+

WO2018037538A1 - Laser amplifying medium, laser oscillator, and laser amplifier - Google Patents

Laser amplifying medium, laser oscillator, and laser amplifier Download PDF

Info

Publication number
WO2018037538A1
WO2018037538A1 PCT/JP2016/074844 JP2016074844W WO2018037538A1 WO 2018037538 A1 WO2018037538 A1 WO 2018037538A1 JP 2016074844 W JP2016074844 W JP 2016074844W WO 2018037538 A1 WO2018037538 A1 WO 2018037538A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
solid
excitation light
medium
light
Prior art date
Application number
PCT/JP2016/074844
Other languages
French (fr)
Japanese (ja)
Inventor
今井 信一
晃宏 棚橋
加藤 一夫
松本 太成
Original Assignee
株式会社メガオプト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガオプト filed Critical 株式会社メガオプト
Priority to PCT/JP2016/074844 priority Critical patent/WO2018037538A1/en
Publication of WO2018037538A1 publication Critical patent/WO2018037538A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light

Definitions

  • the present invention relates to a laser amplification medium, a laser oscillator, and a laser amplifier.
  • the basic laser oscillator exceeds a certain intensity by resonating the light component of the natural wavelength emitted from the laser amplification medium excited in the inverted distribution state.
  • a solid-state laser medium is applied as a laser amplification medium, and as its excitation method, optical excitation that causes an inversion distribution state in the solid-state laser medium by laser light irradiation is mainly employed.
  • Patent Document 1 discloses a laser excitation type solid-state laser as one form of a light excitation type solid-state laser.
  • Nd YAG lasers to which a YAG crystal (solid laser medium) to which Nd (neodymium) is added as a laser amplification medium is applied
  • the solid laser medium is excited by output light of a laser diode.
  • Ti sapphire lasers to which sapphire (solid laser medium) to which Ti (titanium) is added as a laser amplifying medium are applied have twice the output light of an argon laser or Nd: YAG laser as excitation light. Harmonic light is applied.
  • a side pump type shown in FIG. 1 (a) and an end pump type shown in FIG. 1 (b) are mainly known.
  • the propagation path of the excitation light that enters the solid laser medium from the excitation light source is referred to as “excitation light path”.
  • a propagation path (including a resonance optical path) of oscillation light that reciprocates on the resonance optical path in the resonator and is partially output to the outside of the resonator is referred to as an “oscillation optical path”.
  • the propagation path of the amplified light introduced into the solid laser medium and the propagation path of the amplified light amplified by the solid laser medium are collectively referred to as an “amplification optical path”.
  • the inventors have studied conventional laser oscillators, particularly laser-excited solid-state lasers, and have found the following problems. That is, the conventional laser oscillator to which the solid laser medium is applied as the laser amplification medium includes an end pump type laser oscillator 10A (FIG. 1A) and a side pump type laser oscillator 10B (FIG. 1B). It has been known.
  • the end pump type laser oscillator 10A includes an excitation light source 20, a laser amplification medium 30, and a resonator in which the laser amplification medium 30 is housed.
  • the excitation light L1 having the first wavelength is irradiated from the excitation light source 20 toward the laser amplification medium 30, an inversion distribution state is formed in the laser amplification medium 30 by light excitation by the excitation light L1, and the first wavelength is Light of a different second wavelength is emitted. A part of the light having the second wavelength thus emitted is output to the outside of the resonator as coherent oscillation light L2.
  • the resonator is composed of a pair of resonator mirrors, and the first resonator mirror 40A disposed on the one input / output surface 30a side of the laser amplification medium 30 transmits the excitation light L1, while the excitation light
  • This is a high reflection mirror having a high reflectance with respect to the light output from the laser amplification medium 30 optically excited by L1.
  • the second resonator mirror 40B disposed on the other input / output surface 30b side of the laser amplifying medium 30 transmits a part of the light generated in the laser amplifying medium 30 as the oscillation light L2, while the rest is a laser.
  • This is an output coupling mirror that reflects to the amplification medium 30 side.
  • the end-pump type laser oscillator 10A having the above-described structure includes an excitation light path (propagation path of the excitation light L1) and an oscillation light path (oscillation light L2 including a resonance light path). Propagation paths) match. Therefore, for example, high-efficiency oscillation can be achieved by improving the consistency between the distribution of the active substance (hereinafter referred to as “active distribution”) and the volume in the resonator in the laser amplifying medium 30 composed of a solid laser medium or the like. It becomes possible.
  • active distribution the active substance
  • a refractive index distribution is generated in the laser amplification medium 30 due to a heat distribution centered on the excitation optical path. Therefore, a slight deviation between the excitation optical path and the oscillation optical path causes a large optical loss and prevents good laser oscillation.
  • the side-pump type laser oscillator 10B shown in FIG. 1B also has an excitation light source 20 that outputs the excitation light L1 having the first wavelength and optical excitation by the excitation light L1.
  • the intensity of the excitation light L1 that is disposed between the laser amplification medium 30 that emits light of the second wavelength, and between the excitation light source 20 and the laser amplification medium 30 and is irradiated on the entire excitation light incident surface of the laser amplification medium 30 is determined.
  • the optical system 50 for making uniform and the resonator which accommodated this laser amplification medium 30 are provided.
  • the excitation light incident surface is a surface different from the input / output surfaces 30a and 30b arranged on the oscillation optical path.
  • the first resonator mirror 40A disposed on the one input / output surface 30a side of the laser amplification medium 30 is higher than the light output from the laser amplification medium 30.
  • the second resonator mirror 40B disposed on the other input / output surface 30b side of the laser amplifying medium 30 transmits a part of the light generated in the laser amplifying medium 30 as the oscillation light L2, while the rest is a laser. This is an output coupling mirror that reflects to the amplification medium 30 side.
  • the excitation light L1 is irradiated over the entire laser amplification medium 30 in order to intersect the excitation light path and the oscillation light path at an angle or at an angle close to the orthogonal.
  • the power density of pumping light W / cm 2
  • the active state of the substance in the laser amplifying medium 30 varies (the activity distribution is shaded).
  • Such uneven distribution of the active substance in the laser amplification medium 30 may hinder the generation of a good beam shape of the oscillation light L2.
  • the oscillation optical path and the excitation optical path are configured separately (configured so as to be orthogonal to each other or intersect at an angle close to each other), so that the installation configuration should not be larger than the end pump type laser oscillator. I could't.
  • FIG. 1C shows a schematic configuration of a side pump type laser amplifier 20 to which a solid laser medium is applied as the laser amplification medium 30.
  • the laser amplifier 20 includes a laser amplification medium 30, an excitation light source 20 that outputs excitation light L 1 having a first wavelength for optically exciting the laser amplification medium 30, and the laser amplification medium 30 and the excitation light source 20. And an optical system 50 for making the intensity of the excitation light L1 irradiated to the entire laser amplification medium 30 uniform.
  • the laser amplification medium 30 has an input unit 31 for taking in light of the second wavelength (amplified light L3) output from the optical signal source 60, and is opposed to the input unit 31, and is amplified light from the laser amplification medium 30.
  • An output unit 32 for outputting L4 is provided.
  • FIGS. 1A and 1B in which the schematic configurations of the laser oscillators 10A and 10B are shown, optics that enable beam shaping and condensing of the excitation light L1 irradiated to the laser amplification medium 30. Details of the elements are omitted.
  • FIG. 1C showing a schematic configuration of the laser amplifier 20, details of optical elements that enable beam shaping and focusing of the excitation light L1 and the amplified light L3 irradiated to the laser amplification medium 30 are shown. Is omitted.
  • the present invention has been made to solve the above-described problems, and enables miniaturization and high-efficiency and stable laser output as compared with conventional laser oscillators and laser amplifiers. It is an object of the present invention to provide a laser amplifying medium having a structure for achieving the above, and a laser oscillator and a laser amplifier to which the laser amplifying medium is applied.
  • an inversion distribution state is formed inside by light excitation with excitation light of the first wavelength, and light having a second wavelength different from the first wavelength is generated.
  • the laser amplification medium includes a solid laser medium, a first reflector, and a second reflector.
  • the solid-state laser medium has a refractive index that falls within a range of 1.8 ⁇ 0.1 for light of at least the first and second wavelengths.
  • the solid laser medium is a prism that is defined by a bottom surface that is a substantially parallelogram defined by an acute angle in which one of the inner angles is within a range of 60 ⁇ 2 degrees, and a side surface that is defined by a side surface that intersects the side of the bottom surface. Has a shape.
  • Side surfaces of the solid-state laser medium are a first side surface that functions as an input / output surface for light of the second wavelength, a second side surface that faces the first side surface, and functions as an input / output surface for light of the second wavelength, and the first side surface. It is comprised by the 4th side surface which adjoins so that an acute angle may be made, and in which excitation light injects, and the 3rd side surface facing a 3rd side surface.
  • the first reflector is provided on the remaining region of the third side surface excluding the excitation light incident region where the excitation light reaches with the reflection surface facing the third side surface.
  • the second reflector is provided on the fourth side surface with the reflecting surface facing the fourth side surface.
  • the angle formed between the excitation light incident surface and the input / output surface located on the oscillation optical path (or amplification optical path) is substantially equal to the solid-state laser.
  • the Brewster angle of the medium is set.
  • the incident angles with respect to these surfaces are It is set to the Brewster angle of the solid laser medium.
  • the excitation light path and the oscillation light path can be made parallel on the excitation light incident side of the solid-state laser medium, resulting in simple excitation optics.
  • System configuration is possible. This makes it possible to avoid an increase in the size of the device structure (similar to the case of end-pump type optical pumping) and to separate the oscillation optical path (resonant optical path portion) and the excitation optical path in the solid laser medium. That is, according to the present invention, the optical path deviation caused by the heat distribution due to the excitation distribution is eliminated, and it is possible to realize extremely stable laser oscillation.
  • the optical path length of the excitation light propagating in the solid-state laser medium can be compared with the case of the end pump type optical excitation.
  • the pumping efficiency of the solid-state laser medium can be greatly improved while using side pump type optical pumping.
  • FIG. 3 is a diagram showing an example of a schematic configuration of each of an end pump type laser oscillator, a side pump type laser oscillator, and a side pump type laser amplifier.
  • assembly process drawings for demonstrating the structure of the laser amplification medium which concerns on this embodiment.
  • figures for demonstrating the improvement of the excitation efficiency in this embodiment are figures which show an example of schematic structure of the laser oscillator concerning this embodiment.
  • FIG. 3 show an example of the schematic structure of the laser amplifier which concerns on this embodiment.
  • the laser amplification medium generates an inversion distribution state inside by optical excitation by excitation light of the first wavelength, and generates light having a second wavelength different from the first wavelength.
  • the laser amplification medium includes a solid laser medium, a first reflector, and a second reflector.
  • the solid-state laser medium has a refractive index that falls within 1.8 ⁇ 0.1 (in the range of 1.7 to 1.9 centered on 1.8) for at least the first and second wavelengths of light.
  • the solid-state laser medium has a bottom surface that is a substantially parallelogram defined by an acute angle in which one of the inner angles falls within a range of 60 ⁇ 2 degrees (a range of 58 to 62 degrees centered on 60 degrees); Each has a prismatic shape defined by side surfaces intersecting the sides of the bottom surface. Side surfaces of the solid-state laser medium are a first side surface that functions as an input / output surface for light of the second wavelength, a second side surface that faces the first side surface, and functions as an input / output surface for light of the second wavelength, and the first side surface. It is comprised by the 4th side surface which adjoins so that an acute angle may be made, and in which excitation light injects, and the 3rd side surface facing a 3rd side surface.
  • the first reflector is provided on the remaining region of the third side surface excluding the excitation light incident region (including the excitation light incident position) where the excitation light reaches with the reflecting surface facing the third side surface. It has been.
  • the second reflector is provided on the fourth side surface with the reflecting surface facing the fourth side surface.
  • the laser amplification medium is a special type applicable to a side-pump type laser oscillator and a laser amplifier in order to suppress the occurrence of optical loss due to the deviation between the excitation optical path and the oscillation optical path. It has a structure.
  • the excitation light is incident on the third side surface of the solid laser medium on which the excitation light is incident.
  • a pair of reflectors having reflective surfaces facing each other are provided on the region excluding the region and on the fourth side surface facing the third side surface.
  • the excitation light introduced into the solid-state laser medium with the incident angle set to the Brewster angle of the solid-state laser medium is reflected toward the solid-state laser medium by the reflecting surfaces of the pair of reflectors. Therefore, it becomes possible to lengthen the excitation light path in the solid-state laser medium as compared with the case of the end pump type laser oscillator (improvement of excitation efficiency).
  • a side-pump type laser oscillator to which the laser amplification medium having the above-described structure is applied specifically, as one aspect of the present embodiment, the laser amplification medium having the above-described structure, A resonator containing a laser amplification medium and an excitation light source are provided.
  • the resonator is composed of a pair of resonator mirrors, and one (first resonator mirror) of the pair of resonator mirrors is output from the incident side of the laser amplification medium (the first side surface of the solid laser medium). It is a high reflection mirror arranged at a position where light of the second wavelength reaches.
  • the other resonator mirror (second resonator mirror) is disposed at a position where the light of the second wavelength output from the second side surface of the solid-state laser medium reaches, and a part of the reached light is outside the resonator.
  • This is an output coupling mirror that outputs to.
  • the excitation light source outputs excitation light that should be incident on the excitation light incident area of the third side surface of the solid-state laser medium at a predetermined incident angle.
  • a side-pump type laser amplifier introduces a laser amplification medium having the above-described structure, an excitation light source, and light to be amplified into the laser amplification medium. And an output unit for outputting amplified light.
  • the excitation light source outputs excitation light that should be incident on the excitation light incident area of the third side surface of the solid-state laser medium included in the laser amplification medium at a predetermined incident angle.
  • the input unit coincides with the first side surface of the solid-state laser medium, and the output unit coincides with the second side surface of the solid-state laser medium.
  • the first reflector on the third side and the fourth side on the third side in a state where the first side and the second side of the solid laser medium are arranged on the oscillation optical path or the amplification optical path.
  • the second reflector has a posture in which each reflecting surface sandwiches the oscillation optical path or the amplification optical path.
  • the excitation light introduced into the solid laser medium from the excitation light incident area on the third side is reciprocated in the solid laser medium a plurality of times by the pair of reflectors. Therefore, the uneven distribution state of the active substance in the solid-state laser medium is greatly improved over a wide range as compared with the side pump type conventional laser oscillator and laser amplifier.
  • the solid-state laser medium may include sapphire to which Ti is added.
  • the excitation light preferably includes laser light having a wavelength falling within a range of 440 to 540 nm.
  • the incident angle of the excitation light with respect to the third side surface of the solid-state laser medium is preferably set in the range of 58 to 62 degrees centered on 60 degrees.
  • the solid-state laser medium included in the laser medium applicable to the side-pump type laser oscillator and the laser amplifier includes the first wavelength excitation light, the second wavelength oscillation light, the third wavelength amplified light, and the amplifier.
  • the bottom surface has a refractive index of 1.8 ⁇ 0.1, and one of the inner angles (the angle formed by the first side surface and the third side surface) is a Brewster of the solid-state laser medium. It is a substantially parallelogram set to 60 ⁇ 2 degrees corresponding to a corner.
  • the excitation light is not irradiated on the entire third side surface of the solid-state laser medium, but the incident angle is set to the Brewster angle of the solid-state laser medium with respect to the excitation light incident area on the third side surface.
  • the p-polarized component of the excitation light is efficiently (low loss) introduced into the solid-state laser medium.
  • the excitation light path and the oscillation light path (or amplification light path) can be made parallel on the excitation light incident side of the solid-state laser medium, and as a result, a simple configuration of the excitation optical system becomes possible.
  • the oscillation optical path (resonance optical path portion) and the excitation optical path in the solid-state laser medium can be separated while avoiding an increase in the size of the device structure (similar to the case of end pump type optical excitation). That is, in the solid-state laser medium, the optical path deviation caused by the heat distribution due to the excitation distribution is eliminated, and it is possible to realize extremely stable laser oscillation.
  • each aspect listed in this [Description of Embodiments of the Invention] is applicable to each of all the remaining aspects or to all combinations of these remaining aspects. .
  • FIG. 2A and 2B are assembly process diagrams for explaining the structure of the laser amplification medium 300 according to the present embodiment.
  • 2A is an assembly process diagram when the laser amplification medium 300 is viewed from the upper surface side
  • FIG. 2B is an assembly process diagram when the laser amplification medium 300 is viewed from the bottom surface side. is there.
  • the laser amplification medium 300 includes a solid-state laser medium 310 and a pair of reflectors (a first reflector 320A and a second reflector). 320B is provided.
  • the solid laser medium 310 has an inversion distribution state formed therein by light excitation with excitation light having the first wavelength, and emits light having a second wavelength different from the first wavelength.
  • the solid-state laser medium 310 has a refractive index that falls within a range of 1.7 to 1.9, centered at 1.8, for at least the light of the first and second wavelengths.
  • the solid-state laser medium 310 has a bottom surface 310e and a top surface 310f arranged to face each other, and each of the bottom surface 310e and the top surface 310f has an inner angle.
  • One is a substantially parallelogram defined by an acute angle within a range of 58 to 62 degrees centered on 60 degrees.
  • the bottom surface 310e and the top surface 310f communicate with each other through four side surfaces, whereby the solid-state laser medium 310 has a prism shape defined by the bottom surface 310e and the four side surfaces intersecting the sides of the bottom surface 310e. Has a shape.
  • the four side surfaces are a first side surface 310a that functions as an input / output surface for light of the second wavelength (light propagating on the oscillation optical path or the amplification optical path), and light of the second wavelength that faces the first side surface 310a.
  • a second side surface 310b functioning as an input / output surface of the first side surface, a third side surface 310c adjacent to the first side surface 310a so as to form the acute angle and receiving excitation light, and a third side surface 310c facing the third side surface 310c. It is composed of four side surfaces 310d. That is, when each of the first side surface 310a and the second side surface 310b of the solid-state laser medium 310 is disposed on the oscillation optical path or the amplification optical path, it is adjacent to the first side surface 310a so as to make the acute angle (58 to 62 degrees).
  • the third side surface 310c that serves as the incident surface of the excitation light.
  • a pair of reflectors is provided on the third side surface 310c and the fourth side surface 310d of the solid-state laser medium 310.
  • the first reflector 320A has a reflection surface 321A that reflects the excitation light propagating in the solid-state laser medium 310, and the excitation light is in a state where the reflection surface 321A faces the third side surface 310c. Is provided on the remaining region of the third side surface 310c excluding the excitation light incident region R that reaches.
  • the second reflector 320B is provided on the fourth side surface 310d with the reflecting surface 321B facing the fourth side surface 310d.
  • Each of the first reflector 320A and the second reflector 320B may be a high reflection mirror that reflects the excitation light, and directly on the third side surface 310c and the fourth side surface 310d of the solid-state laser medium 310. It may be a reflective coating provided.
  • a structure is employed in which the reflecting surfaces 321A and 321B do not directly touch the third side surface 310c and the fourth side surface 310d. May be.
  • the reflection loss is kept to a minimum.
  • the excitation light reflected by the reflecting surface 321A or 321B returns again into the solid-state laser medium 310, the incident angle becomes an angle close to the Brewster angle with low loss.
  • FIG. 3 is a diagram for explaining the functions and effects of the laser amplification medium 300.
  • 4 (a) and 4 (b) show the fluctuation of the excitation light density in the laser amplification medium 300 by the optical excitation according to the present embodiment, as shown in FIGS. 1 (b) and 1 (c). It is a figure for demonstrating comparing with the fluctuation
  • the bottom surface 310e of the solid-state laser medium 310 has a first side surface 310a positioned on the oscillation light path (or amplification light path) P1 on the excitation light incident side (left side in FIG. 3), and the excitation light path.
  • the angle formed with the third side surface 310c disposed on P2 is set to the Brewster angle ⁇ B of the solid-state laser medium 310. Further, in order to reduce reflection loss at the time of incidence of light (oscillation light or amplified light) propagating through the oscillation optical path P1 and excitation light propagating through the excitation optical path P2, the incident angles with respect to the first side surface 310a and the third side surface 310c, respectively.
  • the solid-state laser medium 310 applicable to the present embodiment has a refractive index of 1.8 ⁇ 0.1 with respect to the wavelength of the excitation light and the amplification wavelength, and parallel sides defining the bottom surface 310e and the top surface 310f.
  • One of the interior corners of the shape is 60 ⁇ 2 degrees.
  • substantially Brew - the first side surface 310a and the third side surface 310c to sandwich the internal angle that is set in the static angle theta B, oscillation optical path (or amplification path) P1 and the excitation light path P2 is set.
  • the light propagating through the oscillation optical path (or amplification optical path) P1 and the pumping light propagating through the pumping optical path P2 are respectively incident on the first side surface 310a and the third side surface 310c within the range of the Brewster angle ⁇ B ⁇ 2 degrees, respectively.
  • P-polarized components are introduced into the solid-state laser medium 310.
  • the excitation light (p-polarized component) introduced into the solid-state laser medium 310 is reflected by the first reflector 320A and the second reflector 320B.
  • the excitation light path in the solid-state laser medium 310 is much longer than in the case of the conventional end-pump type or side-pump type optical excitation, and the active state of the substance in the solid-state laser medium 310 is kept uniform. It becomes possible.
  • FIG. 4B a graph 400A shows a change in excitation light density when the laser amplification medium 300 according to the present embodiment is photoexcited by a side pump type as shown in FIG.
  • FIG. 1B a change in excitation light density when optically excited by a side pump type that irradiates the entire one side surface of the laser amplification medium 30 with excitation light is shown.
  • the horizontal axis in FIG. 4B indicates the distance (in arbitrary units) from the center of each of the laser amplification media 30 and 300, as shown in FIG. 4A.
  • FIG. 5 is a diagram showing an example of a schematic structure of the side pump type laser oscillator 100 according to the present embodiment.
  • a side-pump type laser oscillator 100 shown in FIG. 5 includes an excitation light source 20, a laser amplification medium 300 having the structure shown in FIG. 3, a resonator containing the laser amplification medium 30, and an excitation light source 20 And the laser amplifying medium 300 are provided with an incident angle adjusting mechanism 400.
  • the laser amplifying medium 300 has an inverted distribution state formed by optical excitation by the first wavelength excitation light L1 output from the excitation light source 20, and emits light having a second wavelength different from the first wavelength.
  • the resonator includes a first resonator mirror (high reflection mirror) 40 ⁇ / b> A arranged on the first side surface (light input / output surface of second wavelength light) 310 a of the solid laser medium 310, and a second side surface of the solid laser medium 310.
  • the incident angle adjusting mechanism 400 provided between the excitation light source 20 and the laser amplification medium 300 is a beam of excitation light L1 that is incident on the excitation light incident region R (included in the third side surface 310c) of the laser amplification medium 300.
  • it is configured by optical elements such as a lens system and a reflector that can deflect and collect the light.
  • a solid-state laser medium 310 that constitutes a part of the laser amplification medium 300 according to the present embodiment has a 1.76 wavelength for light having a wavelength of 800 nm. It consists of Ti: sapphire (sapphire to which titanium is added) having a refractive index.
  • the excitation light L1 is laser light having a wavelength of 532 nm, and second harmonic light of Nd: YAG laser is applicable. Note that the refractive index of Ti: sapphire is 1.77 for light having a wavelength of 532 nm.
  • the inner angle of the laser amplification medium 300 that is, the angle formed by the first side surface 310a and the third side surface 310c is set to 60.4 degrees corresponding to the Brewster angle with respect to light having a wavelength of 800 nm.
  • the incident angles of the light propagating through the resonance optical path are set to 60 degrees, and the respective p-polarized components are efficiently introduced into the solid-state laser medium 310.
  • the reflectance in each of the 1st side surface 310a and the 3rd side surface 310c at this time is 1% or less.
  • the excitation optical path (corresponding to the optical path P2 in FIG. 3) and the oscillation optical path (corresponding to the optical path P1 in FIG. 3) are substantially parallel.
  • the cross section of the oscillation optical path is 6 mm ⁇ 6 mm, the long side of the parallelogram defining the bottom surface 310e and the top surface 310f of the solid laser medium 310 is 12 mm, and the concentration of Ti added to the solid laser medium 310 is for light with a wavelength of 532 nm To 1.15 cm ⁇ 1 .
  • the first resonator mirror 40A is disposed perpendicular to the oscillation optical path of the solid-state laser medium 310.
  • the first resonator mirror 40A is a highly reflective mirror having a dichroic characteristic with a reflectance of 99% or more for light having a wavelength of 800 nm and a transmittance of 99% or more for light having a wavelength of 532 nm.
  • the second resonator mirror 40B is a partial reflection mirror (output coupling mirror) having a reflectance of 60% or more for light having a wavelength of 800 nm and a transmittance of 40% or less for light having a wavelength of 800 nm.
  • the excitation light L1 having a wavelength of 532 nm and an output of 30 mJ was incident on the laser amplification medium 300, oscillation with a wavelength of 800 nm and an output energy of 7.5 mJ was confirmed. Further, the output (power of the oscillation light L2) was extremely stable with no temporal and spatial fluctuations observed.
  • FIG. 6 is a diagram showing an example of a schematic structure of the side pump type laser amplifier 200 according to the present embodiment.
  • a side pump type laser amplifier 200 shown in FIG. 6 outputs a laser amplification medium 300 having the structure shown in FIG. 3 and pumping light L1 having a first wavelength for optically exciting the laser amplification medium 300.
  • An excitation light source 20, and an incident angle adjusting mechanism 400 that is disposed between the laser amplification medium 300 and the excitation light source 20 and adjusts the incident angle of the excitation light L1 with respect to the third side surface 310c of the laser amplification medium 300 are provided. .
  • the first side surface 310 a of the solid-state laser medium 310 functions as an input unit for taking in light of the second wavelength (amplified light L 3) output from the optical signal source 60, and the second side surface 310 b is the solid-state laser medium 310. It functions as an output unit for outputting the amplified light L4 from the inside. It is apparent from the above description of the laser oscillator 100 that the laser amplifier 200 can be configured on the essence of a laser oscillator configured by an amplifier and optical feedback.
  • the angle formed by the first side surface 310a and the third side surface 310c of the solid-state laser medium 310 is set to the Brewster angle ⁇ B of the solid-state laser medium 310.
  • the incident angle of the excitation light L1 from the excitation light source 20 with respect to the excitation light incident region R on the third side surface 310c and the incident angle of the amplified light L3 from the optical signal source 60 with respect to the first side surface 310a are since the both are set to Brewster angle theta B, excitation light path excitation light L1 from the excitation light source 20 propagates (corresponding to an optical path P2 in FIG.
  • the amplified light L3 from the optical signal source 60 The propagating amplification optical path (corresponding to the optical path P1 in FIG. 3) is substantially parallel. Therefore, on the excitation light incident side (left side in FIG. 6) of the laser amplification medium 300, the incident angle adjusting mechanism 400 is disposed on the excitation light path and the amplification light path.
  • the incident angle adjusting mechanism 400 includes the excitation light L1 incident on the excitation light incident region R (included in the third side surface 310c) of the laser amplification medium 300 and the beam of the amplified light L3 incident on the first side surface 310a.
  • they are constituted by optical elements such as a lens system and a reflector that enable respective deflection and condensing.
  • laser light having a wavelength of 532 nm is applied as excitation light.
  • laser light having a wavelength of 440 nm to 540 nm is effective as excitation light for a Ti: sapphire laser. is there.
  • the present invention can be applied to laser processing technology applied in various industrial fields such as medical care and machinery.
  • DESCRIPTION OF SYMBOLS 20 ... Excitation light source, 40A ... 1st resonator mirror (high reflection mirror), 40B ... 2nd resonator mirror (output coupling mirror), 60 ... Optical signal source, 100 ... Laser oscillator, 200 ... Laser amplifier, 300 ... Laser Amplifying medium, 310 ... solid laser medium, 310a ... first side, 310b ... second side, 310c ... third side, 310d ... fourth side, 310e ... bottom, 310f ... top, 320A ... first reflector, 320B ... Second reflector, 321A, 321B ... reflecting surface, 400 ... incident angle adjusting mechanism, R ... excitation light incident region.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

A laser amplifying medium according to the present embodiment includes a solid-state laser medium and a pair of reflectors, and can be applied to a side-pumped laser oscillator or the like. The solid-state laser medium has a refractive index within the range of 1.7 through 1.9 with respect to excitation light or the like, and has a bottom face substantially formed into a parallelogram with one inner angle forming an acute angle within the range of 58 through 62 degrees. One of the surfaces forming the acute angle is disposed in an amplification optical path while excitation light is incident on the other surface. The pair of reflectors is disposed on a portion of the surface whereon the excitation light is incident and on a surface opposite thereto, thereby serving to deflect the excitation light that propagates through the solid-state laser medium in the traveling direction.

Description

レーザー増幅媒体、レーザー発振器およびレーザー増幅器Laser amplification medium, laser oscillator and laser amplifier
 本発明は、レーザー増幅媒体、レーザー発振器およびレーザー増幅器に関するものである。 The present invention relates to a laser amplification medium, a laser oscillator, and a laser amplifier.
 基本的なレーザー発振器は、レーザー増幅媒体が設置されたファブリーペロー共振器内において、反転分布状態に励起されたレーザー増幅媒体から放出される固有波長の光成分を共振させることで一定強度を超えたコヒーレントな光(発振光)を出力する。なお、一般的な固体レーザーでは、レーザー増幅媒体として固体レーザー媒質が適用され、その励起方法としては、主に、レーザー光照射により固体レーザー媒質内に反転分布状態を生じさせる光励起が採用される。 In a Fabry-Perot resonator in which a laser amplification medium is installed, the basic laser oscillator exceeds a certain intensity by resonating the light component of the natural wavelength emitted from the laser amplification medium excited in the inverted distribution state. Outputs coherent light (oscillation light). In a general solid-state laser, a solid-state laser medium is applied as a laser amplification medium, and as its excitation method, optical excitation that causes an inversion distribution state in the solid-state laser medium by laser light irradiation is mainly employed.
 以下の特許文献1には、光励起型の固体レーザーの一形態として、レーザー励起型の固体レーザーが開示されている。例えば、レーザー増幅媒体としてNd(ネオジム)が添加されたYAGの結晶(固体レーザー媒質)が適用されたNd:YAGレーザーなどの多くは、レーザーダイオードの出力光により該固体レーザー媒質が励起される。また、レーザー増幅媒体としてTi(チタン)が添加されたサファイア(固体レーザー媒質)が適用されたTi:サファイアレーザーなどの多くは、励起光として、アルゴンレーザーの出力光やNd:YAGレーザーの二倍高調波光などが適用される。 The following Patent Document 1 discloses a laser excitation type solid-state laser as one form of a light excitation type solid-state laser. For example, in many of Nd: YAG lasers to which a YAG crystal (solid laser medium) to which Nd (neodymium) is added as a laser amplification medium is applied, the solid laser medium is excited by output light of a laser diode. In addition, many of Ti: sapphire lasers to which sapphire (solid laser medium) to which Ti (titanium) is added as a laser amplifying medium are applied have twice the output light of an argon laser or Nd: YAG laser as excitation light. Harmonic light is applied.
 なお、レーザー光照射による光励起の形態としては、主に、図1(a)に示されたサイドポンプ型および図1(b)に示されたエンドポンプ型が知られている。また、本明細書では、励起光源から固体レーザー媒質内に入射される励起光の伝搬経路を、「励起光路」という。共振器内の共振光路上を往復し、一部が共振器外に出力される発振光の伝搬経路(共振光路を含む)を、「発振光路」という。更に、固体レーザー媒質内に導入される被増幅光の伝搬経路と、固体レーザー媒質により増幅された増幅光の伝搬経路とを合わせて「増幅光路」という。 In addition, as a form of photoexcitation by laser light irradiation, a side pump type shown in FIG. 1 (a) and an end pump type shown in FIG. 1 (b) are mainly known. Further, in this specification, the propagation path of the excitation light that enters the solid laser medium from the excitation light source is referred to as “excitation light path”. A propagation path (including a resonance optical path) of oscillation light that reciprocates on the resonance optical path in the resonator and is partially output to the outside of the resonator is referred to as an “oscillation optical path”. Further, the propagation path of the amplified light introduced into the solid laser medium and the propagation path of the amplified light amplified by the solid laser medium are collectively referred to as an “amplification optical path”.
特開2013-135075号公報Japanese Patent Laid-Open No. 2013-135075
 発明者らは、従来のレーザー発振器、特にレーザー励起型の固体レーザーについて検討した結果、以下のような課題を発見した。すなわち、レーザー増幅媒体として固体レーザー媒質が適用された従来のレーザー発振器には、エンドポンプ型のレーザー発振器10A(図1(a))や、サイドポンプ型のレーザー発振器10B(図1(b))が知られている。 The inventors have studied conventional laser oscillators, particularly laser-excited solid-state lasers, and have found the following problems. That is, the conventional laser oscillator to which the solid laser medium is applied as the laser amplification medium includes an end pump type laser oscillator 10A (FIG. 1A) and a side pump type laser oscillator 10B (FIG. 1B). It has been known.
 例えば図1(a)に示されたように、エンドポンプ型のレーザー発振器10Aは、励起光源20と、レーザー増幅媒体30と、該レーザー増幅媒体30を収納した共振器を備える。励起光源20からレーザー増幅媒体30に向けて第1波長の励起光L1が照射されると、レーザー増幅媒体30内では、励起光L1による光励起により反転分布状態が形成され、該第1波長とは異なる第2波長の光が放出される。このように放出された第2波長の光の一部がコヒーレントな発振光L2として共振器外に出力される。共振器は、一対の共振器ミラーにより構成されており、レーザー増幅媒体30の一方の入出力面30a側に配置された第1共振器ミラー40Aは、励起光L1を透過する一方、該励起光L1により光励起されたレーザー増幅媒体30から出力される光に対して高反射率を有する高反射ミラーである。また、レーザー増幅媒体30の他方の入出力面30b側に配置された第2共振器ミラー40Bは、レーザー増幅媒体30内で発生した光の一部を発振光L2として透過する一方、残りをレーザー増幅媒体30側へ反射する出力結合ミラーである。 For example, as shown in FIG. 1A, the end pump type laser oscillator 10A includes an excitation light source 20, a laser amplification medium 30, and a resonator in which the laser amplification medium 30 is housed. When the excitation light L1 having the first wavelength is irradiated from the excitation light source 20 toward the laser amplification medium 30, an inversion distribution state is formed in the laser amplification medium 30 by light excitation by the excitation light L1, and the first wavelength is Light of a different second wavelength is emitted. A part of the light having the second wavelength thus emitted is output to the outside of the resonator as coherent oscillation light L2. The resonator is composed of a pair of resonator mirrors, and the first resonator mirror 40A disposed on the one input / output surface 30a side of the laser amplification medium 30 transmits the excitation light L1, while the excitation light This is a high reflection mirror having a high reflectance with respect to the light output from the laser amplification medium 30 optically excited by L1. The second resonator mirror 40B disposed on the other input / output surface 30b side of the laser amplifying medium 30 transmits a part of the light generated in the laser amplifying medium 30 as the oscillation light L2, while the rest is a laser. This is an output coupling mirror that reflects to the amplification medium 30 side.
 上述のような構造を有するエンドポンプ型のレーザー発振器10Aは、図1(a)に示されたように、励起光路(励起光L1の伝搬経路)と発振光路(共振光路を含む発振光L2の伝搬経路)が一致している。そのため、例えば固体レーザー媒質などで構成されたレーザー増幅媒体30内における活性物質の分布(以下、「活性分布」と記す)と共振器内ボリュームの整合性を向上させることで、高効率な発振が可能になる。一方、このようなエンドポンプ型の光励起では、レーザー増幅媒体30内において、励起光路を中心とする熱分布に起因した屈折率分布が生じる。したがって、励起光路と発振光路の僅かなずれは、大きな光学損失の原因となり、良好なレーザー発振を妨げる。 As shown in FIG. 1A, the end-pump type laser oscillator 10A having the above-described structure includes an excitation light path (propagation path of the excitation light L1) and an oscillation light path (oscillation light L2 including a resonance light path). Propagation paths) match. Therefore, for example, high-efficiency oscillation can be achieved by improving the consistency between the distribution of the active substance (hereinafter referred to as “active distribution”) and the volume in the resonator in the laser amplifying medium 30 composed of a solid laser medium or the like. It becomes possible. On the other hand, in such an end-pump type optical excitation, a refractive index distribution is generated in the laser amplification medium 30 due to a heat distribution centered on the excitation optical path. Therefore, a slight deviation between the excitation optical path and the oscillation optical path causes a large optical loss and prevents good laser oscillation.
 図1(b)に示されたサイドポンプ型のレーザー発振器10Bも、エンドポンプ型のレーザー発振器10Aと同様に、第1波長の励起光L1を出力する励起光源20と、励起光L1による光励起により第2波長の光を放出するレーザー増幅媒体30と、励起光源20とレーザー増幅媒体30との間に配置され、該レーザー増幅媒体30の励起光入射面全体へ照射される励起光L1の強度を均一にするための光学系50と、該レーザー増幅媒体30を収納した共振器を備える。なお、励起光入射面は、発振光路上に配置された入出力面30a、30bとは異なる面である。共振器を構成する一対の共振器ミラーのうち、レーザー増幅媒体30の一方の入出力面30a側に配置された第1共振器ミラー40Aは、レーザー増幅媒体30から出力される光に対して高反射率を有する高反射ミラーである。また、レーザー増幅媒体30の他方の入出力面30b側に配置された第2共振器ミラー40Bは、レーザー増幅媒体30内で発生した光の一部を発振光L2として透過する一方、残りをレーザー増幅媒体30側へ反射する出力結合ミラーである。 Similarly to the end-pump type laser oscillator 10A, the side-pump type laser oscillator 10B shown in FIG. 1B also has an excitation light source 20 that outputs the excitation light L1 having the first wavelength and optical excitation by the excitation light L1. The intensity of the excitation light L1 that is disposed between the laser amplification medium 30 that emits light of the second wavelength, and between the excitation light source 20 and the laser amplification medium 30 and is irradiated on the entire excitation light incident surface of the laser amplification medium 30 is determined. The optical system 50 for making uniform and the resonator which accommodated this laser amplification medium 30 are provided. The excitation light incident surface is a surface different from the input / output surfaces 30a and 30b arranged on the oscillation optical path. Of the pair of resonator mirrors constituting the resonator, the first resonator mirror 40A disposed on the one input / output surface 30a side of the laser amplification medium 30 is higher than the light output from the laser amplification medium 30. This is a highly reflective mirror having reflectivity. The second resonator mirror 40B disposed on the other input / output surface 30b side of the laser amplifying medium 30 transmits a part of the light generated in the laser amplifying medium 30 as the oscillation light L2, while the rest is a laser. This is an output coupling mirror that reflects to the amplification medium 30 side.
 上述のような構造を有するサイドポンプ型のレーザー発振器10Bでは、励起光路と発振光路を直交、もしくは、直交に近い角度で交差させるため、励起光L1は、レーザー増幅媒体30全体にわたり照射される。しかしながら、発振光路と直交するレーザー増幅媒体30内では、励起光のパワーが活性物質に吸収されることにより励起光密度(power density of pumping light : W/cm2)が徐々に小さくなる。その結果、レーザー増幅媒体30内における物質の活性状態にバラツキが生じる(活性分布に濃淡が生じる)。このようなレーザー増幅媒体30内における活性物質の偏在化は、発振光L2の良好なビーム形状の生成を妨げる可能性がある。また、発振光路および励起光路は、それぞれ別個に構成(互いに直交するか、またはそれに近い角度で交差するよう構成)されるため、エンドポンプ型のレーザー発振器と比べて設置構成が大きくなることは避けられなかった。 In the side-pump type laser oscillator 10B having the above-described structure, the excitation light L1 is irradiated over the entire laser amplification medium 30 in order to intersect the excitation light path and the oscillation light path at an angle or at an angle close to the orthogonal. However, in the laser amplification medium 30 orthogonal to the oscillation optical path, the power density of pumping light (W / cm 2 ) gradually decreases as the power of the pumping light is absorbed by the active substance. As a result, the active state of the substance in the laser amplifying medium 30 varies (the activity distribution is shaded). Such uneven distribution of the active substance in the laser amplification medium 30 may hinder the generation of a good beam shape of the oscillation light L2. In addition, the oscillation optical path and the excitation optical path are configured separately (configured so as to be orthogonal to each other or intersect at an angle close to each other), so that the installation configuration should not be larger than the end pump type laser oscillator. I couldn't.
 更に、レーザー増幅媒体30はレーザー増幅器への適用も可能であり、図1(c)には、レーザー増幅媒体30として固体レーザー媒質が適用されたサイドポンプ型のレーザー増幅器20の概略構成が示されている。このレーザー増幅器20は、レーザー増幅媒体30と、該レーザー増幅媒体30を光励起するための第1波長の励起光L1を出力する励起光源20と、該レーザー増幅媒体30と励起光源20との間に配置され、該レーザー増幅媒体30全体へ照射される励起光L1の強度を均一にするための光学系50とを備える。レーザー増幅媒体30は、光信号源60から出力された第2波長の光(被増幅光L3)を取り込むための入力部31と、該入力部31に対向し、レーザー増幅媒体30内から増幅光L4を出力させるための出力部32を備える。 Further, the laser amplification medium 30 can be applied to a laser amplifier. FIG. 1C shows a schematic configuration of a side pump type laser amplifier 20 to which a solid laser medium is applied as the laser amplification medium 30. ing. The laser amplifier 20 includes a laser amplification medium 30, an excitation light source 20 that outputs excitation light L 1 having a first wavelength for optically exciting the laser amplification medium 30, and the laser amplification medium 30 and the excitation light source 20. And an optical system 50 for making the intensity of the excitation light L1 irradiated to the entire laser amplification medium 30 uniform. The laser amplification medium 30 has an input unit 31 for taking in light of the second wavelength (amplified light L3) output from the optical signal source 60, and is opposed to the input unit 31, and is amplified light from the laser amplification medium 30. An output unit 32 for outputting L4 is provided.
 なお、レーザー発振器10A、10Bそれぞれの概略構成が示された図1(a)および図1(b)では、レーザー増幅媒体30へ照射される励起光L1のビーム整形および集光を可能にする光学要素の詳細は省略されている。また、レーザー増幅器20の概略構成が示された図1(c)では、レーザー増幅媒体30へ照射される励起光L1および被増幅光L3それぞれのビーム整形および集光を可能にする光学要素の詳細は省略されている。 In FIGS. 1A and 1B in which the schematic configurations of the laser oscillators 10A and 10B are shown, optics that enable beam shaping and condensing of the excitation light L1 irradiated to the laser amplification medium 30. Details of the elements are omitted. Further, in FIG. 1C showing a schematic configuration of the laser amplifier 20, details of optical elements that enable beam shaping and focusing of the excitation light L1 and the amplified light L3 irradiated to the laser amplification medium 30 are shown. Is omitted.
 本発明は、上述のような課題を解決するためになされたものであり、従来のレーザー発振器やレーザー増幅器と比較して、小型化を可能にするとともに、高効率かつ安定的なレーザー出力を可能にするための構造を備えたレーザー増幅媒体、更には該レーザー増幅媒体が適用されたレーザー発振器およびレーザー増幅器を提供することを目的としている。 The present invention has been made to solve the above-described problems, and enables miniaturization and high-efficiency and stable laser output as compared with conventional laser oscillators and laser amplifiers. It is an object of the present invention to provide a laser amplifying medium having a structure for achieving the above, and a laser oscillator and a laser amplifier to which the laser amplifying medium is applied.
 本発明に係るレーザー増幅媒体は、第1波長の励起光による光励起により内部に反転分布状態が形成され、該第1波長とは異なる第2波長の光を発生させる。当該レーザー増幅媒体は、固体レーザー媒質と、第1反射器と、第2反射器を備える。固体レーザー媒質は、少なくとも第1および第2波長の光に対して1.8±0.1の範囲に収まる屈折率を有する。また、固体レーザー媒質は、内角の一つが60±2度の範囲に収まる鋭角で規定される実質的な平行四辺形である底面と、それぞれが該底面の辺と交差する側面により規定される角柱形状を有する。固体レーザー媒質の側面は、第2波長の光の入出力面として機能する第1側面、第1側面と対向するとともに第2波長の光の入出力面として機能する第2側面、第1側面に対して鋭角をなすよう隣接するとともに励起光が入射される第3側面、および、第3側面と対向する第4側面で構成される。第1反射器は、その反射面が第3側面に対面した状態で、励起光が到達する励起光入射領域を除いた該第3側面の残りの領域上に設けられている。第2反射器は、その反射面が第4側面に対面した状態で該第4側面上に設けられている。 In the laser amplifying medium according to the present invention, an inversion distribution state is formed inside by light excitation with excitation light of the first wavelength, and light having a second wavelength different from the first wavelength is generated. The laser amplification medium includes a solid laser medium, a first reflector, and a second reflector. The solid-state laser medium has a refractive index that falls within a range of 1.8 ± 0.1 for light of at least the first and second wavelengths. In addition, the solid laser medium is a prism that is defined by a bottom surface that is a substantially parallelogram defined by an acute angle in which one of the inner angles is within a range of 60 ± 2 degrees, and a side surface that is defined by a side surface that intersects the side of the bottom surface. Has a shape. Side surfaces of the solid-state laser medium are a first side surface that functions as an input / output surface for light of the second wavelength, a second side surface that faces the first side surface, and functions as an input / output surface for light of the second wavelength, and the first side surface. It is comprised by the 4th side surface which adjoins so that an acute angle may be made, and in which excitation light injects, and the 3rd side surface facing a 3rd side surface. The first reflector is provided on the remaining region of the third side surface excluding the excitation light incident region where the excitation light reaches with the reflection surface facing the third side surface. The second reflector is provided on the fourth side surface with the reflecting surface facing the fourth side surface.
 本発明に係るレーザー増幅媒体では、固体レーザー媒質の励起光入射側において、励起光入射面と発振光路(または増幅光路)上に位置する入出力面とのなす角度が、実質的に当該固体レーザー媒質のブリュースタ角に設定されている。また、当該レーザー増幅媒体が適用されたサイドポンプ型のレーザー発振器やレーザー増幅器では、励起光入射面および入出力面双方での低損失光入射を可能にするため、これらの面に対する入射角を当該固体レーザー媒質のブリュースタ角に設定される。したがって、当該レーザー増幅媒体がレーザー発振器やレーザー増幅器によれば、固体レーザー媒質の励起光入射側において、励起光路と発振光路(または増幅光路)を平行にすることができ、結果、簡素な励起光学系の構成が可能になる。このことは、装置構造の大型化回避を可能にするとともに(エンドポンプ型の光励起の場合と同等程度)、固体レーザー媒質内における発振光路(共振光路部分)および励起光路の分離を可能にする。すなわち、本発明によれば、励起分布に起因した熱分布が引き起こす光路ズレが解消され、かつ、極めて安定したレーザー発振の実現が可能になる。更に、本発明によれば、固体レーザー媒質の対向する側面に一対の反射器を備えることにより、固体レーザー媒質内を伝搬する励起光の光路長をエンドポンプ型の光励起の場合と比較しても格段に伸ばすことができ、サイドポンプ型の光励起でありながら、固体レーザー媒質の励起効率を大幅に改善することが可能になる。 In the laser amplification medium according to the present invention, on the excitation light incident side of the solid-state laser medium, the angle formed between the excitation light incident surface and the input / output surface located on the oscillation optical path (or amplification optical path) is substantially equal to the solid-state laser. The Brewster angle of the medium is set. In addition, in a side-pump type laser oscillator or laser amplifier to which the laser amplification medium is applied, in order to enable low-loss light incidence on both the excitation light incident surface and the input / output surface, the incident angles with respect to these surfaces are It is set to the Brewster angle of the solid laser medium. Therefore, when the laser amplification medium is a laser oscillator or laser amplifier, the excitation light path and the oscillation light path (or amplification light path) can be made parallel on the excitation light incident side of the solid-state laser medium, resulting in simple excitation optics. System configuration is possible. This makes it possible to avoid an increase in the size of the device structure (similar to the case of end-pump type optical pumping) and to separate the oscillation optical path (resonant optical path portion) and the excitation optical path in the solid laser medium. That is, according to the present invention, the optical path deviation caused by the heat distribution due to the excitation distribution is eliminated, and it is possible to realize extremely stable laser oscillation. Furthermore, according to the present invention, by providing a pair of reflectors on opposite sides of the solid-state laser medium, the optical path length of the excitation light propagating in the solid-state laser medium can be compared with the case of the end pump type optical excitation. Thus, the pumping efficiency of the solid-state laser medium can be greatly improved while using side pump type optical pumping.
は、エンドポンプ型のレーザー発振器、サイドポンプ型のレーザー発振器、およびサイドポンプ型のレーザー増幅器それぞれの概略構成の一例を示す図である。FIG. 3 is a diagram showing an example of a schematic configuration of each of an end pump type laser oscillator, a side pump type laser oscillator, and a side pump type laser amplifier. は、本実施形態に係るレーザー増幅媒体の構造を説明するための組み立て工程図である。These are assembly process drawings for demonstrating the structure of the laser amplification medium which concerns on this embodiment. は、本実施形態に係るレーザー増幅媒体の機能および効果を説明するための図である。These are the figures for demonstrating the function and effect of the laser amplification medium which concern on this embodiment. は、本実施形態における励起効率の向上を説明するための図である。These are the figures for demonstrating the improvement of the excitation efficiency in this embodiment. は、本実施形態に係るレーザー発振器の概略構造の一例を示す図である。These are figures which show an example of schematic structure of the laser oscillator concerning this embodiment. は、本実施形態に係るレーザー増幅器の概略構造の一例を示す図である。These are figures which show an example of the schematic structure of the laser amplifier which concerns on this embodiment.
 [本願発明の実施形態の説明]
  最初に本願発明の実施形態の内容をそれぞれ個別に列挙して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described individually.
 (1) 本実施形態の一態様として、当該レーザー増幅媒体は、第1波長の励起光による光励起により内部に反転分布状態が形成され、該第1波長とは異なる第2波長の光を発生させる。当該レーザー増幅媒体は、固体レーザー媒質と、第1反射器と、第2反射器を備える。固体レーザー媒質は、少なくとも第1および第2波長の光に対して1.8±0.1(1.8を中心とする1.7~1.9の範囲)に収まる屈折率を有する。また、固体レーザー媒質は、内角の一つが60±2度の範囲(60度を中心とする58~62度の範囲)内に収まる鋭角で規定される実質的な平行四辺形である底面と、それぞれが該底面の辺と交差する側面により規定される角柱形状を有する。固体レーザー媒質の側面は、第2波長の光の入出力面として機能する第1側面、第1側面と対向するとともに第2波長の光の入出力面として機能する第2側面、第1側面に対して鋭角をなすよう隣接するとともに励起光が入射される第3側面、および、第3側面と対向する第4側面で構成される。第1反射器は、その反射面が第3側面に対面した状態で、励起光が到達する励起光入射領域(励起光入射位置を含む)を除いた該第3側面の残りの領域上に設けられている。第2反射器は、その反射面が第4側面に対面した状態で該第4側面上に設けられている。 (1) As one aspect of the present embodiment, the laser amplification medium generates an inversion distribution state inside by optical excitation by excitation light of the first wavelength, and generates light having a second wavelength different from the first wavelength. . The laser amplification medium includes a solid laser medium, a first reflector, and a second reflector. The solid-state laser medium has a refractive index that falls within 1.8 ± 0.1 (in the range of 1.7 to 1.9 centered on 1.8) for at least the first and second wavelengths of light. The solid-state laser medium has a bottom surface that is a substantially parallelogram defined by an acute angle in which one of the inner angles falls within a range of 60 ± 2 degrees (a range of 58 to 62 degrees centered on 60 degrees); Each has a prismatic shape defined by side surfaces intersecting the sides of the bottom surface. Side surfaces of the solid-state laser medium are a first side surface that functions as an input / output surface for light of the second wavelength, a second side surface that faces the first side surface, and functions as an input / output surface for light of the second wavelength, and the first side surface. It is comprised by the 4th side surface which adjoins so that an acute angle may be made, and in which excitation light injects, and the 3rd side surface facing a 3rd side surface. The first reflector is provided on the remaining region of the third side surface excluding the excitation light incident region (including the excitation light incident position) where the excitation light reaches with the reflecting surface facing the third side surface. It has been. The second reflector is provided on the fourth side surface with the reflecting surface facing the fourth side surface.
 上述のようにエンドポンプ型のレーザー発振器では励起光路と発振光路のズレに起因した光学損失の発生を抑制するため、当該レーザー増幅媒体は、サイドポンプ型のレーザー発振器やレーザー増幅器に適用可能な特殊構造を有する。一方、上述のようにサイドポンプ型のレーザー発振器やレーザー増幅器ではレーザー増幅媒体内における物質の活性状態のバラツキを抑制するため、励起光が入射される固体レーザー媒質の第3側面のうち励起光入射領域を除いた領域と、該第3側面に対向する第4側面のそれぞれに互いに反射面を向け合った一対の反射器が設けられている。入射角が該固体レーザー媒質のブリュースタ角に設定された状態で該固体レーザー媒質内に導入された励起光は、一対の反射器の反射面で当該固体レーザー媒質内に向けて反射される。そのため、エンドポンプ型のレーザー発振器の場合よりも固体レーザー媒質内における励起光路を長くすることが可能になる(励起効率の向上)。 As described above, in an end-pump type laser oscillator, the laser amplification medium is a special type applicable to a side-pump type laser oscillator and a laser amplifier in order to suppress the occurrence of optical loss due to the deviation between the excitation optical path and the oscillation optical path. It has a structure. On the other hand, as described above, in the side pump type laser oscillator and laser amplifier, in order to suppress the variation in the active state of the substance in the laser amplification medium, the excitation light is incident on the third side surface of the solid laser medium on which the excitation light is incident. A pair of reflectors having reflective surfaces facing each other are provided on the region excluding the region and on the fourth side surface facing the third side surface. The excitation light introduced into the solid-state laser medium with the incident angle set to the Brewster angle of the solid-state laser medium is reflected toward the solid-state laser medium by the reflecting surfaces of the pair of reflectors. Therefore, it becomes possible to lengthen the excitation light path in the solid-state laser medium as compared with the case of the end pump type laser oscillator (improvement of excitation efficiency).
 (2)上述のような構造を備えたレーザー増幅媒体が適用されるサイドポンプ型のレーザー発振器は、具体的に本実施形態の一態様として、上述のような構造を有するレーザー増幅媒体と、該レーザー増幅媒体が収納された共振器と、励起光源を備える。共振器は一対の共振器ミラーにより構成され、該一対の共振器ミラーのうち一方(第1共振器ミラー)は、該レーザー増幅媒体の入射側(固体レーザー媒質の第1側面)から出力される第2波長の光が到達する位置に配置された高反射ミラーである。また、他方の共振器ミラー(第2共振器ミラー)は、固体レーザー媒質の第2側面から出力される第2波長の光が到達する位置に配置され、到達した光の一部を共振器外に出力する出力結合ミラーである。励起光源は、固体レーザー媒質の第3側面のうち励起光入射領域へ所定の入射角で入射されるべき励起光を出力する。 (2) A side-pump type laser oscillator to which the laser amplification medium having the above-described structure is applied, specifically, as one aspect of the present embodiment, the laser amplification medium having the above-described structure, A resonator containing a laser amplification medium and an excitation light source are provided. The resonator is composed of a pair of resonator mirrors, and one (first resonator mirror) of the pair of resonator mirrors is output from the incident side of the laser amplification medium (the first side surface of the solid laser medium). It is a high reflection mirror arranged at a position where light of the second wavelength reaches. The other resonator mirror (second resonator mirror) is disposed at a position where the light of the second wavelength output from the second side surface of the solid-state laser medium reaches, and a part of the reached light is outside the resonator. This is an output coupling mirror that outputs to. The excitation light source outputs excitation light that should be incident on the excitation light incident area of the third side surface of the solid-state laser medium at a predetermined incident angle.
 (3)一方、本実施形態の一態様として、サイドポンプ型のレーザー増幅器は、上述のような構造を有するレーザー増幅媒体と、励起光源と、被増幅光を当該レーザー増幅媒体内に導入するための入力部と、増幅光を出力するための出力部を備える。励起光源は、レーザー増幅媒体に含まれる固体レーザー媒質の第3側面のうち励起光入射領域へ所定の入射角で入射されるべき励起光を出力する。入力部は、固体レーザー媒質の第1側面に一致しており、出力部は、固体レーザー媒質の第2側面に一致している。 (3) On the other hand, as an aspect of this embodiment, a side-pump type laser amplifier introduces a laser amplification medium having the above-described structure, an excitation light source, and light to be amplified into the laser amplification medium. And an output unit for outputting amplified light. The excitation light source outputs excitation light that should be incident on the excitation light incident area of the third side surface of the solid-state laser medium included in the laser amplification medium at a predetermined incident angle. The input unit coincides with the first side surface of the solid-state laser medium, and the output unit coincides with the second side surface of the solid-state laser medium.
 レーザー発振器およびレーザー増幅器の何れにおいても、固体レーザー媒質の第1側面および第2側面が発振光路または増幅光路上に配置された状態で、第3側面上の第1反射器および第4側面上の第2反射器は、それぞれの反射面が該発振光路または増幅光路を挟むような姿勢になる。第3側面の励起光入射領域から当該固体レーザー媒質内に導入された励起光は、上記一対の反射器により固体レーザー媒質内を複数回往復することになる。そのため、固体レーザー媒質内における活性物質の偏在状態が、サイドポンプ型の従来のレーザー発振器やレーザー増幅器の場合と比較して、広範囲にわたって大幅に改善される。 In both the laser oscillator and the laser amplifier, the first reflector on the third side and the fourth side on the third side in a state where the first side and the second side of the solid laser medium are arranged on the oscillation optical path or the amplification optical path. The second reflector has a posture in which each reflecting surface sandwiches the oscillation optical path or the amplification optical path. The excitation light introduced into the solid laser medium from the excitation light incident area on the third side is reciprocated in the solid laser medium a plurality of times by the pair of reflectors. Therefore, the uneven distribution state of the active substance in the solid-state laser medium is greatly improved over a wide range as compared with the side pump type conventional laser oscillator and laser amplifier.
 (4)本実施形態の一態様として、固体レーザー媒質は、Tiが添加されたサファイアを含んでもよい。 (4) As an aspect of this embodiment, the solid-state laser medium may include sapphire to which Ti is added.
 (5)本実施形態の一態様として、励起光は、440~540nmの範囲に収まる波長のレーザー光を含むのが好ましい。また、固体レーザー媒質の第3側面に対する励起光の入射角は、60度を中心とする58~62度の範囲に設定されるのが好ましい。 (5) As one aspect of the present embodiment, the excitation light preferably includes laser light having a wavelength falling within a range of 440 to 540 nm. The incident angle of the excitation light with respect to the third side surface of the solid-state laser medium is preferably set in the range of 58 to 62 degrees centered on 60 degrees.
 上述のようにサイドポンプ型のレーザー発振器およびレーザー増幅器に適用可能なレーザー媒質に含まれる固体レーザー媒質は、第1波長の励起光、第2波長の発振光、第3波長の被増幅光や増幅器等に対して、1.8±0.1の屈折率を有し、その底面の形状は、内角の一つ(第1側面と第3側面とのなす角)が当該固体レーザー媒質のブリュースタ角に相当する60±2度に設定された実質的な平行四辺形である。また、励起光は、固体レーザー媒質の第3側面全体に照射されるのではなく、該第3側面の励起光入射領域に対して、入射角が当該固体レーザー媒質のブリュ-スタ角に設定されることにより、励起光のp偏光成分が効率的(低損失)に固体レーザー媒質内に導入される。このとき、固体レーザー媒質の励起光入射側では、励起光路と発振光路(または増幅光路)を平行にすることができ、結果、簡素な励起光学系の構成が可能になる。この場合、装置構造の大型化を避けた状態で(エンドポンプ型の光励起の場合と同等程度)、固体レーザー媒質内における発振光路(共振光路部分)および励起光路を分離できる。すなわち、固体レーザー媒質内では、励起分布に起因した熱分布が引き起こす光路ズレが解消され、かつ、極めて安定したレーザー発振の実現が可能になる。 As described above, the solid-state laser medium included in the laser medium applicable to the side-pump type laser oscillator and the laser amplifier includes the first wavelength excitation light, the second wavelength oscillation light, the third wavelength amplified light, and the amplifier. The bottom surface has a refractive index of 1.8 ± 0.1, and one of the inner angles (the angle formed by the first side surface and the third side surface) is a Brewster of the solid-state laser medium. It is a substantially parallelogram set to 60 ± 2 degrees corresponding to a corner. In addition, the excitation light is not irradiated on the entire third side surface of the solid-state laser medium, but the incident angle is set to the Brewster angle of the solid-state laser medium with respect to the excitation light incident area on the third side surface. Thus, the p-polarized component of the excitation light is efficiently (low loss) introduced into the solid-state laser medium. At this time, the excitation light path and the oscillation light path (or amplification light path) can be made parallel on the excitation light incident side of the solid-state laser medium, and as a result, a simple configuration of the excitation optical system becomes possible. In this case, the oscillation optical path (resonance optical path portion) and the excitation optical path in the solid-state laser medium can be separated while avoiding an increase in the size of the device structure (similar to the case of end pump type optical excitation). That is, in the solid-state laser medium, the optical path deviation caused by the heat distribution due to the excitation distribution is eliminated, and it is possible to realize extremely stable laser oscillation.
 以上、この[本願発明の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。 As described above, each aspect listed in this [Description of Embodiments of the Invention] is applicable to each of all the remaining aspects or to all combinations of these remaining aspects. .
 [本願発明の実施形態の詳細]
  以下、本実施形態に係るレーザー増幅媒体、レーザー発振器およびレーザー増幅器それぞれの具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
[Details of the embodiment of the present invention]
Hereinafter, specific structures of the laser amplification medium, the laser oscillator, and the laser amplifier according to the present embodiment will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 (レーザー増幅媒体)
  図2(a)および図2(b)は、本実施形態に係るレーザー増幅媒体300の構造を説明するための組み立て工程図である。特に、図2(a)は、当該レーザー増幅媒体300をその上面側から見た組み立て工程図であり、図2(b)は、当該レーザー増幅媒体300をその底面側から見た組み立て工程図である。
(Laser amplification medium)
2A and 2B are assembly process diagrams for explaining the structure of the laser amplification medium 300 according to the present embodiment. 2A is an assembly process diagram when the laser amplification medium 300 is viewed from the upper surface side, and FIG. 2B is an assembly process diagram when the laser amplification medium 300 is viewed from the bottom surface side. is there.
 図2(a)および図2(b)に示されたように、本実施形態に係るレーザー増幅媒体300は、固体レーザー媒質310と、一対の反射器(第1反射器320Aおよび第2反射器320Bを備える。 As shown in FIGS. 2A and 2B, the laser amplification medium 300 according to the present embodiment includes a solid-state laser medium 310 and a pair of reflectors (a first reflector 320A and a second reflector). 320B is provided.
 固体レーザー媒質310は、第1波長の励起光による光励起により内部に反転分布状態が形成され、該第1波長とは異なる第2波長の光を放出する。また、固体レーザー媒質310は、少なくとも第1および第2波長の光に対して1.8を中心とする1.7~1.9の範囲に収まる屈折率を有する。図2(a)および図2(b)に示されたように、固体レーザー媒質310は、互いに対向するよう配置された底面310eおよび上面310fを有し、底面310eおよび上面310fそれぞれは、内角の一つが60度を中心とする58~62度の範囲に収まる鋭角で規定される実質的な平行四辺形である。また、底面310eおよび上面310fは、4つの側面を介して連絡しており、これにより、当該固体レーザー媒質310は、底面310eと、該底面310eの辺と交差する4つの側面により規定される角柱形状を有する。4つの側面は、第2波長の光(発振光路上または増幅光路上を伝搬する光)の入出力面として機能する第1側面310aと、該第1側面310aに対向するとともに第2波長の光の入出力面として機能する第2側面310bと、該第1側面310aに対して上記鋭角をなすよう隣接するとともに励起光が入射される第3側面310cと、該第3側面310cに対向する第4側面310dで構成されている。すなわち、固体レーザー媒質310の第1側面310aおよび第2側面310bそれぞれが発振光路または増幅光路上に配置された場合、第1側面310aに対して上記鋭角(58度~62度)をなすよう隣接する第3側面310cが励起光の入射面となる。 The solid laser medium 310 has an inversion distribution state formed therein by light excitation with excitation light having the first wavelength, and emits light having a second wavelength different from the first wavelength. The solid-state laser medium 310 has a refractive index that falls within a range of 1.7 to 1.9, centered at 1.8, for at least the light of the first and second wavelengths. As shown in FIGS. 2A and 2B, the solid-state laser medium 310 has a bottom surface 310e and a top surface 310f arranged to face each other, and each of the bottom surface 310e and the top surface 310f has an inner angle. One is a substantially parallelogram defined by an acute angle within a range of 58 to 62 degrees centered on 60 degrees. Further, the bottom surface 310e and the top surface 310f communicate with each other through four side surfaces, whereby the solid-state laser medium 310 has a prism shape defined by the bottom surface 310e and the four side surfaces intersecting the sides of the bottom surface 310e. Has a shape. The four side surfaces are a first side surface 310a that functions as an input / output surface for light of the second wavelength (light propagating on the oscillation optical path or the amplification optical path), and light of the second wavelength that faces the first side surface 310a. A second side surface 310b functioning as an input / output surface of the first side surface, a third side surface 310c adjacent to the first side surface 310a so as to form the acute angle and receiving excitation light, and a third side surface 310c facing the third side surface 310c. It is composed of four side surfaces 310d. That is, when each of the first side surface 310a and the second side surface 310b of the solid-state laser medium 310 is disposed on the oscillation optical path or the amplification optical path, it is adjacent to the first side surface 310a so as to make the acute angle (58 to 62 degrees). The third side surface 310c that serves as the incident surface of the excitation light.
 また、図2(a)および図2(b)に示されたように、固体レーザー媒質310の第3側面310cおよび第4側面310d上には一対の反射器が設けられている。一対の反射器のうち第1反射器320Aは、固体レーザー媒質310内を伝搬する励起光を反射する反射面321Aを有し、この反射面321Aが第3側面310cに対面した状態で、励起光が到達する励起光入射領域Rを除いた該第3側面310cの残りの領域上に設けられている。一対の反射器のうち第2反射器320Bは、反射面321Bが第4側面310dに対面した状態で該第4側面310d上に設けられる。 Further, as shown in FIGS. 2A and 2B, a pair of reflectors is provided on the third side surface 310c and the fourth side surface 310d of the solid-state laser medium 310. Of the pair of reflectors, the first reflector 320A has a reflection surface 321A that reflects the excitation light propagating in the solid-state laser medium 310, and the excitation light is in a state where the reflection surface 321A faces the third side surface 310c. Is provided on the remaining region of the third side surface 310c excluding the excitation light incident region R that reaches. Of the pair of reflectors, the second reflector 320B is provided on the fourth side surface 310d with the reflecting surface 321B facing the fourth side surface 310d.
 なお、第1反射器320Aおよび第2反射器320Bそれぞれは、励起光を反射する高反射ミラーであってもよく、また、固体レーザー媒質310の第3側面310c上および第4側面310d上に直接設けられた反射コーティングであってもよい。第1反射器320Aおよび第2反射器320Bとして高反射ミラーが設置される構成では、それぞれの反射面321A、321Bが直接第3側面310cおよび第4側面310dに触れないようにする構造が採用されてもよい。この場合、固体レーザー媒質310から一度出射した励起光はほぼブリュースタ角で出射するため、反射損失は最低限に保たれる。一方、反射面321Aまたは321Bで反射された励起光が再び固体レーザー媒質310内に戻る際も、その入射角は低損失なブリュースタ角に近い角度になる。 Each of the first reflector 320A and the second reflector 320B may be a high reflection mirror that reflects the excitation light, and directly on the third side surface 310c and the fourth side surface 310d of the solid-state laser medium 310. It may be a reflective coating provided. In the configuration in which high-reflection mirrors are installed as the first reflector 320A and the second reflector 320B, a structure is employed in which the reflecting surfaces 321A and 321B do not directly touch the third side surface 310c and the fourth side surface 310d. May be. In this case, since the excitation light once emitted from the solid-state laser medium 310 is emitted almost at the Brewster angle, the reflection loss is kept to a minimum. On the other hand, when the excitation light reflected by the reflecting surface 321A or 321B returns again into the solid-state laser medium 310, the incident angle becomes an angle close to the Brewster angle with low loss.
 次に、上述のような構造を有する当該レーザー増幅媒体300の機能および効果について、図3、図4(a)および図4(b)を用いて、以下説明する。なお、図3は、レーザー増幅媒体300の機能および効果を説明するための図である。また、図4(a)および図4(b)は、本実施形態に係る光励起によるレーザー増幅媒体300内における励起光密度の変動を、図1(b)および図1(c)に示されたような光励起によるレーザー増幅媒体30内における励起光密度の変動と比較しながら説明するための図である。 Next, the function and effect of the laser amplification medium 300 having the above-described structure will be described below with reference to FIG. 3, FIG. 4 (a), and FIG. 4 (b). FIG. 3 is a diagram for explaining the functions and effects of the laser amplification medium 300. 4 (a) and 4 (b) show the fluctuation of the excitation light density in the laser amplification medium 300 by the optical excitation according to the present embodiment, as shown in FIGS. 1 (b) and 1 (c). It is a figure for demonstrating comparing with the fluctuation | variation of the excitation light density in the laser amplification medium 30 by such optical excitation.
 図3に示されたように、固体レーザー媒質310の底面310eは、励起光入射側(図3の左側)において、発振光路(または増幅光路)P1上に位置する第1側面310aと、励起光路P2上に配置された第3側面310cとのなす角が、当該固体レーザー媒質310のブリュ-スタ角θに設定されている。また、発振光路P1を伝搬する光(発振光や被増幅光)および励起光路P2を伝搬する励起光の入射時における反射損失を低減するため、第1側面310aおよび第3側面310cそれぞれに対する入射角は、何れもブリュ-スタ角θに設定される。具体的に本実施形態に適用可能な固体レーザー媒質310は、励起光の波長や増幅波長に対して1.8±0.1の屈折率を有するとともに、底面310eおよび上面310fを規定する平行四辺形の内角の1つが60±2度である。このとき、図3に示されたように、実質的にブリュ-スタ角θに設定された内角を挟む第1側面310aおよび第3側面310cで、発振光路(または増幅光路)P1と励起光路P2が設定される。発振光路(または増幅光路)P1を伝搬する光および励起光路P2を伝搬する励起光は、それぞれブリュースタ角θ±2度の範囲で第1側面310aおよび第3側面310cにそれぞれ入射され、それぞれのp偏光成分が固体レーザー媒質310内に導入される。特に、固体レーザー媒質310内に導入された励起光(p偏光成分)は、第1反射器320Aおよび第2反射器320Bにおいて励起光が反射される。そのため、固体レーザー媒質310内の励起光路は、従来のエンドポンプ型やサイドポンプ型の光励起の場合と比較しても格段に長くなり、当該固体レーザー媒質310における物質の活性状態を均一に維持することが可能になる。 As shown in FIG. 3, the bottom surface 310e of the solid-state laser medium 310 has a first side surface 310a positioned on the oscillation light path (or amplification light path) P1 on the excitation light incident side (left side in FIG. 3), and the excitation light path. The angle formed with the third side surface 310c disposed on P2 is set to the Brewster angle θ B of the solid-state laser medium 310. Further, in order to reduce reflection loss at the time of incidence of light (oscillation light or amplified light) propagating through the oscillation optical path P1 and excitation light propagating through the excitation optical path P2, the incident angles with respect to the first side surface 310a and the third side surface 310c, respectively. It is both Brew - set to static angle theta B. Specifically, the solid-state laser medium 310 applicable to the present embodiment has a refractive index of 1.8 ± 0.1 with respect to the wavelength of the excitation light and the amplification wavelength, and parallel sides defining the bottom surface 310e and the top surface 310f. One of the interior corners of the shape is 60 ± 2 degrees. At this time, as shown in FIG. 3, substantially Brew - the first side surface 310a and the third side surface 310c to sandwich the internal angle that is set in the static angle theta B, oscillation optical path (or amplification path) P1 and the excitation light path P2 is set. The light propagating through the oscillation optical path (or amplification optical path) P1 and the pumping light propagating through the pumping optical path P2 are respectively incident on the first side surface 310a and the third side surface 310c within the range of the Brewster angle θ B ± 2 degrees, respectively. P-polarized components are introduced into the solid-state laser medium 310. In particular, the excitation light (p-polarized component) introduced into the solid-state laser medium 310 is reflected by the first reflector 320A and the second reflector 320B. Therefore, the excitation light path in the solid-state laser medium 310 is much longer than in the case of the conventional end-pump type or side-pump type optical excitation, and the active state of the substance in the solid-state laser medium 310 is kept uniform. It becomes possible.
 上述のような励起状態の向上は、図4(b)から容易に分かる。すなわち、図4(b)において、グラフ400Aは、本実施形態に係るレーザー増幅媒体300を図3に示されたようにサイドポンプ型で光励起したときの励起光密度の変化を示し、グラフ400Bは、比較例として図1(b)に示されたようにレーザー増幅媒体30の一方の側面全体に励起光を照射するサイドポンプ型で光励起したときの励起光密度の変化を示す。なお、図4(b)の横軸は、図4(a)に示されたように、レーザー増幅媒体30、300それぞれの中心からの距離(単位は任意)を示す。 The improvement of the excited state as described above can be easily understood from FIG. That is, in FIG. 4B, a graph 400A shows a change in excitation light density when the laser amplification medium 300 according to the present embodiment is photoexcited by a side pump type as shown in FIG. As a comparative example, as shown in FIG. 1B, a change in excitation light density when optically excited by a side pump type that irradiates the entire one side surface of the laser amplification medium 30 with excitation light is shown. The horizontal axis in FIG. 4B indicates the distance (in arbitrary units) from the center of each of the laser amplification media 30 and 300, as shown in FIG. 4A.
 (レーザー発振器)
  図5は、本実施形態に係るサイドポンプ型のレーザー発振器100の概略構造の一例を示す図である。図5に示されたサイドポンプ方式のレーザー発振器100は、励起光源20と、図3に示された構造を有するレーザー増幅媒体300と、該レーザー増幅媒体30を収納した共振器と、励起光源20とレーザー増幅媒体300との間に設けられた入射角調節機構400を備える。レーザー増幅媒体300は、励起光源20から出力された第1波長の励起光L1による光励起により反転分布状態が形成され、該第1波長とは異なる第2波長の光を放出する。このように放出された第2波長の光の一部がコヒーレントな発振光L2として共振器外に出力される。また、第1側面310aと第3側面310cに挟まれた固体レーザー媒質310の励起光入射側において、内角の一方(鋭角部分)はブリュースタ角θに設定されている。共振器は、固体レーザー媒質310の第1側面(第2波長の光の入出力面)310a側に配置された第1共振器ミラー(高反射ミラー)40Aと、固体レーザー媒質310の第2側面(第2波長の光の入出力面)310b側に配置された第2共振器ミラー(出力結合ミラー)40Bにより構成されている。励起光源20とレーザー増幅媒体300との間に設けられた入射角調節機構400は、レーザー増幅媒体300の励起光入射領域R(第3側面310cに含まれる)へ入射される励起光L1のビーム整形の他、該励起光L1の入射角を調節するため、その偏向および集光を可能にするレンズ系、反射器等の光学要素により構成されている。
(Laser oscillator)
FIG. 5 is a diagram showing an example of a schematic structure of the side pump type laser oscillator 100 according to the present embodiment. A side-pump type laser oscillator 100 shown in FIG. 5 includes an excitation light source 20, a laser amplification medium 300 having the structure shown in FIG. 3, a resonator containing the laser amplification medium 30, and an excitation light source 20 And the laser amplifying medium 300 are provided with an incident angle adjusting mechanism 400. The laser amplifying medium 300 has an inverted distribution state formed by optical excitation by the first wavelength excitation light L1 output from the excitation light source 20, and emits light having a second wavelength different from the first wavelength. A part of the light having the second wavelength thus emitted is output to the outside of the resonator as coherent oscillation light L2. Further, in the excitation light incident side of the solid-state laser medium 310 interposed between the first side surface 310a and the third side 310c, one (sharp portion) of the inner angle is set to Brewster angle theta B. The resonator includes a first resonator mirror (high reflection mirror) 40 </ b> A arranged on the first side surface (light input / output surface of second wavelength light) 310 a of the solid laser medium 310, and a second side surface of the solid laser medium 310. (Second-wavelength light input / output surface) A second resonator mirror (output coupling mirror) 40B arranged on the 310b side is formed. The incident angle adjusting mechanism 400 provided between the excitation light source 20 and the laser amplification medium 300 is a beam of excitation light L1 that is incident on the excitation light incident region R (included in the third side surface 310c) of the laser amplification medium 300. In addition to shaping, in order to adjust the incident angle of the excitation light L1, it is configured by optical elements such as a lens system and a reflector that can deflect and collect the light.
 本実施形態に係るサイドポンプ型のレーザー発振器100の具体的例として、本実施形態に係るレーザー増幅媒体300の一部を構成する固体レーザー媒質310は、波長800nmの光に対して1.76の屈折率を有するTi:サファイア(チタンが添加されたサファイア)からなる。励起光L1は、波長532nmのレーザー光であって、Nd:YAGレーザーの第二高調波光が適用可能である。なお、波長532nmの光に対してTi:サファイアの屈折率は1.77である。当該レーザー増幅媒体300の上記内角、すなわち、第1側面310aと第3側面310cとのなす角は、波長800nmの光に対するブリュースタ角に相当する60.4度に設定されている。 As a specific example of the side-pump type laser oscillator 100 according to the present embodiment, a solid-state laser medium 310 that constitutes a part of the laser amplification medium 300 according to the present embodiment has a 1.76 wavelength for light having a wavelength of 800 nm. It consists of Ti: sapphire (sapphire to which titanium is added) having a refractive index. The excitation light L1 is laser light having a wavelength of 532 nm, and second harmonic light of Nd: YAG laser is applicable. Note that the refractive index of Ti: sapphire is 1.77 for light having a wavelength of 532 nm. The inner angle of the laser amplification medium 300, that is, the angle formed by the first side surface 310a and the third side surface 310c is set to 60.4 degrees corresponding to the Brewster angle with respect to light having a wavelength of 800 nm.
 第3側面310cに対する励起光L1(励起光路を伝搬する光)の入射角、および、第1側面310aに対する発振光路を伝搬する光(第1共振器ミラー40Aと第2共振器ミラー40Bとの間の共振光路を伝搬する光)の入射角は、それぞれ60度に設定され、それぞれのp偏光成分が効率的に固体レーザー媒質310内に導入される。なお、この時の第1側面310aおよび第3側面310cそれぞれでの反射率は、1%以下である。また、励起光路(図3中の光路P2に相当)と発振光路(図3中の光路P1に相当)は、ほぼ平行となる。 Incident angle of the excitation light L1 (light propagating through the excitation optical path) with respect to the third side surface 310c and light (between the first resonator mirror 40A and the second resonator mirror 40B) that propagates through the oscillation optical path with respect to the first side surface 310a. The incident angles of the light propagating through the resonance optical path are set to 60 degrees, and the respective p-polarized components are efficiently introduced into the solid-state laser medium 310. In addition, the reflectance in each of the 1st side surface 310a and the 3rd side surface 310c at this time is 1% or less. Further, the excitation optical path (corresponding to the optical path P2 in FIG. 3) and the oscillation optical path (corresponding to the optical path P1 in FIG. 3) are substantially parallel.
 発振光路の断面は6mm×6mm、固体レーザー媒質310の底面310eおよび上面310fを規定する平行四辺形の長辺は12mm、固体レーザー媒質310に添加されたTiの濃度は、波長532nmの光に対して1.15cm-1にそれぞれ設定された。第1共振器ミラー40Aは、固体レーザー媒質310の発振光路に垂直に配置される。この第1共振器ミラー40Aは、波長800nmの光に対する反射率が99%以上、かつ、波長532nmの光に対する透過率が99%以上のダイクロイック特性を持つ高反射ミラーである。また、第2共振器ミラー40Bは、波長800nmの光に対する反射率が60%以上、かつ、波長800nmの光に対する透過率が40%以下の部分反射ミラー(出力結合ミラー)である。 The cross section of the oscillation optical path is 6 mm × 6 mm, the long side of the parallelogram defining the bottom surface 310e and the top surface 310f of the solid laser medium 310 is 12 mm, and the concentration of Ti added to the solid laser medium 310 is for light with a wavelength of 532 nm To 1.15 cm −1 . The first resonator mirror 40A is disposed perpendicular to the oscillation optical path of the solid-state laser medium 310. The first resonator mirror 40A is a highly reflective mirror having a dichroic characteristic with a reflectance of 99% or more for light having a wavelength of 800 nm and a transmittance of 99% or more for light having a wavelength of 532 nm. The second resonator mirror 40B is a partial reflection mirror (output coupling mirror) having a reflectance of 60% or more for light having a wavelength of 800 nm and a transmittance of 40% or less for light having a wavelength of 800 nm.
 上述のように構成されたレーザー発振器100において、波長532nm、出力30mJの励起光L1をレーザー増幅媒体300に入射したところ、波長800nm、出力エネルギー7.5mJの発振が確認できた。また、その出力(発振光L2のパワー)は、時間的、空間的に揺らぎが観察されず、きわめて安定であった。 In the laser oscillator 100 configured as described above, when the excitation light L1 having a wavelength of 532 nm and an output of 30 mJ was incident on the laser amplification medium 300, oscillation with a wavelength of 800 nm and an output energy of 7.5 mJ was confirmed. Further, the output (power of the oscillation light L2) was extremely stable with no temporal and spatial fluctuations observed.
 (レーザー増幅器)
  図6は、本実施形態に係るサイドポンプ型のレーザー増幅器200の概略構造の一例を示す図である。図6に示されたサイドポンプ型のレーザー増幅器200は、図3に示された構造を有するレーザー増幅媒体300と、該レーザー増幅媒体300を光励起するための第1波長の励起光L1を出力する励起光源20と、該レーザー増幅媒体300と励起光源20との間に配置され、該レーザー増幅媒体300の第3側面310cに対する励起光L1の入射角を調節するための入射角調節機構400を備える。固体レーザー媒質310の第1側面310aは、光信号源60から出力された第2波長の光(被増幅光L3)を取り込むための入力部として機能し、第2側面310bは、固体レーザー媒質310内から増幅光L4を出力させるための出力部として機能する。なお、増幅器と光フィードバックにより構成されるレーザー発振器の本質上、当該レーザー増幅器200が構成可能であることは、上述のレーザー発振器100の説明から明らかである。
(Laser amplifier)
FIG. 6 is a diagram showing an example of a schematic structure of the side pump type laser amplifier 200 according to the present embodiment. A side pump type laser amplifier 200 shown in FIG. 6 outputs a laser amplification medium 300 having the structure shown in FIG. 3 and pumping light L1 having a first wavelength for optically exciting the laser amplification medium 300. An excitation light source 20, and an incident angle adjusting mechanism 400 that is disposed between the laser amplification medium 300 and the excitation light source 20 and adjusts the incident angle of the excitation light L1 with respect to the third side surface 310c of the laser amplification medium 300 are provided. . The first side surface 310 a of the solid-state laser medium 310 functions as an input unit for taking in light of the second wavelength (amplified light L 3) output from the optical signal source 60, and the second side surface 310 b is the solid-state laser medium 310. It functions as an output unit for outputting the amplified light L4 from the inside. It is apparent from the above description of the laser oscillator 100 that the laser amplifier 200 can be configured on the essence of a laser oscillator configured by an amplifier and optical feedback.
 このレーザー増幅器200において、固体レーザー媒質310の第1側面310aと第3側面310cのなす角は、当該固体レーザー媒質310のブリュースタ角θに設定されている。また、第3側面310cにおける励起光入射領域Rに対して励起光源20からの励起光L1の入射角、および、第1側面310aに対して光信号源60からの被増幅光L3の入射角は、何れもブリュースタ角θに設定されるため、励起光源20からの励起光L1が伝搬する励起光路(図3中の光路P2に相当)と、光信号源60からの被増幅光L3が伝搬する増幅光路(図3中の光路P1に相当)は、ほぼ平行になる。そのため、レーザー増幅媒体300の励起光入射側(図6の左側)において、励起光路上、および、増幅光路上には、入射角調節機構400が配置されている。この入射角調節機構400は、レーザー増幅媒体300の励起光入射領域R(第3側面310cに含まれる)へ入射される励起光L1、および第1側面310aに入射される被増幅光L3のビーム整形の他、光L1および光L3それぞれの入射角を調節するため、それぞれの偏向および集光を可能にするレンズ系、反射器等の光学要素により構成されている。 In the laser amplifier 200, the angle formed by the first side surface 310a and the third side surface 310c of the solid-state laser medium 310 is set to the Brewster angle θ B of the solid-state laser medium 310. The incident angle of the excitation light L1 from the excitation light source 20 with respect to the excitation light incident region R on the third side surface 310c and the incident angle of the amplified light L3 from the optical signal source 60 with respect to the first side surface 310a are since the both are set to Brewster angle theta B, excitation light path excitation light L1 from the excitation light source 20 propagates (corresponding to an optical path P2 in FIG. 3), the amplified light L3 from the optical signal source 60 The propagating amplification optical path (corresponding to the optical path P1 in FIG. 3) is substantially parallel. Therefore, on the excitation light incident side (left side in FIG. 6) of the laser amplification medium 300, the incident angle adjusting mechanism 400 is disposed on the excitation light path and the amplification light path. The incident angle adjusting mechanism 400 includes the excitation light L1 incident on the excitation light incident region R (included in the third side surface 310c) of the laser amplification medium 300 and the beam of the amplified light L3 incident on the first side surface 310a. In addition to shaping, in order to adjust the incident angles of the light L1 and the light L3, they are constituted by optical elements such as a lens system and a reflector that enable respective deflection and condensing.
 なお、上述の実施形態では、レーザー増幅媒体300に含まれる固体レーザー媒質310としてTi:サファイア結晶が適用された例が示されたが、適用可能な固体レーザー媒質310は、これに限られるものではなく、同等の屈折率を有する他の固体レーザー媒質を用いてもよいことは、言うまでもない。 In the above-described embodiment, an example in which a Ti: sapphire crystal is applied as the solid laser medium 310 included in the laser amplification medium 300 is shown, but the applicable solid laser medium 310 is not limited to this. Needless to say, another solid-state laser medium having an equivalent refractive index may be used.
 また、上述の実施形態では、励起光として波長532nmのレーザー光が適用されたが、Ti:サファイアレーザーの励起光として、波長440nm~540nmのレーザー光が有効であることは、レーザー物理から自明である。 In the above-described embodiment, laser light having a wavelength of 532 nm is applied as excitation light. However, it is obvious from laser physics that laser light having a wavelength of 440 nm to 540 nm is effective as excitation light for a Ti: sapphire laser. is there.
 本発明は、医療、機械等の種々の産業分野に応用されているレーザー加工技術に適用可能である。 The present invention can be applied to laser processing technology applied in various industrial fields such as medical care and machinery.
 20…励起光源、40A…第1共振器ミラー(高反射ミラー)、40B…第2共振器ミラー(出力結合ミラー)、60…光信号源、100…レーザー発振器、200…レーザー増幅器、300…レーザー増幅媒体、310…固体レーザー媒質、310a…第1側面、310b…第2側面、310c…第3側面、310d…第4側面、310e…底面、310f…上面、320A…第1反射器、320B…第2反射器、321A、321B…反射面、400…入射角調節機構、R…励起光入射領域。 DESCRIPTION OF SYMBOLS 20 ... Excitation light source, 40A ... 1st resonator mirror (high reflection mirror), 40B ... 2nd resonator mirror (output coupling mirror), 60 ... Optical signal source, 100 ... Laser oscillator, 200 ... Laser amplifier, 300 ... Laser Amplifying medium, 310 ... solid laser medium, 310a ... first side, 310b ... second side, 310c ... third side, 310d ... fourth side, 310e ... bottom, 310f ... top, 320A ... first reflector, 320B ... Second reflector, 321A, 321B ... reflecting surface, 400 ... incident angle adjusting mechanism, R ... excitation light incident region.

Claims (7)

  1.  第1波長の励起光による光励起により内部に反転分布状態が形成され、前記第1波長とは異なる第2波長の光を放出するレーザー増幅媒体であって、
     少なくとも前記第1および第2波長の光に対して1.8を中心とする1.7~1.9の範囲に収まる屈折率を有し、内角の一つが60度を中心とする58~62度の範囲に収まる鋭角で規定される実質的な平行四辺形の底面とそれぞれが前記底面の辺と交差する側面とで規定される角柱形状を有し、前記側面が、前記第2波長の光の入出力面として機能する第1側面、前記第1側面に対向するとともに前記第2波長の光の入出力面として機能する第2側面、前記第1側面に対して前記鋭角をなすよう隣接するとともに前記励起光が入射される第3側面、および、前記第3側面に対向する第4側面で構成された固体レーザー媒質と、
     前記固体レーザー媒質内を伝搬する前記励起光を反射する反射面が前記第3側面に対面した状態で、前記励起光が到達する励起光入射領域を除いた前記第3側面の残りの領域上に設けられた第1反射器と、
     前記固体レーザー媒質内を伝搬する前記励起光を反射する反射面が前記第4側面に対面した状態で前記第4側面上に設けられた第2反射器と、
     を備えたことを特徴とするレーザー増幅媒体。
    A laser amplification medium in which an inversion distribution state is formed inside by light excitation by excitation light of a first wavelength, and emits light of a second wavelength different from the first wavelength;
    At least the first and second wavelengths of light have a refractive index that falls within a range of 1.7 to 1.9 centered on 1.8, and one of the inner angles is 58 to 62 centered on 60 degrees. A substantially parallelogram-shaped bottom surface defined by an acute angle within a range of degrees and a side surface defined by a side surface that intersects the side of the bottom surface, and the side surface is light of the second wavelength. A first side surface functioning as an input / output surface, a second side surface facing the first side surface and functioning as an input / output surface for light of the second wavelength, and adjacent to the first side surface so as to form the acute angle. And a solid-state laser medium composed of a third side surface on which the excitation light is incident and a fourth side surface facing the third side surface,
    On the remaining area of the third side surface excluding the excitation light incident area where the excitation light reaches in a state where the reflection surface reflecting the excitation light propagating in the solid laser medium faces the third side surface A first reflector provided;
    A second reflector provided on the fourth side surface with a reflecting surface reflecting the excitation light propagating in the solid laser medium facing the fourth side surface;
    A laser amplification medium characterized by comprising:
  2.  請求項1に記載のレーザー増幅媒体と、
     前記レーザー増幅媒体に含まれる前記固体レーザー媒質の前記第1側面から出力される前記第2波長の光が到達する位置に配置された第1共振器ミラーと、前記固体レーザー媒質の前記第2側面から出力される前記第2波長の光が到達する位置に配置された第2共振器ミラーとにより構成された共振器と、
     前記固体レーザー媒質の前記第3側面のうち前記励起光入射領域へ所定の入射角で入射されるべき前記励起光を出力する励起光源と、
     を備えたことを特徴とするレーザー発振器。
    A laser amplification medium according to claim 1;
    A first resonator mirror disposed at a position where the light of the second wavelength output from the first side surface of the solid-state laser medium included in the laser amplification medium reaches; and the second side surface of the solid-state laser medium. A resonator constituted by a second resonator mirror disposed at a position where the light of the second wavelength output from
    An excitation light source that outputs the excitation light to be incident at a predetermined incident angle on the excitation light incident region of the third side surface of the solid-state laser medium;
    A laser oscillator comprising:
  3.  前記固体レーザー媒質は、Tiが添加されたサファイアを含むことを特徴とする請求項2に記載のレーザー発振器。 3. The laser oscillator according to claim 2, wherein the solid-state laser medium includes sapphire to which Ti is added.
  4.  前記励起光は、440~540nmの範囲に収まる波長のレーザー光を含み、
     前記固体レーザー媒質の前記第3側面に対する前記励起光の入射角は、60度を中心とする58~62度の範囲に設定されることを特徴とする請求項3に記載のレーザー発振器。
    The excitation light includes laser light having a wavelength falling within a range of 440 to 540 nm,
    The laser oscillator according to claim 3, wherein an incident angle of the excitation light with respect to the third side surface of the solid-state laser medium is set in a range of 58 to 62 degrees centered on 60 degrees.
  5.  請求項1に記載のレーザー増幅媒体と、
     前記レーザー増幅媒体に含まれる前記固体レーザー媒質の前記第3側面のうち前記励起光入射領域へ所定の入射角で入射されるべき前記励起光を出力する励起光源と、
     前記固体レーザー媒質の前記第1側面に一致し、前記固体レーザー媒質内に被増幅光を導入させるための入力部と、
     前記固体レーザー媒質の前記第2側面に一致し、前記固体レーザー媒質内で増幅された増幅光が出力される出力部と、
     を備えたことを特徴とするレーザー増幅器。
    A laser amplification medium according to claim 1;
    An excitation light source that outputs the excitation light to be incident at a predetermined incident angle on the excitation light incident region of the third side surface of the solid-state laser medium included in the laser amplification medium;
    An input unit coinciding with the first side surface of the solid-state laser medium and for introducing amplified light into the solid-state laser medium;
    An output unit that matches the second side surface of the solid-state laser medium and outputs amplified light amplified in the solid-state laser medium;
    A laser amplifier comprising:
  6.  前記固体レーザー媒質は、Tiが添加されたサファイアを含むことを特徴とする請求項5に記載のレーザー増幅器。 6. The laser amplifier according to claim 5, wherein the solid-state laser medium includes sapphire to which Ti is added.
  7.  前記励起光は、440~540nmの範囲に収まる波長のレーザー光を含み、
     前記固体レーザー媒質の前記第3側面に対する前記励起光の入射角は、60度を中心とする58~62度の範囲に設定されることを特徴とする請求項6に記載のレーザー増幅器。
    The excitation light includes laser light having a wavelength falling within a range of 440 to 540 nm,
    The laser amplifier according to claim 6, wherein an incident angle of the excitation light with respect to the third side surface of the solid-state laser medium is set in a range of 58 to 62 degrees centered on 60 degrees.
PCT/JP2016/074844 2016-08-25 2016-08-25 Laser amplifying medium, laser oscillator, and laser amplifier WO2018037538A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074844 WO2018037538A1 (en) 2016-08-25 2016-08-25 Laser amplifying medium, laser oscillator, and laser amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074844 WO2018037538A1 (en) 2016-08-25 2016-08-25 Laser amplifying medium, laser oscillator, and laser amplifier

Publications (1)

Publication Number Publication Date
WO2018037538A1 true WO2018037538A1 (en) 2018-03-01

Family

ID=61246511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074844 WO2018037538A1 (en) 2016-08-25 2016-08-25 Laser amplifying medium, laser oscillator, and laser amplifier

Country Status (1)

Country Link
WO (1) WO2018037538A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710940A (en) * 1985-10-01 1987-12-01 California Institute Of Technology Method and apparatus for efficient operation of optically pumped laser
JPH06104512A (en) * 1992-09-18 1994-04-15 Toshiba Corp Titanium sapphire laser oscillator
JP2002009375A (en) * 2000-05-30 2002-01-11 Trw Inc Light amplifier
JP2003023194A (en) * 2001-07-05 2003-01-24 Japan Atom Energy Res Inst Solid state laser amplifier
JP2011129826A (en) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp Solid laser device
JP2012160645A (en) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp Solid-state laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710940A (en) * 1985-10-01 1987-12-01 California Institute Of Technology Method and apparatus for efficient operation of optically pumped laser
JPH06104512A (en) * 1992-09-18 1994-04-15 Toshiba Corp Titanium sapphire laser oscillator
JP2002009375A (en) * 2000-05-30 2002-01-11 Trw Inc Light amplifier
JP2003023194A (en) * 2001-07-05 2003-01-24 Japan Atom Energy Res Inst Solid state laser amplifier
JP2011129826A (en) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp Solid laser device
JP2012160645A (en) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp Solid-state laser device

Similar Documents

Publication Publication Date Title
US7535938B2 (en) Low-noise monolithic microchip lasers capable of producing wavelengths ranging from IR to UV based on efficient and cost-effective frequency conversion
EP0401054A2 (en) High efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages
JP3998067B2 (en) Solid state laser oscillator
US7991028B1 (en) Tunable solid state laser system
US9312655B2 (en) Planar waveguide laser pumping module and planar waveguide wavelength conversion laser device
JPH05265058A (en) Wavelength converter
JP2006344973A (en) Optical pumping surface emitting laser
CN1741328B (en) diode pumped laser
JP3211770B2 (en) Solid-state laser device and solid-state laser amplifier having the same
JP2008536322A (en) Single frequency monolithic linear laser device and apparatus comprising the device
KR20140044601A (en) High power plused laser device
WO2018037538A1 (en) Laser amplifying medium, laser oscillator, and laser amplifier
JPH05121803A (en) Semiconductor excitation solid-state laser
CN113872030A (en) A 266nm Pulsed Solid State Laser
JP2000077750A (en) Solid laser
JP2008166452A (en) Solid-state laser oscillator for wavelength conversion in resonator
JP2007073552A (en) Laser light generator and image formation apparatus
US20050129081A1 (en) Laser gain module
CN216390021U (en) 266nm pulse solid laser
JPH11163451A (en) Laser device
JP3046562B2 (en) Laser device
WO2018108251A1 (en) Laser
JPH04335586A (en) Laser diode pumping solid-state laser
US20150236468A1 (en) Method for generating or amplifying several wavelengths of laser radiation in a single optical cavity
JP2865057B2 (en) Laser diode pumped solid-state laser oscillator.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16914212

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载