WO2018003049A1 - 医療システムとその制御方法 - Google Patents
医療システムとその制御方法 Download PDFInfo
- Publication number
- WO2018003049A1 WO2018003049A1 PCT/JP2016/069377 JP2016069377W WO2018003049A1 WO 2018003049 A1 WO2018003049 A1 WO 2018003049A1 JP 2016069377 W JP2016069377 W JP 2016069377W WO 2018003049 A1 WO2018003049 A1 WO 2018003049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- interference
- arms
- unit
- operation target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 11
- 239000012636 effector Substances 0.000 claims abstract description 20
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000011022 operating instruction Methods 0.000 abstract 3
- 230000036544 posture Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
Definitions
- the present invention relates to a medical system and a control method thereof.
- a medical system including a plurality of arms having joints with redundant degrees of freedom is known (see, for example, Patent Document 1).
- This medical system uses the redundancy of the joints that make up each arm to move the joint positions of the arms without changing the posture of the treatment tool, thereby causing interference between arms or interference between arms and obstacles. Trying to avoid.
- One aspect of the present invention is provided with a joint group having redundant degrees of freedom, a plurality of arms that move an end effector attached to the tip, an operation unit that inputs an operation command for operating the arms, and the operation
- a control unit that controls the arm based on the operation command input to the control unit, and the control unit controls the arm and the operation target based on the operation command input to the operation unit.
- An interference prediction unit that predicts interference with another arm that is not the target, and when the interference prediction unit predicts that interference will occur, the other arm that is not the operation target is set as the operation target.
- the medical system is operated in a direction away from the arm.
- the control unit controls the arm to be operated based on the input operation command and is attached to the tip of the arm.
- a treatment target can be treated by the end effector.
- the control unit stops the joints with redundant degrees of freedom, and obtains the end effector to an appropriate position and posture by obtaining the operation angle of each joint without performing a huge calculation. Can be arranged.
- the interference prediction unit While operating the operation unit and operating the arm that is the operation target, the interference prediction unit provided in the control unit causes the arm that is the operation target and the other arm that is not the operation target to Interference is expected.
- the control unit causes the other arm that is not the operation target to be moved away from the operation target arm.
- an arm that is not an operation target can operate without changing the posture and position of the end effector attached to the tip. Thereby, interference between arms can be avoided without changing the state of the end effector with respect to the treatment target.
- control unit causes the arm that is not the operation target to perform the interference avoidance operation, not the operation target arm that is operated by the operation unit. It is not necessary to add a calculation for avoiding interference to the calculation process for operating the arm, and the calculation load can be reduced.
- the interference prediction unit calculates an operation target position of the arm that is an operation target based on the operation command input to the operation unit, and the calculated operation target position and the operation target The interference may be predicted from the current position of the other arm that is not.
- the said end effector attached to one of the said arms is a treatment tool for treating an affected part
- the said end effector attached to the other said arm is the said affected part and the said treatment tool. It may be an image pickup apparatus for taking pictures.
- the operation unit is operated to operate the arm to which the imaging device is attached, the arm is stopped in a state where the affected part is arranged in the visual field range, and then the operation unit is operated to perform treatment.
- the other arm to which the instrument is attached can be operated to treat the affected area with the treatment instrument.
- the operation for avoiding interference is performed by the arm to which the imaging device is attached.
- the arm to which the treatment tool is attached is stopped and the arm to which the imaging device is attached is an operation target, an operation for avoiding interference is performed by the arm to which the treatment tool is attached.
- the switching unit can switch between the arm that is the operation target and the other arm that is not the operation target, and the avoidance operation can be performed by any of the arms, reducing the calculation load.
- the interference between the arms can be avoided more reliably.
- a group of joints having redundant degrees of freedom is provided, and one of a plurality of arms for moving an end effector attached to the tip is operated to operate any one of the arms to be operated.
- the prediction step for predicting interference between the arm that is the operation target and the other arm that is not the operation target includes an interference avoiding operation step of operating another arm that is not an operation target in a direction away from the arm that is an operation target.
- FIG. 1 is an overall configuration diagram showing a medical system according to an embodiment of the present invention. It is a block diagram which shows the medical system of FIG. It is a flowchart explaining the control method of the medical system of FIG.
- the medical system 1 includes a bed 2 on which a patient O is laid, a surgical robot 3 disposed on the side of the bed 2, and an operation unit 4 operated by an operator. And a control unit 5.
- the surgical robot 3 includes a plurality of, for example, four arms (first to fourth arms) 6a, 6b, 6c, 6d and a base 7 that supports the arms 6a, 6b, 6c, 6d (
- the arm 6a is displayed on the front side
- the arm 6d is displayed on the depth side.
- the base 7 has a structure that rises from the floor to the side of the bed 2, but is not limited thereto, and may have a structure that is fixed to the ceiling.
- Each arm 6a, 6b, 6c, 6d includes a joint group 8a, 8b, 8c, 8d having redundant degrees of freedom of 7 axes or more.
- An endoscope (end effector, imaging device) 9 is attached to the distal end of the first arm 6a, and the distal ends of the other three arms (second arm to fourth arm) 6b, 6c, 6d, respectively.
- a treatment tool (end effector) 10 is attached.
- each arm 6a, 6b, 6c, 6d includes a drive unit 11 such as a motor for operating each joint constituting the arms 6a, 6b, 6c, 6d, and the drive unit. 11 and a sensor 12 for detecting the angle of each joint operated by the control unit 11.
- the operation unit 4 includes an operation input unit 14 that is operated by an operator, and a monitor 13 that displays an internal image of the patient O by an endoscope 9 attached to the arm 6a.
- the operation input unit 14 includes two handles (right handle and left handle) 15 and 16 that the operator holds with both hands, and a changeover switch (switching unit) 17. Then, one or two of the four arms 6a, 6b, 6c, 6d, for example, the second arm 6b and the third arm 6c are selected by the changeover switch 17 to operate the handles 15, 16
- the arms 6b and 6c selected by the above can be operated.
- the arms 6b and 6c selected by the changeover switch 17 become operation targets, and the unselected arms 6a and 6d become non-operation targets.
- the operator operates the operation input unit 14 while looking at the affected part and the distal end part of the treatment instrument 10 attached to the arms 6b and 6c in the in-vivo image of the patient O displayed on the monitor 13, and the arms 6b and 6c. And the treatment tool 10 is operated so that the affected part can be treated.
- the control unit 5 calculates position / posture calculation for calculating a target angle (operation target position) of each joint of the arms 6b and 6c to be operated based on an operation command input by a handle operation of the operation input unit 14. Based on the target angle of each joint calculated by the position / posture calculation unit 18, the interference prediction unit 19 that predicts interference with the arms 6 a and 6 d that are not the operation target, and the interference prediction unit 19 is provided with a drive command generation unit 20 that operates the arms 6a and 6d that are not the operation target based on the prediction result by the operation unit 19.
- the position / posture calculation unit 18 uses the six-axis joint groups 8b and 8c excluding the joints constituting the redundant degrees of freedom of the arms 6b and 6c to be operated in accordance with the operation commands input by the operation input unit 14.
- the target angle of each joint when achieving the position and posture of the end effector 10 is calculated. Thereby, since the angles of the joints of the arms 6b and 6c corresponding to the operation command are uniquely determined, the target angle can be calculated with a small amount of calculation.
- the interference prediction unit 19 also calculates the target angles of the joints of the arms 6b and 6c that are the operation targets calculated by the position / posture calculation unit 18 and the current angles of the arms 6a and 6d that are not the operation targets. Based on the angle of the joint, the presence or absence of interference between the mechanical parts of the arms 6a, 6b, 6c, 6d is predicted. Since the dimensions and the like of the mechanism portion are determined in advance, the presence or absence of interference between the mechanism portions of the arms 6a, 6b, 6c, and 6d can be easily predicted by determining the angle of each joint.
- the interference prediction unit 19 When interference is predicted by the interference prediction unit 19, the joints of the arms 6b and 6c that are the operation targets are moved to the target angle, and the arms 6a and 6d that are not the operation targets are operated. It is supposed to let you. Specifically, when it is predicted that interference will occur, the interference predicting unit 19 sends a signal to that effect to the drive command generating unit 20.
- the drive command generator 20 For the arms 6b and 6c to be operated, the drive command generator 20 generates a drive command signal for driving each joint based on the target angle of each joint calculated by the position / posture calculator 18. It is generated and sent to the drive unit 11. In addition, when a signal indicating interference is transmitted from the interference prediction unit 19, the drive command generation unit 20 detects the treatment tool 10 or the endoscope 9 attached to the arms 6a and 6d that are not the operation target. An operation command signal for each joint is generated so that the arms 6a and 6d that are not the operation target are moved away from the arms 6b and 6c that are the operation targets while maintaining the position and the posture. It has become.
- the arms 6a and 6d that are not the operation target are proximal to the distal end shaft while maintaining the position and posture of the distal end shaft by the joint groups 8a and 8d including joints that form redundant degrees of freedom.
- One or more joints arranged in the above are operated to generate a drive command signal that moves in a direction away from a position where it does not interfere with the operation target arms 6 b and 6 c, and sends the drive command signal to the drive unit 11. It has become.
- the angles of the joints constituting each arm 6a, 6b, 6c, 6d are detected by the sensor 12 and fed back to the position / posture calculation unit 18.
- any one or two arms 6 b and 6 c are set as operation targets by the changeover switch 17 of the operation input unit 14 (steps).
- step S1 it is determined whether or not an operation command is input by the right handle 16 or the left handle 15 of the operation input unit 14 (step S2).
- the target angle of each joint constituting the arms 6b and 6c set as the operation target corresponding to the input handles 15 and 16 is calculated (step S3).
- the targets of the minimum number of joints that can achieve the position and posture of the end effector 10 corresponding to the operation command input from the handles 15 and 16 are achieved. An angle is calculated.
- a prediction calculation of the presence or absence of interference with the arms 6a and 6d that are not the operation targets is performed (prediction step S4).
- the prediction result in the prediction step S4 is determined (step S5) and it is predicted that interference will occur
- the arm 6a, 6d that is not the operation target generates a drive command signal for each joint that can avoid interference.
- the drive command generation unit 20 generates a drive command signal for achieving the calculated target angle of the arms 6b and 6c to be operated (interference avoiding operation step S6). It is generated (step S7). Then, the drive unit 11 is driven based on the generated drive command signal (step S8).
- the drive command signals for the arms 6a and 6d that are not operated are superimposed so that only the positions of one or more joints on the proximal end side are moved while maintaining the positions and postures of the end effectors 9 and 10 at the distal ends.
- the joint groups 8a and 8d having degrees of freedom are generated to be operated.
- the arm 6b which is set as an operation target and is operated in real time according to the operation of the right handle 16 and the left handle 15 of the operation input unit 14,
- the minimum necessary number of joint groups 8b and 8c not including joints constituting redundant degrees of freedom are operated, so the calculation load is extremely small and stable without using a high-performance computer.
- the operation can be performed.
- the joint groups 8a and 8d having redundant degrees of freedom of the arms 6a and 6d that are not the operation target instead of the arms 6b and 6c that are the operation target. Is used to perform the interference avoidance operation, so that the arms 6a and 6d that are not operated are not increased without increasing the calculation load for operating the arms 6b and 6c that are the operation targets operated in real time. There is an advantage that interference can be avoided by a minimum calculation for operation.
- each joint of the first arm 6a is based on the operation command input from the operation input unit 14.
- the target angle is calculated, and the presence or absence of interference between the arms 6a, 6b, 6c and 6d is predicted together with the angles of the current joints of the other three arms 6b, 6c and 6d.
- the interference avoiding operation by the arms 6b, 6c, 6d other than the first arm 6a is performed, and the first arm 6a does not perform the interference avoiding operation, and only the minimum necessary joints are used.
- the endoscope 9 To move the endoscope 9 to a desired position. Thereby, the visual field by the endoscope 9 can be smoothly changed to reach the affected area.
- the left handle 15 and The second arm 6b and the third arm 6c are operated in accordance with an operation command input by operating the right handle 16.
- This operation also uses a minimum number of joints without using redundant joints, so that the calculation load is low and the operation is stable and smooth.
- the first arm 6a is operated by using the joint group 8a having redundant degrees of freedom, so that the position and posture of the endoscope 9 are maintained, that is, the inner arm displayed on the monitor 13 is maintained. It is not necessary to change the angle of view of the endoscopic image.
- the fourth arm 6d is operated, and the distal treatment instrument 10
- the operation can be stably performed without increasing the calculation load in the operation of the fourth arm 6d.
- the treatment can be performed by smoothly moving.
- each arm 6a, 6b, 6c, 6d may be arbitrary as long as it is 7 axes or more.
- the interference avoidance operation is performed only by the arms 6a and 6d that are not the operation target.
- interference cannot be avoided only by the arms 6a and 6d that are not the operation target.
- the operations of the arms 6b and 6c that are the operation targets may be limited or stopped.
- the arms 6b and 6c to be operated may be subjected to an interference avoidance operation by the joint groups 8b and 8c including the joints constituting redundant degrees of freedom.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Robotics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manipulator (AREA)
Abstract
演算負荷を軽減しながら、アームの干渉をより確実に回避することを目的として、本発明に係る医療システム(1)は、冗長な自由度を有する関節群(8a,8b,8c,8d)を備え、先端に取り付けたエンドエフェクタ(9,10)を移動させる複数のアーム(6a,6b,6c,6d)と、アームを操作するための操作指令を入力する操作部(4)と、操作部に入力された操作指令に基づいてアームを制御する制御部(5)とを備え、制御部が、操作部に入力された操作指令に基づいて操作対象となっているアームと操作対象となっていない他のアームとの干渉を予測する干渉予測部を備え、干渉予測部により干渉が発生すると予測された場合に、操作対象となっていない他のアームを操作対象となっているアームから離間させる方向に動作させる。
Description
本発明は、医療システムとその制御方法に関するものである。
冗長な自由度の関節を有する複数のアームを備えた医療システムが知られている(例えば、特許文献1参照。)。
この医療システムは、各アームを構成する関節の冗長性を利用して、処置具の姿勢を変更することなくアームの各関節位置を移動させて、アームどうしの干渉やアームと障害物との干渉を回避することとしている。
この医療システムは、各アームを構成する関節の冗長性を利用して、処置具の姿勢を変更することなくアームの各関節位置を移動させて、アームどうしの干渉やアームと障害物との干渉を回避することとしている。
しかしながら、特許文献1の医療システムにおいて、アームに自動的に干渉回避動作を行わせるために、膨大な計算を高速で行う必要があり、高性能計算機を用いる必要がある。特に、マスタの操作によってアームの先端の処置具をリアルタイムに移動させながら、干渉を回避するには、より多くの計算をリアルタイムに行う必要があり、高コストかつ動作が不安定になるという不都合がある。
本発明は、上述した事情に鑑みてなされたものであって、演算負荷を軽減しながら、アームの干渉をより確実に回避することができる医療システムとその制御方法を提供することを目的としている。
本発明は、上述した事情に鑑みてなされたものであって、演算負荷を軽減しながら、アームの干渉をより確実に回避することができる医療システムとその制御方法を提供することを目的としている。
本発明の一態様は、冗長な自由度を有する関節群を備え、先端に取り付けたエンドエフェクタを移動させる複数のアームと、該アームを操作するための操作指令を入力する操作部と、該操作部に入力された前記操作指令に基づいて前記アームを制御する制御部とを備え、該制御部が、前記操作部に入力された前記操作指令に基づいて操作対象となっている前記アームと操作対象となっていない他の前記アームとの干渉を予測する干渉予測部を備え、該干渉予測部により干渉が発生すると予測された場合に、操作対象となっていない他の前記アームを操作対象となっている前記アームから離間させる方向に動作させる医療システムである。
本態様によれば、操作者が操作部を操作して操作指令を入力すると、入力された操作指令に基づいて、制御部が操作対象となっているアームを制御し、アームの先端に取り付けたエンドエフェクタによって処置対象に対し処置を行うことができる。この場合において、制御部は、冗長な自由度の関節については、これを停止させておくことにより、膨大な演算を行うことなく各関節の動作角度を求めてエンドエフェクタを適切な位置および姿勢に配置することができる。
操作部を操作して操作対象となっているアームを動作させている間に、制御部に設けられた干渉予測部により、操作対象となっているアームと操作対象となっていない他のアームとの干渉が予測される。干渉予測部によって干渉が発生することが予測された場合には、制御部により操作対象となっていない他のアームが、操作対象となっているアームから離間させる方向に動作させられる。
アームは冗長な自由度を有する関節群を備えているので、操作対象となっていないアームも先端に取り付けたエンドエフェクタの姿勢および位置を変化させずに動作することができる。これにより、処置対象に対するエンドエフェクタの状態を変化させることなく、アームどうしの干渉を回避することができる。
この場合において、制御部は、操作部によって操作されている操作対象となっているアームではなく、操作対象となっていないアームに干渉回避の動作を行わせるので、リアルタイムで演算されている操作対象となっているアームを動作させるための演算処理に、干渉回避のための演算を上乗せせずにすみ、演算負荷を軽減することができる。
上記態様においては、前記干渉予測部が、前記操作部に入力された前記操作指令に基づいて、操作対象となっている前記アームの動作目標位置を算出し、算出された動作目標位置と操作対象となっていない他の前記アームの現在位置とから干渉を予測してもよい。
このようにすることで、操作部に入力された操作指令に応じて、操作対象となっているアームと、操作対象となっていないアームとの干渉をリアルタイムに予測することができる。
このようにすることで、操作部に入力された操作指令に応じて、操作対象となっているアームと、操作対象となっていないアームとの干渉をリアルタイムに予測することができる。
また、上記態様においては、いずれかの前記アームに取り付けられた前記エンドエフェクタが患部を処置するための処置具であり、他の前記アームに取り付けられた前記エンドエフェクタが、前記患部および前記処置具を撮影するための撮像装置であってもよい。
このようにすることで、操作部を操作して、撮像装置が取り付けられたアームを動作させて、患部を視野範囲に配置した状態でアームを停止させ、次に、操作部を操作して処置具が取り付けられた他のアームを動作させて、処置具によって患部を処置することができる。この場合において、処置具が取り付けられたアームが操作対象となっている場合には、撮像装置が取り付けられたアームにより干渉回避の動作を行わせる。逆に、処置具が取り付けられたアームが停止しており、撮像装置が取り付けられたアームが操作対象となっている場合には、処置具が取り付けられたアームにより干渉回避の動作が行われる。
また、上記態様においては、操作対象となっている前記アームと、操作対象となっていない他の前記アームとを切り替える切替部を備えていてもよい。
このようにすることで、切替部によって操作対象となっているアームと操作対象となっていない他のアームとを切り替えて、いずれかのアームによって回避動作を行わせることができ、演算負荷を軽減しながら、アームどうしの干渉をより確実に回避することができる。
このようにすることで、切替部によって操作対象となっているアームと操作対象となっていない他のアームとを切り替えて、いずれかのアームによって回避動作を行わせることができ、演算負荷を軽減しながら、アームどうしの干渉をより確実に回避することができる。
また、本発明の他の態様は、冗長な自由度を有する関節群を備え、先端に取り付けたエンドエフェクタを移動させる複数のアームの内、操作対象としたいずれかの前記アームを動作させるための操作指令に基づいて、操作対象となっている前記アームと、操作対象となっていない他の前記アームとの干渉を予測する予測ステップと、該予測ステップにおいて干渉が発生すると予測された場合に、操作対象となっていない他の前記アームを操作対象となっている前記アームから離間させる方向に動作させる干渉回避動作ステップとを含む医療システムの制御方法である。
本発明によれば、演算負荷を軽減しながら、アームの干渉をより確実に回避することができるという効果を奏する。
以下、本発明の一実施形態に係る医療システム1とその制御方法について、図面を参照して以下に説明する。
本実施形態に係る医療システム1は、図1に示されるように、患者Oを寝かせるベッド2と、該ベッド2の脇に配置された手術用ロボット3と、操作者によって操作される操作部4と、制御部5とを備えている。
本実施形態に係る医療システム1は、図1に示されるように、患者Oを寝かせるベッド2と、該ベッド2の脇に配置された手術用ロボット3と、操作者によって操作される操作部4と、制御部5とを備えている。
手術用ロボット3は、複数、例えば4つのアーム(第1アームから第4アーム)6a,6b,6c,6dと、各アーム6a,6b,6c,6dを支持するベース7とを備えている(図1では手前側にアーム6a、奥行側にアーム6dを表示している。)。図1に示す例では、ベース7は、ベッド2の側方にフロアから立ち上がる構造を有しているが、これに限定されるものではなく、天井に固定される構造のものでもよい。
各アーム6a,6b,6c,6dは、それぞれ7軸以上の冗長な自由度を有する関節群8a,8b,8c,8dを備えている。
第1アーム6aの先端には、内視鏡(エンドエフェクタ、撮像装置)9が装着されており、他の3つのアーム(第2アームから第4アーム)6b,6c,6dの先端にはそれぞれ処置具(エンドエフェクタ)10が装着されている。
各アーム6a,6b,6c,6dには、図2に示されるように、該アーム6a,6b,6c,6dを構成している各関節を動作させるモータ等の駆動部11と、該駆動部11により動作させられる各関節の角度を検出するセンサ12とが備えられている。
第1アーム6aの先端には、内視鏡(エンドエフェクタ、撮像装置)9が装着されており、他の3つのアーム(第2アームから第4アーム)6b,6c,6dの先端にはそれぞれ処置具(エンドエフェクタ)10が装着されている。
各アーム6a,6b,6c,6dには、図2に示されるように、該アーム6a,6b,6c,6dを構成している各関節を動作させるモータ等の駆動部11と、該駆動部11により動作させられる各関節の角度を検出するセンサ12とが備えられている。
操作部4は、図1および図2に示されるように、操作者によって操作される操作入力部14と、アーム6aに装着された内視鏡9による患者Oの体内の画像を表示するモニタ13とを備えている。操作入力部14は、例えば、図2に示されるように、操作者が両手でそれぞれ把持する2つのハンドル(右ハンドルおよび左ハンドル)15,16と、切替スイッチ(切替部)17とを備えていて、切替スイッチ17によって4つのアーム6a,6b,6c,6dの内のいずれか1つまたは2つのアーム、例えば、第2アーム6bおよび第3アーム6cを選択して、ハンドル15,16の操作により選択されたアーム6b,6cを動作させることができるようになっている。
切替スイッチ17により選択されたアーム6b,6cが操作対象となり、選択されなかったアーム6a,6dは非操作対象となる。
操作者はモニタ13上に表示された患者Oの体内の画像において、患部とアーム6b,6cに取り付けられた処置具10の先端部とを見ながら操作入力部14を操作してアーム6b,6cおよび処置具10を動作させ患部を処置することができるようになっている。
操作者はモニタ13上に表示された患者Oの体内の画像において、患部とアーム6b,6cに取り付けられた処置具10の先端部とを見ながら操作入力部14を操作してアーム6b,6cおよび処置具10を動作させ患部を処置することができるようになっている。
制御部5は、操作入力部14のハンドル操作により入力された操作指令に基づいて、操作対象となっているアーム6b,6cの各関節の目標角度(動作目標位置)を演算する位置・姿勢演算部18と、該位置・姿勢演算部18により演算された各関節の目標角度に基づいて、操作対象となっていないアーム6a,6dとの干渉を予測する干渉予測部19と、該干渉予測部19による予測結果に基づいて、操作対象となっていないアーム6a,6dを動作させる駆動指令生成部20とを備えている。
位置・姿勢演算部18は、操作対象となっているアーム6b,6cの冗長な自由度を構成する関節を除く6軸の関節群8b,8cによって、操作入力部14により入力された操作指令通りのエンドエフェクタ10の位置および姿勢を達成する場合の各関節の目標角度を演算するようになっている。これにより、操作指令に対応するアーム6b,6cの各関節の角度は一義的に決定されるので、少ない演算量で目標角度を演算することができる。
また、干渉予測部19は、位置・姿勢演算部18により演算された操作対象となっているアーム6b,6cの各関節の目標角度と、操作対象となっていないアーム6a,6dの現在の各関節の角度とに基づいて、アーム6a,6b,6c,6dの機構部どうしの干渉の有無を予測するようになっている。機構部の寸法等は予め定まっているので、各関節の角度を決定することにより、アーム6a,6b,6c,6dの機構部どうしの干渉の有無を容易に予測することができる。
干渉予測部19により、干渉することが予測された場合には、操作対象となっているアーム6b,6cの各関節を目標角度に動作させるとともに、操作対象となっていないアーム6a,6dを動作させるようになっている。
具体的には、干渉予測部19は、干渉することが予測された場合には、その旨の信号を駆動指令生成部20に送るようになっている。
具体的には、干渉予測部19は、干渉することが予測された場合には、その旨の信号を駆動指令生成部20に送るようになっている。
駆動指令生成部20は、操作対象となっているアーム6b,6cについては、位置・姿勢演算部18において演算された各関節の目標角度に基づいて、各関節を駆動するための駆動指令信号を生成し、駆動部11に送るようになっている。また、駆動指令生成部20は、干渉予測部19から干渉する旨の信号が送られてきたときには、操作対象となっていないアーム6a,6dに取り付けられている処置具10または内視鏡9の位置および姿勢を保持したまま、当該操作対象となっていないアーム6a,6dを操作対象となっているアーム6b,6cから離間させる方向に移動させるよう、各関節の動作指令信号を生成するようになっている。
すなわち、操作対象となっていないアーム6a,6dは、冗長な自由度を構成する関節を含めた関節群8a,8dにより、先端軸の位置および姿勢を維持したまま、先端軸よりも基端側に配置されている1以上の関節を動作させて、操作対象となっているアーム6b,6cと干渉しない位置まで離れる方向に動作するような駆動指令信号を生成し、駆動部11に送るようになっている。
各アーム6a,6b,6c,6dを構成している各関節の角度については、センサ12により検出されて、位置・姿勢演算部18にフィードバックされるようになっている。
各アーム6a,6b,6c,6dを構成している各関節の角度については、センサ12により検出されて、位置・姿勢演算部18にフィードバックされるようになっている。
このように構成された本実施形態に係る医療システム1の制御方法について、以下に説明する。
本実施形態に係る医療システム1の制御方法においては、図3に示されるように、操作入力部14の切替スイッチ17によっていずれか1つまたは2つのアーム6b,6cが操作対象に設定され(ステップS1)、操作入力部14の右ハンドル16または左ハンドル15により操作指令が入力されたか否かが判定される(ステップS2)。
本実施形態に係る医療システム1の制御方法においては、図3に示されるように、操作入力部14の切替スイッチ17によっていずれか1つまたは2つのアーム6b,6cが操作対象に設定され(ステップS1)、操作入力部14の右ハンドル16または左ハンドル15により操作指令が入力されたか否かが判定される(ステップS2)。
操作指令が入力された場合には、入力されたハンドル15,16に対応して操作対象に設定されているアーム6b,6cを構成している各関節の目標角度が算出される(ステップS3)。この場合には、操作対象となっているアーム6b,6cにおいては、ハンドル15,16から入力された操作指令に対応するエンドエフェクタ10の位置および姿勢を達成し得る最小限の数の関節の目標角度が算出される。
操作対象となっているアーム6b,6cの各関節の目標角度が算出されると、操作対象となっていないアーム6a,6dとの干渉の有無の予測演算が行われる(予測ステップS4)。
予測ステップS4による予測の結果が判定され(ステップS5)、干渉するとの予測がなされた場合には、操作対象となっていないアーム6a,6dにより、干渉を回避し得る各関節の駆動指令信号が、駆動指令生成部20において生成される(干渉回避動作ステップS6)とともに、操作対象となっているアーム6b,6cの演算された目標角度を達成するための駆動指令信号が駆動指令生成部20において生成される(ステップS7)。そして、生成された駆動指令信号に基づいて駆動部11が駆動される(ステップS8)。
予測ステップS4による予測の結果が判定され(ステップS5)、干渉するとの予測がなされた場合には、操作対象となっていないアーム6a,6dにより、干渉を回避し得る各関節の駆動指令信号が、駆動指令生成部20において生成される(干渉回避動作ステップS6)とともに、操作対象となっているアーム6b,6cの演算された目標角度を達成するための駆動指令信号が駆動指令生成部20において生成される(ステップS7)。そして、生成された駆動指令信号に基づいて駆動部11が駆動される(ステップS8)。
操作対象となっていないアーム6a,6dの駆動指令信号は、先端のエンドエフェクタ9,10の位置および姿勢を維持したまま基端側の1以上の関節の位置のみを移動させるように、重畳な自由度を有する関節群8a,8dを動作させるように生成される。
このように、本実施形態に係る医療システム1とその制御方法によれば、操作対象に設定されていて操作入力部14の右ハンドル16および左ハンドル15の操作に従ってリアルタイムに動作させられるアーム6b,6cについては、冗長な自由度を構成している関節を含まない必要最小限の数の関節群8b,8cを動作させるので、演算負荷は極めて小さく、高性能の計算機を用いることなく、安定した操作を行うことができるという利点がある。
また、干渉が発生することが予測された場合には、操作対象となっているアーム6b,6cではなく、操作対象となっていないアーム6a,6dの冗長な自由度を有する関節群8a,8dを利用して干渉回避動作を行わせるので、リアルタイムに操作している操作対象となっているアーム6b,6cを動作させるための演算負荷を増大させることなく、操作していないアーム6a,6dを動作させるための最小限の演算によって干渉を回避することができるという利点がある。
上記においては、第2アーム6bおよび第3アーム6cを操作対象とし、第1アーム6aおよび第4アーム6dを操作対象としない場合を例示したが、例えば、内視鏡9を支持している第1アーム6aを操作対象として操作し、他の3つのアーム6b,6c,6dを操作対象としていない場合には、操作入力部14から入力された操作指令に基づいて、第1アーム6aの各関節の目標角度が演算され、他の3つのアーム6b,6c,6dの現在の各関節の角度とともに、アーム6a,6b,6c,6d間での干渉の有無が予測される。
干渉が発生すると予測された場合には、第1アーム6a以外のアーム6b,6c,6dによる干渉回避動作が行われ、第1アーム6aは、干渉回避動作を行わずに必要最小限の関節のみを動作させて内視鏡9を所望の位置に配置する。これにより、内視鏡9による視野を滑らかに変化させて患部まで到達させることができる。
一方、処置具10を支持している第2アーム6bおよび第3アーム6cが操作対象として選択され、第1アーム6aおよび第4アーム6dが操作対象とされていない場合には、左ハンドル15および右ハンドル16の操作により入力された操作指令に従って第2アーム6bおよび第3アーム6cが動作させられる。この動作も、冗長な自由度を構成する関節を使用せず、必要最小限の関節を動作させるので、演算負荷が低く、安定した滑らかな動作となる。
そして、内視鏡9を支持している第1アーム6aとの干渉が予測された場合には、第1アーム6aを動作させることにより、第2アーム6bおよび第3アーム6cの動作のための演算負荷を増大させずに干渉回避することができる。さらに、第1アーム6aは、冗長な自由度を有する関節群8aを利用して動作させられることにより、内視鏡9の位置および姿勢を保持したまま、すなわち、モニタ13に表示されている内視鏡画像の画角を変動させずに済む。
さらに、操作対象としていた第2アーム6bまたは第3アーム6cのいずれかを操作対象から外し、第4アーム6dを操作対象に切り替えることにより、第4アーム6dを動作させて、先端の処置具10により患部を把持する位置を変更する等の処置を行う場合にも、第4アーム6dの操作における演算負荷を増大させることなく安定して動作させることができる。そして、第1アーム6aとの干渉が予測された場合にも、第1アーム6aにより回避動作を行わせて、画角の変動しない内視鏡画像内において第4アーム6dに取り付けた処置具10を滑らかに移動させて処置を行うことができる。
なお、本実施形態においては、4つのアーム6a,6b,6c,6dを有する場合について例示したが、2以上のアームであれば任意の数のアームを備えていてもよい。また、各アーム6a,6b,6c,6dの自由度も7軸以上であれば任意でよい。
また、本実施形態においては、操作対象となっていないアーム6a,6dのみによって干渉回避の動作を行わせることとしたが、操作対象となっていないアーム6a,6dのみによるのでは干渉が回避できない場合には、操作対象となっているアーム6b,6cの動作を制限ないし停止させることにしてもよい。あるいは、この場合に限って、操作対象となっているアーム6b,6cについても冗長な自由度を構成する関節を含めた関節群8b,8cによって干渉回避の動作を行わせることにしてもよい。
1 医療システム
4 操作部
5 制御部
6a 第1アーム(アーム)
6b 第2アーム(アーム)
6c 第3アーム(アーム)
6d 第4アーム(アーム)
8a,8b,8c,8d 関節群
9 内視鏡(撮像装置、エンドエフェクタ)
10 処置具(エンドエフェクタ)
17 切替部(切替スイッチ)
19 干渉予測部
S4 予測ステップ
S6 干渉回避動作ステップ
4 操作部
5 制御部
6a 第1アーム(アーム)
6b 第2アーム(アーム)
6c 第3アーム(アーム)
6d 第4アーム(アーム)
8a,8b,8c,8d 関節群
9 内視鏡(撮像装置、エンドエフェクタ)
10 処置具(エンドエフェクタ)
17 切替部(切替スイッチ)
19 干渉予測部
S4 予測ステップ
S6 干渉回避動作ステップ
Claims (5)
- 冗長な自由度を有する関節群を備え、先端に取り付けたエンドエフェクタを移動させる複数のアームと、
該アームを操作するための操作指令を入力する操作部と、
該操作部に入力された前記操作指令に基づいて前記アームを制御する制御部とを備え、
該制御部が、前記操作部に入力された前記操作指令に基づいて操作対象となっている前記アームと操作対象となっていない他の前記アームとの干渉を予測する干渉予測部を備え、該干渉予測部により干渉が発生すると予測された場合に、操作対象となっていない他の前記アームを操作対象となっている前記アームから離間させる方向に動作させる医療システム。 - 前記干渉予測部が、前記操作部に入力された前記操作指令に基づいて、操作対象となっている前記アームの動作目標位置を算出し、算出された動作目標位置と操作対象となっていない他の前記アームの現在位置とから干渉を予測する請求項1に記載の医療システム。
- いずれかの前記アームに取り付けられた前記エンドエフェクタが患部を処置するための処置具であり、
他の前記アームに取り付けられた前記エンドエフェクタが、前記患部および前記処置具を撮影するための撮像装置である請求項1または請求項2に記載の医療システム。 - 操作対象となっている前記アームと、操作対象となっていない他の前記アームとを切り替える切替部を備える請求項1から請求項3のいずれかに記載の医療システム。
- 冗長な自由度を有する関節群を備え、先端に取り付けたエンドエフェクタを移動させる複数のアームの内、操作対象としたいずれかの前記アームを動作させるための操作指令に基づいて、操作対象となっている前記アームと、操作対象となっていない他の前記アームとの干渉を予測する予測ステップと、
該予測ステップにおいて干渉が発生すると予測された場合に、操作対象となっていない他の前記アームを操作対象となっている前記アームから離間させる方向に動作させる干渉回避動作ステップとを含む医療システムの制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/069377 WO2018003049A1 (ja) | 2016-06-30 | 2016-06-30 | 医療システムとその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/069377 WO2018003049A1 (ja) | 2016-06-30 | 2016-06-30 | 医療システムとその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003049A1 true WO2018003049A1 (ja) | 2018-01-04 |
Family
ID=60786260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069377 WO2018003049A1 (ja) | 2016-06-30 | 2016-06-30 | 医療システムとその制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018003049A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010516398A (ja) * | 2007-01-26 | 2010-05-20 | インテュイティブ サージカル インコーポレイテッド | ロボット外科手術システムのための小型のカウンタバランス |
JP2011206312A (ja) * | 2010-03-30 | 2011-10-20 | Terumo Corp | 医療用ロボットシステム |
-
2016
- 2016-06-30 WO PCT/JP2016/069377 patent/WO2018003049A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010516398A (ja) * | 2007-01-26 | 2010-05-20 | インテュイティブ サージカル インコーポレイテッド | ロボット外科手術システムのための小型のカウンタバランス |
JP2011206312A (ja) * | 2010-03-30 | 2011-10-20 | Terumo Corp | 医療用ロボットシステム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8818560B2 (en) | Master-slave manipulator | |
JP5744455B2 (ja) | マスタ・スレーブ方式マニピュレータの制御装置及びその制御方法 | |
JP6739544B2 (ja) | 医療システムとその制御方法 | |
KR102079945B1 (ko) | 수술 로봇 및 수술 로봇 제어 방법 | |
KR102252641B1 (ko) | 모드 전환 시의 진동을 감쇠시키기 위한 명령 성형 | |
US9532839B2 (en) | Surgical robot system and method of controlling the same | |
JP6010225B2 (ja) | 医療用マニピュレータ | |
JP2020532383A (ja) | 手術ロボットシステムのためのカメラ制御 | |
JP2021502173A (ja) | ロボットマニピュレータ又は関連ツールを制御するためのシステム及び方法 | |
JP6117922B2 (ja) | 医療用マニピュレータおよびその作動方法 | |
JP2016516487A5 (ja) | ||
CN113286682B (zh) | 减少伺服控制中的能量累积 | |
JP2015024035A (ja) | 医療用システムおよびその制御方法 | |
US11880513B2 (en) | System and method for motion mode management | |
US20230064265A1 (en) | Moveable display system | |
JP7552991B2 (ja) | トラック上の移動可能なディスプレイユニット | |
WO2022046787A1 (en) | Method and system for coordinated multiple-tool movement using a drivable assembly | |
WO2018003049A1 (ja) | 医療システムとその制御方法 | |
US20240208055A1 (en) | Techniques for constraining motion of a drivable assembly | |
US20250147599A1 (en) | System and method for motion mode management | |
WO2025024508A1 (en) | View-based motion of imaging instruments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16907282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16907282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |