WO2018003595A1 - Quinacridone pigment for resin coloring - Google Patents
Quinacridone pigment for resin coloring Download PDFInfo
- Publication number
- WO2018003595A1 WO2018003595A1 PCT/JP2017/022654 JP2017022654W WO2018003595A1 WO 2018003595 A1 WO2018003595 A1 WO 2018003595A1 JP 2017022654 W JP2017022654 W JP 2017022654W WO 2018003595 A1 WO2018003595 A1 WO 2018003595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pigment
- resin
- coloring
- quinacridone pigment
- surface area
- Prior art date
Links
- 239000000049 pigment Substances 0.000 title claims abstract description 131
- 239000011347 resin Substances 0.000 title claims abstract description 81
- 229920005989 resin Polymers 0.000 title claims abstract description 81
- 238000004040 coloring Methods 0.000 title claims abstract description 56
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 238000000465 moulding Methods 0.000 claims abstract description 29
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 24
- XPZQBGDNVOHQIS-UHFFFAOYSA-N 2,9-dichloro-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione Chemical compound N1C2=CC=C(Cl)C=C2C(=O)C2=C1C=C(C(=O)C=1C(=CC=C(C=1)Cl)N1)C1=C2 XPZQBGDNVOHQIS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 6
- 229920006351 engineering plastic Polymers 0.000 abstract description 17
- 238000005562 fading Methods 0.000 abstract description 17
- 239000000203 mixture Substances 0.000 abstract description 13
- 229920003023 plastic Polymers 0.000 abstract description 13
- 239000004033 plastic Substances 0.000 abstract description 13
- 239000011342 resin composition Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 20
- -1 polypropylene Polymers 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000003756 stirring Methods 0.000 description 14
- 239000004743 Polypropylene Substances 0.000 description 13
- 229920001155 polypropylene Polymers 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 11
- 239000007795 chemical reaction product Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000088 plastic resin Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- VPWFPZBFBFHIIL-UHFFFAOYSA-L disodium 4-[(4-methyl-2-sulfophenyl)diazenyl]-3-oxidonaphthalene-2-carboxylate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 VPWFPZBFBFHIIL-UHFFFAOYSA-L 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- LVTSHUZPPLHMEB-UHFFFAOYSA-N 2,5-bis(4-chloroanilino)terephthalic acid Chemical compound OC(=O)C=1C=C(NC=2C=CC(Cl)=CC=2)C(C(=O)O)=CC=1NC1=CC=C(Cl)C=C1 LVTSHUZPPLHMEB-UHFFFAOYSA-N 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229920000137 polyphosphoric acid Polymers 0.000 description 5
- 238000007363 ring formation reaction Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 229920002292 Nylon 6 Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 235000019359 magnesium stearate Nutrition 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 238000010097 foam moulding Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- JMEWGCRUPXQFQL-UHFFFAOYSA-N 1,2-dichloro-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C(C(=O)C=1C(=CC=C(C=1Cl)Cl)N1)C1=C2 JMEWGCRUPXQFQL-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 2
- 229940063655 aluminum stearate Drugs 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001054 red pigment Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- RZJWLSPNMSHOHK-UHFFFAOYSA-N 4-methyl-1-phenylpenta-1,4-dien-3-one Chemical compound CC(=C)C(=O)C=CC1=CC=CC=C1 RZJWLSPNMSHOHK-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Substances ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- JSRLCNHTWASAJT-UHFFFAOYSA-N helium;molecular nitrogen Chemical compound [He].N#N JSRLCNHTWASAJT-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920005673 polypropylene based resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
- C08K5/3465—Six-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B48/00—Quinacridones
Definitions
- the present invention relates to a quinacridone pigment for coloring plastics, particularly engineering plastics, a masterbatch containing the pigment, and a resin molded product obtained from the masterbatch.
- plastics resins engineering plastics resins are characterized by excellent impact resistance, heat resistance, electrical properties, transparency, and high processing accuracy, but many of them have high melting temperatures. It is necessary to process at a higher temperature than the resin.
- Pigments used for engineering plastic coloring are required to have high heat resistance and high coloring power.
- heat-resistant red pigments that can be used for engineering plastics such as nylon. None of the commercially available pigments has a quality that satisfies the required characteristics of heat resistance and coloring power, and there is a demand for pigments having even better heat resistance.
- the problem to be solved by the present invention is a quinacridone pigment composition that exhibits excellent heat resistance for coloring plastics, especially engineering plastics, has a very small fading (color change of molded plate) during resin molding, and has high coloring power. And a dry color and masterbatch containing the pigment composition, and a resin molded product.
- molding of engineering plastics is performed using an injection molding machine or the like at a high temperature of about 260 to 300 ° C. although there is a width depending on the resin used. For this reason, pigments that cause thermal changes cannot be used in engineering plastics.
- the inventors first used 2,9-dichloroquinacridone as a quinacridone pigment, refined primary particles to improve the coloring power, and then suppressed deterioration of heat resistance caused by the particle size (fading). We have made extensive studies to achieve this. As described above, in the past, there has not been established a means for sufficiently satisfying coloring power and heat resistance.
- the present inventors have found that the main cause of fading of the quinacridone pigment during resin molding is dissolution in the engineering plastic resin.
- the phenomenon that the quinacridone pigment partially dissolves and the quinacridone pigment fades is due to the fact that a part of the pigment dissolves in the engineering plastic during molding at high temperature and exists in a molecular form. Occurs by emitting fluorescence at a wavelength.
- the present inventors have further studied variously, and calculated from the difference between the fluorescence peak value 550 nm reflectance and the 550 nm reflectance of polypropylene resin, and XRD measurement.
- the present inventors proceeded with the study based on the above knowledge, and used a quinacridone pigment for resin coloring having a crystallite diameter and a specific surface area in a specific range, particularly as a colorant for a resin molded product having a high-temperature heat history.
- the present inventors have found that a resin molded product having excellent coloring power and extremely little color change, that is, fading even after a thermal history can be obtained, and the present invention has been completed.
- one aspect of the present invention is (1) a quinacridone pigment for resin coloring, wherein the quinacridone pigment is 2,9-dichloroquinacridone, and the crystallite diameter determined from the half-value width of X-ray diffraction from Scherrer's formula is 20 nm.
- the present invention relates to a quinacridone pigment for resin coloring characterized by being in the range of 40 nm or less and having a specific surface area of 40 m 2 / g or more.
- the present invention also relates to a resin molded product containing the pigment. More specifically, the crystallite diameter is a crystallite diameter obtained by substituting the half width of a peak appearing at a Bragg angle (2 ⁇ ) near 23.3 ° into Scherrer's equation.
- Another aspect of the present invention relates to (4) a resin molded product obtained from the master batch described in (2). Another aspect of the present invention relates to (5) a resin molded article obtained from the dry color described in (3).
- the quinacridone pigment for resin coloring of the present invention is suitable for resin coloring because it has high coloring power and the heat resistance of the quinacridone pigment (2,9-dichloroquinacridone) is extremely low in fading during resin molding. . Further, by using the quinacridone pigment for resin coloring according to the present invention, it is possible to obtain a masterbatch and a dry color having high coloring power and extremely low fading at the time of resin molding. A molded product is obtained.
- the resin coloring quinacridone pigment of the present invention has a high coloring power by controlling the range of crystallite diameter and specific surface area to a specific range, and maximizes fading when subjected to a thermal history. It is to suppress.
- a crystallite whose diameter is controlled to be in the range of 20 nm to 30 nm by the same measurement can be used. More preferably, a crystallite whose diameter is controlled to be in a range of 20 nm to 28 nm by the same measurement can be used. Details of the measurement method will be described in the examples described later. In addition, the value measured by the method described in the Example shall be employ
- the quinacridone pigment for resin coloring of the present invention a pigment controlled to satisfy the above crystallite diameter range and to have a specific surface area of 40 m 2 / g or more can be used. It is preferable to use one whose specific surface area is controlled to be 50 m 2 / g or more. When the specific surface area is smaller than 40 m 2 / g, although the particle size is large, it contributes to heat resistance, but the coloring power is lowered, which is not preferable. Although it is not always necessary to provide an upper limit due to the nature of the present invention, if given as an example, the upper limit of the specific surface area is 120 m 2 / g or less.
- the upper limit of the specific surface area is more preferably 110 m 2 / g or less.
- the specific surface area indicates a BET specific surface area.
- the value measured by the method described in the Example shall be employ
- the quinacridone pigment for resin coloring according to the present invention is one that is controlled so that the crystallite diameter is in the range of 20 nm to 40 nm and the specific surface area is controlled to be 40 m 2 / g or more. Can do.
- the crystallite diameter of 2,9-dichloroquinacridone is in the range of 20 nm or more and 40 nm or less and the specific surface area is 40 m 2 / g or more, it is possible to achieve both high coloring power and suppression of fading.
- any method may be adopted as long as it can be produced so as to have a crystallite diameter and a specific surface area within a specific range as described above. .
- the quinacridone pigment for resin coloring of the present invention can be produced by a crude pigment or a salt milling method of a pigment.
- a salt of 1 to 50 times by weight preferably a salt of 3 to 15 times
- the temperature in the kneader is set to 30 to 100 ° C. (preferably 50 to 100 ° C.).
- Diethylene glycol is then added in small amounts of 1 to 20% (preferably 14 to 15%) with respect to the total amount of raw materials charged. Thereafter, after kneading for 2 hours or more (preferably 5 to 7 hours), the mixture is taken out.
- the mixture is exposed to water overnight, heated to 60 ° C. the next day, and stirred for about 1 hour to dissolve the salt and diethylene glycol in water, followed by filtration, washing with water, drying and grinding to obtain a pigment.
- the quinacridone pigment for resin coloring of the present invention is prepared by dissolving a crude pigment or pigment in an acid, an alkali or a solvent and precipitating the crude pigment in a solvent or water under pressure.
- the crude pigment or pigment is added in small portions so as not to become lumps and then stirred for 1 hour.
- the pigment solution is poured into water at least 10 times the weight of the solution, preferably 15 times the water at 0 ° C., and recrystallized. After stirring for 1 hour, filtration and washing with water are performed to obtain a quinacridone crude pigment wet cake.
- the obtained crude pigment is 15 to 30 times (preferably 20 to 25 times) water / polar solvent (100 to 85/0 to 15) (preferably water / polar solvent (85 ⁇ 90 / 15 ⁇ 10)) is charged into a pressurizable reaction vessel equipped with a stirrer and stirred at 115 ° C. for 3 hours. Thereafter, it is cooled to room temperature, filtered, washed with hot water, dried and pulverized to obtain a pigment.
- the quinacridone crude pigment or pigment can be dissolved even in a mixed solution of dimethyl sulfoxide and sodium hydroxide 10 times or more (preferably 13 to 16 times) by weight with respect to Pigment 1.
- the kind of quinacridone pigment is 2,9-dichloroquinacridone.
- 2,9-dichloroquinacridone is an aromatic polycyclic magenta pigment. In a publicly known field, it is a general pigment that is used as a coloring material and is widely used for coloring power and hue. However, coloring in applications that require high-temperature thermal history such as engineering plastics requires very high levels of structural stability, dispersion stability, and hue stability required for pigments. Although 2,9-dichloroquinacridone forms intermolecular hydrogen bonds, it is a pigment having very high stability despite its low molecular weight. However, in engineering plastics exposed to high temperatures during molding, -The use of dichloroquinacridone is very limited due to its fading. The present invention has been found that 2,9-dichloroquinacridone having a specific crystallite size and specific surface area can solve these problems, and can achieve both coloring power and suppression of fading. It has a great effect.
- the resin used in the present invention includes engineering plastic resin.
- polyamide nylon
- polyethylene terephthalate polybutylene terephthalate
- polycarbonate polyimide
- polyphenylene sulfide polysulfone
- polyethersulfone polyetheretherketone
- polyamideimide polyamideimide
- acrylonitrile-styrene resin polyester resin
- acrylic resin methacryl-styrene resin
- ABS resin acrylonitrile-styrene resin
- the coloring method for the engineering plastic resin is not particularly limited.
- a dry color or master batch containing the quinacridone pigment of the present invention is prepared and mixed into the resin.
- the method for producing the dry color of the present invention is not particularly limited. For example, by mixing the quinacridone pigment of the present invention and an aliphatic carboxylic acid metal salt such as magnesium stearate, zinc stearate or aluminum stearate. A dry color can be obtained. Mixing can be performed by weighing each component into a plastic bag and mixing it uniformly by rubbing it from the top of the plastic bag, or by using a mixer such as a Henschel mixer. Further, in order to obtain a desired hue, the quinacridone pigment of the present invention and a pigment other than the quinacridone pigment of the present invention can be mixed to produce.
- an aliphatic carboxylic acid metal salt such as magnesium stearate, zinc stearate or aluminum stearate.
- the method for producing the master batch of the present invention is not particularly limited.
- a master batch such as a pellet is produced by kneading and granulating a pigment and wax using a known kneading granulation method. can do.
- the quinacridone pigment of the present invention, polyethylene wax, ester wax, fatty acid metal soap, aliphatic carboxylic acid metal salt, and the like can be obtained by melt-kneading using a three-roll, two-roll, or other kneader. Further, it is melt kneaded together with a desired resin under heating conditions of 260 to 320 ° C.
- a master batch can be obtained by processing the kneaded product extruded in a strand shape into a desired pellet shape or flake shape.
- examples of the aliphatic carboxylic acid metal salt include magnesium stearate, zinc stearate, and aluminum stearate.
- the quinacridone pigment of the present invention and a pigment other than the quinacridone pigment of the present invention can be mixed to produce.
- the resin molded product of the present invention can be produced by molding a base resin containing a polypropylene-based resin and a desired engineering plastic resin, and a colored resin containing the aforementioned masterbatch or dry color.
- the masterbatch or dry color is diluted to an appropriate concentration with a base resin containing polypropylene resin and engineer plastic resin, and then molded using an inflation device, T-die device, etc.
- the polypropylene resin and engineer plastic resin used as the base resin are preferably of the same type (same quality) as the resin used for the production of the masterbatch.
- the cylinder and die temperature of the inflation device and T-die device used for molding may be set to a general temperature suitable for the resin used.
- the base resin, the polypropylene resin and the engineering plastic resin are colored simultaneously with the molding process by using a masterbatch or a dry color.
- the amount of the master batch or dry color is 1.5 to 10 parts by weight, preferably 2.5 to 6 parts by weight, based on 100 parts by weight of the base resin.
- the ratio of the pigment contained in the resin molded product is preferably 0.05 to 10% by mass, and more preferably 0.1 to 3% by mass with respect to the total mass of the resin molded product.
- the method (molding method) for molding a colored resin containing a base resin and a masterbatch or a dry color is not particularly limited, but is preferably molded by a general injection molding method.
- a molding method other than the general injection molding method for example, an injection foam molding method, a supercritical injection foam molding method, an injection compression molding method, a gas assist injection molding method, a sandwich molding method, a sandwich foam molding method, etc. Can be mentioned.
- the measurement method used in the present invention is shown below.
- ⁇ Evaluation of crystallite size (XRD measurement)> The powder pigment of quinacridone pigment was measured using X'Part manufactured by PHILIPS in accordance with JIS-K0131. The measurement conditions are as follows. ⁇ Measured when Bragg angle (2 ⁇ ) is in the range of 4 ° to 35 ° ⁇ Step time 50.16 seconds ⁇ Diverging slit 0.25 ° ⁇ Tube Cu ⁇ Tube voltage 45KV ⁇ Tube current 40MA The crystallite diameter was calculated from the half-width of the diffraction peak of 2 ⁇ 23.3 ° which is the main peak and the following Scherrer equation. The half width was calculated by performing peak separation using commercially available data analysis software (High Score Plus Ver. 3 manufactured by PANalytical). The crystallite diameter (D) can be calculated by the following Scherrer equation using the calculated half width.
- ⁇ diffracted X-ray spread (rad)
- D Crystallite diameter (nm)
- ⁇ Bragg angle of diffraction X-ray (°)
- K Constant (defined as 0.94)
- ⁇ Measuring method of fading degree of resin molding For the fading degree, a value obtained by measuring the obtained resin molding using a spectrophotometer (colorimeter) Datacolor 650 manufactured by Datacolor International was used. Specifically, the spectral reflectance at a fluorescence wavelength of 550 nm at 300 and 320 ° C. was measured for each sample. Further, the ⁇ spectral reflectance was obtained with the spectral reflectance at the fluorescence wavelength at the time of molding the polypropylene as a standard. The larger the ⁇ spectral reflectance at a fluorescence wavelength of 550 nm, the more the color change from a desired hue to a different hue, and the lower the heat resistance of coloring.
- the crude pigment was dried and pulverized, and 200 g of the crude pigment thus obtained was subjected to salt milling (100 ° C., 6 hours) together with 2500 g of salt and 450 g of diethylene glycol (DEG).
- the obtained mixture was peptized in 10 L of water, filtered, washed with water, dried, and pulverized to obtain 190 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
- the crystallite diameter of the obtained pigment was 25.03 nm.
- the obtained pigment had a specific surface area of 75 m 2 / g.
- the crude pigment was dried and pulverized, and 200 g of the crude pigment thus obtained was subjected to salt milling (90 ° C., 6 hours) together with 2500 g of salt and 450 g of diethylene glycol (DEG).
- the obtained mixture was peptized in 10 L of water, filtered, washed with water, dried, and pulverized to obtain 190 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
- the crystallite diameter of the obtained pigment was 20.01 nm, and the specific surface area of the pigment was 93 m 2 / g.
- the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
- the crystallite diameter of the obtained pigment was 13.83 nm.
- the obtained pigment had a specific surface area of 60 m 2 / g.
- Dry colors were prepared using the pigments obtained in Production Examples 1 to 6. 5 g of pigment and 5 g of magnesium stearate were weighed into a plastic bag and mixed so as to be uniform while being rubbed by hand from above the plastic bag for about 5 minutes to obtain a dry color.
- Example of master batch preparation In addition, when using a masterbatch for coloring, 1 part of the prepared pigment, 1 part of magnesium stearate, and 3 parts of a predetermined plastic resin are weighed, and the molding temperature of each resin using a PCM30 extruder manufactured by Ikekai Tekko Co., Ltd. The effect of this invention can be acquired similarly to the case where a dry color is used by knead
- Resin moldings were prepared using nylon 6 (UBE NYLON1013NW8 manufactured by Ube Industries, Ltd.) and polypropylene (Novatech PP BC3 manufactured by Nippon Polypro Co., Ltd.) as plastic resins for evaluation. The degree of fading was measured using the obtained resin molding.
- a nylon molded product was prepared using the dry color obtained above. 1600 g of nylon 6 (UBE NYLON 1013NW8 manufactured by Ube Industries Co., Ltd.) and 3.2 g of the dry color obtained above were weighed in a plastic bag and shaken by hand for about 5 minutes to attach the dry color to nylon 6. This was injection molded at 300 ° C. and 320 ° C. using an injection molding machine PS60E9A manufactured by Nissei Plastic Industry Co., Ltd. to obtain a resin molded product.
- the polypropylene molding was prepared using the dry color obtained above. 1600 g of polypropylene (Novatech PP BC3, manufactured by Nippon Polypro Co., Ltd.) and 3.2 g of the dry color obtained above were weighed in a plastic bag and shaken by hand for about 5 minutes to adhere the dry color to the polypropylene. This was injection molded at 220 ° C. using an injection molding machine PS60E9A manufactured by Nissei Plastic Industry Co., Ltd. to obtain a resin molded product.
- PS60E9A manufactured by Nissei Plastic Industry Co., Ltd.
- Example 1 shows the correspondence between each example and the pigment used, and Table 2 shows the measurement results.
- Examples 1 to 3 have higher heat resistance and higher coloring power than Comparative Examples 1 and 2. In addition, Examples 1 to 3 have significantly better coloring power than Comparative Example 3, and have the same effects as Comparative Example 3 in terms of heat resistance. In other words, Examples 1 to 3 using the quinacridone pigment of the present invention were successful in achieving both “high heat resistance” and “high coloring power”, which had been considered to have a trade-off relationship. It has a great effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
The present invention addresses the problem of providing a quinacridone pigment composition for coloring plastics, especially engineering plastics, that exhibits excellent heat resistance, undergoes very little fading (color change of molded plate) during resin molding, and has high coloring power; a dry color and master batch containing the pigment composition; and a resin composition. This problem is solved by providing 2,9-dichloroquinacridone characterized in that the crystallite diameter determined by x-ray diffraction is in the range of 20-40 nm and the specific surface area is 40 m2/g or higher.
Description
本発明は、プラスチックとりわけエンジニアリングプラスチック着色用キナクリドン顔料、該顔料を含有するマスターバッチ及び該マスターバッチから得られる樹脂成形物に関する。
The present invention relates to a quinacridone pigment for coloring plastics, particularly engineering plastics, a masterbatch containing the pigment, and a resin molded product obtained from the masterbatch.
プラスチックス樹脂の中でもエンジニアリングプラスチックス樹脂は、耐衝撃性、耐熱性、電気特性、透明性が優れ、加工精度が高いという特徴を有しているが、溶融温度が高いものが多く、汎用プラスチックス樹脂より高温度で加工する必要がある。
Among plastics resins, engineering plastics resins are characterized by excellent impact resistance, heat resistance, electrical properties, transparency, and high processing accuracy, but many of them have high melting temperatures. It is necessary to process at a higher temperature than the resin.
エンジニアリングプラスチック着色用に使用される顔料は、高耐熱性、高着色力を求められている。しかし、ナイロン等のエンジニアリングプラスチックに使用できる耐熱性を有する赤色顔料が少ないのが現状である。製品化されている顔料でも、耐熱性、着色力の要求特性を満たす品質を有するものがなく、さらに優れた耐熱性を有する顔料が希求されている。
顔料 Pigments used for engineering plastic coloring are required to have high heat resistance and high coloring power. However, there are few heat-resistant red pigments that can be used for engineering plastics such as nylon. None of the commercially available pigments has a quality that satisfies the required characteristics of heat resistance and coloring power, and there is a demand for pigments having even better heat resistance.
そこで、耐熱性を向上させるために一次粒子径を大きくした発明(引用文献1)が提案されているが、透明性、着色力が低い。すなわち、粒子サイズが大きいことで、耐熱性にはメリットがあるが、着色性能に問題があった。
Therefore, an invention in which the primary particle diameter is increased in order to improve heat resistance (Cited document 1) has been proposed, but the transparency and coloring power are low. That is, although the particle size is large, there is a merit in heat resistance, but there is a problem in coloring performance.
一方、着色力を改善すべく、一次粒子を微細化することは可能であるが、分散が困難になるだけでなく、粒子サイズに起因する耐熱性が悪くなり、着色力と耐熱性を両立することは極めて困難であった。
On the other hand, it is possible to make the primary particles finer in order to improve the coloring power, but not only the dispersion becomes difficult, but the heat resistance due to the particle size deteriorates, and both the coloring power and the heat resistance are compatible. It was extremely difficult.
本発明が解決しようとする課題は、プラスチックとりわけエンジニアリングプラスチック着色用として、優れた耐熱性を奏し、樹脂成形時の退色(成形板の色変化)が極めて小さく、かつ、着色力の高いキナクリドン顔料組成物、該顔料組成物を含有するドライカラー及びマスターバッチ、並びに樹脂成形物を提供することにある。
The problem to be solved by the present invention is a quinacridone pigment composition that exhibits excellent heat resistance for coloring plastics, especially engineering plastics, has a very small fading (color change of molded plate) during resin molding, and has high coloring power. And a dry color and masterbatch containing the pigment composition, and a resin molded product.
一般にエンジニアリングプラスチックの成形は、使用される樹脂により幅はあるものの約260~300℃の高温で射出成型機等を用いて行われる。このため、熱的変化を起こす顔料はエンジニアリングプラスチックに使用することができない。
In general, molding of engineering plastics is performed using an injection molding machine or the like at a high temperature of about 260 to 300 ° C. although there is a width depending on the resin used. For this reason, pigments that cause thermal changes cannot be used in engineering plastics.
本発明者らは、まず、キナクリドン顔料として2,9-ジクロロキナクリドンを用い、この着色力を改善すべく一次粒子を微細化し、その上で、粒子サイズに起因する耐熱性の悪化の抑制(退色の抑制)を達成するべく鋭意検討した。
上述の通り、従来は、着色力と耐熱性の十分な両立手段が確立していないのが現状であった。 The inventors first used 2,9-dichloroquinacridone as a quinacridone pigment, refined primary particles to improve the coloring power, and then suppressed deterioration of heat resistance caused by the particle size (fading). We have made extensive studies to achieve this.
As described above, in the past, there has not been established a means for sufficiently satisfying coloring power and heat resistance.
上述の通り、従来は、着色力と耐熱性の十分な両立手段が確立していないのが現状であった。 The inventors first used 2,9-dichloroquinacridone as a quinacridone pigment, refined primary particles to improve the coloring power, and then suppressed deterioration of heat resistance caused by the particle size (fading). We have made extensive studies to achieve this.
As described above, in the past, there has not been established a means for sufficiently satisfying coloring power and heat resistance.
本発明者らは、このような現状に鑑み、さらに鋭意検討した結果、樹脂成形時にキナクリドン顔料が退色する主原因がエンジニアリングプラスチック樹脂への溶解であることを見出した。キナクリドン顔料が一部溶解してキナクリドン顔料が退色する現象は、高温での成形時にエンジニアリングプラスチックに一部顔料が溶解し、分子状で存在する事で、顔料結晶自体の発色と異なる500-700nmの波長に蛍光を発することで起きる。これが退色の主要因であることを見出したことによって、本発明者らはさらに種々検討し、この蛍光のピーク値550nm反射率と、ポリプロピレン樹脂の550nm反射率の差の値と、XRD測定より算出した赤色顔料の結晶子径に強い相関があることを見出した。結晶子径が大きいほど蛍光発色が小さく、結晶子径が小さいほど蛍光発色が大きい。一方、結晶子径が小さいと結晶が壊れ易く、エンジニアリングプラスチック樹脂へ溶解しやすくなるという関係にある。顔料結晶1個あたりの結晶子数が少ないほど単結晶に近いため、結晶が壊れ難いためと推定される。
As a result of further intensive studies in view of such a current situation, the present inventors have found that the main cause of fading of the quinacridone pigment during resin molding is dissolution in the engineering plastic resin. The phenomenon that the quinacridone pigment partially dissolves and the quinacridone pigment fades is due to the fact that a part of the pigment dissolves in the engineering plastic during molding at high temperature and exists in a molecular form. Occurs by emitting fluorescence at a wavelength. By finding that this is the main cause of fading, the present inventors have further studied variously, and calculated from the difference between the fluorescence peak value 550 nm reflectance and the 550 nm reflectance of polypropylene resin, and XRD measurement. It was found that there was a strong correlation with the crystallite size of the red pigment. The larger the crystallite diameter, the smaller the fluorescent color development, and the smaller the crystallite diameter, the greater the fluorescent color development. On the other hand, when the crystallite diameter is small, the crystal is easily broken and is easily dissolved in the engineering plastic resin. It is presumed that the smaller the number of crystallites per pigment crystal, the closer to a single crystal, the harder it is to break.
そこで、本発明者らは、前記知見に基づき検討を進め、結晶子径及び比表面積が特定の範囲にある樹脂着色用キナクリドン顔料を、とりわけ高温の熱履歴がかかる樹脂成形物の着色剤として使用した場合、着色力に優れ、かつ熱履歴を経ても色変化つまり退色が極めて少ない樹脂成形物を得られることを見出し、本発明を完成するに至った。
Therefore, the present inventors proceeded with the study based on the above knowledge, and used a quinacridone pigment for resin coloring having a crystallite diameter and a specific surface area in a specific range, particularly as a colorant for a resin molded product having a high-temperature heat history. In this case, the present inventors have found that a resin molded product having excellent coloring power and extremely little color change, that is, fading even after a thermal history can be obtained, and the present invention has been completed.
即ち本発明の一側面は、(1)樹脂着色用キナクリドン顔料であって、キナクリドン顔料が2,9-ジクロロキナクリドンであり、シェラーの式よりX線回折の半値幅から求められる結晶子径が20nm以上40nm以下の範囲にあり、かつ、比表面積が40m2/g以上であることを特徴とする樹脂着色用キナクリドン顔料に関する。
また、該顔料を含有することを特徴とする樹脂成形物に関する。
より具体的には、前記結晶子径は、ブラッグ角(2θ)が23.3°付近に出現するピークの半値幅をシェラーの式に代入することで求められる結晶子径である。 That is, one aspect of the present invention is (1) a quinacridone pigment for resin coloring, wherein the quinacridone pigment is 2,9-dichloroquinacridone, and the crystallite diameter determined from the half-value width of X-ray diffraction from Scherrer's formula is 20 nm. The present invention relates to a quinacridone pigment for resin coloring characterized by being in the range of 40 nm or less and having a specific surface area of 40 m 2 / g or more.
The present invention also relates to a resin molded product containing the pigment.
More specifically, the crystallite diameter is a crystallite diameter obtained by substituting the half width of a peak appearing at a Bragg angle (2θ) near 23.3 ° into Scherrer's equation.
また、該顔料を含有することを特徴とする樹脂成形物に関する。
より具体的には、前記結晶子径は、ブラッグ角(2θ)が23.3°付近に出現するピークの半値幅をシェラーの式に代入することで求められる結晶子径である。 That is, one aspect of the present invention is (1) a quinacridone pigment for resin coloring, wherein the quinacridone pigment is 2,9-dichloroquinacridone, and the crystallite diameter determined from the half-value width of X-ray diffraction from Scherrer's formula is 20 nm. The present invention relates to a quinacridone pigment for resin coloring characterized by being in the range of 40 nm or less and having a specific surface area of 40 m 2 / g or more.
The present invention also relates to a resin molded product containing the pigment.
More specifically, the crystallite diameter is a crystallite diameter obtained by substituting the half width of a peak appearing at a Bragg angle (2θ) near 23.3 ° into Scherrer's equation.
また、本発明の別の一側面は、(2)前記(1)に記載の樹脂着色用キナクリドン顔料を含むことを特徴とするマスターバッチに関する。
また、本発明の別の一側面は、(3)前記(1)に記載の樹脂着色用キナクリドン顔料を含むことを特徴とするドライカラーに関する。 Another aspect of the present invention relates to (2) a masterbatch comprising the quinacridone pigment for resin coloring described in (1) above.
Another aspect of the present invention relates to (3) a dry color comprising the quinacridone pigment for resin coloring described in (1) above.
また、本発明の別の一側面は、(3)前記(1)に記載の樹脂着色用キナクリドン顔料を含むことを特徴とするドライカラーに関する。 Another aspect of the present invention relates to (2) a masterbatch comprising the quinacridone pigment for resin coloring described in (1) above.
Another aspect of the present invention relates to (3) a dry color comprising the quinacridone pigment for resin coloring described in (1) above.
また、本発明の別の一側面は、(4)前記(2)に記載のマスターバッチから得られる樹脂成形物に関する。
また、本発明の別の一側面は、(5)前記(3)に記載のドライカラーから得られる樹脂成形物に関する。 Another aspect of the present invention relates to (4) a resin molded product obtained from the master batch described in (2).
Another aspect of the present invention relates to (5) a resin molded article obtained from the dry color described in (3).
また、本発明の別の一側面は、(5)前記(3)に記載のドライカラーから得られる樹脂成形物に関する。 Another aspect of the present invention relates to (4) a resin molded product obtained from the master batch described in (2).
Another aspect of the present invention relates to (5) a resin molded article obtained from the dry color described in (3).
本発明の樹脂着色用キナクリドン顔料は、着色力が高く、かつ、キナクリドン顔料(2,9-ジクロロキナクリドン)の耐熱性が高いため樹脂成形時の退色が極めて小さいことから樹脂着色用として好適である。また、本発明の樹脂着色用キナクリドン顔料を用いれば、着色力が高く、かつ樹脂成形時の退色が極めて小さいマスターバッチ及びドライカラーを得ることができ、これらを用いることで、退色が極めて小さい樹脂成形物が得られるものである。
The quinacridone pigment for resin coloring of the present invention is suitable for resin coloring because it has high coloring power and the heat resistance of the quinacridone pigment (2,9-dichloroquinacridone) is extremely low in fading during resin molding. . Further, by using the quinacridone pigment for resin coloring according to the present invention, it is possible to obtain a masterbatch and a dry color having high coloring power and extremely low fading at the time of resin molding. A molded product is obtained.
以下、本発明の詳細について説明する。
Hereinafter, details of the present invention will be described.
本発明の樹脂着色用キナクリドン顔料は、その結晶子径及び比表面積の範囲を特定範囲になるように制御することで、着色力が高く、かつ、熱履歴を受けた際の退色を最大限に抑制するものである。
The resin coloring quinacridone pigment of the present invention has a high coloring power by controlling the range of crystallite diameter and specific surface area to a specific range, and maximizes fading when subjected to a thermal history. It is to suppress.
<結晶子径>
本発明の樹脂着色用キナクリドン顔料は、結晶子径が20nm以上40nm以下の範囲になるよう制御されたものを用いることができる。具体的には、X線回折測定で得られた半値幅(ブラッグ角(2θ)=23.3°に出現するピークの半値幅)を、シェラーの式に代入することで求められる結晶子径が20nm以上40nm以下の範囲になるよう制御されたものを用いることができる。好ましくは、同様の測定により、結晶子径が20nm以上35nm以下の範囲になるよう制御されたものを用いることができる。より好ましくは、同様の測定により、結晶子径が20nm以上30nm以下の範囲になるよう制御されたものを用いることができる。さらに好ましくは、同様の測定により、結晶子径が20nm以上28nm以下の範囲になるよう制御されたものを用いることができる。測定方法の詳細は、後述の実施例にて説明する。なお、本明細書において結晶子径の値は、実施例で記載された方法で測定された値を採用するものとする。
顔料結晶1個あたりの結晶子数が少ないほど単結晶に近いため、結晶が壊れ難いと推測される。一方、比表面積との兼ね合い及び製造上の観点から合理的範囲を検討した結果として、上記の結晶子径範囲を設定した。 <Crystallite diameter>
As the quinacridone pigment for resin coloring of the present invention, a pigment whose crystallite diameter is controlled to be in a range of 20 nm or more and 40 nm or less can be used. Specifically, the crystallite diameter obtained by substituting the half-value width obtained by X-ray diffraction measurement (the half-value width of the peak appearing at Bragg angle (2θ) = 23.3 °) into Scherrer's formula is Those controlled to be in the range of 20 nm to 40 nm can be used. Preferably, a crystallite whose diameter is controlled to be in the range of 20 nm to 35 nm by the same measurement can be used. More preferably, a crystallite whose diameter is controlled to be in the range of 20 nm to 30 nm by the same measurement can be used. More preferably, a crystallite whose diameter is controlled to be in a range of 20 nm to 28 nm by the same measurement can be used. Details of the measurement method will be described in the examples described later. In addition, the value measured by the method described in the Example shall be employ | adopted for the value of a crystallite diameter in this specification.
Since the smaller the number of crystallites per pigment crystal, the closer to a single crystal, it is presumed that the crystal is difficult to break. On the other hand, as a result of examining a reasonable range from the viewpoint of balance with the specific surface area and manufacturing, the above-mentioned crystallite diameter range was set.
本発明の樹脂着色用キナクリドン顔料は、結晶子径が20nm以上40nm以下の範囲になるよう制御されたものを用いることができる。具体的には、X線回折測定で得られた半値幅(ブラッグ角(2θ)=23.3°に出現するピークの半値幅)を、シェラーの式に代入することで求められる結晶子径が20nm以上40nm以下の範囲になるよう制御されたものを用いることができる。好ましくは、同様の測定により、結晶子径が20nm以上35nm以下の範囲になるよう制御されたものを用いることができる。より好ましくは、同様の測定により、結晶子径が20nm以上30nm以下の範囲になるよう制御されたものを用いることができる。さらに好ましくは、同様の測定により、結晶子径が20nm以上28nm以下の範囲になるよう制御されたものを用いることができる。測定方法の詳細は、後述の実施例にて説明する。なお、本明細書において結晶子径の値は、実施例で記載された方法で測定された値を採用するものとする。
顔料結晶1個あたりの結晶子数が少ないほど単結晶に近いため、結晶が壊れ難いと推測される。一方、比表面積との兼ね合い及び製造上の観点から合理的範囲を検討した結果として、上記の結晶子径範囲を設定した。 <Crystallite diameter>
As the quinacridone pigment for resin coloring of the present invention, a pigment whose crystallite diameter is controlled to be in a range of 20 nm or more and 40 nm or less can be used. Specifically, the crystallite diameter obtained by substituting the half-value width obtained by X-ray diffraction measurement (the half-value width of the peak appearing at Bragg angle (2θ) = 23.3 °) into Scherrer's formula is Those controlled to be in the range of 20 nm to 40 nm can be used. Preferably, a crystallite whose diameter is controlled to be in the range of 20 nm to 35 nm by the same measurement can be used. More preferably, a crystallite whose diameter is controlled to be in the range of 20 nm to 30 nm by the same measurement can be used. More preferably, a crystallite whose diameter is controlled to be in a range of 20 nm to 28 nm by the same measurement can be used. Details of the measurement method will be described in the examples described later. In addition, the value measured by the method described in the Example shall be employ | adopted for the value of a crystallite diameter in this specification.
Since the smaller the number of crystallites per pigment crystal, the closer to a single crystal, it is presumed that the crystal is difficult to break. On the other hand, as a result of examining a reasonable range from the viewpoint of balance with the specific surface area and manufacturing, the above-mentioned crystallite diameter range was set.
<比表面積>
本発明の樹脂着色用キナクリドン顔料は、上記結晶子径の範囲を満たし、かつ、比表面積が40m2/g以上になるよう制御されたものを用いることができる。比表面積が50m2/g以上になるよう制御されたものを用いることが好ましい。比表面積が40m2/gより小さい場合、粒子サイズが大きいことから耐熱性には貢献するものの、着色力が低下するため好ましくない。本発明の性質上、必ずしも上限を設ける必要はないが、一例として挙げるとすれば、比表面積の上限は、120m2/g以下が挙げられる。比表面積の上限は、110m2/g以下である場合がより好ましい例として挙げられる。ここで、比表面積はBET比表面積を示す。なお、本明細書において比表面積の値は、実施例で記載された方法で測定された値を採用するものとする。 <Specific surface area>
As the quinacridone pigment for resin coloring of the present invention, a pigment controlled to satisfy the above crystallite diameter range and to have a specific surface area of 40 m 2 / g or more can be used. It is preferable to use one whose specific surface area is controlled to be 50 m 2 / g or more. When the specific surface area is smaller than 40 m 2 / g, although the particle size is large, it contributes to heat resistance, but the coloring power is lowered, which is not preferable. Although it is not always necessary to provide an upper limit due to the nature of the present invention, if given as an example, the upper limit of the specific surface area is 120 m 2 / g or less. The upper limit of the specific surface area is more preferably 110 m 2 / g or less. Here, the specific surface area indicates a BET specific surface area. In addition, the value measured by the method described in the Example shall be employ | adopted for the value of a specific surface area in this specification.
本発明の樹脂着色用キナクリドン顔料は、上記結晶子径の範囲を満たし、かつ、比表面積が40m2/g以上になるよう制御されたものを用いることができる。比表面積が50m2/g以上になるよう制御されたものを用いることが好ましい。比表面積が40m2/gより小さい場合、粒子サイズが大きいことから耐熱性には貢献するものの、着色力が低下するため好ましくない。本発明の性質上、必ずしも上限を設ける必要はないが、一例として挙げるとすれば、比表面積の上限は、120m2/g以下が挙げられる。比表面積の上限は、110m2/g以下である場合がより好ましい例として挙げられる。ここで、比表面積はBET比表面積を示す。なお、本明細書において比表面積の値は、実施例で記載された方法で測定された値を採用するものとする。 <Specific surface area>
As the quinacridone pigment for resin coloring of the present invention, a pigment controlled to satisfy the above crystallite diameter range and to have a specific surface area of 40 m 2 / g or more can be used. It is preferable to use one whose specific surface area is controlled to be 50 m 2 / g or more. When the specific surface area is smaller than 40 m 2 / g, although the particle size is large, it contributes to heat resistance, but the coloring power is lowered, which is not preferable. Although it is not always necessary to provide an upper limit due to the nature of the present invention, if given as an example, the upper limit of the specific surface area is 120 m 2 / g or less. The upper limit of the specific surface area is more preferably 110 m 2 / g or less. Here, the specific surface area indicates a BET specific surface area. In addition, the value measured by the method described in the Example shall be employ | adopted for the value of a specific surface area in this specification.
このように、本発明の樹脂着色用キナクリドン顔料は、結晶子径が20nm以上40nm以下の範囲になるよう制御され、かつ、比表面積が40m2/g以上になるよう制御されたものを用いることができる。2,9-ジクロロキナクリドンの結晶子径が20nm以上40nm以下の範囲にあり、比表面積が40m2/g以上である場合に、高着色力と退色抑制の両立が可能となるのである。
As described above, the quinacridone pigment for resin coloring according to the present invention is one that is controlled so that the crystallite diameter is in the range of 20 nm to 40 nm and the specific surface area is controlled to be 40 m 2 / g or more. Can do. When the crystallite diameter of 2,9-dichloroquinacridone is in the range of 20 nm or more and 40 nm or less and the specific surface area is 40 m 2 / g or more, it is possible to achieve both high coloring power and suppression of fading.
本発明の樹脂着色用キナクリドン顔料の製造方法は、上記のように特定範囲の結晶子径及び比表面積となるように製造することができるものであれば、どのような方法を採用しても良い。
As the method for producing the resin coloring quinacridone pigment of the present invention, any method may be adopted as long as it can be produced so as to have a crystallite diameter and a specific surface area within a specific range as described above. .
一態様としては、本発明の樹脂着色用キナクリドン顔料は、粗顔料又は顔料のソルトミリング法により製造することができる。キナクリドン粗顔料又は顔料1に対し、重量で1~50倍の塩(好ましくは3~15倍の塩)をニーダーに仕込み混練を開始する。ニーダー内の温度は30~100℃(好ましくは50~100℃)に設定する。そこにジエチレングリコールを全体の原料仕込み量に対し1~20%(好ましくは14~15%)を少量ずつ添加する。その後2時間以上(好ましくは5~7時間)混練後、混合物を取り出す。その混合物を水中に一晩晒し、翌日60℃に昇温し1時間程度攪拌しながら、塩およびジエチレングリコールを水中に溶解させた後、濾過、水洗浄、乾燥、粉砕を行い、顔料を得る。
As one aspect, the quinacridone pigment for resin coloring of the present invention can be produced by a crude pigment or a salt milling method of a pigment. With respect to the crude quinacridone pigment or pigment 1, a salt of 1 to 50 times by weight (preferably a salt of 3 to 15 times) is charged into a kneader and kneading is started. The temperature in the kneader is set to 30 to 100 ° C. (preferably 50 to 100 ° C.). Diethylene glycol is then added in small amounts of 1 to 20% (preferably 14 to 15%) with respect to the total amount of raw materials charged. Thereafter, after kneading for 2 hours or more (preferably 5 to 7 hours), the mixture is taken out. The mixture is exposed to water overnight, heated to 60 ° C. the next day, and stirred for about 1 hour to dissolve the salt and diethylene glycol in water, followed by filtration, washing with water, drying and grinding to obtain a pigment.
また、別の一態様としては、本発明の樹脂着色用キナクリドン顔料は、粗顔料又は顔料を、酸、アルカリ又は溶剤に溶解し、析出させて得た粗顔料を溶剤中又は水中で加圧攪拌することにより製造することができる。キナクリドン粗顔料又は顔料1に対し、重量で10倍以上の98%硫酸(好ましくは13~16倍)中で攪拌下に溶解する。粗顔料又は顔料はダマにならないよう少量ずつ加えた後、1時間攪拌する。その顔料溶解液を溶解液の10倍重量以上の水、好ましくは15倍重量の0℃の水中へ少量ずつ投入し再結晶させる。1時間攪拌後、濾過・水洗浄を行いキナクリドン粗顔料ウェットケーキを得る。再結晶にはイジェクターを使用しても良い。得られた粗顔料をドライ換算で1に対し、重量で15~30倍(好ましくは20~25倍)の水/極性溶剤(100~85/0~15)(好ましくは水/極性溶剤(85~90/15~10))を攪拌装置付の加圧可能な反応容器に仕込み、115℃で3時間攪拌する。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、顔料を得る。
キナクリドン粗顔料又は顔料の溶解には、顔料1に対し重量で10倍以上(好ましくは13~16倍)のジメチルスルホキシドと水酸化ナトリウムの混合液でも溶解が可能である。 Moreover, as another aspect, the quinacridone pigment for resin coloring of the present invention is prepared by dissolving a crude pigment or pigment in an acid, an alkali or a solvent and precipitating the crude pigment in a solvent or water under pressure. Can be manufactured. It dissolves with stirring in 98% sulfuric acid (preferably 13 to 16 times) 10 times or more by weight with respect to quinacridone crude pigment or pigment 1. The crude pigment or pigment is added in small portions so as not to become lumps and then stirred for 1 hour. The pigment solution is poured into water at least 10 times the weight of the solution, preferably 15 times the water at 0 ° C., and recrystallized. After stirring for 1 hour, filtration and washing with water are performed to obtain a quinacridone crude pigment wet cake. An ejector may be used for recrystallization. The obtained crude pigment is 15 to 30 times (preferably 20 to 25 times) water / polar solvent (100 to 85/0 to 15) (preferably water / polar solvent (85 ˜90 / 15˜10)) is charged into a pressurizable reaction vessel equipped with a stirrer and stirred at 115 ° C. for 3 hours. Thereafter, it is cooled to room temperature, filtered, washed with hot water, dried and pulverized to obtain a pigment.
The quinacridone crude pigment or pigment can be dissolved even in a mixed solution of dimethyl sulfoxide andsodium hydroxide 10 times or more (preferably 13 to 16 times) by weight with respect to Pigment 1.
キナクリドン粗顔料又は顔料の溶解には、顔料1に対し重量で10倍以上(好ましくは13~16倍)のジメチルスルホキシドと水酸化ナトリウムの混合液でも溶解が可能である。 Moreover, as another aspect, the quinacridone pigment for resin coloring of the present invention is prepared by dissolving a crude pigment or pigment in an acid, an alkali or a solvent and precipitating the crude pigment in a solvent or water under pressure. Can be manufactured. It dissolves with stirring in 98% sulfuric acid (preferably 13 to 16 times) 10 times or more by weight with respect to quinacridone crude pigment or pigment 1. The crude pigment or pigment is added in small portions so as not to become lumps and then stirred for 1 hour. The pigment solution is poured into water at least 10 times the weight of the solution, preferably 15 times the water at 0 ° C., and recrystallized. After stirring for 1 hour, filtration and washing with water are performed to obtain a quinacridone crude pigment wet cake. An ejector may be used for recrystallization. The obtained crude pigment is 15 to 30 times (preferably 20 to 25 times) water / polar solvent (100 to 85/0 to 15) (preferably water / polar solvent (85 ˜90 / 15˜10)) is charged into a pressurizable reaction vessel equipped with a stirrer and stirred at 115 ° C. for 3 hours. Thereafter, it is cooled to room temperature, filtered, washed with hot water, dried and pulverized to obtain a pigment.
The quinacridone crude pigment or pigment can be dissolved even in a mixed solution of dimethyl sulfoxide and
本発明においてキナクリドン顔料の種類は、2,9-ジクロロキナクリドンである。
In the present invention, the kind of quinacridone pigment is 2,9-dichloroquinacridone.
2,9-ジクロロキナクリドンは、芳香族多環系のマゼンタ色を示す顔料である。公知公用分野において、色材として利用されており着色力と色相から幅広く使用されている一般的な顔料である。ただし、エンジニアリングプラスチックのような、高温の熱履歴のかかる用途での着色は、顔料に求められる構造安定性、分散安定性、色相安定性は、非常に高いレベルが要求されている。2,9-ジクロロキナクリドンは分子間水素結合を形成することから分子量が小さいにもかかわらず、非常に高い各種安定性を有する顔料であるが、成形時に高温に晒されるエンジニアリングプラスチックでは、2,9-ジクロロキナクリドンが大きく退色するため使用は極めて限定されている。本発明は、特定の結晶子径及び比表面積を有する2,9-ジクロロキナクリドンがこれらの課題を解決可能であることを見出したものであり、着色力と退色抑制を両立させることができる極めて顕著な効果を奏するものである。
2,9-dichloroquinacridone is an aromatic polycyclic magenta pigment. In a publicly known field, it is a general pigment that is used as a coloring material and is widely used for coloring power and hue. However, coloring in applications that require high-temperature thermal history such as engineering plastics requires very high levels of structural stability, dispersion stability, and hue stability required for pigments. Although 2,9-dichloroquinacridone forms intermolecular hydrogen bonds, it is a pigment having very high stability despite its low molecular weight. However, in engineering plastics exposed to high temperatures during molding, -The use of dichloroquinacridone is very limited due to its fading. The present invention has been found that 2,9-dichloroquinacridone having a specific crystallite size and specific surface area can solve these problems, and can achieve both coloring power and suppression of fading. It has a great effect.
本発明で使用される樹脂としては、エンジニアリングプラスチック樹脂などが挙げられる。例えば、ポリアミド(ナイロン)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリイミド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、アクリロニトリル-スチレン樹脂、ポリエステル樹脂、アクリル樹脂、メタクリル-スチレン樹脂、ABS樹脂などが挙げられる。
The resin used in the present invention includes engineering plastic resin. For example, polyamide (nylon), polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyimide, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, acrylonitrile-styrene resin, polyester resin, acrylic resin, methacryl-styrene resin And ABS resin.
エンジニアリングプラスチック樹脂への着色方法としては、特に限定されないが、例えば、本発明のキナクリドン顔料を含むドライカラーやマスターバッチを作製し、これを樹脂中に混合する方法が挙げられる。
The coloring method for the engineering plastic resin is not particularly limited. For example, a dry color or master batch containing the quinacridone pigment of the present invention is prepared and mixed into the resin.
<ドライカラーの作製方法>
本発明のドライカラーを製造する方法に特に制限はないが、例えば、本発明のキナクリドン顔料と、ステアリン酸マグネシウム、ステアリン酸亜鉛又はステアリン酸アルミなどの脂肪族カルボン酸金属塩とを混合することでドライカラーを得ることができる。混合は、各成分をポリ袋に秤量し、ポリ袋の上から手でこすりつけながら均一になるように混ぜることで行うことができるし、ヘンシェルミキサーなどの混合機を使用して行うこともできる。また、所望の色相とするために、本発明のキナクリドン顔料と、本発明のキナクリドン顔料以外の顔料とを混合して作製することもできる。 <Dry color production method>
The method for producing the dry color of the present invention is not particularly limited. For example, by mixing the quinacridone pigment of the present invention and an aliphatic carboxylic acid metal salt such as magnesium stearate, zinc stearate or aluminum stearate. A dry color can be obtained. Mixing can be performed by weighing each component into a plastic bag and mixing it uniformly by rubbing it from the top of the plastic bag, or by using a mixer such as a Henschel mixer. Further, in order to obtain a desired hue, the quinacridone pigment of the present invention and a pigment other than the quinacridone pigment of the present invention can be mixed to produce.
本発明のドライカラーを製造する方法に特に制限はないが、例えば、本発明のキナクリドン顔料と、ステアリン酸マグネシウム、ステアリン酸亜鉛又はステアリン酸アルミなどの脂肪族カルボン酸金属塩とを混合することでドライカラーを得ることができる。混合は、各成分をポリ袋に秤量し、ポリ袋の上から手でこすりつけながら均一になるように混ぜることで行うことができるし、ヘンシェルミキサーなどの混合機を使用して行うこともできる。また、所望の色相とするために、本発明のキナクリドン顔料と、本発明のキナクリドン顔料以外の顔料とを混合して作製することもできる。 <Dry color production method>
The method for producing the dry color of the present invention is not particularly limited. For example, by mixing the quinacridone pigment of the present invention and an aliphatic carboxylic acid metal salt such as magnesium stearate, zinc stearate or aluminum stearate. A dry color can be obtained. Mixing can be performed by weighing each component into a plastic bag and mixing it uniformly by rubbing it from the top of the plastic bag, or by using a mixer such as a Henschel mixer. Further, in order to obtain a desired hue, the quinacridone pigment of the present invention and a pigment other than the quinacridone pigment of the present invention can be mixed to produce.
<マスターバッチの製造方法>
本発明のマスターバッチを製造する方法に特に制限はないが、例えば、顔料と、ワックスなどとを公知の混練造粒方法を用いて混練、造粒することにより、ペレット状等のマスターバッチを製造することができる。本発明のキナクリドン顔料と、ポリエチレンワックス、エステルワックス、脂肪酸金属石鹸、脂肪族カルボン酸金属塩などを三本ロール、二本ロール、またはその他の混練機を用いて溶融混練して得ることができる。また押出機を用いて260~320℃の加熱条件下で所望とする樹脂とともに溶融混練した後、ストランド状に押し出す。その後、ストランド状に押し出した混練物を所望とするペレット状やフレーク状等の形状に加工することでマスターバッチを得ることができる。混合、混練時に帯電防止剤、酸化防止剤などを使用しても良い。ここで、脂肪族カルボン酸金属塩としては、ステアリン酸マグネシウム、ステアリン酸亜鉛又はステアリン酸アルミなどが挙げられる。また、所望の色相とするために、本発明のキナクリドン顔料と、本発明のキナクリドン顔料以外の顔料とを混合して作製することもできる。 <Manufacturing method of master batch>
The method for producing the master batch of the present invention is not particularly limited. For example, a master batch such as a pellet is produced by kneading and granulating a pigment and wax using a known kneading granulation method. can do. The quinacridone pigment of the present invention, polyethylene wax, ester wax, fatty acid metal soap, aliphatic carboxylic acid metal salt, and the like can be obtained by melt-kneading using a three-roll, two-roll, or other kneader. Further, it is melt kneaded together with a desired resin under heating conditions of 260 to 320 ° C. using an extruder, and then extruded into a strand shape. Then, a master batch can be obtained by processing the kneaded product extruded in a strand shape into a desired pellet shape or flake shape. You may use an antistatic agent, antioxidant, etc. at the time of mixing and kneading | mixing. Here, examples of the aliphatic carboxylic acid metal salt include magnesium stearate, zinc stearate, and aluminum stearate. Further, in order to obtain a desired hue, the quinacridone pigment of the present invention and a pigment other than the quinacridone pigment of the present invention can be mixed to produce.
本発明のマスターバッチを製造する方法に特に制限はないが、例えば、顔料と、ワックスなどとを公知の混練造粒方法を用いて混練、造粒することにより、ペレット状等のマスターバッチを製造することができる。本発明のキナクリドン顔料と、ポリエチレンワックス、エステルワックス、脂肪酸金属石鹸、脂肪族カルボン酸金属塩などを三本ロール、二本ロール、またはその他の混練機を用いて溶融混練して得ることができる。また押出機を用いて260~320℃の加熱条件下で所望とする樹脂とともに溶融混練した後、ストランド状に押し出す。その後、ストランド状に押し出した混練物を所望とするペレット状やフレーク状等の形状に加工することでマスターバッチを得ることができる。混合、混練時に帯電防止剤、酸化防止剤などを使用しても良い。ここで、脂肪族カルボン酸金属塩としては、ステアリン酸マグネシウム、ステアリン酸亜鉛又はステアリン酸アルミなどが挙げられる。また、所望の色相とするために、本発明のキナクリドン顔料と、本発明のキナクリドン顔料以外の顔料とを混合して作製することもできる。 <Manufacturing method of master batch>
The method for producing the master batch of the present invention is not particularly limited. For example, a master batch such as a pellet is produced by kneading and granulating a pigment and wax using a known kneading granulation method. can do. The quinacridone pigment of the present invention, polyethylene wax, ester wax, fatty acid metal soap, aliphatic carboxylic acid metal salt, and the like can be obtained by melt-kneading using a three-roll, two-roll, or other kneader. Further, it is melt kneaded together with a desired resin under heating conditions of 260 to 320 ° C. using an extruder, and then extruded into a strand shape. Then, a master batch can be obtained by processing the kneaded product extruded in a strand shape into a desired pellet shape or flake shape. You may use an antistatic agent, antioxidant, etc. at the time of mixing and kneading | mixing. Here, examples of the aliphatic carboxylic acid metal salt include magnesium stearate, zinc stearate, and aluminum stearate. Further, in order to obtain a desired hue, the quinacridone pigment of the present invention and a pigment other than the quinacridone pigment of the present invention can be mixed to produce.
<樹脂成形物の作製方法>
本発明の樹脂成形物は、ポリプロピレン系樹脂および所望するエンジニアリングプラスチック樹脂を含有するベース樹脂と、前述のマスターバッチやドライカラーを含有する着色樹脂を成形することで製造することができる。具体的には、ポリプロピレン系樹脂およびエンジニアプラスチック樹脂を含有するベース樹脂によってマスターバッチ又はドライカラーを適当な濃度に希釈し、インフレーション装置やT-ダイ装置等を使用して成形することで、樹脂成形物を得ることができる。ベース樹脂として用いられるポリプロピレン系樹脂およびエンジニアプラスチック樹脂は、マスターバッチの製造に用いた樹脂と同一種類(同一品質)のものであることが好ましい。また、成形に使用するインフレーション装置やT-ダイ装置等のシリンダー及びダイス温度は、使用樹脂に適した一般的な温度とすればよい。 <Production method of resin molding>
The resin molded product of the present invention can be produced by molding a base resin containing a polypropylene-based resin and a desired engineering plastic resin, and a colored resin containing the aforementioned masterbatch or dry color. Specifically, the masterbatch or dry color is diluted to an appropriate concentration with a base resin containing polypropylene resin and engineer plastic resin, and then molded using an inflation device, T-die device, etc. You can get things. The polypropylene resin and engineer plastic resin used as the base resin are preferably of the same type (same quality) as the resin used for the production of the masterbatch. Further, the cylinder and die temperature of the inflation device and T-die device used for molding may be set to a general temperature suitable for the resin used.
本発明の樹脂成形物は、ポリプロピレン系樹脂および所望するエンジニアリングプラスチック樹脂を含有するベース樹脂と、前述のマスターバッチやドライカラーを含有する着色樹脂を成形することで製造することができる。具体的には、ポリプロピレン系樹脂およびエンジニアプラスチック樹脂を含有するベース樹脂によってマスターバッチ又はドライカラーを適当な濃度に希釈し、インフレーション装置やT-ダイ装置等を使用して成形することで、樹脂成形物を得ることができる。ベース樹脂として用いられるポリプロピレン系樹脂およびエンジニアプラスチック樹脂は、マスターバッチの製造に用いた樹脂と同一種類(同一品質)のものであることが好ましい。また、成形に使用するインフレーション装置やT-ダイ装置等のシリンダー及びダイス温度は、使用樹脂に適した一般的な温度とすればよい。 <Production method of resin molding>
The resin molded product of the present invention can be produced by molding a base resin containing a polypropylene-based resin and a desired engineering plastic resin, and a colored resin containing the aforementioned masterbatch or dry color. Specifically, the masterbatch or dry color is diluted to an appropriate concentration with a base resin containing polypropylene resin and engineer plastic resin, and then molded using an inflation device, T-die device, etc. You can get things. The polypropylene resin and engineer plastic resin used as the base resin are preferably of the same type (same quality) as the resin used for the production of the masterbatch. Further, the cylinder and die temperature of the inflation device and T-die device used for molding may be set to a general temperature suitable for the resin used.
ベース樹脂であるポリプロピレン系樹脂およびエンジニアリングプラスチック樹脂は、マスターバッチ又はドライカラーを用いることで、成形加工と同時に着色される。マスターバッチ又はドライカラーの量は、ベース樹脂100質量部に対して1.5~10質量部、好ましくは2.5~6質量部とする。ベース樹脂に対するマスターバッチ又はドライカラーの量を上記範囲とすることで、顔料の分散性が良好になるとともに、安定した着色効果を得ることができる。なお、樹脂成形物に含まれる顔料の割合は、樹脂成形物の全質量に対して0.05~10質量%であることが好ましく、0.1~3質量%であることがさらに好ましい。
The base resin, the polypropylene resin and the engineering plastic resin, are colored simultaneously with the molding process by using a masterbatch or a dry color. The amount of the master batch or dry color is 1.5 to 10 parts by weight, preferably 2.5 to 6 parts by weight, based on 100 parts by weight of the base resin. By making the amount of the master batch or dry color with respect to the base resin within the above range, the dispersibility of the pigment is improved and a stable coloring effect can be obtained. The ratio of the pigment contained in the resin molded product is preferably 0.05 to 10% by mass, and more preferably 0.1 to 3% by mass with respect to the total mass of the resin molded product.
ベース樹脂とマスターバッチ又はドライカラーを含有する着色樹脂を成形する方法(成形方法)は特に限定されないが、一般的な射出成形法によって成形することが好ましい。なお、一般的な射出成形法以外の成形方法としては、例えば、射出発泡成形法、超臨界射出発泡成形法、射出圧縮成形法、ガスアシスト射出成形法、サンドイッチ成形法、サンドイッチ発泡成形法などを挙げることができる。
The method (molding method) for molding a colored resin containing a base resin and a masterbatch or a dry color is not particularly limited, but is preferably molded by a general injection molding method. As a molding method other than the general injection molding method, for example, an injection foam molding method, a supercritical injection foam molding method, an injection compression molding method, a gas assist injection molding method, a sandwich molding method, a sandwich foam molding method, etc. Can be mentioned.
次に本発明を実施例に基づいて詳細に説明するが、これらは本発明の一態様であり、本発明はこれらに限定して解釈されるべきものではない。以下の「部」及び「%」は特に断りのない限り、質量基準である。
Next, the present invention will be described in detail based on examples, but these are one aspect of the present invention, and the present invention should not be construed as being limited thereto. The following “parts” and “%” are based on mass unless otherwise specified.
本発明で用いた測定方法を次に示す。
<結晶子径評価(XRD測定)>
キナクリドン顔料の粉末顔料を、PHILIPS社製X’Partを用いて、X線回折分析通則JIS-K0131に準じて測定した。測定条件は以下の通りである。
・ブラッグ角(2θ)が4°~35°の範囲で測定
・ステップ時間 50.16秒
・発散スリット 0.25°
・管球 Cu
・管電圧 45KV
・管電流 40MA
メインピークである2θ=23.3°の回折ピーク半値幅及び下記シェラー式により結晶子径を算出した。
半値幅は、市販のデータ解析ソフト(PANalytical社製 High Score Plus Ver.3)を用いてピーク分離を行うことで算出した。
算出した半値幅を用いて、下記シェラー式により結晶子径(D)を算出することができる。 The measurement method used in the present invention is shown below.
<Evaluation of crystallite size (XRD measurement)>
The powder pigment of quinacridone pigment was measured using X'Part manufactured by PHILIPS in accordance with JIS-K0131. The measurement conditions are as follows.
・ Measured when Bragg angle (2θ) is in the range of 4 ° to 35 ° ・ Step time 50.16 seconds ・ Diverging slit 0.25 °
・ Tube Cu
・ Tube voltage 45KV
・ Tube current 40MA
The crystallite diameter was calculated from the half-width of the diffraction peak of 2θ = 23.3 ° which is the main peak and the following Scherrer equation.
The half width was calculated by performing peak separation using commercially available data analysis software (High Score Plus Ver. 3 manufactured by PANalytical).
The crystallite diameter (D) can be calculated by the following Scherrer equation using the calculated half width.
<結晶子径評価(XRD測定)>
キナクリドン顔料の粉末顔料を、PHILIPS社製X’Partを用いて、X線回折分析通則JIS-K0131に準じて測定した。測定条件は以下の通りである。
・ブラッグ角(2θ)が4°~35°の範囲で測定
・ステップ時間 50.16秒
・発散スリット 0.25°
・管球 Cu
・管電圧 45KV
・管電流 40MA
メインピークである2θ=23.3°の回折ピーク半値幅及び下記シェラー式により結晶子径を算出した。
半値幅は、市販のデータ解析ソフト(PANalytical社製 High Score Plus Ver.3)を用いてピーク分離を行うことで算出した。
算出した半値幅を用いて、下記シェラー式により結晶子径(D)を算出することができる。 The measurement method used in the present invention is shown below.
<Evaluation of crystallite size (XRD measurement)>
The powder pigment of quinacridone pigment was measured using X'Part manufactured by PHILIPS in accordance with JIS-K0131. The measurement conditions are as follows.
・ Measured when Bragg angle (2θ) is in the range of 4 ° to 35 ° ・ Step time 50.16 seconds ・ Diverging slit 0.25 °
・ Tube Cu
・ Tube voltage 45KV
・ Tube current 40MA
The crystallite diameter was calculated from the half-width of the diffraction peak of 2θ = 23.3 ° which is the main peak and the following Scherrer equation.
The half width was calculated by performing peak separation using commercially available data analysis software (High Score Plus Ver. 3 manufactured by PANalytical).
The crystallite diameter (D) can be calculated by the following Scherrer equation using the calculated half width.
β:回折X線の広がり(rad)
D:結晶子径(nm)
θ:回折X線のブラッグ角(°)
λ:測定X線の波長(λ=1.54Å)
K:定数(0.94と定義する) β: diffracted X-ray spread (rad)
D: Crystallite diameter (nm)
θ: Bragg angle of diffraction X-ray (°)
λ: wavelength of measured X-ray (λ = 1.54 mm)
K: Constant (defined as 0.94)
D:結晶子径(nm)
θ:回折X線のブラッグ角(°)
λ:測定X線の波長(λ=1.54Å)
K:定数(0.94と定義する) β: diffracted X-ray spread (rad)
D: Crystallite diameter (nm)
θ: Bragg angle of diffraction X-ray (°)
λ: wavelength of measured X-ray (λ = 1.54 mm)
K: Constant (defined as 0.94)
<比表面積測定>
マウンテック社製Macsorb1201にて測定した。測定条件は次の通りである。
・脱気温度120℃
・脱気時間20分
・BET1点式流動法
・キャリアガス:ヘリウム
・混合ガス比:ヘリウム/窒素=70/30
・混合ガス流量:25ml/min <Specific surface area measurement>
The measurement was performed with a Macsorb 1201 manufactured by Mountec. The measurement conditions are as follows.
・ Degassing temperature 120 ℃
・Deaeration time 20 minutes ・ BET one-point flow method ・ Carrier gas: helium ・ Mixed gas ratio: helium / nitrogen = 70/30
・ Mixed gas flow rate: 25 ml / min
マウンテック社製Macsorb1201にて測定した。測定条件は次の通りである。
・脱気温度120℃
・脱気時間20分
・BET1点式流動法
・キャリアガス:ヘリウム
・混合ガス比:ヘリウム/窒素=70/30
・混合ガス流量:25ml/min <Specific surface area measurement>
The measurement was performed with a Macsorb 1201 manufactured by Mountec. The measurement conditions are as follows.
・ Degassing temperature 120 ℃
・
・ Mixed gas flow rate: 25 ml / min
<蛍光波長について>
ポリプロピレンでは溶解による蛍光発光が起きないことから、このサンプルを蛍光波長のΔ分光反射率算出時の標準とする。 <About fluorescence wavelength>
Since polypropylene does not emit fluorescence due to dissolution, this sample is used as a standard when calculating the Δ spectral reflectance of the fluorescence wavelength.
ポリプロピレンでは溶解による蛍光発光が起きないことから、このサンプルを蛍光波長のΔ分光反射率算出時の標準とする。 <About fluorescence wavelength>
Since polypropylene does not emit fluorescence due to dissolution, this sample is used as a standard when calculating the Δ spectral reflectance of the fluorescence wavelength.
<樹脂成形物の退色度の測定方法>
退色度は、得られた樹脂成形物をスペクトロフォトメータ(測色計)Datacolor international社製 datacolor 650を用いて測定した値を採用した。具体的には、各サンプルの300、320℃での分光反射率550nmの蛍光波長の分光反射率を測定した。さらに、前記ポリプロピレン成形時の蛍光波長の分光反射率を標準として、Δ分光反射率を求めた。550nmの蛍光波長のΔ分光反射率が大きい値をとるほど、あるべき色相から異なった色相への変色が著しく、着色の耐熱性が低いことを意味する。 <Measuring method of fading degree of resin molding>
For the fading degree, a value obtained by measuring the obtained resin molding using a spectrophotometer (colorimeter) Datacolor 650 manufactured by Datacolor International was used. Specifically, the spectral reflectance at a fluorescence wavelength of 550 nm at 300 and 320 ° C. was measured for each sample. Further, the Δ spectral reflectance was obtained with the spectral reflectance at the fluorescence wavelength at the time of molding the polypropylene as a standard. The larger the Δ spectral reflectance at a fluorescence wavelength of 550 nm, the more the color change from a desired hue to a different hue, and the lower the heat resistance of coloring.
退色度は、得られた樹脂成形物をスペクトロフォトメータ(測色計)Datacolor international社製 datacolor 650を用いて測定した値を採用した。具体的には、各サンプルの300、320℃での分光反射率550nmの蛍光波長の分光反射率を測定した。さらに、前記ポリプロピレン成形時の蛍光波長の分光反射率を標準として、Δ分光反射率を求めた。550nmの蛍光波長のΔ分光反射率が大きい値をとるほど、あるべき色相から異なった色相への変色が著しく、着色の耐熱性が低いことを意味する。 <Measuring method of fading degree of resin molding>
For the fading degree, a value obtained by measuring the obtained resin molding using a spectrophotometer (colorimeter) Datacolor 650 manufactured by Datacolor International was used. Specifically, the spectral reflectance at a fluorescence wavelength of 550 nm at 300 and 320 ° C. was measured for each sample. Further, the Δ spectral reflectance was obtained with the spectral reflectance at the fluorescence wavelength at the time of molding the polypropylene as a standard. The larger the Δ spectral reflectance at a fluorescence wavelength of 550 nm, the more the color change from a desired hue to a different hue, and the lower the heat resistance of coloring.
<樹脂成形物の着色力の測定方法>
得られた樹脂成形物をスペクトロフォトメータ(測色計)Datacolor international社製 datacolor 650を用いて測定した値を採用した。ナイロン6樹脂成形物、下記「製造例1」の300℃での成形物を基準とし、比較した。 <Method for measuring coloring power of resin molding>
A value obtained by measuring the obtained resin molding using a spectrophotometer (colorimeter), datacolor 650, manufactured by Datacolor International, Inc. was employed. A comparison was made based on a nylon 6 resin molded product and a molded product at 300 ° C. of “Production Example 1” below.
得られた樹脂成形物をスペクトロフォトメータ(測色計)Datacolor international社製 datacolor 650を用いて測定した値を採用した。ナイロン6樹脂成形物、下記「製造例1」の300℃での成形物を基準とし、比較した。 <Method for measuring coloring power of resin molding>
A value obtained by measuring the obtained resin molding using a spectrophotometer (colorimeter), datacolor 650, manufactured by Datacolor International, Inc. was employed. A comparison was made based on a nylon 6 resin molded product and a molded product at 300 ° C. of “Production Example 1” below.
[製造例1]
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗してジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。それを乾燥、粉砕し、その乾燥粗顔料100gを、1500gの98%硫酸に溶解した。1時間攪拌したのち、15000gの0℃の水中へ取出した。30分攪拌後、ろ過、水洗し、粗顔料ウェットケーキを得た。攪拌装置付の加圧可能な反応容器に、本粗顔料30g(固形分100%として)、イソブタノール60g、水540gを仕込み、攪拌翼で内容物を115℃で3時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 28gを得た。
得られた顔料の結晶子径は、26.21nmであった。
得られた顔料の比表面積の値は、56m2/gであった。 [Production Example 1]
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. Into another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring. The mixture was stirred as it was for 30 minutes, filtered and washed with water to obtain a dichloroquinacridone compound (crude Pigment) wet cake was obtained. It was dried and ground, and 100 g of the dried crude pigment was dissolved in 1500 g of 98% sulfuric acid. After stirring for 1 hour, it was taken out into 15000 g of 0 ° C. water. After stirring for 30 minutes, filtration and washing with water were performed to obtain a crude pigment wet cake. In a pressurizable reaction vessel equipped with a stirrer, 30 g of the crude pigment (with a solid content of 100%), 60 g of isobutanol and 540 g of water were charged, and the contents were stirred at 115 ° C. for 3 hours with a stirring blade. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 26.21 nm.
The specific surface area of the obtained pigment was 56 m 2 / g.
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗してジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。それを乾燥、粉砕し、その乾燥粗顔料100gを、1500gの98%硫酸に溶解した。1時間攪拌したのち、15000gの0℃の水中へ取出した。30分攪拌後、ろ過、水洗し、粗顔料ウェットケーキを得た。攪拌装置付の加圧可能な反応容器に、本粗顔料30g(固形分100%として)、イソブタノール60g、水540gを仕込み、攪拌翼で内容物を115℃で3時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 28gを得た。
得られた顔料の結晶子径は、26.21nmであった。
得られた顔料の比表面積の値は、56m2/gであった。 [Production Example 1]
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. Into another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring. The mixture was stirred as it was for 30 minutes, filtered and washed with water to obtain a dichloroquinacridone compound (crude Pigment) wet cake was obtained. It was dried and ground, and 100 g of the dried crude pigment was dissolved in 1500 g of 98% sulfuric acid. After stirring for 1 hour, it was taken out into 15000 g of 0 ° C. water. After stirring for 30 minutes, filtration and washing with water were performed to obtain a crude pigment wet cake. In a pressurizable reaction vessel equipped with a stirrer, 30 g of the crude pigment (with a solid content of 100%), 60 g of isobutanol and 540 g of water were charged, and the contents were stirred at 115 ° C. for 3 hours with a stirring blade. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 26.21 nm.
The specific surface area of the obtained pigment was 56 m 2 / g.
[製造例2]
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗してジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。その粗顔料を乾燥、粉砕し、こうして得られた粗顔料200gを、塩2500gとジエチレングリコール(DEG)450gと共にソルトミリング(100℃6時間)を行った。得られた混合物を10Lの水に解膠し、ろ過、水洗浄、乾燥、粉砕を行い、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 190gを得た。
得られた顔料の結晶子径は、25.03nmであった。
得られた顔料の比表面積の値は、75m2/gであった。 [Production Example 2]
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. Into another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring. Pigment) wet cake was obtained. The crude pigment was dried and pulverized, and 200 g of the crude pigment thus obtained was subjected to salt milling (100 ° C., 6 hours) together with 2500 g of salt and 450 g of diethylene glycol (DEG). The obtained mixture was peptized in 10 L of water, filtered, washed with water, dried, and pulverized to obtain 190 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 25.03 nm.
The obtained pigment had a specific surface area of 75 m 2 / g.
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗してジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。その粗顔料を乾燥、粉砕し、こうして得られた粗顔料200gを、塩2500gとジエチレングリコール(DEG)450gと共にソルトミリング(100℃6時間)を行った。得られた混合物を10Lの水に解膠し、ろ過、水洗浄、乾燥、粉砕を行い、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 190gを得た。
得られた顔料の結晶子径は、25.03nmであった。
得られた顔料の比表面積の値は、75m2/gであった。 [Production Example 2]
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. Into another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring. Pigment) wet cake was obtained. The crude pigment was dried and pulverized, and 200 g of the crude pigment thus obtained was subjected to salt milling (100 ° C., 6 hours) together with 2500 g of salt and 450 g of diethylene glycol (DEG). The obtained mixture was peptized in 10 L of water, filtered, washed with water, dried, and pulverized to obtain 190 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 25.03 nm.
The obtained pigment had a specific surface area of 75 m 2 / g.
[製造例3]
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度95%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗してジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。その粗顔料を乾燥、粉砕し、こうして得られた粗顔料200gを、塩2500gとジエチレングリコール(DEG)450gと共にソルトミリング(90℃6時間)を行った。得られた混合物を10Lの水に解膠し、ろ過、水洗浄、乾燥、粉砕を行い、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 190gを得た。
得られた顔料の結晶子径は、20.01nm、顔料の比表面積の値は、93m2/gであった。 [Production Example 3]
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 95% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. Into another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring. Pigment) wet cake was obtained. The crude pigment was dried and pulverized, and 200 g of the crude pigment thus obtained was subjected to salt milling (90 ° C., 6 hours) together with 2500 g of salt and 450 g of diethylene glycol (DEG). The obtained mixture was peptized in 10 L of water, filtered, washed with water, dried, and pulverized to obtain 190 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 20.01 nm, and the specific surface area of the pigment was 93 m 2 / g.
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度95%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗してジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。その粗顔料を乾燥、粉砕し、こうして得られた粗顔料200gを、塩2500gとジエチレングリコール(DEG)450gと共にソルトミリング(90℃6時間)を行った。得られた混合物を10Lの水に解膠し、ろ過、水洗浄、乾燥、粉砕を行い、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 190gを得た。
得られた顔料の結晶子径は、20.01nm、顔料の比表面積の値は、93m2/gであった。 [Production Example 3]
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 95% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. Into another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring. Pigment) wet cake was obtained. The crude pigment was dried and pulverized, and 200 g of the crude pigment thus obtained was subjected to salt milling (90 ° C., 6 hours) together with 2500 g of salt and 450 g of diethylene glycol (DEG). The obtained mixture was peptized in 10 L of water, filtered, washed with water, dried, and pulverized to obtain 190 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 20.01 nm, and the specific surface area of the pigment was 93 m 2 / g.
[製造例4] (比較用顔料の製造)
攪拌装置付の反応容器に85%リン酸250g、無水リン酸350gを加えて20分間攪拌し、無水リン酸含有量が84%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸100gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器にメタノール930gを張り、64℃以下を保ちながら強攪拌下に、前記環化反応物を投入後、そこに830gの水を1時間かけて滴下した。30分間そのまま攪拌後、濾過、メタノール及び水洗浄を行い2,9-ジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。攪拌装置付の加圧可能な反応容器に、得られた粗顔料30g(固形分100%として)、イソブタノール60g、水540gを仕込み、攪拌翼で内容物を115℃で3時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 28gを得た。
得られた顔料の結晶子径は、13.83nmであった。
得られた顔料の比表面積の値は、60m2/gであった。 [Production Example 4] (Production of comparative pigment)
To a reaction vessel equipped with a stirrer, 250 g of 85% phosphoric acid and 350 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 84%. To this, 100 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. 930 g of methanol was placed in another vessel equipped with a stirrer, and the cyclized reaction product was added under strong stirring while maintaining the temperature at 64 ° C. or lower, and 830 g of water was added dropwise thereto over 1 hour. After stirring for 30 minutes, filtration, washing with methanol and water were performed to obtain a wet cake of 2,9-dichloroquinacridone compound (crude pigment). In a pressurizable reaction vessel equipped with a stirrer, 30 g of the obtained crude pigment (with a solid content of 100%), 60 g of isobutanol and 540 g of water were charged, and the contents were stirred with a stirring blade at 115 ° C. for 3 hours. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 13.83 nm.
The obtained pigment had a specific surface area of 60 m 2 / g.
攪拌装置付の反応容器に85%リン酸250g、無水リン酸350gを加えて20分間攪拌し、無水リン酸含有量が84%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸100gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器にメタノール930gを張り、64℃以下を保ちながら強攪拌下に、前記環化反応物を投入後、そこに830gの水を1時間かけて滴下した。30分間そのまま攪拌後、濾過、メタノール及び水洗浄を行い2,9-ジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。攪拌装置付の加圧可能な反応容器に、得られた粗顔料30g(固形分100%として)、イソブタノール60g、水540gを仕込み、攪拌翼で内容物を115℃で3時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202) 28gを得た。
得られた顔料の結晶子径は、13.83nmであった。
得られた顔料の比表面積の値は、60m2/gであった。 [Production Example 4] (Production of comparative pigment)
To a reaction vessel equipped with a stirrer, 250 g of 85% phosphoric acid and 350 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 84%. To this, 100 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. 930 g of methanol was placed in another vessel equipped with a stirrer, and the cyclized reaction product was added under strong stirring while maintaining the temperature at 64 ° C. or lower, and 830 g of water was added dropwise thereto over 1 hour. After stirring for 30 minutes, filtration, washing with methanol and water were performed to obtain a wet cake of 2,9-dichloroquinacridone compound (crude pigment). In a pressurizable reaction vessel equipped with a stirrer, 30 g of the obtained crude pigment (with a solid content of 100%), 60 g of isobutanol and 540 g of water were charged, and the contents were stirred with a stirring blade at 115 ° C. for 3 hours. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 13.83 nm.
The obtained pigment had a specific surface area of 60 m 2 / g.
[製造例5] (比較用顔料の製造)
前記製造例3で得られた2,9-ジクロロキナクリドン化合物(粗顔料)30g(固形分100%として)、安息香酸メチル30g、水510gを仕込み、攪拌翼で内容物を88℃で4時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、ジクロロキナクリドン顔料(C.I.Pigment Red 202)28gを得た。
得られた顔料の結晶子径は、17.41nmであった。
得られた顔料の比表面積の値は、41m2/gであった。 [Production Example 5] (Production of comparative pigment)
30 g of 2,9-dichloroquinacridone compound (crude pigment) obtained in Production Example 3 (as a solid content of 100%), 30 g of methyl benzoate and 510 g of water were charged, and the contents were stirred at 88 ° C. for 4 hours with a stirring blade. did. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried and pulverized to obtain 28 g of dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 17.41 nm.
The value of the specific surface area of the obtained pigment was 41 m 2 / g.
前記製造例3で得られた2,9-ジクロロキナクリドン化合物(粗顔料)30g(固形分100%として)、安息香酸メチル30g、水510gを仕込み、攪拌翼で内容物を88℃で4時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、ジクロロキナクリドン顔料(C.I.Pigment Red 202)28gを得た。
得られた顔料の結晶子径は、17.41nmであった。
得られた顔料の比表面積の値は、41m2/gであった。 [Production Example 5] (Production of comparative pigment)
30 g of 2,9-dichloroquinacridone compound (crude pigment) obtained in Production Example 3 (as a solid content of 100%), 30 g of methyl benzoate and 510 g of water were charged, and the contents were stirred at 88 ° C. for 4 hours with a stirring blade. did. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried and pulverized to obtain 28 g of dichloroquinacridone pigment (CI Pigment Red 202).
The crystallite diameter of the obtained pigment was 17.41 nm.
The value of the specific surface area of the obtained pigment was 41 m 2 / g.
[製造例6](比較用顔料の製造)
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗して2,9-ジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。攪拌装置付の加圧可能な反応容器に、得られた粗顔料30g(固形分100%として)、イソブタノール99g、水201gを仕込み、攪拌翼で内容物を130℃で3時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202)28gを得た。得られた顔料の結晶子径は、29.67nmであった。
得られた顔料の比表面積の値は、27m2/gであった。 [Production Example 6] (Production of comparative pigment)
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. In another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring, stirred as it was for 30 minutes, filtered, washed with water and washed with 2,9-dichloromethane. A wet cake of a quinacridone compound (crude pigment) was obtained. In a pressurizable reaction vessel equipped with a stirrer, 30 g of the obtained crude pigment (with a solid content of 100%), 99 g of isobutanol and 201 g of water were charged, and the contents were stirred with a stirring blade at 130 ° C. for 3 hours. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202). The crystallite diameter of the obtained pigment was 29.67 nm.
The value of the specific surface area of the obtained pigment was 27 m 2 / g.
攪拌装置付の反応容器に85%リン酸262.1g、無水リン酸421.7gを加えて20分間攪拌し、無水リン酸含有量が85.3%のポリリン酸を得た。ここに、純度99%の2,5-ジ(4-クロロアニリノ)テレフタル酸120gを加え、125℃で3時間攪拌を行い、環化反応物を得た。別の攪拌装置付の容器に30℃の水2800gを張り、この中に、強攪拌下で、前記環化反応物を投入し、30分間そのまま攪拌し、濾過、水洗して2,9-ジクロロキナクリドン化合物(粗顔料)のウェットケーキを得た。攪拌装置付の加圧可能な反応容器に、得られた粗顔料30g(固形分100%として)、イソブタノール99g、水201gを仕込み、攪拌翼で内容物を130℃で3時間攪拌した。その後、室温まで冷却し、濾過、湯洗、乾燥、粉砕し、2,9-ジクロロキナクリドン顔料(C.I.Pigment Red 202)28gを得た。得られた顔料の結晶子径は、29.67nmであった。
得られた顔料の比表面積の値は、27m2/gであった。 [Production Example 6] (Production of comparative pigment)
In a reaction vessel equipped with a stirrer, 262.1 g of 85% phosphoric acid and 421.7 g of anhydrous phosphoric acid were added and stirred for 20 minutes to obtain polyphosphoric acid having an anhydrous phosphoric acid content of 85.3%. To this, 120 g of 99% pure 2,5-di (4-chloroanilino) terephthalic acid was added and stirred at 125 ° C. for 3 hours to obtain a cyclization reaction product. In another vessel equipped with a stirrer, 2800 g of water at 30 ° C. was placed, and the cyclized reaction product was charged into the vessel with vigorous stirring, stirred as it was for 30 minutes, filtered, washed with water and washed with 2,9-dichloromethane. A wet cake of a quinacridone compound (crude pigment) was obtained. In a pressurizable reaction vessel equipped with a stirrer, 30 g of the obtained crude pigment (with a solid content of 100%), 99 g of isobutanol and 201 g of water were charged, and the contents were stirred with a stirring blade at 130 ° C. for 3 hours. Thereafter, the mixture was cooled to room temperature, filtered, washed with hot water, dried, and pulverized to obtain 28 g of 2,9-dichloroquinacridone pigment (CI Pigment Red 202). The crystallite diameter of the obtained pigment was 29.67 nm.
The value of the specific surface area of the obtained pigment was 27 m 2 / g.
[ドライカラーの調製]
前記製造例1~6で得られた顔料を用いてドライカラーを調製した。
顔料5gとステアリン酸マグネシウム5gをポリ袋に秤量し、約5分間ポリ袋の上から手でこすりつけながら均一になるように混合してドライカラーを得た。 [Preparation of dry color]
Dry colors were prepared using the pigments obtained in Production Examples 1 to 6.
5 g of pigment and 5 g of magnesium stearate were weighed into a plastic bag and mixed so as to be uniform while being rubbed by hand from above the plastic bag for about 5 minutes to obtain a dry color.
前記製造例1~6で得られた顔料を用いてドライカラーを調製した。
顔料5gとステアリン酸マグネシウム5gをポリ袋に秤量し、約5分間ポリ袋の上から手でこすりつけながら均一になるように混合してドライカラーを得た。 [Preparation of dry color]
Dry colors were prepared using the pigments obtained in Production Examples 1 to 6.
5 g of pigment and 5 g of magnesium stearate were weighed into a plastic bag and mixed so as to be uniform while being rubbed by hand from above the plastic bag for about 5 minutes to obtain a dry color.
(マスターバッチの調製例)
なお、着色に、マスターバッチを用いる場合には、作製した顔料1部とステアリン酸マグネシウム1部と所定のプラスチック樹脂3部を秤量し、池貝鉄工株式会社製、PCM30押出機で各樹脂の成形温度で混錬を行い、マスターバッチサンプルを得て、下記の樹脂成形物を調製することにより、ドライカラーを用いた場合と同様に、本発明の効果を得ることができる。 (Example of master batch preparation)
In addition, when using a masterbatch for coloring, 1 part of the prepared pigment, 1 part of magnesium stearate, and 3 parts of a predetermined plastic resin are weighed, and the molding temperature of each resin using a PCM30 extruder manufactured by Ikekai Tekko Co., Ltd. The effect of this invention can be acquired similarly to the case where a dry color is used by knead | mixing and obtaining a masterbatch sample and preparing the following resin molding.
なお、着色に、マスターバッチを用いる場合には、作製した顔料1部とステアリン酸マグネシウム1部と所定のプラスチック樹脂3部を秤量し、池貝鉄工株式会社製、PCM30押出機で各樹脂の成形温度で混錬を行い、マスターバッチサンプルを得て、下記の樹脂成形物を調製することにより、ドライカラーを用いた場合と同様に、本発明の効果を得ることができる。 (Example of master batch preparation)
In addition, when using a masterbatch for coloring, 1 part of the prepared pigment, 1 part of magnesium stearate, and 3 parts of a predetermined plastic resin are weighed, and the molding temperature of each resin using a PCM30 extruder manufactured by Ikekai Tekko Co., Ltd. The effect of this invention can be acquired similarly to the case where a dry color is used by knead | mixing and obtaining a masterbatch sample and preparing the following resin molding.
[樹脂成形物の調製]
評価用プラスチック樹脂として、ナイロン6(宇部興産(株)製 UBE NYLON1013NW8)及びポリプロピレン(日本ポリプロ社製ノバテックPP BC3)を用いて、樹脂成形物を調製した。得られた樹脂成形物を用いて退色度の測定を行った。まず、上記で得られたドライカラーを用いてナイロン成形物を調製した。ナイロン6(宇部興産社製 UBE NYLON 1013NW8)1600gと、上記で得られたドライカラー3.2gをポリ袋に秤量し、約5分間、手で振り混ぜナイロン6にドライカラーを付着させた。これを、日精樹脂工業(株)製の射出成形機PS60E9Aを用いて、300℃及び320℃で射出成形し、樹脂成形物を得た。 [Preparation of resin molding]
Resin moldings were prepared using nylon 6 (UBE NYLON1013NW8 manufactured by Ube Industries, Ltd.) and polypropylene (Novatech PP BC3 manufactured by Nippon Polypro Co., Ltd.) as plastic resins for evaluation. The degree of fading was measured using the obtained resin molding. First, a nylon molded product was prepared using the dry color obtained above. 1600 g of nylon 6 (UBE NYLON 1013NW8 manufactured by Ube Industries Co., Ltd.) and 3.2 g of the dry color obtained above were weighed in a plastic bag and shaken by hand for about 5 minutes to attach the dry color to nylon 6. This was injection molded at 300 ° C. and 320 ° C. using an injection molding machine PS60E9A manufactured by Nissei Plastic Industry Co., Ltd. to obtain a resin molded product.
評価用プラスチック樹脂として、ナイロン6(宇部興産(株)製 UBE NYLON1013NW8)及びポリプロピレン(日本ポリプロ社製ノバテックPP BC3)を用いて、樹脂成形物を調製した。得られた樹脂成形物を用いて退色度の測定を行った。まず、上記で得られたドライカラーを用いてナイロン成形物を調製した。ナイロン6(宇部興産社製 UBE NYLON 1013NW8)1600gと、上記で得られたドライカラー3.2gをポリ袋に秤量し、約5分間、手で振り混ぜナイロン6にドライカラーを付着させた。これを、日精樹脂工業(株)製の射出成形機PS60E9Aを用いて、300℃及び320℃で射出成形し、樹脂成形物を得た。 [Preparation of resin molding]
Resin moldings were prepared using nylon 6 (UBE NYLON1013NW8 manufactured by Ube Industries, Ltd.) and polypropylene (Novatech PP BC3 manufactured by Nippon Polypro Co., Ltd.) as plastic resins for evaluation. The degree of fading was measured using the obtained resin molding. First, a nylon molded product was prepared using the dry color obtained above. 1600 g of nylon 6 (UBE NYLON 1013NW8 manufactured by Ube Industries Co., Ltd.) and 3.2 g of the dry color obtained above were weighed in a plastic bag and shaken by hand for about 5 minutes to attach the dry color to nylon 6. This was injection molded at 300 ° C. and 320 ° C. using an injection molding machine PS60E9A manufactured by Nissei Plastic Industry Co., Ltd. to obtain a resin molded product.
また、上記で得られたドライカラーを用いてポリプロピレン成形物を調製した。
ポリプロピレン(日本ポリプロ株式会社製 ノバテックPP BC3)1600gと、上記で得られたドライカラー3.2gをポリ袋に秤量し、約5分間、手で振り混ぜポリプロピレンにドライカラーを付着させた。これを、日精樹脂工業(株)製の射出成形機PS60E9Aを用いて220℃で射出成型を行い、樹脂成形物を得た。 Moreover, the polypropylene molding was prepared using the dry color obtained above.
1600 g of polypropylene (Novatech PP BC3, manufactured by Nippon Polypro Co., Ltd.) and 3.2 g of the dry color obtained above were weighed in a plastic bag and shaken by hand for about 5 minutes to adhere the dry color to the polypropylene. This was injection molded at 220 ° C. using an injection molding machine PS60E9A manufactured by Nissei Plastic Industry Co., Ltd. to obtain a resin molded product.
ポリプロピレン(日本ポリプロ株式会社製 ノバテックPP BC3)1600gと、上記で得られたドライカラー3.2gをポリ袋に秤量し、約5分間、手で振り混ぜポリプロピレンにドライカラーを付着させた。これを、日精樹脂工業(株)製の射出成形機PS60E9Aを用いて220℃で射出成型を行い、樹脂成形物を得た。 Moreover, the polypropylene molding was prepared using the dry color obtained above.
1600 g of polypropylene (Novatech PP BC3, manufactured by Nippon Polypro Co., Ltd.) and 3.2 g of the dry color obtained above were weighed in a plastic bag and shaken by hand for about 5 minutes to adhere the dry color to the polypropylene. This was injection molded at 220 ° C. using an injection molding machine PS60E9A manufactured by Nissei Plastic Industry Co., Ltd. to obtain a resin molded product.
得られた樹脂成形物を用いて、退色度及び着色力を測定した(実施例1~3は比較例1~3)。表1は、各実施例と使用した顔料との対応を示し、表2に測定結果を示す。
Using the obtained resin molding, the degree of fading and coloring power were measured (Examples 1 to 3 were Comparative Examples 1 to 3). Table 1 shows the correspondence between each example and the pigment used, and Table 2 shows the measurement results.
*300℃、320℃各温度のナイロン樹脂成型板550nm反射率値と、220℃で成型したポリプロピレン樹脂成型板の550nm反射率値との差を求め、退色性(着色の耐熱性)の指標とした。
* The difference between the 550 nm reflectance value of the nylon resin molded plate at 300 ° C. and 320 ° C. and the 550 nm reflectance value of the polypropylene resin molded plate molded at 220 ° C. is obtained, and an index of fading (heat resistance of coloring) did.
実施例1~3は比較例1及び2に比べ、耐熱性が高く、かつ着色力も高い。また、実施例1~3は比較例3に比べ、着色力が大幅に優れ、耐熱性についても比較例3と同等の効果を有する。即ち、本発明のキナクリドン顔料を用いた実施例1~3は、従来トレードオフの関係にあると考えられていた「高い耐熱性」と、「高い着色力」を両立させることに成功したという顕著な効果を奏するものである。
Examples 1 to 3 have higher heat resistance and higher coloring power than Comparative Examples 1 and 2. In addition, Examples 1 to 3 have significantly better coloring power than Comparative Example 3, and have the same effects as Comparative Example 3 in terms of heat resistance. In other words, Examples 1 to 3 using the quinacridone pigment of the present invention were successful in achieving both “high heat resistance” and “high coloring power”, which had been considered to have a trade-off relationship. It has a great effect.
Claims (7)
- 樹脂着色用キナクリドン顔料であって、
キナクリドン顔料が2,9-ジクロロキナクリドンであり、シェラーの式よりX線回折の半値幅から求められる結晶子径が20nm以上40nm以下の範囲にあり、かつ、比表面積が40m2/g以上であることを特徴とする樹脂着色用キナクリドン顔料。 A quinacridone pigment for resin coloring,
The quinacridone pigment is 2,9-dichloroquinacridone, the crystallite diameter determined from the half-value width of X-ray diffraction from Scherrer's formula is in the range of 20 nm to 40 nm, and the specific surface area is 40 m 2 / g or more. A quinacridone pigment for coloring resin. - 更に、比表面積が50m2/g以上であることを特徴とする請求項1に記載の樹脂着色用キナクリドン顔料。 Furthermore, the specific surface area is 50 m < 2 > / g or more, The quinacridone pigment for resin coloring of Claim 1 characterized by the above-mentioned.
- 請求項1又は2に記載の樹脂着色用キナクリドン顔料を含有する樹脂成形物。 A resin molding containing the quinacridone pigment for resin coloring according to claim 1 or 2.
- 請求項1又は2に記載の樹脂着色用キナクリドン顔料を含むことを特徴とするマスターバッチ。 A master batch comprising the quinacridone pigment for resin coloring according to claim 1 or 2.
- 請求項4に記載のマスターバッチから得られる樹脂成形物。 A resin molded product obtained from the masterbatch according to claim 4.
- 請求項1又は2に記載の樹脂着色用キナクリドン顔料を含むことを特徴とするドライカラー。 A dry color comprising the quinacridone pigment for resin coloring according to claim 1 or 2.
- 請求項6に記載のドライカラーから得られる樹脂成形物。 A resin molded product obtained from the dry color according to claim 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-128472 | 2016-06-29 | ||
JP2016128472 | 2016-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003595A1 true WO2018003595A1 (en) | 2018-01-04 |
Family
ID=60787227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022654 WO2018003595A1 (en) | 2016-06-29 | 2017-06-20 | Quinacridone pigment for resin coloring |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018003595A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62220559A (en) * | 1986-03-24 | 1987-09-28 | Dainichi Color & Chem Mfg Co Ltd | Composition for coloring thermoplastic resin |
JPH05230384A (en) * | 1991-08-22 | 1993-09-07 | Ciba Geigy Ag | Oxidation method for producing quinacridone pigment |
JPH10251533A (en) * | 1997-03-17 | 1998-09-22 | Toyo Ink Mfg Co Ltd | Easily dispersible quinacridone pigment and its production |
JP2009161690A (en) * | 2008-01-09 | 2009-07-23 | Kao Corp | Method for producing red organic pigment for color filter |
WO2011024896A1 (en) * | 2009-08-27 | 2011-03-03 | 富士フイルム株式会社 | Dichlorodiketopyrrolopyrrole pigment, coloring material dispersion containing the pigment, and process for production of the coloring material dispersion |
-
2017
- 2017-06-20 WO PCT/JP2017/022654 patent/WO2018003595A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62220559A (en) * | 1986-03-24 | 1987-09-28 | Dainichi Color & Chem Mfg Co Ltd | Composition for coloring thermoplastic resin |
JPH05230384A (en) * | 1991-08-22 | 1993-09-07 | Ciba Geigy Ag | Oxidation method for producing quinacridone pigment |
JPH10251533A (en) * | 1997-03-17 | 1998-09-22 | Toyo Ink Mfg Co Ltd | Easily dispersible quinacridone pigment and its production |
JP2009161690A (en) * | 2008-01-09 | 2009-07-23 | Kao Corp | Method for producing red organic pigment for color filter |
WO2011024896A1 (en) * | 2009-08-27 | 2011-03-03 | 富士フイルム株式会社 | Dichlorodiketopyrrolopyrrole pigment, coloring material dispersion containing the pigment, and process for production of the coloring material dispersion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110225948A (en) | General-purpose pigment preparations for the reinforcement and colouring of plastics | |
JPS6333478A (en) | Novel composition based on indanthrene blue pigment | |
US8470912B2 (en) | Granulated colorant and related art | |
JP2573642B2 (en) | Solid solution of pyrrolo- [3,4-c] -pyrrole and quinacridone | |
EP2655483A2 (en) | Thermoplastic composition | |
CN110776688B (en) | Antioxidant and anti-UV color master batch and preparation method thereof | |
JP5764835B1 (en) | Colorant for plastic, coloring composition using the same, and molded product | |
JPH0718198A (en) | Composition based on 2,9-dichloroquinacridone pigment | |
JP4657188B2 (en) | Granulating colorants and related technologies | |
JP3897374B2 (en) | Pigment composition based on 3,6-di (4-biphenyl) -1,4-diketo-pyrrolo [3,4-c] -pyrrole | |
WO2018003595A1 (en) | Quinacridone pigment for resin coloring | |
CN118599336B (en) | Anthraquinone blue solid solution pigment and preparation method and application thereof | |
JPH04311769A (en) | Engineering plastic and coating material that are colored with 2,9-dichloroquinacridone | |
EP1188796B1 (en) | Colored thermoplastic resin composition and related arts thereof | |
JP6090545B1 (en) | Quinacridone pigment composition for resin coloring | |
JP4877569B2 (en) | Granular chromatic resin composition | |
JP4525191B2 (en) | Pigment compositions and their use in plastics | |
US5030734A (en) | Solid solutions of azomethine pigments | |
JP5796026B2 (en) | Manufacturing method of resin coloring masterbatch | |
JP2007314777A (en) | Quinonoquinolone pigment composition and method for producing colored plastic molded article | |
US3873548A (en) | 2,9-Dicarboxyquinacridone and methods for its production | |
JP2017535630A (en) | Stabilization of C.I. Pigment Yellow 139 | |
JPH07157567A (en) | Method for producing colored thermoplastic resin molding | |
US3790603A (en) | 6,14-dichloropyranthrone | |
KR100575247B1 (en) | Manufacturing method of molding using resin colored composition and resin colored with the resin colored composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17819954 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17819954 Country of ref document: EP Kind code of ref document: A1 |