+

WO2018003274A1 - Method for producing gas barrier film - Google Patents

Method for producing gas barrier film Download PDF

Info

Publication number
WO2018003274A1
WO2018003274A1 PCT/JP2017/016809 JP2017016809W WO2018003274A1 WO 2018003274 A1 WO2018003274 A1 WO 2018003274A1 JP 2017016809 W JP2017016809 W JP 2017016809W WO 2018003274 A1 WO2018003274 A1 WO 2018003274A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
gas
barrier layer
plasma
Prior art date
Application number
PCT/JP2017/016809
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 一生
河村 朋紀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018524920A priority Critical patent/JP6888623B2/en
Priority to CN201780040108.5A priority patent/CN109415805B/en
Publication of WO2018003274A1 publication Critical patent/WO2018003274A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Definitions

  • the present invention relates to a method for producing a gas barrier film by a plasma chemical vapor deposition method.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for.
  • a gas barrier film By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
  • gas barrier films that prevent permeation of water vapor, oxygen, and the like as described above are also used in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL). It's getting on.
  • LCD liquid crystal display elements
  • PV solar cells
  • EL organic electroluminescence
  • a method for producing a gas barrier film As a method for producing a gas barrier film, a method of forming an inorganic barrier layer on a base film by a vapor deposition method such as a vapor deposition method, a sputtering method, or a CVD method is known.
  • the vapor phase film forming method is generally advantageous in that the gas barrier layer to be formed has particularly excellent barrier performance.
  • Japanese Unexamined Patent Application Publication No. 2011-73430 (corresponding to US Patent Application Publication No. 2012/040107) discloses a thin film layer in which a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve of a gas barrier layer satisfy a predetermined condition.
  • An invention relating to a gas barrier laminate film formed by chemical vapor deposition is disclosed. It is described that the gas barrier laminated film described in the document has a sufficient gas barrier property, and even when the film is bent, it is possible to sufficiently suppress a decrease in the gas barrier property.
  • a gas barrier film When a gas barrier film is used in an image display device such as a liquid crystal display element (LCD) or organic electroluminescence (EL), it is required to satisfy both high gas barrier properties and transparency (visible light transmission).
  • LCD liquid crystal display element
  • EL organic electroluminescence
  • an object of the present invention is to provide a method for producing a gas barrier film having excellent gas barrier properties and excellent transparency.
  • a plasma chemical vapor deposition (plasma CVD) method is used, using as a raw material a composition containing a predetermined amount of at least one metal element selected from the group consisting of Sn, Pt, and Au and an organosiloxane compound. It has been found that the above problems can be solved by forming a silicon-containing layer (gas barrier layer), and the present invention has been completed.
  • plasma CVD plasma chemical vapor deposition
  • FIG. 1 is a schematic view showing an example of a manufacturing apparatus used for forming a gas barrier layer by plasma enhanced chemical vapor deposition.
  • One aspect of the present invention provides a plasma chemical vapor phase using a composition comprising 0.1 to 10 ⁇ g / L of at least one metal element selected from the group consisting of Sn, Pt, and Au, and an organosiloxane compound.
  • the present invention relates to a method for producing a gas barrier film, comprising forming a gas barrier layer on a substrate by a vapor deposition method. According to such a method for producing a gas barrier film, the obtained gas barrier film has excellent gas barrier properties and excellent transparency. Although the details of the reason why such an effect is obtained are unknown, the following mechanism is conceivable. Note that the following mechanism is based on speculation, and the present invention is not limited to the following mechanism.
  • the present inventors have found that when a silicon-containing layer is formed by a plasma CVD method using an organic siloxane compound as a raw material, there is a problem that the obtained gas barrier film does not have sufficient transparency.
  • a byproduct derived from an organic group of the organosiloxane compound and containing a unsaturated bond (for example, a double bond) can be generated. Based on this, the present inventors speculated that light may be absorbed by the by-product and the transparency may not be sufficient.
  • the method of forming a gas barrier layer with a plasma CVD apparatus having a counter roll electrode with a magnetic field generator inside is excellent in productivity, but on the principle of generating plasma by trapping electrons with magnetic lines of force. Distribution occurs in the plasma density in the deposition zone between the electrodes (deposition rolls). For this reason, it is considered that when a film is formed by such a manufacturing apparatus, a by-product containing an unsaturated bond is likely to be generated particularly in a portion where the plasma density is low because the bond decomposition energy is small.
  • the transparency of the obtained gas barrier film can be improved by using a composition containing a certain amount or more of a metal element in addition to the organosiloxane compound as a plasma CVD raw material.
  • the present inventors have found out. This is because the metal element exerts a catalytic action to activate the organosiloxane compound before gasification, thereby suppressing the formation of unsaturated bonds and the progress of breaking of unsaturated bonds that occur. It is considered that a gas barrier film excellent in transparency can be obtained by reducing the light absorption due to. Moreover, the present inventors have found that when the metal element contained in the composition is excessively large, the gas barrier property of the gas barrier film is deteriorated. This is considered to be because when the metal element contained in the composition is excessively large, decomposition and polymerization of the organosiloxane compound proceed, and the denseness of the resulting gas barrier layer decreases. In the present invention, a gas barrier film having both gas barrier properties and transparency can be obtained by using a composition containing an appropriate amount of a metal element in addition to an organosiloxane compound as a plasma CVD raw material.
  • X to Y indicating a range means “X or more and Y or less”.
  • measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the substrate that can be used in the present invention is not particularly limited, and specific examples include polyester resins (for example, polyethylene terephthalate resin), acrylic resins, methacrylic resins, methacrylic acid-maleic acid copolymers, polystyrene resins, transparent resins.
  • polyester resins for example, polyethylene terephthalate resin
  • acrylic resins for example, polyethylene terephthalate resin
  • methacrylic resins methacrylic acid-maleic acid copolymers
  • polystyrene resins transparent resins.
  • Fluorine resin polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, poly Ether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring-modified polycarbonate resin, fluorene ring-modified polyester resin, acryloyl compound, etc.
  • Like substrate comprising a thermoplastic resin. These thermoplastic resins can be used alone or in combination of two or more.
  • this base material is a base material (polyester film) containing a polyester resin, and it is more preferable that it is a base material (polyethylene terephthalate film) containing a polyethylene terephthalate resin.
  • this base material can be used individually or in combination of 2 or more types.
  • the content of the thermoplastic resin is preferably 70% by mass or more, more preferably 90% by mass or more, and 95% by mass with respect to the total mass of the base material. More preferably, the upper limit is 100% by mass.
  • the substrate is preferably transparent. That is, preferably, the light transmittance of the substrate is usually 80% or more, preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, and particularly preferably 91% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the above-mentioned base material may be an unstretched film or a stretched film.
  • the said base material can be manufactured by a conventionally well-known general method. Regarding the method for producing these base materials, the items described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 can be appropriately employed.
  • the surface of the base material may be subjected to various known treatments for improving adhesion, such as easy adhesion treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatment as necessary. May be performed in combination.
  • the base material may be a single layer or a laminated structure of two or more layers.
  • the respective substrates may be the same type or different types.
  • the thickness of the substrate according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 500 ⁇ m, and more preferably 20 to 200 ⁇ m.
  • At least one metal element selected from the group consisting of Sn, Pt, and Au (hereinafter, selected from the group consisting of “Sn, Pt, and Au”).
  • the composition containing 0.1 to 10 ⁇ g / L of “at least one metal element” is also simply referred to as “metal element”) is used for film formation by plasma enhanced chemical vapor deposition.
  • metal elements for example, Ag and Cu
  • the amount of metal elements in the composition may be 0.1 to 10 ⁇ g / L, but from the viewpoint of a further balance between gas barrier performance and transparency, 1 It is preferably ⁇ 8 ⁇ g / L, more preferably 2 to 5 ⁇ g / L, and even more preferably 3 to 5 ⁇ g / L. Among these, Sn is preferable as the metal element.
  • a metal element may be contained in the composition for supplying a source gas used for forming a gas barrier layer by plasma enhanced chemical vapor deposition, and the formed gas barrier layer contains the metal element. It does not have to be.
  • the composition may contain one kind of metal element selected from the group consisting of Sn, Pt and Au, or may contain two or more kinds.
  • the amount of the above metal elements is the total amount of these two or more kinds.
  • the metal element may be present in the composition as a single metal of Sn, Pt, and / or Au, but may be present in the form of a metal ion or the like from the viewpoint of the uniformity of the composition.
  • a composition may be prepared by adding a salt or complex of Sn, Pt, and / or Au to an organosiloxane compound, such as dibutyltin dilaurate, dibutyltin diacetate, etc.
  • Tin compounds such as dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin thiocarboxylate, tin octenoate, monobutyltin oxide; tetrachloroplatinum (II) acid, hexachloroplatinum (IV) acid, hexachloroplatinum (IV) acid Ammonium, platinum chloride (II), platinum chloride (IV), platinum oxide (II), platinum hydroxide (II), platinum dioxide (IV), platinum oxide (IV), platinum disulfide (IV), platinum sulfide (IV) ), Potassium tetrachloroplatinate (II), potassium hexachloroplatinate (IV) A platinum compound of: gold (I) chloride, gold (III) chloride, gold (III) bromide, tetrachloroauric acid, tetrachloroaurate, sodium tetrachloroaurate
  • dibutyltin dilaurate is preferable as the tin compound
  • hexachloroplatinum (IV) acid is preferable as the platinum compound
  • chloro (triphenylphosphine) gold (I) is preferable as the gold compound.
  • the amount of the metal element contained in the composition can be measured by ICP mass spectrometry.
  • the addition of the metal compound to the composition can be carried out by a conventionally known method such as adding a predetermined amount of a metal compound to the following organosiloxane compound and heating or stirring as necessary.
  • the gas barrier layer is formed by plasma enhanced chemical vapor deposition.
  • the plasma chemical vapor deposition method (plasma-enhanced chemical vapor deposition), which is a method for forming a gas barrier layer, is not particularly limited, but is a plasma CVD method at or near atmospheric pressure described in International Publication No. 2006/033233. And a plasma CVD method using a plasma CVD apparatus having a counter roll electrode.
  • the formation of the gas barrier layer by the plasma CVD method is preferably performed by a plasma CVD apparatus having a counter roll electrode, and is performed by a plasma CVD apparatus having a counter roll electrode provided with a magnetic field generator inside. It is more preferable.
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • a plasma discharge in a space between a plurality of film forming rollers it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and a film is applied to each of the pair of film forming rollers. More preferably, the plasma is generated by discharging between the pair of film forming rollers.
  • the plasma is generated by discharging between the pair of film forming rollers.
  • the film formation rate can be doubled, and a film having a substantially identical structure can be formed.
  • a film forming gas used in such a plasma CVD method a gas containing an organosiloxane compound and oxygen is preferable.
  • the first roller 1 includes a feed roller 32, transport rollers 33, 34, 35, and 36, film forming rollers 39 and 40, a gas supply pipe 41, a plasma generating power source 42, and a film forming roller 39. And 40, magnetic field generators 43 and 44 installed inside 40, and a take-up roller 45 are provided.
  • a manufacturing apparatus at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating units 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge the space between the film formation roller 39 and the film formation roller 40 by supplying electric power from the plasma generation power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • a pair of film-forming roller film-forming rollers 39 and 40
  • position a pair of film-forming roller film-forming rollers 39 and 40
  • the film forming rate can be doubled and a film having the same structure can be formed.
  • magnetic field generating units 43 and 44 are provided, which are fixed so as not to rotate even when the film forming roller rotates.
  • the magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating part 43 provided on one film forming roller 39 and a magnetic field generating part provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generators 44 and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surfaces of the film forming rollers 39 and 40, and the plasma is converged on the bulges. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. It is excellent in that a deposited film can be efficiently formed on a material or the like.
  • the film formation roller 39 and the film formation roller 40 known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently.
  • the diameters of the film forming rollers 39 and 40 are preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity is less likely to deteriorate, and the total amount of heat of the plasma discharge is applied to the substrate in a short time. Since this can be avoided, damage to the substrate and the like can be reduced, which is preferable. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material etc. are arrange
  • the substrate and the like By disposing the substrate and the like in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 39 and the film forming roller 40, the base existing between the pair of film forming rollers is present. It becomes possible to form films on the surfaces of the materials and the like simultaneously. That is, according to such a manufacturing apparatus, the gas barrier layer component is deposited on the surface of the substrate or the like on the film forming roller 39 by the plasma CVD method, and the gas barrier layer component is further deposited on the film forming roller 40. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate or the like.
  • the take-up roller 45 is not particularly limited as long as it can take up a film having a gas barrier layer formed on a substrate or the like, and a known roller can be used as appropriate.
  • gas supply pipe 41 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the plasma generating power source 42 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used.
  • the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 43 and 44 known magnetic field generators can be used as appropriate.
  • the gas barrier layer can be formed by appropriately adjusting the transport speed. That is, using the manufacturing apparatus 31 shown in FIG. 1, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer is formed on the surface of the base material on the film forming roller 39 and the surface of the base material on the film forming roller 40 by plasma CVD. It is formed by.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. For this reason, when a base material etc. pass the A point of the film-forming roller 39 in FIG. 1, and the B point of the film-forming roller 40, the maximum value of a carbon distribution curve is formed in a gas barrier layer.
  • the distance between the extreme values of the gas barrier layer (the difference between the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (Absolute value) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (conveying speed of the substrate or the like).
  • the substrate and the like are conveyed by the delivery roller 32 and the film formation roller 39, respectively, so that they are formed on the surface of the substrate and the like by a roll-to-roll continuous film formation process. Then, the gas barrier layer 3 is formed.
  • source gas such as source gas supplied from the gas supply pipe 41 to the facing space
  • source gas, reaction gas, carrier gas, and discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the gas barrier layer contains an organosiloxane compound.
  • the source gas may contain at least one metal element selected from the group consisting of Sn, Pt, and Au described later.
  • the above-described organosiloxane compound is a compound having an organic group and a siloxane bond (Si—O).
  • the organic group contained in the siloxane compound is not particularly limited.
  • the linear, branched or cyclic alkyl group having 1 to 6 carbon atoms for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group
  • N-butyl group isobutyl group, s-butyl group, t-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl Group, isohexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3-
  • organic groups include halogen, an alkyl group having 1 to 6 carbon atoms, It may be substituted with a further substituent such as an alkoxy group having 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, a heteroaryl group, an amino group, a carboxyl group, a hydroxyl group or an acyl group.
  • organosiloxane compound examples include 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane (HMDSO), octamethyltrisiloxane, decamethyltetrasiloxane (DMTSO), tetramethoxy, and the like.
  • Acyclic siloxane compounds such as silane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 1,3,5- Trimethylcyclotrisiloxane, hexamethylcyclotrisiloxane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethyl Black hexasiloxane, and the like tetradecanoyl methyl cyclotetradecane hept siloxane, siloxane bond (Si-O) by cyclic siloxane compound having a cyclized structure (cyclic organosiloxane compound) the
  • the organosiloxane compound those having no carbon-carbon unsaturated bond such as alkenylene group, alkynylene group or vinyl group in the molecule are preferable from the viewpoint of transparency.
  • the organosiloxane compound those having a Si—O—Si structure in the molecule are preferable from the viewpoint of gas barrier properties.
  • the organic siloxane compound is more preferably a cyclic siloxane compound from the viewpoint of achieving both gas barrier properties and transparency.
  • an organic compound gas of methane, ethane, ethylene, or acetylene may be used in combination with the above organic siloxane compound.
  • the supply amount of the raw material gas can be arbitrarily set. For example, it is preferably 1 to 1000 sccm (Standard Cubic Centimeter per Minute), and more preferably 10 to 200 sccm.
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example.
  • These reaction gases can be used alone or in combination of two or more.
  • a reaction gas for forming an oxide and a reaction gas for forming a nitride can be used in combination.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.1 to 50 Pa.
  • the film conveyance speed can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in a range of ⁇ 20 m / min.
  • a plasma using a plasma CVD apparatus having a counter roll electrode having a magnetic field generator inside as a gas barrier layer as shown in FIG.
  • the film is formed by the CVD method.
  • This is superior in flexibility (flexibility) when mass-produced using the above-mentioned plasma CVD apparatus (roll-to-roll method), and mechanical strength, especially when transported by roll-to-roll. This is because it is possible to efficiently produce a gas barrier layer having both durability and barrier performance.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the gas barrier layer may be a single layer or a laminated structure of two or more layers.
  • the metals contained in each gas barrier layer may be the same or different.
  • the total thickness of the gas barrier layer is the thickness of the gas barrier layer.
  • the thickness of the gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is the thickness of the second gas barrier layer (the total thickness of the laminated structure of two or more layers). ) Is preferably 10 to 1000 nm, more preferably 25 to 600 nm, and even more preferably 50 to 300 nm. If it is this range, the balance of gas barrier property and durability becomes favorable and is preferable.
  • the thickness of the gas barrier layer can be measured by TEM observation.
  • the composition analysis of the gas barrier layer can analyze the composition in the depth direction of the film by performing a depth profile using X-ray photoelectron spectroscopy (XPS: Xray Photoelectron Spectroscopy). That is, while etching the surface of the gas barrier layer of the gas barrier film, the composition in the depth (thickness) direction from the surface is measured.
  • XPS Xray Photoelectron spectroscopy
  • the composition analysis of the gas barrier layer is obtained by XPS depth profile measurement.
  • the obtained distribution curve of silicon, oxygen, carbon, etc. can be created with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer in the film thickness direction.
  • the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer use the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. Can do.
  • ⁇ XPS analysis conditions >> ⁇ Device: QUANTERASXM (manufactured by ULVAC-PHI Co., Ltd.)
  • ⁇ X-ray source Monochromatic Al-K ⁇ Measurement area: Si2p, Al2p, Nb3d, Ta4d, Hf4d, Ti2p, Zr3d, Ru3d, Y3p, C1s, N1s, O1s
  • Irradiated X-ray Single crystal spectroscopy AlK ⁇ ⁇ X-ray spot and its size: 800 ⁇ 400 ⁇ m oval shape
  • ⁇ Sputtering ion Ar (2 keV)
  • Depth profile Repeat measurement after sputtering for 1 minute.
  • layers (functional layers) having various functions may be provided on the gas barrier film.
  • a functional layer when providing a functional layer in a gas barrier film, since it is utilized as electronic devices, such as a solar cell and an organic EL element, it is preferable that a functional layer is also transparent. That is, preferably, the light transmittance of the functional layer is usually 80% or more, preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, and particularly preferably 91% or more.
  • An anchor coat layer may be formed on the surface of the base material on the side where the gas barrier layer is formed for the purpose of improving the adhesion between the base material and the gas barrier layer.
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent.
  • an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a hard coat layer may be provided on the surface (one side or both sides) of the substrate.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray.
  • a layer containing a cured product of the functional resin, that is, a hard coat layer is formed.
  • the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available base material in which the hard-coat layer is formed previously.
  • the ultraviolet curable resin for example, Z-731L (manufactured by Aika Industry Co., Ltd.), Opstar (registered trademark) Z7527 (manufactured by JSR Corporation), which is an acrylic ultraviolet curable resin, is preferably used.
  • the method for forming the hard coat layer is not particularly limited, but it may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. Is preferred.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. Is preferred.
  • the drying temperature of the coating film when forming the hard coat layer is not particularly limited, but is preferably 40 to 120 ° C.
  • the active energy ray used when curing the hard coat layer is preferably ultraviolet rays. Although it does not restrict
  • the amount of ultraviolet irradiation energy is not particularly limited, but is preferably 0.3 to 5 J / cm 2 .
  • the thickness of the hard coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • the gas barrier film may form a smooth layer between the base material and the gas barrier layer.
  • the smooth layer is provided in order to flatten the rough surface of the substrate on which protrusions and the like exist, or to fill the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the substrate.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • a resin composition containing an acrylate compound having a radical reactive unsaturated compound for example, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as a vapor deposition method. preferable.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method
  • a dry coating method such as a vapor deposition method. preferable.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the smooth layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.
  • the smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply
  • the water vapor permeability of the gas barrier film is preferably less than 5 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day), more preferably less than 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day), More preferably, it is less than 5 ⁇ 10 ⁇ 4 g / (m 2 ⁇ day).
  • a value measured by a method based on JIS K 7129-1992 is adopted as the value of “water vapor permeability”.
  • the measurement conditions are temperature: 38 ⁇ 0.5 ° C. and relative humidity (RH): 90 ⁇ 2%.
  • the light transmittance of the gas barrier film at a wavelength of 450 nm is preferably 88% or more, more preferably 90% or more, and further preferably 91% or more (upper limit 100%).
  • the value of “light transmittance at a wavelength of 450 nm” is a value obtained by measuring a transmission spectrum of a gas barrier film using a spectrocolorimeter CM-3700A (manufactured by Konica Minolta Co., Ltd.).
  • the gas barrier film obtained by the production method according to the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • the electronic device main body include an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV).
  • Example 1 ⁇ Preparation of Sample 1> (Preparation of base material) A 100 ⁇ m-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both sides was used as a base material. A hard coat layer having an anti-blocking function with a thickness of 0.5 ⁇ m was formed on the surface of the substrate opposite to the surface on which the gas barrier layer was formed. That is, an ultraviolet (UV) curable resin (manufactured by Aika Industry Co., Ltd., product number: Z731L) was applied to a substrate so that the dry film thickness was 0.5 ⁇ m, then dried at 80 ° C., and then in the air. Curing was performed using a high-pressure mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • UV ultraviolet
  • a hard coat layer having a thickness of 2 ⁇ m was formed on the surface of the substrate on which the gas barrier layer was to be formed as follows.
  • a UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a substrate so that the dry film thickness was 2 ⁇ m, and then dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a substrate with a hard coat layer was obtained.
  • this base material with a hard coat layer is simply referred to as a base material.
  • Dibutyltin dilaurate is mixed with 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS) to prepare a tin (Sn) concentration of 1 ⁇ g / L (ratio of tin to the total volume of the mixture).
  • TCTS 2,4,6,8-tetramethylcyclotetrasiloxane
  • the substrate was set in a plasma CVD apparatus as represented by the schematic diagram of FIG. 1 and evacuated. Thereafter, a gas barrier layer mainly composed of SiOC is formed with a film thickness of 60 nm on one surface of the substrate (on the hard coat layer having a thickness of 2 ⁇ m formed above) using the plasma CVD raw material.
  • Sample 1 was prepared by plasma CVD.
  • a source gas of 100 sccm (Standard Cubic Centimeter per Minute) vaporized by baking the plasma CVD source and oxygen gas of 300 sccm were supplied into the apparatus, and the pressure in the apparatus during film formation was set to 1 Pa.
  • a 100 kHz high frequency power source was used as the plasma generating power source.
  • the film conveyance speed (line speed) was 5 m / min.
  • Sample 2 was produced in the same manner as in Example 1 except that the plasma CVD raw material was prepared so that the tin concentration was 0.1 ⁇ g / L.
  • Sample 3 was prepared in the same manner as in Example 1 except that the plasma CVD raw material was prepared so that the tin concentration was 3 ⁇ g / L.
  • Sample 4 was produced in the same manner as in Example 1 except that the plasma CVD raw material was prepared so that the tin concentration was 5 ⁇ g / L.
  • Sample 5 was produced in the same manner as in Example 1 except that the plasma CVD material was prepared so that the tin concentration was 10 ⁇ g / L.
  • Sample 6 was produced in the same manner as in Example 1 except that the plasma CVD material was prepared so that the tin concentration was 11 ⁇ g / L.
  • Example 6 ⁇ Preparation of Sample 7> Example 1 except that TMCTS and hexachloroplatinum (IV) acid were mixed and a plasma CVD raw material prepared so that the platinum (Pt) concentration was 3 ⁇ g / L (the ratio of platinum to the total volume of the mixture) was used. Sample 7 was produced in the same manner as described above.
  • Example 7 ⁇ Preparation of Sample 8> Other than using TCMTS and chloro (triphenylphosphine) gold (I), and using a raw material for plasma CVD prepared so that the gold (Au) concentration is 3 ⁇ g / L (ratio of gold to the total volume of the mixture) A sample 8 was prepared in the same manner as in Example 1.
  • Sample 9 was prepared in the same manner as in Example 1 except that the plasma CVD raw material was changed to TMCTS without adding a metal compound.
  • Example 3 Example 1 except that TMCTS and silver acetate (I) were mixed and the raw material for plasma CVD was prepared so that the silver (Ag) concentration was 3 ⁇ g / L (ratio of silver to the total volume of the mixture). Sample 10 was produced in the same manner.
  • Example 4 Example except that TMCTS, tetrachlorocopper (II) and acid were mixed and the raw material for plasma CVD was prepared so that the copper (Cu) concentration was 3 ⁇ g / L (the ratio of copper to the total volume of the mixture). Sample 11 was prepared in the same manner as in Example 1.
  • Example 8 ⁇ Preparation of Sample 12> Example 1 except that dibutyltin dilaurate was mixed with HMDSO (hexamethyldisiloxane) and the plasma CVD raw material was changed to a tin concentration of 1 ⁇ g / L (ratio of tin to the total volume of the mixture). Sample 12 was prepared in the same manner as described above.
  • HMDSO hexamethyldisiloxane
  • Sample 13 was produced in the same manner as in Example 8 except that the plasma CVD raw material was prepared so that the tin concentration was 3 ⁇ g / L.
  • Sample 14 was produced in the same manner as in Example 8 except that the plasma CVD material was prepared so that the tin concentration was 5 ⁇ g / L.
  • Sample 15 was produced in the same manner as in Example 8 except that the plasma CVD raw material was prepared so that the tin concentration was 10 ⁇ g / L.
  • Sample 16 was prepared in the same manner as in Example 8 except that the plasma CVD raw material was prepared so that the tin concentration was 11 ⁇ g / L.
  • Sample 17 was prepared in the same manner as in Example 8 except that HMDSO and hexachloroplatinic (IV) acid were mixed and a plasma CVD raw material prepared so that the platinum concentration was 3 ⁇ g / L was used.
  • Sample 18 was prepared in the same manner as in Example 8 except that HMDSO and chloro (triphenylphosphine) gold (I) were mixed and the plasma CVD raw material prepared so that the gold concentration was 3 ⁇ g / L was used. .
  • Sample 20 was produced in the same manner as in Example 1 except that DMTSO (decamethyltetrasiloxane) was mixed with dibutyltin dilaurate and the plasma CVD raw material was prepared so that the tin concentration was 3 ⁇ g / L.
  • DMTSO decamethyltetrasiloxane
  • Sample 21 was produced in the same manner as in Example 1 except that TEOS (tetraethoxysilane) was mixed with dibutyltin dilaurate and the plasma CVD raw material was prepared so that the tin concentration was 3 ⁇ g / L.
  • TEOS tetraethoxysilane
  • the gas barrier property was ranked according to the following evaluation criteria. As the water vapor permeability is smaller, the gas barrier property is higher, and ranks 1 to 3 are practical gas barrier properties.
  • the transmission spectrum was measured using a spectrocolorimeter CM-3700A (manufactured by Konica Minolta Co., Ltd.), and the transparency was ranked based on the light transmittance (%) at a wavelength of 450 nm for samples 1 to 21 according to the following evaluation criteria. Ranks 1 to 3 are practical transparency.
  • Rank 1 ⁇ Light transmittance at a wavelength of 450 nm is 91% or more
  • Rank 2 ⁇ Light transmittance at a wavelength of 450 nm is 90% or more and less than 91%
  • Rank 3 ⁇ ⁇ Light transmittance at a wavelength of 450 nm is 88% or more 90 Rank less than% 4 ⁇ : Light transmittance at a wavelength of 450 nm is 85% or more and less than 88% Rank 5 ⁇ ⁇ : Light transmittance at a wavelength of 450 nm is 80% or more and less than 85% Rank 6 ⁇ : Light transmittance at a wavelength of 450 nm Less than 80%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a method for producing a gas barrier film that has excellent gas barrier properties and is highly transparent. The present invention pertains to a method for producing a gas barrier film, which comprises forming a gas barrier layer on a base material by plasma chemical vapor deposition using a composition that contains an organic siloxane compound and 0.1-10 μg/L of at least one metal element selected from the group consisting of Sn, Pt, and Au.

Description

ガスバリア性フィルムの製造方法Method for producing gas barrier film
 本発明は、プラズマ化学気相蒸着法によるガスバリア性フィルムの製造方法に関する。 The present invention relates to a method for producing a gas barrier film by a plasma chemical vapor deposition method.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリア層)を形成したガスバリア性フィルムが、食品、医薬品等の分野で物品を包装する用途に用いられている。ガスバリア性フィルムを用いることによって、水蒸気や酸素等のガスによる物品の変質を防止することができる。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for. By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
 ところで、近年、上記のような水蒸気や酸素等の透過を防ぐガスバリア性フィルムが、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)などの電子デバイスの分野にも利用されつつある。電子デバイスにガスバリア性フィルムを適用するためには、特に高いガスバリア性が要求される。 By the way, in recent years, gas barrier films that prevent permeation of water vapor, oxygen, and the like as described above are also used in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL). It's getting on. In order to apply a gas barrier film to an electronic device, a particularly high gas barrier property is required.
 ガスバリア性フィルムの製造方法としては、基材フィルム上に蒸着法、スパッタ法、CVD法等の気相成膜法によって無機バリア層を形成する方法が知られている。気相成膜法は、一般的には、形成されるガスバリア層のバリア性能が特に優れるという点において利点がある。例えば、特開2011-73430号公報(米国特許出願公開第2012/040107号に相当)には、ガスバリア層の珪素分布曲線、酸素分布曲線及び炭素分布曲線が所定の条件を満たす薄膜層を、プラズマ化学気相成長法により形成したガスバリア性積層フィルムに係る発明が開示されている。当該文献に記載のガスバリア性積層フィルムは十分なガスバリア性を有しており、しかもフィルムを屈曲させた場合においてもガスバリア性の低下を十分に抑制することが可能であると記載されている。 As a method for producing a gas barrier film, a method of forming an inorganic barrier layer on a base film by a vapor deposition method such as a vapor deposition method, a sputtering method, or a CVD method is known. The vapor phase film forming method is generally advantageous in that the gas barrier layer to be formed has particularly excellent barrier performance. For example, Japanese Unexamined Patent Application Publication No. 2011-73430 (corresponding to US Patent Application Publication No. 2012/040107) discloses a thin film layer in which a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve of a gas barrier layer satisfy a predetermined condition. An invention relating to a gas barrier laminate film formed by chemical vapor deposition is disclosed. It is described that the gas barrier laminated film described in the document has a sufficient gas barrier property, and even when the film is bent, it is possible to sufficiently suppress a decrease in the gas barrier property.
 ガスバリア性フィルムを液晶表示素子(LCD)や有機エレクトロルミネッセンス(EL)などの画像表示装置に使用する場合、高度なガスバリア性と透明性(可視光透過性)との両立が要求される。しかしながら、本発明者らは、特開2011-73430号公報に記載される発明では、ガスバリア性と光学特性とを両立することが困難であることを見出した。 When a gas barrier film is used in an image display device such as a liquid crystal display element (LCD) or organic electroluminescence (EL), it is required to satisfy both high gas barrier properties and transparency (visible light transmission). However, the present inventors have found that it is difficult to achieve both gas barrier properties and optical characteristics in the invention described in Japanese Patent Application Laid-Open No. 2011-73430.
 そこで、本発明は、優れたガスバリア性を有し、かつ、透明性に優れるガスバリア性フィルムの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a gas barrier film having excellent gas barrier properties and excellent transparency.
 本発明者らは、上記の課題を解決すべく、鋭意研究を行った。その結果、Sn、Pt、およびAuからなる群から選択される少なくとも一つの金属元素を所定量、ならびに有機シロキサン化合物を含む組成物を原料として用いて、プラズマ化学気相蒸着(プラズマCVD)法によりケイ素含有層(ガスバリア層)を形成することにより、上記課題が解決されることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive research to solve the above problems. As a result, a plasma chemical vapor deposition (plasma CVD) method is used, using as a raw material a composition containing a predetermined amount of at least one metal element selected from the group consisting of Sn, Pt, and Au and an organosiloxane compound. It has been found that the above problems can be solved by forming a silicon-containing layer (gas barrier layer), and the present invention has been completed.
図1はプラズマ化学気相蒸着法によるガスバリア層の形成に用いられる製造装置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a manufacturing apparatus used for forming a gas barrier layer by plasma enhanced chemical vapor deposition.
 本発明の一側面は、Sn、Pt、およびAuからなる群から選択される少なくとも一つの金属元素を0.1~10μg/L、ならびに有機シロキサン化合物を含む組成物を用いて、プラズマ化学気相蒸着法によりガスバリア層を基材上に形成することを含む、ガスバリア性フィルムの製造方法に関する。このようなガスバリア性フィルムの製造方法によれば、得られたガスバリア性フィルムが優れたガスバリア性を有し、かつ、透明性に優れたものとなる。かような効果が得られる理由の詳細は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、本発明は下記メカニズムに何ら制限されるものではない。 One aspect of the present invention provides a plasma chemical vapor phase using a composition comprising 0.1 to 10 μg / L of at least one metal element selected from the group consisting of Sn, Pt, and Au, and an organosiloxane compound. The present invention relates to a method for producing a gas barrier film, comprising forming a gas barrier layer on a substrate by a vapor deposition method. According to such a method for producing a gas barrier film, the obtained gas barrier film has excellent gas barrier properties and excellent transparency. Although the details of the reason why such an effect is obtained are unknown, the following mechanism is conceivable. Note that the following mechanism is based on speculation, and the present invention is not limited to the following mechanism.
 本発明者らは、有機シロキサン化合物を原料としてプラズマCVD法によりケイ素含有層を形成すると、得られたガスバリア性フィルムの透明性が十分なものにならないという課題が存在することを見出した。プラズマCVD法による成膜時においては、有機シロキサン化合物の有機基に由来する副生物であって、不飽和結合(例えば、二重結合等)を含有する副生物が生成し得る。このことから、本発明者らは、当該副生物によって光が吸収され、透明性が十分なものにならないのではないかと推測した。特に、内部に磁場発生部を備える対向ロール電極を有するプラズマCVD装置によりガスバリア層を形成する手法は、生産性に優れる反面、磁力線で電子をトラップしてプラズマを発生させるという原理上、対向するロール電極(成膜ロール)間の成膜ゾーンにおいてプラズマ密度に分布が生じる。このため、かような製造装置で成膜を行うと特に、プラズマ密度が低い部分は結合分解エネルギーが小さいため不飽和結合を含有する副生物が生じやすいと考えられる。上記のような課題に対し、プラズマCVD原料として、有機シロキサン化合物に加えて一定量以上の金属元素を含む組成物を用いることで、得られたガスバリア性フィルムの透明性が優れたものになることを本発明者らは見出した。これは、当該金属元素が触媒作用を発揮してガス化前の有機シロキサン化合物を活性化し、不飽和結合の生成を抑制したり、生じた不飽和結合の切断が進行したりするため、副生物による光の吸収が低減し、透明性に優れたガスバリア性フィルムが得られるものと考えられる。また、本発明者らは、上記組成物に含まれる金属元素が過剰に多いと、ガスバリア性フィルムのガスバリア性がかえって低下してしまうことを見出した。これは、上記組成物に含まれる金属元素が過剰に多いと、有機シロキサン化合物の分解およびポリマー化が進行して、得られるガスバリア層の緻密性が低下するためであると考えられる。本発明では、プラズマCVD原料として有機シロキサン化合物に加えて適切な量の金属元素を含む組成物を用いることで、ガスバリア性と透明性とが両立されたガスバリア性フィルムが得られる。 The present inventors have found that when a silicon-containing layer is formed by a plasma CVD method using an organic siloxane compound as a raw material, there is a problem that the obtained gas barrier film does not have sufficient transparency. At the time of film formation by the plasma CVD method, a byproduct derived from an organic group of the organosiloxane compound and containing a unsaturated bond (for example, a double bond) can be generated. Based on this, the present inventors speculated that light may be absorbed by the by-product and the transparency may not be sufficient. In particular, the method of forming a gas barrier layer with a plasma CVD apparatus having a counter roll electrode with a magnetic field generator inside is excellent in productivity, but on the principle of generating plasma by trapping electrons with magnetic lines of force. Distribution occurs in the plasma density in the deposition zone between the electrodes (deposition rolls). For this reason, it is considered that when a film is formed by such a manufacturing apparatus, a by-product containing an unsaturated bond is likely to be generated particularly in a portion where the plasma density is low because the bond decomposition energy is small. For the above problems, the transparency of the obtained gas barrier film can be improved by using a composition containing a certain amount or more of a metal element in addition to the organosiloxane compound as a plasma CVD raw material. The present inventors have found out. This is because the metal element exerts a catalytic action to activate the organosiloxane compound before gasification, thereby suppressing the formation of unsaturated bonds and the progress of breaking of unsaturated bonds that occur. It is considered that a gas barrier film excellent in transparency can be obtained by reducing the light absorption due to. Moreover, the present inventors have found that when the metal element contained in the composition is excessively large, the gas barrier property of the gas barrier film is deteriorated. This is considered to be because when the metal element contained in the composition is excessively large, decomposition and polymerization of the organosiloxane compound proceed, and the denseness of the resulting gas barrier layer decreases. In the present invention, a gas barrier film having both gas barrier properties and transparency can be obtained by using a composition containing an appropriate amount of a metal element in addition to an organosiloxane compound as a plasma CVD raw material.
 以下、本発明のガスバリア性フィルムの好ましい形態について述べる。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, preferred modes of the gas barrier film of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. In the present specification, unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 本発明に用いられ得る基材としては、特に制限されないが、具体例としては、ポリエステル樹脂(例えば、ポリエチレンテレフタレート樹脂)、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該熱可塑性樹脂は、単独で、または2種以上組み合わせても用いることができる。これらの中でも、ポリエステル樹脂を含む基材(ポリエステルフィルム)であることが好ましく、ポリエチレンテレフタレート樹脂を含む基材(ポリエチレンテレフタレートフィルム)であることがより好ましい。また、該基材は、単独でもまたは2種以上組み合わせても用いることができる。 The substrate that can be used in the present invention is not particularly limited, and specific examples include polyester resins (for example, polyethylene terephthalate resin), acrylic resins, methacrylic resins, methacrylic acid-maleic acid copolymers, polystyrene resins, transparent resins. Fluorine resin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, poly Ether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring-modified polycarbonate resin, fluorene ring-modified polyester resin, acryloyl compound, etc. Like substrate comprising a thermoplastic resin. These thermoplastic resins can be used alone or in combination of two or more. Among these, it is preferable that it is a base material (polyester film) containing a polyester resin, and it is more preferable that it is a base material (polyethylene terephthalate film) containing a polyethylene terephthalate resin. Moreover, this base material can be used individually or in combination of 2 or more types.
 熱可塑性樹脂を含む基材において、熱可塑性樹脂の含有量は、基材の総質量に対して、70質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい(上限100質量%)。 In the base material including the thermoplastic resin, the content of the thermoplastic resin is preferably 70% by mass or more, more preferably 90% by mass or more, and 95% by mass with respect to the total mass of the base material. More preferably, the upper limit is 100% by mass.
 本発明に係る製造方法により得られるガスバリア性フィルムは、太陽電池や有機EL等の電子デバイスとして利用され得ることから、基材は透明であることが好ましい。すなわち、好ましくは、基材の光線透過率が通常80%以上、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上、特に好ましくは91%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film obtained by the production method according to the present invention can be used as an electronic device such as a solar cell or an organic EL, the substrate is preferably transparent. That is, preferably, the light transmittance of the substrate is usually 80% or more, preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, and particularly preferably 91% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。 Further, the above-mentioned base material may be an unstretched film or a stretched film. The said base material can be manufactured by a conventionally well-known general method. Regarding the method for producing these base materials, the items described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 can be appropriately employed.
 基材の表面は、密着性向上のための公知の種々の処理、例えば易接着処理、コロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。 The surface of the base material may be subjected to various known treatments for improving adhesion, such as easy adhesion treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatment as necessary. May be performed in combination.
 該基材は、単層でもよいし2層以上の積層構造であってもよい。該基材が2層以上の積層構造である場合、各基材は同じ種類であってもよいし異なる種類であってもよい。 The base material may be a single layer or a laminated structure of two or more layers. When the substrate has a laminated structure of two or more layers, the respective substrates may be the same type or different types.
 本発明に係る基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~500μmであることが好ましく、20~200μmであることがより好ましい。 The thickness of the substrate according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 500 μm, and more preferably 20 to 200 μm.
 本発明に係る製造方法では、下記の有機シロキサン化合物に加えて、Sn、Pt、およびAuからなる群から選択される少なくとも一つの金属元素(以下、「Sn、Pt、およびAuからなる群から選択される少なくとも一つの金属元素」を、単に「金属元素」とも称する。)を0.1~10μg/L含む組成物を、プラズマ化学気相蒸着法による成膜に用いる。Sn、Pt、およびAu以外の金属元素(例えば、AgやCu)では、ガスバリア性能と透明性との両立が困難である。また、組成物中における金属元素の含有量が0.1μg/L未満であったり10μg/Lを超えたりすると、ガスバリア性能と透明性との両立が困難となる。組成物中の金属元素の量(組成物全体の体積中の金属元素の総量)は0.1~10μg/Lであればよいが、ガスバリア性能と透明性との更なるバランスの観点から、1~8μg/Lであることが好ましく、2~5μg/Lであることがより好ましく、3~5μg/Lであることがさらに好ましい。これらの中でも、金属元素としてはSnが好ましい。なお、本発明では、プラズマ化学気相蒸着法によるガスバリア層の形成に用いる原料ガス供給のための組成物に金属元素が含まれていればよく、形成されたガスバリア層には金属元素が存在していなくともよい。 In the production method according to the present invention, in addition to the following organosiloxane compound, at least one metal element selected from the group consisting of Sn, Pt, and Au (hereinafter, selected from the group consisting of “Sn, Pt, and Au”). The composition containing 0.1 to 10 μg / L of “at least one metal element” is also simply referred to as “metal element”) is used for film formation by plasma enhanced chemical vapor deposition. With metal elements (for example, Ag and Cu) other than Sn, Pt, and Au, it is difficult to achieve both gas barrier performance and transparency. On the other hand, if the content of the metal element in the composition is less than 0.1 μg / L or exceeds 10 μg / L, it is difficult to achieve both gas barrier performance and transparency. The amount of metal elements in the composition (total amount of metal elements in the volume of the entire composition) may be 0.1 to 10 μg / L, but from the viewpoint of a further balance between gas barrier performance and transparency, 1 It is preferably ˜8 μg / L, more preferably 2 to 5 μg / L, and even more preferably 3 to 5 μg / L. Among these, Sn is preferable as the metal element. In the present invention, a metal element may be contained in the composition for supplying a source gas used for forming a gas barrier layer by plasma enhanced chemical vapor deposition, and the formed gas barrier layer contains the metal element. It does not have to be.
 組成物はSn、Pt、およびAuからなる群から選択される金属元素を1種単独で含んでいてもよく、2種以上を含んでいてもよい。組成物が2種以上の金属元素を含む場合、上記の金属元素の量は、これら2種以上を合計した量である。 The composition may contain one kind of metal element selected from the group consisting of Sn, Pt and Au, or may contain two or more kinds. When the composition contains two or more kinds of metal elements, the amount of the above metal elements is the total amount of these two or more kinds.
 金属元素は、Sn、Pt、および/またはAuの金属単体として組成物中に存在してもよいが、組成物の均一性の観点から、金属イオン等の形態として存在してもよい。例えば、Sn、Pt、および/またはAuの塩または錯体を有機シロキサン化合物に添加して組成物を調製してもよく、かような塩または錯体としては、例えば、ジブチルスズジラウリレート、ジブチルスズジアセテート、ジブチルスズチオカルボキシレート、ジブチルスズジマレアート、ジオクチルスズチオカルボキシレート、オクテン酸スズ、モノブチルスズオキシド等のスズ化合物;テトラクロロ白金(II)酸、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸アンモニウム、塩化白金(II)、塩化白金(IV)、酸化白金(II)、水酸化白金(II)、二酸化白金(IV)、酸化白金(IV)、二硫化白金(IV)、硫化白金(IV)、テトラクロロ白金(II)酸カリウム、ヘキサクロロ白金(IV)酸カリウム等の白金化合物;塩化金(I)、塩化金(III)、臭化金(III)、四塩化金酸、四臭化金酸、四塩化金酸ナトリウム、クロロ(トリメチルホスフィン)金(I)、クロロ(トリエチルホスフィン)金(I)、クロロ(トリフェニルホスフィン)金(I)、クロロジメチルスルフィド金(I)、クロロ(トリス(p-トリフルオロメチルフェニル)ホスフィン)金、テトラクロロ金(III)酸等の金化合物が例示できるが、これらに限定されない。ここで、スズ化合物としては、ジブチルスズジラウリレートが、白金化合物としては、ヘキサクロロ白金(IV)酸が、金化合物としては、クロロ(トリフェニルホスフィン)金(I)がそれぞれ好ましい。これらの塩または錯体は、単独で、または2種以上組み合わせても用いることができる。 The metal element may be present in the composition as a single metal of Sn, Pt, and / or Au, but may be present in the form of a metal ion or the like from the viewpoint of the uniformity of the composition. For example, a composition may be prepared by adding a salt or complex of Sn, Pt, and / or Au to an organosiloxane compound, such as dibutyltin dilaurate, dibutyltin diacetate, etc. , Tin compounds such as dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin thiocarboxylate, tin octenoate, monobutyltin oxide; tetrachloroplatinum (II) acid, hexachloroplatinum (IV) acid, hexachloroplatinum (IV) acid Ammonium, platinum chloride (II), platinum chloride (IV), platinum oxide (II), platinum hydroxide (II), platinum dioxide (IV), platinum oxide (IV), platinum disulfide (IV), platinum sulfide (IV) ), Potassium tetrachloroplatinate (II), potassium hexachloroplatinate (IV) A platinum compound of: gold (I) chloride, gold (III) chloride, gold (III) bromide, tetrachloroauric acid, tetrachloroaurate, sodium tetrachloroaurate, chloro (trimethylphosphine) gold (I), Chloro (triethylphosphine) gold (I), chloro (triphenylphosphine) gold (I), chlorodimethylsulfidegold (I), chloro (tris (p-trifluoromethylphenyl) phosphine) gold, tetrachlorogold (III) Although gold compounds, such as an acid, can be illustrated, it is not limited to these. Here, dibutyltin dilaurate is preferable as the tin compound, hexachloroplatinum (IV) acid is preferable as the platinum compound, and chloro (triphenylphosphine) gold (I) is preferable as the gold compound. These salts or complexes can be used alone or in combination of two or more.
 なお、組成物中に含まれる金属元素の量は、ICP質量分析により測定することができる。 Note that the amount of the metal element contained in the composition can be measured by ICP mass spectrometry.
 組成物への金属化合物の添加は、例えば、下記の有機シロキサン化合物に所定量の金属化合物を加え、必要に応じて加熱や撹拌等、従来公知の方法により実施できる。 The addition of the metal compound to the composition can be carried out by a conventionally known method such as adding a predetermined amount of a metal compound to the following organosiloxane compound and heating or stirring as necessary.
 本発明に係る製造方法では、ガスバリア層の形成をプラズマ化学気相蒸着法により行う。ガスバリア層の形成方法であるプラズマ化学気相蒸着法(plasma-enhanced chemical vapor deposition)としては、特に制限されないが、国際公開第2006/033233号に記載の大気圧または大気圧近傍でのプラズマCVD法、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法が挙げられる。 In the manufacturing method according to the present invention, the gas barrier layer is formed by plasma enhanced chemical vapor deposition. The plasma chemical vapor deposition method (plasma-enhanced chemical vapor deposition), which is a method for forming a gas barrier layer, is not particularly limited, but is a plasma CVD method at or near atmospheric pressure described in International Publication No. 2006/033233. And a plasma CVD method using a plasma CVD apparatus having a counter roll electrode.
 中でも、生産性が高いことから、プラズマCVD法によるガスバリア層の形成を、対向ロール電極を有するプラズマCVD装置により行うことが好ましく、内部に磁場発生部を備える対向ロール電極を有するプラズマCVD装置により行うことがより好ましい。なお、プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。 In particular, since the productivity is high, the formation of the gas barrier layer by the plasma CVD method is preferably performed by a plasma CVD apparatus having a counter roll electrode, and is performed by a plasma CVD apparatus having a counter roll electrode provided with a magnetic field generator inside. It is more preferable. The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
 以下、対向ロール電極を有するプラズマCVD装置を用いたプラズマCVD法によりガスバリア層を形成する方法について説明するが、本発明の技術的範囲が当該形態に限定されるものでは無い。 Hereinafter, a method for forming a gas barrier layer by a plasma CVD method using a plasma CVD apparatus having a counter roll electrode will be described. However, the technical scope of the present invention is not limited to this form.
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれにフィルムを配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上にフィルムを配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在するフィルムを成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同一である構造の膜を成膜できる。 When generating plasma in the plasma CVD method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and a film is applied to each of the pair of film forming rollers. More preferably, the plasma is generated by discharging between the pair of film forming rollers. Thus, by using a pair of film forming rollers, placing a film on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller is placed on the film forming roller. While forming an existing film, it is possible to form a film on the surface of the substrate on the other film forming roller at the same time, so that a thin film can be produced efficiently and a normal roller is not used. Compared with the plasma CVD method, the film formation rate can be doubled, and a film having a substantially identical structure can be formed.
 また、このようにして一対の成膜ローラー間に放電する際には、一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機シロキサン化合物と、酸素とを含むものが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, as a film forming gas used in such a plasma CVD method, a gas containing an organosiloxane compound and oxygen is preferable.
 以下、プラズマ化学気相蒸着法によりガスバリア層を形成するための装置の好ましい一具体例として図1を参照しながら説明を行うが、本発明をなんら制限するものでは無い。以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, a preferred specific example of an apparatus for forming a gas barrier layer by plasma chemical vapor deposition will be described with reference to FIG. 1, but the present invention is not limited in any way. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生部43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生部43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 1 includes a feed roller 32, transport rollers 33, 34, 35, and 36, film forming rollers 39 and 40, a gas supply pipe 41, a plasma generating power source 42, and a film forming roller 39. And 40, magnetic field generators 43 and 44 installed inside 40, and a take-up roller 45 are provided. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating units 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間を放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39および40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39および40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できる。そして、このような製造装置によれば、CVD法によりガスバリア層を形成することが可能であり、成膜ローラー39上においてガスバリア層成分を堆積させつつ、さらに成膜ローラー40上においてもガスバリア層成分を堆積させることもできるため、効率よくガスバリア層を形成することができる。 In such a manufacturing apparatus, each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge the space between the film formation roller 39 and the film formation roller 40 by supplying electric power from the plasma generation power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable to arrange | position a pair of film-forming roller (film-forming rollers 39 and 40) so that the central axis may become substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 39 and 40), the film forming rate can be doubled and a film having the same structure can be formed. According to such a manufacturing apparatus, it is possible to form a gas barrier layer by a CVD method. While depositing the gas barrier layer component on the film forming roller 39, the gas barrier layer component is also formed on the film forming roller 40. Therefore, the gas barrier layer can be formed efficiently.
 成膜ローラー39および成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生部43および44がそれぞれ設けられている。 In the film forming roller 39 and the film forming roller 40, magnetic field generating units 43 and 44 are provided, which are fixed so as not to rotate even when the film forming roller rotates.
 成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生部43および44は、一方の成膜ローラー39に設けられた磁場発生部43と他方の成膜ローラー40に設けられた磁場発生部44との間で磁力線がまたがらず、それぞれの磁場発生部43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生部43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating part 43 provided on one film forming roller 39 and a magnetic field generating part provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generators 44 and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surfaces of the film forming rollers 39 and 40, and the plasma is converged on the bulges. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生部43、44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生部43と他方の磁場発生部44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生部43、44を設けることにより、それぞれの磁場発生部43、44について、磁力線が対向するローラー側の磁場発生部にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材等に効率的に蒸着膜を形成することができる点で優れている。 The magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity. By providing such magnetic field generation units 43 and 44, the opposing space along the length direction of the roller axis without straddling the magnetic field generation unit on the roller side where the lines of magnetic force oppose each other. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. It is excellent in that a deposited film can be efficiently formed on a material or the like.
 成膜ローラー39および成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39および40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39および40の直径としては、放電条件、チャンバのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲であることが好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないことから、生産性の劣化がより生じ難いため、また、短時間でプラズマ放電の全熱量が基材等にかかることを回避できることから、基材等へのダメージを軽減することができるため好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film formation roller 39 and the film formation roller 40, known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rollers 39 and 40 are preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity is less likely to deteriorate, and the total amount of heat of the plasma discharge is applied to the substrate in a short time. Since this can be avoided, damage to the substrate and the like can be reduced, which is preferable. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
 このような製造装置31においては、基材等の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材等が配置されている。このようにして基材等を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材等のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材等の表面上にガスバリア層成分を堆積させ、さらに成膜ローラー40上にてガスバリア層成分を堆積させることができるため、基材等の表面上にガスバリア層を効率よく形成することが可能となる。 In such a manufacturing apparatus 31, the base material etc. are arrange | positioned on a pair of film-forming roller (the film-forming roller 39 and the film-forming roller 40) so that the surfaces of the base material face each other. By disposing the substrate and the like in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 39 and the film forming roller 40, the base existing between the pair of film forming rollers is present. It becomes possible to form films on the surfaces of the materials and the like simultaneously. That is, according to such a manufacturing apparatus, the gas barrier layer component is deposited on the surface of the substrate or the like on the film forming roller 39 by the plasma CVD method, and the gas barrier layer component is further deposited on the film forming roller 40. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate or the like.
 このような製造装置に用いる送り出しローラー32および搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材等の上にガスバリア層を形成したフィルムを巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 32 and the transport rollers 33, 34, 35, and 36 used in such a manufacturing apparatus, known rollers can be appropriately used. Further, the take-up roller 45 is not particularly limited as long as it can take up a film having a gas barrier layer formed on a substrate or the like, and a known roller can be used as appropriate.
 また、ガス供給管41および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe 41 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. As described above, by providing the gas supply pipe 41 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 39 and the film formation roller 40. It is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生部43、44としては適宜公知の磁場発生部を用いることができる。 Furthermore, as the plasma generating power source 42, a known power source of a plasma generating apparatus can be used as appropriate. Such a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge. Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used. In addition, since the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this. As the magnetic field generators 43 and 44, known magnetic field generators can be used as appropriate.
 このような図1に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材等)の搬送速度を適宜調整することにより、ガスバリア層を形成することができる。すなわち、図1に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材等の表面上および成膜ローラー40上の基材等の表面上に、ガスバリア層がプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材等が、図1中の成膜ローラー39のA地点および成膜ローラー40のB地点を通過する際に、ガスバリア層で炭素分布曲線の極大値が形成される。これに対して、基材等が、図1中の成膜ローラー39のC1およびC2地点、ならびに成膜ローラー40のC3およびC4地点を通過する際に、ガスバリア層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。また、ガスバリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値におけるガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(基材等の搬送速度)によって調節できる。なお、このような成膜に際しては、基材等が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材等の表面上にガスバリア層3が形成される。 Using such a manufacturing apparatus 31 shown in FIG. 1, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the film (base material, etc.) The gas barrier layer can be formed by appropriately adjusting the transport speed. That is, using the manufacturing apparatus 31 shown in FIG. 1, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber. As a result, the film forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer is formed on the surface of the base material on the film forming roller 39 and the surface of the base material on the film forming roller 40 by plasma CVD. It is formed by. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. For this reason, when a base material etc. pass the A point of the film-forming roller 39 in FIG. 1, and the B point of the film-forming roller 40, the maximum value of a carbon distribution curve is formed in a gas barrier layer. On the other hand, when the substrate or the like passes through the points C1 and C2 of the film forming roller 39 and the points C3 and C4 of the film forming roller 40 in FIG. It is formed. For this reason, five extreme values are usually generated for two film forming rollers. Further, the distance between the extreme values of the gas barrier layer (the difference between the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (Absolute value) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (conveying speed of the substrate or the like). In such film formation, the substrate and the like are conveyed by the delivery roller 32 and the film formation roller 39, respectively, so that they are formed on the surface of the substrate and the like by a roll-to-roll continuous film formation process. Then, the gas barrier layer 3 is formed.
 ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。本発明では、ガスバリア層の形成に用いる成膜ガス中の原料ガスが、有機シロキサン化合物を含む。なお、原料ガスは、後述のSn、Pt、およびAuからなる群から選択される少なくとも一つの金属元素を含んでいてもよい。 As the film forming gas (such as source gas) supplied from the gas supply pipe 41 to the facing space, source gas, reaction gas, carrier gas, and discharge gas can be used alone or in combination of two or more. In the present invention, the source gas in the film forming gas used for forming the gas barrier layer contains an organosiloxane compound. The source gas may contain at least one metal element selected from the group consisting of Sn, Pt, and Au described later.
 上記の有機シロキサン化合物は有機基およびシロキサン結合(Si-O)を有する化合物である。シロキサン化合物が含む有機基は特に限定されないが、例えば、炭素数1~6の直鎖、分岐鎖または環状のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、2-メチルブチル基、ネオペンチル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、3,3-ジメチルブチル基、2,2-ジメチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、シクロヘキシル基)、炭素数6~10のアリール基(例えば、フェニル基、ナフチル基)等が例示でき、これらの有機基は、ハロゲン、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~10のアリール基、ヘテロアリール基、アミノ基、カルボキシル基、水酸基、アシル基等のさらなる置換基で置換されていてもよい。 The above-described organosiloxane compound is a compound having an organic group and a siloxane bond (Si—O). The organic group contained in the siloxane compound is not particularly limited. For example, the linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group) N-butyl group, isobutyl group, s-butyl group, t-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl Group, isohexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethyl group Butyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1-ethylbutyl, 2- A butyl group, a cyclohexyl group), an aryl group having 6 to 10 carbon atoms (for example, a phenyl group, a naphthyl group) and the like. These organic groups include halogen, an alkyl group having 1 to 6 carbon atoms, It may be substituted with a further substituent such as an alkoxy group having 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, a heteroaryl group, an amino group, a carboxyl group, a hydroxyl group or an acyl group.
 有機シロキサン化合物としては、より具体的には、例えば、1,1,3,3-テトラメチルジシロキサン、ヘキサメチルジシロキサン(HMDSO)、オクタメチルトリシロキサン、デカメチルテトラシロキサン(DMTSO)、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、およびエチルトリエトキシシラン等の非環状シロキサン化合物;1,3,5-トリメチルシクロトリシロキサン、ヘキサメチルシクロトリシロキサン、2,4,6,8-テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、およびテトラデカメチルシクロテトラデカンヘプタシロキサン等の、シロキサン結合(Si-O)により環化した構造を有する環状シロキサン化合物(環状有機シロキサン化合物)などが例示できるが、これらに限定されない。有機シロキサン化合物としては、透明性の観点から分子内にアルケニレン基、アルキニレン基やビニル基等の炭素-炭素間不飽和結合を有しないものが好ましい。また、有機シロキサン化合物としては、ガスバリア性の観点から、分子内にSi-O-Si構造を有するものが好ましい。さらに、ガスバリア性と透明性との両立の観点から、有機シロキサン化合物が、環状シロキサン化合物であることがより好ましい。これは、環状シロキサン化合物(環状有機シロキサン化合物)の場合、非環状有機シロキサン化合物と比べて1分子あたりのシロキサン結合が多いため、小さい結合分解エネルギーであってもガスバリア層が緻密になりやすく、また金属元素による有機シロキサン化合物の活性化効果がより大きくなるためであると推測される。これらの有機シロキサン化合物は、単独でもまたは2種以上を組み合わせても使用することができる。 More specifically, examples of the organosiloxane compound include 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane (HMDSO), octamethyltrisiloxane, decamethyltetrasiloxane (DMTSO), tetramethoxy, and the like. Acyclic siloxane compounds such as silane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 1,3,5- Trimethylcyclotrisiloxane, hexamethylcyclotrisiloxane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethyl Black hexasiloxane, and the like tetradecanoyl methyl cyclotetradecane hept siloxane, siloxane bond (Si-O) by cyclic siloxane compound having a cyclized structure (cyclic organosiloxane compound) the like can be exemplified, without limitation. As the organosiloxane compound, those having no carbon-carbon unsaturated bond such as alkenylene group, alkynylene group or vinyl group in the molecule are preferable from the viewpoint of transparency. As the organosiloxane compound, those having a Si—O—Si structure in the molecule are preferable from the viewpoint of gas barrier properties. Furthermore, the organic siloxane compound is more preferably a cyclic siloxane compound from the viewpoint of achieving both gas barrier properties and transparency. This is because, in the case of a cyclic siloxane compound (cyclic organic siloxane compound), since there are more siloxane bonds per molecule than a non-cyclic organic siloxane compound, the gas barrier layer tends to be dense even with a small bond decomposition energy. This is presumably because the activation effect of the organosiloxane compound by the metal element is further increased. These organosiloxane compounds can be used alone or in combination of two or more.
 また、原料ガスとしては、例えば、メタン、エタン、エチレン、アセチレンの有機化合物ガスを上記の有機シロキサン化合物と併用してもよい。 Further, as the source gas, for example, an organic compound gas of methane, ethane, ethylene, or acetylene may be used in combination with the above organic siloxane compound.
 原料ガスの供給量は、任意に設定することができるが、例えば、好ましくは1~1000sccm(Standard Cubic Centimeter per Minute)であり、より好ましくは10~200sccmである。 The supply amount of the raw material gas can be arbitrarily set. For example, it is preferably 1 to 1000 sccm (Standard Cubic Centimeter per Minute), and more preferably 10 to 200 sccm.
 また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができる。例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。原料ガスに対する反応ガスのガス流量比率は、例えば、好ましくは原料ガス:反応ガス=1:1~20、より好ましくは1:1~10である。 Further, as the film forming gas, a reactive gas may be used in addition to the source gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used alone or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a reaction gas for forming a nitride can be used in combination. The gas flow rate ratio of the reaction gas to the source gas is, for example, preferably source gas: reaction gas = 1: 1 to 20, more preferably 1: 1 to 10.
 成膜ガスとしては、原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as a film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが0.1~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.1 to 50 Pa.
 フィルムの搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。 The film conveyance speed (line speed) can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in a range of ˜20 m / min.
 上記したように、本実施形態のより好ましい態様としては、ガスバリア層を、図1に示す内部に磁場発生部を備える対向ロール電極を有するプラズマCVD装置(ロール・トゥ・ロール方式)を用いたプラズマCVD法によって成膜するものである。これは、上記のようなプラズマCVD装置(ロール・トゥ・ロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロール・トゥ・ロールでの搬送時の耐久性と、バリア性能とが両立するガスバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, a plasma using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode having a magnetic field generator inside as a gas barrier layer as shown in FIG. The film is formed by the CVD method. This is superior in flexibility (flexibility) when mass-produced using the above-mentioned plasma CVD apparatus (roll-to-roll method), and mechanical strength, especially when transported by roll-to-roll. This is because it is possible to efficiently produce a gas barrier layer having both durability and barrier performance. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 ガスバリア層は、単層でもよいし2層以上の積層構造であってもよい。ガスバリア層が2層以上の積層構造である場合、それぞれのガスバリア層に含まれる金属は同じものであってもよいし異なるものであってもよい。ガスバリア層が2層以上の積層構造である場合は、ガスバリア層の厚さとしてはその総厚をガスバリア層の厚さとする。 The gas barrier layer may be a single layer or a laminated structure of two or more layers. When the gas barrier layer has a laminated structure of two or more layers, the metals contained in each gas barrier layer may be the same or different. When the gas barrier layer has a laminated structure of two or more layers, the total thickness of the gas barrier layer is the thickness of the gas barrier layer.
 ガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、ガスバリア性能の観点から、第2のガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、10~1000nmであることが好ましく、25~600nmであることがより好ましく、50~300nmであることがさらに好ましい。この範囲であれば、ガスバリア性と耐久性とのバランスが良好となり好ましい。ガスバリア層の厚さは、TEM観察により測定することができる。 From the viewpoint of gas barrier performance, the thickness of the gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is the thickness of the second gas barrier layer (the total thickness of the laminated structure of two or more layers). ) Is preferably 10 to 1000 nm, more preferably 25 to 600 nm, and even more preferably 50 to 300 nm. If it is this range, the balance of gas barrier property and durability becomes favorable and is preferable. The thickness of the gas barrier layer can be measured by TEM observation.
 ガスバリア層の組成分析はX線光電子分光法(XPS:Xray Photoelectron Spectroscopy)を用いて、デプス(Depth)プロファイルを行うことで膜の深さ方向の組成を分析できる。すなわち、ガスバリア性フィルムのガスバリア層の表面をエッチングしながら、その表面からの深さ(厚さ)方向の組成を測定する。 The composition analysis of the gas barrier layer can analyze the composition in the depth direction of the film by performing a depth profile using X-ray photoelectron spectroscopy (XPS: Xray Photoelectron Spectroscopy). That is, while etching the surface of the gas barrier layer of the gas barrier film, the composition in the depth (thickness) direction from the surface is measured.
 ガスバリア層の組成分析は、XPSデプスプロファイル測定により得られる。得られるケイ素、酸素、炭素等の分布曲線は、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向におけるガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(L)に概ね相関することから、「ガスバリア層の膜厚方向におけるガスバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリア層の表面からの距離を採用することができる。 The composition analysis of the gas barrier layer is obtained by XPS depth profile measurement. The obtained distribution curve of silicon, oxygen, carbon, etc. can be created with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time in this way, the etching time is generally correlated with the distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer in the film thickness direction. As the “distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer”, use the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. Can do.
 《XPS分析条件》
 ・装置:QUANTERASXM(アルバック・ファイ株式会社製)
 ・X線源:単色化Al-Kα
 ・測定領域:Si2p、Al2p、Nb3d、Ta4d、Hf4d、Ti2p、Zr3d、Ru3d、Y3p、C1s、N1s、O1s
 ・照射X線:単結晶分光AlKα
 ・X線のスポットおよびそのサイズ:800×400μmの楕円形
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:1分間のスパッタ後に測定を繰り返す。
<< XPS analysis conditions >>
・ Device: QUANTERASXM (manufactured by ULVAC-PHI Co., Ltd.)
・ X-ray source: Monochromatic Al-Kα
Measurement area: Si2p, Al2p, Nb3d, Ta4d, Hf4d, Ti2p, Zr3d, Ru3d, Y3p, C1s, N1s, O1s
・ Irradiated X-ray: Single crystal spectroscopy AlKα
・ X-ray spot and its size: 800 × 400 μm oval shape ・ Sputtering ion: Ar (2 keV)
Depth profile: Repeat measurement after sputtering for 1 minute.
   スパッタ条件;
   エッチング速度(SiO熱酸化膜換算値):0.05nm/sec;
   エッチング間隔(SiO換算値):10nm;
 ・データ処理:MultiPak(アルバック・ファイ株式会社製)
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量する。
Sputtering conditions;
Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec;
Etching interval (SiO 2 equivalent value): 10 nm;
・ Data processing: MultiPak (manufactured by ULVAC-PHI)
Quantification: The background is obtained by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
 本発明に係る製造方法では、ガスバリア性フィルムに種々の機能を有する層(機能層)を設けてもよい。 In the production method according to the present invention, layers (functional layers) having various functions may be provided on the gas barrier film.
 なお、ガスバリア性フィルムに機能層を設ける場合は、太陽電池や有機EL素子等の電子デバイスとして利用されることから、機能層も透明であることが好ましい。すなわち、好ましくは、機能層の光線透過率が通常80%以上、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上、特に好ましくは91%以上である。 In addition, when providing a functional layer in a gas barrier film, since it is utilized as electronic devices, such as a solar cell and an organic EL element, it is preferable that a functional layer is also transparent. That is, preferably, the light transmittance of the functional layer is usually 80% or more, preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, and particularly preferably 91% or more.
 (アンカーコート層)
 ガスバリア層を形成する側の基材の表面には、基材とガスバリア層との密着性の向上を目的として、アンカーコート層を形成してもよい。
(Anchor coat layer)
An anchor coat layer may be formed on the surface of the base material on the side where the gas barrier layer is formed for the purpose of improving the adhesion between the base material and the gas barrier layer.
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。 As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。 Also, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent. Thus, an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 (ハードコート層)
 基材の表面(片面または両面)には、ハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
(Hard coat layer)
A hard coat layer may be provided on the surface (one side or both sides) of the substrate. Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂の硬化物を含む層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。予めハードコート層が形成されている市販の基材を用いてもよい。紫外線硬化性樹脂としては、例えば、アクリル系の紫外線硬化性樹脂であるZ-731L(アイカ工業株式会社製)、オプスター(登録商標)Z7527(JSR株式会社製)等が好ましく用いられる。 The active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray. A layer containing a cured product of the functional resin, that is, a hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. You may use the commercially available base material in which the hard-coat layer is formed previously. As the ultraviolet curable resin, for example, Z-731L (manufactured by Aika Industry Co., Ltd.), Opstar (registered trademark) Z7527 (manufactured by JSR Corporation), which is an acrylic ultraviolet curable resin, is preferably used.
 ハードコート層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法(塗布法)、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the hard coat layer is not particularly limited, but it may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. Is preferred.
 ハードコート層を形成する際の塗膜の乾燥温度は、特に制限されないが、40~120℃であることが好ましい。 The drying temperature of the coating film when forming the hard coat layer is not particularly limited, but is preferably 40 to 120 ° C.
 ハードコート層を硬化する際に用いる活性エネルギー線としては、紫外線が好ましい。
紫外線照射装置としては、特に制限されないが、例えば、高圧水銀ランプ等が挙げられる。紫外線照射条件は、特に制限されないが、例えば、空気下で行うことが挙げられる。紫外線照射エネルギー量は、特に制限されないが、0.3~5J/cmであることが好ましい。
The active energy ray used when curing the hard coat layer is preferably ultraviolet rays.
Although it does not restrict | limit especially as an ultraviolet irradiation device, For example, a high pressure mercury lamp etc. are mentioned. Although ultraviolet irradiation conditions are not specifically limited, For example, performing under air is mentioned. The amount of ultraviolet irradiation energy is not particularly limited, but is preferably 0.3 to 5 J / cm 2 .
 また、ハードコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the hard coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 (平滑層)
 ガスバリア性フィルムは、基材とガスバリア層との間に、平滑層を形成してもよい。平滑層は、突起等が存在する基材の粗面を平坦化し、あるいは、基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
(Smooth layer)
The gas barrier film may form a smooth layer between the base material and the gas barrier layer. The smooth layer is provided in order to flatten the rough surface of the substrate on which protrusions and the like exist, or to fill the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the substrate. Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
 平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化性有機/無機ハイブリッドハードコート材 オプスター(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 As the photosensitive material of the smooth layer, for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。 Specific examples of thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法(塗布法)、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the smooth layer is not particularly limited, but may be formed by a wet coating method (coating method) such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as a vapor deposition method. preferable.
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
 平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。 The thickness of the smooth layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、バリア層を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。 The smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply | coated with an application | coating form, even if it is a case where a coating means contacts the smooth layer surface by application methods, such as a wire bar and a wireless bar, applicability | paintability will be impaired. In addition, it is easy to smooth the unevenness after coating.
 ガスバリア性フィルムの水蒸気透過度は、5×10-3g/(m・day)未満であることが好ましく、1×10-3g/(m・day)未満であることがより好ましく、5×10-4g/(m・day)未満であることがさらに好ましい。なお、本明細書において、「水蒸気透過度」の値は、JIS K 7129-1992に準拠した方法で測定された値を採用するものとする。なお、測定条件は、温度:38±0.5℃、相対湿度(RH):90±2%である。 The water vapor permeability of the gas barrier film is preferably less than 5 × 10 −3 g / (m 2 · day), more preferably less than 1 × 10 −3 g / (m 2 · day), More preferably, it is less than 5 × 10 −4 g / (m 2 · day). In the present specification, a value measured by a method based on JIS K 7129-1992 is adopted as the value of “water vapor permeability”. The measurement conditions are temperature: 38 ± 0.5 ° C. and relative humidity (RH): 90 ± 2%.
 ガスバリア性フィルムの波長450nmにおける光透過率は、88%以上であることが好ましく、90%以上であることがより好ましく、91%以上であることがさらに好ましい(上限100%)。なお、本明細書において、「波長450nmにおける光透過率」の値は、分光測色計CM-3700A(コニカミノルタ株式会社製)を用いてガスバリア性フィルムの透過スペクトルを測定した値を採用するものとする。 The light transmittance of the gas barrier film at a wavelength of 450 nm is preferably 88% or more, more preferably 90% or more, and further preferably 91% or more (upper limit 100%). In this specification, the value of “light transmittance at a wavelength of 450 nm” is a value obtained by measuring a transmission spectrum of a gas barrier film using a spectrocolorimeter CM-3700A (manufactured by Konica Minolta Co., Ltd.). And
 本発明に係る製造方法によって得られたガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。 The gas barrier film obtained by the production method according to the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. Examples of the electronic device main body include an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV).
 本発明の効果を、以下の実施例および比較例を用いて説明する。以下の実施例においては、特記しない限り、「部」および「%」はそれぞれ「質量部」および「質量%」を意味し、各操作は、室温(25℃)で行われる。なお、本発明は以下の実施例に限定されるものではない。 The effect of the present invention will be described using the following examples and comparative examples. In the following examples, “parts” and “%” mean “parts by mass” and “mass%”, respectively, unless otherwise specified, and each operation is performed at room temperature (25 ° C.). In addition, this invention is not limited to a following example.
 [実施例1]
 <試料1の作製>
 (基材の準備)
 両面に易接着処理が施された厚さ100μmのポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラー(登録商標)(U48))を基材として用いた。この基材のガスバリア層を形成する面とは反対の面に、厚さ0.5μmのアンチブロック機能を有するハードコート層を形成した。すなわち、紫外線(UV)硬化性樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。
[Example 1]
<Preparation of Sample 1>
(Preparation of base material)
A 100 μm-thick polyethylene terephthalate film (Lumirror (registered trademark) (U48), manufactured by Toray Industries, Inc.) with easy adhesion treatment on both sides was used as a base material. A hard coat layer having an anti-blocking function with a thickness of 0.5 μm was formed on the surface of the substrate opposite to the surface on which the gas barrier layer was formed. That is, an ultraviolet (UV) curable resin (manufactured by Aika Industry Co., Ltd., product number: Z731L) was applied to a substrate so that the dry film thickness was 0.5 μm, then dried at 80 ° C., and then in the air. Curing was performed using a high-pressure mercury lamp under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 次に、基材のガスバリア層を形成する側の面に厚さ2μmのハードコート層を以下のようにして形成した。JSR株式会社製、UV硬化性樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように基材に塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、ハードコート層付基材を得た。以降、本実施例および比較例においては、便宜上、このハードコート層付基材を単に基材と称する。 Next, a hard coat layer having a thickness of 2 μm was formed on the surface of the substrate on which the gas barrier layer was to be formed as follows. A UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied to a substrate so that the dry film thickness was 2 μm, and then dried at 80 ° C., and then using a high-pressure mercury lamp in the air. Curing was performed under the condition of an irradiation energy amount of 0.5 J / cm 2 . In this way, a substrate with a hard coat layer was obtained. Hereinafter, in this example and comparative examples, for convenience, this base material with a hard coat layer is simply referred to as a base material.
 (CVD原料の準備)
 2,4,6,8-テトラメチルシクロテトラシロキサン(TMCTS)に、ジブチルスズジラウリレートを混合し、スズ(Sn)濃度が1μg/L(混合物全体の体積に対するスズの割合)となるように調製したプラズマCVD原料を準備した。
(Preparation of CVD raw materials)
Dibutyltin dilaurate is mixed with 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS) to prepare a tin (Sn) concentration of 1 μg / L (ratio of tin to the total volume of the mixture). A plasma CVD raw material was prepared.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (ガスバリア層の形成)
 上記基材を、図1の模式図で表されるようなプラズマCVD装置にセットして真空排気した。その後、当該基材の一方の面上(上記で形成した厚さ2μmのハードコート層上)に、上記のプラズマCVD原料を用いてSiOCを主成分とするガスバリア層を膜厚60nmで形成して、プラズマCVD法で試料1を作製した。この際、上記プラズマCVD原料をベーキングして気化した原料ガス100sccm(Standard Cubic Centimeter per Minute)と酸素ガス300sccmとを装置内に供給し、成膜時の装置内圧力を1Paに設定した。またプラズマ発生用電源として、100kHzの高周波電源を用いた。また、フィルムの搬送速度(ライン速度)は、5m/minとした。
(Formation of gas barrier layer)
The substrate was set in a plasma CVD apparatus as represented by the schematic diagram of FIG. 1 and evacuated. Thereafter, a gas barrier layer mainly composed of SiOC is formed with a film thickness of 60 nm on one surface of the substrate (on the hard coat layer having a thickness of 2 μm formed above) using the plasma CVD raw material. Sample 1 was prepared by plasma CVD. At this time, a source gas of 100 sccm (Standard Cubic Centimeter per Minute) vaporized by baking the plasma CVD source and oxygen gas of 300 sccm were supplied into the apparatus, and the pressure in the apparatus during film formation was set to 1 Pa. A 100 kHz high frequency power source was used as the plasma generating power source. The film conveyance speed (line speed) was 5 m / min.
 [実施例2]
 <試料2の作製>
 プラズマCVD原料を、スズ濃度が0.1μg/Lとなるように調製したこと以外は実施例1と同様にして試料2を作製した。
[Example 2]
<Preparation of Sample 2>
Sample 2 was produced in the same manner as in Example 1 except that the plasma CVD raw material was prepared so that the tin concentration was 0.1 μg / L.
 [実施例3]
 <試料3の作製>
 プラズマCVD原料を、スズ濃度が3μg/Lとなるように調製したこと以外は実施例1と同様にして試料3を作製した。
[Example 3]
<Preparation of Sample 3>
Sample 3 was prepared in the same manner as in Example 1 except that the plasma CVD raw material was prepared so that the tin concentration was 3 μg / L.
 [実施例4]
 <試料4の作製>
 プラズマCVD原料を、スズ濃度が5μg/Lとなるように調製したこと以外は実施例1と同様にして試料4を作製した。
[Example 4]
<Preparation of Sample 4>
Sample 4 was produced in the same manner as in Example 1 except that the plasma CVD raw material was prepared so that the tin concentration was 5 μg / L.
 [実施例5]
 <試料5の作製>
 プラズマCVD原料を、スズ濃度が10μg/Lとなるように調製したこと以外は実施例1と同様にして試料5を作製した。
[Example 5]
<Preparation of Sample 5>
Sample 5 was produced in the same manner as in Example 1 except that the plasma CVD material was prepared so that the tin concentration was 10 μg / L.
 [比較例1]
 <試料6の作製>
 プラズマCVD原料を、スズ濃度が11μg/Lとなるように調製したこと以外は実施例1と同様にして試料6を作製した。
[Comparative Example 1]
<Preparation of Sample 6>
Sample 6 was produced in the same manner as in Example 1 except that the plasma CVD material was prepared so that the tin concentration was 11 μg / L.
 [実施例6]
 <試料7の作製>
 TMCTSとヘキサクロロ白金(IV)酸とを混合し、白金(Pt)濃度が3μg/L(混合物全体の体積に対する白金の割合)となるように調製したプラズマCVD用原料を用いた以外は実施例1と同様にして試料7を作製した。
[Example 6]
<Preparation of Sample 7>
Example 1 except that TMCTS and hexachloroplatinum (IV) acid were mixed and a plasma CVD raw material prepared so that the platinum (Pt) concentration was 3 μg / L (the ratio of platinum to the total volume of the mixture) was used. Sample 7 was produced in the same manner as described above.
 [実施例7]
 <試料8の作製>
 TMCTSとクロロ(トリフェニルホスフィン)金(I)とを混合し、金(Au)濃度が3μg/L(混合物全体の体積に対する金の割合)となるように調製したプラズマCVD用原料を用いた以外は実施例1と同様にして試料8を作製した。
[Example 7]
<Preparation of Sample 8>
Other than using TCMTS and chloro (triphenylphosphine) gold (I), and using a raw material for plasma CVD prepared so that the gold (Au) concentration is 3 μg / L (ratio of gold to the total volume of the mixture) A sample 8 was prepared in the same manner as in Example 1.
 [比較例2]
 <試料9の作製>
 プラズマCVD原料を、金属化合物を添加しないTMCTSに変更した以外は実施例1と同様にして試料9を作製した。
[Comparative Example 2]
<Preparation of Sample 9>
Sample 9 was prepared in the same manner as in Example 1 except that the plasma CVD raw material was changed to TMCTS without adding a metal compound.
 [比較例3]
 TMCTSと酢酸銀(I)とを混合し、銀(Ag)濃度が3μg/L(混合物全体の体積に対する銀の割合)となるように調製したプラズマCVD用原料を用いた以外は実施例1と同様にして試料10を作製した。
[Comparative Example 3]
Example 1 except that TMCTS and silver acetate (I) were mixed and the raw material for plasma CVD was prepared so that the silver (Ag) concentration was 3 μg / L (ratio of silver to the total volume of the mixture). Sample 10 was produced in the same manner.
 [比較例4]
 TMCTSとテトラクロロ銅(II)と酸を混合し、銅(Cu)濃度が3μg/L(混合物全体の体積に対する銅の割合)となるように調製したプラズマCVD用原料を用いた以外は実施例1と同様にして試料11を作製した。
[Comparative Example 4]
Example except that TMCTS, tetrachlorocopper (II) and acid were mixed and the raw material for plasma CVD was prepared so that the copper (Cu) concentration was 3 μg / L (the ratio of copper to the total volume of the mixture). Sample 11 was prepared in the same manner as in Example 1.
 [実施例8]
 <試料12の作製>
 HMDSO(ヘキサメチルジシロキサン)にジブチルスズジラウリレートを混合し、スズ濃度が1μg/L(混合物全体の体積に対するスズの割合)となるように調製したプラズマCVD原料に変更したこと以外は実施例1と同様にして試料12を作製した。
[Example 8]
<Preparation of Sample 12>
Example 1 except that dibutyltin dilaurate was mixed with HMDSO (hexamethyldisiloxane) and the plasma CVD raw material was changed to a tin concentration of 1 μg / L (ratio of tin to the total volume of the mixture). Sample 12 was prepared in the same manner as described above.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 [実施例9]
 <試料13の作製>
 プラズマCVD原料を、スズ濃度が3μg/Lとなるように調製したこと以外は実施例8と同様にして試料13を作製した。
[Example 9]
<Preparation of Sample 13>
Sample 13 was produced in the same manner as in Example 8 except that the plasma CVD raw material was prepared so that the tin concentration was 3 μg / L.
 [実施例10]
 <試料14の作製>
 プラズマCVD原料を、スズ濃度が5μg/Lとなるように調製したこと以外は実施例8と同様にして試料14を作製した。
[Example 10]
<Preparation of Sample 14>
Sample 14 was produced in the same manner as in Example 8 except that the plasma CVD material was prepared so that the tin concentration was 5 μg / L.
 [実施例11]
 <試料15の作製>
 プラズマCVD原料を、スズ濃度が10μg/Lとなるように調製したこと以外は実施例8と同様にして試料15を作製した。
[Example 11]
<Preparation of Sample 15>
Sample 15 was produced in the same manner as in Example 8 except that the plasma CVD raw material was prepared so that the tin concentration was 10 μg / L.
 [比較例5]
 <試料16の作製>
 プラズマCVD原料を、スズ濃度が11μg/Lとなるように調製したこと以外は実施例8と同様にして試料16を作製した。
[Comparative Example 5]
<Preparation of Sample 16>
Sample 16 was prepared in the same manner as in Example 8 except that the plasma CVD raw material was prepared so that the tin concentration was 11 μg / L.
 [実施例12]
 <試料17の作製>
 HMDSOとヘキサクロロ白金(IV)酸とを混合し、白金濃度が3μg/Lとなるように調製したプラズマCVD用原料を用いた以外は実施例8と同様にして試料17を作製した。
[Example 12]
<Preparation of Sample 17>
Sample 17 was prepared in the same manner as in Example 8 except that HMDSO and hexachloroplatinic (IV) acid were mixed and a plasma CVD raw material prepared so that the platinum concentration was 3 μg / L was used.
 [実施例13]
 <試料18の作製>
 HMDSOとクロロ(トリフェニルホスフィン)金(I)とを混合し、金濃度が3μg/Lとなるように調製したプラズマCVD用原料を用いた以外は実施例8と同様にして試料18を作製した。
[Example 13]
<Preparation of Sample 18>
Sample 18 was prepared in the same manner as in Example 8 except that HMDSO and chloro (triphenylphosphine) gold (I) were mixed and the plasma CVD raw material prepared so that the gold concentration was 3 μg / L was used. .
 [比較例6]
 <試料19の作製>
 プラズマCVD原料を、金属化合物を添加しないHMDSOに変更した以外は実施例8と同様にして試料19を作製した。
[Comparative Example 6]
<Preparation of Sample 19>
A sample 19 was produced in the same manner as in Example 8 except that the plasma CVD raw material was changed to HMDSO without adding a metal compound.
 [実施例14]
 <試料20の作製>
 DMTSO(デカメチルテトラシロキサン)にジブチルスズジラウリレートを混合し、スズ濃度が3μg/Lとなるように調製したプラズマCVD原料に変更したこと以外は実施例1と同様にして試料20を作製した。
[Example 14]
<Preparation of Sample 20>
Sample 20 was produced in the same manner as in Example 1 except that DMTSO (decamethyltetrasiloxane) was mixed with dibutyltin dilaurate and the plasma CVD raw material was prepared so that the tin concentration was 3 μg / L.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 [実施例15]
 <試料21の作製>
 TEOS(テトラエトキシシラン)にジブチルスズジラウリレートを混合し、スズ濃度が3μg/Lとなるように調製したプラズマCVD原料に変更したこと以外は実施例1と同様にして試料21を作製した。
[Example 15]
<Preparation of Sample 21>
Sample 21 was produced in the same manner as in Example 1 except that TEOS (tetraethoxysilane) was mixed with dibutyltin dilaurate and the plasma CVD raw material was prepared so that the tin concentration was 3 μg / L.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 [評価方法]
 <ガスバリア性評価>
 水蒸気透過率測定装置AQUATRAN2(MOCON社製)を用いて、試料1~21の温度38℃、相対湿度90%RHにおける水蒸気透過度[g/(m・24h)]([g/(m・day)])を測定した。
[Evaluation methods]
<Gas barrier property evaluation>
Using a water vapor transmission rate measuring apparatus AQUATRAN2 (manufactured by MOCON), the water vapor permeability [g / (m 2 · 24h)] ([g / (m 2 -Day)]) was measured.
 測定した水蒸気透過度から、下記評価基準にしたがってガスバリア性をランク評価した。水蒸気透過度は数値が小さいほどガスバリア性が高く、ランク1~3が実用可能なガスバリア性である。 From the measured water vapor transmission rate, the gas barrier property was ranked according to the following evaluation criteria. As the water vapor permeability is smaller, the gas barrier property is higher, and ranks 1 to 3 are practical gas barrier properties.
 (評価基準)
ランク1  ◎ :水蒸気透過度が、5×10-4g/(m・24h)未満
ランク2  〇 :水蒸気透過度が、5×10-4g/(m・24h)以上1×10-3g/(m・24h)未満
ランク3  〇△:水蒸気透過度が、1×10-3g/(m・24h)以上5×10-3g/(m・24h)未満
ランク4  △ :水蒸気透過度が、5×10-3g/(m・24h)以上1×10-2g/(m・24h)未満
ランク5  △×:水蒸気透過度が、1×10-2g/(m・24h)以上5×10-2g/(m・24h)未満
ランク6  × :水蒸気透過度が、5×10-2g/(m・24h)以上。
(Evaluation criteria)
Rank 1 ◎: Water vapor permeability is less than 5 × 10 −4 g / (m 2 · 24 h) Rank 2 ○: Water vapor permeability is 5 × 10 −4 g / (m 2 · 24 h) or more 1 × 10 Rank less than 3 g / (m 2 · 24h) 3 ○ △: Water vapor permeability is 1 × 10 −3 g / (m 2 · 24 h) or more and less than 5 × 10 −3 g / (m 2 · 24 h) Rank 4 Δ: Water vapor permeability is 5 × 10 −3 g / (m 2 · 24 h) or more and less than 1 × 10 −2 g / (m 2 · 24 h) Rank 5 Δ ×: Water vapor permeability is 1 × 10 −2 g / (m 2 · 24h) or more and less than 5 × 10 −2 g / (m 2 · 24h) Rank 6 ×: Water vapor permeability is 5 × 10 −2 g / (m 2 · 24 h) or more.
 <光学特性>
 分光測色計CM-3700A(コニカミノルタ株式会社製)を用いて透過スペクトルを測定し、試料1~21の波長450nmにおける光透過率(%)から下記評価基準にしたがって透明性をランク評価した。ランク1~3が実用可能な透明性である。
ランク1  ◎ :波長450nmにおける光透過率が、91%以上
ランク2  〇 :波長450nmにおける光透過率が、90%以上91%未満
ランク3  〇△:波長450nmにおける光透過率が、88%以上90%未満
ランク4  △ :波長450nmにおける光透過率が、85%以上88%未満
ランク5  △×:波長450nmにおける光透過率が、80%以上85%未満
ランク6  × :波長450nmにおける光透過率が、80%未満。
<Optical characteristics>
The transmission spectrum was measured using a spectrocolorimeter CM-3700A (manufactured by Konica Minolta Co., Ltd.), and the transparency was ranked based on the light transmittance (%) at a wavelength of 450 nm for samples 1 to 21 according to the following evaluation criteria. Ranks 1 to 3 are practical transparency.
Rank 1 ◎: Light transmittance at a wavelength of 450 nm is 91% or more Rank 2 ○: Light transmittance at a wavelength of 450 nm is 90% or more and less than 91% Rank 3 ○ Δ: Light transmittance at a wavelength of 450 nm is 88% or more 90 Rank less than% 4 Δ: Light transmittance at a wavelength of 450 nm is 85% or more and less than 88% Rank 5 Δ ×: Light transmittance at a wavelength of 450 nm is 80% or more and less than 85% Rank 6 ×: Light transmittance at a wavelength of 450 nm Less than 80%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本出願は、2016年6月28日に出願された日本特許出願番号2016-127952号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2016-127952 filed on June 28, 2016, the disclosure of which is incorporated by reference in its entirety.
  1 ガスバリア性フィルム、
  2 基材、
  3 ガスバリア層、
  31 製造装置、
  32 送り出しローラー、
  33、34、35、36 搬送ローラー、
  39、40 成膜ローラー、
  41 ガス供給管、
  42 プラズマ発生用電源、
  43、44 磁場発生部、
  45 巻取りローラー。
1 gas barrier film,
2 base material,
3 gas barrier layer,
31 manufacturing equipment,
32 Feeding roller,
33, 34, 35, 36 transport rollers,
39, 40 Deposition roller,
41 gas supply pipe,
42 Power supply for plasma generation,
43, 44 Magnetic field generator,
45 Take-up roller.

Claims (5)

  1.  Sn、Pt、およびAuからなる群から選択される少なくとも一つの金属元素を0.1~10μg/L、ならびに有機シロキサン化合物を含む組成物を用いて、プラズマ化学気相蒸着法によりガスバリア層を基材上に形成することを含む、ガスバリア性フィルムの製造方法。 Using a composition containing 0.1 to 10 μg / L of at least one metal element selected from the group consisting of Sn, Pt, and Au and an organosiloxane compound, the gas barrier layer is formed by plasma enhanced chemical vapor deposition. The manufacturing method of a gas-barrier film including forming on a material.
  2.  前記有機シロキサン化合物が、分子内にSi-O-Si構造を有する、請求項1に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 1, wherein the organosiloxane compound has a Si-O-Si structure in the molecule.
  3.  前記有機シロキサン化合物が、環状シロキサン化合物である、請求項2に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 2, wherein the organic siloxane compound is a cyclic siloxane compound.
  4.  前記組成物中の金属元素の量が、2~5μg/Lである、請求項1~3のいずれか1項に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 1 to 3, wherein the amount of the metal element in the composition is 2 to 5 µg / L.
  5.  前記プラズマ化学気相蒸着法によるガスバリア層の形成を、内部に磁場発生部を備える対向ロール電極を有するプラズマCVD装置により行う、請求項1~4のいずれか1項に記載のガスバリア性フィルムの製造方法。 The production of a gas barrier film according to any one of claims 1 to 4, wherein the formation of the gas barrier layer by the plasma chemical vapor deposition method is performed by a plasma CVD apparatus having a counter roll electrode provided with a magnetic field generator therein. Method.
PCT/JP2017/016809 2016-06-28 2017-04-27 Method for producing gas barrier film WO2018003274A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018524920A JP6888623B2 (en) 2016-06-28 2017-04-27 Manufacturing method of gas barrier film
CN201780040108.5A CN109415805B (en) 2016-06-28 2017-04-27 Method for producing gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016127952 2016-06-28
JP2016-127952 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003274A1 true WO2018003274A1 (en) 2018-01-04

Family

ID=60787019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016809 WO2018003274A1 (en) 2016-06-28 2017-04-27 Method for producing gas barrier film

Country Status (3)

Country Link
JP (1) JP6888623B2 (en)
CN (1) CN109415805B (en)
WO (1) WO2018003274A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089163A (en) * 2001-09-17 2003-03-25 Dainippon Printing Co Ltd Barrier-film, laminated material using the same, packaging container, image display medium, and method for producing barrier-film
WO2006033233A1 (en) * 2004-09-21 2006-03-30 Konica Minolta Holdings, Inc. Transparent gas barrier film
JP2011073430A (en) * 2009-09-01 2011-04-14 Sumitomo Chemical Co Ltd Gas-barrier multilayer film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070012553A (en) * 2004-05-14 2007-01-25 다우 코닝 도레이 캄파니 리미티드 Independent film composed of organopolysiloxane resin cured product, preparation method thereof and laminated film
KR101697806B1 (en) * 2009-10-30 2017-01-18 스미또모 가가꾸 가부시키가이샤 Process for producing multilayer film
WO2014061597A1 (en) * 2012-10-19 2014-04-24 コニカミノルタ株式会社 Method for producing gas barrier film, gas barrier film, and electronic device
JP6252493B2 (en) * 2013-01-11 2017-12-27 コニカミノルタ株式会社 Gas barrier film
WO2015060394A1 (en) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 Gas barrier film
US9620150B2 (en) * 2014-11-11 2017-04-11 Seagate Technology Llc Devices including an amorphous gas barrier layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089163A (en) * 2001-09-17 2003-03-25 Dainippon Printing Co Ltd Barrier-film, laminated material using the same, packaging container, image display medium, and method for producing barrier-film
WO2006033233A1 (en) * 2004-09-21 2006-03-30 Konica Minolta Holdings, Inc. Transparent gas barrier film
JP2011073430A (en) * 2009-09-01 2011-04-14 Sumitomo Chemical Co Ltd Gas-barrier multilayer film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRACASSI, F. ET AL.: "Deposition of gold-containing siloxane thin films", THIN SOLID FILMS, vol. 272, 1996, pages 60 - 63, XP004005412, ISSN: 0040-6090 *

Also Published As

Publication number Publication date
JPWO2018003274A1 (en) 2019-04-11
CN109415805B (en) 2020-10-16
CN109415805A (en) 2019-03-01
JP6888623B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
WO2013161809A1 (en) Gas barrier film, and electronic device employing same
CN104903090B (en) gas barrier film
TWI700192B (en) Laminated film and flexible electronic device
CN102245379A (en) Laminate, method for producing same, electronic device member, and electronic device
WO2014203892A1 (en) Gas barrier film and method for producing same
WO2015060394A1 (en) Gas barrier film
WO2015098671A1 (en) Laminate film and flexible electronic device
TWI672391B (en) Laminated film and filexible electronic device
JP6354302B2 (en) Gas barrier film
WO2015083706A1 (en) Gas barrier film and method for producing same
JP2014141055A (en) Gas barrier film
JP6888623B2 (en) Manufacturing method of gas barrier film
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
JP2016097500A (en) Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method
JP5895855B2 (en) Method for producing gas barrier film
WO2014097997A1 (en) Electronic device
WO2017086035A1 (en) Gas-barrier film
TWI772498B (en) Laminated film
CN111032338B (en) Laminated film
JP2016193526A (en) Gas barrier film, and electronic device using the gas barrier film
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
WO2014125877A1 (en) Gas barrier film
WO2015163358A1 (en) Gas barrier film and manufacturing method thereof
CN108349210B (en) Gas barrier film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819641

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载