WO2018013009A1 - Catalyseur d'oxydation sélective de sulfure d'hydrogène (et variantes) et différents processus l'utilisant - Google Patents
Catalyseur d'oxydation sélective de sulfure d'hydrogène (et variantes) et différents processus l'utilisant Download PDFInfo
- Publication number
- WO2018013009A1 WO2018013009A1 PCT/RU2017/000497 RU2017000497W WO2018013009A1 WO 2018013009 A1 WO2018013009 A1 WO 2018013009A1 RU 2017000497 W RU2017000497 W RU 2017000497W WO 2018013009 A1 WO2018013009 A1 WO 2018013009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- hydrogen sulfide
- oxidation
- vol
- sulfur
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 229
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 114
- 230000008569 process Effects 0.000 title claims abstract description 108
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 92
- 230000003647 oxidation Effects 0.000 title claims abstract description 89
- 239000007789 gas Substances 0.000 claims abstract description 105
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 81
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 71
- 239000000203 mixture Substances 0.000 claims abstract description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000011148 porous material Substances 0.000 claims abstract description 37
- 229910000323 aluminium silicate Inorganic materials 0.000 claims abstract description 32
- 229910052742 iron Inorganic materials 0.000 claims abstract description 30
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims abstract description 26
- 150000004760 silicates Chemical class 0.000 claims abstract description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000001257 hydrogen Substances 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 13
- 239000011651 chromium Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 9
- 239000010941 cobalt Substances 0.000 claims abstract description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000010949 copper Substances 0.000 claims abstract description 9
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 239000011701 zinc Substances 0.000 claims abstract description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 150000002506 iron compounds Chemical class 0.000 claims abstract description 8
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 239000011733 molybdenum Substances 0.000 claims abstract description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 239000010937 tungsten Substances 0.000 claims abstract description 6
- 239000002737 fuel gas Substances 0.000 claims abstract description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims abstract 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 119
- 229910052717 sulfur Inorganic materials 0.000 claims description 51
- 239000011593 sulfur Substances 0.000 claims description 51
- 238000000746 purification Methods 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- 239000001301 oxygen Substances 0.000 claims description 23
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 22
- 235000013980 iron oxide Nutrition 0.000 claims description 15
- 150000002736 metal compounds Chemical class 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 10
- 239000003345 natural gas Substances 0.000 claims description 10
- 239000011149 active material Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052755 nonmetal Inorganic materials 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical class [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 239000008187 granular material Substances 0.000 claims description 7
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical class [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 7
- 238000005984 hydrogenation reaction Methods 0.000 claims description 5
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 claims description 5
- 235000021317 phosphate Nutrition 0.000 claims description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims description 5
- 150000003464 sulfur compounds Chemical class 0.000 claims description 5
- 150000001639 boron compounds Chemical class 0.000 claims description 4
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 4
- 150000003018 phosphorus compounds Chemical class 0.000 claims description 4
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000000571 coke Substances 0.000 claims description 3
- 238000006477 desulfuration reaction Methods 0.000 claims description 3
- 230000023556 desulfurization Effects 0.000 claims description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052622 kaolinite Inorganic materials 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229910001463 metal phosphate Inorganic materials 0.000 claims description 3
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 3
- 229910052615 phyllosilicate Inorganic materials 0.000 claims description 3
- 229910052902 vermiculite Inorganic materials 0.000 claims description 3
- 239000010455 vermiculite Substances 0.000 claims description 3
- 235000019354 vermiculite Nutrition 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 239000002912 waste gas Substances 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 16
- 238000005516 engineering process Methods 0.000 abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 4
- 239000001569 carbon dioxide Substances 0.000 abstract description 4
- 239000005864 Sulphur Substances 0.000 abstract 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract 1
- 239000004291 sulphur dioxide Substances 0.000 abstract 1
- 235000010269 sulphur dioxide Nutrition 0.000 abstract 1
- 230000003197 catalytic effect Effects 0.000 description 27
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 10
- 238000011068 loading method Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 235000014692 zinc oxide Nutrition 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001845 chromium compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- KSECJOPEZIAKMU-UHFFFAOYSA-N [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] Chemical compound [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] KSECJOPEZIAKMU-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 description 1
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 description 1
- GQDHEYWVLBJKBA-UHFFFAOYSA-H copper(ii) phosphate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GQDHEYWVLBJKBA-UHFFFAOYSA-H 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical class [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- DDSZSJDMRGXEKQ-UHFFFAOYSA-N iron(3+);borate Chemical compound [Fe+3].[O-]B([O-])[O-] DDSZSJDMRGXEKQ-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/52—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/16—Clays or other mineral silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/16—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
- B01J27/18—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/02—Preparation of sulfur; Purification
- C01B17/04—Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
Definitions
- the invention relates to a catalyst for the selective oxidation of hydrogen sulfide to sulfur in gases of various origin containing 0.3-15.0% vol. Hydrogen sulfide, and can be used in enterprises of gas processing, petrochemical and other industries, in particular, for the purification of process exhaust gases Klaus, low-sulfur natural and associated petroleum gases, emissions from chemical industries, for the purification of biogas.
- a catalyst for the selective oxidation of hydrogen sulfide to sulfur in gases of various origin containing 0.3-15.0% vol. Hydrogen sulfide can be used in enterprises of gas processing, petrochemical and other industries, in particular, for the purification of process exhaust gases Klaus, low-sulfur natural and associated petroleum gases, emissions from chemical industries, for the purification of biogas.
- Process and natural gases containing hydrogen sulfide are multicomponent gas mixtures, and may contain H 2 S (0.3-15 vol.%), S0 2 , organosulfur sulfur compounds (mercaptans, COS, CS 2 ), water vapor (3-40 vol.%), Carbon monoxide, carbon dioxide, hydrogen, saturated and / or aromatic hydrocarbons, nitrogen.
- H 2 S 0.3-15 vol.%
- S0 2 organosulfur sulfur compounds
- COS carbon dioxide
- CS 2 water vapor
- Carbon monoxide carbon dioxide
- hydrogen hydrogen
- saturated and / or aromatic hydrocarbons nitrogen.
- various gas purification options are possible - catalytic, adsorption, adsorption-catalytic.
- the main parameters that determine the optimal technology for processing sulfur-containing gases are the composition of the gases (especially the content of hydrogen sulfide and water vapor) and the properties of the catalysts used.
- the catalyst In the presence of certain impurities in the gas composition — saturated and / or aromatic hydrocarbons, carbon monoxide, and hydrogen, the catalyst can be deactivated due to soot deposits in the pores of the catalyst.
- the oxidation of hydrogen sulfide to sulfur is carried out in one step at temperatures of 200-300 ° C. In cases of hydrogen sulfide content of more than 2.5 vol.% (Up to 15 vol.%), The process is carried out in several successive reactors, or in one multisection reactor with a batch supply of oxygen to each reactor or section, or in a reactor with a fluidized bed of catalyst.
- the exhaust gases from Klaus plants may contain: 1-2 vol.% H 2 S, 1 vol.% SO2, up to 0.4 vol.% COS and up to 0.3 vol.% CS 2 , steam sulfur (1-8 g / m 3 ), and water vapor up to 40 vol.%.
- the level of global sulfur recovery requires at least 99.5%
- Processes of this type are widely known - the process Catasulf ® company BASF, the process BSR / Selectox ® company Unocal, Modop ® process company Mobil Oil, processes Superclaus 99 and Superclaus 99.5 company Jacobs Nederland BV ( «World sulfur, N, P and K ', J42 4, 1994, p. 32).
- a known method of conducting the process of selective oxidation of hydrogen sulfide, when the stage of selective oxidation of hydrogen sulfide is carried out in an inert liquid medium at temperatures of 120-160 ° C (US patent 5897850, IPC B01D53 / 52, B01D53 / 86, C01B17 / 04, publ. 27.04.1999).
- the disadvantage of this process is the technological difficulties of conducting liquid phase oxidation, the presence of acidic effluents, corrosion of equipment, and the high cost of the technology.
- a gas containing less than 1 vol.% H 2 S, hydrogen and about 5 vol.% H 2 0 is reheated to 230 ° C, mixed with air and fed to a catalytic oxidation reactor, where hydrogen sulfide is oxidized to sulfur in the presence of a catalyst for selective oxidation of hydrogen sulfide (patent US 5037629, IPC B01D53 / 86, B01J23 / 745, B01J23 / 86, B01J35 / 10, C01B17 / 04, C10K1 / 34, publ. 08/08/1991; patent RU 2232128, IPC C01B17 / 04, B01D53 / 86, published July 10, 2004).
- the process of removing elemental sulfur from gas streams is known, in which, in the first stage, hydrogen sulfide and sulfur vapor are oxidized to S0 2 , in the second stage, all sulfur dioxide is reduced to hydrogen sulfide in the presence of a hydrogenation / hydrogenation catalyst, and then, in the third stage, selective oxidation of hydrogen sulfide to sulfur in the presence of a selective oxidation catalyst (patent RU 2438764, IPC B01D53 / 86, publ. 10.01.2012).
- a cost-effective process is the selective oxidation of hydrogen sulfide in the exhaust gases of the Claus process, in which the oxidation of hydrogen sulfide to sulfur is carried out in a gas stream with a controlled hydrogen sulfide content in the range of 0.8-3.0 vol.%, Preferably containing hydrogen sulfide - less than 1.5 vol. % and water vapor - not more than 30% vol.
- the catalyst To achieve high rates of gas purification from hydrogen sulfide, the catalyst must provide a sulfur yield of at least 85% in the operating temperature range of 200-300 ° C. It is known that vanadium-containing catalysts are characterized by a high degree of H 2 S conversion in the temperature range 200–300 ° C.
- Known oxidation catalyst H 2 S which is an oxide and / or vanadium sulfide on a non-alkaline refractory carrier
- vanadium-containing catalysts are usually active in hydrocarbon oxidation reactions, which leads to rapid deactivation due to soot deposits on the catalyst surface.
- titanium-containing catalysts are highly active in the selective oxidation of hydrogen sulfide, but only when the water vapor content is not more than 10 vol.% (Patent SU 1837957, IPC B01J21 / 06, C01B17 / 04, publ. 30.08.1993, patent EP 0078690 , IPC B01J21 / 06, B01D53 / 86, ⁇ 01 ⁇ 17/04, ⁇ 1J, B01D, publ.
- Iron-containing catalysts are known to be highly effective catalysts for the oxidation of hydrogen sulfide, and in terms of the sum of their properties — high activity, selectivity, low toxicity, low cost, and high strength, these catalysts are of the greatest interest. Massive and supported type iron-containing catalysts are known for the selective oxidation of hydrogen sulfide to sulfur.
- iron-containing catalysts supported on a SiC-2 carrier US patent 6207127, IPC B01J23 / 76, ⁇ 01 ⁇ 17 / 04, publ. 03/27/2001.
- the proposed catalysts are characterized by a content of catalytically active material of 0.1-50 wt.%, Specific surface area of 20-350 m 2 / g, a total pore volume of 0.6-0.7 cm 3 / g, an average pore radius of 40-500 A.
- the active material may contain iron and chromium compounds in an amount of 0.1-40 wt.% (patent US 5352422, IPC B01D53 / 52, B01D53 / 86, B01J21 / 08, B01J23 / 70, B01J23 / 74, B01J23 / 745, B01J23 / 85, B01J23 / 86, B01J27 / 185, B01J35 / 10, C01B17 / 04, C10K1 / 34, publ.
- Known supported type catalyst for the selective oxidation of H 2 S in sulfur for purification of exhaust gases of the Claus process (patent US 6083473, IPC C01B17 / 00, B01J21 / 00, C01B17 / 04, C01B17 / 02, B01J21 / 16, publ. 07/04/2000) containing iron oxides on a Si0 2 support and oxides of other compounds, for example: chromium, manganese, cobalt and / or nickel in an amount of from 0.1 to 10 wt.% And additionally containing phosphorus and / or sodium compounds.
- Known supported type catalyst (patent RU 2405738, IPC ⁇ 01 ⁇ 17 / 04, B01J37 / 02, B01J37 / 08, published December 10, 2010) intended for the oxidation of hydrogen sulfide by oxygen or air at a temperature of 180-320 ° C, and representing a salt or a mixture of salts on a silicon-containing carrier, where salts are used phosphates, or fluorides, or borates of metals selected from the group: iron, cobalt, nickel, copper or a mixture thereof, and including hydroxyl groups in the range of 0.05-20 ⁇ mol / g.
- the catalysts are characterized by low bulk density, and very low mechanical strength. It is known that supported type iron oxide catalysts are rapidly deactivated due to the conversion of iron oxide to surface iron sulfates ("Deactivation of Claus tail-gas treating Catalysts, Cat. Deact.”, Berben PH, Scholten A., Titulaer MK, Brahma N., Van der Wal WJJ and Geus JW, 1987, p. 303-319). In addition, in the presence of aromatic hydrocarbons (1000 ppmv) in acid gas, carbonization of the catalyst is observed. Water vapor also has a deactivating effect, leading to a sharp decrease in strength due to hydrothermal aging (Ind.Eng.Chem.Res. 2007, 46, 6338-6344).
- Massive type iron-containing catalysts are active and more resistant to the reaction medium.
- Massive type catalysts are known, which mainly include iron oxide (patent SU 871813, IPC ⁇ 01 ⁇ 17 / 04, B01J23 / 745, publ. 15.10.1981), or iron compounds and other metals, for example iron, magnesium, zinc and chromium - Fe A MgBZn with CrD (patent US 5603913, IPC B01J23 / 86, C01B17 / 00, C01B17 / 16, C01B17 / 04, B01J 23/76, publ.
- the closest technical solution to the claimed invention is a catalyst for the selective oxidation of hydrogen sulfide and the process of selective oxidation of hydrogen sulfide with oxygen in the presence of 0-30 vol.% Water vapor, in the temperature range 200-300 ° C at a gas flow rate of 900-4000 hours "1 , providing a sulfur yield of at least 85% under the specified operating conditions (patent RU 2288888, IPC ⁇ 1 ⁇ 17/04, B01D53 / 86, B01J27 / 18, B01J37 / 04, B01J37 / 08, published December 10, 2006).
- Catalyst for selective oxidation hydrogen sulfide includes iron compounds and modifying add Ku, which is used as oxygen-containing phosphorus compounds, especially phosphoric acid, has the following composition, wt% based on the oxides:.. Fe 2 March 83-89, P 2 0 5 11-17
- the catalyst is not sensitive to water, it is not need to condense during operation.
- the main disadvantage of this catalyst is its non-optimized texture, namely: high bulk density, low total pore volume, minimum pore volume with a radius of 100-1000 A. These characteristics reduce the efficiency of catalyst use in processes based on the use of the selective hydrogen sulfide oxidation reaction.
- the basis of the invention is the task of developing an effective iron-containing catalyst for selective oxidation hydrogen sulfide with an optimized structure and oxidation of hydrogen sulfide on iron-containing catalysts with an optimized texture in multicomponent gas mixtures containing H2S 0.3-15 vol.%, S0 2 , water vapor up to 40 vol.%, carbon monoxide, carbon dioxide, hydrogen, hydrocarbons nitrogen; with a ratio of 0 2 / H 2 S in the range of 0.15-5.0.
- the problem is solved using a variant of the catalyst for the selective oxidation of hydrogen sulfide into elemental sulfur, including iron compounds and oxygen-containing non-metal compounds.
- the catalyst additionally contains silicates and / or aluminosilicates in an amount of 1.0-40.0 wt.%,
- the catalyst as oxygen-containing non-metal compounds contains phosphorus and / or boron compounds and has the following composition, in terms of oxide, wt.%:
- silicates and / or aluminosilicates 1.0-40.0 silicates and / or aluminosilicates 1.0-40.0.
- the problem is solved using the second version of the catalyst for the selective oxidation of hydrogen sulfide in elemental sulfur, including iron compounds, oxygen-containing non-metal compounds.
- the catalyst additionally contains silicates and / or aluminosilicates in an amount of 1.0-40.0 wt.% And at least one metal compound selected from the group: cobalt, manganese, zinc, chromium, copper, nickel, titanium, molybdenum, tungsten, vanadium in an amount of 0.1-30.0 wt.%, the catalyst as oxygen-containing non-metal compounds contains phosphorus and / or boron compounds and has the following composition, in terms of oxide, wt.%:
- the catalyst contains synthetic and / or natural aluminosilicates, silicates, or mixtures thereof, selected from the group: kaolinite, bentonite, montmorillonite, bidellite, argillite, vermiculite, phyllosilicate, amorphous silica.
- the total pore volume of the catalyst is 0.10-0.40 cm 3 / g
- the BET specific surface area is 3-60 m 3 / g.
- the strength of the catalyst is 3-12 MPa.
- the strength of the catalyst is 4-6 MPa.
- the catalyst has an average pore diameter of 300-1800 A.
- the catalyst contains a metal in the form of oxide and / or phosphorus salts and / or boron salts.
- the catalyst contains a catalytically active material in an amount of not less than 60 wt.% And mainly in the form of a mixture of metal oxides and phosphates / borates.
- the catalytically active catalyst material contains predominantly iron phosphates with a crystallite size of 1-70 nm and iron oxides with a crystallite size of 20-100 nm.
- the catalyst is in the form of a handle, sphere, ring, honeycomb block.
- the catalyst has a granule size of 2-12 mm.
- the catalyst does not have activity in the Klaus reaction, as well as in the reactions of deep oxidation of hydrocarbons, hydrogen, carbon monoxide at temperatures up to 400 ° C.
- the problem is solved using the process of oxidation of hydrogen sulfide by passing a gas mixture comprising hydrogen sulfide and oxygen over an iron-containing catalyst.
- the oxidation is carried out in the presence of catalysts containing silicates and / or aluminosilicates in an amount of 1.0-40.0 wt.% And oxygen-containing compounds of phosphorus and / or boron and the catalyst has the following composition, in terms of oxide, wt.%:
- the catalyst has the following composition, in terms of oxide, wt.%:
- P 2 0 5 / B 2 0 5 14.0-25.0 at least one compound of an additional metal selected from the group: cobalt, manganese, zinc, chromium, copper, nickel, titanium, molybdenum, tungsten, vanadium, in terms of oxide 0.1-30.0 wt.%.
- silicates and / or aluminosilicates 1.0-40.0 silicates and / or aluminosilicates 1.0-40.0.
- the process of selective oxidation of hydrogen sulfide to elemental sulfur is carried out at a temperature of 200-300 ° C, followed by separation of the formed sulfur.
- the hydrogen sulfide oxidation process is carried out at a hydrogen sulfide content of 0.3-15% by volume.
- the hydrogen sulfide oxidation process is carried out at a hydrogen sulfide content of 0.8-1.5 vol.%.
- the hydrogen sulfide oxidation process is carried out with a hydrogen sulfide content of 0.3-15 vol.% And a ratio of 0 2 / H 2 S in the range 0.15-5.0.
- the hydrogen sulfide oxidation process is carried out at an O2 / H2S ratio in the range of 0.55-1.0.
- the volumetric transmission rate of the gas mixture is 450-9000 hours 1 .
- the volumetric flow rate of the gas mixture is 450-1800 hours 1 .
- the hydrogen sulfide oxidation process is carried out in the presence of water vapor with a water vapor content of up to 40 vol.%.
- the process is used for desulfurization of the Claus process exhaust gas, purification of biogas, natural gas, fuel gas, coke oven gas, chemical plant exhaust gas.
- the process is carried out in the third and / or fourth reactor of the sulfur production unit according to the Klaus process after the preliminary stage of reduction of sulfur compounds: SO2, sulfur vapor, mercaptans, COS, CS 2 to hydrogen sulfide in the presence of a hydrogenation-hydrogenation catalyst at a temperature of 200-350 ° C.
- the process is carried out in the presence of a catalyst by passing a gas mixture with a H 2 S content of 0.3-15 vol.%, Water vapor up to 40 vol. % in a cascade of reactors arranged in series, while air is supplied separately to each reactor in an amount corresponding to the oxygen supply at an O2 / H2S ratio in the range 0.15-5.0.
- the process is carried out at a temperature of more than 350 ° C. to oxidize hydrogen sulfide to sulfur dioxide with an O2 / H2S ratio of more than 2.0, with a volumetric flow rate of the gas mixture of 450-6000 hr '1 , with a water vapor content of up to 30 vol.%
- the process is used for purification of the tail gases of the Claus process, where the complete oxidation of H 2 S to SO2 is carried out in the first stage, all sulfur compounds are reduced to H 2 S in the second stage, and selective oxidation in the presence of the iron-containing catalyst described above is carried out in the third stage .
- the technical result of the proposed solution is an iron-containing catalyst for the selective oxidation of hydrogen sulfide into elemental sulfur, which is characterized by an optimized texture: reduced bulk density, increased pore volume, average pore diameter of 300-1800 A, and providing a sulfur yield of at least 85% in the temperature range 200-300 ° C in multicomponent gas mixtures containing H 2 S 0.3-15 vol.%, Water vapor up to 40 vol.%, Sulfur dioxide, carbon monoxide, carbon dioxide, hydrogen, hydrocarbons, nitrogen; with a ratio of 0 2 / H 2 S in the range 0.15-5.0, variants of iron-containing catalysts for the selective oxidation of hydrogen sulfide and oxidation processes of hydrogen sulfide on iron-containing catalysts with an optimized texture that can be used, depending on the conditions of the processes in various technologies - for the desulfurization of the exhaust gases of the Klaus process, the purification of biogas, natural gas, fuel gases, coke oven gases, waste gases from chemical plants.
- the method of preparation of the catalyst options is based on mixing iron compounds in the form of oxides, hydroxides, salts and / or mixtures thereof with oxygen-containing compounds of phosphorus and / or boron, porous structures and / or plasticizing additives, aluminosilicates / or silicates.
- At least one metal selected from the group of cobalt, manganese, zinc, chromium, copper, nickel, titanium, molybdenum, tungsten, and vanadium is additionally introduced into the composition of the catalyst. After mixing all the components, extrusion, drying and heat treatment are carried out at temperatures of 300-750 ° C.
- the proposed iron-containing catalysts are characterized by an optimized texture, which allows to achieve a high initial catalytic activity and minimize catalyst deactivation due to sulfur deposits in the pores of the catalysts, which increases the period of effective operation.
- the proposed iron-containing catalysts are characterized by minimal activity in the Klaus reaction, which allows to achieve high selectivity of the process of oxidation of hydrogen sulfide at a temperature of 200-300 ° C.
- the granules of the catalysts have high mechanical strength (on average 4 MPa), which is important for maintaining their integrity during transportation and loading into the reactor, and also minimizes the growth of hydrodynamic resistance to flow due to the destruction of the granules during operation of the catalysts.
- Tables 1-2 show the compositional options and physicochemical properties of the obtained catalysts and prototype.
- the specific surface area for nitrogen was measured on a GC-1 gas meter according to GOST 23401 for nitrogen adsorption by the BET method.
- the crushing strength of the catalyst along the generatrix (MPa) was determined on the MP-9C instrument by the ultimate fracture force, referred to the conditional cross section of the granule.
- the pore size distribution was measured by the method of mercury porosimetry on a poromer 2000 of the Caglio Erba company (Italy). Measurement of the mass fractions of the components of the catalysts was carried out on a Spectroscan instrument.
- X-ray analysis of the samples was carried out on a D8 Advance powder diffractometer (Vgakeg company) in CUKO radiation, in the following modes: scanning step - 0.1 °, signal accumulation time 7 sec / point, voltage and incandescent current 40 kV and 40 tA, respectively.
- the interpretation of the obtained diffraction patterns was carried out using the 2006 ICDD powder diffraction database.
- the catalytic activity was measured in a laboratory setup using a flow-type quartz reactor, and the reaction mixture was analyzed by chromatographic method.
- the mass is mixed, molded in the form of a shank with a diameter of 5 mm, dried, calcined.
- the catalyst has an average pore diameter of 550 A.
- the catalytically active catalyst material contains iron ortho-phosphate, iron borate and iron oxide with a crystal size of 55 nm.
- Example 2 The preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.%:
- the catalyst has the shape of a shank with a diameter of 5 mm and a length of 5-6 mm.
- the catalyst has an average pore diameter of 843 A.
- the catalytically active catalyst material contains iron ortho-phosphate with a crystallite size of 25 nm and iron oxide with a crystallite size of 75 nm.
- the catalyst is prepared analogously to example 1.
- the loading of the starting components is carried out from the calculation so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.%:
- the catalyst has the shape of a shank with a diameter of 5 mm and a length of 5-6 mm.
- the catalyst has an average pore diameter of 933 A.
- the catalytically active material contains iron orthophosphate with a crystallite size of 30 nm, chromium orthophosphate with a crystallite size of 22 nm, and alpha iron oxide with a crystallite size of 75 nm.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out on the basis of such that the finished catalyst is characterized by the following content of components, in terms of oxide, in May. %:
- the catalyst has the shape of a shank with a diameter of 5 mm and a length of 5-6 mm.
- the catalyst has an average pore diameter of 1710 A.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.%:
- the catalyst has an average pore diameter of 460 A.
- the catalytically active catalyst material contains iron ortho-phosphate with a crystallite size of 33 nm, copper ortho-phosphate with a crystallite size of 24 nm, and iron oxides with a crystallite size of 58 nm.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.% .:
- Aluminosilicate - 35 Aluminosilicate - 35.
- the catalyst has an average pore diameter of 1649 A.
- the catalytically active catalyst material contains non-stoichiometric phosphates of iron, vanadium and copper, and iron oxide with a crystallite size of 67 nm.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.% .:
- the catalyst has an average pore diameter of 330 A.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.% .:
- the catalyst has an average pore diameter of 331 A.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.% .:
- Aluminosilicate - 36 Aluminosilicate - 36.
- the catalyst has an average pore diameter of 300 A.
- the preparation of the catalyst is analogous to example 1.
- the loading of the starting components is carried out based on so that the finished catalyst is characterized by the following content of components, in terms of oxide, wt.% .: Fe 2 0 3 - 36;
- Aluminosilicate - 36 Aluminosilicate - 36.
- the catalyst has an average pore diameter of 309
- the data (tables 1-2) indicate that a change in the chemical composition of the catalyst — the simultaneous introduction of compounds of phosphorus (and / or boron), aluminosilicates (and / or silicates) and modifying metals allowed us to optimize the texture of the catalyst — increase the specific surface area, increase total pore volume and pore volume with a diameter of 100-1000 A, reduce bulk density.
- the strength of the catalysts in examples 1-10 was at least 4 MPa, which is sufficient strength for industrial applications.
- Tables 3-10 provide data on the catalytic properties of the catalysts (tables 1-2) depending on the process conditions.
- hydrogen sulfide-containing gases can be roughly divided into two main groups — gases containing 10-40 vol.% Water vapor, for example, exhaust gases from the Klaus process (examples 11-14, tables 3-6) and natural gases origin containing less than 7 vol. % water vapor (examples 15-18, tables 8-10).
- Example 11 Catalytic properties in the Claus reaction.
- Table 3 shows the catalytic properties of the catalysts prepared according to examples 1, 2, 6 (see table 1-2), operated under the conditions of the Claus reaction at a temperature of 220 ° C and a gas composition: 2% H 2 S, 1% S0 2 , 30% H 2 0, the rest is nitrogen.
- Example 12 The effect of hydrothermal aging on the strength of the catalysts.
- Table 4 presents data on the strength of the catalysts prepared according to examples 1-10 (see table 1-2) after hydrothermal aging, carried out at a temperature of 350 ° C and a gas composition: 40% NgO, the rest is nitrogen, the total duration is 24 hours . (Previously, it was found that noticeable changes in the properties of the catalysts occur rapidly in the first three hours of the test, and after 10 hours a stationary state is already established).
- Example 13 Catalytic properties in the conditions of purification of exhaust gases of the Claus process.
- the catalytic properties of the catalysts prepared according to examples 1-6 are presented under the conditions of purification of exhaust gases from the Klaus process.
- the gas composition simulates the use of catalysts in the reactor of the sulfur production unit (OPS) after the preliminary stage of reduction of sulfur dioxide and sulfur vapor in the presence of a hydrogenation-hydrogenation catalyst known from the prior art at a temperature of 200-350 ° C.
- the data show the advantage of the proposed catalyst in comparison with the prototype for the conversion of hydrogen sulfide, selectivity and sulfur output in the temperature range 220-280 ° C.
- Example 14 Catalytic properties in the conditions of purification of exhaust gases of the Claus process.
- the catalytic properties of the catalysts prepared according to example 2 are presented under the conditions of purification of exhaust gases from the Claus process in the fourth reactor of the sulfur production unit (OPS), while the gas composition is different low hydrogen sulfide content, includes SO 2 and contains 35-40 vol.% water vapor.
- OPS sulfur production unit
- the data presented indicate the possibility of effective sulfur recovery in the presence of the proposed catalyst in the fourth reactor of the UPS at a space velocity of 900 hours "1 s in the temperature range of 220-250 ° C and a water vapor content of up to 35 vol.%.
- An increase in the content of water vapor up to 40% leads to reduce the temperature range in which the sulfur yield of more than 85% is achieved, and it is 220-250 ° C.
- the advantage of the proposed process is the ability to supply air for the oxidation of hydrogen sulfide in a small excess compared with stoichiometry, which prevents the occurrence of side reactions of oxidation and simplifies process control in conditions of fluctuations in the composition and flow rate of the reaction mixture.
- Example 15 The catalytic properties of the catalysts in the treatment of industrial, natural or associated petroleum gases. The process is carried out in a flow reactor with a stationary catalyst bed.
- Table 7 presents the catalytic properties of the catalysts prepared according to examples 7-10 (see table 1-2), operated in a gas mixture containing water vapor — 3 vol.%.
- Example 16 The catalytic properties of the catalysts in the purification of industrial, natural or associated petroleum gases.
- the catalytic properties of the catalyst prepared according to example 3 are presented (see table 1-2).
- the oxidation of hydrogen sulfide is carried out in a gas stream, vol.%: H 2 S - 1.7, 0 2 - 5, methane - 20, propane - 3, benzene vapor - 0.4, water vapor - 3-5, hydrogen - 0, 5, ⁇ - 1, the rest is nitrogen.
- Example 17 The catalytic properties of the catalysts in the purification of industrial, natural or associated petroleum gases.
- the process is carried out in three successive reactors with a stationary catalyst bed with intermediate sulfur removal.
- the catalytic properties of the catalysts prepared according to examples 5 and 6 are presented under conditions of purification of natural gases with a gas composition at the inlet of the reactor: hydrogen sulfide content of 9 vol.% And water vapor content of 3 vol.%.
- the test simulates the process of hydrogen sulfide oxidation in three successive reactors with intermediate sulfur removal, while in the first two reactors the O2 / H2S ratio is set lower than stoichiometrically necessary to avoid overheating, and in the third reactor, O2 / H2S is 0.65.
- Example 18 The catalytic properties of the catalyst under conditions of oxidation of hydrogen sulfide to S0 2 .
- the process is carried out in a flow reactor with a stationary catalyst bed.
- the catalyst is characterized by low sensitivity to the content of water vapor, which allows the processing of gases of various origins and the technological design of the process does not require the removal of water before the stage of selective oxidation of hydrogen sulfide.
- the catalyst is inert with respect to the reactions of deep oxidation of hydrocarbons, CO and hydrogen in the temperature range 200-400 ° C, which allows it to be used to purify gases of various origins from hydrogen sulfide.
- the catalyst is characterized by low sensitivity to changes in the ratio 0 2 / H 2 S in the range of 0.55-1.0, which prevents the occurrence of adverse reactions in the temperature range 200-300 ° C and allows to achieve high sulfur yields; in addition, these process conditions minimize catalyst deactivation by means of surfactation and sulfidation, which increases the effective life of the catalyst.
- the catalyst oxidizes hydrogen sulfide to sulfur dioxide without the formation of sulfur trioxide. This is a property of the catalyst. allows you to use it in technologies based on the reaction of oxidation of hydrogen sulfide to S0 2 .
- the catalyst for the selective oxidation of hydrogen sulfide can be used at gas processing, petrochemical and other industries using various processes with its application, in particular, for purification of exhaust gases from the Claus process, low-sulfur natural and associated petroleum gases, emissions from chemical industries, for purification biogas.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
Abstract
L'invention porte sur des catalyseurs pour l'oxydation sélective de sulfure d'hydrogène en soufre et en hydrogène dans des gaz de différentes origines contenant 0,3-15,0 vol. % d'hydrogène sulfuré, et sur des processus utilisant les catalyseurs. Le catalyseur comprend des composés de fer, des silicates et/ou des aluminosilicates dans des quantités de 1,0-40,0 en % en masse, des composés de phosphore et/ou de bore et possède la composition suivante, en termes d'oxyde, en % en masse: Fe2O3 36,0-85,0 P2O5/B2O5 4,0-25,0 silicates et/ou aluminosilicates 1,0-40,0. Dans une deuxième variante, le catalyseur comprend au moins un composé de métal sélectionné dans le groupe: cobalt, manganèse, zinc, chrome, cuivre, nickel, titane, molybdène, tungstène, vanadium dans des quantités de 0,1-30,0 % en masse. Le résultat technique de la solution proposée consiste en un catalyseur contenant du fer d'oxydation sélective d'hydrogène sulfuré en soufre élémentaire qui est caractérisé par une texture optimisée: un faible poids en vrac, une taille de pores plus importante, un diamètre moyen des pores de 300-1800 Å, et qui assure un rendement minimal en soufre de 85% dans l'intervalle des températures 180-300ºC dans des mélanges gazeux à composants multiples contenant H2S 0,3-15 vol. %, et de la vapeur d'eau jusqu'à 40 en vol. %, du dioxyde de soufre, de l'oxyde de carbone, de l'hydrogène, des hydrocarbures, de l'azote; avec un rapport de O2/H2S dans des limites de 0,15-5,0, des variantes de catalyseurs contenant du fer, d'oxydation sélective de sulfure d'hydrogène et des processus d'oxydation d'hydrogène sulfuré sur des catalyseurs contenant du fer à texture optimisée qui peuvent être utilisés en fonction des conditions de réalisation de processus selon des technologies différentes pour la désulfuration des gaz d'échappement du procédé Claus, pour la purification de biogaz, des gaz d'origine naturelle, des gaz combustibles, des gaz de fours à coke, des gaz d'échappement d'usines chimiques.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016127910A RU2632014C1 (ru) | 2016-07-11 | 2016-07-11 | Процесс окисления сероводорода |
RU2016127911 | 2016-07-11 | ||
RU2016127911A RU2629193C1 (ru) | 2016-07-11 | 2016-07-11 | Катализатор для селективного окисления сероводорода (варианты) |
RU2016127910 | 2016-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018013009A1 true WO2018013009A1 (fr) | 2018-01-18 |
Family
ID=60953261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2017/000497 WO2018013009A1 (fr) | 2016-07-11 | 2017-07-07 | Catalyseur d'oxydation sélective de sulfure d'hydrogène (et variantes) et différents processus l'utilisant |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018013009A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112517008A (zh) * | 2020-12-29 | 2021-03-19 | 福州大学 | 一种Fe掺杂的镁铝尖晶石催化剂的制备方法及其在脱硫领域的应用 |
CN113277639A (zh) * | 2021-03-31 | 2021-08-20 | 李晟贤 | 一种试气污水处理方法 |
CN114849739A (zh) * | 2021-02-03 | 2022-08-05 | 威水星空(北京)环境技术有限公司 | 一种铁硼硫化钼复合多孔催化剂及其制备方法与应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996036561A1 (fr) * | 1995-05-17 | 1996-11-21 | Parsons Process Group Inc. | Catalyseurs et procede d'oxydation selective |
RU2070089C1 (ru) * | 1989-07-21 | 1996-12-10 | ВЕГ-Газинститут Н.В. | Катализатор для селективного окисления соединений серы и способ селективного окисления соединений серы до элементарной серы |
RU2288888C1 (ru) * | 2005-03-05 | 2006-12-10 | Открытое акционерное общество "Катализатор" | Катализатор для селективного окисления сероводорода, способ его получения и способ селективного окисления сероводорода до элементарной серы |
CN105126850A (zh) * | 2015-08-21 | 2015-12-09 | 山东迅达化工集团有限公司 | 选择氧化h2s生产硫磺的催化剂及其制备方法 |
-
2017
- 2017-07-07 WO PCT/RU2017/000497 patent/WO2018013009A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2070089C1 (ru) * | 1989-07-21 | 1996-12-10 | ВЕГ-Газинститут Н.В. | Катализатор для селективного окисления соединений серы и способ селективного окисления соединений серы до элементарной серы |
WO1996036561A1 (fr) * | 1995-05-17 | 1996-11-21 | Parsons Process Group Inc. | Catalyseurs et procede d'oxydation selective |
RU2288888C1 (ru) * | 2005-03-05 | 2006-12-10 | Открытое акционерное общество "Катализатор" | Катализатор для селективного окисления сероводорода, способ его получения и способ селективного окисления сероводорода до элементарной серы |
CN105126850A (zh) * | 2015-08-21 | 2015-12-09 | 山东迅达化工集团有限公司 | 选择氧化h2s生产硫磺的催化剂及其制备方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112517008A (zh) * | 2020-12-29 | 2021-03-19 | 福州大学 | 一种Fe掺杂的镁铝尖晶石催化剂的制备方法及其在脱硫领域的应用 |
CN112517008B (zh) * | 2020-12-29 | 2023-10-27 | 福州大学 | 一种Fe掺杂的镁铝尖晶石催化剂的制备方法及其在脱硫领域的应用 |
CN114849739A (zh) * | 2021-02-03 | 2022-08-05 | 威水星空(北京)环境技术有限公司 | 一种铁硼硫化钼复合多孔催化剂及其制备方法与应用 |
CN114849739B (zh) * | 2021-02-03 | 2023-08-18 | 威水星空(北京)环境技术有限公司 | 一种铁硼硫化钼复合多孔催化剂及其制备方法与应用 |
CN113277639A (zh) * | 2021-03-31 | 2021-08-20 | 李晟贤 | 一种试气污水处理方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | H2S-selective catalytic oxidation: catalysts and processes | |
US7354560B2 (en) | Process for the production of hydrogen | |
CA2657367C (fr) | Reformage d'hydrocarbures soufres utilisant un catalyseur resistant au soufre | |
US20030194366A1 (en) | Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur | |
WO1999037389A1 (fr) | Catalyseurs utilises pour l'oxydation selective d'acide sulfhydrique en soufre | |
CA2623702C (fr) | Sorbants regenerables de desulfuration d'hydrocarbures et leurs procedes de preparation et d'utilisation | |
CA2698892C (fr) | Composition de catalyseur utile dans la reduction catalytique d'un compose du soufre contenu dans un flux de gaz et procede de fabrication et d'utilisation d'une telle composition | |
WO2018013009A1 (fr) | Catalyseur d'oxydation sélective de sulfure d'hydrogène (et variantes) et différents processus l'utilisant | |
CN112642395A (zh) | 分子筛复合物与复合材料及其制备方法和应用 | |
WO2008008839A2 (fr) | Reformage d'hydrocarbures soufrés utilisant un catalyseur résistant au soufre | |
CN112642255B (zh) | 脱硫的方法和系统 | |
JP7000338B2 (ja) | ガス流中に含まれる硫黄の接触還元に使用するための高金属含有量の加水分解触媒、ならびにそのような組成物を製造及び使用する方法 | |
CN104302388A (zh) | 用于选择性氧化硫化合物的催化剂 | |
Jarullah et al. | Design of a new synthetic nanocatalyst resulting high fuel quality based on multiple supports: experimental investigation and modeling | |
RU2632014C1 (ru) | Процесс окисления сероводорода | |
RU2369436C1 (ru) | Катализатор, способ его приготовления и способ очистки газовых выбросов от диоксида серы | |
CN112642397A (zh) | 复合材料及其制备方法和应用 | |
CA2768359C (fr) | Elimination des composes de soufre dans un flux gazeux | |
RU2629193C1 (ru) | Катализатор для селективного окисления сероводорода (варианты) | |
RU2405738C2 (ru) | Способ получения серы и способ приготовления катализатора для получения серы | |
Yang et al. | Self-assembly preparation of Al2O3/MoS2 bifunctional catalyst for highly efficient reduction of SO2 to elemental sulfur | |
UA123236C2 (uk) | Спосіб видалення органічних сполук сірки з багатих на водень газів | |
RU2766555C1 (ru) | Катализатор для селективного окисления сероводорода и способ его применения | |
CN115803109A (zh) | 用于催化还原气流中所含的硫的催化剂以及制备和使用此类催化剂的方法 | |
CN112264022A (zh) | 蜂窝状有机硫水解催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17828041 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17828041 Country of ref document: EP Kind code of ref document: A1 |