。仕切り板16の内端部は、処理カップ12の外壁の外周面に沿って配置されている。仕切り板16の外端部は、チャンバ4の隔壁13(側方の隔壁)の内面に沿って配置されている。後述するSPMノズル28およびノズルアーム29は、仕切り板16よりも上方に配置されている。仕切り板16は、一枚の板であってもよいし、同じ高さに配置された複数枚の板であってもよい。仕切り板16の上面は、水平であってもよいし、回転軸線A1に向かって斜め上に延びていてもよい。 The partition plate 16 is disposed between the outer wall of the processing cup 12 and the partition wall 13 (side partition wall) of the chamber 4. The inner end portion of the partition plate 16 is disposed along the outer peripheral surface of the outer wall of the processing cup 12. The outer end portion of the partition plate 16 is disposed along the inner surface of the partition wall 13 (side partition wall) of the chamber 4. An SPM nozzle 28 and a nozzle arm 29 described later are disposed above the partition plate 16. The partition plate 16 may be a single plate or a plurality of plates disposed at the same height. The upper surface of the partition plate 16 may be horizontal or may extend obliquely upward toward the rotation axis A1.
 スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ(回転ユニット)17と、このスピンモータ17の駆動軸と一体化された下スピン軸18と、下スピン軸18の上端に略水平に取り付けられた円板状のスピンベース19とを含む。スピンベース19は、平坦面からなる上面19aを備えている。 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed. Specifically, the spin chuck 5 is mounted substantially horizontally on a spin motor (rotary unit) 17, a lower spin shaft 18 integrated with a drive shaft of the spin motor 17, and an upper end of the lower spin shaft 18. Disc-shaped spin base 19. The spin base 19 has an upper surface 19a made of a flat surface.
 スピンベース19の上面19aには、その周縁部に複数個(3個以上。たとえば6個)の挟持部材20が配置されている。複数個の挟持部材20は、スピンベース19の上面周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けて配置されている。 On the upper surface 19a of the spin base 19, a plurality of (three or more, for example, six) clamping members 20 are arranged on the peripheral edge thereof. The plurality of clamping members 20 are arranged at appropriate intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the peripheral edge of the upper surface of the spin base 19.
 また、スピンチャック5としては、挟持式のものに限らず、たとえば、基板Wの裏面を真空吸着することにより、基板Wを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線まわりに回転することにより、スピンチャック5に保持されている基板Wを回転させる真空吸着式のもの(バキュームチャック)が採用されてもよい。 Further, the spin chuck 5 is not limited to a sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum-sucking the back surface of the substrate W, and further rotated around a vertical rotation axis in that state. By doing so, a vacuum suction type (vacuum chuck) that rotates the substrate W held on the spin chuck 5 may be employed.
 対向部材7は、遮断板21と、遮断板21に同軸に設けられた上スピン軸22とを含む。遮断板21は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状である。基板対向面6は、遮断板21の下面を形成しており、基板Wの上面全域に対向する円形である。 The facing member 7 includes a blocking plate 21 and an upper spin shaft 22 provided coaxially with the blocking plate 21. The blocking plate 21 has a disc shape having a diameter substantially equal to or larger than that of the substrate W. The substrate facing surface 6 forms a lower surface of the blocking plate 21 and has a circular shape facing the entire upper surface of the substrate W.
 基板対向面6の中央部には、遮断板21および上スピン軸22を上下に貫通する円筒状の貫通穴23(図2B参照)が形成されている。貫通穴23の内周壁は、円筒面によって区画されている。貫通穴23の内部には、それぞれ上下に延びる第1のノズル24および第2のノズル25が挿通している。 A cylindrical through hole 23 (see FIG. 2B) penetrating the blocking plate 21 and the upper spin shaft 22 up and down is formed at the center of the substrate facing surface 6. The inner peripheral wall of the through hole 23 is partitioned by a cylindrical surface. A first nozzle 24 and a second nozzle 25 extending vertically are inserted through the through hole 23.
 上スピン軸22には、遮断板回転ユニット26が結合されている。遮断板回転ユニット26は、遮断板21ごと上スピン軸22を回転軸線A2まわりに回転させる。遮断板21には、電動モータ、ボールねじ等を含む構成の遮断板昇降ユニット27が結合されている。遮断板昇降ユニット27は、第1および第2のノズル24,25ごと遮断板21を鉛直方向に昇降する。遮断板昇降ユニット27は、遮断板21の基板対向面6がスピンチャック5に保持されている基板Wの上面に近接する近接位置(図6D等参照)と、近接位置の上方に設けられた退避位置(図2Aや図6A等参照)の間で、遮断板21ならびに第1および第2のノズル24,25を昇降させる。遮断板昇降ユニット27は、近接位置と退避位置との間の各位置で遮断板21を保持可能である。 The upper spin shaft 22 is coupled with a blocking plate rotating unit 26. The shielding plate rotating unit 26 rotates the upper spin shaft 22 around the rotational axis A2 together with the shielding plate 21. A shield plate lifting / lowering unit 27 having a configuration including an electric motor, a ball screw, and the like is coupled to the shield plate 21. The blocking plate lifting / lowering unit 27 moves the blocking plate 21 in the vertical direction together with the first and second nozzles 24 and 25. The shield plate lifting / lowering unit 27 includes a proximity position (see FIG. 6D and the like) in which the substrate facing surface 6 of the shield plate 21 is close to the upper surface of the substrate W held by the spin chuck 5 and a retreat provided above the proximity position. The blocking plate 21 and the first and second nozzles 24, 25 are moved up and down between positions (see FIG. 2A, FIG. 6A, etc.). The shield plate lifting / lowering unit 27 can hold the shield plate 21 at each position between the proximity position and the retracted position.
 SPM供給ユニット8は、SPMノズル(ノズル)28と、SPMノズル28が先端部に取り付けられたノズルアーム29と、SPMノズル28に接続されたSPM配管30と、SPM配管30に介装されたSPMバルブ31と、ノズルアーム29に接続され、揺動軸線A3まわりにノズルアーム29を揺動させてSPMノズル28を移動させるノズル移動ユニット32とを含む。ノズル移動ユニット32は、モータ等を含む。 The SPM supply unit 8 includes an SPM nozzle (nozzle) 28, a nozzle arm 29 to which the SPM nozzle 28 is attached at the tip, an SPM pipe 30 connected to the SPM nozzle 28, and an SPM interposed in the SPM pipe 30. The valve 31 includes a nozzle moving unit 32 that is connected to the nozzle arm 29 and moves the SPM nozzle 28 by swinging the nozzle arm 29 around the swing axis A3. The nozzle moving unit 32 includes a motor and the like.
 SPMノズル28は、たとえば、連続流の状態で液を吐出するストレートノズルである。この実施形態では、SPMノズル28のボディの外周面に、吐出口28aが形成されており、吐出口28aから横向きにSPMを吐出するようになっている。しかし、この構成に代えて、SPMノズル28のボディの下端に吐出口が形成されており、吐出口28aから下向きにSPMを吐出する構成が採用されていてもよい。 The SPM nozzle 28 is, for example, a straight nozzle that discharges liquid in a continuous flow state. In this embodiment, the discharge port 28a is formed in the outer peripheral surface of the body of the SPM nozzle 28, and SPM is discharged from the discharge port 28a sideways. However, instead of this configuration, a configuration may be employed in which a discharge port is formed at the lower end of the body of the SPM nozzle 28 and SPM is discharged downward from the discharge port 28a.
 SPM配管30には、硫酸過酸化水素水供給源からの硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM)が供給されている。この実施形態では、SPM配管30に供給されるSPMは高温(たとえば約170℃~約180℃)である。硫酸と過酸化水素水との反応熱により、前記の高温まで昇温されたSPMがSPM配管30に供給されている。 The SPM pipe 30 is supplied with a sulfuric acid hydrogen peroxide solution mixture (sulfuric acid / hydrogen peroxide mixture: SPM) from a sulfuric acid hydrogen peroxide supply source. In this embodiment, the SPM supplied to the SPM pipe 30 is at a high temperature (eg, about 170 ° C. to about 180 ° C.). The SPM that has been heated to the high temperature by the heat of reaction between sulfuric acid and hydrogen peroxide is supplied to the SPM pipe 30.
 SPMバルブ31が開かれると、SPM配管30からSPMノズル28に供給された高温のSPMが、SPMノズル28の吐出口28aから吐出される。SPMバルブ31が閉じられると、SPMノズル28からの、高温のSPMの吐出が停止される。ノズル移動ユニット32は、SPMノズル28から吐出された高温のSPMが基板Wの上面に供給される処理位置と、SPMノズル28が平面視でスピンチャック5の側方に退避した退避位置との間で、SPMノズル28を移動させる。 When the SPM valve 31 is opened, the high-temperature SPM supplied from the SPM pipe 30 to the SPM nozzle 28 is discharged from the discharge port 28a of the SPM nozzle 28. When the SPM valve 31 is closed, high temperature SPM discharge from the SPM nozzle 28 is stopped. The nozzle moving unit 32 is located between the processing position where the high temperature SPM discharged from the SPM nozzle 28 is supplied to the upper surface of the substrate W and the retreat position where the SPM nozzle 28 retreats to the side of the spin chuck 5 in plan view. Then, the SPM nozzle 28 is moved.
 図2Bは、処理ユニット2に含まれる対向部材7の周辺の構成を具体的に説明するための図である。 FIG. 2B is a diagram for specifically explaining the configuration around the opposing member 7 included in the processing unit 2.
 貫通穴23の内部には上下に延びる中心軸ノズル33が挿通している。中心軸ノズル33は、第1および第2のノズル24,25と、第1および第2のノズル24,25を取り囲む筒状のケーシング34とを含む。 A central axis nozzle 33 extending vertically extends through the through hole 23. The central shaft nozzle 33 includes first and second nozzles 24 and 25 and a cylindrical casing 34 surrounding the first and second nozzles 24 and 25.
 第1のノズル24の下端には、下方に向けて液を吐出するための第1の吐出口35が形成されている。第2のノズル25の下端には、下方に向けて液を吐出するための第2の吐出口36が形成されている。この実施形態では、第1および第2のノズル24,25は、それぞれ、インナーチューブである。ケーシング34は、回転軸線A2に沿って上下方向に延びている。ケーシング34は、貫通穴23の内部に非接触状態で挿入されている。したがって、遮断板21の内周は、径方向に間隔を空けてケーシング34の外周を取り囲んでいる。 A first discharge port 35 for discharging a liquid downward is formed at the lower end of the first nozzle 24. A second discharge port 36 for discharging the liquid downward is formed at the lower end of the second nozzle 25. In this embodiment, each of the first and second nozzles 24 and 25 is an inner tube. The casing 34 extends in the vertical direction along the rotation axis A2. The casing 34 is inserted into the through hole 23 in a non-contact state. Therefore, the inner periphery of the shielding plate 21 surrounds the outer periphery of the casing 34 with a gap in the radial direction.
 有機溶剤供給ユニット10は、第1のノズル24と、第1のノズル24に接続され、内部が第1の吐出口35に連通する有機溶剤配管37と、有機溶剤配管37に介装され、有機溶剤を開閉する第1の有機溶剤バルブ38と、第1の有機溶剤バルブ38よりも下流側の有機溶剤配管37に介装され、有機溶剤を開閉する第2の有機溶剤バルブ39とを含む。 The organic solvent supply unit 10 is connected to the first nozzle 24, the organic solvent pipe 37 connected to the first nozzle 24, and the inside communicating with the first discharge port 35, and the organic solvent pipe 37. A first organic solvent valve 38 that opens and closes the solvent and a second organic solvent valve 39 that is interposed in the organic solvent pipe 37 on the downstream side of the first organic solvent valve 38 and opens and closes the organic solvent are included.
 有機溶剤配管37において第1の有機溶剤バルブ38と第2の有機溶剤バルブ39との間に設定された分岐位置40には、その先端に吸引装置(図示しない)が接続された吸引配管41が分岐接続されている。吸引配管41には、吸引配管41を開閉するための吸引バルブ42が介装されている。 At the branch position 40 set between the first organic solvent valve 38 and the second organic solvent valve 39 in the organic solvent pipe 37, there is a suction pipe 41 having a suction device (not shown) connected to the tip thereof. Branch connected. The suction pipe 41 is provided with a suction valve 42 for opening and closing the suction pipe 41.
 第1の有機溶剤バルブ38が開かれると、有機溶剤供給源からの有機溶剤が、第2の有機溶剤バルブ39へと供給される。この状態で第2の有機溶剤バルブ39が開かれると、第2の有機溶剤バルブ39に供給された有機溶剤が、第1の吐出口35から基板Wの上面中央部に向けて吐出される。 When the first organic solvent valve 38 is opened, the organic solvent from the organic solvent supply source is supplied to the second organic solvent valve 39. When the second organic solvent valve 39 is opened in this state, the organic solvent supplied to the second organic solvent valve 39 is discharged from the first discharge port 35 toward the center of the upper surface of the substrate W.
 吸引装置の作動状態において、第1の有機溶剤バルブ38が閉じられかつ第2の有機溶剤バルブ39が開かれた状態で吸引バルブ42が開かれると、吸引装置の働きが有効化され、有機溶剤配管37における分岐位置40よりも下流側の下流側部分43(以下、「有機溶剤下流側部分43」という)の内部が排気され、有機溶剤下流側部分43に含まれる有機溶剤が吸引配管41へと引き込まれる。吸引装置および吸引バルブ42は、吸引ユニット44に含まれている。 When the suction valve 42 is opened while the first organic solvent valve 38 is closed and the second organic solvent valve 39 is opened in the operating state of the suction device, the function of the suction device is activated, and the organic solvent The inside of the downstream portion 43 (hereinafter referred to as “organic solvent downstream portion 43”) downstream of the branch position 40 in the pipe 37 is exhausted, and the organic solvent contained in the organic solvent downstream portion 43 passes to the suction pipe 41. And drawn. The suction device and suction valve 42 are included in the suction unit 44.
 水供給ユニット11は、第2のノズル25と、第2のノズル25に接続され、内部が第2の吐出口36に連通する水配管46と、水配管46を開閉して、水配管46から第2のノズル25への水の供給および供給停止を切り替える水バルブ47とを含む。水バルブ47が開かれると、水供給源からの水が、水配管46へと供給され、第2の吐出口36から基板Wの上面中央部に向けて吐出される。水配管46に供給される水は、たとえば炭酸水であるが、炭酸水に限らず、脱イオン水(DIW)、電解イオン水、水素水、オゾン水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかであってもよい。 The water supply unit 11 is connected to the second nozzle 25, the water nozzle 46 connected to the second nozzle 25, and the inside communicating with the second outlet 36. And a water valve 47 for switching supply and stop of water supply to the second nozzle 25. When the water valve 47 is opened, water from the water supply source is supplied to the water pipe 46 and discharged from the second discharge port 36 toward the center of the upper surface of the substrate W. The water supplied to the water pipe 46 is, for example, carbonated water, but is not limited to carbonated water, and is not limited to deionized water (DIW), electrolytic ion water, hydrogen water, ozone water, and diluted concentration (for example, about 10 ppm to 100 ppm). Any of aqueous hydrochloric acid may be used.
 処理ユニット2は、さらに、ケーシング34の外周と遮断板21の内周との間の筒状の空間に不活性ガスを供給する不活性ガス配管48と、不活性ガス配管48に介装された不活性ガスバルブ49とを含む。不活性ガスバルブ49が開かれると、不活性ガス供給源からの不活性ガスが、ケーシング34の外周と遮断板21の内周との間を通って、遮断板21の下面中央部から下方に吐出される。したがって、遮断板21が近接位置に配置されている状態で、不活性ガスバルブ49が開かれると、遮断板21の下面中央部から吐出された不活性ガスが基板Wの上面と遮断板21の基板対向面6との間を外方に(回転軸線A1から離れる方向に)広がり、基板Wと遮断板21との空気が不活性ガスに置換される。不活性ガス配管48内を流れる不活性ガスは、たとえば窒素ガスである。不活性ガスは、窒素ガスに限らず、ヘリウムガスやアルゴンガスなどの他の不活性ガスであってもよい。 The processing unit 2 is further interposed in an inert gas pipe 48 that supplies an inert gas to a cylindrical space between the outer periphery of the casing 34 and the inner periphery of the blocking plate 21, and the inert gas pipe 48. And an inert gas valve 49. When the inert gas valve 49 is opened, the inert gas from the inert gas supply source passes between the outer periphery of the casing 34 and the inner periphery of the blocking plate 21 and is discharged downward from the center of the lower surface of the blocking plate 21. Is done. Accordingly, when the inert gas valve 49 is opened in a state where the shielding plate 21 is disposed in the proximity position, the inert gas discharged from the center of the lower surface of the shielding plate 21 and the substrate of the shielding plate 21 are discharged. The space between the opposing surfaces 6 spreads outward (in the direction away from the rotation axis A1), and the air between the substrate W and the shielding plate 21 is replaced with an inert gas. The inert gas flowing through the inert gas pipe 48 is, for example, nitrogen gas. The inert gas is not limited to nitrogen gas, but may be other inert gas such as helium gas or argon gas.
 図2Aに示すように、処理カップ12は、スピンチャック5を2重に取り囲むように固定的に配置された複数のカップ(第1および第2のカップ51,52)と、基板Wの周囲に飛散した処理液(SPM、有機溶剤または水)を受け止めるための複数のガード(第1および第2のガード53,54)と、個々のガードを独立して昇降させるガード昇降ユニット(昇降ユニット)55とを含む。ガード昇降ユニット55は、たとえはボールねじ機構を含む構成である。 As shown in FIG. 2A, the processing cup 12 includes a plurality of cups (first and second cups 51 and 52) fixedly disposed so as to surround the spin chuck 5 in a double manner, and a periphery of the substrate W. A plurality of guards (first and second guards 53 and 54) for receiving the scattered processing liquid (SPM, organic solvent or water), and a guard lifting / lowering unit (lifting / lowering unit) 55 for lifting and lowering each guard independently. Including. The guard elevating unit 55 is configured to include a ball screw mechanism, for example.
 処理カップ12は上下方向に重なるように収容可能であり、ガード昇降ユニット55が第1および第2のガード53,54のうちの少なくとも一方を昇降させることにより、処理カップ12の展開および折り畳みが行われる。  The processing cup 12 can be accommodated so as to overlap in the vertical direction, and the guard elevating unit 55 moves up and down at least one of the first and second guards 53, 54, so that the processing cup 12 is expanded and folded. Is called.
 第1のカップ51は、円環状をなし、スピンチャック5と円筒部材50との間でスピンチャック5の周囲を取り囲んでいる。第1のカップ51は、基板Wの回転軸線A1に対してほぼ回転対称な形状を有している。第1のカップ51は、断面U字状をなしており、基板Wの処理に使用された処理液を排液するための第1の排液溝59を区画している。第1の排液溝59の底部の最も低い箇所には、第1の排液口(図示しない)が開口しており、第1の排液口には、第1の排液配管61が接続されている。第1の排液配管61を通って排液される処理液は、所定の回収装置または廃棄装置に送られ、当該装置で処理される。    The first cup 51 has an annular shape and surrounds the spin chuck 5 between the spin chuck 5 and the cylindrical member 50. The first cup 51 has a substantially rotationally symmetric shape with respect to the rotation axis A1 of the substrate W. The first cup 51 has a U-shaped cross section and defines a first drainage groove 59 for draining the processing liquid used for processing the substrate W. A first drainage port (not shown) is opened at the lowest portion of the bottom of the first drainage groove 59, and a first drainage pipe 61 is connected to the first drainage port. Has been. The treatment liquid drained through the first drain pipe 61 is sent to a predetermined recovery device or disposal device and processed by the device. *
 第2のカップ52は、円環状をなし、第1のカップ51の周囲を取り囲んでいる。第2のカップ52は、基板Wの回転軸線A1に対してほぼ回転対称な形状を有している。第2のカップ52は、断面U字状をなしており、基板Wの処理に使用された処理液を集めて回収するための第2の排液溝62を区画している。第2の排液溝62の底部の最も低い箇所には、第2の排液口(図示しない)が開口しており、第2の排液口には、第2の排液配管64が接続されている。第2の排液配管64を通って排液される処理液は、所定の回収装置または廃棄装置に送られ、当該装置で処理される。 The second cup 52 has an annular shape and surrounds the first cup 51. The second cup 52 has a shape that is substantially rotationally symmetric with respect to the rotation axis A <b> 1 of the substrate W. The second cup 52 has a U-shaped cross section, and defines a second drainage groove 62 for collecting and collecting the processing liquid used for processing the substrate W. A second drainage port (not shown) is opened at the lowest portion of the bottom of the second drainage groove 62, and a second drainage pipe 64 is connected to the second drainage port. Has been. The processing liquid drained through the second drainage pipe 64 is sent to a predetermined recovery device or disposal device and processed by the device.
 内側の第1のガード53は、スピンチャック5の周囲を取り囲み、スピンチャック5による基板Wの回転軸線A1に対してほぼ回転対称な形状を有している。第1のガード53は、スピンチャック5の周囲を取り囲む円筒状の案内部66と、案内部66に連結された円筒状の処理液分離壁67とを一体的に備えている。案内部66は、スピンチャック5の周囲を取り囲む円筒状の下端部68と、下端部68の上端から外方(基板Wの回転軸線A1から遠ざかる方向)に延びる筒状の厚肉部69と、厚肉部69の上面外周部から鉛直上方に延びる円筒状の中段部70と、中段部70の上端から内方(基板Wの回転軸線A1に近づく方向)に向かって斜め上方に延びる円環状の上端部71とを有している。 The inner first guard 53 surrounds the periphery of the spin chuck 5 and has a substantially rotationally symmetric shape with respect to the rotation axis A 1 of the substrate W by the spin chuck 5. The first guard 53 is integrally provided with a cylindrical guide portion 66 surrounding the spin chuck 5 and a cylindrical processing liquid separation wall 67 connected to the guide portion 66. The guide portion 66 includes a cylindrical lower end 68 that surrounds the periphery of the spin chuck 5, a cylindrical thick portion 69 that extends outward from the upper end of the lower end 68 (in a direction away from the rotation axis A1 of the substrate W), A cylindrical middle step 70 extending vertically upward from the outer peripheral portion of the upper surface of the thick portion 69, and an annular shape extending obliquely upward from the upper end of the middle step 70 inward (in the direction approaching the rotation axis A1 of the substrate W). And an upper end 71.
 処理液分離壁67は、厚肉部69の外周部から微小量だけ鉛直下方に延びており、第2の排液溝62上に位置している。また、案内部66の下端部68は、第1の排液溝59上に位置し、第1のガード53と第1のカップ51とが最も近接した状態で、第1の排液溝59の内部に収容される。案内部66の上端部71の内周端は、平面視で、スピンチャック5に保持される基板Wよりも大径の円形をなしている。また、案内部66の上端部71は、図2A等に示すようにその断面形状が直線状であってもよいし、また、たとえば滑らかな円弧を描きつつ延びていてもよい。 The treatment liquid separation wall 67 extends vertically downward from the outer peripheral part of the thick part 69 and is located on the second drainage groove 62. The lower end 68 of the guide portion 66 is positioned on the first drainage groove 59, and the first guard 53 and the first cup 51 are closest to each other in the first drainage groove 59. Housed inside. The inner peripheral end of the upper end portion 71 of the guide portion 66 has a circular shape with a larger diameter than the substrate W held by the spin chuck 5 in plan view. Further, the upper end portion 71 of the guide portion 66 may have a straight cross-sectional shape as shown in FIG. 2A or the like, or may extend while drawing a smooth arc, for example.
 外側の第2のガード54は、第1のガード53の外側において、スピンチャック5の周囲を取り囲み、スピンチャック5による基板Wの回転軸線A1に対してほぼ回転対称な形状を有している。第2のガード54は、第1のガード53と同軸の円筒部72と、円筒部72の上端から中心側(基板Wの回転軸線A1に近づく方向)斜め上方に延びる上端部73と、円筒部72のたとえば下端部において、外側に突出する円環状の突部(閉塞部)75とを有している。上端部73の内周端は、平面視で、スピンチャック5に保持される基板Wよりも大径の円形をなしている。なお、上端部73は、図2A等に示すようにその断面形状が直線状であってもよいし、また、たとえば滑らかな円弧を描きつつ延びていてもよい。上端部73の先端は、処理カップ12の上部開口12a(図2A参照)を区画している。 The outer second guard 54 surrounds the periphery of the spin chuck 5 outside the first guard 53 and has a substantially rotationally symmetric shape with respect to the rotation axis A 1 of the substrate W by the spin chuck 5. The second guard 54 includes a cylindrical portion 72 that is coaxial with the first guard 53, an upper end portion 73 that extends obliquely upward from the upper end of the cylindrical portion 72 toward the center side (a direction approaching the rotation axis A1 of the substrate W), and a cylindrical portion. For example, the lower end portion of 72 has an annular protrusion (blocking portion) 75 protruding outward. The inner peripheral end of the upper end portion 73 has a circular shape with a larger diameter than the substrate W held by the spin chuck 5 in plan view. The upper end portion 73 may have a straight cross-sectional shape as shown in FIG. 2A or the like, or may extend, for example, while drawing a smooth arc. The tip of the upper end 73 defines an upper opening 12a (see FIG. 2A) of the processing cup 12.
 円筒部72は、第2の排液溝62上に位置している。また、上端部73は、第1のガード53の案内部66の上端部71と上下方向に重なるように設けられ、第1のガード53と第2のガード54とが最も近接した状態で、案内部66の上端部71に対して微少な隙間を保って近接するように形成されている。折返し部74は、第1のガード53と第2のガード54とが最も近接した状態で、案内部66の上端部71と水平方向に重なるように形成されている。突部75は、平坦な水平面からなる円環状の上面を有している。 The cylindrical portion 72 is located on the second drainage groove 62. The upper end portion 73 is provided so as to overlap the upper end portion 71 of the guide portion 66 of the first guard 53 in the vertical direction, and the first guard 53 and the second guard 54 are closest to each other in the guide. It is formed so as to be close to the upper end 71 of the portion 66 with a minute gap. The folded portion 74 is formed to overlap the upper end portion 71 of the guide portion 66 in the horizontal direction in a state where the first guard 53 and the second guard 54 are closest to each other. The protrusion 75 has an annular upper surface formed of a flat horizontal surface.
 ガード昇降ユニット55は、次に述べる上位置P1(図3B等参照)と、ガードの上端部が基板Wより下方に位置する下位置P3(図3C等参照)との間で、各ガードを昇降させる。 The guard lifting / lowering unit 55 lifts and lowers each guard between an upper position P1 (see FIG. 3B and the like) described below and a lower position P3 (see FIG. 3C and the like) where the upper end of the guard is positioned below the substrate W. Let
 第1および第2のガード53,54の上位置P1は、それぞれ、次に述べる液受け位置P2(図3A等参照)よりも上方に設定される高さ位置である。各ガード(第1および第2のガード53,54)の上位置P1は、ガードの上端と対向部材7(基板対向面6)との間に形成される環状隙間86(図6B参照)の大きさ(上下方向幅)がノズルアーム29の上下幅W1よりも大きくなるような位置である。 The upper position P1 of the first and second guards 53 and 54 is a height position set above a liquid receiving position P2 (see FIG. 3A and the like) described below. The upper position P1 of each guard (first and second guards 53, 54) is the size of an annular gap 86 (see FIG. 6B) formed between the upper end of the guard and the facing member 7 (substrate facing surface 6). This is the position where the vertical width is larger than the vertical width W1 of the nozzle arm 29.
 別の観点からみると、各ガードの上位置P1は、ノズルアーム29の下端面29aよりも下で、かつ吐出口28aよりも上方の位置である。より具体的には、各ガードの上位置P1は、ガードの上端とノズルアーム29の下端面29a(ノズルアーム29の下端)との間の第1の間隔87(図6B参照)が、ノズルアーム29の下端面29aとSPMノズル28の吐出口28aとの間の第2の間隔(図6Aおよび図6B参照)88と同等か、あるいは当該第2の間隔88よりも狭くなるような位置である。さらに具体的には、各ガードの上位置P1は、ガードの上端が、ノズルアーム29の下端面29aとスピンチャック5に保持されている基板Wの上面との間の中間位置M(図3B参照)よりも上方になるような位置である。 From another viewpoint, the upper position P1 of each guard is a position below the lower end surface 29a of the nozzle arm 29 and above the discharge port 28a. More specifically, the upper position P1 of each guard indicates that the first interval 87 (see FIG. 6B) between the upper end of the guard and the lower end surface 29a of the nozzle arm 29 (lower end of the nozzle arm 29) is the nozzle arm. 29 is a position that is equal to or narrower than the second interval 88 (see FIGS. 6A and 6B) 88 between the lower end surface 29a of the SPM 29 and the discharge port 28a of the SPM nozzle 28. . More specifically, the upper position P1 of each guard is such that the upper end of the guard is an intermediate position M between the lower end surface 29a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5 (see FIG. 3B). ) Above.
 ガード昇降ユニット55は、上位置P1と下位置P3との間の任意の位置で第1および第2のガード53,54を保持可能である。具体的には、ガード昇降ユニット55は、第1および第2のガード53,54を、それぞれ、上位置P1と、下位置P3と、上位置P1と下位置P3との間に設定された液受け位置P2とに保持する。第1および第2のガード53,54の液受け位置P2は、ガードの上端部が基板Wより上方に位置する高さ位置である。基板Wへの処理液の供給や基板Wの乾燥は、いずれかのガード(第1および第2のガード53,54)が基板Wの周端面に対向している状態で行われる。 The guard lifting / lowering unit 55 can hold the first and second guards 53 and 54 at an arbitrary position between the upper position P1 and the lower position P3. Specifically, the guard lifting / lowering unit 55 sets the first and second guards 53 and 54 to liquids set between the upper position P1, the lower position P3, and the upper position P1 and the lower position P3, respectively. It is held at the receiving position P2. The liquid receiving position P2 of the first and second guards 53 and 54 is a height position at which the upper end of the guard is located above the substrate W. The supply of the processing liquid to the substrate W and the drying of the substrate W are performed in a state where any one of the guards (first and second guards 53 and 54) faces the peripheral end surface of the substrate W.
 図3A~3Cは、第1および第2のガード53,54の高さ位置と、チャンバ4の内部における気流の流れとを説明するための図解的な図である。図3Aには第2のガード54が液受け位置P2に配置された状態が示されている。図3Bには第2のガード54が上位置P1に配置された状態が示されている。図3Cには第2のガード54が下位置P3に配置された状態が示されている。 3A to 3C are schematic diagrams for explaining the height positions of the first and second guards 53 and 54 and the flow of the airflow in the chamber 4. FIG. 3A shows a state in which the second guard 54 is disposed at the liquid receiving position P2. FIG. 3B shows a state in which the second guard 54 is disposed at the upper position P1. FIG. 3C shows a state where the second guard 54 is disposed at the lower position P3.
 内側の第1のガード53を基板Wの周端面に対向させる手法として、次に述べる2つの手法がある。 There are the following two methods as a method of making the inner first guard 53 face the peripheral end surface of the substrate W.
 1つ目は、図3Bに実線で示すように、第1および第2のガード53,54のいずれもを上位置P1に配置する手法である。このような処理カップ12の状態を、以下、「第1の上位置状態」という。また、第1の上位置状態では、折返し部74が案内部66の上端部71と水平方向に重なっており、つまり、第1および第2のガード53,54が狭間隔を隔てて重なっている。 First, as shown by a solid line in FIG. 3B, the first and second guards 53 and 54 are both arranged at the upper position P1. Such a state of the processing cup 12 is hereinafter referred to as a “first upper position state”. Further, in the first upper position state, the folded-back portion 74 overlaps the upper end portion 71 of the guide portion 66 in the horizontal direction, that is, the first and second guards 53 and 54 overlap at a narrow interval. .
 2つ目は、図3Aに実線で示すように、第1および第2のガード53,54のいずれもを液受け位置P2に配置する手法である。このような処理カップ12の状態を、以下、「第1の液受け位置状態」という。また、第1の液受け位置状態では、折返し部74が案内部66の上端部71と水平方向に重なっており、つまり、第1および第2のガード53,54が狭間隔を隔てて重なっている。 Second, as shown by a solid line in FIG. 3A, both the first and second guards 53 and 54 are arranged at the liquid receiving position P2. Such a state of the processing cup 12 is hereinafter referred to as a “first liquid receiving position state”. Further, in the first liquid receiving position state, the folded-back portion 74 overlaps the upper end portion 71 of the guide portion 66 in the horizontal direction, that is, the first and second guards 53 and 54 overlap each other with a narrow interval. Yes.
 また、外側の第2のガード54を基板Wの周端面に対向させる手法として、次に述べる2つの手法がある。 Further, there are the following two methods as a method of making the outer second guard 54 face the peripheral end surface of the substrate W.
 1つ目は、図3Bに二点鎖線で示すように第1のガード53を下位置P3に配置し、かつ第2のガード54を上位置P1に配置する手法である。このような処理カップ12の状態を、以下、「第2の上位置状態」という。 The first is a technique in which the first guard 53 is disposed at the lower position P3 and the second guard 54 is disposed at the upper position P1, as indicated by a two-dot chain line in FIG. 3B. Such a state of the processing cup 12 is hereinafter referred to as a “second upper position state”.
 2つ目は、図3Aに二点鎖線で示すように第1のガード53を下位置P3に配置し、かつ第2のガード54を液受け位置P2に配置する手法である。このような処理カップ12の状態を、以下、「第2の液受け位置状態」という。第2の液受け位置状態では、第1および第2のガード53,54の間隔が上下に広い。 The second is a technique in which the first guard 53 is disposed at the lower position P3 and the second guard 54 is disposed at the liquid receiving position P2, as indicated by a two-dot chain line in FIG. 3A. Such a state of the processing cup 12 is hereinafter referred to as a “second liquid receiving position state”. In the second liquid receiving position state, the distance between the first and second guards 53 and 54 is wide vertically.
 また、処理カップ12は、図3Cに示すように、いずれのガード(第1および第2のガード53,54)も基板Wの周端面に対向させないようにすることも可能である。この状態では、第1および第2のガード53,54のいずれもが下位置P3に配置される。このような処理カップ12の状態を、以下、「退避状態」という。 Further, as shown in FIG. 3C, the processing cup 12 can be configured such that none of the guards (first and second guards 53 and 54) is opposed to the peripheral end surface of the substrate W. In this state, both the first and second guards 53 and 54 are disposed at the lower position P3. Such a state of the processing cup 12 is hereinafter referred to as a “retracted state”.
 図3Cに示すように、処理カップ12の退避状態では、第2のガード54の突部75(の上面)と、仕切り板16(の下面)との間には大きな間隔(上下方向の間隔が約70mm)W2が隔てられている。そのため、突部75と仕切り板16との間を気体が通過する際に、その圧力損失はほとんどない。 As shown in FIG. 3C, when the processing cup 12 is in the retracted state, there is a large gap (vertical gap between the protrusion 75 (the upper surface) of the second guard 54 and the partition plate 16 (the lower surface). About 70 mm) W2 is separated. Therefore, there is almost no pressure loss when the gas passes between the protrusion 75 and the partition plate 16.
 一方で、この状態では、第2のガード54の上端が基板Wの周端面よりも下方に位置しているために、スピンチャック5(スピンベース19)と第2のガード54の先端(折返し部74)との間の間隔は狭く、そのため、スピンチャック5と第2のガード54の先端との間の隙間S0を気体が通過する際に、その圧力損失は大きい。したがって、処理カップ12の退避状態においてチャンバ4の内部を流れるダウンフローDF1は、専ら突部75と仕切り板16との間を通って、チャンバ4の下部空間4aに進入する。 On the other hand, in this state, since the upper end of the second guard 54 is located below the peripheral end surface of the substrate W, the tip of the spin chuck 5 (spin base 19) and the second guard 54 (the folded portion). 74), the pressure loss is large when the gas passes through the gap S0 between the spin chuck 5 and the tip of the second guard 54. Therefore, the downflow DF1 flowing inside the chamber 4 in the retracted state of the processing cup 12 passes between the protrusion 75 and the partition plate 16 and enters the lower space 4a of the chamber 4.
 また、図3Aに示すように、処理カップ12の第1の液受け位置状態または第2の液受け位置状態では、第2のガード54の突部75(の上面)と仕切り板16(の下面)との間の隙間Sが、退避状態の場合よりも狭められている(上下方向の間隔が約30mmでかつ左右方向の間隔が約2mm)が隔てられている。そのため、突部75と仕切り板16との間の隙間Sを気体が通過する圧力損失は、退避状態よりも大きくなる。また、第2のガード54の上端が基板Wの周端面よりも上方に位置しているために、スピンチャック5と第2のガード54の先端との間の隙間S0が退避状態の場合よりも広く、そのため、スピンチャック5と第2のガード54の先端との間を気体が通過する際の圧力損失は、退避状態の場合より小さい(すなわち、ある程度存在する)。したがって、処理カップ12の第1の液受け位置状態または第2の液受け位置状態において、チャンバ4の内部を流れるダウンフローDF2は、突部75と仕切り板16との間の隙間S、およびスピンチャック5と第2のガード54の先端との間の隙間S0の双方を通って、チャンバ4の下部空間4aに進入する。 Further, as shown in FIG. 3A, in the first liquid receiving position state or the second liquid receiving position state of the processing cup 12, the protrusion 75 (the upper surface thereof) of the second guard 54 and the lower surface of the partition plate 16 (the lower surface thereof). ) Is narrower than that in the retracted state (the vertical interval is about 30 mm and the horizontal interval is about 2 mm). Therefore, the pressure loss at which the gas passes through the gap S between the protrusion 75 and the partition plate 16 is larger than that in the retracted state. In addition, since the upper end of the second guard 54 is located above the peripheral end surface of the substrate W, the gap S0 between the spin chuck 5 and the tip of the second guard 54 is more than in the retracted state. Therefore, the pressure loss when the gas passes between the spin chuck 5 and the tip of the second guard 54 is smaller than that in the retracted state (that is, exists to some extent). Accordingly, in the first liquid receiving position state or the second liquid receiving position state of the processing cup 12, the downflow DF2 flowing inside the chamber 4 causes the clearance S between the protrusion 75 and the partition plate 16 and the spin. It enters the lower space 4a of the chamber 4 through both the gap S0 between the chuck 5 and the tip of the second guard 54.
 図3Bに示すように、処理カップ12の第1の上位置状態または第2の上位置状態では、第2のガード54の突部75の上面と仕切り板16の下面とが接触し、これにより、突部75と仕切り板16との隙間Sが略零とされている(実質上、閉塞されている。より厳密には、上下方向の間隔が約3mmでかつ左右方向の間隔が約2mm)。 As shown in FIG. 3B, when the processing cup 12 is in the first upper position state or the second upper position state, the upper surface of the protrusion 75 of the second guard 54 and the lower surface of the partition plate 16 are in contact with each other. The gap S between the protrusion 75 and the partition plate 16 is substantially zero (substantially closed. More strictly speaking, the vertical interval is about 3 mm and the horizontal interval is about 2 mm). .
 一方で、この状態では、第2のガード54の上端が基板Wの周端面よりも大きく上方に位置しているために、スピンチャック5(スピンベース19)と第2のガード54の先端との間の間隔は極めて大きく、そのため、スピンチャック5と第2のガード54の先端との間を気体が通過する際に、その圧力損失はほとんど生じない。したがって、処理カップ12の第1の上位置状態または第2の上位置状態においてチャンバ4の内部を流れるダウンフローDF3は、専らスピンチャック5と第2のガード54の先端との間を通って、チャンバ4の下部空間4aに進入する。 On the other hand, in this state, since the upper end of the second guard 54 is positioned higher than the peripheral end surface of the substrate W, the spin chuck 5 (spin base 19) and the tip of the second guard 54 The interval between them is extremely large, so that when the gas passes between the spin chuck 5 and the tip of the second guard 54, the pressure loss hardly occurs. Therefore, the downflow DF3 flowing inside the chamber 4 in the first upper position state or the second upper position state of the processing cup 12 passes exclusively between the spin chuck 5 and the tip of the second guard 54, It enters the lower space 4 a of the chamber 4.
 図4は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。 FIG. 4 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットには、演算ユニットが実行するプログラムが記憶されている。 The control device 3 is configured using, for example, a microcomputer. The control device 3 includes an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit. The storage unit stores a program executed by the arithmetic unit.
 制御装置3は、スピンモータ17、ノズル移動ユニット32、遮断板回転ユニット26、遮断板昇降ユニット27およびガード昇降ユニット55等の動作を制御する。また、制御装置3は、SPMバルブ31、第1の有機溶剤バルブ38、第2の有機溶剤バルブ39、吸引バルブ42、水バルブ47、不活性ガスバルブ49等を開閉する。 The control device 3 controls operations of the spin motor 17, the nozzle moving unit 32, the shielding plate rotating unit 26, the shielding plate lifting / lowering unit 27, the guard lifting / lowering unit 55, and the like. The control device 3 opens and closes the SPM valve 31, the first organic solvent valve 38, the second organic solvent valve 39, the suction valve 42, the water valve 47, the inert gas valve 49, and the like.
 図5は、処理ユニット2による第1の基板処理例を説明するための流れ図である。図6A~6Eは、第1の基板処理例を説明するための図解的な図である。 FIG. 5 is a flowchart for explaining a first substrate processing example by the processing unit 2. 6A to 6E are schematic diagrams for explaining a first substrate processing example.
 以下、図2A,2Bおよび図5を参照しながら、第1の基板処理例について説明する。図3A~3Cおよび図6A~6Eについては適宜参照する。第1の基板処理例は、基板Wの上面に形成されたレジストを除去するためのレジスト除去処理である。以下で述べるように、第1の基板処理例は、SPMを基板Wの上面に供給するSPM供給工程(第1の薬液供給工程)S3と、IPA等の液体の有機溶剤を基板Wの上面に供給する有機溶剤工程(第2の薬液供給工程)S5とを含む。SPMと有機溶剤とは、混触により危険(この場合、急激な反応)が伴うような薬液の組合せである。 Hereinafter, a first substrate processing example will be described with reference to FIGS. 2A and 2B and FIG. 3A to 3C and FIGS. 6A to 6E will be referred to as appropriate. The first substrate processing example is a resist removal process for removing the resist formed on the upper surface of the substrate W. As described below, the first substrate processing example includes an SPM supply step (first chemical solution supply step) S3 for supplying SPM to the upper surface of the substrate W, and a liquid organic solvent such as IPA on the upper surface of the substrate W. And an organic solvent step (second chemical solution supply step) S5 to be supplied. SPM and an organic solvent are a combination of chemicals that are dangerous (in this case, rapid reaction) due to contact.
 処理ユニット2によってレジスト除去処理が基板Wに施されるときには、チャンバ4の内部に、高ドーズでのイオン注入処理後の基板Wが搬入される(図5のステップS1)。搬入される基板Wは、レジストをアッシングするための処理を受けていないものとする。また、基板Wの表面には、微細で高アスペクト比の微細パターンが形成されている。 When the resist removal process is performed on the substrate W by the processing unit 2, the substrate W after the ion implantation process at a high dose is carried into the chamber 4 (step S1 in FIG. 5). It is assumed that the loaded substrate W has not been subjected to a process for ashing the resist. A fine pattern with a fine and high aspect ratio is formed on the surface of the substrate W.
 対向部材7(すなわち、遮断板21および中心軸ノズル33)が退避位置に退避し、SPMノズル28がスピンチャック5の上方から退避し、かつ第1および第2のガード53,54が下位置に下げられている状態(第1および第2のガード53,54の上端がいずれも基板Wの保持位置よりも下方に配置された状態)で、制御装置3は、基板Wを保持している基板搬送ロボットCR(図1参照)のハンドH(図1参照)をチャンバ4の内部に進入させる。これにより、基板Wがその表面(レジスト形成面)を上方に向けた状態でスピンチャック5に受け渡される。その後、スピンチャック5に基板Wが保持される。 The opposing member 7 (that is, the blocking plate 21 and the central axis nozzle 33) is retracted to the retracted position, the SPM nozzle 28 is retracted from above the spin chuck 5, and the first and second guards 53, 54 are in the lower position. In the lowered state (the upper ends of the first and second guards 53 and 54 are both disposed below the holding position of the substrate W), the control device 3 holds the substrate W The hand H (see FIG. 1) of the transfer robot CR (see FIG. 1) enters the chamber 4. As a result, the substrate W is delivered to the spin chuck 5 with its surface (resist formation surface) facing upward. Thereafter, the substrate W is held on the spin chuck 5.
 その後、制御装置3は、スピンモータ17によって基板Wの回転を開始させる(図5のステップS2)。基板Wは予め定める液処理速度(約10-500rpmの範囲内で、例えば約400rpm)まで上昇させられ、その液処理速度に維持される。 Thereafter, the control device 3 starts the rotation of the substrate W by the spin motor 17 (step S2 in FIG. 5). The substrate W is raised to a predetermined liquid processing speed (in the range of about 10-500 rpm, for example, about 400 rpm), and is maintained at the liquid processing speed.
 次いで、制御装置3は、高温のSPMを基板Wの上面に供給するSPM供給工程(図5のステップS3)を行う。SPM供給工程S3では、基板Wの表面からレジストを剥離すべく、制御装置3は、SPMノズル28からの高温のSPMを、たとえば、基板Wの上面中央部に供給する。 Next, the control device 3 performs an SPM supply process (step S3 in FIG. 5) for supplying a high temperature SPM to the upper surface of the substrate W. In the SPM supply step S <b> 3, the control device 3 supplies the high temperature SPM from the SPM nozzle 28 to the center of the upper surface of the substrate W, for example, in order to peel the resist from the surface of the substrate W.
 具体的には、制御装置3は、ノズル移動ユニット32を制御することにより、SPMノズル28を退避位置から処理位置に移動させる。これにより、図6Aに示すように、SPMノズル28が基板Wの中央部の上方に配置される。 Specifically, the control device 3 controls the nozzle moving unit 32 to move the SPM nozzle 28 from the retracted position to the processing position. Thereby, as shown in FIG. 6A, the SPM nozzle 28 is disposed above the central portion of the substrate W.
 SPMノズル28が処理位置(たとえば中央位置)に配置された後、制御装置3は、ガード昇降ユニット55を制御して、第1および第2のガード53,54をそれぞれ上位置まで上昇させて(処理カップ12の状態を第1の上位置状態に遷移させて)、第1のガード53を基板Wの周端面に対向させる。 After the SPM nozzle 28 is disposed at the processing position (for example, the center position), the control device 3 controls the guard lifting / lowering unit 55 to raise the first and second guards 53 and 54 to the upper position ( The state of the processing cup 12 is changed to the first upper position state), and the first guard 53 is opposed to the peripheral end surface of the substrate W.
 処理カップ12の第1の上位置状態では、図6Bに示すように、第2のガード54の上端とノズルアーム29の下端面29aとの間の第1の間隔87(たとえば略零)が、ノズルアーム29の下端面29aとSPMノズル28の吐出口28aとの間の第2の間隔88(たとえば約5mm)よりも狭くなる。さらに言えば、処理カップ12の第1の上位置状態では、第2のガード54の上端が、ノズルアーム29の下端面29aとスピンチャック5に保持されている基板Wの上面との間の中間位置M(図3B参照)よりも上方に位置するような位置である。 In the first upper position state of the processing cup 12, as shown in FIG. 6B, a first interval 87 (for example, substantially zero) between the upper end of the second guard 54 and the lower end surface 29a of the nozzle arm 29 is It becomes narrower than a second distance 88 (for example, about 5 mm) between the lower end surface 29a of the nozzle arm 29 and the discharge port 28a of the SPM nozzle 28. Furthermore, in the first upper position state of the processing cup 12, the upper end of the second guard 54 is intermediate between the lower end surface 29 a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5. It is a position located above the position M (see FIG. 3B).
 第1および第2のガード53,54の上昇後、制御装置3は、SPMバルブ31を開く。これにより、高温(たとえば約170℃~約180℃)のSPMがSPM配管30からSPMノズル28に供給され、図6Bに示すように、このSPMノズル28の吐出口28aから高温のSPMが吐出される。SPMノズル28から吐出された高温のSPMは、基板Wの上面の中央部に着液し、基板Wの回転による遠心力を受けて、基板Wの上面に沿って外方に流れる。これにより、基板Wの上面全域がSPMの液膜によって覆われる。高温のSPMにより、基板Wの表面からレジストが剥離されて、当該基板Wの表面から除去される。また、SPMノズル28からの高温のSPMの供給位置を、基板Wの上面中央部と上面周縁部との間で移動(スキャン)させるようにしてもよい。 After the first and second guards 53 and 54 are raised, the control device 3 opens the SPM valve 31. As a result, high temperature (for example, about 170 ° C. to about 180 ° C.) SPM is supplied from the SPM pipe 30 to the SPM nozzle 28, and high temperature SPM is discharged from the discharge port 28a of the SPM nozzle 28 as shown in FIG. 6B. The The high-temperature SPM discharged from the SPM nozzle 28 is deposited on the center of the upper surface of the substrate W, receives centrifugal force due to the rotation of the substrate W, and flows outward along the upper surface of the substrate W. Thereby, the entire upper surface of the substrate W is covered with the liquid film of SPM. The resist is peeled off from the surface of the substrate W and removed from the surface of the substrate W by the high temperature SPM. Further, the supply position of the high-temperature SPM from the SPM nozzle 28 may be moved (scanned) between the center portion of the upper surface of the substrate W and the peripheral portion of the upper surface.
 基板Wの上面に供給されたSPMは、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード53の内壁に受け止められる。そして、第1のガード53の内壁を伝って流下するSPMは、第1の排液溝59に集められた後第1の排液配管61に導かれ、SPMを排液処理するための排液処理装置(図示しない)へと導かれる。 The SPM supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 53. The SPM flowing down along the inner wall of the first guard 53 is collected in the first drainage groove 59 and then guided to the first drainage pipe 61 to drain the SPM. Guided to a processor (not shown).
 SPM供給工程S3では、使用されるSPMが極めて高温である(たとえば約170℃~約180℃)ため、大量のSPMのミストMIが発生する。基板WへのSPMの供給により、基板Wの上面の周囲に大量に発生したSPMのミストMIが、基板Wの上面上で浮遊する。 In the SPM supply step S3, since the SPM used is extremely high (for example, about 170 ° C. to about 180 ° C.), a large amount of SPM mist MI is generated. Due to the supply of the SPM to the substrate W, a large amount of SPM mist MI generated around the upper surface of the substrate W floats on the upper surface of the substrate W.
 SPM供給工程S3において、ガード(少なくとも第2のガード54)の高さ位置が、基板Wから飛散する薬液を受け止めるという目的を達成するためには十分な高さではるものの、低目の高さ位置である場合には、処理カップ12の内部におけるSPMのミストMIを含む雰囲気が、処理カップ12の上部開口12aを通って処理カップ12外に流出して、チャンバ4の内部に拡散するおそれがある。SPMのミストMIを含む雰囲気は、パーティクルとなって基板Wに付着して当該基板Wを汚染したり、チャンバ4の隔壁13の内壁を汚染したりする原因となるので、このような雰囲気が周囲に拡散することは望ましくない。 In the SPM supply step S3, although the height position of the guard (at least the second guard 54) is high enough to achieve the purpose of catching the chemical liquid scattered from the substrate W, the height of the lower height In the case of the position, the atmosphere containing the SPM mist MI inside the processing cup 12 may flow out of the processing cup 12 through the upper opening 12 a of the processing cup 12 and diffuse into the chamber 4. is there. The atmosphere containing the SPM mist MI becomes particles and adheres to the substrate W to contaminate the substrate W or contaminate the inner wall of the partition wall 13 of the chamber 4. It is not desirable to diffuse into
 第1の基板処理例に係るSPM供給工程S3では、第1および第2のガード53,54が上位置に配置されている状態で(すなわち、処理カップ12の第1の上位置状態で)、回転状態にある基板Wの上面に高温のSPMが供給される。処理カップ12の第1の上位置状態では、上位置P1に配置されている状態の第2のガード54の上端と遮断板21の基板対向面6との間に形成される環状隙間86(図3B参照)が狭く設定されている。そのため、処理カップ12内の雰囲気が環状隙間86を通ってチャンバ4の内部へ流出することが困難である。これにより、処理カップ12の内部におけるSPMのミストMIを含む雰囲気がチャンバ4の内部に流出することを抑制または防止できる。 In the SPM supply step S3 according to the first substrate processing example, in a state where the first and second guards 53 and 54 are arranged at the upper position (that is, in the first upper position state of the processing cup 12), A high temperature SPM is supplied to the upper surface of the substrate W in a rotating state. In the first upper position state of the processing cup 12, an annular gap 86 (see FIG. 5) formed between the upper end of the second guard 54 and the substrate facing surface 6 of the blocking plate 21 in the state of being disposed at the upper position P1. 3B) is set narrowly. Therefore, it is difficult for the atmosphere in the processing cup 12 to flow out into the chamber 4 through the annular gap 86. Thereby, it is possible to suppress or prevent the atmosphere containing the SPM mist MI inside the processing cup 12 from flowing into the chamber 4.
 また、処理カップ12の第1の上位置状態では、突部75と仕切り板16との間の隙間Sが略零になるため、チャンバ4の内部を流れるダウンフローDF3(図3B参照)は、スピンチャック5と第2のガード54の先端との間を通って、チャンバ4の下部空間4aに進入する。これにより、処理カップ12からチャンバ4の内部へのSPMのミストMIを含む雰囲気の流出を、より効果的に抑制できる。 Further, in the first upper position state of the processing cup 12, the gap S between the protrusion 75 and the partition plate 16 becomes substantially zero, so the downflow DF3 (see FIG. 3B) flowing inside the chamber 4 is It passes between the spin chuck 5 and the tip of the second guard 54 and enters the lower space 4 a of the chamber 4. Thereby, the outflow of the atmosphere containing the mist MI of SPM from the processing cup 12 to the inside of the chamber 4 can be more effectively suppressed.
 なお、処理カップ12の第1の上位置状態(図3Bに実線で示す状態)では、第1のガード53と第2のガード54とが最も近接している。この状態では、折返し部74が、案内部66の上端部71と水平方向に重なっている。そのため、SPM供給工程S3において、基板Wの上面上で浮遊するSPMのミストMIが、第1のガード53と第2のガード54との間に進入しない。SPM供給工程S3の開始前には、第2のガード54の内壁にIPAが付着していることがある。しかし、SPMのミストMIが第1のガード53と第2のガード54との間に進入しないので、SPM供給工程S3において、処理カップ12の内部でSPMとIPAとが混触することを抑制または防止できる。これにより、処理カップ12の内部がパーティクル発生源になることを抑制または防止できる。 In the first upper position state of the processing cup 12 (the state indicated by the solid line in FIG. 3B), the first guard 53 and the second guard 54 are closest to each other. In this state, the folded portion 74 overlaps the upper end portion 71 of the guide portion 66 in the horizontal direction. Therefore, the SPM mist MI floating on the upper surface of the substrate W does not enter between the first guard 53 and the second guard 54 in the SPM supply step S3. Before the start of the SPM supply step S3, IPA may adhere to the inner wall of the second guard 54. However, since the SPM mist MI does not enter between the first guard 53 and the second guard 54, it is possible to suppress or prevent the SPM and IPA from being mixed in the processing cup 12 in the SPM supply step S3. it can. Thereby, it can suppress or prevent that the inside of the processing cup 12 becomes a particle generation source.
 高温のSPMの吐出開始から予め定める期間が経過すると、SPM供給工程S3が終了する。具体的には、制御装置3は、SPMバルブ31を閉じて、SPMノズル28からの高温のSPMの吐出を停止させる。また、制御装置3は、ガード昇降ユニット55を制御して、第1および第2のガード53,54をそれぞれ液受け位置P2まで降下させる。第1および第2のガード53,54の下降開始後、制御装置3は、ノズル移動ユニット32を制御して、SPMノズル28を退避位置まで退避させる。 When a predetermined period elapses from the start of high temperature SPM discharge, the SPM supply step S3 ends. Specifically, the control device 3 closes the SPM valve 31 and stops discharging hot SPM from the SPM nozzle 28. Further, the control device 3 controls the guard lifting unit 55 to lower the first and second guards 53 and 54 to the liquid receiving position P2, respectively. After starting the lowering of the first and second guards 53 and 54, the control device 3 controls the nozzle moving unit 32 to retract the SPM nozzle 28 to the retracted position.
 次いで、リンス液としての水を基板Wの上面に供給する水供給工程(図5のステップS4)が行われる。具体的には、制御装置3は、水バルブ47を開く。これにより、図6Cに示すように、中心軸ノズル33の(第2のノズル25(図2B参照))から、基板Wの上面中央部に向けて水が吐出される。中心軸ノズル33から吐出された水は、基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。この水によって基板W上のSPMが外方に押し流され、基板Wの周囲に排出される。その結果、基板W上のSPMの液膜が、基板Wの上面全域を覆う水の液膜に置換される。すなわち、リンス液としての水によって、基板Wの上面からSPMが洗い流される。 Next, a water supply process (step S4 in FIG. 5) for supplying water as a rinsing liquid to the upper surface of the substrate W is performed. Specifically, the control device 3 opens the water valve 47. Thereby, as shown in FIG. 6C, water is discharged from the central axis nozzle 33 (second nozzle 25 (see FIG. 2B)) toward the center of the upper surface of the substrate W. The water discharged from the central axis nozzle 33 is deposited on the central portion of the upper surface of the substrate W, and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W. This water causes the SPM on the substrate W to flow outward and is discharged around the substrate W. As a result, the liquid film of SPM on the substrate W is replaced with a liquid film of water covering the entire upper surface of the substrate W. That is, the SPM is washed away from the upper surface of the substrate W with water as the rinse liquid.
 基板Wの上面を流れる水は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード53の内壁に受け止められる。そして、第1のガード53の内壁を伝って流下する水は、第1の排液溝59に集められた後第1の排液配管61に導かれ、水を排液処理するための排液処理装置(図示しない)へと導かれる。SPM供給工程S3において使用したSPMの液が第1のガード53の内壁や第1の排液溝59、第1の排液配管61の管壁に付着している場合には、このSPMの液が水によって洗い流される。 The water flowing on the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 53. Then, the water flowing down along the inner wall of the first guard 53 is collected in the first drainage groove 59 and then guided to the first drainage pipe 61 to drain the water. Guided to a processor (not shown). If the SPM liquid used in the SPM supply step S3 adheres to the inner wall of the first guard 53, the first drain groove 59, and the pipe wall of the first drain pipe 61, the SPM liquid Is washed away by water.
 水の吐出開始から予め定める期間が経過すると、制御装置3は、水バルブ47を閉じて、第2のノズル25からの水の吐出を停止させる。これにより、水供給工程S4が終了する。 When a predetermined period has elapsed from the start of water discharge, the control device 3 closes the water valve 47 and stops water discharge from the second nozzle 25. Thereby, water supply process S4 is complete | finished.
 次いで、有機溶剤としてのIPAを基板Wの上面に供給する有機溶剤工程(図5のステップS5)が行われる。具体的には、制御装置3は、図6Dに示すように、遮断板昇降ユニット27を制御して、遮断板21を近接位置に配置する。遮断板21が近接位置にあるときには、遮断板21が、基板Wの上面をその周囲の空間から遮断する。 Next, an organic solvent process (step S5 in FIG. 5) for supplying IPA as an organic solvent to the upper surface of the substrate W is performed. Specifically, as shown in FIG. 6D, the control device 3 controls the shield plate lifting / lowering unit 27 to place the shield plate 21 in the proximity position. When the blocking plate 21 is in the proximity position, the blocking plate 21 blocks the upper surface of the substrate W from the surrounding space.
 また、制御装置3は、ガード昇降ユニット55を制御して、第1のガード53を下位置P3のまま、第2のガード54を上位置P1に配置して、第2のガード54を基板Wの周端面に対向させる。 Further, the control device 3 controls the guard lifting / lowering unit 55 so that the first guard 53 remains at the lower position P3, the second guard 54 is disposed at the upper position P1, and the second guard 54 is placed on the substrate W. It is made to oppose to the peripheral end surface.
 また、制御装置3は、基板Wの回転を所定のパドル速度に減速する。このパドル速度とは、基板Wをパドル速度で回転させたときに、基板Wの上面の液体に作用する遠心力がリンス液と基板Wの上面との間で作用する表面張力よりも小さいか、あるいは前記の遠心力と前記の表面張力とがほぼ拮抗するような速度をいう。 Also, the control device 3 decelerates the rotation of the substrate W to a predetermined paddle speed. This paddle speed means that when the substrate W is rotated at the paddle speed, the centrifugal force acting on the liquid on the upper surface of the substrate W is smaller than the surface tension acting between the rinse liquid and the upper surface of the substrate W, Alternatively, the speed is such that the centrifugal force and the surface tension almost antagonize.
 そして、基板Wの回転速度がパドル速度に下がった後、制御装置3は、第2の有機溶剤バルブ39を開き吸引バルブ42を閉じながら、第1の有機溶剤バルブ38を開く。これにより、有機溶剤供給源からのIPAが、第1のノズル24に供給され、第1のノズル24からIPAが吐出されて基板Wの上面に着液する。 Then, after the rotation speed of the substrate W is lowered to the paddle speed, the control device 3 opens the first organic solvent valve 38 while opening the second organic solvent valve 39 and closing the suction valve 42. As a result, IPA from the organic solvent supply source is supplied to the first nozzle 24, and IPA is discharged from the first nozzle 24 to land on the upper surface of the substrate W.
 有機溶剤工程S5では、第1のノズル24からのIPAの吐出により、基板Wの上面の液膜に含まれる水がIPAに順次置換されていく。これにより、基板Wの上面に、基板Wの上面全域を覆うIPAの液膜がパドル状に保持される。基板Wの上面全域の液膜がほぼIPAの液膜に置換された後も、基板Wの上面へのIPAの供給は続行される。そのため、基板Wの周縁部からIPAが排出される。 In the organic solvent step S5, water contained in the liquid film on the upper surface of the substrate W is sequentially replaced with IPA by discharging IPA from the first nozzle 24. As a result, the IPA liquid film covering the entire upper surface of the substrate W is held on the upper surface of the substrate W in a paddle shape. Even after the liquid film on the entire upper surface of the substrate W is replaced with the IPA liquid film, the supply of IPA to the upper surface of the substrate W is continued. Therefore, IPA is discharged from the peripheral edge of the substrate W.
 基板Wの周縁部から排出されるIPAは、第2のガード54の内壁に受け止められる。そして、第2のガード54の内壁を伝って流下するIPAは、第2の排液溝62に集められた後第2の排液配管64に導かれ、IPAを排液処理するための処理装置(図示しない)へと導かれる。 IPA discharged from the peripheral edge of the substrate W is received by the inner wall of the second guard 54. Then, the IPA that flows down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64 to drain the IPA. (Not shown).
 この実施形態では、基板Wの周縁部から排出されるIPAは、基板Wの周端面に対向する第2のガード54の内壁に受け止められ、基板Wの周端面に対し下方に退避する第1のガード53の内壁に受け止められることはない。しかも、有機溶剤工程S5において、基板Wの周囲には発生するIPAのミストは少量であり、IPAのミストが第1のガード53の内壁へと導かれることもない。しかも、SPM供給工程S3において第1のガード53に付着したSPMは、水供給工程S4における水の供給により洗い流されている。したがって、有機溶剤工程S5において、IPAとSPMとの混触が生じることはない。 In this embodiment, the IPA discharged from the peripheral portion of the substrate W is received by the inner wall of the second guard 54 facing the peripheral end surface of the substrate W, and retreats downward with respect to the peripheral end surface of the substrate W. It is not received by the inner wall of the guard 53. In addition, in the organic solvent step S <b> 5, a small amount of IPA mist is generated around the substrate W, and the IPA mist is not guided to the inner wall of the first guard 53. Moreover, the SPM attached to the first guard 53 in the SPM supply step S3 is washed away by the water supply in the water supply step S4. Therefore, in the organic solvent step S5, the contact of IPA and SPM does not occur.
 IPAの吐出開始から予め定める期間が経過すると、制御装置3は、第1の有機溶剤バルブ38を閉じて、第2のノズル25からのIPAの吐出を停止させる。これにより、有機溶剤工程S5が終了する。 When a predetermined period has elapsed from the start of IPA discharge, the control device 3 closes the first organic solvent valve 38 and stops IPA discharge from the second nozzle 25. Thereby, organic solvent process S5 is complete | finished.
 次いで、基板Wを乾燥させるスピンドライ工程(図5のステップS6)が行われる。具体的には、制御装置3は、遮断板21を近接位置に配置した状態のまま、制御装置3はスピンモータ17を制御することにより、図6Eに示すように、SPM供給工程S3から有機溶剤工程S5までの各工程における回転速度よりも大きい乾燥回転速度(たとえば数千rpm)まで基板Wを加速させ、その乾燥回転速度で基板Wを回転させる。これにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液体が除去され、基板Wが乾燥する。また、制御装置3は、遮断板回転ユニット26を制御して、遮断板21を基板Wの回転方向に高速で回転させる。 Next, a spin dry process (step S6 in FIG. 5) for drying the substrate W is performed. Specifically, the control device 3 controls the spin motor 17 with the blocking plate 21 being placed in the proximity position, thereby controlling the organic solvent from the SPM supply step S3 as shown in FIG. 6E. The substrate W is accelerated to a drying rotation speed (for example, several thousand rpm) larger than the rotation speed in each step up to step S5, and the substrate W is rotated at the drying rotation speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried. Further, the control device 3 controls the shielding plate rotating unit 26 to rotate the shielding plate 21 in the rotation direction of the substrate W at a high speed.
 また、スピンドライ工程S6に並行して、有機溶剤配管37内の有機溶剤を吸引する有機溶剤吸引工程が実行される。この有機溶剤吸引工程は、有機溶剤工程S5後に有機溶剤配管37の内部に存在している有機溶剤を、吸引ユニット44によって吸引するものである。 In parallel with the spin dry process S6, an organic solvent suction process for sucking the organic solvent in the organic solvent pipe 37 is executed. In the organic solvent suction step, the organic solvent present in the organic solvent pipe 37 after the organic solvent step S5 is sucked by the suction unit 44.
 具体的には、制御装置3は、有機溶剤工程S5の終了後、第2の有機溶剤バルブ39を開きかつ第1の有機溶剤バルブ38を閉じながら、吸引バルブ42を開く。これにより、有機溶剤下流側部分43の内部が排気され、有機溶剤下流側部分43に存在しているIPAが、吸引配管41へと引き込まれる(吸引)。IPAの吸引は、IPAの先端面が配管内の所定の待機位置に後退するまで行われる。IPAの先端面が待機位置まで後退すると、制御装置3は吸引バルブ42を閉じる。これにより、スピンドライ工程S6における、有機溶剤配管37からのIPAの落液(ボタ落ち)を防止できる。 Specifically, after the completion of the organic solvent step S5, the control device 3 opens the suction valve 42 while opening the second organic solvent valve 39 and closing the first organic solvent valve 38. As a result, the inside of the organic solvent downstream portion 43 is exhausted, and IPA present in the organic solvent downstream portion 43 is drawn into the suction pipe 41 (suction). The suction of IPA is performed until the tip surface of the IPA moves back to a predetermined standby position in the pipe. When the tip surface of the IPA is retracted to the standby position, the control device 3 closes the suction valve 42. Thereby, it is possible to prevent the IPA from dropping from the organic solvent pipe 37 in the spin drying step S6.
 基板Wの加速から予め定める期間が経過すると、制御装置3は、スピンモータ17を制御してスピンチャック5による基板Wの回転を停止させ(図5のステップS7)、かつ遮断板回転ユニット26を制御して遮断板21の回転を停止させる。 When a predetermined period has elapsed since the acceleration of the substrate W, the control device 3 controls the spin motor 17 to stop the rotation of the substrate W by the spin chuck 5 (step S7 in FIG. 5), and the blocking plate rotation unit 26 is moved. The rotation of the blocking plate 21 is stopped by controlling.
 その後、チャンバ4内から基板Wが搬出される(図5のステップS8)。具体的には、制御装置3は、遮断板21を上昇させて退避位置に配置させ、かつ第2のガード54を下位置P3に下げて、第1および第2のガード53,54を、基板Wの保持位置よりも下方に配置する。その後、制御装置3は、基板搬送ロボットCRのハンドHをチャンバ4の内部に進入させる。そして、制御装置3は、基板搬送ロボットCRのハンドにスピンチャック5上の基板Wを保持させ、基板搬送ロボットCRのハンドHをチャンバ4内から退避させる。これにより、表面からレジストが除去された基板Wがチャンバ4から搬出される。    Thereafter, the substrate W is unloaded from the chamber 4 (step S8 in FIG. 5). Specifically, the control device 3 raises the blocking plate 21 to place it in the retracted position, lowers the second guard 54 to the lower position P3, and moves the first and second guards 53, 54 to the substrate. It is arranged below the W holding position. Thereafter, the control device 3 causes the hand H of the substrate transport robot CR to enter the chamber 4. Then, the control device 3 causes the hand of the substrate transport robot CR to hold the substrate W on the spin chuck 5 and retracts the hand H of the substrate transport robot CR from the chamber 4. Thereby, the substrate W from which the resist is removed from the surface is carried out of the chamber 4. *
 この第1の基板処理例によれば、処理カップ12の第1の上位置状態で、SPM供給工程S3が実行される。そのため、SPM供給工程S3において、第1のガード53をできるだけ上方に配置しながら、当該第1のガード53により、基板から飛散する第1の薬液を良好に受け止めることができる。 According to the first substrate processing example, the SPM supply step S3 is executed in the first upper position state of the processing cup 12. Therefore, in the SPM supply step S3, the first chemical solution scattered from the substrate can be satisfactorily received by the first guard 53 while the first guard 53 is disposed as high as possible.
 また、SPM供給工程S3と有機溶剤供給工程S5とで、処理液を受けるガード(第1および第2のガード53,54)を分けるので、処理カップ12の内部でSPMとIPAとが混触することを抑制または防止できる。これにより、処理カップ12の内部がパーティクル発生源になることを抑制または防止できる。 In addition, since the guard (first and second guards 53 and 54) that receives the processing liquid is divided in the SPM supply process S3 and the organic solvent supply process S5, the SPM and the IPA are mixed in the processing cup 12. Can be suppressed or prevented. Thereby, it can suppress or prevent that the inside of the processing cup 12 becomes a particle generation source.
 図7は、処理ユニット2の下部の構成例の一例を拡大して示す図解的な断面図である。    FIG. 7 is an illustrative sectional view showing an example of a configuration example of the lower part of the processing unit 2 in an enlarged manner. *
 第2のカップ52の第2の排液配管64の先端に、水用分岐配管102およびIPA用分岐配管103が接続されていてもよい。つまり、第2の排液配管64を流れる液体の流通先(第1のガード53と第2のガード54との間に区画される内部空間を通る液体の流通先)が、2つの分岐配管(水用分岐配管102およびIPA用分岐配管103)に分岐されている。このような2つの分岐配管が採用される場合について以下説明する。 The water branch pipe 102 and the IPA branch pipe 103 may be connected to the tip of the second drainage pipe 64 of the second cup 52. That is, the distribution destination of the liquid flowing through the second drainage pipe 64 (the distribution destination of the liquid passing through the internal space defined between the first guard 53 and the second guard 54) has two branch pipes ( Branching into a water branch pipe 102 and an IPA branch pipe 103). The case where such two branch piping is employ | adopted is demonstrated below.
 水用分岐配管102には、水用分岐配管102を開閉するための水用開閉バルブ105が介装されている。IPA用分岐配管103には、IPA用分岐配管103を開閉するためのIPA用開閉バルブ106が介装されている。IPA用開閉バルブ106が閉じられた状態で水用開閉バルブ105が開かれることにより、第2の排液配管64を流れる液体の流通先が、水用分岐配管102に設定される。水用開閉バルブ105が閉じられた状態でIPA用開閉バルブ106が開かれることにより、第2の排液配管64を流れる液体の流通先が、IPA用分岐配管103に設定される。 The water branch pipe 102 is provided with a water open / close valve 105 for opening and closing the water branch pipe 102. The IPA branch pipe 103 is provided with an IPA on / off valve 106 for opening and closing the IPA branch pipe 103. When the water on / off valve 105 is opened with the IPA on / off valve 106 closed, the flow destination of the liquid flowing through the second drainage pipe 64 is set to the water branch pipe 102. When the IPA on / off valve 106 is opened while the water on / off valve 105 is closed, the flow destination of the liquid flowing through the second drainage pipe 64 is set to the IPA branch pipe 103.
 図8A~8Cは、第2の基板処理例を説明するための図解的な図である。第2の基板処理例は、基本的な処理の流れにおいて、第1の基板処理例と変わらない。図2A,2B、図5および図7を参照しながら、第2の基板処理例について説明する。図8A~8Cは適宜参照する。 8A to 8C are schematic diagrams for explaining the second substrate processing example. The second substrate processing example is the same as the first substrate processing example in the basic processing flow. A second substrate processing example will be described with reference to FIGS. 2A, 2B, 5 and 7. FIG. 8A to 8C will be referred to as appropriate.
 第2の基板処理例は、SPM供給工程S3において、処理カップ12の状態が第1の上位置状態ではなく第2の上位置状態に配置される点で、第1の基板処理例と相違している。処理カップ12の第2の上位置状態とは、第1のガード53が液受け位置P2に配置され、かつ第2のガード54が上位置に配置されるような状態である。また、SPM供給工程S3において処理カップ12を第2の上位置状態にすることにより、第1のガード53と第2のガード54との間に区画される内部空間の壁(第2のガード54の内壁や第1のガード53の外壁等)にSPMのミストMIが付着するおそれがあるが、水供給工程S4において処理カップ12を第2の液受け位置状態にして、基板Wの周縁部から飛散する水を第1のガード53と第2のガード54との間に区画される内部空間に供給することにより、当該内部空間の壁(第2のガード54の内壁や第1のガード53の外壁等)に付着しているSPMのミストMIを水で洗い流す点で、第1の基板処理例と相違している。以下、第2の基板処理例に係るSPM供給工程S3を詳細に説明する。 The second substrate processing example is different from the first substrate processing example in that the state of the processing cup 12 is arranged in the second upper position state instead of the first upper position state in the SPM supply step S3. ing. The second upper position state of the processing cup 12 is a state in which the first guard 53 is disposed at the liquid receiving position P2 and the second guard 54 is disposed at the upper position. Further, by placing the processing cup 12 in the second upper position in the SPM supply step S3, the wall of the internal space defined between the first guard 53 and the second guard 54 (second guard 54). SPM mist MI may adhere to the inner wall of the first guard 53, the outer wall of the first guard 53, etc., but in the water supply step S4, the processing cup 12 is brought into the second liquid receiving position to start from the peripheral edge of the substrate W. By supplying the scattered water to the internal space defined between the first guard 53 and the second guard 54, the walls of the internal space (the inner walls of the second guard 54 and the first guard 53 This is different from the first substrate processing example in that the SPM mist MI adhering to the outer wall or the like is washed away with water. Hereinafter, the SPM supply step S3 according to the second substrate processing example will be described in detail.
 SPM供給工程S3において、SPMノズル28が処理位置に配置された後、制御装置3は、ガード昇降ユニット55を制御して、第1のガード53を液受け位置P2まで上昇させ、かつ第2のガード54を上位置P1まで上昇させて、第2のガード54を基板Wの周端面に対向させる。 In the SPM supply step S3, after the SPM nozzle 28 is disposed at the processing position, the control device 3 controls the guard lifting unit 55 to raise the first guard 53 to the liquid receiving position P2, and to The guard 54 is raised to the upper position P1, and the second guard 54 is opposed to the peripheral end surface of the substrate W.
 処理カップ12の第2の上位置状態では、処理カップ12の第1の上位置状態と同様、第2のガード54の上端とノズルアーム29の下端面29aとの間の第1の間隔87(たとえば略零)が、ノズルアーム29の下端面29aとSPMノズル28の吐出口28aとの間の第2の間隔88(たとえば約5mm)よりも狭くなる。さらに言えば、処理カップ12の第2の上位置状態は、第2のガード54の上端が、ノズルアーム29の下端面29aとスピンチャック5に保持されている基板Wの上面との間の中間位置M(図3B参照)よりも上方に位置するような位置である。第2のガード54の上昇後、制御装置3は、SPMバルブ31(図2A参照)を開く。 In the second upper position state of the processing cup 12, as in the first upper position state of the processing cup 12, the first gap 87 (between the upper end of the second guard 54 and the lower end surface 29 a of the nozzle arm 29 is provided. For example, substantially zero) is narrower than a second distance 88 (for example, about 5 mm) between the lower end surface 29a of the nozzle arm 29 and the discharge port 28a of the SPM nozzle 28. More specifically, the second upper position state of the processing cup 12 is such that the upper end of the second guard 54 is intermediate between the lower end surface 29 a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5. It is a position located above the position M (see FIG. 3B). After the second guard 54 is raised, the control device 3 opens the SPM valve 31 (see FIG. 2A).
 図8Aに示すように、この実施形態に係るSPM供給工程S3では、第1のガード53が液受け位置P2に配置され、かつ第2のガード54が上位置P1に配置されている状態で(すなわち、処理カップ12の第2の上位置状態で)、回転状態にある基板Wの上面に高温のSPMが供給される。基板Wの上面に供給されたSPMは、基板Wの回転による遠心力を受けて、基板Wの周縁部から側方へ飛散する。そして、側方へ飛散したSPMは、液受け位置P2にある第1のガード53によって受け止められ、第1のガード53の内壁を伝って流下する。第1のガード53を流下するSPMは、第1の排液配管61に導かれ、SPMを排液処理するための排液処理装置(図示しない)へと導かれる。 As shown in FIG. 8A, in the SPM supply step S3 according to this embodiment, the first guard 53 is disposed at the liquid receiving position P2 and the second guard 54 is disposed at the upper position P1 ( That is, in the second upper position state of the processing cup 12, the high temperature SPM is supplied to the upper surface of the substrate W in the rotating state. The SPM supplied to the upper surface of the substrate W receives a centrifugal force due to the rotation of the substrate W and scatters laterally from the peripheral edge of the substrate W. Then, the SPM scattered to the side is received by the first guard 53 at the liquid receiving position P <b> 2 and flows down along the inner wall of the first guard 53. The SPM flowing down the first guard 53 is led to the first drainage pipe 61 and led to a drainage treatment apparatus (not shown) for draining the SPM.
 また、SPM供給工程S3では、使用されるSPMが極めて高温である(たとえば約170℃~約180℃)ため、大量のSPMのミストMIが発生する。基板WへのSPMの供給により、基板Wの上面の周囲に大量に発生したSPMのミストMIが、基板Wの上面上で浮遊する。 Further, in the SPM supply step S3, since the SPM used is extremely high temperature (for example, about 170 ° C. to about 180 ° C.), a large amount of SPM mist MI is generated. Due to the supply of the SPM to the substrate W, a large amount of SPM mist MI generated around the upper surface of the substrate W floats on the upper surface of the substrate W.
 処理カップ12の第2の上位置状態では、上位置P1に配置されている状態の第2のガード54の上端と遮断板21の基板対向面6との間に形成される環状隙間86(図3B参照)が狭く設定されている。そのため、処理カップ12内の雰囲気が環状隙間86を通ってチャンバ4の内部へ流出することが困難である。これにより、処理カップ12の内部におけるSPMのミストMIを含む雰囲気がチャンバ4の内部に流出することを抑制または防止できる。 In the second upper position state of the processing cup 12, an annular gap 86 (see FIG. 5) formed between the upper end of the second guard 54 and the substrate facing surface 6 of the blocking plate 21 in the state of being disposed at the upper position P1. 3B) is set narrowly. Therefore, it is difficult for the atmosphere in the processing cup 12 to flow out into the chamber 4 through the annular gap 86. Thereby, it is possible to suppress or prevent the atmosphere containing the SPM mist MI inside the processing cup 12 from flowing into the chamber 4.
 また、処理カップ12の第2の上位置状態では、突部75と仕切り板16との間の隙間Sが略零になるため、チャンバ4の内部を流れるダウンフローDF3(図3B参照)は、スピンチャック5と第2のガード54の先端との間を通って、チャンバ4の下部空間4aに進入するこれにより、処理カップ12からチャンバ4の内部へのSPMのミストMIを含む雰囲気の流出を、より効果的に抑制できる。 Further, in the second upper position state of the processing cup 12, the gap S between the projection 75 and the partition plate 16 becomes substantially zero, so the downflow DF3 (see FIG. 3B) flowing inside the chamber 4 is By passing between the spin chuck 5 and the tip of the second guard 54 and entering the lower space 4a of the chamber 4, the outflow of the atmosphere containing the SPM mist MI from the processing cup 12 into the chamber 4 is prevented. Can be suppressed more effectively.
 この第2の基板処理例のSPM供給工程S3においては、SPMのミストMIが第1のガード53と第2のガード54との間に区画される内部空間に進入し、その結果、SPMのミストMIが内部空間の壁(第2のガード54の内壁や第1のガード53の外壁等)に付着するおそれがある。 In the SPM supply step S3 of this second substrate processing example, the SPM mist MI enters the internal space defined between the first guard 53 and the second guard 54, and as a result, the SPM mist There is a risk that MI may adhere to the walls of the internal space (the inner wall of the second guard 54, the outer wall of the first guard 53, etc.).
 SPM供給工程S3の終了後、制御装置3は、ガード昇降ユニット55を制御して、第1のガード53を液受け位置P2から下位置P3まで下降させると共に、第2のガード54を上位置P1から液受け位置P2まで下降させる。すなわち、処理カップ12の状態を、第2の液受け位置状態に遷移させる。処理カップ12の第2の液受け位置状態では、基板Wの周端面に第2のガード54が対向する。また、水の吐出に先立って、制御装置3は、IPA用開閉バルブ106を閉じながら水用開閉バルブ105を開くことにより、第2の排液配管64を流れる液体の流通先を水用分岐配管102に設定する。第1のガード53の下降開始後、制御装置3は、ノズル移動ユニット32を制御して、SPMノズル28を退避位置まで退避させる。 After the end of the SPM supply step S3, the control device 3 controls the guard lifting / lowering unit 55 to lower the first guard 53 from the liquid receiving position P2 to the lower position P3 and to move the second guard 54 to the upper position P1. To the liquid receiving position P2. That is, the state of the processing cup 12 is changed to the second liquid receiving position state. In the second liquid receiving position state of the processing cup 12, the second guard 54 faces the peripheral end surface of the substrate W. Prior to the discharge of water, the control device 3 opens the water on-off valve 105 while closing the IPA on-off valve 106, thereby controlling the flow destination of the liquid flowing through the second drainage pipe 64. Set to 102. After starting the lowering of the first guard 53, the control device 3 controls the nozzle moving unit 32 to retract the SPM nozzle 28 to the retracted position.
 次いで、水供給工程(図5のステップS4)が行われる。具体的には、制御装置3は、水バルブ47を開く。これにより、図8Bに示すように、中心軸ノズル33の(第2のノズル25(図2B参照)から、基板Wの上面中央部に向けて水が吐出される。中心軸ノズル33から吐出された水は、基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。 Next, a water supply process (step S4 in FIG. 5) is performed. Specifically, the control device 3 opens the water valve 47. 8B, water is discharged from the center axis nozzle 33 (from the second nozzle 25 (see FIG. 2B) toward the center of the upper surface of the substrate W. The water is discharged from the center axis nozzle 33. The water is deposited on the central portion of the upper surface of the substrate W, and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
 基板Wの上面に供給された水は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード53と第2のガード54との間に区画される内部空間(第2のガード54の内壁や第1のガード53の外壁等)に進入し、第2のガード54の内壁に受け止められる。そして、第2のガード54の内壁を伝って流下する水は、第2の排液溝62に集められた後第2の排液配管64に導かれる。第2の基板処理例における水供給工程S4では、第2の排液配管64を流れる液体の流通先が水用分岐配管102(図7参照)に設定されているので、第2の排液配管64を流れる水は、水用分岐配管102へと供給され、その後、水を排液処理するための処理装置(図示しない)に送られる。 The water supplied to the upper surface of the substrate W scatters from the peripheral edge of the substrate W toward the side of the substrate W, and is an internal space (first space) defined between the first guard 53 and the second guard 54. The inner wall of the second guard 54, the outer wall of the first guard 53, etc.) and received by the inner wall of the second guard 54. Then, the water flowing down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64. In the water supply step S4 in the second substrate processing example, since the flow destination of the liquid flowing through the second drainage pipe 64 is set to the water branch pipe 102 (see FIG. 7), the second drainage pipe The water flowing through 64 is supplied to the water branch pipe 102 and then sent to a treatment device (not shown) for draining the water.
 前述のSPM供給工程S3の後には、第1のガード53と第2のガード54との間に区画される内部空間(第2のガード54の内壁や第1のガード53の外壁等)の壁にSPMのミストMIが付着しているおそれがある。しかし、水供給工程S4において、第1のガード53と第2のガード54との間に区画される内部空間に供給される水により、壁に付着しているSPMのミストMIは洗い流される。水の吐出開始から予め定める期間が経過すると、水供給工程S4は終了する。 After the aforementioned SPM supply step S3, the walls of the internal space (the inner wall of the second guard 54, the outer wall of the first guard 53, etc.) partitioned between the first guard 53 and the second guard 54 There is a risk that the SPM mist MI adheres to the surface. However, in the water supply step S4, the SPM mist MI adhering to the wall is washed away by the water supplied to the internal space defined between the first guard 53 and the second guard 54. When a predetermined period elapses from the start of water discharge, the water supply step S4 ends.
 次いで、有機溶剤としてのIPAを基板Wの上面に供給する有機溶剤工程(図5のステップS5)が行われる。IPAの吐出開始前において、制御装置3は、水用開閉バルブ105を閉じながらIPA用開閉バルブ106を開くことにより、第2の排液配管64を流れる液体の流通先をIPA用分岐配管103(図7参照)に設定する。有機溶剤工程S5におけるそれ以外の制御は、第1の基板処理例の場合と同様である。 Next, an organic solvent process (step S5 in FIG. 5) for supplying IPA as an organic solvent to the upper surface of the substrate W is performed. Before starting the discharge of IPA, the control device 3 opens the IPA on-off valve 106 while closing the water on-off valve 105, thereby controlling the flow destination of the liquid flowing through the second drainage pipe 64 to the IPA branch pipe 103 ( (See FIG. 7). Other controls in the organic solvent step S5 are the same as those in the first substrate processing example.
 基板Wの周縁部から排出されるIPAは、第2のガード54の内壁に受け止められる。そして、第2のガード54の内壁を伝って流下するIPAは、第2の排液溝62に集められた後第2の排液配管64に導かれ、IPAを排液処理するための処理装置(図示しない)へと導かれる。第2の基板処理例における有機溶剤工程S5では、第2の排液配管64を流れる液体の流通先がIPA用分岐配管103に設定されているので、第2の排液配管64を流れるIPAは、IPA用分岐配管103へと供給され、その後、IPAを排液処理するための処理装置(図示しない)に送られる。IPAの吐出開始から予め定める期間が経過すると、有機溶剤工程S5が終了する。次いで、制御装置3は、スピンドライ工程(図5のステップS6)を実行する。スピンドライ工程S6の終了後には、制御装置3は、スピンチャック5による基板Wの回転を停止させ(図5のステップS7)、かつ遮断板21の回転を停止させる。その後、チャンバ4内から基板Wが搬出される(図5のステップS8)。これらの各工程は、第1の基板処理例の場合と同等であるので、それぞれの説明を省略する。 IPA discharged from the peripheral edge of the substrate W is received by the inner wall of the second guard 54. Then, the IPA that flows down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64 to drain the IPA. (Not shown). In the organic solvent step S5 in the second substrate processing example, since the distribution destination of the liquid flowing through the second drainage pipe 64 is set to the IPA branch pipe 103, the IPA flowing through the second drainage pipe 64 is Are supplied to the branch pipe 103 for IPA and then sent to a processing device (not shown) for draining the IPA. When a predetermined period elapses from the start of IPA discharge, the organic solvent step S5 ends. Next, the control device 3 executes a spin dry process (step S6 in FIG. 5). After the end of the spin drying step S6, the control device 3 stops the rotation of the substrate W by the spin chuck 5 (step S7 in FIG. 5) and stops the rotation of the blocking plate 21. Thereafter, the substrate W is unloaded from the chamber 4 (step S8 in FIG. 5). Each of these steps is the same as in the case of the first substrate processing example, and thus the description thereof is omitted.
 第2の基板処理例では、基板Wの搬出後、処理カップ12を洗浄するカップ洗浄工程が実行される。カップ洗浄工程では、洗浄液として水が用いられる。 In the second substrate processing example, after unloading the substrate W, a cup cleaning process for cleaning the processing cup 12 is executed. In the cup cleaning process, water is used as the cleaning liquid.
 カップ洗浄工程では、制御装置3は、スピンモータ17(図2A参照)によってスピンベース19の回転を開始させる。 In the cup cleaning process, the control device 3 starts the rotation of the spin base 19 by the spin motor 17 (see FIG. 2A).
 スピンベース19への水の供給開始に先立って、制御装置3は、ガード昇降ユニット55(図2A参照)を制御して、第1のガード53を下位置P3に保ちながら、第2のガード54を液受け位置P2まで上昇させる。すなわち、図8Cに示すように、処理カップ12の状態を、第2の液受け位置状態に遷移させる。処理カップ12の第2の液受け位置状態では、スピンベース19の上面19aの周縁部に第2のガード54が対向する。 Prior to the start of water supply to the spin base 19, the control device 3 controls the guard lifting / lowering unit 55 (see FIG. 2A) to keep the first guard 53 at the lower position P3 while maintaining the second guard 54. Is raised to the liquid receiving position P2. That is, as shown in FIG. 8C, the state of the processing cup 12 is changed to the second liquid receiving position state. In the second liquid receiving position state of the processing cup 12, the second guard 54 faces the peripheral edge portion of the upper surface 19 a of the spin base 19.
 また、スピンベース19への水の供給開始に先立って、制御装置3は、IPA用開閉バルブ106(図7参照)を閉じながら水用開閉バルブ105(図7参照)を開くことにより、第2の排液配管64を流れる液体の流通先を水用分岐配管102(図7参照)に設定する。 Prior to the start of water supply to the spin base 19, the control device 3 opens the water on-off valve 105 (see FIG. 7) while closing the IPA on-off valve 106 (see FIG. 7), thereby The flow destination of the liquid flowing through the drainage pipe 64 is set to the water branch pipe 102 (see FIG. 7).
 スピンベース19の回転速度が所定の回転速度に達すると、制御装置3は、水バルブ47(図2参照)を開く。これにより、図8Cに示すように、中心軸ノズル33の(第2のノズル25(図2B参照))から水が吐出される。中心軸ノズル33から吐出された水は、スピンベース19の上面19aの中央部に着液し、スピンベース19の回転による遠心力を受けてスピンベース19の上面19a上をスピンベース19の周縁部に向けて流れ、スピンベース19の周縁部から側方に向けて飛散する。 When the rotation speed of the spin base 19 reaches a predetermined rotation speed, the control device 3 opens the water valve 47 (see FIG. 2). Thereby, as shown in FIG. 8C, water is discharged from the central axis nozzle 33 (second nozzle 25 (see FIG. 2B)). The water discharged from the central axis nozzle 33 is deposited on the central portion of the upper surface 19a of the spin base 19 and receives a centrifugal force due to the rotation of the spin base 19, and the peripheral portion of the spin base 19 on the upper surface 19a of the spin base 19. And scatters from the peripheral edge of the spin base 19 to the side.
 スピンベース19の周縁部から飛散する水は、第1のガード53と第2のガード54との間に区画される内部空間(第2のガード54の内壁や第1のガード53の外壁等)に進入し、第2のガード54の内壁に受け止められる。そして、第2のガード54の内壁を伝って流下する水は、第2の排液溝62に集められた後第2の排液配管64(図7参照)に導かれる。カップ洗浄工程では、第2の排液配管64を流れる液体の流通先が水用分岐配管102(図7参照)に設定されているので、第2の排液配管64を流れる水は、水用分岐配管102へと供給され、その後、水を排液処理するための処理装置(図示しない)に送られる。 The water scattered from the peripheral edge of the spin base 19 is an internal space defined between the first guard 53 and the second guard 54 (the inner wall of the second guard 54, the outer wall of the first guard 53, etc.). And is received by the inner wall of the second guard 54. The water flowing down along the inner wall of the second guard 54 is collected in the second drainage groove 62 and then guided to the second drainage pipe 64 (see FIG. 7). In the cup cleaning process, since the flow destination of the liquid flowing through the second drainage pipe 64 is set to the water branch pipe 102 (see FIG. 7), the water flowing through the second drainage pipe 64 is used for water. It is supplied to the branch pipe 102 and then sent to a treatment device (not shown) for draining water.
 基板W搬出の後には、第1のガード53と第2のガード54との間に区画される内部空間の壁(第2のガード54の内壁や第1のガード53の外壁)や、第2の排液溝62、第2の排液配管64の管壁にIPAの液が付着しているが、カップ洗浄工程の実行により、このIPAの液が水によって洗い流される。 After unloading the substrate W, the walls of the internal space defined between the first guard 53 and the second guard 54 (the inner wall of the second guard 54 and the outer wall of the first guard 53), the second The IPA liquid adheres to the drainage groove 62 and the second drainage pipe 64, and the IPA liquid is washed away with water by the cup cleaning process.
 水の吐出開始から予め定める期間が経過すると、制御装置3は、水バルブ47を閉じて、スピンベース19の上面19aへの水の供給を停止させる。また、制御装置3は、スピンモータ17を制御して、スピンベース19の回転を停止させる。これにより、カップ洗浄工程が終了する。 When a predetermined period has elapsed from the start of water discharge, the control device 3 closes the water valve 47 and stops the supply of water to the upper surface 19a of the spin base 19. Further, the control device 3 controls the spin motor 17 to stop the rotation of the spin base 19. Thereby, a cup washing | cleaning process is complete | finished.
 また、第2の基板処理例のカップ洗浄工程において、SiC等製のダミー基板(基板Wと同径を有する)をスピンチャック5に保持させ、回転状態にあるダミー基板に対して水等の洗浄液を供給することにより、ダミー基板の周縁からダミー基板の側方に水を飛散させるようにしてもよい。 Further, in the cup cleaning process of the second substrate processing example, a dummy substrate made of SiC or the like (having the same diameter as the substrate W) is held by the spin chuck 5 and a cleaning solution such as water is used for the rotating dummy substrate. In this case, water may be scattered from the periphery of the dummy substrate to the side of the dummy substrate.
 この第2の基板処理例によれば、処理カップ12の第2の上位置状態で、SPM供給工程S3が実行される。そのため、SPM供給工程S3において、第2のガード53をできるだけ上方に配置しながら、当該第2のガード53により、基板から飛散する第1の薬液を良好に受け止めることができる。 According to the second substrate processing example, the SPM supply step S3 is executed in the second upper position state of the processing cup 12. Therefore, in the SPM supply step S3, the first chemical liquid scattered from the substrate can be satisfactorily received by the second guard 53 while arranging the second guard 53 as high as possible.
 また、SPM供給工程S3において発生したSPMのミストMIが第1のガード53と第2のガード54との間に区画される内部空間の壁(第2のガード54の内壁や第1のガード53の外壁等)に付着するおそれがある。しかしながら、SPM供給工程S3の終了後の水供給工程S4において、基板Wの周縁部から飛散する水を第1のガード53と第2のガード54との間に区画される内部空間(第2のガード54の内壁や第1のガード53の外壁等)に供給することにより、内部空間の内壁に付着しているSPMを、この洗い流すことができる。そのため、処理カップ12の内部でSPMとIPAとが混触することを抑制または防止できる。これにより、処理カップ12の内部がパーティクル発生源になることを抑制または防止できる。 Further, the wall of the internal space where the mist MI of the SPM generated in the SPM supply step S3 is partitioned between the first guard 53 and the second guard 54 (the inner wall of the second guard 54 or the first guard 53). There is a risk of adhering to the outer wall of the However, in the water supply step S4 after the end of the SPM supply step S3, the internal space (the second space) in which the water scattered from the peripheral portion of the substrate W is partitioned between the first guard 53 and the second guard 54. SPM adhering to the inner wall of the internal space can be washed away by supplying it to the inner wall of the guard 54 or the outer wall of the first guard 53. Therefore, it is possible to suppress or prevent the SPM and IPA from being mixed in the processing cup 12. Thereby, it can suppress or prevent that the inside of the processing cup 12 becomes a particle generation source.
 また、有機溶剤供給工程S5において、基板Wから排出される処理液を第2のガード54の内壁で受け止める。そのため、有機溶剤供給工程S5の終了後には、第1のガード53と第2のガード54との間に区画される内部空間の壁にIPAの液が付着している。しかしながら、有機溶剤供給工程S5の開始後にカップ洗浄工程を実行するために、第1のガード53と第2のガード54との間に区画される内部空間の壁(第2のガード54の内壁や第1のガード53の外壁)や、第2の排液溝62、第2の排液配管64の管壁に付着しているIPAの液を、水によって洗い流すことができる。そのため、処理カップ12の内部でSPMとIPAとが混触することを抑制または防止でき、これにより、処理カップ12の内部がパーティクル発生源になることを抑制または防止できる。 In the organic solvent supply step S5, the processing liquid discharged from the substrate W is received by the inner wall of the second guard 54. Therefore, after the organic solvent supply step S <b> 5 is finished, the IPA liquid adheres to the wall of the internal space defined between the first guard 53 and the second guard 54. However, in order to execute the cup cleaning process after the start of the organic solvent supply process S5, the wall of the internal space defined between the first guard 53 and the second guard 54 (the inner wall of the second guard 54 and the like) The IPA liquid adhering to the outer wall of the first guard 53), the second drainage groove 62, and the second drainage pipe 64 can be washed away with water. Therefore, it is possible to suppress or prevent the SPM and IPA from coming into contact with each other inside the processing cup 12, thereby suppressing or preventing the inside of the processing cup 12 from becoming a particle generation source.
 また、第2の基板処理例において、水供給工程S4を、SPM供給工程S3の開始前に行うようにしてもよい。 In the second substrate processing example, the water supply step S4 may be performed before the start of the SPM supply step S3.
 以上により、この実施形態によれば、SPM供給工程S3において、第2のガード54が上位置P1に配置されている状態で、回転状態にある基板Wの上面に高温のSPMが供給される。第2のガード54が上位置P1に配置されている状態では、処理カップ12の上部開口12aと基板Wとの間の距離が大きく確保されている。SPM供給工程S3では、高温のSPMの基板Wへの供給によりSPMのミストが発生するが、処理カップ12の上部開口12aと基板Wとの間の距離が大きく確保されているために、SPMのミストを含む雰囲気が、処理カップ12の上部開口12aを通って処理カップ12外に流出し難い。 As described above, according to this embodiment, in the SPM supply step S3, the high temperature SPM is supplied to the upper surface of the substrate W in the rotating state with the second guard 54 disposed at the upper position P1. In a state where the second guard 54 is disposed at the upper position P1, a large distance is ensured between the upper opening 12a of the processing cup 12 and the substrate W. In the SPM supply step S3, mist of SPM is generated by supplying the high-temperature SPM to the substrate W. However, since the distance between the upper opening 12a of the processing cup 12 and the substrate W is secured large, It is difficult for the atmosphere containing mist to flow out of the processing cup 12 through the upper opening 12 a of the processing cup 12.
 具体的には、各ガード53,54の上位置P1は、ガードの上端と対向部材7(基板対向面6)との間に形成される環状隙間86が、ノズルアーム29の上下幅W1よりも大きく、かつ極力狭くなるような位置である。これにより、環状隙間86を、ノズルアーム29の通過を許容する範囲で最小限の大きさに設定することができる。この場合、処理カップ12の内部からチャンバ4の内部に流出する雰囲気の量を効果的に削減できる。これにより、SPMを含む雰囲気の、周囲への拡散を、より一層効果的に抑制できる。 Specifically, the upper position P1 of each of the guards 53 and 54 is such that the annular gap 86 formed between the upper end of the guard and the facing member 7 (substrate facing surface 6) is larger than the vertical width W1 of the nozzle arm 29. The position is large and narrow as much as possible. Thus, the annular gap 86 can be set to a minimum size within a range that allows passage of the nozzle arm 29. In this case, the amount of atmosphere flowing out from the inside of the processing cup 12 to the inside of the chamber 4 can be effectively reduced. Thereby, the spreading | diffusion to the circumference | surroundings of the atmosphere containing SPM can be suppressed much more effectively.
 また、別の観点から見ると、各ガード53,54の上位置P1は、ノズルアーム29の下端面29aよりも下で、かつ吐出口28aよりも上方の位置である。より具体的には、各ガード53,54の上位置P1は、ガードの上端とノズルアーム29の下端面38aとの間の第1の間隔87が、ノズルアーム29の下端面29aとSPMノズル28の吐出口34aとの間の第2の間隔88よりも狭くなるような位置である。さらには、各ガード53,54の上位置P1は、ガードの上端が、ノズルアーム29の下端面38aとスピンチャック5に保持されている基板Wの上面との間の中間位置M(図3B参照)よりも上方になるような位置である。 From another point of view, the upper position P1 of each of the guards 53 and 54 is a position below the lower end surface 29a of the nozzle arm 29 and above the discharge port 28a. More specifically, the upper position P <b> 1 of each guard 53, 54 is such that the first gap 87 between the upper end of the guard and the lower end surface 38 a of the nozzle arm 29 is such that the lower end surface 29 a of the nozzle arm 29 and the SPM nozzle 28. This position is narrower than the second distance 88 between the discharge port 34a. Further, the upper position P1 of each of the guards 53 and 54 is such that the upper end of the guard is an intermediate position M between the lower end surface 38a of the nozzle arm 29 and the upper surface of the substrate W held by the spin chuck 5 (see FIG. 3B). ) Above.
 上位置P1をこのような位置に設定することで、処理カップ12からチャンバ4の内部に流出する雰囲気の量を効果的に削減できる。これにより、SPMを含む雰囲気の、周囲への拡散を、より一層効果的に抑制できる。 By setting the upper position P1 to such a position, the amount of atmosphere flowing out from the processing cup 12 into the chamber 4 can be effectively reduced. Thereby, the spreading | diffusion to the circumference | surroundings of the atmosphere containing SPM can be suppressed much more effectively.
 以上、この発明の一実施形態について説明したが、本発明はさらに他の形態で実施することもできる。 Although one embodiment of the present invention has been described above, the present invention can also be implemented in other forms.
 たとえば、第1,第2の基板処理例において、水供給工程S4の終了後、基板Wの上面に洗浄薬液を供給する洗浄薬液供給工程が実行されるようになっていてもよい。この場合、洗浄薬液供給工程で用いられる洗浄薬液としてフッ酸、SC1(NHOHとHとを含む混合液)を用いることができる。洗浄薬液供給工程が実行される場合、その後、基板Wの上面の薬液をリンス液で洗い流す第2の水供給工程が実行される。 For example, in the first and second substrate processing examples, a cleaning chemical supply process for supplying a cleaning chemical to the upper surface of the substrate W may be performed after the water supply process S4 is completed. In this case, hydrofluoric acid and SC1 (mixed solution containing NH 4 OH and H 2 O 2 ) can be used as the cleaning chemical solution used in the cleaning chemical supply step. When the cleaning chemical solution supply process is executed, a second water supply process is then executed in which the chemical solution on the upper surface of the substrate W is washed away with the rinse liquid.
 また、第1,第2の基板処理例において、SPM供給工程S3の実行後、または洗浄薬液供給工程の実行後に、過酸化水素水(H)を基板Wの上面(表面)に供給する過酸化水素水供給工程を行ってもよい。 In the first and second substrate processing examples, hydrogen peroxide solution (H 2 O 2 ) is supplied to the upper surface (front surface) of the substrate W after the SPM supply step S3 or the cleaning chemical solution supply step. You may perform the hydrogen peroxide solution supply process.
 また、前述の実施形態では、第2の薬液の一例として用いられる有機溶剤の一例としてIPAを例示したが、有機溶剤としてその他に、メタノール、エタノール、HFE(ハイドロフロロエーテル)、アセトン等を例示できる。また、有機溶剤としては、単体成分のみからなる場合だけでなく、他の成分と混合した液体であってもよい。たとえば、IPAとアセトンの混合液であってもよいし、IPAとメタノールの混合液であってもよい。 In the above-described embodiment, IPA is exemplified as an example of the organic solvent used as an example of the second chemical solution, but methanol, ethanol, HFE (hydrofluoroether), acetone, and the like can be exemplified as the organic solvent. . Further, the organic solvent may be a liquid mixed with other components as well as a case where it is composed of only a single component. For example, a mixed solution of IPA and acetone or a mixed solution of IPA and methanol may be used.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2016年8月24日に日本国特許庁に提出された特願2016-163744号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2016-163744 filed with the Japan Patent Office on August 24, 2016, and the entire disclosure of this application is incorporated herein by reference.
1   :基板処理装置
4   :チャンバ
5   :スピンチャック(基板保持ユニット)
6   :基板対向面
7   :対向部材
8   :SPM供給ユニット(第1の薬液供給ユニット)
10  :有機溶剤供給ユニット(第2の薬液供給ユニット)
11  :水供給ユニット
12  :処理カップ
17  :スピンモータ(回転ユニット)
28  :SPMノズル(ノズル)
28a :吐出口
29  :ノズルアーム
29a :下端面(ノズルアームの下端)
55  :ガード昇降ユニット(昇降ユニット)
75  :突部(閉塞部)
86  :環状隙間
A3  :揺動軸線
P1  :上位置
P2  :液受け位置
M   :中間位置
1: substrate processing apparatus 4: chamber 5: spin chuck (substrate holding unit)
6: Substrate facing surface 7: Opposing member 8: SPM supply unit (first chemical solution supply unit)
10: Organic solvent supply unit (second chemical supply unit)
11: Water supply unit 12: Processing cup 17: Spin motor (rotary unit)
28: SPM nozzle (nozzle)
28a: Discharge port 29: Nozzle arm 29a: Lower end surface (lower end of nozzle arm)
55: Guard lifting unit (lifting unit)
75: Projection (occlusion)
86: Annular gap A3: Oscillating axis P1: Upper position P2: Liquid receiving position M: Intermediate position

Claims (20)

  1.  チャンバと、
     前記チャンバ内に収容され、基板を水平姿勢に保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板を、鉛直な回転軸線まわりに回転させる回転ユニットと、
     吐出口を有し、前記回転ユニットに保持されている基板の主面に向けて、前記吐出口から液体を吐出するためのノズルと、
     前記ノズルに第1の薬液を供給するための第1の薬液供給ユニットと、
     前記基板保持ユニットの周囲を取り囲む筒状の第1のガード、および前記第1のガードの周囲を取り囲む筒状の第2のガードを含む複数の筒状のガードを有し、前記基板保持ユニットを収容する処理カップと、
     前記複数のガードのうち少なくとも一つのガードを昇降させるための昇降ユニットと、 前記回転ユニット、前記第1の薬液供給ユニットおよび前記昇降ユニットを制御する制御装置とを含み、
     前記制御装置は、
     前記複数のガードのうち少なくとも一つのガードを、所定の上位置であって前記回転ユニットによって回転させられている基板から飛散する第1の薬液を当該ガードによって受けることが可能な所定の液受け位置よりも上方に設定され、当該基板から飛散する液体を当該ガードによって受けることが可能な上位置に配置する上位置配置工程と、
     前記ガードが前記上位置に配置されている状態で、前記回転ユニットによって基板を回転させながら基板の主面に第1の薬液を供給する第1の薬液供給工程とを実行する、基板処理装置。
    A chamber;
    A substrate holding unit housed in the chamber and holding the substrate in a horizontal position;
    A rotation unit that rotates the substrate held by the substrate holding unit around a vertical rotation axis;
    A nozzle for discharging liquid from the discharge port toward the main surface of the substrate having a discharge port and held by the rotating unit;
    A first chemical supply unit for supplying a first chemical to the nozzle;
    A plurality of cylindrical guards including a cylindrical first guard surrounding the periphery of the substrate holding unit and a cylindrical second guard surrounding the periphery of the first guard; A processing cup for housing;
    An elevating unit for elevating and lowering at least one of the plurality of guards, and a controller for controlling the rotating unit, the first chemical solution supply unit, and the elevating unit,
    The control device includes:
    A predetermined liquid receiving position in which at least one of the plurality of guards is received at a predetermined upper position and can receive the first chemical liquid scattered from the substrate rotated by the rotating unit. An upper position arranging step, which is set at an upper position and is arranged at an upper position where the guard can receive the liquid scattered from the substrate;
    A substrate processing apparatus that executes a first chemical solution supply step of supplying a first chemical solution to a main surface of a substrate while rotating the substrate by the rotation unit in a state where the guard is disposed at the upper position.
  2.  前記基板保持ユニットにより保持されている基板の上面に対して上方に対向する基板対向面を有し、前記ガードよりも上方に配置される対向部材であって、当該ガードが前記上位置に配置されている状態で当該ガードの上端との間に環状隙間を形成する対向部材をさらに含む、請求項1に記載の基板処理装置。 An opposing member having a substrate facing surface facing upward with respect to the upper surface of the substrate held by the substrate holding unit, and disposed above the guard, wherein the guard is disposed at the upper position. The substrate processing apparatus according to claim 1, further comprising a facing member that forms an annular gap with the upper end of the guard in a state where the guard is in contact.
  3.  前記ノズルを保持し、前記基板保持ユニットに保持されている基板の主面に沿って前記ノズルを移動するように、当該基板の回転範囲外に設定された所定の揺動軸線周りに揺動可能に設けられたノズルアームをさらに含み、
     前記環状隙間は、前記ノズルアームが前記回転範囲の内外を跨ることができるように、前記ノズルアームの上下幅よりも大きく設定されている、請求項1または2に記載の基板処理装置。
    The nozzle is held and can be swung around a predetermined swing axis set outside the rotation range of the substrate so as to move the nozzle along the main surface of the substrate held by the substrate holding unit. Further including a nozzle arm provided in
    The substrate processing apparatus according to claim 1, wherein the annular gap is set larger than a vertical width of the nozzle arm so that the nozzle arm can straddle the inside and outside of the rotation range.
  4.  前記ノズルを保持し、前記基板保持ユニットに保持されている基板の主面に沿って前記ノズルを移動するように、前記基板保持ユニットの側方に設定された所定の揺動軸線周りに揺動可能に設けられたノズルアームをさらに含み、
     前記上位置は、当該上位置に配置されている状態の前記ガードの上端と前記ノズルアームの下端との間の第1の間隔が、前記ノズルアームの下端と前記吐出口との間の第2の間隔よりも狭くなるような位置である、請求項1または2に記載の基板処理装置。
    Oscillates around a predetermined oscillation axis set on the side of the substrate holding unit so as to move the nozzle along the main surface of the substrate held by the substrate holding unit. Further comprising a nozzle arm provided in a possible manner,
    The upper position is such that the first distance between the upper end of the guard and the lower end of the nozzle arm in the state of being arranged at the upper position is a second interval between the lower end of the nozzle arm and the discharge port. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus has a position that is narrower than the distance between the two.
  5.  前記上位置は、当該上位置に配置されている状態の前記ガードの上端が、前記ノズルアームの下端と前記基板保持ユニットに保持されている基板の主面との間の中間位置よりも上方に位置するような位置である、請求項1または2に記載の基板処理装置。 In the upper position, the upper end of the guard in the upper position is higher than the intermediate position between the lower end of the nozzle arm and the main surface of the substrate held by the substrate holding unit. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is positioned.
  6.  前記第1の薬液とは種類の異なる第2の薬液を前記基板の主面に供給するための第2の薬液供給ユニットをさらに含み、
     前記制御装置は前記第2の薬液供給ユニットをさらに制御するものであり、
     前記制御装置は、
     前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、
     前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に第2の薬液を供給する第2の薬液供給工程とをさらに実行する、請求項1または2に記載の基板処理装置。
    A second chemical solution supply unit for supplying a second chemical solution different from the first chemical solution to the main surface of the substrate;
    The control device further controls the second chemical liquid supply unit,
    The control device includes:
    Disposing the first guard at a lower position where the upper end of the first guard is positioned below the substrate held by the substrate holding unit; and disposing the second guard at the liquid receiving position;
    In a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position, the second surface is rotated on the main surface of the substrate while rotating the substrate by the rotating unit. The substrate processing apparatus according to claim 1, further executing a second chemical solution supply step of supplying the chemical solution.
  7.  前記制御装置は、前記第1および第2のガードを前記上位置に配置する工程を、前記上位置配置工程として実行する、請求項6に記載の基板処理装置。 The substrate processing apparatus according to claim 6, wherein the control device executes the step of arranging the first and second guards at the upper position as the upper position arranging step.
  8.  前記ノズルに水を供給するための水供給ユニットをさらに含み、
     前記制御装置は前記水供給ユニットをさらに制御するものであり、
     前記制御装置は、前記第1および第2のガードを前記液受け位置に配置する工程と、
     前記第1および第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに実行する、請求項7に記載の基板処理装置。
    A water supply unit for supplying water to the nozzle;
    The control device further controls the water supply unit,
    The control device, the step of arranging the first and second guards at the liquid receiving position;
    A water supply step of supplying water to the main surface of the substrate while rotating the substrate by the rotating unit in a state where the first and second guards are disposed at the liquid receiving position; The substrate processing apparatus according to claim 7.
  9.  前記制御装置は、前記第1のガードを、前記液受け位置に配置し、かつ前記第2のガードを前記上位置に配置する工程を、前記上位置配置工程として実行する、請求項6に記載の基板処理装置。 The said control apparatus performs the process which arrange | positions the said 1st guard in the said liquid receiving position, and arrange | positions the said 2nd guard in the said upper position as said upper position arrangement | positioning process. Substrate processing equipment.
  10.  前記ノズルに水を供給するための水供給ユニットをさらに含み、
     前記制御装置は前記水供給ユニットをさらに制御するものであり、
     前記制御装置は、
     前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、
     前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに実行する、請求項9に記載の基板処理装置。
    A water supply unit for supplying water to the nozzle;
    The control device further controls the water supply unit,
    The control device includes:
    Disposing the first guard at a lower position where the upper end of the first guard is positioned below the substrate held by the substrate holding unit; and disposing the second guard at the liquid receiving position;
    With the first guard disposed at the lower position and the second guard disposed at the liquid receiving position, water is applied to the main surface of the substrate while rotating the substrate by the rotating unit. The substrate processing apparatus according to claim 9, further executing a water supply step of supplying.
  11.  前記制御装置は、前記水供給工程を、前記第1の薬液供給工程の実行前および/もしくは実行後、ならびに/または、前記第2の薬液供給工程の実行前および/もしくは実行後において実行する、請求項10に記載の基板処理装置。 The control device executes the water supply step before and / or after the execution of the first chemical solution supply step and / or before and / or after the execution of the second chemical solution supply step. The substrate processing apparatus according to claim 10.
  12.  前記チャンバ内において、前記基板保持ユニットの側方領域を、上側の上空間と下側の下空間とに上下に仕切る仕切り板とを含み、前記下空間には、排気口が開口しており、
     前記第2のガードと前記仕切り板との間には隙間が形成されており、
     前記第2のガードは、前記隙間を閉塞するための閉塞部を有し、
     前記第2のガードが前記上位置に配置されている状態で、前記閉塞部が前記隙間を閉塞し、かつ前記第2のガードが、前記上位置よりも下方に設定された所定の下方位置に配置されている状態で前記隙間が形成される、請求項1または2に記載の基板処理装置。
    In the chamber, including a partition plate that vertically divides a side region of the substrate holding unit into an upper space on the upper side and a lower space on the lower side, and an exhaust port is opened in the lower space,
    A gap is formed between the second guard and the partition plate,
    The second guard has a closing portion for closing the gap,
    With the second guard disposed at the upper position, the closing portion closes the gap, and the second guard is at a predetermined lower position set below the upper position. The substrate processing apparatus according to claim 1, wherein the gap is formed in a disposed state.
  13.  前記第1の薬液は、硫酸と過酸化水素水との混合液を含む、請求項1または2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the first chemical solution includes a mixed solution of sulfuric acid and hydrogen peroxide solution.
  14.  チャンバと、前記チャンバ内に収容され、基板を水平姿勢に保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板を、鉛直な回転軸線まわりに回転させる回転ユニットと、前記基板保持ユニットの周囲を取り囲む筒状の第1のガード、および前記第1のガードの周囲を取り囲む筒状の第2のガードを含む複数のガードとを含む基板処理装置において実行される基板処理方法であって、
     前記基板保持ユニットによって基板を保持する基板保持工程と、
     前記複数のガードのうち少なくとも一つのガードを、所定の上位置であって前記回転ユニットによって回転させられている基板から飛散する液体を当該ガードによって受けることが可能な所定の液受け位置よりも上方に設定され、当該基板から飛散する液体を当該ガードによって受けることが可能な上位置に配置する上位置配置工程と、
     前記ガードが前記上位置に配置されている状態で、前記回転ユニットによって基板を回転させながら基板の主面に第1の薬液を供給する第1の薬液供給工程とを含む、基板処理方法。
    A chamber, a substrate holding unit that is housed in the chamber and holds the substrate in a horizontal position, a rotation unit that rotates the substrate held by the substrate holding unit around a vertical rotation axis, and the substrate holding unit And a plurality of guards including a cylindrical second guard that surrounds the first guard and a substrate processing method that is executed in a substrate processing apparatus. ,
    A substrate holding step of holding the substrate by the substrate holding unit;
    At least one of the plurality of guards is located at a predetermined upper position above a predetermined liquid receiving position at which liquid splashing from the substrate rotated by the rotating unit can be received by the guard. And an upper position arranging step for arranging the liquid scattered from the substrate at an upper position where the liquid can be received by the guard;
    A substrate processing method comprising: a first chemical solution supplying step of supplying a first chemical solution to a main surface of the substrate while rotating the substrate by the rotating unit in a state where the guard is disposed at the upper position.
  15.  前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、
     前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に第2の薬液を供給する第2の薬液供給工程とをさらに含む、請求項14に記載の基板処理方法。
    Disposing the first guard at a lower position where the upper end of the first guard is positioned below the substrate held by the substrate holding unit; and disposing the second guard at the liquid receiving position;
    In a state where the first guard is disposed at the lower position and the second guard is disposed at the liquid receiving position, the second surface is rotated on the main surface of the substrate while rotating the substrate by the rotating unit. The substrate processing method according to claim 14, further comprising: a second chemical solution supply step for supplying the chemical solution.
  16.  前記上位置配置工程は、前記第1および第2のガードを前記上位置に配置する工程を含む、請求項14または15に記載の基板処理方法。 The substrate processing method according to claim 14 or 15, wherein the upper position arranging step includes a step of arranging the first and second guards at the upper position.
  17.  前記第1および第2のガードを前記液受け位置に配置する工程と、
     前記第1および第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに含む、請求項16に記載の基板処理方法。
    Disposing the first and second guards at the liquid receiving position;
    And a water supply step of supplying water to the main surface of the substrate while rotating the substrate by the rotating unit in a state where the first and second guards are disposed at the liquid receiving position. Item 17. The substrate processing method according to Item 16.
  18.  前記上位置配置工程は、前記第1のガードを、前記液受け位置に配置し、かつ前記第2のガードを前記上位置に配置する工程を含む、請求項14または15に記載の基板処理方法。 The substrate processing method according to claim 14, wherein the upper position arranging step includes a step of arranging the first guard at the liquid receiving position and arranging the second guard at the upper position. .
  19.  前記第1および第2のガードを前記液受け位置に配置する工程と、
     前記第1のガードを、前記基板保持ユニットに保持されている基板よりもその上端が下方に位置する下位置に配置し、かつ前記第2のガードを前記液受け位置に配置する工程と、
     前記第1のガードが前記下位置に配置され、かつ前記第2のガードが前記液受け位置に配置されている状態で、前記回転ユニットによって前記基板を回転させながら前記基板の主面に水を供給する水供給工程とをさらに含む、請求項18に記載の基板処理方法。
    Disposing the first and second guards at the liquid receiving position;
    Disposing the first guard at a lower position where the upper end of the first guard is positioned below the substrate held by the substrate holding unit; and disposing the second guard at the liquid receiving position;
    With the first guard disposed at the lower position and the second guard disposed at the liquid receiving position, water is applied to the main surface of the substrate while rotating the substrate by the rotating unit. The substrate processing method according to claim 18, further comprising a supplying water supply step.
  20.  前記水供給工程は、前記第1の薬液供給工程の実行前および/もしくは実行後、ならびに/または、前記第2の薬液供給工程の実行前および/もしくは実行後において実行する、請求項19に記載の基板処理方法。 The water supply step is performed before and / or after execution of the first chemical liquid supply step and / or before and / or after execution of the second chemical liquid supply step. Substrate processing method.
PCT/JP2017/029466 2016-08-24 2017-08-16 Substrate processing device and substrate processing method WO2018037982A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780047398.6A CN109564862B (en) 2016-08-24 2017-08-16 Substrate processing apparatus and substrate processing method
KR1020197002420A KR102208292B1 (en) 2016-08-24 2017-08-16 Substrate processing apparatus and substrate processing method
KR1020217001696A KR102262348B1 (en) 2016-08-24 2017-08-16 Substrate processing device and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163744A JP6817748B2 (en) 2016-08-24 2016-08-24 Substrate processing equipment and substrate processing method
JP2016-163744 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037982A1 true WO2018037982A1 (en) 2018-03-01

Family

ID=61246668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029466 WO2018037982A1 (en) 2016-08-24 2017-08-16 Substrate processing device and substrate processing method

Country Status (5)

Country Link
JP (1) JP6817748B2 (en)
KR (2) KR102208292B1 (en)
CN (1) CN109564862B (en)
TW (2) TWI728346B (en)
WO (1) WO2018037982A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364453A (en) * 2018-03-26 2019-10-22 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
CN110993524A (en) * 2019-04-08 2020-04-10 清华大学 Substrate post-processing device and method
TWI847523B (en) * 2022-03-23 2024-07-01 日商斯庫林集團股份有限公司 Substrate processing apparatus and substrate processing method
JP7603095B2 (en) 2023-01-16 2024-12-19 辛耘企業股▲ふん▼有限公司 Liquid injection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642597B2 (en) * 2018-02-02 2020-02-05 信越半導体株式会社 Wafer cleaning apparatus and wafer cleaning method
JP7068044B2 (en) * 2018-05-30 2022-05-16 株式会社Screenホールディングス Board processing method and board processing equipment
JP7197376B2 (en) * 2019-01-17 2022-12-27 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
KR102271566B1 (en) * 2019-10-28 2021-07-01 세메스 주식회사 Substrate treatment apparatus
CN111890218B (en) * 2020-07-04 2021-09-03 林燕 Chemical mechanical polishing splash guard capable of rotating and lifting
JP2023018993A (en) * 2021-07-28 2023-02-09 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2023045958A (en) * 2021-09-22 2023-04-03 キオクシア株式会社 Device and method for processing substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142402A (en) * 2010-12-28 2012-07-26 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2015177014A (en) * 2014-03-14 2015-10-05 株式会社Screenホールディングス substrate processing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398532B2 (en) 1995-09-28 2003-04-21 大日本スクリーン製造株式会社 Substrate rotary developing device
JP3704260B2 (en) 1999-09-22 2005-10-12 大日本スクリーン製造株式会社 Substrate cleaning apparatus and substrate cleaning method
JP4679479B2 (en) 2006-09-28 2011-04-27 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP2009135396A (en) * 2007-11-06 2009-06-18 Dainippon Screen Mfg Co Ltd Substrate treating apparatus and method for processing substrate
KR101258002B1 (en) * 2010-03-31 2013-04-24 다이닛뽕스크린 세이조오 가부시키가이샤 Substrate treatment apparatus and substrate treatment method
JP5920867B2 (en) 2011-09-29 2016-05-18 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6502037B2 (en) * 2014-08-15 2019-04-17 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142402A (en) * 2010-12-28 2012-07-26 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2015177014A (en) * 2014-03-14 2015-10-05 株式会社Screenホールディングス substrate processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364453A (en) * 2018-03-26 2019-10-22 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
CN110364453B (en) * 2018-03-26 2023-06-13 株式会社斯库林集团 Substrate processing method and substrate processing apparatus
CN110993524A (en) * 2019-04-08 2020-04-10 清华大学 Substrate post-processing device and method
TWI847523B (en) * 2022-03-23 2024-07-01 日商斯庫林集團股份有限公司 Substrate processing apparatus and substrate processing method
JP7603095B2 (en) 2023-01-16 2024-12-19 辛耘企業股▲ふん▼有限公司 Liquid injection device

Also Published As

Publication number Publication date
TWI661467B (en) 2019-06-01
KR102208292B1 (en) 2021-01-26
TW201937552A (en) 2019-09-16
CN109564862A (en) 2019-04-02
KR102262348B1 (en) 2021-06-07
KR20190021418A (en) 2019-03-05
CN109564862B (en) 2023-06-13
JP6817748B2 (en) 2021-01-20
TW201816841A (en) 2018-05-01
JP2018032728A (en) 2018-03-01
TWI728346B (en) 2021-05-21
KR20210010641A (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2018037982A1 (en) Substrate processing device and substrate processing method
JP6057334B2 (en) Substrate processing equipment
JP2005191511A (en) Substrate processing equipment and substrate processing method
KR20160079701A (en) Substrate processing apparatus and substrate processing method
JP5188217B2 (en) Substrate processing equipment
TWI753789B (en) Substrate processing method and substrate processing apparatus
JP2018056187A (en) Recovery pipeline cleaning method and substrate processing apparatus
JP6418554B2 (en) Substrate processing method and substrate processing apparatus
TW201916219A (en) Method of processing substrate and substrate processing apparatus
JP6929652B2 (en) Substrate processing equipment and gap cleaning method
KR102223972B1 (en) Substrate processing apparatus and substrate processing method
JP2013207272A (en) Substrate processing apparatus
JP6489524B2 (en) Substrate processing equipment
JP6502037B2 (en) Substrate processing apparatus and substrate processing method
TWI749295B (en) Substrate processing method and substrate processing apparatus
JP7002605B2 (en) Board processing equipment and board processing method
JP6593920B2 (en) Substrate processing method and substrate processing apparatus
JP6499472B2 (en) Substrate processing apparatus and substrate processing method
KR20120077516A (en) Substrate processing apparatus
JP5824225B2 (en) Substrate processing equipment
JP2013201236A (en) Substrate processing apparatus and heater cleaning method
JP2018163898A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843465

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载