+

WO2018016067A1 - Electric motor, air conditioner, rotor, and method of manufacturing electric motor - Google Patents

Electric motor, air conditioner, rotor, and method of manufacturing electric motor Download PDF

Info

Publication number
WO2018016067A1
WO2018016067A1 PCT/JP2016/071514 JP2016071514W WO2018016067A1 WO 2018016067 A1 WO2018016067 A1 WO 2018016067A1 JP 2016071514 W JP2016071514 W JP 2016071514W WO 2018016067 A1 WO2018016067 A1 WO 2018016067A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
electric motor
stator
holding
Prior art date
Application number
PCT/JP2016/071514
Other languages
French (fr)
Japanese (ja)
Inventor
石井 博幸
及川 智明
山本 峰雄
洋樹 麻生
隼一郎 尾屋
優人 浦邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018528179A priority Critical patent/JPWO2018016067A1/en
Priority to PCT/JP2016/071514 priority patent/WO2018016067A1/en
Publication of WO2018016067A1 publication Critical patent/WO2018016067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to an electric motor and an air conditioner including the electric motor.
  • Patent Document 1 discloses a rotor for a DC brushless motor formed by a primary magnet molded body formed around a shaft and a secondary magnet molded body formed around the primary magnet molded body. It is disclosed.
  • a bonded magnet containing ferrite magnetic powder or soft magnetic iron powder is used as a primary magnet molded body, and Sm—Fe—N (samarium-iron-nitrogen) magnetic powder is contained.
  • Rare earth bonded magnets are used as secondary magnet compacts.
  • rare earth magnets are easily demagnetized in a high temperature environment, when a rare earth magnet is used for a rotor of an electric motor, it is desirable to increase a gap (air gap) between the stator and the rotor of the electric motor. On the other hand, when the gap is increased, there is a problem that the efficiency of the electric motor decreases.
  • an object of the present invention is to suppress a decrease in the efficiency of the electric motor.
  • the electric motor of the present invention includes a stator and a rotor provided inside the stator and having a first magnet and at least one second magnet, and the first magnet includes the at least one magnet. It has at least one holding part for holding the second magnet, the at least one second magnet is held by the at least one holding part, and the magnetic force of the at least one second magnet is: It is larger than the magnetic force of the first magnet.
  • FIG. 1 It is a longitudinal cross-sectional view which shows schematically the internal structure of the electric motor which concerns on Embodiment 1 of this invention. It is a perspective view which shows roughly the structure of a stator assembly part. It is a top view which shows roughly the structure of a stator assembly part when a stator assembly part is seen from the load side. It is A4-A4 sectional drawing which shows the internal structure of a rotor roughly. It is a side view which shows roughly the structure of the load side of a rotor. It is a side view which shows roughly the structure of the anti-load side of a rotor.
  • (A) is a side view schematically showing the structure on the load side of the first magnet
  • (b) is an A7-A7 sectional view schematically showing the internal structure of the first magnet
  • c) is a side view schematically showing the structure on the non-load side of the first magnet. It is a perspective view which shows the structure of a 1st magnet roughly.
  • (A) is a side view schematically showing the structure on the load side of the rotor magnet
  • (b) is a sectional view taken along line A9-A9 schematically showing the internal structure of the rotor magnet
  • (c) These are side views which show roughly the structure of the anti-load side of a rotor magnet.
  • It is a flowchart which shows an example of the manufacturing method of an electric motor. It is a figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2 of this invention.
  • Embodiment 1 FIG. 1
  • FIG. 1 is a longitudinal sectional view schematically showing an internal structure of electric motor 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view schematically showing the structure of the stator assembly portion 10a.
  • FIG. 3 is a plan view schematically showing the structure of the stator assembly 10a when the stator assembly 10a is viewed from the load side.
  • the electric motor 100 includes a stator 10, a rotor 20, bearings 30a and 30b, and a bracket 40.
  • a hollow portion 50 that is a cavity is formed on the inner side of the stator 10 in the radial direction.
  • the electric motor 100 is, for example, a brushless DC motor or a stepping motor.
  • the bracket 40 is attached to one end of the stator 10 in the axial direction (specifically, the load side of the stator 10).
  • the bracket 40 is made of metal, for example.
  • the axis A1 is parallel to the shaft 23 and is the rotation center of the rotor 20. Furthermore, the axis A1 is also the rotation center of a rotor magnet 20a and a first magnet 21 described later.
  • a direction parallel to the axis A1 is referred to as an “axial direction”.
  • a load side direction parallel to the axial direction is indicated by an arrow D1
  • an anti-load side direction that is opposite to the load side direction is indicated by an arrow D2.
  • the circumferential direction of the stator 10, the rotor 20, the rotor magnet 20a, and the first magnet 21 is indicated by an arrow D3.
  • the stator assembly 10a is assembled by attaching the substrate 14 to the stator 10.
  • the stator assembly portion 10a is covered with a mold resin portion 10b.
  • the mold stator 10c is formed by integrally molding the stator assembly portion 10a and the mold resin portion 10b.
  • the material of the mold resin portion 10b is, for example, a mold resin such as a thermosetting resin that is an unsaturated polyester.
  • the stator assembly portion 10 a includes a substrate pressing component 15 and a plurality of terminals 16 in addition to the stator 10 and the substrate 14.
  • the stator 10 has a stator core 11 (FIG. 1) formed in an annular shape, an insulating portion 12, and a coil 13.
  • the stator core 11 is formed by a plurality of electromagnetic steel plates formed in an annular shape. Specifically, the stator core 11 is formed by laminating a plurality of electromagnetic steel plates. Therefore, the stator 10 is formed in an annular shape.
  • the insulating part 12 is attached to the stator core 11.
  • the insulating part 12 has a plurality of protrusions 12a.
  • the insulating part 12 is a molded product formed of, for example, a thermoplastic resin. However, you may shape
  • the thermoplastic resin is, for example, a polybutylene terephthalate resin.
  • the coil 13 is wound around the insulating portion 12.
  • the substrate 14 has a plurality of holes 14a and a plurality of terminal insertion holes 14b. As shown in FIG. 3, in the present embodiment, a plurality of magnetic sensors 17 are attached to the substrate 14.
  • Each protrusion 12 a of the insulating part 12 is inserted into each hole 14 a formed in the substrate 14.
  • the tips of the projections 12a are deformed, and the substrate 14 is attached to the insulating portion 12.
  • the substrate 14 is attached to the opposite side of the stator 10 coaxially with the stator 10.
  • the stator assembly 10a is preferably molded by low pressure molding. Therefore, it is desirable to use a thermosetting resin such as an unsaturated polyester resin for molding. By low-pressure molding, the stator assembly 10a can be molded while maintaining the shape of the substrate 14 even when the strength of the substrate 14 is weak.
  • the plurality of holes 14 a and the plurality of terminal insertion holes 14 b are formed in the outer edge portion of the substrate 14.
  • the hole 14a is fitted with the protrusion 12a of the insulating portion 12, and the substrate 14 is positioned.
  • the board holding component 15 is attached to the opposite side of the stator 10 with the board 14 interposed therebetween. That is, the board pressing component 15 presses the board 14 against the stator 10 and fixes it.
  • the constituent elements of the stator assembly part 10a are inserted into the mold.
  • the substrate pressing component 15 comes into contact with the mold.
  • deformation of the substrate 14 due to molding pressure is suppressed. Therefore, the peeling of the solder joint on the substrate 14 due to the deformation of the substrate 14 can be prevented, and the quality of the electric motor 100 is improved.
  • Each terminal 16 is attached to the insulating portion 12 and inserted into each terminal insertion hole 14b. Each terminal 16 is electrically connected to the substrate 14 and the coil 13 by solder.
  • the magnetic sensor 17 is disposed on the substrate 14 so as to face the sensor magnet 25 of the rotor 20.
  • the magnetic sensor 17 has a sensor circuit that detects the rotational position of the rotor 20.
  • the magnetic sensor 17 detects the switching of the magnetism generated from the sensor magnet 25, that is, the direction of the magnetic field (the direction of the magnetic lines generated from the N pole or the magnetic lines generated from the S pole), and the rotation of the rotor magnet 20a.
  • the position (position in the circumferential direction) is specified and a detection signal is output. That is, the magnetic sensor 17 specifies the rotational position of the rotor 20 and outputs a detection signal.
  • the magnetic sensor 17 may detect the magnetic pole of the sensor magnet 25.
  • the detection signal is input to the outside of the electric motor 100 or a drive circuit provided on the substrate 14.
  • the electric motor 100 is a brushless DC motor
  • the drive circuit performs energization control of the coil 13 according to the relative position of the rotor magnet 20a with respect to the stator 10 using the detection signal.
  • the motor 100 can be driven with high efficiency and low noise.
  • FIG. 4 is an A4-A4 cross-sectional view schematically showing the internal structure of the rotor 20.
  • FIG. 5 is a side view schematically showing the structure on the load side of the rotor 20.
  • FIG. 6 is a side view schematically showing the structure of the rotor 20 on the side opposite to the load.
  • the rotor 20 includes a first magnet 21, at least one second magnet 22, a shaft 23, a rotor resin portion 24, and a sensor magnet 25.
  • the rotor magnet 20 a is assembled by the first magnet 21 and at least one second magnet 22.
  • the rotor 20 is rotatably provided inside the stator 10 in the radial direction via a gap (air gap).
  • the rotor 20 has polar anisotropy.
  • a shaft hole 20b is formed in the rotor 20 (specifically, the first magnet 21).
  • a shaft 23 is inserted into the shaft hole 20b, and the first magnet 21 (that is, the rotor magnet 20a) and the shaft 23 are integrated with each other.
  • the shaft 23 is inserted into a pair of bearings 30a and 30b (FIG. 1). A knurled 23 a is formed on the shaft 23.
  • the rotor 20 is inserted into the hollow portion 50 inside the mold stator 10c with the shaft 23 inserted into the bearings 30a and 30b.
  • the bearing 30a is supported by the mold resin portion 10b so as to be arranged on the opposite side of the rotor 20.
  • the bearing 30 b is supported by the bracket 40 so as to be disposed on the load side of the rotor 20.
  • the rotor resin part 24 has an inner cylinder part 24a, a plurality of ribs 24b, and an outer cylinder part 24c.
  • the rotor resin portion 24 is formed by molding a thermoplastic resin such as polybutylene terephthalate.
  • the rotor resin portion 24 integrally forms the rotor magnet 20a, the shaft 23, and the sensor magnet 25.
  • the shaft 23 is inserted through the inner cylinder portion 24a.
  • eight ribs 24 b are formed at equal intervals in the circumferential direction of the rotor 20.
  • Each rib 24b is formed to extend radially about the axis of the shaft 23.
  • Each rib 24b connects the inner cylinder part 24a and the outer cylinder part 24c.
  • the number of ribs 24b is not limited to eight.
  • a hollow portion 24d which is a cavity is formed between the adjacent ribs 24b.
  • the knurling 23 a and the inner cylinder portion 24 a of the shaft 23 are in contact with each other, and the knurling 23 a functions as a slip stopper for the shaft 23.
  • the outer cylinder part 24c is formed outside the inner cylinder part 24a and covers both end faces in the axial direction of the rotor magnet 20a. Therefore, the rotor magnet 20a is prevented from coming off from the rotor resin portion 24. That is, the rotor magnet 20a is prevented from moving in the axial direction with respect to the shaft 23 (shift in the axial direction). Further, the outer cylinder portion 24c prevents the second magnet 22 from being detached from the rotor magnet 20a (specifically, a magnet holding portion 21a described later formed on the first magnet 21).
  • the outer cylinder portion 24c (resin as the material of the rotor resin portion 24) is filled inside the recess 21b of the first magnet 21 and around the pedestal 21d.
  • the child magnet 20a is prevented from rotating with respect to the shaft 23 (displacement in the circumferential direction).
  • FIG. 7A is a side view schematically showing the structure on the load side of the first magnet 21.
  • FIG. 7B is an A7-A7 sectional view schematically showing the internal structure of the first magnet 21.
  • FIG. 7C is a side view schematically showing the structure on the non-load side of the first magnet 21.
  • FIG. 8 is a perspective view schematically showing the structure of the first magnet 21.
  • the first magnet 21 includes at least one magnet holding portion 21a (also referred to as “holding portion”) that holds the second magnet 22, a plurality of recesses 21b, a plurality of notches 21c, and a pedestal 21d.
  • the first magnet 21 is formed by molding a thermoplastic resin containing a ferrite magnet (for example, ferrite powder).
  • the thermoplastic resin is, for example, polyamide.
  • the first magnet 21 may be formed using a resin that is not thermoplastic, or the first magnet 21 may be formed as a sintered magnet.
  • the first magnet 21 is molded by a mold so that the magnetic flux distribution on the outer periphery of the first magnet 21 (flux distribution in the circumferential direction) is sinusoidal.
  • the first magnet 21 is shaped and oriented with the easy axis so as to have polar anisotropy.
  • the first magnet 21 is an annular magnet formed in an annular shape.
  • the first magnet 21 is formed coaxially with the shaft 23. Therefore, the rotation axis (rotation center) of the first magnet 21 is the same as the rotation axis (rotation center) of the rotor 20.
  • the first magnet 21 has a first end surface 21e and a second end surface 21f that face each other in the axial direction of the rotor magnet 20a.
  • the first end surface 21 e is an end surface formed on the load side of the first magnet 21, and the second end surface 21 f is an end surface formed on the anti-load side of the first magnet 21.
  • the first magnet holding part 21a (first holding part) of the at least one magnet holding part 21a holds one second magnet 22, and the second of the at least one magnet holding part 21a.
  • the magnet holding part 21a (second holding part) holds another second magnet 22 different from the one second magnet.
  • a plurality of magnet holding portions 21 a are formed on the first magnet 21, and each magnet holding portion 21 a holds the second magnet 22.
  • the first magnet 21 has an outer edge 21h formed at an outer end portion in the radial direction of the rotor 20 (the radial direction of the first magnet 21), and each magnet holding portion 21a is disposed inside the outer edge 21h.
  • the first magnet 21 is formed radially about the rotation center.
  • each magnet holding portion 21a is a through-hole penetrating between the first end surface 21e and the second end surface 21f.
  • at least one of the plurality of magnet holding portions 21a may be a through hole, and the other magnet holding portion 21a may be a hole that does not pass through.
  • Each of the plurality of magnet holding portions 21a is arranged coaxially with each other.
  • Each of the plurality of magnet holding portions 21 a is separated from each other in the circumferential direction of the rotor 20.
  • the first magnet holding part 21 a and the second magnet holding part 21 a adjacent to each other among the plurality of magnet holding parts 21 a are separated from each other in the circumferential direction of the rotor 20.
  • a connecting portion 21k is formed between the magnet holding portions 21a adjacent to each other.
  • the center position C1 of the magnet holding portion 21a in the circumferential direction is a magnetic pole center position in the circumferential direction (the center position of one magnetic pole among a plurality of magnetic poles).
  • the magnetic pole center position in the circumferential direction is a position through which the magnetic pole center line L1 that is the center of the magnetic pole passes.
  • the position between the magnetic poles adjacent to each other (in this embodiment, the position between the N pole and the S pole) is “between the magnetic poles”, and a portion between the magnet holding portions 21a adjacent to each other (for example, a connection)
  • the part 21k) is formed between the magnetic poles.
  • the number of magnet holding portions 21 a is equal to the number of poles of the rotor 20. In the present embodiment, since the rotor magnet 20a has eight poles, the number of magnet holding portions 21a is eight.
  • the shape of the at least one magnet holding portion 21a (that is, the cross section orthogonal to the axis A1) is an arc shape.
  • the edge of the at least one magnet holding portion 21a (specifically, the edge extending in the circumferential direction) has an arcuate portion 21m.
  • the shape of the magnet holding portion 21a is not limited to the arc shape, and may be other shapes such as a rectangle. In the present embodiment, each of the plurality of magnet holding portions 21a has the same shape.
  • the first end surface 21e of the first magnet 21 is formed with eight concave portions 21b at equal intervals in the circumferential direction.
  • Each recess 21 b is provided with a gate port (not shown) into which a thermoplastic resin that is a material of the first magnet 21 is injected when the first magnet 21 is molded.
  • the depth of each recess 21b is desirably set so that the gate processing trace does not protrude from the first end face 21e.
  • the recess 21b is formed between the magnetic poles in the circumferential direction of the first magnet 21.
  • the recess 21b is formed so as to be adjacent to the connecting portion 21k.
  • the recess 21b is formed between the notches 21c adjacent to each other.
  • the recess 21b may be formed at a position where the magnetic pole center line L1 passes in the circumferential direction.
  • the eight notches 21c are formed on the inner peripheral surface of the first magnet 21 at equal intervals in the circumferential direction.
  • the convex portions of the mold are fitted into the notches 21c, so that positioning in the circumferential direction can be performed, and the first magnet 21 and the second magnet 22 are coaxial. Accuracy can be increased.
  • the notch 21c is formed to be a tapered notch that expands in the axial direction (specifically, the load side direction D1).
  • the notch 21c is formed at the magnetic pole center position in the circumferential direction (position where the magnetic pole center line L1 passes).
  • the notch 21c is formed between the recesses 21b adjacent to each other.
  • the notches 21c may be formed between the magnetic poles in the circumferential direction.
  • the 8 bases 21d are formed on the second end face 21f of the first magnet 21 at equal intervals in the circumferential direction.
  • the pedestal 21d has a protrusion 21g that suppresses the positional deviation of the sensor magnet 25 in the radial direction.
  • the base 21d is formed between the magnetic poles in the circumferential direction. However, the pedestal 21d may be formed at the magnetic pole center position in the circumferential direction.
  • the sensor magnet 25 is formed integrally with the rotor magnet 20a by a mold so as to be arranged at a position detected by the magnetic sensor 17.
  • the sensor magnet 25 is fixed to one end of the rotor magnet 20a in the axial direction (specifically, the opposite end of the rotor magnet 20a).
  • FIG. 9A is a side view schematically showing a load-side structure of the rotor magnet 20a.
  • FIG. 9B is an A9-A9 sectional view schematically showing the internal structure of the rotor magnet 20a.
  • FIG. 9C is a side view schematically showing the structure on the non-load side of the rotor magnet 20a.
  • FIG. 10 is a perspective view schematically showing the structure of the rotor magnet 20a.
  • the rotor magnet 20 a is assembled by the first magnet 21 and the second magnet 22. At least one second magnet 22 is held by a magnet holding portion 21a. In the present embodiment, the second magnet 22 is inserted and fixed to each of the plurality of magnet holding portions 21a. Therefore, the first magnet 21 and the plurality of second magnets 22 are integrated with each other.
  • the first magnet 21 is formed with a plurality of magnet holding portions 21a radially about the rotation center of the rotor magnet 20a. Therefore, the second magnet 22 is provided in the first magnet 21 in a radial manner about the rotation center of the rotor magnet 20a.
  • the plurality of second magnets 22 are also arranged to be separated from each other in the circumferential direction.
  • the number of the second magnets 22 is eight.
  • the second magnets 22 are arranged so that the types of poles of the second magnets 22 in the radial direction of the rotor magnet 20a (that is, N poles or S poles) are alternately different in the circumferential direction.
  • the magnetic force of at least one second magnet 22 is larger than the magnetic force of the first magnet 21.
  • the at least one second magnet 22 is formed using, for example, a thermoplastic resin containing a rare earth magnet (for example, rare earth magnet powder).
  • each second magnet 22 has a magnetic force larger than the magnetic force of the first magnet 21.
  • the second magnet 22 is a magnet piece formed of polyamide as a thermoplastic resin. That is, in this embodiment, eight magnet pieces are held by each magnet holding portion 21a.
  • the second magnet 22 may be formed using a resin other than the thermoplastic resin, or the second magnet 22 may be formed as a sintered magnet.
  • the second magnet 22 is molded so as to be integrated with the first magnet 21 by a mold. Since the first magnet 21 and the second magnet 22 are molded and the orientation of the easy axis of magnetization is performed using a mold so that the rotor magnet 20a has polar anisotropy, the outer circumference of the rotor magnet 20a is The magnetic flux distribution (magnetic flux distribution in the circumferential direction) is sinusoidal. By making the magnetic flux distribution sinusoidal, not only the efficiency of the electric motor 100 is improved but also the noise can be reduced.
  • the second magnet 22 is fixed in the magnet holding portion 21 a and integrated with the first magnet 21, so that it is prevented from coming off from the first magnet 21. Furthermore, since the clearance between the second magnet 22 and the magnet holding part 21a is reduced by integral molding, rattling of the second magnet 22 in the magnet holding part 21a is prevented.
  • Resin for example, material of the rotor resin portion 24
  • As a thermoplastic resin As a thermoplastic resin).
  • At least one second magnet 22 has a circular arc shape (that is, a cross section orthogonal to the axis A1).
  • the outer edge of the at least one second magnet 22 (specifically, the outer edge extending in the circumferential direction) has an arcuate portion 22a.
  • the length of at least one second magnet 22 in the axial direction is the same as the length of the first magnet 21 in the axial direction.
  • the shapes of the plurality of second magnets 22 may be different from each other, and the lengths of the plurality of second magnets 22 in the axial direction may be different from each other.
  • the length of each of the plurality of second magnets 22 in the axial direction is the same as the length of the first magnet 21 in the axial direction
  • the shape of each of the second magnets 22 is the same as each other. It is.
  • the plurality of second magnets 22 are arranged coaxially with each other. Therefore, the plurality of second magnets 22 are arranged coaxially with the first magnet 21.
  • the rotor magnet 20a has a plurality of magnetic poles (N pole as the first magnetic pole and S pole as the second magnetic pole).
  • N poles (first magnetic poles) and S poles (second magnetic poles) are alternately arranged in the circumferential direction of the rotor magnet 20a.
  • Between the magnetic poles adjacent to each other in the circumferential direction in the rotor magnet 20a, that is, between the first magnetic pole and the second magnetic pole is “between magnetic poles”.
  • the rotor magnet 20a is magnetized to have 8 poles. That is, the number of magnetic poles of the rotor 20 (the number of magnetic poles of the rotor magnet 20a) is eight. However, the number of magnetic poles of the rotor 20 (rotor magnet 20a) is not limited to eight.
  • FIG. 11 is a flowchart illustrating an example of a method for manufacturing the electric motor 100.
  • the manufacturing method of the electric motor 100 includes the steps described below.
  • step 1 the shaft 23 is processed. Further, the sensor magnet 25 is molded, and after the molding, the sensor magnet 25 is demagnetized.
  • step 2 for example, the first magnet 21 is molded using a mold, and a magnet holding portion 21 a that holds the second magnet 22 is formed in the first magnet 21. After the formation of the magnet holding portion 21a, the first magnet 21 is demagnetized.
  • step 3 for example, the second magnet 22 is formed using a mold, and the rotor magnet 20 a is manufactured using the first magnet 21 and the second magnet 22. After the production, the rotor magnet 20a is demagnetized.
  • the formation of the rotor magnet 20a is not limited to the method in which the material of the second magnet 22 is poured into the magnet holding portion 21a, and the second magnet 22 is formed in advance by molding the second magnet 22 in advance. May be inserted into the magnet holding part 21a and fixed in the magnet holding part 21a.
  • step 4 the rotor magnet 20a, the shaft 23, and the sensor magnet 25 are placed in the mold.
  • a mold capable of forming and orienting the axis of easy magnetization is used so that the rotor magnet 20a has polar anisotropy.
  • Step 5 the rotor magnet 20a and the sensor magnet 25 arranged in the mold are integrally formed with a thermoplastic resin to form the rotor 20.
  • step 6 the rotor 20 is magnetized.
  • the easy axis of the rotor magnet 20a (the first magnet 21 and the second magnet 22) is oriented so that the rotor 20 has polar anisotropy.
  • Step 7 the bearings 30a and 30b are attached to the rotor 20 (specifically, the shaft 23).
  • the rotor 20 can be manufactured by the steps described above.
  • step 8 the stator 10 is manufactured. Specifically, the stator core 11 is manufactured by laminating a plurality of electromagnetic steel plates, the insulating portion 12 is attached to the stator core 11, the coil 13 is wound around the insulating portion 12, and the stator 10 is manufactured.
  • step 9 the base plate 14 is attached to the stator 10 to manufacture the stator assembly portion 10a, and the stator assembly portion 10a and the mold resin portion 10b are integrally formed to manufacture the mold stator 10c.
  • step 10 the rotor 20 is inserted inside the mold stator 10 c (specifically, the stator 10) so that a gap is formed between the stator 10 and the rotor 20. Further, the bracket 40 is fitted on the load side of the mold stator 10c (specifically, the stator 10).
  • the electric motor 100 is assembled by the processes described above.
  • the electric motor 100 In general, rare earth magnets have the property of being easily demagnetized in a high temperature environment. Therefore, it is desirable to increase the gap between the stator and the rotor in order to reduce the influence of heat and magnetic force generated from the stator. On the other hand, when the gap is increased, there is a problem that the efficiency of the electric motor decreases. Therefore, in the electric motor 100 according to the first embodiment, the first magnet 21 containing the ferrite magnet is provided with a magnet holding portion 21a that holds the second magnet 22 containing the rare earth magnet, A second magnet 22 having a magnetic force larger than that of the first magnet 21 is held by the magnet holding portion 21a. Accordingly, even when the gap between the stator 10 and the rotor 20 is increased, the efficiency reduction of the electric motor 100 is suppressed while suppressing the demagnetization of the second magnet 22 including the rare earth magnet. can do.
  • the magnet holding portion 21 a is formed inside the outer end portion (specifically, the outer edge 21 h of the first magnet 21) in the radial direction of the rotor 20. That is, since the first magnet 21 is provided outside the second magnet 22 in the radial direction of the rotor 20 (between the stator 10 and the second magnet 22), the magnetic force generated by the second magnet 22 is provided. Can be supplemented by the magnetic force of the first magnet 21. As a result, a decrease in the magnetic force of the rotor magnet 20a can be suppressed, so that a decrease in output and efficiency of the motor 100 can be suppressed, and the performance of the motor 100 can be improved.
  • the second magnet 22 including a rare earth magnet is disposed between the magnetic poles. Not. Therefore, it is possible to suppress demagnetization, particularly between the magnetic poles, in the rotor 20.
  • first and second magnet holding portions 21a adjacent to each other are formed so as to be separated from each other in the circumferential direction of the rotor 20, and the respective magnet holding portions are arranged so that the respective second magnets 22 are separated from each other. 21a. Accordingly, the amount of the second magnet 22 (for example, a rare earth magnet) used is reduced, so that the cost of the rotor 20 can be reduced.
  • the second magnet 22 for example, a rare earth magnet
  • the second magnet 22 is detached from the rotor magnet 20a (specifically, the magnet holding part 21a). Can be prevented.
  • the rotor resin portion 24 is formed so that the material of the rotor resin portion 24 enters between the second magnet 22 and the magnet holding portion 21a (for example, clearance). May be. Thereby, since the clearance is reduced, it is possible to prevent the second magnet 22 from rattling.
  • the easy magnetization axes of the first magnet 21 and the second magnet 22 are oriented so that the rotor 20 has polar anisotropy, the magnetic flux distribution on the outer periphery of the rotor magnet 20a becomes sinusoidal, and the electric motor The efficiency of 100 can be increased and the noise can be reduced.
  • the number of magnetic poles of the rotor magnet 20a is 8, but the number of magnetic poles is not limited to this example and may be any even number.
  • the number of magnetic poles of the rotor magnet 20a is an even number, the number of magnetic poles of the rotor magnet 20a and the number of second magnets 22 may be the same.
  • the first magnet 21 and the second magnet 22 are formed by molding a thermoplastic resin.
  • the first magnet 21 and the second magnet 22 may be formed as sintered magnets. Even when the rotor magnet 20a is assembled by the first magnet 21 and the second magnet 22 formed as sintered magnets, the same effect as described above can be obtained.
  • demagnetization of second magnet 22 including the rare earth magnet is suppressed even when the gap between stator 10 and rotor 20 is set large.
  • the 2nd magnet 22 can be arrange
  • the manufacturing process of the electric motor 100 can be reduced, and the cost of the electric motor 100 can be reduced.
  • FIG. FIG. 12 is a diagram illustrating an example of a configuration of an air conditioner 300 according to Embodiment 2 of the present invention.
  • the air conditioner 300 includes an indoor unit 310 and an outdoor unit 320 connected to the indoor unit 310.
  • An indoor unit blower (not shown) is mounted on the indoor unit 310, and an outdoor unit blower 330 is mounted on the outdoor unit 320.
  • the electric motor 100 of the first embodiment is used as a drive source for the outdoor unit blower 330 and the indoor unit blower.
  • the air conditioner 300 may include the electric motor 100 of Embodiment 1 in at least one of the indoor unit 310 and the outdoor unit 320.
  • the air conditioner 300 can obtain the same effects as those described in the first embodiment. Furthermore, by using the electric motor 100 for the outdoor unit blower 330 and the indoor unit blower that are main components of the air conditioner 300, the air conditioner 300 with improved performance and quality can be obtained.
  • the electric motor 100 of the first embodiment can be mounted on an electric device other than the air conditioner 300, and in this case, the same effects as those described in the first and second embodiments can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

An electric motor (100) comprises a stator (10) and a rotor (20). The rotor (20) comprises a first magnet (21) and at least one second magnet (22). The first magnet (21) comprises at least one magnet-holding part (21a) for holding the second magnet (22). The magnetic strength of the at least one second magnet (22) is greater than the magnetic strength of the first magnet (21).

Description

電動機、空気調和機、回転子、及び電動機の製造方法Electric motor, air conditioner, rotor, and method of manufacturing electric motor
 本発明は、電動機及び電動機を備えた空気調和機に関する。 The present invention relates to an electric motor and an air conditioner including the electric motor.
 特許文献1には、シャフトの周囲に形成される1次磁石成形体と、この1次磁石成形体の周囲に形成された2次磁石成形体とによって形成されるDCブラシレスモータ用の回転子が開示されている。この回転子の一例として、フェライト磁性粉又は軟磁性鉄粉が含有されたボンド磁石が1次磁石成形体として用いられており、Sm-Fe-N(サマリウム-鉄-窒素)磁性粉が含有された希土類ボンド磁石が2次磁石成形体として用いられている。 Patent Document 1 discloses a rotor for a DC brushless motor formed by a primary magnet molded body formed around a shaft and a secondary magnet molded body formed around the primary magnet molded body. It is disclosed. As an example of this rotor, a bonded magnet containing ferrite magnetic powder or soft magnetic iron powder is used as a primary magnet molded body, and Sm—Fe—N (samarium-iron-nitrogen) magnetic powder is contained. Rare earth bonded magnets are used as secondary magnet compacts.
特開2006-19573号公報JP 2006-19573 A
 希土類磁石は、高温環境下において減磁しやすいため、電動機の回転子に希土類磁石を用いる場合、電動機の固定子と回転子との間のギャップ(エアギャップ)を大きくすることが望ましい。その一方、ギャップを大きくすると、電動機の効率が下がるという問題がある。 Since rare earth magnets are easily demagnetized in a high temperature environment, when a rare earth magnet is used for a rotor of an electric motor, it is desirable to increase a gap (air gap) between the stator and the rotor of the electric motor. On the other hand, when the gap is increased, there is a problem that the efficiency of the electric motor decreases.
 そこで、本発明の目的は、電動機の効率の低下を抑制することである。 Therefore, an object of the present invention is to suppress a decrease in the efficiency of the electric motor.
 本発明の電動機は、固定子と、前記固定子の内側に備えられ、第1のマグネット及び少なくとも1つの第2のマグネットを有する回転子とを備え、前記第1のマグネットは、前記少なくとも1つの第2のマグネットを保持する少なくとも1つの保持部を有し、前記少なくとも1つの第2のマグネットは、前記少なくとも1つの保持部によって保持されており、前記少なくとも1つの第2のマグネットの磁力は、前記第1のマグネットの磁力よりも大きい。 The electric motor of the present invention includes a stator and a rotor provided inside the stator and having a first magnet and at least one second magnet, and the first magnet includes the at least one magnet. It has at least one holding part for holding the second magnet, the at least one second magnet is held by the at least one holding part, and the magnetic force of the at least one second magnet is: It is larger than the magnetic force of the first magnet.
 本発明によれば、電動機の効率の低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in the efficiency of the electric motor.
本発明の実施の形態1に係る電動機の内部構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows schematically the internal structure of the electric motor which concerns on Embodiment 1 of this invention. 固定子組立部の構造を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of a stator assembly part. 固定子組立部を負荷側から見たときの固定子組立部の構造を概略的に示す平面図である。It is a top view which shows roughly the structure of a stator assembly part when a stator assembly part is seen from the load side. 回転子の内部構造を概略的に示すA4-A4断面図である。It is A4-A4 sectional drawing which shows the internal structure of a rotor roughly. 回転子の負荷側の構造を概略的に示す側面図である。It is a side view which shows roughly the structure of the load side of a rotor. 回転子の反負荷側の構造を概略的に示す側面図である。It is a side view which shows roughly the structure of the anti-load side of a rotor. (a)は、第1のマグネットの負荷側の構造を概略的に示す側面図であり、(b)は、第1のマグネットの内部構造を概略的に示すA7-A7断面図であり、(c)は、第1のマグネットの反負荷側の構造を概略的に示す側面図である。(A) is a side view schematically showing the structure on the load side of the first magnet, and (b) is an A7-A7 sectional view schematically showing the internal structure of the first magnet. c) is a side view schematically showing the structure on the non-load side of the first magnet. 第1のマグネットの構造を概略的に示す斜視図である。It is a perspective view which shows the structure of a 1st magnet roughly. (a)は、回転子マグネットの負荷側の構造を概略的に示す側面図であり、(b)は、回転子マグネットの内部構造を概略的に示すA9-A9断面図であり、(c)は、回転子マグネットの反負荷側の構造を概略的に示す側面図である。(A) is a side view schematically showing the structure on the load side of the rotor magnet, (b) is a sectional view taken along line A9-A9 schematically showing the internal structure of the rotor magnet, (c) These are side views which show roughly the structure of the anti-load side of a rotor magnet. 回転子マグネットの構造を概略的に示す斜視図である。It is a perspective view which shows the structure of a rotor magnet roughly. 電動機の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of an electric motor. 本発明の実施の形態2に係る空気調和機の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioner which concerns on Embodiment 2 of this invention.
 以下に、本発明の実施の形態に係る電動機及び空気調和機を、図面に基づいて詳細に説明する。各実施の形態により本発明が限定されるものではない。
実施の形態1.
Hereinafter, an electric motor and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited to the embodiments.
Embodiment 1 FIG.
 図1は、本発明の実施の形態1に係る電動機100の内部構造を概略的に示す縦断面図である。
 図2は、固定子組立部10aの構造を概略的に示す斜視図である。
 図3は、固定子組立部10aを負荷側から見たときの固定子組立部10aの構造を概略的に示す平面図である。
FIG. 1 is a longitudinal sectional view schematically showing an internal structure of electric motor 100 according to Embodiment 1 of the present invention.
FIG. 2 is a perspective view schematically showing the structure of the stator assembly portion 10a.
FIG. 3 is a plan view schematically showing the structure of the stator assembly 10a when the stator assembly 10a is viewed from the load side.
 電動機100は、固定子10と、回転子20と、軸受30a及び30bと、ブラケット40とを有する。固定子10の径方向における内側には、空洞である中空部50が形成されている。電動機100は、例えば、ブラシレスDCモータ又はステッピングモータである。ブラケット40は、固定子10の軸方向における一端部(具体的には、固定子10の負荷側)に取り付けられている。ブラケット40は、例えば、金属製である。 The electric motor 100 includes a stator 10, a rotor 20, bearings 30a and 30b, and a bracket 40. A hollow portion 50 that is a cavity is formed on the inner side of the stator 10 in the radial direction. The electric motor 100 is, for example, a brushless DC motor or a stepping motor. The bracket 40 is attached to one end of the stator 10 in the axial direction (specifically, the load side of the stator 10). The bracket 40 is made of metal, for example.
 本実施の形態では、軸線A1は、シャフト23と平行であり、回転子20の回転中心である。さらに、軸線A1は、後述する回転子マグネット20a及び第1のマグネット21の回転中心でもある。本実施の形態では、軸線A1と平行な方向を“軸方向”という。さらに、軸方向に平行な負荷側方向を矢印D1で示し、負荷側方向とは逆方向である反負荷側方向を矢印D2で示す。さらに、固定子10、回転子20、回転子マグネット20a、及び第1のマグネット21の周方向を矢印D3で示す。 In the present embodiment, the axis A1 is parallel to the shaft 23 and is the rotation center of the rotor 20. Furthermore, the axis A1 is also the rotation center of a rotor magnet 20a and a first magnet 21 described later. In the present embodiment, a direction parallel to the axis A1 is referred to as an “axial direction”. Furthermore, a load side direction parallel to the axial direction is indicated by an arrow D1, and an anti-load side direction that is opposite to the load side direction is indicated by an arrow D2. Furthermore, the circumferential direction of the stator 10, the rotor 20, the rotor magnet 20a, and the first magnet 21 is indicated by an arrow D3.
 固定子10に基板14を取り付けることにより、固定子組立部10aが組み立てられる。固定子組立部10aは、モールド樹脂部10bによって覆われている。固定子組立部10a及びモールド樹脂部10bを一体的に成形することにより、モールド固定子10cが形成される。モールド樹脂部10bの材料は、例えば、不飽和ポリエステルである熱硬化性樹脂などのモールド樹脂である。 The stator assembly 10a is assembled by attaching the substrate 14 to the stator 10. The stator assembly portion 10a is covered with a mold resin portion 10b. The mold stator 10c is formed by integrally molding the stator assembly portion 10a and the mold resin portion 10b. The material of the mold resin portion 10b is, for example, a mold resin such as a thermosetting resin that is an unsaturated polyester.
 図2に示されるように、固定子組立部10aは、固定子10及び基板14に加えて、基板押え部品15と、複数の端子16とを有する。 As shown in FIG. 2, the stator assembly portion 10 a includes a substrate pressing component 15 and a plurality of terminals 16 in addition to the stator 10 and the substrate 14.
 固定子10は、環状に形成された固定子コア11(図1)と、絶縁部12と、コイル13とを有する。 The stator 10 has a stator core 11 (FIG. 1) formed in an annular shape, an insulating portion 12, and a coil 13.
 固定子コア11は、環状に形成された複数の電磁鋼板によって形成される。具体的には、複数の電磁鋼板を積層することにより、固定子コア11が形成される。したがって、固定子10は、環状に形成されている。 The stator core 11 is formed by a plurality of electromagnetic steel plates formed in an annular shape. Specifically, the stator core 11 is formed by laminating a plurality of electromagnetic steel plates. Therefore, the stator 10 is formed in an annular shape.
 絶縁部12は、固定子コア11に取り付けられている。絶縁部12は、複数の突起12aを有する。絶縁部12は、例えば、熱可塑性樹脂によって形成される成形品である。ただし、絶縁部12を、熱可塑性樹脂によって固定子コア11と一体成形することによって成形してもよい。熱可塑性樹脂は、例えばポリブチレンテレフタレート樹脂である。 The insulating part 12 is attached to the stator core 11. The insulating part 12 has a plurality of protrusions 12a. The insulating part 12 is a molded product formed of, for example, a thermoplastic resin. However, you may shape | mold the insulating part 12 by integrally forming with the stator core 11 with a thermoplastic resin. The thermoplastic resin is, for example, a polybutylene terephthalate resin.
 コイル13は、絶縁部12に巻き付けられている。 The coil 13 is wound around the insulating portion 12.
 基板14は、複数の穴14aと、複数の端子挿入穴14bとを有する。図3に示されるように、本実施の形態では、複数の磁気センサ17が基板14に取り付けられている。 The substrate 14 has a plurality of holes 14a and a plurality of terminal insertion holes 14b. As shown in FIG. 3, in the present embodiment, a plurality of magnetic sensors 17 are attached to the substrate 14.
 絶縁部12の各突起12aは、基板14に形成された各穴14aに挿入される。各穴14aに挿入された各突起12aの先端を熱溶着することにより、各突起12aの先端が変形し、基板14が絶縁部12に取り付けられる。 Each protrusion 12 a of the insulating part 12 is inserted into each hole 14 a formed in the substrate 14. By thermally welding the tips of the projections 12a inserted into the holes 14a, the tips of the projections 12a are deformed, and the substrate 14 is attached to the insulating portion 12.
 図1に示されるように、基板14は、固定子10と同軸に固定子10の反負荷側に取り付けられている。基板14の強度を考慮して、固定子組立部10aは、低圧成形によってモールド成形されることが望ましい。そのため、モールド成形には不飽和ポリエステル樹脂のような熱硬化性樹脂が用いられることが望ましい。低圧成形により、基板14の強度が弱い場合でも基板14の形状を維持して固定子組立部10aをモールド成形することができる。 As shown in FIG. 1, the substrate 14 is attached to the opposite side of the stator 10 coaxially with the stator 10. In consideration of the strength of the substrate 14, the stator assembly 10a is preferably molded by low pressure molding. Therefore, it is desirable to use a thermosetting resin such as an unsaturated polyester resin for molding. By low-pressure molding, the stator assembly 10a can be molded while maintaining the shape of the substrate 14 even when the strength of the substrate 14 is weak.
 複数の穴14a及び複数の端子挿入穴14bは、基板14の外縁部に形成されている。穴14aは、絶縁部12の突起12aと嵌合し、基板14が位置決めされる。 The plurality of holes 14 a and the plurality of terminal insertion holes 14 b are formed in the outer edge portion of the substrate 14. The hole 14a is fitted with the protrusion 12a of the insulating portion 12, and the substrate 14 is positioned.
 基板押え部品15は、基板14を挟んで固定子10の反負荷側に取り付けられている。すなわち、基板押え部品15は、基板14を、固定子10に押さえつけて固定する。 The board holding component 15 is attached to the opposite side of the stator 10 with the board 14 interposed therebetween. That is, the board pressing component 15 presses the board 14 against the stator 10 and fixes it.
 固定子組立部10aをモールド成形によって製作する際に、固定子組立部10aの構成要素はモールド金型に挿入される。この場合、モールド金型が閉じられると、基板押え部品15がモールド金型に当接する。基板押え部品15がモールド金型に当接することにより、モールド成形の圧力による基板14の変形が抑制される。したがって、基板14の変形に起因する基板14上のはんだ接合部の剥離を防止することができ、電動機100の品質が向上する。 When the stator assembly part 10a is manufactured by molding, the constituent elements of the stator assembly part 10a are inserted into the mold. In this case, when the mold is closed, the substrate pressing component 15 comes into contact with the mold. When the substrate pressing component 15 contacts the mold, deformation of the substrate 14 due to molding pressure is suppressed. Therefore, the peeling of the solder joint on the substrate 14 due to the deformation of the substrate 14 can be prevented, and the quality of the electric motor 100 is improved.
 各端子16は、絶縁部12に取り付けられ、各端子挿入穴14bに挿入されている。各端子16は、はんだによって基板14及びコイル13と電気的に接続されている。 Each terminal 16 is attached to the insulating portion 12 and inserted into each terminal insertion hole 14b. Each terminal 16 is electrically connected to the substrate 14 and the coil 13 by solder.
 磁気センサ17は、回転子20のセンサマグネット25と対向するように基板14上に配置されている。磁気センサ17は、回転子20の回転位置を検出するセンサ回路を有する。磁気センサ17は、センサマグネット25から発生される磁気、すなわち、磁界の向き(N極から発生される磁力線又はS極から発生される磁力線の向き)の切り替わりを検出し、回転子マグネット20aの回転位置(周方向における位置)を特定し、検出信号を出力する。すなわち、磁気センサ17は、回転子20の回転位置を特定し、検出信号を出力する。磁気センサ17は、センサマグネット25の磁極を検出してもよい。 The magnetic sensor 17 is disposed on the substrate 14 so as to face the sensor magnet 25 of the rotor 20. The magnetic sensor 17 has a sensor circuit that detects the rotational position of the rotor 20. The magnetic sensor 17 detects the switching of the magnetism generated from the sensor magnet 25, that is, the direction of the magnetic field (the direction of the magnetic lines generated from the N pole or the magnetic lines generated from the S pole), and the rotation of the rotor magnet 20a. The position (position in the circumferential direction) is specified and a detection signal is output. That is, the magnetic sensor 17 specifies the rotational position of the rotor 20 and outputs a detection signal. The magnetic sensor 17 may detect the magnetic pole of the sensor magnet 25.
 検出信号は、電動機100の外部、又は基板14に備えられた駆動回路に入力される。電動機100がブラシレスDCモータである場合、駆動回路は、検出信号を用いて、固定子10に対する回転子マグネット20aの相対的な位置に応じてコイル13の通電制御を行う。これにより電動機100の高効率、且つ低騒音な駆動を行うことができる。 The detection signal is input to the outside of the electric motor 100 or a drive circuit provided on the substrate 14. When the electric motor 100 is a brushless DC motor, the drive circuit performs energization control of the coil 13 according to the relative position of the rotor magnet 20a with respect to the stator 10 using the detection signal. As a result, the motor 100 can be driven with high efficiency and low noise.
 図4は、回転子20の内部構造を概略的に示すA4-A4断面図である。
 図5は、回転子20の負荷側の構造を概略的に示す側面図である。
 図6は、回転子20の反負荷側の構造を概略的に示す側面図である。
4 is an A4-A4 cross-sectional view schematically showing the internal structure of the rotor 20. As shown in FIG.
FIG. 5 is a side view schematically showing the structure on the load side of the rotor 20.
FIG. 6 is a side view schematically showing the structure of the rotor 20 on the side opposite to the load.
 回転子20は、第1のマグネット21と、少なくとも1つの第2のマグネット22と、シャフト23と、回転子樹脂部24と、センサマグネット25とを有する。第1のマグネット21及び少なくとも1つの第2のマグネット22によって、回転子マグネット20aが組み立てられる。回転子20は、固定子10の径方向における内側に、ギャップ(エアギャップ)を介して回転可能に備えられる。本実施の形態では、回転子20は極異方性を持つ。 The rotor 20 includes a first magnet 21, at least one second magnet 22, a shaft 23, a rotor resin portion 24, and a sensor magnet 25. The rotor magnet 20 a is assembled by the first magnet 21 and at least one second magnet 22. The rotor 20 is rotatably provided inside the stator 10 in the radial direction via a gap (air gap). In the present embodiment, the rotor 20 has polar anisotropy.
 回転子20(具体的には、第1のマグネット21)には、軸穴20bが形成されている。軸穴20bにシャフト23が挿通されており、第1のマグネット21(すなわち、回転子マグネット20a)及びシャフト23が互いに一体化されている。 A shaft hole 20b is formed in the rotor 20 (specifically, the first magnet 21). A shaft 23 is inserted into the shaft hole 20b, and the first magnet 21 (that is, the rotor magnet 20a) and the shaft 23 are integrated with each other.
 シャフト23は、一対の軸受30a及び30bに挿入されている(図1)。シャフト23には、ローレット23aが形成されている。回転子20は、軸受30a及び30bにシャフト23が挿入された状態で、モールド固定子10cの内側の中空部50に挿入されている。 The shaft 23 is inserted into a pair of bearings 30a and 30b (FIG. 1). A knurled 23 a is formed on the shaft 23. The rotor 20 is inserted into the hollow portion 50 inside the mold stator 10c with the shaft 23 inserted into the bearings 30a and 30b.
 軸受30aは、回転子20の反負荷側に配置されるように、モールド樹脂部10bによって支持される。軸受30bは、回転子20の負荷側に配置されるように、ブラケット40によって支持される。 The bearing 30a is supported by the mold resin portion 10b so as to be arranged on the opposite side of the rotor 20. The bearing 30 b is supported by the bracket 40 so as to be disposed on the load side of the rotor 20.
 回転子樹脂部24は、内筒部24aと、複数のリブ24bと、外筒部24cとを有する。回転子樹脂部24は、例えばポリブチレンテレフタレートのような熱可塑性樹脂を成形して形成される。回転子樹脂部24によって、回転子マグネット20aと、シャフト23と、センサマグネット25とが一体的に成形される。 The rotor resin part 24 has an inner cylinder part 24a, a plurality of ribs 24b, and an outer cylinder part 24c. The rotor resin portion 24 is formed by molding a thermoplastic resin such as polybutylene terephthalate. The rotor resin portion 24 integrally forms the rotor magnet 20a, the shaft 23, and the sensor magnet 25.
 内筒部24aには、シャフト23が挿通されている。本実施の形態では、8個のリブ24bが、回転子20の周方向に等間隔で形成されている。各リブ24bは、シャフト23の軸を中心として放射状に延在するように形成されている。各リブ24bは、内筒部24aと外筒部24cとを連結する。リブ24bの数は、8個に限定されない。隣り合うリブ24b間には、空洞である中空部24dが形成されている。 The shaft 23 is inserted through the inner cylinder portion 24a. In the present embodiment, eight ribs 24 b are formed at equal intervals in the circumferential direction of the rotor 20. Each rib 24b is formed to extend radially about the axis of the shaft 23. Each rib 24b connects the inner cylinder part 24a and the outer cylinder part 24c. The number of ribs 24b is not limited to eight. A hollow portion 24d which is a cavity is formed between the adjacent ribs 24b.
 シャフト23のローレット23aと内筒部24aとは、互いに接触しており、ローレット23aがシャフト23の滑り止めとして機能する。 The knurling 23 a and the inner cylinder portion 24 a of the shaft 23 are in contact with each other, and the knurling 23 a functions as a slip stopper for the shaft 23.
 外筒部24cは、内筒部24aの外側に形成されており、回転子マグネット20aの軸方向における両端面を覆う。したがって、回転子マグネット20aが、回転子樹脂部24から抜けることが防止される。すなわち、回転子マグネット20aが、シャフト23に対して軸方向に移動すること(軸方向のズレ)が防止される。さらに、外筒部24cにより、第2のマグネット22が回転子マグネット20a(具体的には、第1のマグネット21に形成された後述するマグネット保持部21a)から外れることが防止される。さらに、回転子樹脂部24を成形する際に、第1のマグネット21の凹部21bの内部及び台座21dの周囲に外筒部24c(回転子樹脂部24の材料としての樹脂)が充填され、回転子マグネット20aがシャフト23に対して回転すること(周方向のズレ)が防止される。 The outer cylinder part 24c is formed outside the inner cylinder part 24a and covers both end faces in the axial direction of the rotor magnet 20a. Therefore, the rotor magnet 20a is prevented from coming off from the rotor resin portion 24. That is, the rotor magnet 20a is prevented from moving in the axial direction with respect to the shaft 23 (shift in the axial direction). Further, the outer cylinder portion 24c prevents the second magnet 22 from being detached from the rotor magnet 20a (specifically, a magnet holding portion 21a described later formed on the first magnet 21). Further, when the rotor resin portion 24 is molded, the outer cylinder portion 24c (resin as the material of the rotor resin portion 24) is filled inside the recess 21b of the first magnet 21 and around the pedestal 21d. The child magnet 20a is prevented from rotating with respect to the shaft 23 (displacement in the circumferential direction).
 図7(a)は、第1のマグネット21の負荷側の構造を概略的に示す側面図である。
 図7(b)は、第1のマグネット21の内部構造を概略的に示すA7-A7断面図である。
 図7(c)は、第1のマグネット21の反負荷側の構造を概略的に示す側面図である。
 図8は、第1のマグネット21の構造を概略的に示す斜視図である。
FIG. 7A is a side view schematically showing the structure on the load side of the first magnet 21.
FIG. 7B is an A7-A7 sectional view schematically showing the internal structure of the first magnet 21.
FIG. 7C is a side view schematically showing the structure on the non-load side of the first magnet 21.
FIG. 8 is a perspective view schematically showing the structure of the first magnet 21.
 第1のマグネット21は、第2のマグネット22を保持する少なくとも1つのマグネット保持部21a(“保持部”ともいう)と、複数の凹部21bと、複数の切欠21cと、台座21dとを有する。 The first magnet 21 includes at least one magnet holding portion 21a (also referred to as “holding portion”) that holds the second magnet 22, a plurality of recesses 21b, a plurality of notches 21c, and a pedestal 21d.
 第1のマグネット21は、フェライト磁石(例えば、フェライト粉末)を含有する熱可塑性樹脂を成形することにより形成されている。熱可塑性樹脂は、例えばポリアミドである。ただし、熱可塑性ではない樹脂を用いて第1のマグネット21を形成してもよく、焼結磁石として第1のマグネット21を形成してもよい。 The first magnet 21 is formed by molding a thermoplastic resin containing a ferrite magnet (for example, ferrite powder). The thermoplastic resin is, for example, polyamide. However, the first magnet 21 may be formed using a resin that is not thermoplastic, or the first magnet 21 may be formed as a sintered magnet.
 第1のマグネット21は、第1のマグネット21の外周の磁束分布(周方向における磁束分布)が正弦波状になるように金型によって成形される。言い換えると、第1のマグネット21は、極異方性を持つように成形及び磁化容易軸の配向が行われる。磁束分布を正弦波状にすることで、電動機100の効率が向上するだけでなく、低騒音化することができる。 The first magnet 21 is molded by a mold so that the magnetic flux distribution on the outer periphery of the first magnet 21 (flux distribution in the circumferential direction) is sinusoidal. In other words, the first magnet 21 is shaped and oriented with the easy axis so as to have polar anisotropy. By making the magnetic flux distribution sinusoidal, not only the efficiency of the electric motor 100 is improved but also the noise can be reduced.
 第1のマグネット21は、環状に形成された環状マグネットである。第1のマグネット21は、シャフト23と同軸に形成されている。したがって、第1のマグネット21の回転軸(回転中心)は、回転子20の回転軸(回転中心)と同一である。第1のマグネット21は、回転子マグネット20aの軸方向に互いに対向する第1の端面21e及び第2の端面21fを有する。第1の端面21eは、第1のマグネット21の負荷側に形成された端面であり、第2の端面21fは、第1のマグネット21の反負荷側に形成された端面である。 The first magnet 21 is an annular magnet formed in an annular shape. The first magnet 21 is formed coaxially with the shaft 23. Therefore, the rotation axis (rotation center) of the first magnet 21 is the same as the rotation axis (rotation center) of the rotor 20. The first magnet 21 has a first end surface 21e and a second end surface 21f that face each other in the axial direction of the rotor magnet 20a. The first end surface 21 e is an end surface formed on the load side of the first magnet 21, and the second end surface 21 f is an end surface formed on the anti-load side of the first magnet 21.
 少なくとも1つのマグネット保持部21aのうちの第1のマグネット保持部21a(第1の保持部)は、1つの第2のマグネット22を保持し、少なくとも1つのマグネット保持部21aのうちの第2のマグネット保持部21a(第2の保持部)は、前記1つの第2のマグネットとは異なる他の第2のマグネット22を保持する。本実施の形態では、第1のマグネット21に、複数のマグネット保持部21aが形成されており、各マグネット保持部21aは、第2のマグネット22を保持する。 The first magnet holding part 21a (first holding part) of the at least one magnet holding part 21a holds one second magnet 22, and the second of the at least one magnet holding part 21a. The magnet holding part 21a (second holding part) holds another second magnet 22 different from the one second magnet. In the present embodiment, a plurality of magnet holding portions 21 a are formed on the first magnet 21, and each magnet holding portion 21 a holds the second magnet 22.
 第1のマグネット21は、回転子20の径方向(第1のマグネット21の径方向)における外側端部に形成された外縁21hを有し、各マグネット保持部21aは、外縁21hの内側に、第1のマグネット21の回転中心を中心として放射状に形成されている。本実施の形態では、各マグネット保持部21aは、第1の端面21eと第2の端面21fとの間を貫通する貫通孔である。ただし、複数のマグネット保持部21aのうち少なくとも1つのマグネット保持部21aが貫通孔でもよく、他のマグネット保持部21aは貫通していない穴でもよい。複数のマグネット保持部21aの各々は、互いに同軸に配列されている。 The first magnet 21 has an outer edge 21h formed at an outer end portion in the radial direction of the rotor 20 (the radial direction of the first magnet 21), and each magnet holding portion 21a is disposed inside the outer edge 21h. The first magnet 21 is formed radially about the rotation center. In the present embodiment, each magnet holding portion 21a is a through-hole penetrating between the first end surface 21e and the second end surface 21f. However, at least one of the plurality of magnet holding portions 21a may be a through hole, and the other magnet holding portion 21a may be a hole that does not pass through. Each of the plurality of magnet holding portions 21a is arranged coaxially with each other.
 複数のマグネット保持部21aの各々は、回転子20の周方向に互いに離間している。言い換えると、複数のマグネット保持部21aのうちの互いに隣接する第1のマグネット保持部21a及び第2のマグネット保持部21aは、回転子20の周方向に互いに離間している。互いに隣接するマグネット保持部21aの間には、連結部21kが形成されている。 Each of the plurality of magnet holding portions 21 a is separated from each other in the circumferential direction of the rotor 20. In other words, the first magnet holding part 21 a and the second magnet holding part 21 a adjacent to each other among the plurality of magnet holding parts 21 a are separated from each other in the circumferential direction of the rotor 20. A connecting portion 21k is formed between the magnet holding portions 21a adjacent to each other.
 図7(a)に示されるように、周方向におけるマグネット保持部21aの中心位置C1は、周方向における磁極中心位置(複数の磁極のうちの1つの磁極の中心位置)である。周方向における磁極中心位置は、磁極の中心である磁極中心線L1が通る位置である。互いに隣接する磁極の間の位置(本実施の形態では、N極とS極との間の位置)は、“磁極間”であり、互いに隣接するマグネット保持部21aの間の部分(例えば、連結部21k)は、磁極間に形成されている。マグネット保持部21aの数は、回転子20の極数に等しい。本実施の形態では、回転子マグネット20aは8極であるので、マグネット保持部21aの数は8個である。 As shown in FIG. 7A, the center position C1 of the magnet holding portion 21a in the circumferential direction is a magnetic pole center position in the circumferential direction (the center position of one magnetic pole among a plurality of magnetic poles). The magnetic pole center position in the circumferential direction is a position through which the magnetic pole center line L1 that is the center of the magnetic pole passes. The position between the magnetic poles adjacent to each other (in this embodiment, the position between the N pole and the S pole) is “between the magnetic poles”, and a portion between the magnet holding portions 21a adjacent to each other (for example, a connection) The part 21k) is formed between the magnetic poles. The number of magnet holding portions 21 a is equal to the number of poles of the rotor 20. In the present embodiment, since the rotor magnet 20a has eight poles, the number of magnet holding portions 21a is eight.
 第1のマグネット21を軸方向に見た場合において、少なくとも1つのマグネット保持部21aの形状(すなわち、軸線A1と直交する断面)は円弧形状である。言い換えると、少なくとも1つのマグネット保持部21aの縁(具体的には、周方向に延在する縁)は、円弧状部分21mを有する。ただし、マグネット保持部21aの形状は、円弧形状に限られず、長方形などのような他の形状でもよい。本実施の形態では、複数のマグネット保持部21aの各々の形状は、互いに同一である。 When the first magnet 21 is viewed in the axial direction, the shape of the at least one magnet holding portion 21a (that is, the cross section orthogonal to the axis A1) is an arc shape. In other words, the edge of the at least one magnet holding portion 21a (specifically, the edge extending in the circumferential direction) has an arcuate portion 21m. However, the shape of the magnet holding portion 21a is not limited to the arc shape, and may be other shapes such as a rectangle. In the present embodiment, each of the plurality of magnet holding portions 21a has the same shape.
 第1のマグネット21の第1の端面21eには、周方向に等間隔で8個の凹部21bが形成されている。各凹部21bには、第1のマグネット21の成形の際に、第1のマグネット21の材料である熱可塑性樹脂が注入されるゲート口(図示しない)が備えられる。各凹部21bの深さは、第1の端面21eからゲート処理跡が突出しないように設定されることが望ましい。 The first end surface 21e of the first magnet 21 is formed with eight concave portions 21b at equal intervals in the circumferential direction. Each recess 21 b is provided with a gate port (not shown) into which a thermoplastic resin that is a material of the first magnet 21 is injected when the first magnet 21 is molded. The depth of each recess 21b is desirably set so that the gate processing trace does not protrude from the first end face 21e.
 本実施の形態では、凹部21bは、第1のマグネット21の周方向における磁極間に形成されている。言い換えると、凹部21bは、連結部21kに隣接するように形成されている。さらに言い換えると、凹部21bは、互いに隣接する切欠21cの間に形成されている。ただし、凹部21bは、周方向における磁極中心線L1が通る位置に形成されてもよい。 In the present embodiment, the recess 21b is formed between the magnetic poles in the circumferential direction of the first magnet 21. In other words, the recess 21b is formed so as to be adjacent to the connecting portion 21k. In other words, the recess 21b is formed between the notches 21c adjacent to each other. However, the recess 21b may be formed at a position where the magnetic pole center line L1 passes in the circumferential direction.
 第1のマグネット21の内周面には、周方向に等間隔で8個の切欠21cが形成される。第2のマグネット22を成形する際に、金型の凸部を各切欠21cに嵌め合わせることにより、周方向における位置決めを行うことができ、第1のマグネット21と第2のマグネット22との同軸精度を高めることができる。 The eight notches 21c are formed on the inner peripheral surface of the first magnet 21 at equal intervals in the circumferential direction. When the second magnet 22 is molded, the convex portions of the mold are fitted into the notches 21c, so that positioning in the circumferential direction can be performed, and the first magnet 21 and the second magnet 22 are coaxial. Accuracy can be increased.
 切欠21cは、軸方向(具体的には、負荷側方向D1)に向かうにつれて広がるテーパ状の切欠となるように形成されている。本実施の形態では、切欠21cは、周方向における磁極中心位置(磁極中心線L1が通る位置)に形成されている。言い換えると、切欠21cは、互いに隣接する凹部21bの間に形成されている。ただし、切欠21cは、周方向における磁極間に形成されてもよい。 The notch 21c is formed to be a tapered notch that expands in the axial direction (specifically, the load side direction D1). In the present embodiment, the notch 21c is formed at the magnetic pole center position in the circumferential direction (position where the magnetic pole center line L1 passes). In other words, the notch 21c is formed between the recesses 21b adjacent to each other. However, the notches 21c may be formed between the magnetic poles in the circumferential direction.
 第1のマグネット21の第2の端面21fには、周方向に等間隔で8個の台座21dが形成されている。台座21dは、センサマグネット25の径方向における位置ずれを抑制する突起21gを有する。台座21dは、周方向における磁極間に形成される。ただし、台座21dは、周方向における磁極中心位置に形成されてもよい。 8 bases 21d are formed on the second end face 21f of the first magnet 21 at equal intervals in the circumferential direction. The pedestal 21d has a protrusion 21g that suppresses the positional deviation of the sensor magnet 25 in the radial direction. The base 21d is formed between the magnetic poles in the circumferential direction. However, the pedestal 21d may be formed at the magnetic pole center position in the circumferential direction.
 センサマグネット25は、磁気センサ17によって検出される位置に配置されるように、金型によって回転子マグネット20aと一体的に成形される。本実施の形態では、センサマグネット25は、回転子マグネット20aの軸方向における一端部(具体的には、回転子マグネット20aの反負荷側端部)に固定されている。 The sensor magnet 25 is formed integrally with the rotor magnet 20a by a mold so as to be arranged at a position detected by the magnetic sensor 17. In the present embodiment, the sensor magnet 25 is fixed to one end of the rotor magnet 20a in the axial direction (specifically, the opposite end of the rotor magnet 20a).
 以下に、回転子マグネット20a及び第2のマグネット22についてより詳細に説明する。
 図9(a)は、回転子マグネット20aの負荷側の構造を概略的に示す側面図である。
 図9(b)は、回転子マグネット20aの内部構造を概略的に示すA9-A9断面図である。
 図9(c)は、回転子マグネット20aの反負荷側の構造を概略的に示す側面図である。
 図10は、回転子マグネット20aの構造を概略的に示す斜視図である。
Hereinafter, the rotor magnet 20a and the second magnet 22 will be described in more detail.
FIG. 9A is a side view schematically showing a load-side structure of the rotor magnet 20a.
FIG. 9B is an A9-A9 sectional view schematically showing the internal structure of the rotor magnet 20a.
FIG. 9C is a side view schematically showing the structure on the non-load side of the rotor magnet 20a.
FIG. 10 is a perspective view schematically showing the structure of the rotor magnet 20a.
 回転子マグネット20aは、第1のマグネット21及び第2のマグネット22によって組み立てられる。少なくとも1つの第2のマグネット22は、マグネット保持部21aによって保持されている。本実施の形態では、複数のマグネット保持部21aの各々に、第2のマグネット22が挿入されており、固定されている。したがって、第1のマグネット21及び複数の第2のマグネット22は、互いに一体化されている。第1のマグネット21には、回転子マグネット20aの回転中心を中心として放射状に、複数のマグネット保持部21aが形成されている。したがって、第2のマグネット22は、回転子マグネット20aの回転中心を中心として放射状に、第1のマグネット21に備えられている。 The rotor magnet 20 a is assembled by the first magnet 21 and the second magnet 22. At least one second magnet 22 is held by a magnet holding portion 21a. In the present embodiment, the second magnet 22 is inserted and fixed to each of the plurality of magnet holding portions 21a. Therefore, the first magnet 21 and the plurality of second magnets 22 are integrated with each other. The first magnet 21 is formed with a plurality of magnet holding portions 21a radially about the rotation center of the rotor magnet 20a. Therefore, the second magnet 22 is provided in the first magnet 21 in a radial manner about the rotation center of the rotor magnet 20a.
 各マグネット保持部21aは周方向に互いに離間しているので、複数の第2のマグネット22の各々も周方向に互いに離間するように配置されている。本実施の形態では、回転子マグネット20aが8極であるので、第2のマグネット22の数は8個である。回転子マグネット20aの径方向における第2のマグネット22の極の種類(すなわち、N極又はS極)が周方向に交互に異なるように、各第2のマグネット22が配列される。 Since the magnet holding portions 21a are separated from each other in the circumferential direction, the plurality of second magnets 22 are also arranged to be separated from each other in the circumferential direction. In the present embodiment, since the rotor magnet 20a has eight poles, the number of the second magnets 22 is eight. The second magnets 22 are arranged so that the types of poles of the second magnets 22 in the radial direction of the rotor magnet 20a (that is, N poles or S poles) are alternately different in the circumferential direction.
 少なくとも1つの第2のマグネット22の磁力は、第1のマグネット21の磁力よりも大きい。少なくとも1つの第2のマグネット22は、例えば、希土類磁石(例えば、希土類磁石粉末)を含有する熱可塑性樹脂を用いて形成されている。本実施の形態では、各第2のマグネット22は、第1のマグネット21の磁力よりも大きい磁力を持つ。本実施の形態では、第2のマグネット22は、熱可塑性樹脂としてのポリアミドによって成形されたマグネット片である。すなわち、本実施の形態では、8個のマグネット片が、各マグネット保持部21aによって保持されている。ただし、熱可塑性樹脂以外の樹脂を用いて第2のマグネット22を形成してもよく、焼結磁石として第2のマグネット22を形成してもよい。 The magnetic force of at least one second magnet 22 is larger than the magnetic force of the first magnet 21. The at least one second magnet 22 is formed using, for example, a thermoplastic resin containing a rare earth magnet (for example, rare earth magnet powder). In the present embodiment, each second magnet 22 has a magnetic force larger than the magnetic force of the first magnet 21. In the present embodiment, the second magnet 22 is a magnet piece formed of polyamide as a thermoplastic resin. That is, in this embodiment, eight magnet pieces are held by each magnet holding portion 21a. However, the second magnet 22 may be formed using a resin other than the thermoplastic resin, or the second magnet 22 may be formed as a sintered magnet.
 第2のマグネット22は、金型によって第1のマグネット21と一体化されるように成形される。回転子マグネット20aが極異方性を持つように、金型を用いて第1のマグネット21及び第2のマグネット22の成形及び磁化容易軸の配向が行われるので、回転子マグネット20aの外周の磁束分布(周方向における磁束分布)は正弦波状になる。磁束分布を正弦波状にすることで、電動機100の効率が向上するだけでなく、低騒音化することができる。 The second magnet 22 is molded so as to be integrated with the first magnet 21 by a mold. Since the first magnet 21 and the second magnet 22 are molded and the orientation of the easy axis of magnetization is performed using a mold so that the rotor magnet 20a has polar anisotropy, the outer circumference of the rotor magnet 20a is The magnetic flux distribution (magnetic flux distribution in the circumferential direction) is sinusoidal. By making the magnetic flux distribution sinusoidal, not only the efficiency of the electric motor 100 is improved but also the noise can be reduced.
 第2のマグネット22は、マグネット保持部21a内に固定され、第1のマグネット21と一体化されるので、第1のマグネット21から外れることが防止される。さらに、一体成形によって、第2のマグネット22とマグネット保持部21aとの間のクリアランスが低減されるので、マグネット保持部21a内における第2のマグネット22のがたつきが防止される。第2のマグネット22とマグネット保持部21a(具体的には、マグネット保持部21aの内壁)との間(例えば、クリアランス)に、クリアランスを低減するための樹脂(例えば、回転子樹脂部24の材料としての熱可塑性樹脂)を備えるようにしてもよい。 The second magnet 22 is fixed in the magnet holding portion 21 a and integrated with the first magnet 21, so that it is prevented from coming off from the first magnet 21. Furthermore, since the clearance between the second magnet 22 and the magnet holding part 21a is reduced by integral molding, rattling of the second magnet 22 in the magnet holding part 21a is prevented. Resin (for example, material of the rotor resin portion 24) for reducing the clearance between the second magnet 22 and the magnet holding portion 21a (specifically, the inner wall of the magnet holding portion 21a) (for example, clearance). As a thermoplastic resin).
 回転子マグネット20aを軸方向に見た場合において、少なくとも1つの第2のマグネット22の形状(すなわち、軸線A1と直交する断面)は円弧形状である。言い換えると、少なくとも1つの第2のマグネット22の外縁(具体的には、周方向に延在する外縁)は、円弧状部分22aを有する。少なくとも1つの第2のマグネット22の軸方向における長さは、第1のマグネット21の軸方向における長さと同一であることが望ましい。複数の第2のマグネット22の各々の形状は、互いに異なっていてもよく、複数の第2のマグネット22の各々の軸方向における長さは、互いに異なっていてもよい。本実施の形態では、複数の第2のマグネット22の各々の軸方向における長さは、第1のマグネット21の軸方向における長さと同一であり、各第2のマグネット22の形状は、互いに同一である。 When the rotor magnet 20a is viewed in the axial direction, at least one second magnet 22 has a circular arc shape (that is, a cross section orthogonal to the axis A1). In other words, the outer edge of the at least one second magnet 22 (specifically, the outer edge extending in the circumferential direction) has an arcuate portion 22a. It is desirable that the length of at least one second magnet 22 in the axial direction is the same as the length of the first magnet 21 in the axial direction. The shapes of the plurality of second magnets 22 may be different from each other, and the lengths of the plurality of second magnets 22 in the axial direction may be different from each other. In the present embodiment, the length of each of the plurality of second magnets 22 in the axial direction is the same as the length of the first magnet 21 in the axial direction, and the shape of each of the second magnets 22 is the same as each other. It is.
 本実施の形態では、複数のマグネット保持部21aの各々は、互いに同軸に配列されているので、複数の第2のマグネット22の各々は、互いに同軸に配列されている。したがって、複数の第2のマグネット22は、第1のマグネット21と同軸に配列されている。 In the present embodiment, since the plurality of magnet holding portions 21a are arranged coaxially with each other, the plurality of second magnets 22 are arranged coaxially with each other. Therefore, the plurality of second magnets 22 are arranged coaxially with the first magnet 21.
 回転子マグネット20aは、複数の磁極(第1の磁極であるN極、及び第2の磁極であるS極)を有する。回転子マグネット20aにおいて、N極(第1の磁極)及びS極(第2の磁極)が、回転子マグネット20aの周方向に交互に配列されている。回転子マグネット20aにおいて周方向に隣り合う磁極の間、すなわち、第1の磁極と第2の磁極との間が“磁極間”である。本実施の形態では、回転子マグネット20aは、8極となるように着磁されている。すなわち、回転子20の磁極数(回転子マグネット20aの磁極数)は8個である。ただし、回転子20(回転子マグネット20a)の磁極数は、8個に限られない。 The rotor magnet 20a has a plurality of magnetic poles (N pole as the first magnetic pole and S pole as the second magnetic pole). In the rotor magnet 20a, N poles (first magnetic poles) and S poles (second magnetic poles) are alternately arranged in the circumferential direction of the rotor magnet 20a. Between the magnetic poles adjacent to each other in the circumferential direction in the rotor magnet 20a, that is, between the first magnetic pole and the second magnetic pole is “between magnetic poles”. In the present embodiment, the rotor magnet 20a is magnetized to have 8 poles. That is, the number of magnetic poles of the rotor 20 (the number of magnetic poles of the rotor magnet 20a) is eight. However, the number of magnetic poles of the rotor 20 (rotor magnet 20a) is not limited to eight.
 電動機100の製造方法の一例について以下に説明する。
 図11は、電動機100の製造方法の一例を示すフローチャートである。電動機100の製造方法は、以下に説明されるステップを含む。
An example of a method for manufacturing the electric motor 100 will be described below.
FIG. 11 is a flowchart illustrating an example of a method for manufacturing the electric motor 100. The manufacturing method of the electric motor 100 includes the steps described below.
 ステップ1において、シャフト23の加工を行う。さらに、センサマグネット25の成形を行い、その成形後にセンサマグネット25の脱磁を行う。 In step 1, the shaft 23 is processed. Further, the sensor magnet 25 is molded, and after the molding, the sensor magnet 25 is demagnetized.
 ステップ2において、例えば、金型を用いて第1のマグネット21の成形を行い、第2のマグネット22を保持するマグネット保持部21aを第1のマグネット21に形成する。マグネット保持部21aの形成後、第1のマグネット21の脱磁を行う。 In step 2, for example, the first magnet 21 is molded using a mold, and a magnet holding portion 21 a that holds the second magnet 22 is formed in the first magnet 21. After the formation of the magnet holding portion 21a, the first magnet 21 is demagnetized.
 ステップ3において、例えば、金型を用いて第2のマグネット22の成形を行い、第1のマグネット21及び第2のマグネット22を用いて回転子マグネット20aを製作する。その製作後に、回転子マグネット20aの脱磁を行う。回転子マグネット20aの成形は、マグネット保持部21aに、第2のマグネット22の材料を流し込んで一体成形する方法に限られず、第2のマグネット22を予め成形し、成形された第2のマグネット22をマグネット保持部21aに挿入し、マグネット保持部21a内に固定してもよい。 In step 3, for example, the second magnet 22 is formed using a mold, and the rotor magnet 20 a is manufactured using the first magnet 21 and the second magnet 22. After the production, the rotor magnet 20a is demagnetized. The formation of the rotor magnet 20a is not limited to the method in which the material of the second magnet 22 is poured into the magnet holding portion 21a, and the second magnet 22 is formed in advance by molding the second magnet 22 in advance. May be inserted into the magnet holding part 21a and fixed in the magnet holding part 21a.
 ステップ4において、回転子マグネット20a、シャフト23、及びセンサマグネット25を金型に配置する。本実施の形態では、回転子マグネット20aが極異方性を持つように、成形及び磁化容易軸の配向が可能な金型が用いられる。 In step 4, the rotor magnet 20a, the shaft 23, and the sensor magnet 25 are placed in the mold. In the present embodiment, a mold capable of forming and orienting the axis of easy magnetization is used so that the rotor magnet 20a has polar anisotropy.
 ステップ5において、熱可塑性樹脂により、金型に配置された回転子マグネット20a及びセンサマグネット25を一体的に成形し、回転子20を形成する。 In Step 5, the rotor magnet 20a and the sensor magnet 25 arranged in the mold are integrally formed with a thermoplastic resin to form the rotor 20.
 ステップ6において、回転子20の着磁を行う。例えば、回転子20が極異方性を持つように、回転子マグネット20a(第1のマグネット21及び第2のマグネット22)の磁化容易軸の配向が行われる。 In step 6, the rotor 20 is magnetized. For example, the easy axis of the rotor magnet 20a (the first magnet 21 and the second magnet 22) is oriented so that the rotor 20 has polar anisotropy.
 ステップ7において、回転子20(具体的には、シャフト23)に軸受30a及び30bを取り付ける。
 以上に説明した各ステップにより、回転子20を製造することができる。
In Step 7, the bearings 30a and 30b are attached to the rotor 20 (specifically, the shaft 23).
The rotor 20 can be manufactured by the steps described above.
 ステップ8では、固定子10を製作する。具体的には、複数の電磁鋼板を積層して固定子コア11を製作し、固定子コア11に絶縁部12を取り付け、コイル13を絶縁部12に巻き付け、固定子10を製作する。 In step 8, the stator 10 is manufactured. Specifically, the stator core 11 is manufactured by laminating a plurality of electromagnetic steel plates, the insulating portion 12 is attached to the stator core 11, the coil 13 is wound around the insulating portion 12, and the stator 10 is manufactured.
 ステップ9では、固定子10に基板14を取り付けて固定子組立部10aを製作し、固定子組立部10a及びモールド樹脂部10bを一体的に成形することにより、モールド固定子10cを製作する。 In step 9, the base plate 14 is attached to the stator 10 to manufacture the stator assembly portion 10a, and the stator assembly portion 10a and the mold resin portion 10b are integrally formed to manufacture the mold stator 10c.
 ステップ10では、モールド固定子10c(具体的には、固定子10)の内側に、固定子10と回転子20との間にギャップが形成されるように回転子20を挿入する。さらに、モールド固定子10c(具体的には、固定子10)の負荷側に、ブラケット40を嵌め込む。
 以上に説明した工程により電動機100が組み立てられる。
In step 10, the rotor 20 is inserted inside the mold stator 10 c (specifically, the stator 10) so that a gap is formed between the stator 10 and the rotor 20. Further, the bracket 40 is fitted on the load side of the mold stator 10c (specifically, the stator 10).
The electric motor 100 is assembled by the processes described above.
 実施の形態1に係る電動機100及び電動機100の製造方法による効果について以下に説明する。
 一般に、希土類磁石は、高温環境下において減磁しやすい特性を持つ。そのため、固定子から発生される熱及び磁力などの影響を低減するため、固定子と回転子との間のギャップを大きくすることが望ましい。その一方、ギャップを大きくすると、電動機の効率が下がるという問題がある。そこで、実施の形態1に係る電動機100では、フェライト磁石が含有された第1のマグネット21に、希土類磁石が含有された第2のマグネット22を保持するマグネット保持部21aが形成されており、第1のマグネット21の磁力よりも大きい磁力を持つ第2のマグネット22が、そのマグネット保持部21aによって保持されている。これにより、固定子10と回転子20との間のギャップを大きくした場合であっても、希土類磁石を含む第2のマグネット22の減磁を抑制しながらも、電動機100の効率の低下を抑制することができる。
The effects of the electric motor 100 and the method for manufacturing the electric motor 100 according to Embodiment 1 will be described below.
In general, rare earth magnets have the property of being easily demagnetized in a high temperature environment. Therefore, it is desirable to increase the gap between the stator and the rotor in order to reduce the influence of heat and magnetic force generated from the stator. On the other hand, when the gap is increased, there is a problem that the efficiency of the electric motor decreases. Therefore, in the electric motor 100 according to the first embodiment, the first magnet 21 containing the ferrite magnet is provided with a magnet holding portion 21a that holds the second magnet 22 containing the rare earth magnet, A second magnet 22 having a magnetic force larger than that of the first magnet 21 is held by the magnet holding portion 21a. Accordingly, even when the gap between the stator 10 and the rotor 20 is increased, the efficiency reduction of the electric motor 100 is suppressed while suppressing the demagnetization of the second magnet 22 including the rare earth magnet. can do.
 さらに、マグネット保持部21aは、回転子20の径方向における外側端部(具体的には、第1のマグネット21の外縁21h)の内側に形成されている。すなわち、回転子20の径方向における第2のマグネット22の外側(固定子10と第2のマグネット22との間)に第1のマグネット21が備えられているので、第2のマグネット22による磁力を、第1のマグネット21の磁力によって補うことができる。その結果、回転子マグネット20aの磁力の低下を抑制することができるので、電動機100の出力低下及び効率低下が抑制され、電動機100の性能を向上させることができる。 Furthermore, the magnet holding portion 21 a is formed inside the outer end portion (specifically, the outer edge 21 h of the first magnet 21) in the radial direction of the rotor 20. That is, since the first magnet 21 is provided outside the second magnet 22 in the radial direction of the rotor 20 (between the stator 10 and the second magnet 22), the magnetic force generated by the second magnet 22 is provided. Can be supplemented by the magnetic force of the first magnet 21. As a result, a decrease in the magnetic force of the rotor magnet 20a can be suppressed, so that a decrease in output and efficiency of the motor 100 can be suppressed, and the performance of the motor 100 can be improved.
 一般に、回転子に希土類磁石を用いた場合、磁極間において減磁が発生しやすい。本実施の形態では、互いに隣接する第1及び第2のマグネット保持部21aは、回転子20の周方向に互いに離間しているため、磁極間に希土類磁石を含む第2のマグネット22が配置されていない。したがって、回転子20のうち、特に磁極間における減磁を抑制することが可能である。 Generally, when a rare earth magnet is used for the rotor, demagnetization tends to occur between the magnetic poles. In the present embodiment, since the first and second magnet holding portions 21a adjacent to each other are separated from each other in the circumferential direction of the rotor 20, the second magnet 22 including a rare earth magnet is disposed between the magnetic poles. Not. Therefore, it is possible to suppress demagnetization, particularly between the magnetic poles, in the rotor 20.
 さらに、互いに隣接する第1及び第2のマグネット保持部21aは、回転子20の周方向に互いに離間するように形成されており、各第2のマグネット22が互いに離間するように各マグネット保持部21aに配置されている。したがって、第2のマグネット22(例えば、希土類磁石)の使用量が削減されるので、回転子20のコストを低減することができる。 Further, the first and second magnet holding portions 21a adjacent to each other are formed so as to be separated from each other in the circumferential direction of the rotor 20, and the respective magnet holding portions are arranged so that the respective second magnets 22 are separated from each other. 21a. Accordingly, the amount of the second magnet 22 (for example, a rare earth magnet) used is reduced, so that the cost of the rotor 20 can be reduced.
 回転子樹脂部24の外筒部24cは、回転子マグネット20aの軸方向における両端面を覆うので、第2のマグネット22が回転子マグネット20a(具体的には、マグネット保持部21a)から外れることを防ぐことができる。 Since the outer cylinder part 24c of the rotor resin part 24 covers both end faces in the axial direction of the rotor magnet 20a, the second magnet 22 is detached from the rotor magnet 20a (specifically, the magnet holding part 21a). Can be prevented.
 第2のマグネット22とマグネット保持部21aとの間(例えば、クリアランス)に樹脂を備えることにより、第2のマグネット22のがたつきを防ぐことができる。例えば、回転子樹脂部24を成形する際に、第2のマグネット22とマグネット保持部21aとの間(例えば、クリアランス)に回転子樹脂部24の材料が入り込むように回転子樹脂部24を成形してもよい。これにより、クリアランスが低減されるので、第2のマグネット22のがたつきを防ぐことができる。 By providing resin between the second magnet 22 and the magnet holding portion 21a (for example, clearance), rattling of the second magnet 22 can be prevented. For example, when the rotor resin portion 24 is formed, the rotor resin portion 24 is formed so that the material of the rotor resin portion 24 enters between the second magnet 22 and the magnet holding portion 21a (for example, clearance). May be. Thereby, since the clearance is reduced, it is possible to prevent the second magnet 22 from rattling.
 回転子20が極異方性を持つように第1のマグネット21及び第2のマグネット22の磁化容易軸が配向されているので、回転子マグネット20aの外周の磁束分布が正弦波状になり、電動機100の効率が上がり、低騒音化することができる。 Since the easy magnetization axes of the first magnet 21 and the second magnet 22 are oriented so that the rotor 20 has polar anisotropy, the magnetic flux distribution on the outer periphery of the rotor magnet 20a becomes sinusoidal, and the electric motor The efficiency of 100 can be increased and the noise can be reduced.
 本実施の形態では、回転子マグネット20aの磁極数は8個であるが、この例に限定されず、任意の偶数であればよい。例えば、回転子マグネット20aの磁極数が偶数である場合、回転子マグネット20aの磁極数と第2のマグネット22の数が同じであればよい。 In the present embodiment, the number of magnetic poles of the rotor magnet 20a is 8, but the number of magnetic poles is not limited to this example and may be any even number. For example, when the number of magnetic poles of the rotor magnet 20a is an even number, the number of magnetic poles of the rotor magnet 20a and the number of second magnets 22 may be the same.
 本実施の形態では、第1のマグネット21及び第2のマグネット22は、熱可塑性樹脂を成形することによって形成される。ただし、第1のマグネット21及び第2のマグネット22を焼結磁石として形成してもよい。焼結磁石として形成された第1のマグネット21及び第2のマグネット22によって回転子マグネット20aを組み立てた場合でも上記で説明した効果と同様の効果が得られる。 In the present embodiment, the first magnet 21 and the second magnet 22 are formed by molding a thermoplastic resin. However, the first magnet 21 and the second magnet 22 may be formed as sintered magnets. Even when the rotor magnet 20a is assembled by the first magnet 21 and the second magnet 22 formed as sintered magnets, the same effect as described above can be obtained.
 実施の形態に係る電動機100の製造方法によれば、固定子10と回転子20との間のギャップを大きく設定した場合であっても、希土類磁石を含む第2のマグネット22の減磁が抑制される位置に第2のマグネット22を配置し、第1のマグネット21及び第2のマグネット22を一体的に成形することができる。その結果、効率の低下が抑制された電動機100を製造することができる。さらに、第1のマグネット21及び第2のマグネット22が一体的に成形されるので、電動機100の製造工程を削減することができ、電動機100のコストを低減することができる。 According to the method for manufacturing electric motor 100 according to the embodiment, demagnetization of second magnet 22 including the rare earth magnet is suppressed even when the gap between stator 10 and rotor 20 is set large. The 2nd magnet 22 can be arrange | positioned in the position to be formed, and the 1st magnet 21 and the 2nd magnet 22 can be shape | molded integrally. As a result, it is possible to manufacture the electric motor 100 in which the decrease in efficiency is suppressed. Furthermore, since the first magnet 21 and the second magnet 22 are integrally formed, the manufacturing process of the electric motor 100 can be reduced, and the cost of the electric motor 100 can be reduced.
実施の形態2.
 図12は、本発明の実施の形態2に係る空気調和機300の構成の一例を示す図である。
 空気調和機300は、室内機310と、室内機310に接続される室外機320とを備える。室内機310には図示しない室内機用送風機が搭載され、室外機320には室外機用送風機330が搭載されている。
Embodiment 2. FIG.
FIG. 12 is a diagram illustrating an example of a configuration of an air conditioner 300 according to Embodiment 2 of the present invention.
The air conditioner 300 includes an indoor unit 310 and an outdoor unit 320 connected to the indoor unit 310. An indoor unit blower (not shown) is mounted on the indoor unit 310, and an outdoor unit blower 330 is mounted on the outdoor unit 320.
 本実施の形態では、室外機用送風機330及び室内機用送風機には、その駆動源として実施の形態1の電動機100が使用されている。だたし、空気調和機300は、実施の形態1の電動機100を、室内機310及び室外機320の少なくとも1つに備えてもよい。 In the present embodiment, the electric motor 100 of the first embodiment is used as a drive source for the outdoor unit blower 330 and the indoor unit blower. However, the air conditioner 300 may include the electric motor 100 of Embodiment 1 in at least one of the indoor unit 310 and the outdoor unit 320.
 したがって、空気調和機300は、実施の形態1で説明した効果と同様の効果を得ることができる。さらに、空気調和機300の主用部品である室外機用送風機330及び室内機用送風機に電動機100を用いることにより、性能と品質が向上した空気調和機300を得ることが可能となる。 Therefore, the air conditioner 300 can obtain the same effects as those described in the first embodiment. Furthermore, by using the electric motor 100 for the outdoor unit blower 330 and the indoor unit blower that are main components of the air conditioner 300, the air conditioner 300 with improved performance and quality can be obtained.
 実施の形態1の電動機100は、空気調和機300以外の電気機器に搭載することもでき、この場合も、実施の形態1及び2で説明した効果と同様の効果を得ることができる。 The electric motor 100 of the first embodiment can be mounted on an electric device other than the air conditioner 300, and in this case, the same effects as those described in the first and second embodiments can be obtained.
 以上に説明した各実施の形態における特徴は、互いに適宜組み合わせることができる。 The features in the embodiments described above can be appropriately combined with each other.
 以上の各実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。 The configuration shown in each of the above embodiments is an example of the contents of the present invention, and can be combined with another known technique, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part.
 10 固定子、 10a 固定子組立部、 10b モールド樹脂部、 10c モールド固定子、 11 固定子コア、 12 絶縁部、 13 コイル、 14 基板、 15 基板押え部品、 16 端子、 20 回転子、 20a 回転子マグネット、 20b 軸穴、  21 第1のマグネット、 21a マグネット保持部、 21b 凹部、 21c 切欠、 21d 台座、 21e 第1の端面、 21f 第2の端面、 21g 突起、 21h 外縁、 21k 連結部、 21m 円弧状部分、 22 第2のマグネット、 22a 円弧状部分、 23 シャフト、 24 回転子樹脂部、 25 センサマグネット、 30a,30b 軸受、 40 ブラケット、 50 中空部、 100 電動機、 300 空気調和機、 310 室内機、 320 室外機。 10 Stator, 10a Stator Assembly, 10b Mold Resin, 10c Mold Stator, 11 Stator Core, 12 Insulation, 13 Coil, 14 Substrate, 15 Substrate Pressing Parts, 16 Terminal, 20 Rotor, 20a Rotor Magnet, 20b shaft hole, 21 first magnet, 21a magnet holder, 21b recess, 21c notch, 21d pedestal, 21e first end face, 21f second end face, 21g protrusion, 21h outer edge, 21k connecting part, 21m yen Arc part, 22 second magnet, 22a arc part, 23 shaft, 24 rotor resin part, 25 sensor magnet, 30a, 30b bearing, 40 bracket, 50 hollow part, 100 electric motor, 300 air conditioner, 310 indoor unit, 320 outdoor unit.

Claims (14)

  1.  固定子と、
     前記固定子の内側に備えられ、第1のマグネット及び少なくとも1つの第2のマグネットを有する回転子と
     を備え、
     前記第1のマグネットは、前記少なくとも1つの第2のマグネットを保持する少なくとも1つの保持部を有し、
     前記少なくとも1つの第2のマグネットは、前記少なくとも1つの保持部によって保持されており、
     前記少なくとも1つの第2のマグネットの磁力は、前記第1のマグネットの磁力よりも大きい
     電動機。
    A stator,
    A rotor provided inside the stator and having a first magnet and at least one second magnet;
    The first magnet has at least one holding portion for holding the at least one second magnet,
    The at least one second magnet is held by the at least one holding portion;
    The electric force of the at least one second magnet is larger than the magnetic force of the first magnet.
  2.  前記第1のマグネットは、環状に形成されている請求項1に記載の電動機。 The electric motor according to claim 1, wherein the first magnet is formed in an annular shape.
  3.  前記第1のマグネットは、前記回転子の径方向における外側端部に形成された外縁を有し、
     前記少なくとも1つの保持部は、前記回転子の径方向における前記外縁の内側に形成されている
     請求項1又は2に記載の電動機。
    The first magnet has an outer edge formed at an outer end in a radial direction of the rotor,
    The electric motor according to claim 1, wherein the at least one holding portion is formed inside the outer edge in a radial direction of the rotor.
  4.  前記回転子は、極異方性を持つ請求項1から3のいずれか1項に記載の電動機。 The motor according to any one of claims 1 to 3, wherein the rotor has polar anisotropy.
  5.  前記少なくとも1つの第2のマグネットの外縁は、円弧状部分を有する請求項1から4のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 4, wherein an outer edge of the at least one second magnet has an arc-shaped portion.
  6.  前記第1のマグネットは、フェライト磁石を含有する請求項1から5のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 5, wherein the first magnet contains a ferrite magnet.
  7.  前記少なくとも1つの第2のマグネットは、希土類磁石を含有する請求項1から6のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 6, wherein the at least one second magnet includes a rare earth magnet.
  8.  前記少なくとも1つの保持部は、貫通孔である請求項1から7のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 7, wherein the at least one holding portion is a through hole.
  9.  前記少なくとも1つの第2のマグネットと前記少なくとも1つの保持部の内壁との間に樹脂が備えられた請求項1から8のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 8, wherein a resin is provided between the at least one second magnet and an inner wall of the at least one holding portion.
  10.  前記少なくとも1つの保持部のうちの第1の保持部は、前記少なくとも1つの第2のマグネットのうちの1つの第2のマグネットを保持し、
     前記少なくとも1つの保持部のうちの第2の保持部は、前記1つの第2のマグネットとは異なる他の第2のマグネットを保持する
     請求項1から9のいずれか1項に記載の電動機。
    The first holding part of the at least one holding part holds one second magnet of the at least one second magnet,
    The electric motor according to any one of claims 1 to 9, wherein a second holding unit among the at least one holding unit holds another second magnet different from the one second magnet.
  11.  互いに隣接する前記第1の保持部及び前記第2の保持部は、前記回転子の周方向に互いに離間している請求項10に記載の電動機。 The electric motor according to claim 10, wherein the first holding part and the second holding part adjacent to each other are separated from each other in a circumferential direction of the rotor.
  12.  室内機と前記室内機に接続された室外機とを備え、
     前記室内機及び前記室外機の少なくとも1つに、請求項1から11のいずれか1項に記載の電動機が備えられた
     空気調和機。
    An indoor unit and an outdoor unit connected to the indoor unit,
    An air conditioner in which the electric motor according to any one of claims 1 to 11 is provided in at least one of the indoor unit and the outdoor unit.
  13.  第1のマグネット及び少なくとも1つの第2のマグネットを備える回転子であって、
     前記第1のマグネットは、前記少なくとも1つの第2のマグネットを保持する少なくとも1つの保持部を有し、
     前記少なくとも1つの第2のマグネットは、前記少なくとも1つの保持部によって保持されており、
     前記少なくとも1つの第2のマグネットの磁力は、前記第1のマグネットの磁力よりも大きい
     回転子。
    A rotor comprising a first magnet and at least one second magnet,
    The first magnet has at least one holding portion for holding the at least one second magnet,
    The at least one second magnet is held by the at least one holding portion;
    The magnetic force of the at least one second magnet is larger than the magnetic force of the first magnet.
  14.  第1及び第2のマグネットを有する回転子と、固定子とを備える電動機の製造方法であって、
     前記第1のマグネットを成形し、前記第2のマグネットを保持する保持部を、前記第1のマグネットに形成するステップと、
     前記保持部に、前記第1のマグネットの磁力よりも大きい磁力を持つ前記第2のマグネットを成形するステップと、
     前記第1及び第2のマグネットを用いて前記回転子を形成するステップと、
     前記固定子の内側に前記回転子を挿入するステップと
     を備える電動機の製造方法。
    A method of manufacturing an electric motor comprising a rotor having first and second magnets and a stator,
    Forming the first magnet, and forming a holding portion for holding the second magnet in the first magnet;
    Forming the second magnet having a magnetic force larger than the magnetic force of the first magnet in the holding portion;
    Forming the rotor using the first and second magnets;
    Inserting the rotor inside the stator; and a method of manufacturing an electric motor.
PCT/JP2016/071514 2016-07-22 2016-07-22 Electric motor, air conditioner, rotor, and method of manufacturing electric motor WO2018016067A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018528179A JPWO2018016067A1 (en) 2016-07-22 2016-07-22 Electric motor, air conditioner, rotor, and method of manufacturing electric motor
PCT/JP2016/071514 WO2018016067A1 (en) 2016-07-22 2016-07-22 Electric motor, air conditioner, rotor, and method of manufacturing electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071514 WO2018016067A1 (en) 2016-07-22 2016-07-22 Electric motor, air conditioner, rotor, and method of manufacturing electric motor

Publications (1)

Publication Number Publication Date
WO2018016067A1 true WO2018016067A1 (en) 2018-01-25

Family

ID=60992735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071514 WO2018016067A1 (en) 2016-07-22 2016-07-22 Electric motor, air conditioner, rotor, and method of manufacturing electric motor

Country Status (2)

Country Link
JP (1) JPWO2018016067A1 (en)
WO (1) WO2018016067A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192236A1 (en) * 2020-03-27 2021-09-30
JPWO2022054149A1 (en) * 2020-09-09 2022-03-17

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205745A (en) * 1996-01-25 1997-08-05 Shibaura Eng Works Co Ltd Motor
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP2006020379A (en) * 2004-06-30 2006-01-19 Honda Motor Co Ltd Process and apparatus for manufacturing rotor
JP2007208104A (en) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd Compound bond magnet molding
JP2010283978A (en) * 2009-06-04 2010-12-16 Kayaba Ind Co Ltd Electric motor and its rotor
JP2013110827A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Rotor structure of motor
JP2015510388A (en) * 2012-03-13 2015-04-02 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Electric machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081209B2 (en) * 1989-02-10 2000-08-28 知之 奥村 Tweeter with composite structure magnet
JPH073278U (en) * 1993-06-22 1995-01-17 株式会社三協精機製作所 Small DC motor
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
JP4238588B2 (en) * 2003-02-03 2009-03-18 愛知製鋼株式会社 Motor, motor rotor and composite anisotropic magnet
JP2005045978A (en) * 2003-07-25 2005-02-17 Favess Co Ltd Motor
JP4704883B2 (en) * 2005-10-21 2011-06-22 三菱電機株式会社 Permanent magnet rotating electrical machine and cylindrical linear motor
JP2010068600A (en) * 2008-09-09 2010-03-25 Mitsubishi Electric Corp Permanent magnet motor and hermetic compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205745A (en) * 1996-01-25 1997-08-05 Shibaura Eng Works Co Ltd Motor
JP2006020379A (en) * 2004-06-30 2006-01-19 Honda Motor Co Ltd Process and apparatus for manufacturing rotor
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP2007208104A (en) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd Compound bond magnet molding
JP2010283978A (en) * 2009-06-04 2010-12-16 Kayaba Ind Co Ltd Electric motor and its rotor
JP2013110827A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Rotor structure of motor
JP2015510388A (en) * 2012-03-13 2015-04-02 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Electric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192236A1 (en) * 2020-03-27 2021-09-30
WO2021192236A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Rotor, motor, blower, air-conditioning device, and method for manufacturing rotor
JP7309039B2 (en) 2020-03-27 2023-07-14 三菱電機株式会社 ROTOR, ELECTRIC MOTOR, BLOWER, AIR CONDITIONER, AND ROTOR MANUFACTURING METHOD
US12249871B2 (en) 2020-03-27 2025-03-11 Mitsubishi Electric Corporation Rotor, motor, blower, air conditioner, and manufacturing method of rotor
JPWO2022054149A1 (en) * 2020-09-09 2022-03-17
WO2022054149A1 (en) * 2020-09-09 2022-03-17 三菱電機株式会社 Rotor, electric motor, blower, and air conditioning device
JP7415024B2 (en) 2020-09-09 2024-01-16 三菱電機株式会社 Electric motors, blowers and air conditioners

Also Published As

Publication number Publication date
JPWO2018016067A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US11456632B2 (en) Consequent-pole type rotor, electric motor, air conditioner, and method for manufacturing consequent-pole type rotor
US9350206B2 (en) Axial gap rotating electrical machine
WO2017159858A1 (en) Rotor for electric motor, and brushless motor
JPWO2020017133A1 (en) Distributed winding radial gap type rotary electric machine and its stator
WO2016203524A1 (en) Permanent magnet electric motor
CN110915103A (en) Rotor, motor, blower, air conditioner, and method for manufacturing rotor
CN204497871U (en) The rotor of motor, motor and air conditioner
CN109792174B (en) Motor and air conditioner
JP6328338B2 (en) Electric motor and air conditioner
JP4246136B2 (en) Manufacturing method of electric motor rotor, electric motor rotor, electric motor, air conditioner, refrigerator, ventilation fan, and electric motor rotor resin mold
JP4782083B2 (en) Motor rotor, motor and air conditioner
JP6373505B2 (en) Electric motor and air conditioner
JP2012125054A (en) Rotary electric machine
JP2005102390A (en) Electric motor rotor, electric motor rotor manufacturing method, electric motor rotor resin molding mold, electric motor, and air conditioner
WO2018016067A1 (en) Electric motor, air conditioner, rotor, and method of manufacturing electric motor
JP2007325405A (en) Rotor manufacturing method for inner rotor type motor and inner rotor type motor
JP6062068B2 (en) Electric motor and air conditioner
JP6366844B2 (en) Electric motor and air conditioner
EP3223409A2 (en) Orientation magnetization device and magnet-embedded rotor
JP6545383B2 (en) Rotor, motor, air conditioner, and method of manufacturing rotor
JP6591076B2 (en) Electric motor and air conditioner
WO2016203609A1 (en) Electric motor and air-conditioner
CN117501591A (en) Rotor, method for manufacturing same, and motor
CN118765480A (en) Rotating electric machines
WO2006109679A1 (en) Stepping motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528179

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909542

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载