+

WO2018033965A1 - 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法 - Google Patents

脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法 Download PDF

Info

Publication number
WO2018033965A1
WO2018033965A1 PCT/JP2016/073945 JP2016073945W WO2018033965A1 WO 2018033965 A1 WO2018033965 A1 WO 2018033965A1 JP 2016073945 W JP2016073945 W JP 2016073945W WO 2018033965 A1 WO2018033965 A1 WO 2018033965A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
lower leg
behavior
angle information
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2016/073945
Other languages
English (en)
French (fr)
Inventor
洋人 森
麻里子 千葉
武弘 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asics Corp
Original Assignee
Asics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asics Corp filed Critical Asics Corp
Priority to PCT/JP2016/073945 priority Critical patent/WO2018033965A1/ja
Priority to JP2018534226A priority patent/JP6582136B2/ja
Publication of WO2018033965A1 publication Critical patent/WO2018033965A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices

Definitions

  • the present invention relates to an analysis system and analysis method for the behavior of the lower leg, an evaluation system and an evaluation method for the behavior of the lower leg.
  • a shoe selection system (hereinafter referred to as a selection system) that evaluates the result of analyzing the behavior of the lower leg of the customer and selects shoes suitable for the evaluation is used.
  • a selection system that evaluates the result of analyzing the behavior of the lower leg of the customer and selects shoes suitable for the evaluation.
  • Such a selection system derives the angle formed by the centerline of the calf and the centerline of the heel as an inclination angle of the ankle from an image obtained by photographing a customer during traveling, and evaluates the behavior of the ankle based on the inclination angle.
  • a shoe selection means for selecting a shoe suitable for the evaluation of the inclination angle determination means.
  • the selection system since a shoe suitable for the evaluation of the inclination angle of the ankle, which is the analysis result of the behavior of the lower leg, is selected, it is possible to provide the customer with a shoe suitable for the behavior of the ankle. It is supposed to be possible.
  • the above selection system analyzes only the behavior related to the inclination angle among the behavior of the lower leg, the accuracy of the analysis result is lacking, and accordingly, the accuracy of the evaluation based on the analysis result is also low. It has become.
  • the present invention provides an analysis system and analysis method for the lower leg behavior that can accurately analyze the lower leg behavior, an evaluation system for the lower leg behavior and an evaluation method that can accurately evaluate the lower leg behavior. It is an object to provide a method.
  • the analysis system for the behavior of the lower leg of the present invention is as follows.
  • the analyzer has a processing unit for deriving analysis information quantitatively representing the behavior of the lower leg portion,
  • the processing unit derives relative angle information representing the inclination of the heel relative to the lower leg and inclination angle information representing the inclination of the heel relative to the ground of the foot based on the behavior of the lower leg, and the relative angle information And the analysis information based on the tilt angle information.
  • the processor is The analysis information may be derived on an orthogonal coordinate system having the relative angle information and the tilt angle information as components.
  • the analysis information may be derived on an orthogonal coordinate system having the relative angle information and the tilt angle information as vector components.
  • the processor is Deriving twist angle information representing the twist degree of the lower leg with respect to the heel from the behavior of the lower leg, Tilt information which is information derived based on the relative angle information and the tilt angle information, and twist which is information derived based on the relative angle information, the tilt angle information and the twist angle information.
  • Tilt information which is information derived based on the relative angle information and the tilt angle information
  • twist which is information derived based on the relative angle information, the tilt angle information and the twist angle information.
  • Information and The analysis information may be derived based on the tilt information and the twist information.
  • the processing unit Deriving the tilt information on an orthogonal coordinate system having the relative angle information and the tilt angle information as components may be derived on an orthogonal coordinate system having the relative angle information, the tilt angle information, and the twist angle information as components.
  • the processing unit includes: Deriving the tilt information on an orthogonal coordinate system having the relative angle information and the tilt angle information as vector components,
  • the twist information may be derived on an orthogonal coordinate system having the relative angle information, the tilt angle information, and the twist angle information as vector components.
  • the processor is Determine the type of how to put the foot on the ground during the running of the subject to be analyzed for the behavior of the lower leg,
  • the relative angle information and the tilt angle information may be derived based on information in a section set in the stance phase according to a determination result of the type of how to put on the foot.
  • the processing unit The manner in which the subject reaches his / her feet during running is either a heel-contact where the heel first touches the ground in the stance phase, or a flat-ground where the entire back side of the foot lands on the ground substantially simultaneously in the stance phase.
  • the start time of the subject's stance phase is set as the start time of the interval, and the time when 55 to 65% of the entire stance phase has elapsed is set as the end position of the interval. It may be configured as follows.
  • the processing unit How to get the feet while the subject is running, In the stance phase, when it is first determined that the toes are grounded on the ground, The time when 3 to 10% of the entire stance phase has elapsed is set as the start time of the section, and the time when 55 to 65% of the entire stance phase has elapsed is set as the end position of the section. It may be configured to.
  • the processor is The type of how to put on the foot may be determined based on the angle of the heel in the sagittal plane with respect to the ground when the subject is standing still.
  • the analysis system for the behavior of the lower leg of the present invention is as follows.
  • two reference lines that are straight lines parallel to each other, and two reference lines that serve as a reference for aligning the direction of the foot when the subject is standing still are drawn,
  • the processor is The type of how to put on the foot may be determined based on the angle of the eyelid in the sagittal plane with respect to the ground of the subject who has taken a stationary posture with the feet aligned with the reference line. .
  • the method for analyzing the behavior of the lower leg of the present invention is as follows.
  • An analysis process for analyzing the behavior of the lower leg including the lower leg and legs during the stance phase In the analysis process, Based on the behavior of the lower leg, derive relative angle information indicating the degree of inversion of the heel with respect to the lower leg, and tilt angle information indicating the degree of inclination of the heel with respect to the ground of the foot, Based on the relative angle information and the tilt angle information, analysis information that is information that quantitatively represents the behavior of the lower leg portion is derived.
  • the analysis information may be derived on an orthogonal coordinate system having the relative angle information and the tilt angle information as components.
  • the analysis information may be derived on an orthogonal coordinate system having the relative angle information and the tilt angle information as vector components.
  • the analysis step Deriving twist angle information representing the twist degree of the lower leg with respect to the heel from the behavior of the lower leg, Tilt information which is information derived based on the relative angle information and the tilt angle information, and twist which is information derived based on the relative angle information, the tilt angle information and the twist angle information.
  • Tilt information which is information derived based on the relative angle information and the tilt angle information
  • twist which is information derived based on the relative angle information, the tilt angle information and the twist angle information.
  • Information and The analysis information may be derived based on the tilt information and the twist information.
  • the evaluation system for the behavior of the lower leg of the present invention is as follows. Observing the lower leg including the lower leg and leg in the stance phase and obtaining observation information that is information on the posture of the lower leg, and analyzing information analyzing the behavior of the lower leg based on the observation information And a processing device that executes a process of evaluating the behavior of the lower leg based on the analysis information,
  • the processor is Based on the observation information, relative angle information indicating the degree of inversion of the heel with respect to the lower leg, tilt angle information indicating the degree of inversion of the heel with respect to the ground of the foot, and the angle of the lower leg with respect to the heel
  • a pre-processing unit for deriving behavior information including twist angle information representing a degree of twist; Tilt information, which is quantitative information derived based on the relative angle information and the tilt angle information, or quantitative information derived based on the relative angle information, the tilt angle information, and the twist angle information.
  • An analysis unit for deriving the analysis information composed of any of the twist information;
  • an evaluation reference value that is a reference value for comparison with the tilt information is stored in advance.
  • the analysis unit is configured to execute a process of determining which information of the tilt information and the twist information is used as the analysis information based on a comparison result between the tilt information and the evaluation reference value. May be.
  • the method for evaluating the behavior of the lower leg of the present invention is as follows.
  • An analysis process for deriving analysis information consisting of any of the twist information;
  • FIG. 1 is a schematic diagram of a system for evaluating the behavior of a lower leg according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the leg lowering behavior evaluation system according to the embodiment.
  • FIG. 3 is an explanatory diagram of the measuring instrument of the lower leg behavior evaluation system according to the embodiment, and is a view of the measuring instrument viewed from the back side of the subject.
  • FIG. 4 is a plan view of a mat that is an auxiliary instrument of the lower leg behavior evaluation system according to the embodiment.
  • FIG. 5 is an explanatory diagram of a ground contact angle that is an angle of the foot with respect to the ground.
  • FIG. 6A is an explanatory diagram of a reference for measuring the contact angle.
  • FIG. 1 is a schematic diagram of a system for evaluating the behavior of a lower leg according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the leg lowering behavior evaluation system according to the embodiment.
  • FIG. 3 is an explanatory diagram of the measuring
  • FIG. 6B is an explanatory diagram of a method for deriving contact angle information according to the embodiment.
  • FIG. 7A is a schematic diagram illustrating a type of foot attachment according to the embodiment, and is a schematic diagram illustrating heel contact.
  • FIG. 7B is a schematic diagram illustrating a type of foot attachment according to the embodiment, and is a schematic diagram illustrating flat grounding.
  • FIG. 7C is a schematic diagram showing types of how to put on the foot according to the embodiment, and is a schematic diagram showing toe grounding.
  • FIG. 8 is an explanatory diagram of analysis information of the leg lowering behavior evaluation system according to the embodiment.
  • FIG. 9 is an explanatory diagram of a state in which the evaluation result of the evaluation system for the behavior of the lower leg according to the embodiment is output.
  • FIG. 10 is a flowchart of the pronation analysis method and the evaluation method of the pronation analysis result by the leg lower leg behavior evaluation system according to the embodiment.
  • FIG. 11 is a sub-flowchart showing a specific process for deriving behavior information in the analysis section shown in FIG. 10, and is a flowchart of a process for deriving behavior information.
  • FIG. 12 is a sub-flowchart showing specific processing of the pronation analysis shown in FIG.
  • FIG. 13 is a sub-flowchart showing a specific process for evaluating the analysis result of the pronation shown in FIG.
  • FIG. 14 is an explanatory diagram of relative angle information and tilt angle information of the lower leg behavior evaluation system according to the embodiment.
  • FIG. 15 is an explanatory diagram of twist angle information of the lower leg behavior evaluation system according to the embodiment.
  • FIG. 16 is a diagram showing experimental results of Experimental Example 2 of the present invention.
  • the evaluation system for behavior of a lower leg according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • the evaluation system according to the present embodiment is a system that analyzes the combined behavior of the heel and the lower leg of the supporting leg in the stance phase during running or walking and evaluates the analysis result of the combined behavior.
  • the lower leg portion is a portion including the lower leg and the foot in the entire lower limb.
  • “L” is attached to the lower leg
  • “F u ” is attached to the lower leg
  • “F f ” is attached to the foot.
  • “F n ” is attached to the ankle
  • “F h ” is attached to the heel of the foot F f
  • “F t ” is attached to the toe.
  • the lower leg F u tibia it complex behavior of internal rotation (heel including torsion) to the inside of the shin F h and lower leg F u for heel F h is called a pronation of) the following description.
  • the behavior of the lower leg L during traveling (running state) will be described, but these explanations also apply during walking (walking state).
  • the evaluation system includes an observation device 2 that acquires observation information obtained by observing the posture of the lower leg L in a stationary standing state or a running state of a subject who analyzes and evaluates a pronation, and the observation
  • a processing device 3 for analyzing the pronation based on the information and evaluating the analysis result of the pronation, and a display device 4 for displaying the evaluation result of the pronation by the processing device 3 are provided.
  • the processing device 3 and the display device 4 are integrated.
  • the observation device 2 includes a photographing device 20 that captures a subject in a stationary standing state or a traveling state, and a measuring instrument that measures information representing the posture (orientation) of the lower leg L of the subject in a stationary standing state or the traveling state. 21 and an auxiliary instrument 22 that assists the observation of the subject.
  • the photographing device 20 is configured to output a still image obtained by photographing a subject in a still standing state from the back side to the processing device 3.
  • the photographing device 20 is configured to be able to output to the processing device 3 a moving image in which a subject in a running state is photographed from the back side at a predetermined frame rate.
  • the frame rate is set to 60 frames / second or more, for example.
  • Each frame of the moving image shot by the shooting device 20 visually represents the posture of the lower leg L of the subject at each point in the shooting period.
  • the imaging device 20 is, for example, a video camera, and can perform wired communication or wireless communication with the processing device 3.
  • Measurement instrument 21 is configured to be attached to the lower leg L of the subject, the orientation in the three-dimensional heel F h and lower leg F u configured to obtain quantifiable information quantitatively represents Yes.
  • the observation device 2 is configured to obtain quantification information at the time of photographing by outputting observation information obtained by photographing the measuring instrument 21 with the photographing device 20 to the processing device 3. Has been.
  • the quantification information at the time of shooting is associated with the still image of the subject photographed by the photographing device 20, and the moving image of the subject photographed by the photographing device 20 corresponds to each frame. Quantification information at the point of time is associated.
  • the measuring instrument 21 includes a plurality of (four in FIG. 3) markers 210 attached to the lower leg L of the subject.
  • the observation information obtained by photographing the upper marker 210 and the lower marker 210 by the photographing device 20 is output to the processing device 3, thereby acquiring the three-dimensional orientation as quantification information. Can do.
  • the marker 210 is, for example, an AR (Augmented Reality) marker. Then, in the still image or moving image obtained by photographing the marker 210 with the photographing device 20, virtual three-direction axes are projected on the marker 210.
  • the three-dimensional orientation is represented by, for example, three axes: a vertical axis corresponding to the vertical direction, a depth axis corresponding to the subject's running direction or walking direction, a vertical axis and a left-right axis orthogonal to the depth axis. Direction.
  • the marker 210 is attached in a state where the subject is barefoot (see FIG. 3), and the photographing by the photographing apparatus 20 is also performed in a barefoot state. Further, in order to attach the upper marker 210 and the lower marker 210 to the lower leg L of the subject, for example, the upper marker 210 and the lower marker 210 are directly attached to the lower leg L of the subject with an adhesive or the like, It may be attached to the lower leg L of the subject using a band or the like.
  • the auxiliary device 22 includes a mat 220 for aligning the direction of the lower leg L when the subject takes a standing posture, and the subject runs at a predetermined position.
  • a treadmill 221 (see FIG. 1) for continuing.
  • the mat 220 is an instrument used when acquiring offset information described later from the lower leg L of the subject in a stationary standing state.
  • a foot placement area 220a indicating a position where the foot F f is placed and a reference line 220b which is a straight line passing through the foot placement area 220a are drawn.
  • a foot placement area (hereinafter referred to as a left foot placement area) 220a on which the subject's left foot F f is placed and a foot placement area (hereinafter referred to as a right foot placement area) on which the subject's right foot F f is placed.
  • 220a which are drawn so as to be arranged at predetermined intervals in the lateral direction (width direction) of the mat 220, respectively.
  • the distance between the left foot depositing area 220a and the right foot depositing area 220a, the spacing of the feet F f is set to be about shoulder width when the subject is placed both feet F f foot depositing area 220a .
  • a plurality of left footrest areas 220a having different sizes are drawn on the surface of the mat 220 so as to be a group, and a plurality of right footrest areas 220a having different sizes are a group. Are drawn on the surface of the mat 220.
  • Two reference lines 220b are drawn on the surface of the mat 220 according to the present embodiment.
  • One reference line 220b is as connecting the vertex of the vertex and the heel F h side of the toe F t side of the left foot depositing area 220a are drawn in a straight line
  • the other reference line 220b is right foot location depicted in a linear shape so as to connecting the vertex of the vertex and the heel F h side of the toe F t-side region 220a.
  • the pair of reference lines 220b extend straight along the longitudinal direction of the mat 220 (vertical direction in FIG. 4) so as to be substantially parallel to each other.
  • the reference line 220b is subject is a straight line used as a reference for aligning the orientation of the foot F f topped foot depositing area 220a.
  • the mat 220 is disposed in front of the photographing apparatus 20 in a state where the vertical direction (direction in which the reference line 220b extends) corresponds to the optical axis direction of the photographing apparatus 20. Therefore, when the subject puts the foot F f in the footrest region 220a and further gets on the mat 220 so that the direction of the foot F f is aligned with the direction along the reference line 220b, the subject's heel F h , a state in which the calf (behind the lower leg F u) is directed straight to photographing apparatus 20.
  • the treadmill 221 is disposed in front of the photographing apparatus 20. Further, the treadmill 221 is arranged so that the subject turns his back to the photographing apparatus 20 and can perform a traveling operation while being peeled in a direction corresponding to the optical axis direction of the photographing apparatus 20.
  • the processing device 3 analyzes the pronation and evaluates the analysis result of the pronation. That is, the processing device 3 is an analysis device that analyzes a pronation, and is also an evaluation device that evaluates the analysis result of the pronation.
  • the processing device 3 includes a processing unit 30 that analyzes the pronation and evaluates the result of the pronation based on the observation information transmitted from the observation device 2.
  • the processing unit 30 derives behavior information that quantitatively represents the behavior of each part of the lower leg L based on the observation information transmitted from the observation device 2, and the preprocessing unit 31
  • the analysis unit 32 analyzes the pronation based on the derived behavior information, and the evaluation unit 33 evaluates the analysis result of the pronation by the analysis unit 32.
  • the pre-processing unit 31 determines a section (hereinafter referred to as a designated section) to be used for analyzing a pronation with respect to a moving image (moving image associated with quantification information) transmitted from the observation device 2; A section suitable for analyzing the pronation for the designated section based on how the foot F f reaches the ground of the subject at the time of traveling, that is, a section used for deriving the behavior information for the designated section. And an analysis interval setting unit 311 for setting (hereinafter referred to as an evaluation interval).
  • the section specifying unit 310 is used when a section corresponding to the stance phase is specified for a moving image associated with quantification information.
  • the stance period is a period from the time when the foot F f of the subject in the running state reaches the ground until the foot F f completely leaves the ground.
  • the section specifying unit 310 is configured to set the start time and end time of the specified section for the moving image. Specifically, the section specifying unit 310 sets the time when the foot F f first touches the ground in the stance period as the start time of the specified section, and the time when the foot F f completely leaves the ground in the same stance period. Is set as the end point of the specified section.
  • the section specifying unit 310 may be configured to manually set the start time and end time of the specified section for the video, or automatically start and end the specified section for the video. You may be comprised so that a time may be set.
  • the analysis section setting unit 311 is based on the information in the specified section, and determines a way of wearing the foot F f when the subject is traveling, and the contact type determination unit 311a and the foot F f by the contact type determination unit 311a.
  • Grounding type discrimination section 311a is grounded angle to derive the ground angle HC heel F h of the subject relative to the ground based on information in said designated section information representative of the (see FIG. 5) (hereinafter, referred to as a ground angle information) a deriving unit 311Aa, an angle for correcting the ground angle information derived in angle based on the ground angle deriving section 311Aa in the sagittal plane of the heel F h of the subject P (see FIG. 1) with respect to the ground at the time of still standing.
  • the information correction unit 311ab and a classification determination unit 311ac that determines how to wear the foot F f when the subject is running.
  • the contact angle deriving unit 311aa is configured to derive contact angle information based on quantification information at a time corresponding to the start time of the designated section.
  • the ground angle HC contained in the ground angle information, as shown in FIG. 1, and FIG. 5 is that the angle between the reference line BL and the ground through the heel F h in the sagittal plane P .
  • Reference line BL through the heel F h is, for example, a straight line connecting the heel bone ridge and the second ⁇ end in a stationary standing state.
  • the sagittal plane P is a plane composed of a traveling direction Ah and a vertical direction Av as shown in FIG.
  • the angle information correcting unit 311Ab so that applying a correction to the angle information obtained heel F h from the lower marker 210.
  • the angle information correction unit 311ab receives offset information indicating the angle of the subject's heel F h (angle HCs of the heel F h with respect to the ground) of the subject taking the stationary posture based on the quantification information at the time of the stationary standing.
  • the angle HCs of the subject's heel F h taking a stationary posture is the angle of ⁇ F h obtained by observing the lower marker 210 in a state of being placed on the mat 220 as described above, and more specifically.
  • 6A is an angle HCs formed by the depth axis (the orientation Am of the lower marker 210) indicated by the lower marker 210 and the ground (see FIGS. 1 and 6A).
  • the angle information correction unit 311ab includes the offset information including the angle HCs and the contact angle information including the angle HCt of the heel F h obtained from the lower marker 210 at the moment when the foot F f contacts the ground. based, derives a relative angle of heel F h at the time of running for the angle of the heel F h during static standing, reset the information representing the relative angle as a ground angle information.
  • the contact angle HC is derived from the following equation (1).
  • HCt ⁇ 2 °
  • the angle information correction unit 311ab can remove an error that may occur when the marker 210 is attached, and more accurately determine how the foot F f is to be attached.
  • the classification determination unit 311ac determines the type of how the foot F f is to be worn when the subject is running.
  • Classification determination section 311ac according to the present embodiment, first heel contact to heel F h arrives on the ground at the beginning of the stance (see FIG. 7A), substantially simultaneously the entire back side of the foot F f at the start of the stance ground flat ground (see FIG. 7B) to get to, or any on whether the corresponding first toe ground toe F t arrives on the ground at the beginning of the stance (see FIG. 7C) is determined.
  • the classification discriminating unit 311ac determines that the foot F f should be worn if the contact angle HC represented by the new contact angle information is, for example, 0 ° or more (HC ⁇ 0 °). Alternatively, it is determined that the contact is flat, and if the contact angle HC represented by the new contact angle information is less than 0 ° (HC ⁇ 0 °), for example, it is determined that the foot F f is attached to the toes. To do. For toe grounding, the ground where the toes first touch the ground at the start of the stance phase (how to put the foot), the ground where the forefoot, middle foot, etc. other than the buttocks first touch the ground Is also included.
  • classification determination section 311ac is foot F f in stance phase is initially according to the direction of the toe F t in the time of arrival on the ground (the direction of the vertical direction of the toes F t relative to the ground) legs F f It is configured to determine how to arrive.
  • the setting unit 311b sets the time point corresponding to the start time point of the designated section as the start time point of the evaluation section when the classification determination unit 311ac determines how to reach the subject's foot F f as heel contact or flat contact, Furthermore, the time point of 55% to 65% of the entire specified section (from the start time to the end time of the entire specified section) is set as the end time of the evaluation section. Note that the end point of the evaluation section in this embodiment is set to a point in time when 65% of time has elapsed from the point corresponding to the start point of the designated section.
  • the classification determination unit 311ac determines that the subject's foot F f is toe-grounded when the classification determination unit 311ac determines that the time of 3% to 10% has elapsed from the start time of the designated section.
  • the evaluation section is set as the start time point, and further, the time point when 55% to 65% of the entire specified section has elapsed is set as the end position of the evaluation section. In the present embodiment, when it is determined that the toe is in contact with the ground, a range of 8% to 65% of the entire designated section is set as the evaluation section.
  • Behavior information deriving unit 311c as the behavior information, and the tilt angle information indicating the relative angle information indicating the degree falling into and out of the heel F h for lower leg F u, the degree falling into and out of the heel F h relative to the ground, the heel Torsion angle information representing the twist degree of the lower leg F u with respect to F h is derived.
  • the relative angle information is denoted by a symbol “ ⁇ ”
  • the tilt angle information is denoted by a symbol “ ⁇ g ”
  • the twist angle information is denoted by a symbol “ ⁇ ”.
  • the relative angle information ⁇ is information that represents the angle of inward / outward inclination of the heel F h with respect to the lower leg F u in the evaluation section, and for example, indicates the direction of the heel F h on the front face value as shown in FIG. variation in the evaluation in a section of an angle ⁇ t of the virtual line VL f1 indicating the direction of the virtual line VL h1 and lower leg F u corresponds to this.
  • the tilt angle information ⁇ g is information representing the angle ⁇ gt of the heel F h to the inside and outside of the ground in the evaluation section.
  • the virtual line VL h1 indicating the direction of the heel F h on the front face and the ground This corresponds to the amount of change in the evaluation interval of the angle ⁇ gt formed by.
  • the twist angle information ⁇ is information indicating the degree of twist of the lower leg F u with respect to the heel F h , for example, as shown in FIG. 15, a virtual line VL indicating the direction of the foot F f on the horizontal plane of the heel F h. h2 and the amount of change in the angle gamma t and the virtual line VL f2 indicating the direction of the lower leg F u corresponds to this.
  • the angles ⁇ t, ⁇ gt, and ⁇ t are not limited to the illustrated angles, and the angles of the portions that are equivalent to the angles may be observed.
  • the analysis unit 32 includes an analysis processing unit 320 for deriving analysis information P that quantitatively represents information obtained by analyzing the pronation based on behavior information, and the analysis processing unit 320. And an analysis result determination unit 321 that determines the analysis result of the pronation based on the derived analysis information P.
  • the analysis processing unit 320 derives analysis information P based on the relative angle information ⁇ , the tilt angle information ⁇ g , and the twist angle information ⁇ .
  • a tilt analyzing unit 320a to derive a tilt information P 1 based on the relative angle information beta and tilt angle information beta g of the evaluation interval, the relative angle information beta and tilt angle information based on the beta g and twisting angle information gamma, and a twisting analyzer 320b for deriving the twisting information P 2 in the evaluation interval.
  • Tilt analysis section 320a (in the present embodiment, vector components) relative angle information beta and tilt angle information beta g and the component is configured to derive the tilt information P 1 on an orthogonal coordinate system with.
  • Twisting analyzer 320b (in the present embodiment, vector components) relative angle information beta and tilt angle information beta g and twisting angle information ⁇ and the component deriving information P 2 twisting on an orthogonal coordinate system with It is configured as follows.
  • the tilt information P 1 is calculated by the equation (3).
  • a, b, and c are values for weighting relative angle information ⁇ , tilt angle information ⁇ g , and twist angle information ⁇ , respectively.
  • the value of b is set larger than the values of a and c.
  • the relative angle information ⁇ is most weighted.
  • a comparison reference value S 1 is set as a determination reference for the size of the pronation (the size of the behavior of the lower leg L), and the comparison reference value S 1 and the tilt information P 1 are set. by comparing the door, and is configured to determine the magnitude of pronation represented tilt information P 1.
  • Comparison reference values S 1, for example, the tilt information P 1 in advance a plurality of subjects by using the evaluation system 1 of the present embodiment in advance by obtaining a population information can be obtained therefrom.
  • the predetermined ratio is determined based on, for example, an evaluation result of a professional pronation with respect to the population information.
  • the analysis information P is configured.
  • the evaluation unit 33 evaluates the analysis result of the pronation based on the analysis information P, and the evaluation that outputs the evaluation of the analysis result of the pronation by the behavior evaluation unit 330 And an output unit 331.
  • an evaluation reference value for classifying the pronation for each type is set.
  • the behavior evaluation unit 330 according to the present embodiment is configured to be able to classify pronations into three types, and a small behavior reference value S 2a and a large behavior reference value S 2b are set as evaluation reference values. ing.
  • the behavior evaluation unit 330 when the value of the analysis information P is equal to or less than the small behavior reference value S 2a is classified as pronation of the subject is under pronation and (Evaluation), the value of the analysis information P is When it is larger than the small behavior reference value S 2a and less than or equal to the large behavior reference value S 2b , the pronation of the subject is classified as neutral, and the value of the analysis information P is larger than the large behavior reference value S 2b In the case, the pronation of the target person is classified as overpronation.
  • the comparison reference values S 1 small behavior reference value S 2a and atmospheric behavior reference value S 2b leave the analysis information P in advance a plurality of subjects by using the evaluation system 1 of the present embodiment obtained as population information
  • the analysis information P of a plurality of subjects is classified into “under-pronation”, “neutral”, and “over-pronation” based on expert evaluation, and the classified analysis information P Can be set based on the average value and the standard deviation.
  • the average of the analysis information P of the population classified as “under pronation” by the expert + the value of the standard deviation And the value of “neutral” (average of analysis information P ⁇ standard deviation) can be set as the small behavior reference value S 2a .
  • the large behavior reference value S2b which is the boundary value between “neutral” and “overpronation”
  • the average and standard deviation of the analysis information P of the population classified as “neutral” by the expert are added
  • an intermediate value of the mean-standard deviation of the analysis information P of the population classified as “overpronation” by the expert can be set as the large behavior reference value S2b .
  • overpronation is a pronation in which the amount of change in relative angle information ⁇ , tilt angle information ⁇ g, and twist angle information ⁇ tends to be large, and the amount of change tends to be small. Some pronations are under-pronation, and the pronations with medium change are neutral.
  • the evaluation output unit 331 is configured so that the classification result (evaluation result) can be visually confirmed and output to the screen of the display device 4.
  • the evaluation result displays a type display unit 332 that displays the type of pronation and a type instruction unit 333 that indicates the type to which the subject's pronation corresponds.
  • the type display section 332 includes type areas 332a, 332b, and 332c that indicate a plurality of different types of pronations.
  • the pronation of the subject is classified into three types, underpronation, neutral, and overpronation. Therefore, the type display portion 332 includes a type area 332a indicating underpronation and a neutral state.
  • a type area 332b indicating the existence and a type area 332c indicating overpronation are included.
  • the three type areas 332a, 332b, and 332c are color-coded, and the colors assigned to the type areas 332a, 332b, and 332c gradually change as they become adjacent to the other type areas 332a, 332b, and 332c. is doing.
  • the type instruction unit 333 includes a right foot instruction unit 333a indicating the type of pronation of the right lower leg L and a left foot instruction unit 333b indicating the type of pronation of the lower left leg L. Yes.
  • the right foot instruction unit 333a and the left foot instruction unit 333b are configured to be displayed at positions according to the pronation tendency represented by the analysis information P.
  • the evaluation system 1 has the above configuration. Subsequently, the analysis and evaluation method of the behavior of the lower leg L by the evaluation system 1 will be described.
  • the evaluation method of the behavior of the lower leg L by the evaluation system 1 is based on the preparation process (S1) for acquiring the subject information and the analysis based on the subject information obtained in the preparation process.
  • An evaluation step (S4) for evaluating the result and a confirmation step (S5) for checking the evaluation result of the pronation in the evaluation step are provided.
  • a post-step (S6) for explaining the evaluation result of the pronation and removing the measuring instrument 21 (upper marker 210, lower marker 210) is performed.
  • the method for evaluating the behavior of the lower leg L is an analysis by the analysis method of the behavior of the lower leg L including the preparation step (S1), the pretreatment step (S2), and the analysis step (S3). It is comprised so that a result may be evaluated at an evaluation process (S4).
  • the preparation step (S1) information on the subject (height, weight, etc.) is input to the processing device 3 (S10). And the measuring instrument 21 is attached to a subject (S11).
  • a still image of the subject taking a still standing posture is taken from the back (S12).
  • the subject rides on the mat 220, places the foot F f in accordance with the foot placement region 220a, and further sets the direction of the foot F f (the direction in which the heel F h and the toe F t are arranged) as a reference line. Align with the longitudinal direction of 220b.
  • a moving image of the subject running on the treadmill 221 is photographed from the back so that the upper marker 210 and the lower marker 210 can be seen (S13). Then, a still image and a moving image associated with the quantification information are output to the processing device 3 as the observation information.
  • the specified section is determined for the moving image by the section specifying unit 310 (S20).
  • the time when the foot F f first reaches the ground in the stance phase is set as the start time of the designated section, and the time when the foot F f is completely separated from the ground in the same stance period is set as the specified section. The end point of.
  • the analysis interval setting unit 311 sets the evaluation interval for the specified interval, and the behavior information deriving unit 311c derives behavior information based on the information in the evaluation interval (S21).
  • the ground contact type determination unit 311a determines how the foot F f is to be worn when the subject is running.
  • the angle information correcting unit 311ab uses the ground contact angle information and the information derived based on the start time information of the evaluation section as the ground contact angle information. Re-set as information (S210).
  • the classification determination unit 311ac determines that the subject's foot F f is to be worn by heel contact or flat contact
  • the setting unit 311b sets the time point corresponding to the start time of the specified section as the start time of the evaluation section. Further, a point in time when the predetermined time of the entire designated section, for example, 65% has elapsed, is set as the end point of the evaluation section (S212).
  • the setting unit 311b determines the point in time when a predetermined time has elapsed from the start point of the specified interval. Is set as the start time of the evaluation section, and further, a time when a predetermined time, for example, 65% of the entire specified section has elapsed, is set as the end time of the evaluation section (S213).
  • the behavior information deriving unit 311c derives the relative angle information ⁇ , the tilt angle information ⁇ g, and the twist angle information ⁇ that are the behavior information based on the information in the evaluation section (S214).
  • analysis step (S3) as shown in FIG. 12, the tilt analyzing unit 320a, based on the relative angle information beta tilt angle information beta g to derive the tilt information P 1 as analysis information P (S30).
  • the analysis result determination unit 32 by comparing the comparison reference values S 1 and tilt information P 1, to determine the magnitude of pronation (S31).
  • the analysis result determination unit 321 determines that the value of the tilt information P 1 is larger than the comparison reference value S 1, the tilting information P 1 is the analysis information P (S32).
  • twist information P 2 is an analysis information P (S34).
  • step (S4) as shown in FIG. 13, the behavior evaluation unit 330 and compares the analysis information P and the small behavior reference value S 2a and atmospheric behavior reference value S 2b (S40).
  • the value of the analysis information P is equal to or less than the small behavior criterion S 2a is classified as pronation of the subject is under pronation (Evaluation) and (S41), the value of the analysis information P is small behavior criterion S greater than 2a, when it is lower than the atmospheric behavior reference value S 2b is pronation subjects are classified as neutral (S42), if the analysis information P is greater than atmospheric behavior reference value S2b is subject Is classified as overpronation (S43). Then, the type of the pronation is determined (S44), and the evaluation of the analysis result of the pronation is displayed on the display device 4.
  • the evaluation of the analysis result of the pronation displayed on the display device 4 is confirmed.
  • the type display unit 332 is displayed on the display device 4 as an evaluation of the analysis result of the pronation, the type regions 332a, 332b, and 332c pointed to by the right foot instruction unit 333a and the left foot instruction unit 333b, respectively. By confirming, the type of pronation can be confirmed.
  • the behavior of the lower leg L can be analyzed based on the tilt angle information ⁇ g indicating the degree of inward and outward tilt of the heel F h with respect to the ground. Therefore, since the evaluation system 1 and the pronation evaluation method using the evaluation system 1 perform the evaluation based on a more detailed analysis result of the plurality of behaviors constituting the pronation, the evaluation accuracy of the behavior of the lower leg L is increased. be able to.
  • the evaluation system 1 according to the present embodiment and the pronation evaluation method using the evaluation system 1 are based on an experiment example to be described later, and professionals related to the pronation (for example, human motion analysis such as biomechanics and physical therapy) Those who have knowledge of anatomical structures, those who have experience in teaching running forms (running movements), and engineers who are engaged in the design and functional evaluation of running shoes, etc.
  • professionals related to the pronation for example, human motion analysis such as biomechanics and physical therapy
  • the amount of fall of the heel F h with respect to the lower leg F u of the subject and the amount of fall of the heel F h with respect to the ground are given priority. Is based on the evaluation.
  • the evaluation method of pronation by evaluation system 1 and the evaluation system 1 is high correlation with preferentially the focused and pronation Analysis and evaluation of the pronation based on the inclination of the foot (angle represented by the relative angle information ⁇ ) and the inclination of the foot F f inside and outside the heel F h (the angle represented by the inclination angle information ⁇ g )
  • an analysis result and an evaluation result that is, an accurate analysis result and an evaluation result
  • the processing unit 30 includes a relative angle information beta and tilt angle information tilt information P 1 and beta g which is information derived based on, and the relative angle information beta tilt angle information beta g and twisting angle information ⁇ may be configured to perform analysis of the behavior of the lower leg L with a twisting information P 2 is derived information based on.
  • the tilt information P 1 is determined to be smaller than the comparison reference value S 1, the relative angle information beta and tilt angle information beta g based on the twisting angle information ⁇ and, in order to analyze the information P to derive twisting information P 2, as described above, while the slope of the inner Ashikabu L is small, the lower leg F u inner Can be classified as overpronation, which allows analysis and evaluation of pronation in the same procedure as an expert, thus improving the accuracy of evaluation results .
  • the behavior of the lower leg L is analyzed on an orthogonal coordinate system using the relative angle information ⁇ and the tilt angle information ⁇ g as vector components, so the relative angle information ⁇ and the tilt angle information and beta g is in line with the actual behavior of the lower leg L used for analysis in the state shown quantitatively, thereby, increases the accuracy of the analysis of the behavior of Ashikabu L.
  • the type of the pronation for each of the left and right lower leg L of the subject is indicated by the type instruction unit 333, so that the pronation of the subject can be known in detail.
  • the evaluation system 1 is configured to perform the analysis of the pronation and the evaluation of the analysis result of the pronation in one system.
  • the evaluation system may be divided into an evaluation system that evaluates the pronation based on the analysis result of the pronation by the analysis system.
  • the imaging device 20 and the measuring instrument 21 can acquire information indicating the posture (orientation) of the lower leg L of the subject in the stationary standing state, the running state, or the walking state.
  • an optical three-dimensional motion analysis apparatus may be used, or a sensing device such as an acceleration sensor or a gyro sensor may be used.
  • posture information obtained by the sensing device may be transmitted to the processing device 3 by wireless communication or the like.
  • the processing device 3 and the display device 4 are integrated, but the present invention is not limited to this configuration.
  • the processing device 3 and the display device 4 may have different configurations.
  • a configuration in which the photographing device 20, the processing device 3, and the display device 4 are integrated such as a PC with a camera.
  • the relative angle information ⁇ , the tilt angle information ⁇ g , and the twist angle information ⁇ are used as vector components, but the present invention is not limited to this configuration.
  • the relative angle information ⁇ , the tilt angle information ⁇ g , and the twist angle information ⁇ may be components each having only a numerical value.
  • the tilt information P 1 and the twist information P 2 may be components each having only a numerical value.
  • the tilting information P 1 is the relative angle information beta, had been calculated by the vector calculating the tilt angle information beta g, for example, to store a plurality of information that are candidates for tilt information P 1 and tables prepares the database, and the relative angle information beta, may be based on the tilt angle information ⁇ g be configured to select the tilt information P 1 stored in the table or database .
  • the twist information P 2 is calculated by performing a vector operation on the relative angle information ⁇ , the tilt angle information ⁇ g, and the twist angle information ⁇ .
  • the twist information P 2 A table or database storing a plurality of pieces of candidate information is prepared and stored in the table or database based on the relative angle information ⁇ , the tilt angle information ⁇ g, and the twist angle information ⁇ . the twisting information P 2 to which may be configured to select.
  • the analysis unit 32 (analysis processing unit 320) derives the analysis information P based on the relative angle information ⁇ , the tilt angle information ⁇ g , and the twist angle information ⁇ , but this configuration is limited.
  • Sarezu for example, the relative angle information beta, may be configured to derive analytical information P based on the tilt angle information beta g.
  • the analysis processing unit 320 in the above embodiment was configured to the tilt information P 1 or twisting information P 2 and analysis information P in accordance with the magnitude of the tilt information P 1, it is not limited to this configuration.
  • the analysis processing unit 320 uses the information obtained by calculating the tilt information P 1 and the twist information P 2 as the analysis information P, derives the analysis information P based on the tilt information P 1 , times information P 2 may be or to derive the analysis information P based on.
  • the evaluation unit 33 outputs the type of the pronation as an evaluation of the analysis result of the pronation, but is not limited to this configuration.
  • the evaluation unit 33 may output shoes suitable for the analysis result of pronation, taping, and the like as the evaluation of the analysis result.
  • the behavior evaluation unit 330 is configured to be able to classify pronations into three types, but is not limited to this configuration.
  • the behavior evaluation unit 330 may be able to classify the pronation into two types, or may be classified into four or more types. In this case, depending on the number of types of classification may be changed comparative reference value S 1 and the behavior reference value S 2.
  • each reference value S 1 , S 2a , S 2b may be changed according to the type of shoe.
  • the treadmill 221 is used as the auxiliary instrument 22, but the treadmill 221 is not necessarily used, and the subject actually runs or walks without using the treadmill 221 and observes it. You may make it observe with the apparatus 2.
  • Experiment Example 1 when an expert analyzes and evaluates a pronation, an experiment is performed to confirm a site to which attention is given preferentially, and an experiment to confirm at which timing in the stance phase the evaluation is performed. It was.
  • Experimental Example 1 10 general adult men and women were subjects.
  • the test subject was allowed to perform treadmill running with bare feet running at a constant speed (8 km / h), and the lower limbs of the test subject were photographed with a video camera (photographing device) from the back (back of the treadmill).
  • a video camera photographing device
  • a video was prepared by cutting out a section corresponding to one stance phase from each video shot of each subject, and the video was presented to 15 experts.
  • the items answered as the reason for the evaluation are the parts used as judgment criteria (most important in the evaluation of pronation) and the contents of the movement of the parts.
  • the expert is allowed to select a region based on the judgment criteria from the heel F h , the medial midfoot, the lower leg F u , and others, and the selected region is subjected to the maximum angle, angle change, change speed, and lateral direction. Based on the amount of movement, twist, orientation, etc., the feature of the movement of the part as a criterion was selected.
  • the expert first evaluates the pronation based on the behavior of ⁇ F h (that is, information corresponding to the relative angle information ⁇ and the tilt angle information ⁇ g ). Furthermore, if the behavior of the heel F h is small, internal rotation of the lower leg (i.e., information corresponding to the twist angle information gamma) were also found to evaluated pronation including.
  • the evaluation system 1 and the evaluation system 1 firstly, it derives the tilt information P 1 based on the relative angle information beta and tilt angle information beta g, tilting information
  • the twist information P 2 is derived based on the relative angle information ⁇ , the tilt angle information ⁇ g, and the twist angle information ⁇ when the value of P 1 is small
  • the relative angle if the behavior of ⁇ F h is large, the relative angle
  • the pronation is evaluated by the information ⁇ and the tilt angle information ⁇ g.
  • the pronation including the twist angle information ⁇ is added to the relative angle information ⁇ and the tilt angle information ⁇ g. Therefore, the pronation can be evaluated by a process that matches the pronation evaluation process by an expert.
  • Experimental Example 2 30 adult males and females were subjects.
  • the test subject was subjected to treadmill running under the same conditions as in Experimental Example 1, and the analysis in the evaluation method of the above embodiment was performed based on the relative angle information ⁇ , tilt angle information ⁇ g , and twist angle information ⁇ in the stance phase. Pronation was evaluated along the steps (S3) and (S4).
  • the tilt information P 1 and the twisting as in the evaluation method based on the part, section, and criteria that the expert emphasizes in the pronation evaluation that is, the evaluation system 1 according to the above embodiment and the evaluation method by the evaluation system 1 information P 2 and by so stepwise derive, appropriately quantify the behavior of pronation, it can be reproduced by accurately and automatically evaluated by specialists.
  • classification determination unit 311b ... setting unit, 311c ... behavior information derivation unit, 320 ... Analysis processing unit, 320a ... Tilt analysis unit, 320b ... Torsion analysis unit, 321 ... Analysis result judgment unit, 330 ... Behavior evaluation unit, 331 ... Evaluation output unit, 332 ... Type display unit, 33 a, 332b, 332c ... type region, 333 ... type instruction unit, 333a ... right instruction field, 333b ... instructing unit for the left foot, Ah ... running direction, Av ... vertically, BL ... reference line, F f ... right foot, F f ... left foot, F f ... foot, F f ... both feet, F h ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本発明は、立脚期における下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、地面に対する踵の内外への倒れ度合いを表す傾倒角度情報とを基にして立脚期における下腿及び足を含む脚下部の挙動を分析する脚下部の挙動の分析システム及び分析方法、該分析システムを用いた脚下部の挙動の評価システム、並びに該分析方法を用いた脚下部の挙動の評価方法である。

Description

脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法
 本発明は、脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法に関する。
 近年、走行中又は歩行中の立脚期における下腿及び足を含む脚下部の挙動を分析し、該脚下部の挙動に適した靴等の商品を顧客に提供するサービスが行われている。
 そして、かかるサービスが行われる場合、例えば、顧客の脚下部の挙動を分析した結果を評価し、該評価に適したシューズを選定するシューズの選定システム(以下、選定システムという)が用いられている(例えば、特許文献1参照)。
 かかる選定システムは、走行時の顧客を撮影した画像から脹脛の中心線と踵の中心線とで形成される角度を足首の傾斜角として導出し、該傾斜角度を基にして足首の挙動を評価する傾斜角判定手段と、該傾斜角判定手段の評価に適したシューズを選定するシューズ選定手段とを備えている。
 そして、前記選定システムによれば、脚下部の挙動の分析結果である足首の傾斜角の評価に適したシューズが選定されるため、顧客に対して足首の挙動に適合したシューズを提供することができるとされている。
日本国特許4856427号公報
 ところで、人体の脚下部(特に足)には数多くの関節が存在するため、走行時や歩行時における実際の脚下部の挙動は複雑であるが、上述の選定システムでは、脹脛の中心線と踵の中心線とで形成される角度のみに基づいて脚下部の挙動を分析している。
 すなわち、上述の選定システムは、脚下部の挙動のうちの傾斜角に関する挙動のみを分析しているため、分析結果の正確さが欠けており、これに伴い、分析結果に基づく評価の精度も低くなっている。
 そこで、本発明は、斯かる実情に鑑み、脚下部の挙動を正確に分析できる脚下部の挙動の分析システム及び分析方法、脚下部の挙動を精度良く評価できる脚下部の挙動の評価システム並びに評価方法を提供することを課題とする。
 本発明の脚下部の挙動の分析システムは、
 立脚期における下腿及び足を含む脚下部の挙動を分析する分析装置を備え、
 該分析装置は、前記脚下部の挙動を定量的に表した分析情報を導出する処理部を有し、
 該処理部は、前記脚下部の挙動に基づいて、前記下腿に対する踵の傾きを表す相対角度情報と、前記足の地面に対する前記踵の傾きを表す傾倒角度情報とを導出し、該相対角度情報と該傾倒角度情報とを基にして前記分析情報を導出するように構成される。
 本発明の脚下部の挙動の分析システムにおいて、
 前記処理部は、
 前記相対角度情報と前記傾倒角度情報とを成分とする直交座標系上で前記分析情報を導出するように構成されていてもよい。
 この場合、前記処理部は、
 前記相対角度情報と前記傾倒角度情報とをベクトル成分とする直交座標系上で前記分析情報を導出するように構成されてもよい。
 本発明の脚下部の挙動の分析システムにおいて、
 前記処理部は、
 前記脚下部の挙動から前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報を導出し、
 前記相対角度情報と前記傾倒角度情報とを基にして導出した情報である傾動情報と、前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とを基にして導出した情報である捻回情報とを導出し、
 前記傾動情報と前記捻回情報とに基づいて前記分析情報を導出するように構成されていてもよい。
 この場合、前記処理部は、
 前記相対角度情報と前記傾倒角度情報とを成分とする直交座標系上で前記傾動情報を導出し、
 前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とを成分とする直交座標系上で前記捻回情報を導出するように構成されていてもよい。
 さらに、前記処理部は、
 前記相対角度情報と前記傾倒角度情報とをベクトル成分とする直交座標系上で前記傾動情報を導出し、
 前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とをベクトル成分とする直交座標系上で前記捻回情報を導出するように構成されていてもよい。
 本発明の脚下部の挙動の分析システムにおいて、
 前記処理部は、
 前記脚下部の挙動を分析する対象となる対象者の走行中における地面への足の着き方の種別を判定し、
 該足の着き方の種別の判定結果に応じて立脚期に設定した区間内の情報を基づいて、前記相対角度情報と前記傾倒角度情報とを導出するように構成されてもよい。
 この場合、前記処理部は、
 前記対象者の走行中における足の着き方が、立脚期において最初に前記踵が前記地面に着く踵接地、又は立脚期において前記足の裏側全体が略同時に前記地面に着くフラット接地の何れかであると判定した場合に、前記対象者の立脚期の開始時点を前記区間の開始時点とし、該立脚期全体のうちの55~65%の時間が経過した時点を前記区間の終了位置として設定するように構成されてもよい。
 また、前記処理部は、
 前記対象者の走行中における足の着き方が、
 立脚期において最初につま先が地面に着くつま先接地であると判定した場合に、
 前記立脚期全体のうちの3~10%の時間が経過した時点を前記区間の開始時点とし、該立脚期全体のうちの55~65%の時間が経過した時点を前記区間の終了位置として設定するように構成されてもよい。
 本発明の脚下部の挙動の分析システムにおいて、
 前記処理部は、
 前記対象者の静止立位時における地面に対する矢状面内の踵の角度を基準として前記足の着き方の種別を判定するように構成されてもよい。
 本発明の脚下部の挙動の分析システムは、
 前記対象者が静止立位姿勢をとった際の脚下部の向きを所定の方向に揃えるためのマットを備え、
 該マットには、互いに平行な直線である二つの基準線であって、前記対象者が静止立位時に足の向きを揃える基準とする二つの基準線が描かれ、
 前記処理部は、
 前記基準線に足の向きを揃えて静止立位姿勢をとった対象者の地面に対する矢状面内の踵の角度を基準として前記足の着き方の種別を判定するように構成されてもよい。
 本発明の脚下部の挙動の分析方法は、
 立脚期における下腿及び足を含む脚下部の挙動を分析する分析工程を備え、
 該分析工程では、
 前記脚下部の挙動に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報とを導出し、
 該相対角度情報と該傾倒角度情報とを基にして前記脚下部の挙動を定量的に表した情報である分析情報を導出する。
 本発明の脚下部の挙動の分析方法において、
 前記分析工程では、
 前記相対角度情報と前記傾倒角度情報とを成分とする直交座標系上で前記分析情報を導出してもよい。
 この場合、前記分析工程では、
 前記相対角度情報と前記傾倒角度情報とをベクトル成分とする直交座標系上で前記分析情報を導出してもよい。
 本発明の脚下部の挙動の分析方法において、
 前記分析工程では、
 前記脚下部の挙動から前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報を導出し、
 前記相対角度情報と前記傾倒角度情報とを基にして導出した情報である傾動情報と、前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とを基にして導出した情報である捻回情報とを導出し、
 前記傾動情報と前記捻回情報とに基づいて前記分析情報を導出してもよい。
 本発明の脚下部の挙動の評価システムは、
 立脚期における下腿及び足を含む脚下部を観測し、前記脚下部の姿勢に関する情報である観測情報を取得する観測装置と、前記観測情報に基づいて前記脚下部の挙動を分析した分析情報を取得し、前記分析情報に基づいて前記脚下部の挙動を評価する処理を実行する処理装置と、を備え、
 前記処理装置は、
前記観測情報に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報と、前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報と、を含む挙動情報を導出する前処理部と、
 前記相対角度情報及び前記傾倒角度情報に基づいて導出された定量的な情報である傾動情報又は前記相対角度情報、前記傾倒角度情報及び前記捻回角度情報に基づいて導出された定量的な情報である捻回情報のいずれかの情報からなる前記分析情報を導出する分析部と、
 前記分析情報に基づいて前記脚下部の挙動を評価する評価部と、を有する。
 また、本発明の脚下部の挙動の評価システムにおいて、
 前記処理装置には、前記傾動情報と比較するための基準値である評価基準値が予め記憶されており、
 前記分析部は、前記傾動情報と前記評価基準値との比較結果に基づき、前記分析情報として前記傾動情報と前記捻回情報のいずれの情報を用いるかを判断する処理を実行するように構成されてもよい。
 本発明の脚下部の挙動の評価方法は、
 立脚期における下腿及び足を含む脚下部を観測し、前記脚下部の姿勢に関する情報である観測情報を取得する準備工程と、
 前記観測情報に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報と、前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報と、を含む挙動情報を導出する前処理工程と、
 前記相対角度情報及び前記傾倒角度情報に基づいて導出された定量的な情報である傾動情報又は前記相対角度情報、前記傾倒角度情報及び前記捻回角度情報に基づいて導出された定量的な情報である捻回情報のいずれかの情報からなる分析情報を導出する分析工程と、
 前記分析情報に基づいて前記脚下部の挙動を評価する評価工程と、を備える。
図1は、本発明の一実施形態に係る脚下部の挙動の評価システムの概要図である。 図2は、同実施形態に係る脚下部の挙動の評価システムのブロック図である。 図3は、同実施形態に係る脚下部の挙動の評価システムの計測器具の説明図であって、対象者の背面側から計測器具を見た図である。 図4は、同実施形態に係る脚下部の挙動の評価システムの補助器具であるマットの平面図である。 図5は、地面に対する足の角度である接地角度の説明図である。 図6Aは、接地角度を測定する基準の説明図である。 図6Bは、同実施形態に係る接地角度情報の導出方法の説明図である。 図7Aは、同実施形態に係る足の着き方の種別を示す模式図であって、踵接地を示す模式図である。 図7Bは、同実施形態に係る足の着き方の種別を示す模式図であって、フラット接地を示す模式図である。 図7Cは、同実施形態に係る足の着き方の種別を示す模式図であって、つま先接地を示す模式図である。 図8は、同実施形態に係る脚下部の挙動の評価システムの分析情報の説明図である。 図9は、実施形態に係る脚下部の挙動の評価システムの評価結果を出力した状態の説明図である。 図10は、実施形態に係る脚下部の挙動の評価システムによるプロネーションの分析方法及び該プロネーションの分析結果の評価方法のフローチャートである 図11は、図10で示した分析区間における挙動情報の導出の具体的処理を示すサブフローチャートであって、挙動情報を導出する処理のフローチャートである。 図12は、図10で示したプロネーションの分析の具体的処理を示すサブフローチャートである。 図13は、図10で示したプロネーションの分析結果の評価の具体的処理を示すサブフローチャートである。 図14は、同実施形態に係る脚下部の挙動の評価システムの相対角度情報、傾倒角度情報の説明図である。 図15は、同実施形態に係る脚下部の挙動の評価システムの捻回角度情報の説明図である。 図16は、本発明の実験例2の実験結果を示す図である。
 以下、本発明の一実施形態にかかる脚下部の挙動の評価システム(以下、評価システムという)について、添付図面を参照しつつ説明する。本実施形態に係る評価システムは、走行中又は歩行中の立脚期における支持脚の踵と下腿の複合挙動を分析し、該複合挙動の分析結果を評価するシステムである。
 なお、脚下部とは、下肢全体のうちの下腿と足とを含む部分のことである。また、本実施形態では、図14、及び図15に示すように、脚下部には「L」を付し、下腿には「F」を付し、足には「F」を付し、足首には「F」を付し、さらに、足Fの踵には「F」、つま先には「F」を付す。また、本実施形態では、走行中又は歩行中の立脚期における支持脚の踵Fの内倒れ及び踵Fの下腿Fに対する内倒れ(距骨下関節の回内)、下腿F(脛骨)の踵Fに対する内旋(すねの内側への捻じれ)を含む踵Fと下腿Fの複合挙動のことをプロネーションと称して以下の説明を行う。なお、以下の説明においては走行中(走行状態)における脚下部Lの挙動について説明するが、これらの説明は歩行中(歩行状態)においても当てはまる。
 評価システムは、図1に示すように、プロネーションの分析及び評価を行う対象者の静止立位状態又は走行状態における脚下部Lの姿勢を観測した観測情報を取得する観測装置2と、該観測情報を基にしてプロネーションの分析及び該プロネーションの分析結果の評価を行う処理装置3と、該処理装置3によるプロネーションの評価結果を表示する表示機器4とを備えている。なお、本実施形態では、処理装置3と表示機器4とが一体となっている。
 観測装置2は、静止立位状態又は走行状態の対象者を撮影する撮影装置20と、静止立位状態又は走行状態の対象者の脚下部Lの姿勢(向き)を表す情報を計測する計測器具21と、対象者の観測を補助する補助器具22とを備えている。
 撮影装置20は、静止立位状態の対象者を背面側から撮影した静止画を処理装置3に出力できるように構成されている。また、撮影装置20は、所定のフレームレートで走行状態の対象者を背面側から撮影した動画を処理装置3に出力できるように構成されている。フレームレートは、例えば60フレーム/秒以上に設定される。撮影装置20で撮影した動画の各フレームには、撮影期間の各時点における対象者の脚下部Lの姿勢が視覚的に表されている。なお、撮影装置20は、例えば、ビデオカメラであり、処理装置3に対して有線通信又は無線通信可能である。
 計測器具21は、対象者の脚下部Lに取り付けられるように構成されており、踵F及び下腿Fの三次元における向きを定量的に表した定量化情報を取得するように構成されている。
 本実施形態に係る観測装置2は、撮影装置20で計測器具21を撮影して得られた観測情報を処理装置3に出力することによって、撮影を行った時点における定量化情報を得るように構成されている。
 そのため、撮影装置20で撮影された対象者の静止画には、撮影を行った時点における定量化情報が関連付けられ、撮影装置20で撮影された対象者の動画には、各フレームに対して対応する時点の定量化情報が関連付けられる。
 本実施形態に係る計測器具21は、図3に示すように、対象者の脚下部Lに取り付けられる複数(図3では、4個)のマーカー210を備えている。複数のマーカー210には、対象者の左右の踵Fに取り付けられる一対のマーカー(以下、下部マーカーという)210と、対象者の左右の足首Fの上方に取り付けられる一対のマーカー(以下、上部マーカーという)210とが含まれている。
 そのため、本実施形態では、撮影装置20で上部マーカー210及び下部マーカー210を撮影して得られた観測情報を処理装置3に出力することによって、三次元での向きを定量化情報として取得することができる。
 マーカー210は、例えば、AR(Augmented Reality)マーカーである。そして、撮影装置20によって該マーカー210を撮影した静止画や動画には、マーカー210上に仮想の3方向の軸が映し出されるようになっている。三次元での向きとは、例えば、鉛直方向に対応する上下軸、対象者の走行方向または歩行方向に対応する奥行き軸、上下軸及び奥行き軸のそれぞれに直交する左右軸の3軸で表される向きである。
 なお、本実施形態において、マーカー210は、対象者が裸足になった状態で取り付けられ(図3参照)、撮影装置20による撮影も裸足の状態のまま行われる。また、上部マーカー210及び下部マーカー210を対象者の脚下部Lに取り付けるには、例えば、上部マーカー210及び下部マーカー210を粘着剤等で対象者の脚下部Lに直接貼り付けたり、環状又は帯状のバンド等を用いて対象者の脚下部Lに取り付けたりしてもよい。
 補助器具22は、図4に示すように、対象者が静止立位姿勢をとった際の脚下部Lの向きを所定の方向に揃えるためのマット220と、対象者が所定の位置で走行し続けるようにするためのトレッドミル221(図1参照)、とを備えている。
 マット220は静止立位状態における対象者の脚下部Lから、後述するオフセット情報を取得する際に利用される器具である。
 マット220の表面には、足Fを載せる位置を示す足置領域220aと、足置領域220aを通る直線である基準線220bとが描かれている。
 足置領域220aには、対象者の左足Fを載せる足置領域(以下、左側足置領域という)220aと、対象者の右足Fを載せる足置領域(以下、右側足置領域という)220aとが含まれており、それぞれマット220の横方向(幅方向)で所定の間隔をあけて並ぶように描かれている。また、左側足置領域220aと右側足置領域220aとの間隔は、対象者が足置領域220aに両足Fを載せたときに両足Fの間隔が肩幅程度になるように設定されている。
 本実施形態では、大きさの異なる複数の左側足置領域220aが一群となるようにマット220の表面に描かれており、また、大きさの異なる複数の右側足置領域220aが一群となるようにマット220の表面に描かれている。
 本実施形態に係るマット220の表面には、基準線220bが二つ描かれている。一方の基準線220bは、左側足置領域220aのつま先F側の頂点と踵F側の頂点とを結ぶようにして直線状に描かれており、他方の基準線220bは、右側足置領域220aのつま先F側の頂点と踵F側の頂点とを結ぶようにして直線状に描かれている。
 また、一対の基準線220bは、それぞれ互いに略平行となるようにマット220の縦方向(図4の上下方向)に沿って真っ直ぐに延びている。なお、基準線220bは、対象者が足置領域220aに載せた足Fの向きを揃えるための基準とする直線である。
 マット220は、縦方向(基準線220bが延びる方向)を該撮影装置20の光軸方向に対応させた状態で、該撮影装置20の前方に配置される。そのため、対象者が足置領域220a内に足Fを載せ、さらに、足Fの向きを基準線220bに沿う方向に揃えるようにしてマット220上に乗ると、該対象者の踵F、脹脛(下腿Fの後ろ側)が撮影装置20に対して真っ直ぐに向けられた状態となる。
 トレッドミル221は、撮影装置20の前方に配置されている。また、トレッドミル221は、対象者が撮影装置20に背を向け、且つ撮影装置20の光軸方向に対応する方向にむいたまま走行動作をとることができるように配置されている。
 処理装置3は、プロネーションの分析と、該プロネーションの分析結果の評価を行う。すなわち、処理装置3は、プロネーションの分析を行う分析装置であり、該プロネーションの分析結果の評価を行う評価装置でもある。
 処理装置3は、図2に示すように、観測装置2から送信された観測情報を基にしてプロネーションの分析及びプロネーションの分析結果の評価を行う処理部30を有する。
 処理部30は、観測装置2から送信された観測情報を基にして脚下部Lの各部位毎の挙動を定量的に表した挙動情報を導出する前処理部31と、該前処理部31が導出した挙動情報を基にしてプロネーションを分析する分析部32と、該分析部32によるプロネーションの分析結果を評価する評価部33とを有する。
 前処理部31は、観測装置2から送信された動画(定量化情報が関連付けられた動画)に対してプロネーションの分析に用いる区間(以下、指定区間という)を決定する区間指定部310と、走行時における対象者の地面への足Fの着き方に基づいて該指定区間に対してプロネーションの分析に適した区間、すなわち、前記指定区間に対して前記挙動情報の導出に使用する区間(以下、評価区間という)を設定する分析区間設定部311とを有する。
 区間指定部310は、定量化情報が関連付けられた動画に対して立脚期に対応する区間を指定する際に用いられる。なお、立脚期とは、走行状態の対象者の足Fが地面に着いた時点から足Fが完全に地面から離れるまでの期間のことである。
 本実施形態に係る区間指定部310は、前記動画に対して指定区間の開始時点と終了時点とを設定できるように構成されている。具体的には、区間指定部310は、立脚期において最初に足Fが地面に着いた時点を指定区間の開始時点として設定し、同じ立脚期において足Fが地面から完全に離れた時点を指定区間の終了時点として設定する。
 なお、区間指定部310は、動画に対して手動で指定区間の開始時点と終了時点とを設定できるように構成されていてもよいし、自動的に動画に対して指定区間の開始時点と終了時点とが設定されるように構成されていてもよい。
 分析区間設定部311は、前記指定区間内の情報を基にして対象者の走行時における足Fの着き方を判定する接地種別判別部311aと、該接地種別判別部311aによる前記足Fの着き方の判定結果に応じて、前記評価区間を設定する設定部311bと、該評価区間内の情報を基にして前記挙動情報を導出する挙動情報導出部311cとを有する。
 接地種別判別部311aは、前記指定区間内の情報を基にして地面に対する対象者の踵Fの接地角度HC(図5参照)を表す情報(以下、接地角度情報という)を導出する接地角度導出部311aaと、静止立位時における地面に対する対象者の踵Fの矢状面P(図1参照)内における角度を基にして接地角度導出部311aaで導出した接地角度情報を補正する角度情報補正部311abと、対象者の走行時における足Fの着き方を判定する分類判別部311acとを有する。
 接地角度導出部311aaは、前記指定区間の開始時点に対応する時点における定量化情報を基にして接地角度情報を導出するように構成されている。
 ここで、接地角度情報に含まれる接地角度HCとは、図1、及び図5に示すように、矢状面P内における踵Fを通る基準線BLと地面とのなす角度のことである。踵Fを通る基準線BLは、例えば、静止立位状態において踵骨隆起と第二趾先端とを結ぶ直線である。なお、矢状面Pとは、図1に示すように、走行方向Ahと鉛直方向Avとからなる面である。
 後述するように、走行時における足Fの着き方は、接地角度情報に基づいて判定されるが、下部マーカー210から得られる角度の情報と接地角度HCとは必ずしも一致しない。これは下部マーカー210を取り付ける位置のずれ等の影響によって、得られる踵Fに関する角度の情報が変動する場合がある。すなわち、足Fの着き方の判定をする際に下部マーカー210から得られる踵Fの角度の情報をそのまま使用すると本来の接地角度HCとずれが生じる場合がある。
 そこで、本実施形態では、角度情報補正部311abにおいて、下部マーカー210から得られた踵Fの角度情報に補正をかけるようにしている。
 角度情報補正部311abは、静止立位時における定量化情報を基にして静止立位姿勢をとっている対象者の踵Fの角度(地面に対する踵Fの角度HCs)を表わすオフセット情報を導出する。静止立位姿勢をとっている対象者の踵Fの角度HCsは、前述したようにマット220に載った状態で下部マーカー210を観測して得られる踵Fの角度であり、より具体的には、図6Aに示すように、下部マーカー210が示す奥行き軸(下部マーカー210の向きAm)と地面とのなす角度HCsである(図1及び図6A参照)。
 そして、角度情報補正部311abは、図6Bに示すように、角度HCsを含むオフセット情報と足Fが接地した瞬間における下部マーカー210から得られる踵Fの角度HCtを含む接地角度情報とを基にして、静止立位時の踵Fの角度に対する走行時の踵Fの相対的な角度を導出し、該相対的な角度を表わす情報を接地角度情報として設定し直す。
 接地角度HCは、下記の式(1)により導出される。
 
Figure JPOXMLDOC01-appb-I000001

 
 例えば、静止立位姿勢をとっている対象者の下部マーカー210から得られる踵Fの角度すなわちHCsが-12°、足Fが接地した瞬間における下部マーカー210から得られる踵Fの角度HCtが-2°である場合、接地角度HCは、接地した瞬間の角度HCtから、静止立位姿勢における下部マーカー210から得られたオフセット情報HCsを差し引いた値、HC=(-2°)-(-12°)=10°となる。 
 これにより、角度情報補正部311abは、マーカー210を取り付ける際に生じうる誤差を除去することができ、足Fの着き方の判定がより正確に行えるようになる。
 分類判別部311acでは、対象者の走行時における足Fの着き方の種別が判定される。本実施形態に係る分類判別部311acでは、立脚期の開始時点において最初に踵Fが地面に着く踵接地(図7A参照)、立脚期の開始時点において足Fの裏側全体が略同時に地面に着くフラット接地(図7B参照)、又は立脚期の開始時点において最初につま先Fが地面に着くつま先接地(図7C参照)の何れに該当するかが判定される。
 より具体的に説明すると、分類判別部311acは、新たな接地角度情報で表される接地角度HCが例えば、0°以上(HC≧0°)であれば、足Fの着き方が踵接地又はフラット接地であると判定し、新たな接地角度情報で表される接地角度HCが例えば、0°未満(HC<0°)であれば、足Fの着き方がつま先接地であると判定する。なお、つま先接地には、立脚期の開始時点においてつま先が最初に地面に着く接地(足の着き方)のほか、前足部、中足部等、踵部以外の箇所が最初に地面に着く接地も含まれる。
 このように、分類判別部311acは、立脚期において足Fが最初に地面に着いた時点におけるつま先Fの向き(地面に対するつま先Fの上下方向での向き)に応じて足Fの着き方を判定するように構成されている。
 設定部311bは、分類判別部311acが対象者の足Fの着き方を踵接地又はフラット接地と判定した場合、前記指定区間の開始時点に対応する時点を評価区間の開始時点として設定し、さらに、前記指定区間全体(指定区間全体の開始時点から終了時点まで)の55%~65%の時間が経過した時点を評価区間の終了時点として設定するように構成されている。なお、本実施形態における評価区間の終了時点は、指定区間の開始時点に対応する時点から65%の時間が経過した時点に設定されている。
 また、設定部311bは、分類判別部311acが対象者の足Fの着き方をつま先接地であると判定した場合、前記指定区間の開始時点から3%~10%の時間が経過した時点を評価区間の開始時点として設定し、さらに、前記指定区間全体の55%~65%の時間が経過した時点を評価区間の終了位置として設定するように構成されている。なお、本実施形態では、つま先接地であると判定した場合は指定区間全体の8%~65%の範囲が評価区間となるように設定されている。
 このように接地角度の違いに応じて評価区間の開始時点を変更することで、プロネーションの分析を行う際に、走行中又は歩行中の脚下部Lの挙動に関連しない情報が加味されてしまうことを抑えることができる。
 これは、つま先接地の場合は距腿関節の機構上、踵Fが内反位になりやすい(すなわち、踵Fが外側に倒れやすい)という解剖学的な特徴があることに起因するものである。プロネーションを評価する際には、自然な立位状態姿勢を基準としてそこからの踵Fの内倒れの角度変化量を評価することが望ましいが、つま先接地をした場合は自然な状態よりも踵Fが外側に倒れやすい傾向があるため、そこから踵Fの内倒れの角度変化量を求めると、外側に倒れている角度の分だけ余分に変化量が算出されてしまう。
 そこで、つま先接地の対象者に対しては、つま先Fが地面に着いてから踵Fが着く付近までの時間帯を評価区間から外し、踵Fが地面に着く付近までの所定時間が経過した時点を評価区間の開始時点とすることによって、自然な立位状態における角度を基準とした踵Fの内倒れの角度変化量を評価したときと同様の評価をすることができるようになる。
 挙動情報導出部311cは、挙動情報として、下腿Fに対する踵Fの内外への倒れ度合いを表す相対角度情報と、地面に対する踵Fの内外への倒れ度合いを表す傾倒角度情報と、踵Fに対する下腿Fの捻じれ度合いを表す捻回角度情報とを導出するように構成されている。また、本実施形態では、相対角度情報には符号「β」を付し、傾倒角度情報には、符号「β」を付し、捻回角度情報には、符号「γ」を付して以下の説明を行うこととする。
 相対角度情報βは、前記評価区間内における下腿Fに対する踵Fの内外への倒れの角度を表す情報であり、例えば、図14に示すように、前額面における踵Fの向きを示す仮想線VLh1と下腿Fの向きを示す仮想線VLf1とのなす角度βtの評価区間内における変化量がこれに相当する。
 また、傾倒角度情報βgは、前記評価区間内における地面に対する踵Fの内外への倒れの角度βgtを表す情報であり、例えば、前額面における踵Fの向きを示す仮想線VLh1と地面とのなす角度βgtの評価区間内における変化量がこれに相当する。
 捻回角度情報γは、踵Fに対する下腿Fの捻じれ度合いを表す情報であり、例えば、図15に示すように、踵Fの水平面において、足Fの向きを示す仮想線VLh2と下腿Fの向きを示す仮想線VLf2とのなす角度γの変化量がこれに相当する。なお、各角度βt、βgt、γtは、図示した部分の角度に限られずこれと等価な関係にある部分の角度を観測するようにしても構わない。
 分析部32は、図2及び図8に示すように、挙動情報を基にしてプロネーションを分析した情報を定量的に表す分析情報Pを導出する分析処理部320と、該分析処理部320で導出した分析情報Pを基にしてプロネーションの分析結果を決定する分析結果判断部321とを有する。
 分析処理部320は、相対角度情報β、傾倒角度情報β、捻回角度情報γを基にして分析情報Pを導出する。
 本実施形態に係る分析処理部320は、前記評価区間における相対角度情報βと傾倒角度情報βとに基づいて傾動情報Pを導出する傾動分析部320aと、相対角度情報βと傾倒角度情報βと捻回角度情報γとに基づいて、前記評価区間における捻回情報Pを導出する捻回分析部320bとを有する。
 傾動分析部320aは、相対角度情報βと傾倒角度情報βとを成分(本実施形態では、ベクトル成分)とする直交座標系上で傾動情報Pを導出するように構成されている。
 捻回分析部320bは、相対角度情報βと傾倒角度情報βと捻回角度情報γとを成分(本実施形態では、ベクトル成分)とする直交座標系上で捻回情報Pを導出するように構成されている。
 ここで、傾動情報Pと、捻回情報Pとは、下記の(2)式、(3)式によって算出される。
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

 
 (2)式、(3)式におけるa,b,cは、それぞれ相対角度情報β、傾倒角度情報β、捻回角度情報γに重み付けを行うための値である。本実施形態おいてはbの値をa、cの値よりも大きくしている。すなわち、相対角度情報βに最も重みをおいている。このように重み付けがなされた傾動情報P及び捻回情報Pに基づいてプロネーションの評価をすることによって、より専門家の評価に近い正確な評価とすることができる。
 分析結果判断部321には、プロネーションの大きさ(脚下部Lの挙動の大きさ)の判断基準とする比較基準値Sが設定されており、該比較基準値Sと傾動情報Pとを比較することによって、傾動情報Pが表すプロネーションの大きさを判断するように構成されている。
 比較基準値Sは、例えば、本実施形態の評価システム1を用いて予め複数の被験者の傾動情報Pを母集団情報として取得しておき、そこから求めることができる。例えば、複数の被験者の傾動情報Pを小さい順に並べたときに小さいほうから数えて被験者の全体数の所定の割合に該当するときの値を比較基準値Sとして設定することができる。前記所定の割合は、例えば、母集団情報に対する専門家のプロネーションの評価結果等に基づいて決定される。
 分析結果判断部321は、傾動情報Pが比較基準値Sよりも大きいと判断した場合、傾動情報Pを分析情報Pとするように構成されている。
 また、分析結果判断部321は、傾動情報Pが比較基準値S以下であると判断した場合、捻回分析部320bを呼び出し、該捻回分析部320bで導出した捻回情報Pを分析情報Pとするように構成されている。
 評価部33は、図2に示すように、分析情報Pを基にしてプロネーションの分析結果を評価する挙動評価部330と、該挙動評価部330によるプロネーションの分析結果の評価を出力する評価出力部331とを有する。
 挙動評価部330には、プロネーションを種別毎に分類するための評価基準値が設定されている。本実施形態に係る挙動評価部330では、プロネーションを三つの種別に分類できるように構成されており、評価基準値として、小挙動基準値S2aと、大挙動基準値S2bとが設定されている。
 そして、挙動評価部330は、分析情報Pの値が小挙動基準値S2a以下である場合は、対象者のプロネーションがアンダープロネーションであると分類(評価)し、分析情報Pの値が小挙動基準値S2aよりも大きく、大挙動基準値S2b以下である場合は、対象者のプロネーションがニュートラルであると分類し、分析情報Pの値が大挙動基準値S2bよりも大きい場合は、対象者のプロネーションがオーバープロネーションであると分類する。
 小挙動基準値S2a及び大挙動基準値S2bも比較基準値Sと同様に、本実施形態の評価システム1を用いて予め複数の被験者の分析情報Pを母集団情報として取得しておき、そこから求めることができ、例えば、複数の被験者の分析情報Pを専門家の評価に基づいて「アンダープロネーション」、「ニュートラル」、「オーバープロネーション」に分類し、分類された分析情報Pの平均値及び標準偏差に基づいて設定することができる。
例えば、「アンダープロネーション」と「ニュートラル」の境界値となる小挙動基準値S2aについては、専門家により「アンダープロネーション」と分類された母集団の分析情報Pの平均+標準偏差の値と「ニュートラル」の(分析情報Pの平均-標準偏差)の値との中間値を小挙動基準値S2aとすることができる。また、「ニュートラル」と「オーバープロネーション」の境界値となる大挙動基準値S2bについては、専門家により「ニュートラル」と分類された母集団の分析情報Pの平均と標準偏差とを足し合わせた値と、専門家により「オーバープロネーション」と分類された母集団の分析情報Pの平均-標準偏差の中間値を大挙動基準値S2bとして設定することができる。
 なお、本実施形態において、オーバープロネーションとは、相対角度情報β、傾倒角度情報βgおよび捻回角度情報γの変化量が大きい傾向にあるプロネーションのことであり、該変化量が小さい傾向にあるプロネーションをアンダープロネーション、該変化量が中程度のプロネーションをニュートラルとしている。
 評価出力部331は、この分類結果(評価結果)を視覚的に確認できる状態にして表示機器4の画面に出力するように構成されている。
 評価結果には、図9に示すように、プロネーションの種別を表示する種別表示部332と、対象者のプロネーションが該当する種別を指す種別指示部333とが表示される。
 種別表示部332には、複数の異なる種別のプロネーションを示す種別領域332a,332b,332cが含まれている。本実施形態では、対象者のプロネーションがアンダープロネーション、ニュートラル、オーバープロネーションの三種類に分類されるため、種別表示部332には、アンダープロネーションであることを示す種別領域332aと、ニュートラルあることを示す種別領域332bと、オーバープロネーションであることを示す種別領域332cとが含まれている。
 三つの種別領域332a,332b,332cは、それぞれ色分けされており、種別領域332a,332b,332cに付されている色は、隣り合う別の種別領域332a,332b,332c側になるにつれて徐々に変化している。
 種別指示部333には、右の脚下部Lのプロネーションの種別を差し示す右足用指示部333aと、左の脚下部Lのプロネーションの種別を差し示す左足用指示部333bとが含まれている。右足用指示部333a、左足用指示部333bは、分析情報Pが表すプロネーションの傾向に応じた位置に表示されるように構成されている。
 本実施形態に係る評価システム1は、以上の構成である。続いて、評価システム1による脚下部Lの挙動の分析及び評価方法についての説明を行う。
 図10に示すように、評価システム1による脚下部Lの挙動の評価方法は、対象者の情報を取得する準備工程(S1)と、準備工程で取得した対象者の情報を基にして分析に用いる情報を導出する前処理工程(S2)と、準備工程で取得した対象者の情報を基にして立脚期におけるプロネーションを分析する分析工程(S3)と、該分析工程でのプロネーションの分析結果を評価する評価工程(S4)と、評価工程におけるプロネーションの評価結果を確認する確認工程(S5)とを備えている。なお、本実施形態では、確認工程(S5)の後に、プロネーションの評価結果の説明や、計測器具21(上部マーカー210、下部マーカー210)の取り外しを行う後工程(S6)を行っている。
 すなわち、本実施形態に係る脚下部Lの挙動の評価方法は、準備工程(S1)と、前処理工程(S2)と、分析工程(S3)とを備える脚下部Lの挙動の分析方法による分析結果を、評価工程(S4)で評価するように構成されている。
 準備工程(S1)では、対象者の情報(身長や、体重など)を処理装置3に入力する(S10)。そして、対象者に計測器具21を取り付ける(S11)。本実施形態では、下部マーカー210を踵Fに取り付け、上部マーカー210を足首Fの上方に取り付ける。
 そして、静止立位姿勢をとっている対象者の静止画を背面から撮影する(S12)。このとき、対象者は、マット220上に乗り、足置領域220aに合わせて足Fを配置し、さらに、足Fの向き(踵Fとつま先Fとが並ぶ方向)を基準線220bの長手方向に合わせる。
 続いて、上部マーカー210及び下部マーカー210が写るようにトレッドミル221上で走行している対象者の動画を背面から撮影する(S13)。そして、観測情報として、定量化情報が関連付けられた静止画及び動画が処理装置3に出力される。
 前処理工程(S2)では、区間指定部310によって、前記動画に対して前記指定区間を決定する(S20)。本実施形態では、上述のように、立脚期において最初に足Fが地面に着いた時点を指定区間の開始時点とし、同じ立脚期において足Fが地面から完全に離れた時点を指定区間の終了時点とする。
 そして、分析区間設定部311で前記指定区間に対して前記評価区間を設定し、挙動情報導出部311cで前記評価区間内の情報を基に挙動情報を導出する(S21)。
 より具体的に説明すると、図11に示すように、まず、接地種別判別部311aで対象者の走行時における足Fの着き方を判定する。本実施形態では、接地角度導出部311aaが接地角度情報を導出した後に、角度情報補正部311abが、該接地角度情報と前記評価区間の開始時点の情報とを基にして導出した情報を接地角度情報として設定し直す(S210)。
 そして、分類判別部311acが新たな接地角度情報を基にして対象者の足Fの着き方を判定する(S211)。分類判別部311acが対象者の足Fの着き方を踵接地又はフラット接地であると判定した場合、設定部311bは、前記指定区間の開始時点に対応する時点を評価区間の開始時点として設定し、さらに、前記指定区間全体の所定の時間、例えば65%の時間が経過した時点を評価区間の終了時点として設定する(S212)。
 その一方で、分類判別部311acが対象者の足Fの着き方をつま先接地であると判定した場合、設定部311bは、前記指定区間の開始時点から所定の時間が経過した時点を評価区間の開始時点として設定し、さらに、前記指定区間全体の所定の時間、例えば65%の時間が経過した時点を評価区間の終了時点として設定する(S213)。
 そして、挙動情報導出部311cが、評価区間内の情報を基にして挙動情報である相対角度情報βと、傾倒角度情報βと、捻回角度情報γとを導出する(S214)。
 分析工程(S3)では、図12に示すように、傾動分析部320aによって、相対角度情報βと傾倒角度情報βとを基に傾動情報Pを分析情報Pとして導出する(S30)。
 そして、分析結果判断部321が、比較基準値Sと傾動情報Pとを比較することによって、プロネーションの大きさを判断する(S31)。
 分析結果判断部321が傾動情報Pの値が比較基準値Sよりも大きいと判断した場合、傾動情報Pが分析情報Pとされる(S32)。
 そして、分析結果判断部321が傾動情報Pの値が比較基準値Sよりも小さいと判断した場合、分析結果判断部321によって捻回分析部320bが呼び出され(実行され)、該捻回分析部320bにより捻回情報Pが導出される(S33)。そして、捻回情報Pが分析情報Pとされる(S34)。
 評価工程(S4)では、図13に示すように、挙動評価部330が分析情報Pと小挙動基準値S2a及び大挙動基準値S2bとの比較を行う(S40)。
 分析情報Pの値が小挙動基準値S2a以下である場合は、対象者のプロネーションがアンダープロネーションであると分類(評価)し(S41)、分析情報Pの値が小挙動基準値S2aよりも大きく、大挙動基準値S2b以下である場合は、対象者のプロネーションがニュートラルであると分類し(S42)、分析情報Pが大挙動基準値S2bよりも大きい場合は、対象者のプロネーションがオーバープロネーションであると分類する(S43)。そして、プロネーションの種別が決定され(S44)、プロネーションの分析結果の評価が表示機器4に表示される。
 確認工程(S5)では、表示機器4に表示されたプロネーションの分析結果の評価を確認する。本実施形態では、プロネーションの分析結果の評価として、表示機器4に種別表示部332が表示されるため、右足用指示部333a、左足用指示部333bのそれぞれが指す種別領域332a,332b,332cを確認することによって、プロネーションの種別を確認することができる。
 そして、後工程(S6)では、上述のように、プロネーションの評価結果の説明や、計測器具21(上部マーカー210、下部マーカー210)の取り外しを行う。
 以上のように、本実施形態に係る評価システム1及び該評価システム1によるプロネーションの評価方法によれば、脚下部Lの挙動から下腿Fに対する踵Fの内外への倒れ度合いを表す相対角度情報βに加えて、地面に対する踵Fの内外への倒れ度合いを表す傾倒角度情報βを基にして脚下部Lの挙動の分析を行うことができる。従って、評価システム1及び該評価システム1によるプロネーションの評価方法は、プロネーションを構成する複数の挙動についてのより詳細な分析結果に基づいて評価するため、脚下部Lの挙動の評価精度を高めることができる。
 ここで、本実施形態に係る評価システム1及び該評価システム1によるプロネーションの評価方法は、後述する実験例に従い、プロネーションに関する専門家(例えば、バイオメカニクスや理学療法学等、人間の動作分析及び解剖学的構造の知見を有する者や、ランニングフォーム(走行動作)の指導経験を持つ者、ランニングシューズの設計・機能評価に携わる技術者等の走行状態の下肢の挙動の分析に長けた者)が、脚下部Lの挙動の分析を行う際に、対象者の下腿Fに対する踵Fの内外への倒れ量、及び地面に対する踵Fの内外への倒れ量を優先的に着目して評価を行っていることに基づいている。
 すなわち、対象者の下腿Fに対する踵Fの内外への倒れ量と、地面に対する踵Fの内外への倒れ量とは、それぞれプロネーションの種別(脚下部Lの挙動の傾向)との相関性が高く、例えば、脚下部Lの挙動から下腿Fに対する踵Fの内外への倒れ量や、地面に対する踵Fの内外への倒れ量が大きい場合は、オーバープロネーションである可能性が高く、これらの傾き量が小さいと、アンダープロネーションである可能性が高い。
 そのため、本実施形態に係る評価システム1及び該評価システム1によるプロネーションの評価方法は、専門家が優先的に着目し且つプロネーションとの相関性が高い下腿Fに対する踵Fの内外への倒れ(相対角度情報βが表す角度)と、足Fの地面に対する踵Fの内外の倒れ(傾倒角度情報βが表す角度)とを基にしてプロネーションの分析及び評価を行うことで、専門家によるプロネーションの分析結果や評価結果に近い分析結果及び評価結果(すなわち、正確な分析結果及び評価結果)を得ることができるように構成されている。
 さらに、処理部30は、相対角度情報βと傾倒角度情報βとを基にして導出した情報である傾動情報Pと、相対角度情報βと傾倒角度情報βと捻回角度情報γとを基にして導出した情報である捻回情報Pとを用いて脚下部Lの挙動の分析を行うよう構成することができる。
 この構成は、後述する実験例において、専門家は対象者の脚下部Lの内外への倒れの変化量(下腿Fに対する踵Fの内外への倒れ量や、地面に対する踵Fの内外への倒れ量)が小さい場合、踵Fに対する下腿Fの捻じれ度合いを加味してするという段階的なプロネーションの分析及び評価を行っていることに基づいており、これにより、踵Fに対する下腿Fの捻じれ度合いのみが大きくなるオーバープロネーションを判別することができる。
 本実施形態に係る評価システム1及び該評価システム1によるプロネーションの評価方法では、傾動情報Pが比較基準値Sよりも小さいと判断した場合に、相対角度情報βと傾倒角度情報βと捻回角度情報γとに基づいて、捻回情報Pを導出して分析情報Pとするため、上述のような、脚下部Lの内側への傾きが小さい一方で、下腿Fが内側に大きく捻じれるプロネーションをオーバープロネーションとして分類することができ、これにより、専門家と同様の手順でのプロネーションの分析及び評価を行うことができるため評価結果の正確さを高めることができる。
 本実施形態に係る評価システム1では、相対角度情報βと傾倒角度情報βとをベクトル成分とした直交座標系上で脚下部Lの挙動が分析されるため、該相対角度情報βと該傾倒角度情報βとが実際の脚下部Lの挙動に即して定量的に表した状態で分析に用いられ、これにより、脚下部Lの挙動の分析結果の正確さが高まる。
 また、評価結果には、対象者の左右の脚下部L毎のプロネーションの種別が種別指示部333によって指し示されるため、対象者のプロネーションを詳細に知ることができる。
 さらに、種別領域332a,332b,332cに付されている色が隣り合う別の種別領域332a,332b,332c側になるにつれて徐々に変化するように表示されているため、対象者のプロネーションの傾向を詳細に知ることができる。
 なお、本発明の評価システムは、上記一実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更を行うことは勿論である。
 上記実施形態に係る評価システム1は、プロネーションの分析及びプロネーションの分析結果の評価を一つのシステムで行うように構成されていたが、例えば、プロネーションの分析を行うプロネーションの分析システムと、該分析システムによるプロネーションの分析結果を基にプロネーションの評価を行う評価システムとに分けて構成してもよい。
 上記実施形態において、特に言及しなかったが、撮影装置20及び計測器具21は、静止立位状態又は走行状態又は歩行状態の対象者の脚下部Lの姿勢(向き)を表す情報を取得できれば、特に限定されるものではなく、例えば、光学式三次元動作分析装置であってもよいし、加速度センサや、ジャイロセンサといったセンシングデバイスで構成されていてもよい。なお、センシングデバイスを使用した場合には、センシングデバイスによって得た姿勢情報を無線通信等によって処理装置3に送信するようにしてもよい。
 上記実施形態において、処理装置3と表示機器4とは、一体であったが、この構成に限定されない。例えば、処理装置3と表示機器4とは、別々の構成であってもよく、例えばカメラ付きのPCのように撮影装置20、処理装置3および表示機器4が一体となった構成でもよい。
 上記実施形態では、相対角度情報β、傾倒角度情報β、捻回角度情報γをそれぞれベクトル成分としていたが、この構成に限定されない。例えば、相対角度情報β、傾倒角度情報β、捻回角度情報γは、それぞれ数値の大きさのみからなる成分としてもよい。また、傾動情報P、及び捻回情報Pもそれぞれ数値の大きさのみからなる成分としてもよい。
 上記実施形態において、傾動情報Pは、相対角度情報βと、傾倒角度情報βとをベクトル演算することにより算出されていたが、例えば、傾動情報Pの候補となる情報を複数記憶させたテーブルや、データベースを用意しておき、相対角度情報βと、傾倒角度情報βgとを基にして該テーブルやデータベースに記憶されている傾動情報Pを選択するように構成されていてもよい。
 上記実施形態において、捻回情報Pは、相対角度情報βと、傾倒角度情報βと、捻回角度情報γとをベクトル演算することにより算出されていたが、例えば、捻回情報Pの候補となる情報を複数記憶させたテーブルや、データベースを用意しておき、相対角度情報βと、傾倒角度情報βと、捻回角度情報γとを基にして該テーブルやデータベースに記憶されている捻回情報Pを選択するように構成されていてもよい。
 上記実施形態において、分析部32(分析処理部320)は、相対角度情報β、傾倒角度情報β、捻回角度情報γを基にして分析情報Pを導出していたが、この構成に限定されず、例えば、相対角度情報β、傾倒角度情報βを基にして分析情報Pを導出するように構成されていてもよい。
 上記実施形態において分析処理部320は、傾動情報Pの大きさに応じて傾動情報P又は捻回情報Pを分析情報Pとするように構成されていたが、この構成に限定されない。例えば、分析処理部320は、傾動情報Pと捻回情報Pとを演算して得た情報を分析情報Pとしたり、傾動情報Pを基にして分析情報Pを導出したり、捻回情報Pを基にして分析情報Pを導出したりしてもよい。
 上記実施形態において、評価部33は、プロネーションの分析結果の評価としてプロネーションの種別を出力していたが、この構成に限定されない。例えば、評価部33は、プロネーションの分析結果に適した靴や、テーピング等を該分析結果の評価として出力してもよい。
 上記実施形態において、挙動評価部330は、プロネーションを三つの種別に分類できるように構成されていたが、この構成に限定されない。例えば、挙動評価部330は、プロネーションを二つの種別に分類できるようにしたり、四つ以上の種別に分類できるようにしたりしてもよい。この場合、分類する種別の数に応じて、比較基準値Sおよび挙動基準値Sを変えてもよい。
 上記実施形態において、計測器具21は対象者が裸足になった状態で踵Fなどに取り付けたが、対象者が靴を履いた状態でその靴上の踵Fなどに取り付けるようにしてもよい。この場合、靴の種類に応じて各基準値S、S2a、S2bを変えてもよい。
 上記実施形態において、補助器具22としてトレッドミル221を使用したが、トレッドミル221は必ずしも使用する必要はなく、トレッドミル221を使用せずに対象者が実走行または実歩行をし、それを観測装置2で観察するようにしてもよい。
 〔実験例1〕
 実験例1では、専門家がプロネーションの分析及び評価を行う際に、優先的に着目する部位を確認する実験、及び立脚期の中のどのタイミングで評価を行っているかを確認する実験を行った。
 実験例1では、一般成人男女10名を被験者とした。被験者には裸足で走行速度を一定(8km/h)としてトレッドミルランニングを実施させ、該被験者の下肢を背面(トレッドミルの後方)からビデオカメラ(撮影装置)で撮影した。
 そして、各被験者を撮影した動画のそれぞれから一回分の立脚期に対応する区間を切り取った動画を用意し、該動画を15名の専門家に提示した。
 専門家には、各被験者の動画(一回分の立脚期の動画)を観察させたうえで、各被験者のプロネーションの種別を「オーバープロネーション」、「プロネーション」、「ニュートラル」、「アンダープロネーション」、「分らない」の5段階で評価させた。なお、「オーバープロネーション」、「ニュートラル」、「アンダープロネーション」が示す脚下部Lの挙動は上記実施形態で説明した通りであり、ここでの「プロネーション」とは、脚下部Lの挙動の程度が「オーバープロネーション」と「ニュートラル」の中間程度にある種別としての表記であり、挙動そのものの定義である「プロネーション」とは区別する。なお「分らない」とは、被験者のプロネーションの種別を判別できなかったことを示している。
 また、専門家には、各被験者のプロネーションの種別の評価と併せて、その評価に至った理由について回答させた。評価の理由として回答させた事項は、判断基準とした(プロネーションの評価を行う際に最も重要視した)部位、及び該部位の動きの内容である。
 なお、専門家には、踵F、内側中足部、下腿F、その他から判断基準とした部位を選択させるとともに、選択した部位について、最大角度、角度変化、変化の速度、横方向への移動量、捻じれ、向き、その他から判断基準とした部位の動きの特徴を選択させた。
 上記回答事項を集計した結果、専門家は、まず、踵Fの挙動(すなわち、相対角度情報β、傾倒角度情報βに対応する情報)を基にしてプロネーションの評価を行っており、さらに、踵Fの挙動が小さい場合は、下腿の内旋(すなわち、捻回角度情報γに対応する情報)も含めてプロネーションの評価を行っていることが分かった。
 従って、上記実施形態に係る評価システム1及び該評価システム1による評価方法のように、まず、相対角度情報βと傾倒角度情報βとを基にして傾動情報Pを導出し、該傾動情報Pの値が小さい場合に相対角度情報βと傾倒角度情報βと捻回角度情報γとを基にして捻回情報Pを導出すると、踵Fの挙動が大きい場合は、相対角度情報βと傾倒角度情報βとによってプロネーションが評価され、踵Fの挙動が小さい場合に相対角度情報βと傾倒角度情報βとに加えて捻回角度情報γを含めてプロネーションが評価されるため、専門家によるプロネーションの評価プロセスに合致したプロセスによってプロネーションの評価を行うことができる。
 実験例1では同時に、専門家が立脚期の中のどのタイミングで評価を行っているかを確認した。具体的には専門家に見せた一回分の立脚期に対応する区間を切り取った動画は所定のコマ数からなり、そのコマ数を順に動画に表示しておき、どのコマ数のときに評価を行ったかを回答させた。
 この回答を集計した結果、いずれの専門家も立脚期の開始時点から立脚期全体の60%付近までの間に評価を行っており、立脚期全体の65%を過ぎてからの区間について評価を行っている専門家はいなかった。
 このことから、立脚期の開始時点から立脚期全体の55%~65%の時間が経過した時点までの間の脚下部Lの挙動を評価すればよく、それ以降の区間を評価から外すことによって専門家による評価を正確に再現することができる。また、このように評価区間を短くすることによって、立脚期の全区間を評価区間とするよりも情報処理量を少なくして分析に要する時間を少なくすることができる利点もある。
 〔実験例2〕
 実験例2では、被験者のプロネーションスコア(上記実施形態における分析情報Pの値)と、専門家の評価との相関性を調べる実験を行った。
 実験例2では、一般成人男女30名を被験者とした。被験者には実験例1と同じ条件でトレッドミルランニングを実施させ、立脚期における相対角度情報β、傾倒角度情報β、捻回角度情報γ、を基にして、上記実施形態の評価方法における分析工程(S3)、評価工程(S4)の工程に沿ってプロネーションの評価を行った。
 プロネーションを評価した結果、30名のうち25名は踵Fの挙動が大きい(P>S)と判定され、他5名は踵Fの挙動が小さい(P<S)と判定された。すなわち、評価システム1により、30名のうち25名は傾動情報Pによってプロネーションが評価され、他5名は捻回情報Pによってプロネーションが評価された。
 また、評価に用いたものと同じ動画を前記専門家に観察させた上で、実験例1と同様に各被験者のプロネーション種別を評価させた。その結果、上記実施形態に係る方法によって評価したプロネーションスコアを縦軸に、上記専門家によるプロネーション種別の評価を横軸にとった図16のグラフに示すように、両者は高い相関性を示している。すなわち、プロネーションスコアが大きい被験者は、専門家の評価ではオーバープロネーションに分類され、プロネーションスコアが小さい被験者は、アンダープロネーションに分類されており、プロネーションスコアの大小を用いることで、専門家の評価を精度良く再現可能であることが分かる。
 従って、専門家がプロネーション評価に際して重視する部位や区間、基準に基づいた評価方法、すなわち上記実施形態に係る評価システム1及び該評価システム1による評価方法のように、傾動情報Pと捻回情報Pとを段階的に導出するようにすることで、プロネーションの挙動を適切に定量化し、専門家による評価を精度良くかつ自動で再現できる。
 1…評価システム、2…観測装置、3…処理装置、4…表示機器、20…撮影装置、21…計測器具、22…補助器具、30…処理部、31…前処理部、32…分析部、33…評価部、210…マーカー(上部マーカー、下部マーカー)、220…マット、220a…足置領域(左側足置領域、右側足置領域)、220b…基準線、221…トレッドミル、310…区間指定部、311…分析区間設定部、311a…接地種別判別部、311aa…接地角度導出部、311ab…角度情報補正部、311ac…分類判別部、311b…設定部、311c…挙動情報導出部、320…分析処理部、320a…傾動分析部、320b…捻回分析部、321…分析結果判断部、330…挙動評価部、331…評価出力部、332…種別表示部、332a,332b,332c…種別領域、333…種別指示部、333a…右足用指示部、333b…左足用指示部、Ah…走行方向、Av…鉛直方向、BL…基準線、F…右足、F…左足、F…足、F…両足、F…踵、F…足首、F…先、F…下腿、HC…接地角度、HCs…オフセット情報、L…脚下部、P…分析情報、P…矢状面、P…傾動情報、P…捻回情報、S…比較基準値、S…挙動基準値、S2a…小挙動基準値、S2b…大挙動基準値、VLf1…仮想線、VLf2…仮想線、VLh1…仮想線、VLh2…仮想線、β…相対角度情報、βg…傾倒角度情報、γ…捻回角度情報、

Claims (18)

  1.  立脚期における下腿及び足を含む脚下部の挙動を分析する分析装置を備え、
     該分析装置は、前記脚下部の挙動を定量的に表した分析情報を導出する処理部を有し、
     該処理部は、前記脚下部の挙動に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報とを導出し、該相対角度情報と該傾倒角度情報とを基にして前記分析情報を導出するように構成される脚下部の挙動の分析システム。
  2.  前記処理部は、
     前記相対角度情報と前記傾倒角度情報とを成分とする直交座標系上で前記分析情報を導出するように構成される請求項1に記載の脚下部の挙動の分析システム。
  3.  前記処理部は、
     前記相対角度情報と前記傾倒角度情報とをベクトル成分とする直交座標系上で前記分析情報を導出するように構成される請求項2に記載の脚下部の挙動の分析システム。
  4.  前記処理部は、
     前記脚下部の挙動から前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報を導出し、
     前記相対角度情報と前記傾倒角度情報とを基にして導出した情報である傾動情報と、前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とを基にして導出した情報である捻回情報とを導出し、
     前記傾動情報と前記捻回情報とに基づいて前記分析情報を導出するように構成される請求項1に記載の脚下部の挙動の分析システム。
  5.  前記処理部は、
     前記相対角度情報と前記傾倒角度情報とを成分とする直交座標系上で前記傾動情報を導出し、
     前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とを成分とする直交座標系上で前記捻回情報を導出するように構成される請求項4に記載の脚下部の挙動の分析システム。
  6.  前記処理部は、
     前記相対角度情報と前記傾倒角度情報とをベクトル成分とする直交座標系上で前記傾動情報を導出し、
     前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とをベクトル成分とする直交座標系上で前記捻回情報を導出するように構成される請求項5に記載の脚下部の挙動の分析システム。
  7.  前記処理部は、
     前記脚下部の挙動を分析する対象となる対象者の走行中における地面への足の着き方の種別を判定し、
     該足の着き方の種別の判定結果に応じて立脚期に設定した区間内の情報を基づいて、前記相対角度情報と前記傾倒角度情報とを導出するように構成される請求項1に記載の脚下部の挙動の分析システム。
  8.  前記処理部は、
     前記対象者の走行中における足の着き方が、立脚期において最初に前記踵が前記地面に着く踵接地、又は立脚期において前記足の裏側全体が略同時に前記地面に着くフラット接地の何れかであると判定した場合に、前記対象者の立脚期の開始時点を前記区間の開始時点とし、該立脚期全体のうちの55~65%の時間が経過した時点を前記区間の終了時点として設定するように構成される請求項7に記載の脚下部の挙動の分析システム。
  9.  前記処理部は、
     前記対象者の走行中における足の着き方が、
     立脚期において最初につま先が地面に着くつま先接地であると判定した場合に、
     前記立脚期全体のうちの3~10%の時間が経過した時点を前記区間の開始時点とし、該立脚期全体のうちの55~65%の時間が経過した時点を前記区間の終了時点として設定するように構成される請求項7又は請求項8に記載の脚下部の挙動の分析システム。
  10.  前記処理部は、
     前記対象者の静止立位時における地面に対する矢状面内の踵の角度を基準として前記足の着き方の種別を判定するように構成される請求項8又は請求項9に記載の脚下部の挙動の分析システム。
  11.  前記対象者が静止立位姿勢をとった際の脚下部の向きを所定の方向に揃えるためのマットを備え、
     該マットには、互いに平行な直線である二つの基準線であって、前記対象者が静止立位時に足の向きを揃える基準とする二つの基準線が描かれ、
     前記処理部は、
     前記基準線に足の向きを揃えて静止立位姿勢をとった対象者の地面に対する矢状面内の踵の角度を基準として前記足の着き方の種別を判定するように構成される請求項10に記載の脚下部の挙動の分析システム。
  12.  立脚期における下腿及び足を含む脚下部の挙動を分析する分析工程を備え、
     該分析工程では、
     前記脚下部の挙動に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報とを導出し、
     該相対角度情報と該傾倒角度情報とを基にして前記脚下部の挙動を定量的に表した情報である分析情報を導出する脚下部の挙動の分析方法。
  13.  前記分析工程では、
     前記相対角度情報と前記傾倒角度情報とを成分とする直交座標系上で前記分析情報を導出する請求項12に記載の脚下部の挙動の分析方法。
  14.  前記分析工程では、
     前記相対角度情報と前記傾倒角度情報とをベクトル成分とする直交座標系上で前記分析情報を導出する請求項13に記載の脚下部の挙動の分析方法。
  15.  前記分析工程では、
     前記脚下部の挙動から前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報を導出し、
     前記相対角度情報と前記傾倒角度情報とを基にして導出した情報である傾動情報と、前記相対角度情報と前記傾倒角度情報と前記捻回角度情報とを基にして導出した情報である捻回情報とを導出し、
     前記傾動情報と前記捻回情報とに基づいて前記分析情報を導出する請求項12に記載の脚下部の挙動の分析方法。
  16.  立脚期における下腿及び足を含む脚下部を観測し、前記脚下部の姿勢に関する情報である観測情報を取得する観測装置と、前記観測情報に基づいて前記脚下部の挙動を分析した分析情報を取得し、前記分析情報に基づいて前記脚下部の挙動を評価する処理を実行する処理装置と、を備え、
     前記処理装置は、
    前記観測情報に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報と、前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報と、を含む挙動情報を導出する前処理部と、
     前記相対角度情報及び前記傾倒角度情報に基づいて導出された定量的な情報である傾動情報又は前記相対角度情報、前記傾倒角度情報及び前記捻回角度情報に基づいて導出された定量的な情報である捻回情報のいずれかの情報からなる前記分析情報を導出する分析部と、
     前記分析情報に基づいて前記脚下部の挙動を評価する評価部と、を有している、
    脚下部の挙動の評価システム。
  17.  前記処理装置には、前記傾動情報と比較するための基準値である評価基準値が予め記憶されており、
     前記分析部は、前記傾動情報と前記評価基準値との比較結果に基づき、前記分析情報として前記傾動情報と前記捻回情報のいずれの情報を用いるかを判断する処理を実行する請求項16に記載の脚下部の挙動の評価システム。
  18.  立脚期における下腿及び足を含む脚下部を観測し、前記脚下部の姿勢に関する情報である観測情報を取得する準備工程と、
     前記観測情報に基づいて、前記下腿に対する踵の内外への倒れ度合いを表す相対角度情報と、前記足の地面に対する前記踵の内外への倒れ度合いを表す傾倒角度情報と、前記踵に対する前記下腿の捻じれ度合いを表す捻回角度情報と、を含む挙動情報を導出する前処理工程と、
     前記相対角度情報及び前記傾倒角度情報に基づいて導出された定量的な情報である傾動情報又は前記相対角度情報、前記傾倒角度情報及び前記捻回角度情報に基づいて導出された定量的な情報である捻回情報のいずれかの情報からなる分析情報を導出する分析工程と、
     前記分析情報に基づいて前記脚下部の挙動を評価する評価工程と、を備えた、
    脚下部の挙動の評価方法。
PCT/JP2016/073945 2016-08-16 2016-08-16 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法 Ceased WO2018033965A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/073945 WO2018033965A1 (ja) 2016-08-16 2016-08-16 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法
JP2018534226A JP6582136B2 (ja) 2016-08-16 2016-08-16 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073945 WO2018033965A1 (ja) 2016-08-16 2016-08-16 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法

Publications (1)

Publication Number Publication Date
WO2018033965A1 true WO2018033965A1 (ja) 2018-02-22

Family

ID=61197281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073945 Ceased WO2018033965A1 (ja) 2016-08-16 2016-08-16 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法

Country Status (2)

Country Link
JP (1) JP6582136B2 (ja)
WO (1) WO2018033965A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139902A (ja) * 2017-02-28 2018-09-13 株式会社ニコン 検出システム、検出方法、検出プログラム、処理装置、及び運動用マット
JP2023174502A (ja) * 2022-05-26 2023-12-07 ウズテック カンパニー,リミテッド 人工知能アルゴリズムを用いたカスタムインソールの注文方法
JPWO2024069987A1 (ja) * 2022-09-30 2024-04-04
US12150756B2 (en) 2019-10-30 2024-11-26 Nec Corporation Foot angle calculation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167420A1 (en) * 2003-02-22 2004-08-26 Song Chul Gyu Apparatus and method for analyzing motions using bio-impedance
JP2004305374A (ja) * 2003-04-04 2004-11-04 Asics Corp 足の傾角測定方法、靴または靴用中敷選択方法、靴または靴用中敷製造方法、および、足の傾角測定装置
US6836744B1 (en) * 2000-08-18 2004-12-28 Fareid A. Asphahani Portable system for analyzing human gait
JP4856427B2 (ja) * 2006-01-13 2012-01-18 株式会社ジャパーナ 運動靴又はランニングシューズ選定システム及び提示システム
JP2012213422A (ja) * 2011-03-31 2012-11-08 Asics Corp 足の動的特性の評価システム及び評価方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836744B1 (en) * 2000-08-18 2004-12-28 Fareid A. Asphahani Portable system for analyzing human gait
US20040167420A1 (en) * 2003-02-22 2004-08-26 Song Chul Gyu Apparatus and method for analyzing motions using bio-impedance
JP2004305374A (ja) * 2003-04-04 2004-11-04 Asics Corp 足の傾角測定方法、靴または靴用中敷選択方法、靴または靴用中敷製造方法、および、足の傾角測定装置
JP4856427B2 (ja) * 2006-01-13 2012-01-18 株式会社ジャパーナ 運動靴又はランニングシューズ選定システム及び提示システム
JP2012213422A (ja) * 2011-03-31 2012-11-08 Asics Corp 足の動的特性の評価システム及び評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Dartfish gait analysis protocol", DARTFISH.BLOG, 26 March 2016 (2016-03-26), XP055466670, Retrieved from the Internet <URL:https://web.archive.org/web/20160326133852/http://blog.dartfish.com/en/gaitanalysisprotocol> *
SEIGO NAKAYA: "Running Shoes Sekkei eno Vicon Katsuyo Jirei", HOMEPAGE, August 2008 (2008-08-01), XP055466671, Retrieved from the Internet <URL:http://www.irc-web.co.jp/vicon_web/news_bn/vol9.pdf> [retrieved on 20161024] *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139902A (ja) * 2017-02-28 2018-09-13 株式会社ニコン 検出システム、検出方法、検出プログラム、処理装置、及び運動用マット
US12150756B2 (en) 2019-10-30 2024-11-26 Nec Corporation Foot angle calculation
JP2023174502A (ja) * 2022-05-26 2023-12-07 ウズテック カンパニー,リミテッド 人工知能アルゴリズムを用いたカスタムインソールの注文方法
JPWO2024069987A1 (ja) * 2022-09-30 2024-04-04
WO2024069987A1 (ja) * 2022-09-30 2024-04-04 株式会社アシックス 走法分析装置、走法分析方法および走法分析プログラム
JP7567097B2 (ja) 2022-09-30 2024-10-15 株式会社アシックス 走法分析装置、走法分析方法および走法分析プログラム

Also Published As

Publication number Publication date
JPWO2018033965A1 (ja) 2019-06-13
JP6582136B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
US11182599B2 (en) Motion state evaluation system, motion state evaluation device, motion state evaluation server, motion state evaluation method, and motion state evaluation program
JP6582136B2 (ja) 脚下部の挙動の分析システム及び分析方法、脚下部の挙動の評価システム並びに評価方法
Mentiplay et al. Reliability and validity of the Microsoft Kinect for evaluating static foot posture
Hanley et al. Differences between motion capture and video analysis systems in calculating knee angles in elite-standard race walking
Eltoukhy et al. Validation of the Microsoft Kinect® camera system for measurement of lower extremity jump landing and squatting kinematics
US10709374B2 (en) Systems and methods for assessment of a musculoskeletal profile of a target individual
WO2016114963A1 (en) Systems and methods for analyzing lower body movement to recommend footwear
JP2017086184A (ja) 筋活動可視化システムと筋活動可視化方法
CN108289637B (zh) 生成矫正产品推荐
JP2017202236A (ja) 歩行分析方法及び歩行分析装置
Hughes et al. The value of tibial mounted inertial measurement units to quantify running kinetics in elite football (soccer) players. A reliability and agreement study using a research orientated and a clinically orientated system
CN112568898A (zh) 一种基于视觉图像对人体运动动作自动进行伤病风险评估及动作矫正的方法、装置及设备
JP2018121930A (ja) 歩容の評価方法
JP2017047105A (ja) エクササイズメニュー提供システムおよびエクササイズメニュー提供方法
JP6738249B2 (ja) 歩行分析方法及び歩行分析装置
JP6738250B2 (ja) 歩行分析方法及び歩行分析装置
JP2021065393A (ja) 生体計測システム及び方法
JP2017148287A (ja) つまずきリスクの評価方法
JP7198393B1 (ja) 乳幼児の発達段階算出システム
KR20230063016A (ko) 이행성 자세평가 방법을 이용한 근골격계 자동 진단 시스템
Ryu Effects of XR Technology on Motor Learning in Fencing
KR102586956B1 (ko) Bbs평가의 평가자-대상자 간 인터랙션 정량화 방법
Giblin et al. Bone length calibration can significantly improve the measurement accuracy of knee flexion angle when using a marker-less system to capture the motion of countermovement jump
Bailon et al. First approach to automatic measurement of frontal plane projection angle during single leg landing based on depth video
WO2018110624A1 (ja) 転倒解析システム及び解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913494

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载