+

WO2018002993A1 - Wireless communication system, wireless terminal, base station, control device, and wireless communication method - Google Patents

Wireless communication system, wireless terminal, base station, control device, and wireless communication method Download PDF

Info

Publication number
WO2018002993A1
WO2018002993A1 PCT/JP2016/069028 JP2016069028W WO2018002993A1 WO 2018002993 A1 WO2018002993 A1 WO 2018002993A1 JP 2016069028 W JP2016069028 W JP 2016069028W WO 2018002993 A1 WO2018002993 A1 WO 2018002993A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
identification information
communication
wireless
terminal
Prior art date
Application number
PCT/JP2016/069028
Other languages
French (fr)
Japanese (ja)
Inventor
大出 高義
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/069028 priority Critical patent/WO2018002993A1/en
Publication of WO2018002993A1 publication Critical patent/WO2018002993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/08Interfaces between hierarchically different network devices between user and terminal device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a wireless communication system, a wireless terminal, a base station, a control device, and a wireless communication method.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • 3GPP 3rd Generation Partnership Project
  • EPC Evolved Packet Core
  • information indicating a relationship between a wireless terminal and a base station for setting a return communication path may not be acquired, and it may be difficult to realize return communication.
  • an object of the present invention is to facilitate realization of inter-terminal communication via a base station that does not pass through a host network.
  • the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. It can be positioned as one of
  • the wireless communication system may include first and second wireless terminals and a control device.
  • the first and second wireless terminals transmit base station identification information capable of identifying the base station to the upper network via the base station when performing location registration with respect to the upper network.
  • the control apparatus may receive the first base station identification information transmitted from the first wireless terminal and the second base station identification information transmitted from the second wireless terminal. Further, the control device controls inter-terminal communication between the first and second wireless terminals to communication via the base station that does not pass through the upper network based on the received base station identification information. Good.
  • UE User ⁇ ⁇ Equipment
  • FIG. 6 is a flowchart for explaining an operation example of the wireless communication system according to the second embodiment. It is a figure which shows the structural example of the radio
  • wireless communications system which concerns on 3rd Embodiment. 10 is a flowchart for explaining an operation example of the wireless communication system according to the third embodiment. It is a figure which shows the example of a structure of some internet protocol (IP) packet headers. It is a block diagram which shows the function structural example of a radio
  • IP internet protocol
  • MME Mobility * Management * Entity
  • SGW Serving SerGateway
  • PDN Packet * Data * Network
  • wireless terminal It is a block diagram which shows the hardware structural example of a base station. It is a block diagram which shows the hardware structural example of a processing apparatus. It is a
  • the same reference numerals denote the same or similar parts unless otherwise specified. Further, in the following description, when a plurality of devices are not distinguished, the numerals after the hyphen “-” may be omitted. As an example, the wireless terminals 110-1 and 110-2 shown in FIG.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system 100 according to a first embodiment.
  • the wireless communication system 100 according to the first embodiment exemplarily includes a plurality (two in the example of FIG. 1) of wireless terminals 110-1 and 110-2, a base station 120, and A control device 130 may be provided. Three or more wireless terminals 110 may exist in the wireless communication system 100.
  • Wireless terminals 110-1 and 110-2 are examples of first and second wireless terminals, respectively. As illustrated in FIG. 2, each of the wireless terminals 110-1 and 110-2, when performing location registration with respect to the upper network 140, provides base station identification information that can identify the connected base station 120, The data is transmitted to the upper network 140 via the base station 120. The location registration may be performed in a procedure for setting up a radio line with the connection destination base station 120.
  • the base station identification information is an example of information indicating the relationship between the wireless terminal 110 and the base station 120 for setting a return communication path to be described later, for example, an identifier (ID).
  • ID identifier
  • An example of the upper network 140 is a packet core network in LTE.
  • the procedure for setting the “wireless line” may include, for example, a procedure or process for enabling data (for example, user data) communication between the wireless terminal 110 and the base station 120.
  • a procedure for setting up a wireless line is as follows.
  • the wireless terminal 110 starts communication (for example, makes a call), establishes a bearer or a communication path in the base station 120 and the upper network 140, and connects the wireless terminal 110 and the base station 120.
  • a procedure for establishing a wireless data line between the two may be included.
  • the procedure may be excluded from the procedure for setting a wireless line.
  • the “communication start” by the wireless terminal 110 may include, for example, transmitting an RA Preamble (random access preamble) in a Random Access (RA) Procedure (random access procedure) to the base station 120.
  • RA Random Access
  • the location registration may be performed for the wireless terminal 110 to start communication, but may be performed as the wireless terminal 110 moves. In the latter case, after performing location registration, the wireless terminal 110 may disconnect from the base station 120 (for example, stop communication) and shift to a standby state. Thus, the location registration does not necessarily have to be based on communication between the wireless terminal 110 and the base station 120.
  • the control device 130 receives the first base station identification information transmitted from the wireless terminal 110-1 and the second base station identification information transmitted from the wireless terminal 110-2. Further, the control device 130 controls inter-terminal communication between the radio terminals 110-1 and 110-2 to communication via the base station 120 that does not pass through the upper network 140 based on the received base station identification information.
  • communication via the base station 120 that does not pass through the upper network 140 may be referred to as loopback communication.
  • a route through the base station 120 that does not pass through the upper network 140 in return communication may be referred to as a return route.
  • the upper network 140 may process location registration from the wireless terminal 110.
  • control device 130 is shown as one device included in the upper network 140, but the present invention is not limited to this, and the control device 130 includes two or more devices included in the upper network 140. It may be realized by. Alternatively, the control device 130 may be realized by one or more devices including the base station 120.
  • the base station identification information related to the connection destination base station 120 is transmitted from the wireless terminal 110 to the upper network 140.
  • the control device 130 receives each base station identification information, and controls inter-terminal communication to communication via the base station 120 without passing through the upper network 140 based on the received base station identification information.
  • control device 130 can efficiently acquire the relationship between the wireless terminal 110 and the base station 120 for setting the return communication path, and can efficiently control the return communication. As a result, it is possible to facilitate the inter-terminal communication via the base station 120 without passing through the upper network 140.
  • the loopback communication it is possible to reduce the traffic flow rate of the upper network 140 in the wireless communication system 100, for example, the packet core network, and to reduce the transmission delay time of the communication between terminals as compared with the case of passing through the upper network 140. Can be shortened.
  • FIG. 3 is a block diagram illustrating a configuration example of the wireless communication system 200 according to the second embodiment.
  • the radio communication system 200 may exemplarily include a plurality (two in the example of FIG. 3) UEs 210-1 and 210-2, eNB 220, MME 230, SGW 240, and PGW 250.
  • UE is an abbreviation for User Equipment
  • eNB is an abbreviation for Evolved Node B
  • MME is an abbreviation for Mobility Management Entity
  • SGW is an abbreviation for Serving Gateway
  • PGW Packet ⁇ Data Network (PDN) Gateway.
  • PDN Packet ⁇ Data Network
  • three or more UEs 210 may exist in the radio communication system 200
  • two or more eNBs 220 may exist in the radio communication system 200
  • two or more MMEs 230 may exist in the radio communication system 200
  • two or more SGWs 240 may exist in the wireless communication system 200
  • two or more PGWs 250 may exist in the wireless communication system 200.
  • the radio communication system 200 performs radio communication according to a predetermined radio communication scheme between the eNB 220 and the UE 210.
  • the wireless communication method may be a wireless communication method of the fifth generation or later, or may be an existing wireless communication method such as LTE / LTE-A or Worldwide Interoperability for Microwave Access (WiMAX).
  • the UE 210 and eNB 220 may be included in radio access network 270 in which radio communication is performed.
  • the radio access network 270 may be a radio area provided by one or more eNBs 220, for example.
  • the radio area may be formed in accordance with a range in which radio waves transmitted by the eNB 220 can be received with required quality (a range in which the required radio channel quality can be satisfied, which may be referred to as coverage). Further, the radio area formed by the eNB 220 may be referred to as a cell or a sector.
  • the MME 230, the SGW 240, and the PGW 250 may form a packet core network 280 in which packet communication is performed.
  • the packet core network 280 is an example of an upper network.
  • the packet core network 280 is a communication network that does not include the eNB 220, and is positioned as a communication network higher than the eNB 220, for example.
  • An example of the packet core network 280 is EPC.
  • the wireless communication system 200 communication between the UEs 210 via the first route including the packet core network 280 is possible.
  • the first route is a route that passes through the eNB 220 and the packet core network 280, for example.
  • communication between the UEs 210 via the second route that does not include the packet core network 280 is also possible.
  • the second route is a route through eNB 220 that does not go through packet core network 280, for example.
  • return communication inter-terminal communication between the UEs 210 on the second route may be referred to as “return communication”.
  • UE 210 is an example of a wireless terminal.
  • a wireless terminal for example, a mobile station or user terminal having a wireless communication function, such as a mobile phone such as a smartphone, a mobile personal computer (PC) such as a laptop, a data communication device such as a mobile router, etc. Is mentioned.
  • the mobile station may be attached to a moving body such as a vehicle and move.
  • the UE 210 may be a device such as a sensor (including an Integrated Circuit (IC) chip) having a wireless communication function.
  • IC Integrated Circuit
  • Each of the UEs 210-1 and 210-2 can communicate with the packet core network 280 and the network 260 via the eNB 220 by performing wireless communication with the eNB 220. Further, the UEs 210-1 and 210-2 can communicate with each other via the eNB 220.
  • ENB 220 is an example of a base station.
  • the base station include a macro base station, a micro base station, a femto base station, a pico base station, a metro base station, a home base station, or a radio signal transmitting / receiving apparatus connected to a C-RAN (Centralized-RAN).
  • RAN is an abbreviation for Radio
  • the radio area formed by the base station may be a cell or a sector.
  • the cell may include a cell such as a macro cell, a micro cell, a femto cell, a pico cell, a metro cell, or a home cell.
  • ENB220 relays communication between UE210 by performing radio
  • the radio communication may be performed using radio resources allocated from the eNB 220 to the UE 210.
  • the radio resource may be a resource related to time and frequency.
  • the eNB 220 may be connected to the MME 230 via, for example, an S1 interface.
  • the eNB 220 can perform processing related to loopback communication between the UEs 210. In addition, eNB220 may perform the process regarding the near field communication service between UE210. The return communication and the proximity communication service will be described later.
  • the MME 230 accommodates the eNB 220 and performs the process of Control Plane (C-plane) for network control.
  • the MME 230 may process and manage location registration related to the geographical location of the UE 210. Further, the MME 230 may control the return communication and the near field communication service.
  • the SGW 240 and the PGW 250 are examples of gateways in the packet core network 280.
  • the SGW 240 processes User Plane (U-plane) data (user data).
  • the PGW 250 may be connected to an external network 260 and may function as a gateway between a device in the wireless communication system 200 such as the UE 210 and the external network 260.
  • the network 260 may be a packet data network such as the Internet or a corporate intranet.
  • loopback communication performed in the wireless communication system 200 will be described.
  • loopback communication within the eNB 220 may be performed in order to reduce the traffic flow rate of the packet core network 280.
  • An example of the loopback communication is Enhancements for Infrastructure-based Data Communication between Devices (eICBD).
  • the control of the loopback communication may be performed by one of the MME 230 and the eNB 220 or may be performed by both the MME 230 and the eNB 220 as described later.
  • UEs 210-1 and 210-3 located in the radio area of the eNB 220 can communicate with each other via a loopback path in the eNB 220 and not via the packet core network 280. is there.
  • the loopback communication can reduce the traffic flow of the core network including the packet core network 280 in the wireless communication system 200, for example, the MME 230, and the transmission delay time between the UEs 210 can be shortened compared with the packet core network 280.
  • loopback communication may be performed between any two or more combinations of UEs 210-1 to 210-3.
  • loopback communication via a plurality of eNBs 220 may be performed.
  • the UE 210-4 may not be located in the radio area of the eNB 220 but may be located in the radio area of another eNB 220, for example.
  • return communication may be performed between at least one of the UEs 210-1 to 210-3 and the UE 210-4 through a route that passes through the eNB 220 connected to each of the UEs 210-4.
  • an X2 interface may be used as a route between the plurality of eNBs 220.
  • the X2 interface is an example of a communication interface between base stations.
  • the X2 interface may be a network different from the host network (for example, the packet core network 280).
  • the near field communication service is a service that enables direct communication between the UEs 210.
  • Proximity Service ProSe
  • 3GPP 3rd Generation Partnership Project
  • the control of the near field communication service may be performed by one of the MME 230 and the eNB 220, or may be performed by both the MME 230 and the eNB 220.
  • the control of the proximity communication service may be performed by a communication device such as a ProSe Function (ProSe Func) device that provides the proximity communication service instead of the MME 230.
  • the ProSe Func device may be included in the packet core network 280, for example.
  • the UEs 210-1 and 210-2 located in the radio area of the eNB 220 can communicate with each other under the control of the eNB 220.
  • the UE 210-3 located within the radio area of the eNB 220 and the UE 210-4 located outside the radio area of the eNB 220 can communicate with each other under the control of the eNB 220 connected to the UE 210-3.
  • the near field communication service can also reduce the traffic flow rate of the packet core network 280 in the wireless communication system 200, and the transmission delay time between the UEs 210 can be shortened compared with the case of passing through the packet core network 280.
  • the UE 210 can notify the MME 230 of information on the area where the UE 210 is located via the eNB 220, and can register the area in the MME 230.
  • notification means that a signal including information to be notified is transmitted from the transmission source to the transmission destination, and the signal is received at the transmission destination (or the information to be notified is further recognized at the transmission destination. ) May be used as a term meaning.
  • the signal including the information to be notified may include any signal form of a radio signal, an optical signal, and an electric signal, and may be converted into another signal form in the process of “notification”.
  • a signal including information to be notified may be referred to as a control signal.
  • the notification may be referred to as signaling.
  • the area information notified by the UE 210 to the MME 230 is an example of location registration information that is transmitted when the UE 210 performs location registration with respect to the packet core network 280.
  • the location registration information of the UE 210 registered in the MME 230 may be used in the MME 230 in controlling an incoming call to the UE 210.
  • the location registration information is transmitted from the UE 210 to the MME 230 using, for example, the Non-Access Stratum (NAS; non-access layer) protocol, so the eNB 220 does not recognize the content of the location registration information.
  • NAS Non-Access Stratum
  • TA identity indicating a location registration area (Tracking Area) (TA)
  • the TAI may include Public Land Mobile Mobile Network Identifier (PLMN ID) and Tracking Area Code (TAC).
  • PLMN ID is an example of an ID for each carrier, and may include a Mobile Country Code (MCC) number representing a country code and a Mobile Network Code (MNC) number representing a carrier code.
  • MCC Mobile Country Code
  • MNC Mobile Network Code
  • the eNB 220 may belong to a plurality of MMEs 230 by a mechanism such as S1-Flex.
  • the eNB 220-1 indicated by eNB # 1 is controlled by the MME 230-a and MME 230-x indicated by MME # a and MME # x, respectively.
  • the eNB 220-n indicated by eNB # n is also controlled by MME # a and MME # x.
  • a pool area (Pool Area) 290 that is mesh-connected (for example, full mesh connection) between the MME 230 and the eNB 220 may be formed.
  • a plurality of TAs 292 may be configured.
  • TA # 1-1, TA # 1-2, and TA292-1 to 292-3 respectively indicated by TA # 1-1, TA # 1-2, and TA # 1-3 are included in the pool area 290 indicated by Pool Area # 1. It is.
  • eNB # 1 is configured as TA # 1-1 and eNB # n is configured as TA1-3.
  • One TA 292 may be configured.
  • the TA292 area can be changed for the purpose of reducing the congestion of the network such as the packet core network 280 or between the MME 230 and the eNB 220.
  • the MME 230 can manage a plurality of TAs 292.
  • the eNB 220 can select the MME 230 in the pool area 290 by the identification information of the MME 230, for example, the MME code.
  • one TA 292 may be configured by a plurality of eNBs 220, and the area of the TA 292 may change. Therefore, it may be difficult for the MME 230 to identify the eNB 220 to which the UE 210 is connected based on the TA 292 (or TAI) notified from the UE 210.
  • the wireless communication system 200 identifies the return eNB 220 as a connection destination of the UE 210 as described below. Enabling efficient control of In other words, it is possible to facilitate the inter-terminal communication via the eNB 220 not via the packet core network 280.
  • the eNB identification information may be, for example, identification information of a radio area provided by the eNB 220, or identification information unique to the eNB 220. A combination of these may be used.
  • identification information unique to eNB 220 may be used as eNB identification information.
  • identification information of the wireless area provided by the eNB 220 for example, a Cell Global Identifier (CGI) or a Cell Identifier (cell ID) may be mentioned.
  • Examples of identification information unique to the eNB 220 include Base Station Identifier Code (BSIC).
  • the CGI is defined by 3GPP TS23.003, TS36.331, TS36.413, and the like, for example.
  • BSIC is defined by, for example, 3GPP TS 23.003.
  • CGI is defined as “CellGlobalIdEUTRA IE” in section 6.3.4 of TS36.331 V13.1.0 (2016-03).
  • the LTE CGI may be composed of a PLMN ID, which is a network ID, and a cell ID.
  • the cell ID may be unique within the network configured by the operator, that is, the cell can be identified.
  • SIB1 SystemInformationBlockType1
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • PBCH Physical Broadcast Channel
  • the CGI may be substantially notified to the UE 210 by the eNB 220 notifying the UE 210 of the SIB1.
  • SIB1 may include information used for cell selection by UE 210.
  • the UE 210 may receive SIB1 before receiving SIB5 that is information necessary for cell selection.
  • the UE 210 can know the transmission timing of SIB5 by receiving SIB1 (process C1) and receiving SIB2 (process C2). Further, the UE 210 can receive, for example, a synchronization signal / pilot (process C3) and SIB5. The UE 210 receives the SIB5 to know the parameters used for cell selection, and enables cell selection (processing C4).
  • SIB2 and SIB5 may be transmitted using a shared radio channel. In other wireless communication systems, for example, SIBs after SIB2 may be transmitted on a radio broadcast channel or a DL-SCH that is a transport channel of SDSCH.
  • SIB5 includes parameters for performing cell selection. After performing synchronization using the synchronization signal or / and the pilot, the UE 210 receives the pilot and measures the pilot reception power and the pilot reception quality, thereby enabling cell selection.
  • RSRP RS Received Power
  • RSRQ RS Received Quality
  • the UE 210 can transmit and perform location registration by performing the random access procedure and the RRC connection process (process C5) (process C6).
  • the location registration may be performed after the cell selection by the UE 210, and the CGI may be notified to the UE 210 before the location registration is performed.
  • the UE 210 may disconnect the line (line disconnection), enter a standby state, or continue communication as it is.
  • LTE and 3GPP assume a configuration in which one eNB 220 provides one cell. For this reason, cell ID can be recognized as base station ID. On the other hand, for example, even in the same communication area (for example, a wireless area), different cells become different if the frequency is different. Thus, in an actual base station, it is also possible for one base station to configure a plurality of cells having different frequencies. Also, one base station can constitute a plurality of sectors (cells in LTE) having different communication areas.
  • the wireless communication system 200 it is possible to perform the loopback communication within the same base station even if the cells are different. Thereby, the transmission delay which arises by communication via a high-order apparatus, for example, MME230, can be eliminated.
  • eNB identification information for identifying base stations capable of configuring a plurality of cells may be used, such as identification information unique to the eNB 220 such as BSIC.
  • BSIC is defined as “PhysCellIdGERAN IE” in section 6.3.4 of TS36.331 V13.1.0 (2016-03).
  • BSIC is a base station identifier defined by a GERAN, that is, a GSM (registered trademark) system, which is composed of a 3-bit “NetworkColourCode” and a 3-bit “BaseStationColourCode”.
  • GSM registered trademark
  • GERAN is an abbreviation for GSM-EDGE-Radio-Access-Network
  • GSM Global-System-for-Mobile-Communications.
  • EDGE is an abbreviation for Enhanced Data Data rates for GSM Evolution.
  • an LTE base station notifies a wireless terminal of BSIC, for example, “MeasObjectGERANIE”, etc., in order to enable wireless channel quality measurement.
  • BSIC performs, for example, random access, establishes a radio link between the base station and the radio terminal, and further links (links between the radio terminal and the communication partner device or lines between the base station and the host device).
  • Etc. (hereinafter collectively referred to as a link) may be notified from the base station to the wireless terminal as part of the control information related to the measurement notified after the establishment.
  • the BSIC is identification information of a base station of the GSM system, but may be used as LTE eNB identification information.
  • the eNB identification information is CGI.
  • the process (a) may be performed, for example, at a timing such as after activation of each UE 210 or before the start of communication.
  • the process (a) may be performed when the communication between the UE 210 and the eNB 220 is disconnected and the UE 210 is on standby.
  • the eNB identification information may be included in a location registration request transmitted to the packet core network 280.
  • An example of the location registration request is ATTACH REQUEST described in section 5.5.1 of TS24.301.
  • the ATTACH REQUEST transmitted from the UE 210 to the MME 230 via the eNB 220 may include a TAI as an example of location registration information and a CGI as an example of eNB identification information (processing A1). .
  • the ATTACH ACCEPT may be returned from the eNB 220 to the UE 210 in response to the ATTACH REQUEST (processing A2).
  • ATTACH is performed, for example, when the wireless terminal enters a new location registration area, for example, TA, or when the timer expires (for example, when the location registration cycle ends).
  • the TAI is notified from the wireless terminal to a higher-level device of the base station, such as an MME or a location management server.
  • the location registration request may be made by an existing control signal different from ATTACH REQUEST or a newly defined control signal.
  • the eNB identification information is transmitted after the request for location registration to be transmitted to the packet core network 280 and before the line is set up between the eNB 220 and the packet core network 280. May be.
  • the line setting may be a procedure for the UE 210 to receive a service, for example, bearer setting.
  • ATTACH REQUEST including TAI as an example of location registration information is transmitted from the UE 210 to the MME 230 via the eNB 220 (processing B1). Moreover, ATTACH ACCEPT is responded from eNB220 to UE210 with respect to ATTACH REQUEST (process B2). Next, a control signal including CGI as an example of eNB identification information is transmitted from the UE 210 to the MME 230 via the eNB 220 (process B3). Note that the process B2 and the process B3 may be reversed. Then, line setting is performed between the UE 210, the eNB 220, and the MME 230 (which may include other devices of the packet core network 280) (process B4).
  • the eNB identification information may be notified from the UE 210 to the MME 230 by the control signal after the notification of the location registration information and before the line setting.
  • the control signal including the eNB identification information may be an existing control signal or a newly defined control signal.
  • the eNB identification information is notified to the MME 230 at least before line setting (for example, bearer setting) related to the UE 210 is performed.
  • line setting for example, bearer setting
  • the line setting may include charging in the packet core network 280 and control such as Quality of Service (QoS).
  • QoS Quality of Service
  • the eNB identification information used for the determination of the return communication is notified to the MME 230 before the bearer setting. Therefore, when the return communication is possible, the user packet does not pass through the packet core network 280, and therefore part or all of the bearer setting, for example, at least control such as charging is not required.
  • the processing becomes simpler than the bearer setting including control such as charging, so that the loopback communication can be controlled at an early timing.
  • inter-terminal communication of UE 210 can be set as a return path in eNB 220 from the initial communication, and the transmission delay time of inter-terminal communication can be shortened.
  • PCC Policy Charging Control
  • QoS corresponds to a policy of PCC.
  • the PCC may be composed of three entities: Policy and Charging Rules Function (PCRF), Policy and Charging Enforcement Function (PCEF), and Bearer Binding and Event Reporting Function (BBERF).
  • PCRF Policy and Charging Rules Function
  • PCEF Policy and Charging Enforcement Function
  • BBERF Bearer Binding and Event Reporting Function
  • the PCEF may be provided in the PGW 250 and the BBERF may be provided in the SGW 240.
  • the PCRF determines policy information to be applied to a packet, charging rules, information for specifying a packet to be controlled based on the information, and the like according to user contract information and / or an application used by the user.
  • the PCRF may manage, for example, QoS and / or QCI.
  • the policy information may include, for example, priority control or a transfer permission / prohibition rule in the gateway.
  • the charging rule may include a rule such as charging according to the packet amount, for example.
  • the information specifying the packet to be controlled may include the IP address and port number of the source and destination.
  • PCEF performs policy control and charges for each IP flow according to the information notified from the PCRF.
  • BBERF performs the same processing as PCEF, but does not perform billing processing. Further, BBERF performs cooperation processing with QoS control unique to the access system.
  • the cooperation processing may include, for example, identification of an LTE radio access bearer that transfers a packet received from the PGW 250 to the eNB 220.
  • the process (b) may be performed by the MME 230 of the packet core network 280, for example.
  • the MME 230 may compare eNB identification information notified from each UE 210 via the eNB 220, and may determine whether or not to implement loopback communication via the eNB 220 that does not pass through the packet core network 280, based on the comparison result.
  • the MME 230 does not need to confirm the coincidence of the location registration information notified from the UE 210, for example, TA292 (or TAI), when determining whether or not return communication is possible.
  • the MME 230 determines the location registration information such as the TA 292 (or TAI) when determining whether or not return communication is possible. A match may be confirmed.
  • the eNB 220 may be different even if the TA292 (or TAI) matches.
  • MME230 can control communication between terminals to return communication by the comparison result of the eNB identification information received from UE210 used as the object of communication between terminals. Therefore, for example, it can be determined that the loopback communication is performed when the eNB identification information matches, so that it is possible to efficiently determine whether the loopback communication is possible or to improve the determination accuracy.
  • the process (c) may be performed by the MME 230 in the packet core network 280, for example.
  • the MME 230 may notify the eNB 220 of the start of the return communication.
  • the MME 230 may transmit control information including a return communication start instruction to the eNB 220 via the S1 interface.
  • the S1 interface is an example of a communication interface between the base station and the control device.
  • the return communication start instruction may include, for example, information indicating that the return communication is performed and identification information that can identify the UE 210 that performs the return communication.
  • identification information that can identify the UE 210 include IMSI, TMSI, C-RNTI, and EPUID.
  • IMSI is an abbreviation for International Mobile Subscriber Identity, and is an example of a terminal number assigned to UE 210.
  • TMSI is an abbreviation for “Temporary Mobile Subscriber ⁇ Identity”, which is randomly generated between the UE 210 and the network and used instead of the IMSI.
  • C-RNTI is an abbreviation for Cell-> Radio-Network-Temporary-Identifier, assigned by eNB 220 and used between eNB 220 and UE 210.
  • EPUID is an abbreviation for EPC ProSe User ID.
  • the eNB 220 When notified of the start of the loopback communication from the MME 230, the eNB 220 controls the inter-terminal communication between the UEs 210 that are the target of the loopback communication to the communication via the eNB 220 not via the packet core network 280 according to the loopback communication start instruction. It's okay.
  • the eNB identification information that can identify the destination eNB 220 is transmitted via the eNB 220 to the packet core network 280. It is an example of the 1st and 2nd radio
  • the location registration may be performed in a procedure in which the UE 210 sets a radio channel with the eNB 220.
  • At least one of the MME 230 and the eNB 220 is an example of a control device that receives the first eNB identification information transmitted from the eNB 220-1 and the second eNB identification information transmitted from the UE 210-2.
  • the control device may control the inter-terminal communication between the UEs 210-1 and 210-2 to the communication via the eNB 220 that does not pass through the packet core network 280 by the received eNB identification information.
  • the “report” includes transmission of information that is an index as to whether or not to continue loopback communication from the UE 210 to the eNB 220 or the packet core network 280 (for example, the MME 230), for example, communication different from the service.
  • the eNB 220 or the MME 230 acquires information on periodic position information measurement results, communication status, service changes, and the like from the UE 210, and continues whether or not to implement loopback communication based on the acquired information. It may be determined whether or not to do so. The reporting of such information may increase the amount of uplink communication and cause a transmission delay due to traffic congestion.
  • the UE 210 sets a threshold value, for example, according to the report target information, and reports the information when the report target information is deteriorated below the threshold value or when it is determined to change the loopback communication control. May be. Thereby, the amount of uplink communication can be reduced.
  • the MME 230 or the eNB 220 may limit the implementation of the loopback communication according to at least one parameter of the type requested by the UE 210, the required quality, and the allowable delay time (for example, Max Delay).
  • the type include service.
  • the required quality includes QoS and the like.
  • the UE 210 that is the call source for inter-terminal communication may be referred to as UE # 1 or UEs (Source UE), and the UE 210 that is the call destination may be referred to as UE # 2 or UEd (Destination UE).
  • UE 210-1 shown as UE # 1 transmits ATTACH REQUEST including TAI and CGI to MME 230 via eNB 220 (process T1; step S1 in FIG. 10).
  • MME230 the location registration of UEs is performed.
  • the eNB identification information included in the ATTACH REQUEST may be BSIC instead of CGI. The same applies to the following description.
  • UE 210-2 indicated as UE # 2 transmits ATTACH REQUEST including TAI and CGI to MME 230 via eNB 220 (process T2; step S2 in FIG. 10). Thereby, in MME230, the location registration of UEd is performed.
  • UE # 1 initiates communication with UE # 2 (step S3 in FIG. 10).
  • an RA procedure and a radio resource control (RRC) connection process may be performed between the UE 210 and the eNB 220 by communication call.
  • RRC radio resource control
  • a plurality of devices including the UE 210, the eNB 220, and the MME 230 may perform at least a part of the bearer setting (for example, QoS setting) between these devices.
  • a radio channel between UE # 1 and eNB 220 and between UE # 2 and eNB 220 is set.
  • the MME 230 determines whether or not the communication between the UE # 1 and the UE # 2 (for example, from UEs to the UEd) can be set or controlled to be the return communication in the eNB 220 based on the CGI notified from each UE 210 ( Process T3; Step S4 in FIG.
  • the MME 230 instructs the eNB 220 to communicate between the UE # 1 and the UE # 2.
  • the start of loopback communication at the eNB 220 is notified (process T4).
  • the eNB 220 performs the loopback communication in the eNB220 for the communication between the UE # 1 and the UE # 2 (for example, from the UEs to the UEd) based on the notification of the start of the loopback communication received from the MME 230 (processing T5 and T6). ; Step S5 in FIG. 10).
  • the MME 230 sends a message between UE # 1 and UE # 2 to the eNB 220. With respect to communication, notification of not performing return communication may be made. Or MME230 does not need to notify eNB220.
  • the eNB 220 When the eNB 220 does not perform the loopback communication (when the loopback communication start notification (or control information; hereinafter collectively referred to as the start notification) is not received), the eNB 220 is configured between the UE # 1 and the UE # 2 (for example, UEs to UEd). As for communication, normal communication via the packet core network 280 is performed (step S6 in FIG. 10). In addition, when performing normal communication, UE # 1 and UE # 2 may perform bearer setting including control such as charging with the MME 230, respectively.
  • the eNB identification information that can identify the connection-target eNB 220 is the eNB 220. Via the packet core network 280.
  • the MME 230 can easily determine whether or not return communication is possible.
  • return communication since return communication is possible, the transmission delay time of communication between terminals can be shortened.
  • the wireless communication system 1000 as a comparative example illustratively includes two UEs 1010, three eNBs 1020, an MME 1030, a ProSe Func device 1040, an S / PGW 1050, and an HSS 1060.
  • HSS is an abbreviation for Home Subscriber Server.
  • the HSS 1060 performs service control and subscriber data processing.
  • the MME 1030, the ProSe Func device 1040, the S / PGW 1050, and the HSS 1060 constitute an EPC.
  • the MME 1030 supports NAS communication, and can receive a request from the UE 1010 based on the NAS protocol via the eNB 1020 and the S1 interface.
  • the ProSe Func device 1040 controls the ProSe layer.
  • the ProSe Func device 1040 can acquire geographical location information of the UE 1010, for example, Location Service (LCS) information, in cooperation with a location information server (eg, the MME 1030).
  • LCS Location Service
  • MME Mobility Management Entity
  • the radio communication system 1000 implements a ProSe layer in the eNB 1020, uses a ProSe discovery procedure defined on the core network (EPC) side, grasps the geographical proximity between the UEs 1010, and performs return communication in the eNB 1020 Is realized.
  • EPC core network
  • the ProSe Func device 1040 notifies the eNB 1020 of the acquired location information (eg, LCS information) and identification information (eg, ProSe UE ID) of the UE 1010, so that the eNB 1020 grasps the individual location information of each UE 1010. .
  • eNB1020 can implement routing optimization, for example, return communication, when each UE1010 is geographically close.
  • the EPC can acquire the identifier of the base station to which the UE 1010 is connected in the procedure of setting a bearer in order to efficiently determine whether or not return communication is possible.
  • the wireless communication system 200 according to the second embodiment, as described above with reference to FIGS. 7 and 8, part or all of the bearer setting, for example, at least control such as charging is not required.
  • the return communication can be controlled at an early timing.
  • the inter-terminal communication of the UE 210 can be set as a return path in the eNB 220 from the initial communication, and the transmission delay time of the inter-terminal communication can be shortened.
  • the UE may notify the eNB of the connection destination of the Internet Protocol Address (IP address) of the UE.
  • IP address Internet Protocol Address
  • the eNB may control the terminal-to-terminal communication to return communication based on the IP address received from each UE.
  • the IP address is an example of terminal identification information that can identify the UE.
  • the eNB may control the return communication using the IP address when receiving a start notification of the return communication from the MME.
  • ENB can cope with multi-service by controlling loopback communication by IP address.
  • IP addresses when a plurality of IP addresses are assigned to the UE, or when the UE communicates with a plurality of IP addresses (communication destinations), an IP address that performs loopback communication and an IP address that does not perform loopback communication are separated. Good.
  • the IP address for performing / not performing the return communication may be divided for each service, for example.
  • loopback communication is performed for communication (for example, service) between IP addresses that perform loopback communication, and loopback communication is determined to be unnecessary for communication (for example, service) between IP addresses that do not perform loopback communication. Good.
  • FIG. 12 is a block diagram illustrating a configuration example of a wireless communication system 300 according to the third embodiment.
  • the wireless communication system 300 is illustratively connected to a plurality (two in the example of FIG. 12) UEs 310-1 and 310-2, eNB 320, MME 330, SGW 340, and network 360, as shown in FIG.
  • a PGW 350 may be provided.
  • UE 310 and eNB 320 may be included in a radio access network 370 in which radio communication is performed. Further, the MME 330, the SGW 340, and the PGW 350 may form a packet core network 380 in which packet communication is performed.
  • the radio communication system 300 according to the third embodiment may be the same as the radio communication system 200 according to the second embodiment unless otherwise specified.
  • the UE 310, the eNB 320, the MME 330, the SGW 340, the PGW 350, the network 360, the radio access network 370, and the packet core network 380 may be the same as the devices of the same name in the radio communication system 200 unless otherwise specified.
  • the UE 310 that is a call source for inter-terminal communication may be referred to as UE # 1 or UEs, and the UE 310 that is the call destination may be referred to as UE # 2 or UEd.
  • UE 310-1 shown as UE # 1 transmits ATTACH REQUEST including TAI and CGI to MME 330 via eNB 320 (process T11; step S11 in FIG. 14). Thereby, the location registration of UEs is performed in MME330.
  • the eNB identification information included in the ATTACH REQUEST may be BSIC instead of CGI. The same applies to the following description.
  • UE 310-2 indicated as UE # 2 transmits ATTACH REQUEST including TAI and CGI to MME 330 via eNB 320 (process T12; step S12 in FIG. 14). Thereby, in MME330, the location registration of UEd is performed.
  • UE # 1 initiates communication with UE # 2 (step S13 in FIG. 14).
  • the RA procedure and the RRC connection process may be performed between the UE 310 and the eNB 320 by communication call.
  • at least a part of the bearer setting may be performed between a plurality of devices including the UE 310, the eNB 320, and the MME 330.
  • a radio channel between UE # 1 and eNB 320 and between UE # 2 and eNB 320 is set.
  • an IP address is assigned to UE # 1 by a plurality of devices including UE # 1, eNB 320, MME 330, and PGW 350 (process T13).
  • an IP address is assigned to UE # 2 by a plurality of devices including UE # 2, eNB320, MME330, and PGW350 (process T14).
  • the MME 330 determines whether or not communication between the UE # 1 and the UE # 2 (for example, from UEs to UEd) can be turned back to the eNB 320 based on the CGI notified from each UE 310 (process T15; Step S14 in FIG.
  • the MME 330 transmits a control request for eNB return communication permission to the eNB 320 (process T16). ).
  • the control request as to whether or not eNB return communication is possible may be notified in the same manner as the start notification of return communication in the second embodiment, or may be transmitted by an existing control signal or a new control signal.
  • the eNB loopback communication control request may include the IP addresses of UE # 1 and UE # 2 that are the targets of loopback communication (steps S15 and S16 in FIG. 14).
  • the MME 330 may acquire the IP address of each UE 310 from the PGW 350.
  • eNB320 may request
  • the eNB 320 can acquire the IP address of each UE 310 that is a control target of whether or not return communication is possible by at least one of the process T16 and the process T17. Note that when the control request in process T16 includes the IP address of the target UE 310, the process T17 may not be executed.
  • the eNB 320 registers and manages the IP address of each UE 310 that is received from the MME 330 or each UE 310 and is subject to control of whether or not return communication is possible (step S17 in FIG. 14). For example, the eNB 320 may manage the IP addresses of UE # 1 and UE # 2, respectively.
  • the eNB 320 acquires the source and destination IP addresses included in the signal transmitted from the UE 310, for example, the UE # 1.
  • the source and destination IP addresses may be acquired from the signal by the eNB 320, or may be acquired from the signal by the packet core network 380, for example, the MME 330, and the acquired IP address may be notified to the eNB 320.
  • the acquisition of the source and destination IP addresses from the signal may be performed by confirming the source IP address and the destination IP address from the header of the transmitted IP packet, as illustrated in FIG.
  • the eNB does not confirm the content of a signal, for example, an IP packet. Moreover, since the IP address of the UE is assigned from the PGW, the eNB does not grasp the IP address of the UE. On the other hand, in the third embodiment, the eNB 320 can determine whether or not return communication by the IP address is possible by acquiring the IP address of the source and destination from the header of the transmitted IP packet. .
  • the eNB 320 does not have to acquire an IP address for a packet header such as UDP or GTP or a header used for transmission (for example, a source address or a destination address of a relay source or a relay destination).
  • UDP is an abbreviation for User Datagram Protocol
  • GTP is an abbreviation for General Packet Radio Switching (GPRS) Tunneling Protocol.
  • GPRS General Packet Radio Switching
  • the eNB 320 compares the IP address of the transmission source and the transmission destination acquired from the received signal with the IP address to be managed, and whether or not the communication between the UEs 310 can be the return communication in the eNB 320. Is determined (process T18; step S18 in FIG. 14).
  • the eNB 320 transmits an eNB return communication start notification to the MME 330 (process T19; step S19 in FIG. 14).
  • the eNB 320 transmits an eNB return communication start notification to the PGW 350 (process T20; step S19 in FIG. 14).
  • the MME 330 may transfer the eNB return communication start notification received in the process T19 to the PGW 350, and in this case, the process T20 may not be performed.
  • the return communication start notification may include information for charging.
  • the eNB 320 may transmit a start notification to the MME 330 or the PGW 350 as a trigger for performing control such as charging.
  • the transmission destination of the start notification is not limited to the MME 330 or the PGW 350, and may be, for example, at least one device of the PCC.
  • the eNB 320 may measure the usage amount instead of the PGW 350 or the like, and notify the PGW 350 of the information measured periodically.
  • the start notification of the eNB return communication may be transmitted as a response to the eNB return communication availability control request notified from the MME 330 in the process T16, or may be transmitted by an existing control signal or a new control signal. .
  • the eNB 320 performs the return communication in the eNB by transmitting the signal received from the UE 310 to the signal transmission destination by the return communication in the eNB 320 (processing T21 and T22; step S20 in FIG. 14).
  • the eNB 320 may control communication from the UE # 1 to the UE # 2 to return communication at the eNB 320.
  • step S20 the eNB 320 also performs loopback communication for the IP packet if the source and destination IP addresses match the IP address to be managed for other (for example, subsequent) signals received from the UE 310. May be implemented.
  • the eNB 320 performs loopback communication for the IP packet. It's okay.
  • step S18 of FIG. 14 the eNB 320 performs normal communication via the packet core network 380 for communication between UE # 1 and UE # 2. It implements (step S21 of FIG. 14).
  • step S14 of FIG. 14 when CGI notified from each UE310 does not correspond and return communication is impossible (No in step S14 of FIG. 14), the eNB 320 determines that UE # 1 and UE # 2 Normal communication is performed between them (step S21 in FIG. 14).
  • the MME 330 may notify the eNB 320 that the communication between the UE # 1 and the UE # 2 is not performed. Alternatively, the MME 330 may not notify the eNB 320. In this case, a bearer including control such as charging and QoS may be set by the MME 330, the PGW 350, and the like.
  • eNB 320 can determine whether or not return communication is possible for each IP packet, it can also be applied to multiservice.
  • processing of the MME 330 and the eNB 320 may be performed by the MME 330 or the eNB 320.
  • the third embodiment may not be based on the first or second embodiment.
  • the processes T15 and T16 of the MME 330 may not be performed, and in FIG. 14, step S14 may not be performed.
  • the notification of the IP address in steps S15 and S16 may be performed from the UE 310 as in process T17 of FIG.
  • eNB 320 can determine whether or not return communication is possible for each IP packet, it can also be applied to a multi-service.
  • FIG. 16 is a block diagram illustrating a functional configuration example of the wireless terminal 410.
  • FIG. 17 is a block diagram illustrating a functional configuration example of the base station 420.
  • FIG. 18 is a block diagram illustrating a functional configuration example of the MME 430.
  • FIG. 19 is a block diagram illustrating a functional configuration example of the SGW 440.
  • FIG. 20 is a block diagram illustrating a functional configuration example of the PGW 450.
  • the wireless terminal 410 is an example of the wireless terminal 110, the UE 210, and the UE 310.
  • Base station 420 is an example of base station 120, eNB 220, and eNB 320.
  • the MME 430 is an example of the control device 130, the MME 230, and the MME 330.
  • the SGW 440 is an example of the SGW 240 and the SGW 340.
  • the PGW 450 is an example of the PGW 250 and the PGW 350.
  • the wireless terminal 410 may exemplarily include an antenna 411, a wireless reception unit 412, a terminal-side control unit 413, a control signal generation unit 414, and a wireless transmission unit 415.
  • the antenna 411 receives a DL (Downlink) radio signal transmitted from the base station 420. Further, the antenna 411 transmits a UL (Uplink) radio signal to the base station 420.
  • the radio reception unit 412 performs a predetermined reception process on the DL reception signal received by the antenna 411, and acquires the DL signal transmitted by the base station 420.
  • the reception process may include, for example, low-noise amplification of the received signal, frequency conversion (down-conversion) to a baseband frequency, gain adjustment, demodulation, decoding, and the like.
  • the signal acquired by the wireless reception unit 412 may be output to the terminal-side control unit 413.
  • the signal acquired by the wireless reception unit 412 may be output to a processing unit (not shown) or the like, and may be used for a purpose other than processing in the terminal-side control unit 413 in the processing unit or the like.
  • the terminal-side control unit 413 performs various processes relating to control signals and user data transmitted to and received from the base station 420.
  • the processing by the terminal side control unit 413 may include processing executed by at least one of the radio terminal 110, the UE 210, and the UE 310 in the first to fourth embodiments.
  • the control signal generation unit 414 generates various control signals to be transmitted to the base station 420.
  • the control signal may include a control signal including eNB identification information (for example, CGI or BSIC) transmitted at the time of location registration addressed to the MME 430, a control signal for notifying the eNB 420 of the IP address, and the like.
  • eNB identification information for example, CGI or BSIC
  • the wireless transmission unit 415 performs a predetermined transmission process on the UL signal, generates a transmission signal, and outputs the transmission signal to the antenna 411.
  • the transmission processing may include, for example, signal encoding, modulation, frequency conversion (up-conversion) to a radio frequency, power amplification, and the like.
  • the UL signal may include a control signal generated by the control signal generation unit 414 and / or user data generated by the terminal-side control unit 413 or a processing unit (not shown).
  • the control signal generation unit 414 and the wireless transmission unit 415 described above when performing location registration with respect to the packet core network, transmit the base station identification information that can identify the connection destination base station 420 via the base station 420. It is an example of the transmission part which transmits to a core network.
  • the base station 420 exemplarily includes an antenna 421, a radio reception unit 422, SWs 423 and 427, a base station side control unit 424, a control signal generation unit 425, a loopback control unit 426, and radio transmission.
  • a portion 428 may be provided.
  • the antenna 421 receives a UL radio signal transmitted from the radio terminal 410.
  • the antenna 421 transmits a DL radio signal to the radio terminal 410.
  • the wireless reception unit 422 performs a predetermined reception process on the UL reception signal received by the antenna 421 and acquires the UL signal transmitted by the wireless terminal 410.
  • the reception process may include, for example, low-noise amplification of the received signal, frequency conversion (down-conversion) to a baseband frequency, gain adjustment, demodulation, decoding, and the like.
  • the signal acquired by the wireless reception unit 422 may be output to the SW 423.
  • the UL signal transmitted by the wireless terminal 410 may include a signal addressed to another wireless terminal 410 connected to the base station 420, in other words, a signal that is a target of loopback communication.
  • the SW (switch) 423 selectively outputs the signal acquired by the wireless reception unit 422 to the base station side control unit 424, SW 427, or SGW 440 under the control of the loopback control unit 426.
  • the SW 423 outputs user data targeted for loopback communication at the base station 420 to the SW 427, and outputs a control signal, user data outside loopback communication target, and the like to the base station side control unit 424 or the SGW 440. You can do it.
  • the base station side control unit 424 performs various processes related to control signals or user data transmitted / received to / from the wireless terminal 410 or the MME 430.
  • the processing by the base station side control unit 424 may include processing executed by at least one of the base station 120, the eNB 220, and the eNB 320 in the first to fourth embodiments.
  • the control signal generation unit 425 generates various control signals to be transmitted to the wireless terminal 410.
  • the control signal may include a control signal that requests the wireless terminal 410 to notify the IP address.
  • the loopback control unit 426 controls loopback communication at the base station 420 with respect to the signal received from the wireless terminal 410.
  • the process by the loopback control unit 426 may include a process related to loopback control executed by at least one of the base station 120, the eNB 220, and the eNB 320 in the first to fourth embodiments.
  • the loopback control unit 426 may transmit / receive control information or the like by a control signal to / from the MME 430.
  • the control signal transmitted to the MME 430 may include a control signal including eNB identification information transmitted by the radio terminal 410, control information for loopback communication, or the like.
  • the control signal received from the MME 430 may include a return communication start notification or a request for control of return communication.
  • the loopback control unit 426 may store and manage the IP address information of the wireless terminal 410 received from the wireless terminal 410 or the MME 430, for example, in the memory 522 of FIG.
  • the loopback control unit 426 may determine whether or not loopback communication is possible based on a signal received from the wireless terminal 410, and may control switching of the SW423 and 427 based on the determination result. For the determination by the loopback control unit 426, for example, the source and destination IP addresses are acquired from the header of the IP packet input to the SW 423 or output from the SW 423, and the acquired IP address is managed. A process of comparing with an IP address may be included.
  • the loopback control unit 426 uses the MAC PDU including the header of the IP packet.
  • An IP address may be acquired.
  • the loopback control unit 426 controls the loopback communication using the determination result made earlier without performing the determination for the same destination (for example, the subsequent MAC PDU including the data of the original IP packet). Also good.
  • a buffer may be provided between the SW423 and the wireless reception unit 422 or in the SW423.
  • the buffer may be used for storing the IP packet until the return control unit 426 determines whether or not return communication is possible based on the IP address in the header of the IP packet and controls the SW 423.
  • a part of the storage area of the memory 522 in FIG. 22 may be used as the buffer.
  • the SW 427 selectively outputs a signal input from the SW 423, the control signal generation unit 425, or the SGW 440 to the wireless transmission unit 428 under the control of the return control unit 426.
  • the SW 427 sends the user data addressed to the wireless terminal 410 received from the SGW 440, the control signal generated by the control signal generation unit 425, or the user data targeted for loopback communication input from the SW 423 to the wireless transmission unit 428. You may output.
  • the wireless transmission unit 428 performs a predetermined transmission process on the DL signal to generate a transmission signal, and outputs the transmission signal to the antenna 421.
  • the transmission processing may include, for example, signal encoding, modulation, frequency conversion (up-conversion) to a radio frequency, power amplification, and the like.
  • the DL signal may include a control signal generated by the control signal generation unit 425 or / and user data addressed to the wireless terminal 410 received from the SGW 440 or the like.
  • a buffer may be provided between the SW 427 and the wireless transmission unit 428 or in the SW 427 in order to determine whether or not return communication is possible by the return control unit 426.
  • the above-described antenna 421, wireless reception unit 422, SW 423, and loopback control unit 426 are examples of a communication unit.
  • the communication unit receives the base station identification information that can be used to identify the connection-destination base station 420 and is transmitted to the MME 430 in the packet core network. It's okay.
  • control unit 426 are examples of the control unit.
  • the control unit according to the control from the MME 430 that has received the first base station identification information transmitted by the first wireless terminal 410 and the second base station identification information transmitted by the second wireless terminal 410, Inter-terminal communication may be controlled to return communication.
  • the MME 430 may include a line control unit 431, for example.
  • the line control unit 431 performs various controls on signals transmitted to and received from the base station 420, the SGW 440, or the PGW 450.
  • the processing by the line control unit 431 may include processing related to line control in the wireless communication system, and may include processing executed by at least one of the control device 130, the MME 230, and the MME 330 in the first to fourth embodiments. .
  • the line control unit 431 may receive the eNB identification information transmitted from the wireless terminal 410 via the base station 420 and control the return communication. Further, the line control unit 431 may transmit / receive various control information including control information of loopback communication to / from the base station 420, the SGW 440, or the PGW 450 by a control signal.
  • the line control unit 431 described above is an example of a communication unit that receives base station identification information that can be used to identify a connection destination base station 420 that is transmitted when the wireless terminal 410 performs location registration with respect to the packet core network. .
  • the above-described line control unit 431 uses the first base station identification information transmitted from the first wireless terminal 410 and the second base station identification information transmitted from the second wireless terminal 410 to communicate between terminals. It is an example of the control part which controls communication to return communication.
  • the SGW 440 may include a data control unit 441, for example.
  • the data control unit 441 performs various controls on signals transmitted to and received from the base station 420, the MME 430, or the PGW 450.
  • the processing by the data control unit 441 may include processing related to user data control, and may include processing executed by at least one of the SGW 240 and the SGW 340 in the second to fourth embodiments.
  • the data control unit 441 may transmit / receive user data to / from the base station 420 and the PGW 450. Further, the data control unit 441 may transmit / receive various control information including control information for loopback communication to / from the MME 430 by a control signal.
  • the PGW 450 may include a line control unit 451, for example.
  • the line control unit 451 performs various controls on signals transmitted to and received from the MME 430, the SGW 440, or a network (not shown) (for example, a core network).
  • the processing by the line control unit 451 may include processing related to line control in the wireless communication system, and may include processing executed by at least one of the PGW 250 and the PGW 350 in the second to fourth embodiments.
  • the line control unit 451 may transmit and receive user data between the SGW 440 and the network.
  • the line control unit 451 may transmit and receive various control information including control information for loopback communication with the MME 430 by a control signal.
  • FIG. 21 is a block diagram illustrating a hardware configuration example of the wireless terminal 410 illustrated in FIG.
  • FIG. 22 is a block diagram illustrating a hardware configuration example of the base station 420 illustrated in FIG.
  • FIG. 23 is a block diagram illustrating a hardware configuration example of the MME 430, the SGW 440, or the PGW 450 illustrated in FIGS.
  • the wireless terminal 510 may include a processor 511, a memory 512, an RF unit 513, and an antenna 514, for example.
  • RF is an abbreviation for Radio Frequency.
  • the processor 511 performs various controls and calculations.
  • the processor 511 may be communicably connected to each block in the wireless terminal 510 via a bus.
  • Examples of the processor 511 include an integrated circuit (IC) such as a Central / Processing / Unit (CPU), a Micro / Processing / Unit (MPU), an Application / Specific / Integrated / Circuit (ASIC), or a Field / Programmable / Gate Array (FPGA).
  • IC integrated circuit
  • CPU Central / Processing / Unit
  • MPU Micro / Processing / Unit
  • ASIC Application / Specific / Integrated / Circuit
  • FPGA Field / Programmable / Gate Array
  • the memory 512 is an example of hardware that stores various data such as control signals and user data, and information such as programs.
  • a volatile memory at least one of a volatile memory and a nonvolatile memory may be used.
  • RAM Random Access Memory
  • Non-volatile memory includes, for example, Read Only Memory (ROM), flash memory, or Electrically Erasable Programmable Read-Only Memory (EEPROM).
  • ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the RF unit 513 may include an RF circuit, for example.
  • the RF unit 513 is an example of the wireless reception unit 412 and the wireless transmission unit 415 illustrated in FIG.
  • the antenna 514 is an example of the antenna 411 illustrated in FIG. 16, and may transmit and receive a radio signal to and from the base station 520 (see FIG. 22).
  • the processor 511 can implement the function of the wireless terminal 410 illustrated in FIG. 16 by executing a program stored in the memory 512.
  • the functions of the terminal-side control unit 413 and the control signal generation unit 414 illustrated in FIG. 16 may be realized by the processor 511.
  • at least some of the functions of the wireless reception unit 412 and the wireless transmission unit 415 may be realized by the processor 511.
  • the base station 520 may include a processor 521, a memory 522, an RF unit 523, an antenna 524, and a network IF 525, for example.
  • IF is an abbreviation for Interface.
  • the processor 521 performs various controls and calculations.
  • the processor 521 may be communicably connected to each block in the base station 520 via a bus.
  • the processor 521 may be an integrated circuit (IC) such as a CPU, MPU, ASIC, or FPGA.
  • the memory 522 is an example of hardware that stores various data such as control signals and user data, and information such as programs.
  • a volatile memory at least one of a volatile memory and a nonvolatile memory may be used.
  • the volatile memory include a RAM.
  • the non-volatile memory include a ROM, a flash memory, and an EEPROM.
  • the RF unit 523 may include an RF circuit, for example.
  • the RF unit 523 is an example of the wireless reception unit 422 and the wireless transmission unit 428 illustrated in FIG.
  • the antenna 524 is an example of the antenna 421 illustrated in FIG. 17, and may transmit / receive a radio signal to / from the wireless terminal 510.
  • the network IF 525 is an example of a communication interface that controls connection and communication with a network (upper network), for example, a packet core network, and transmits and receives signals to and from the processing device 530 (see FIG. 23). It's okay.
  • a network for example, a packet core network
  • the processor 521 can implement the function of the base station 420 shown in FIG. 17 by executing a program stored in the memory 522.
  • the functions of the base station side control unit 424, the control signal generation unit 425, and the loopback control unit 426 illustrated in FIG. 17 may be realized by the processor 521.
  • at least some of the functions of the wireless reception unit 422 and the wireless transmission unit 428 may be realized by the processor 521.
  • the base station 520 may include a switch circuit as an example of the SWs 423 and 427 shown in FIG.
  • MME Mobility Management Entity
  • SGW Serving Mobility Management Entity
  • PGW Packet Data Network
  • the MME 430, the SGW 440, and the PGW 450 shown in FIGS. 18 to 20 may all have the same hardware configuration. Therefore, hereinafter, the processing apparatus 530 will be described as an example of the hardware configuration of each of the MME 430, the SGW 440, and the PGW 450.
  • the processing device 530 may include a processor 531, a memory 532, and a network IF 533 exemplarily.
  • the processor 531 performs various controls and calculations.
  • the processor 531 may be communicably connected to each block in the processing device 530 via a bus.
  • examples of the processor 531 include an integrated circuit (IC) such as a CPU, MPU, ASIC, or FPGA.
  • the memory 532 is an example of hardware that stores various data such as control signals and user data, and information such as programs.
  • a volatile memory at least one of a volatile memory and a nonvolatile memory may be used.
  • the volatile memory include a RAM.
  • the non-volatile memory include a ROM, a flash memory, and an EEPROM.
  • the network IF 533 is an example of a communication interface that controls connection and communication with a network (upper network), for example, a packet core network or an external network.
  • a network for example, a packet core network or an external network.
  • the MME 430 may transmit and receive signals to and from the base station 420, the SGW 440, and the PGW 450 through the network IF 533.
  • the SGW 440 may transmit and receive signals to and from the base station 420, the MME 430, and the PGW 450 through the network IF 533.
  • the PGW 450 may transmit / receive signals to / from the MME 430 and the SGW 440 and an external network via the network IF 533.
  • the processor 531 can implement the functions of the MME 430, the SGW 440, or the PGW 450 shown in FIGS. 18 to 20 by executing a program stored in the memory 532.
  • the function of the line control unit 431 of the MME 430 illustrated in FIG. 18 may be realized by the processor 531.
  • the function of the data control unit 441 of the SGW 440 illustrated in FIG. 19 may be realized by the processor 531.
  • the function of the line control unit 451 of the PGW 450 illustrated in FIG. 20 may be realized by the processor 531.
  • the base station loopback communication may be performed using a plurality of base station paths that do not pass through the core network, using the inter-base station interface.
  • the control device may control the inter-terminal communication to the base station loopback communication when a plurality of base stations identified by the base station identification information received from each radio terminal can communicate with each other through the inter-base station interface.
  • At least one of the wireless terminals that perform inter-terminal communication is used as a server, so that edge computing (Edge Computing) or mobile edge computing (Mobile Edge Computing: (MEC).
  • edge computing Edge Computing
  • MEC Mobile Edge Computing:
  • the server connected to the base station may be positioned as a wireless terminal.
  • the server may be connected to the base station wirelessly or by wire.
  • Edge computing is a method of connecting a server to a base station in order to speed up communication between a wireless terminal and a server connected to a network, for example.
  • communication between a wireless terminal and a server can be speeded up by communication via a core network not via a network.
  • the server connected to the base station may have, for example, at least a partial function of a server connected to the network, a specific application, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The wireless communication system comprises: first and second wireless terminals (110-1, 110-2) which, when registering the positions thereof with a host network (14), transmit via a base station (120) pieces of base station identification information, by which the base station (120) can be identified, to the host network (140); and a control device (130) which, upon receiving first base station identification information transmitted by the first wireless terminal (110-1) and second base station identification information transmitted by the second wireless terminal (110-2), performs control in accordance with each of the received pieces of base station identification information such that inter-terminal communication is established between the first and second wireless terminals (110-1, 110-2) via the base station (120) without passing through the host network (140).

Description

無線通信システム、無線端末、基地局、制御装置、及び無線通信方法Wireless communication system, wireless terminal, base station, control device, and wireless communication method
 本発明は、無線通信システム、無線端末、基地局、制御装置、及び無線通信方法に関する。 The present invention relates to a wireless communication system, a wireless terminal, a base station, a control device, and a wireless communication method.
 無線通信システムの一例として、現在、3rd Generation Partnership Project(3GPP)で仕様が策定されるLong Term Evolution(LTE)又はLTE-Advanced(LTE-A)が提供されている。 As an example of a wireless communication system, currently, Long Term Evolution (LTE) or LTE-Advanced (LTE-A) whose specifications are established by 3rd Generation Partnership Project (3GPP) is provided.
 3GPPでは、無線端末間の端末間通信を、Evolved Packet Core(EPC)等の上位ネットワークを経由しない基地局経由により行なう、基地局折り返し通信が検討されている。 In 3GPP, base station loopback communication in which inter-terminal communication between wireless terminals is performed via a base station that does not pass through an upper network such as Evolved Packet Core (EPC) is being studied.
特開2009-232106号公報JP 2009-232106 A 特開2002-330101号公報JP 2002-330101 A 特開平8-237736号公報JP-A-8-237736
 無線通信システムでは、折り返し通信の経路を設定するための無線端末と基地局との関係を示す情報を取得できないことがあり、折り返し通信の実現が難しい場合がある。 In a wireless communication system, information indicating a relationship between a wireless terminal and a base station for setting a return communication path may not be acquired, and it may be difficult to realize return communication.
 1つの側面では、本発明は、上位ネットワークを経由しない基地局経由の端末間通信の実現を容易化することを目的の1つとする。 In one aspect, an object of the present invention is to facilitate realization of inter-terminal communication via a base station that does not pass through a host network.
 なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の1つとして位置付けることができる。 In addition, the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. It can be positioned as one of
 1つの側面において、無線通信システムは、第1及び第2の無線端末と、制御装置とを備えてよい。前記第1及び第2の無線端末は、上位ネットワークに対して位置登録を行なう際に、前記基地局を識別可能な基地局識別情報を、前記基地局を介して、前記上位ネットワークへ送信してよい。前記制御装置は、前記第1の無線端末が送信した第1の前記基地局識別情報と、前記第2の無線端末が送信した第2の前記基地局識別情報と、を受信してよい。また、前記制御装置は、前記受信した各基地局識別情報によって、前記第1及び第2の無線端末の間の端末間通信を、前記上位ネットワークを経由しない前記基地局経由の通信に制御してよい。 In one aspect, the wireless communication system may include first and second wireless terminals and a control device. The first and second wireless terminals transmit base station identification information capable of identifying the base station to the upper network via the base station when performing location registration with respect to the upper network. Good. The control apparatus may receive the first base station identification information transmitted from the first wireless terminal and the second base station identification information transmitted from the second wireless terminal. Further, the control device controls inter-terminal communication between the first and second wireless terminals to communication via the base station that does not pass through the upper network based on the received base station identification information. Good.
 1つの側面では、上位ネットワークを経由しない基地局経由の端末間通信の実現を容易化できる。 In one aspect, it is possible to facilitate the inter-terminal communication via the base station that does not go through the host network.
第1実施形態に係る無線通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless communications system which concerns on 1st Embodiment. 図1に示す無線端末から送信される情報について説明する図である。It is a figure explaining the information transmitted from the radio | wireless terminal shown in FIG. 第2実施形態に係る無線通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless communications system which concerns on 2nd Embodiment. 折り返し通信の一例を説明する図である。It is a figure explaining an example of return communication. 近接通信サービスの一例を説明する図である。It is a figure explaining an example of a near field communication service. 位置登録情報の管理の一例を説明する図である。It is a figure explaining an example of management of position registration information. 図3に示すUser Equipment(UE)から送信される情報について説明する図である。It is a figure explaining the information transmitted from User か ら Equipment (UE) shown in FIG. 図3に示すUEから送信される情報について説明する図である。It is a figure explaining the information transmitted from UE shown in FIG. 第2実施形態に係る無線通信システムの動作シーケンスの一例を示す図である。It is a figure which shows an example of the operation | movement sequence of the radio | wireless communications system which concerns on 2nd Embodiment. 第2実施形態に係る無線通信システムの動作例を説明するフローチャートである。6 is a flowchart for explaining an operation example of the wireless communication system according to the second embodiment. 第2実施形態の比較例に係る無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system which concerns on the comparative example of 2nd Embodiment. 第3実施形態に係る無線通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless communications system which concerns on 3rd Embodiment. 第3実施形態に係る無線通信システムの動作シーケンスの一例を示す図である。It is a figure which shows an example of the operation | movement sequence of the radio | wireless communications system which concerns on 3rd Embodiment. 第3実施形態に係る無線通信システムの動作例を説明するフローチャートである。10 is a flowchart for explaining an operation example of the wireless communication system according to the third embodiment. Internet Protocol(IP)パケットヘッダの一部の構成例を示す図である。It is a figure which shows the example of a structure of some internet protocol (IP) packet headers. 無線端末の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of a radio | wireless terminal. 基地局の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of a base station. Mobility Management Entity(MME)の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of Mobility * Management * Entity (MME). Serving Gateway(SGW)の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of Serving SerGateway (SGW). Packet Data Network(PDN) Gateway(PGW)の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of Packet * Data * Network (PDN) * Gateway (PGW). 無線端末のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of a radio | wireless terminal. 基地局のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of a base station. 処理装置のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of a processing apparatus. 基地局識別情報の通知及び位置登録の動作シーケンスの一例を示す図である。It is a figure which shows an example of the operation | movement sequence of the notification of base station identification information, and a location registration.
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。例えば、本実施形態を、その趣旨を逸脱しない範囲で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. For example, the present embodiment can be implemented with various modifications without departing from the spirit of the present embodiment.
 なお、以下の実施形態で用いる図面において、同一符号を付した部分は、特に断らない限り、同一若しくは同様の部分を表す。また、以下の説明において複数の装置を区別しない場合には、符号のハイフン“-”以降の数字を省略して表記する場合がある。一例を示すと、図1に示す無線端末110-1及び110-2を区別しない場合には、単に無線端末110と表記する場合がある。 In the drawings used in the following embodiments, the same reference numerals denote the same or similar parts unless otherwise specified. Further, in the following description, when a plurality of devices are not distinguished, the numerals after the hyphen “-” may be omitted. As an example, the wireless terminals 110-1 and 110-2 shown in FIG.
 〔1〕第1実施形態
 図1は、第1実施形態に係る無線通信システム100の構成例を示すブロック図である。図1に示すように、第1実施形態に係る無線通信システム100は、例示的に、複数(図1の例では2つ)の無線端末110-1及び110-2、基地局120、並びに、制御装置130を備えてよい。なお、3以上の無線端末110が無線通信システム100に存在してもよい。
[1] First Embodiment FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system 100 according to a first embodiment. As shown in FIG. 1, the wireless communication system 100 according to the first embodiment exemplarily includes a plurality (two in the example of FIG. 1) of wireless terminals 110-1 and 110-2, a base station 120, and A control device 130 may be provided. Three or more wireless terminals 110 may exist in the wireless communication system 100.
 無線端末110-1及び110-2は、それぞれ、第1及び第2の無線端末の一例である。無線端末110-1及び110-2は、それぞれ、図2に例示するように、上位ネットワーク140に対して位置登録を行なう際に、接続先の基地局120を識別可能な基地局識別情報を、基地局120を介して、上位ネットワーク140へ送信する。位置登録は、接続先の基地局120と無線回線を設定する手順において行なわれてよい。基地局識別情報は、後述する折り返し通信の経路を設定するための無線端末110と基地局120との関係を示す情報、例えばIdentifier(ID)の一例である。上位ネットワーク140としては、例えばLTEにおけるパケットコア網が挙げられる。 Wireless terminals 110-1 and 110-2 are examples of first and second wireless terminals, respectively. As illustrated in FIG. 2, each of the wireless terminals 110-1 and 110-2, when performing location registration with respect to the upper network 140, provides base station identification information that can identify the connected base station 120, The data is transmitted to the upper network 140 via the base station 120. The location registration may be performed in a procedure for setting up a radio line with the connection destination base station 120. The base station identification information is an example of information indicating the relationship between the wireless terminal 110 and the base station 120 for setting a return communication path to be described later, for example, an identifier (ID). An example of the upper network 140 is a packet core network in LTE.
 「無線回線」を設定する手順は、例えば、無線端末110と基地局120との間のデータ(例えばユーザデータ)通信を可能にするための手順又は処理を含んでよい。一例として、無線回線を設定する手順は、無線端末110が通信を開始(例えば発呼)し、基地局120及び上位ネットワーク140においてベアラや通信経路を確立し、無線端末110と基地局120との間で無線データ回線を確立するまでの手順を含んでよい。或いは、後述する手法により、ベアラや通信経路の確立に係る一部又は全部の手順が不要となる場合、無線回線を設定する手順から当該手順を除外してもよい。 The procedure for setting the “wireless line” may include, for example, a procedure or process for enabling data (for example, user data) communication between the wireless terminal 110 and the base station 120. As an example, a procedure for setting up a wireless line is as follows. The wireless terminal 110 starts communication (for example, makes a call), establishes a bearer or a communication path in the base station 120 and the upper network 140, and connects the wireless terminal 110 and the base station 120. A procedure for establishing a wireless data line between the two may be included. Alternatively, when a part or all of the procedures relating to establishment of a bearer or a communication path become unnecessary by the method described later, the procedure may be excluded from the procedure for setting a wireless line.
 なお、無線端末110による「通信の開始」には、例えば、Random Access (RA) Procedure(ランダムアクセス手順)におけるRA Preamble(ランダムアクセスプリアンブル)を基地局120に送信することが含まれてもよい。 Note that the “communication start” by the wireless terminal 110 may include, for example, transmitting an RA Preamble (random access preamble) in a Random Access (RA) Procedure (random access procedure) to the base station 120.
 なお、上記位置登録は、無線端末110が通信を開始するために実施してもよいが、無線端末110の移動に伴い実施されてもよい。後者の場合、無線端末110は位置登録の実施後、基地局120との接続を切り(例えば通信を停止し)、待ち受け状態に移行してもよい。このように、位置登録は必ずしも無線端末110と基地局120との通信を前提とする必要はない。 The location registration may be performed for the wireless terminal 110 to start communication, but may be performed as the wireless terminal 110 moves. In the latter case, after performing location registration, the wireless terminal 110 may disconnect from the base station 120 (for example, stop communication) and shift to a standby state. Thus, the location registration does not necessarily have to be based on communication between the wireless terminal 110 and the base station 120.
 制御装置130は、無線端末110-1が送信した第1の基地局識別情報と、無線端末110-2が送信した第2の基地局識別情報と、を受信する。また、制御装置130は、受信した各基地局識別情報によって、無線端末110-1及び110-2の間の端末間通信を、上位ネットワーク140を経由しない基地局120経由の通信に制御する。以下、上位ネットワーク140を経由しない基地局120経由の通信を、折り返し通信と表記する場合がある。また、折り返し通信における上位ネットワーク140を経由しない基地局120経由の経路を、折り返し経路と表記する場合がある。 The control device 130 receives the first base station identification information transmitted from the wireless terminal 110-1 and the second base station identification information transmitted from the wireless terminal 110-2. Further, the control device 130 controls inter-terminal communication between the radio terminals 110-1 and 110-2 to communication via the base station 120 that does not pass through the upper network 140 based on the received base station identification information. Hereinafter, communication via the base station 120 that does not pass through the upper network 140 may be referred to as loopback communication. In addition, a route through the base station 120 that does not pass through the upper network 140 in return communication may be referred to as a return route.
 なお、上位ネットワーク140は、無線端末110からの位置登録を処理してよい。 Note that the upper network 140 may process location registration from the wireless terminal 110.
 図1の例では、制御装置130が上位ネットワーク140に含まれる1つの装置として示されているが、これに限定されるものではなく、制御装置130は、上位ネットワーク140に含まれる2以上の装置によって実現されてもよい。或いは、制御装置130は、基地局120を含む1以上の装置によって実現されてもよい。 In the example of FIG. 1, the control device 130 is shown as one device included in the upper network 140, but the present invention is not limited to this, and the control device 130 includes two or more devices included in the upper network 140. It may be realized by. Alternatively, the control device 130 may be realized by one or more devices including the base station 120.
 以上のように、無線通信システム100では、無線端末110から、接続先の基地局120に関する基地局識別情報が上位ネットワーク140に送信される。また、制御装置130は、各基地局識別情報を受信し、受信した各基地局識別情報によって、端末間通信を、上位ネットワーク140を経由しない基地局120経由の通信に制御する。 As described above, in the wireless communication system 100, the base station identification information related to the connection destination base station 120 is transmitted from the wireless terminal 110 to the upper network 140. In addition, the control device 130 receives each base station identification information, and controls inter-terminal communication to communication via the base station 120 without passing through the upper network 140 based on the received base station identification information.
 従って、制御装置130は、折り返し通信の経路を設定するための無線端末110と基地局120との関係を効率的に取得でき、折り返し通信を効率的に制御できる。これにより、上位ネットワーク140を経由しない基地局120経由の端末間通信の実現を容易化できる。 Therefore, the control device 130 can efficiently acquire the relationship between the wireless terminal 110 and the base station 120 for setting the return communication path, and can efficiently control the return communication. As a result, it is possible to facilitate the inter-terminal communication via the base station 120 without passing through the upper network 140.
 また、折り返し通信が実施されることで、無線通信システム100における上位ネットワーク140、例えばパケットコア網のトラフィック流量を低減でき、また、上位ネットワーク140を経由するよりも、端末間通信の伝送遅延時間を短縮できる。 Further, by performing the loopback communication, it is possible to reduce the traffic flow rate of the upper network 140 in the wireless communication system 100, for example, the packet core network, and to reduce the transmission delay time of the communication between terminals as compared with the case of passing through the upper network 140. Can be shortened.
 〔2〕第2実施形態
 以下、第2実施形態について説明する。図3は、第2実施形態に係る無線通信システム200の構成例を示すブロック図である。
[2] Second Embodiment A second embodiment will be described below. FIG. 3 is a block diagram illustrating a configuration example of the wireless communication system 200 according to the second embodiment.
 図3に示すように、無線通信システム200は、例示的に、複数(図3の例では2つ)のUE210-1及び210-2、eNB220、MME230、SGW240、並びに、PGW250を備えてよい。「UE」はUser Equipmentの略称であり、「eNB」はEvolved Node Bの略称であり、「MME」はMobility Management Entityの略称であり、「SGW」はServing Gatewayの略称であり、「PGW」はPacket Data Network(PDN) Gatewayの略称である。 As shown in FIG. 3, the radio communication system 200 may exemplarily include a plurality (two in the example of FIG. 3) UEs 210-1 and 210-2, eNB 220, MME 230, SGW 240, and PGW 250. “UE” is an abbreviation for User Equipment, “eNB” is an abbreviation for Evolved Node B, “MME” is an abbreviation for Mobility Management Entity, “SGW” is an abbreviation for Serving Gateway, and “PGW” is Abbreviation for Packet 称 Data Network (PDN) Gateway.
 なお、3以上のUE210が無線通信システム200に存在してもよく、2以上のeNB220が無線通信システム200に存在してもよく、2以上のMME230が無線通信システム200に存在してもよい。また、2以上のSGW240が無線通信システム200に存在してもよく、2以上のPGW250が無線通信システム200に存在してもよい。 Note that three or more UEs 210 may exist in the radio communication system 200, two or more eNBs 220 may exist in the radio communication system 200, and two or more MMEs 230 may exist in the radio communication system 200. Further, two or more SGWs 240 may exist in the wireless communication system 200, and two or more PGWs 250 may exist in the wireless communication system 200.
 無線通信システム200は、eNB220とUE210との間で、予め定められた無線通信方式に従った無線通信を行なう。例えば、無線通信方式は、第5世代以降の無線通信方式であってもよく、LTE/LTE-A、又はWorldwide Interoperability for Microwave Access(WiMAX)等の既存の無線通信方式であってもよい。 The radio communication system 200 performs radio communication according to a predetermined radio communication scheme between the eNB 220 and the UE 210. For example, the wireless communication method may be a wireless communication method of the fifth generation or later, or may be an existing wireless communication method such as LTE / LTE-A or Worldwide Interoperability for Microwave Access (WiMAX).
 UE210及びeNB220は、無線通信が行なわれる無線アクセス網270に含まれてよい。無線アクセス網270は、例えば1以上のeNB220が提供する無線エリアであってよい。なお、無線エリアは、eNB220が送信する無線電波を所要品質で受信可能な範囲(所要の無線回線品質を満たすことができる範囲、カバレッジと称してもよい)に応じて形成されてよい。また、eNB220が形成する無線エリアは、セル又はセクタと称されてもよい。 UE 210 and eNB 220 may be included in radio access network 270 in which radio communication is performed. The radio access network 270 may be a radio area provided by one or more eNBs 220, for example. The radio area may be formed in accordance with a range in which radio waves transmitted by the eNB 220 can be received with required quality (a range in which the required radio channel quality can be satisfied, which may be referred to as coverage). Further, the radio area formed by the eNB 220 may be referred to as a cell or a sector.
 MME230、SGW240、及び、PGW250は、パケット通信が行なわれるパケットコア網280を形成してよい。 The MME 230, the SGW 240, and the PGW 250 may form a packet core network 280 in which packet communication is performed.
 パケットコア網280は上位ネットワークの一例である。パケットコア網280は、eNB220を含まない通信網であって、例えばeNB220よりも上位の通信網と位置づけられる。なお、パケットコア網280としては、例えばEPCが挙げられる。 The packet core network 280 is an example of an upper network. The packet core network 280 is a communication network that does not include the eNB 220, and is positioned as a communication network higher than the eNB 220, for example. An example of the packet core network 280 is EPC.
 無線通信システム200においては、パケットコア網280を含む第1経路によるUE210間の通信が可能である。第1経路は、例えば、eNB220及びパケットコア網280を経由する経路である。また、無線通信システム200においては、パケットコア網280を含まない第2経路によるUE210間の通信も可能である。第2経路は、例えばパケットコア網280を経由しないeNB220経由の経路である。以下、第2経路でのUE210間の端末間通信を、「折り返し通信」と表記する場合がある。 In the wireless communication system 200, communication between the UEs 210 via the first route including the packet core network 280 is possible. The first route is a route that passes through the eNB 220 and the packet core network 280, for example. In the wireless communication system 200, communication between the UEs 210 via the second route that does not include the packet core network 280 is also possible. The second route is a route through eNB 220 that does not go through packet core network 280, for example. Hereinafter, inter-terminal communication between the UEs 210 on the second route may be referred to as “return communication”.
 UE210は無線端末の一例である。無線端末としては、例えば、スマートフォン等の携帯電話、タブレット端末、ラップトップ等の移動可能なPersonal Computer(PC)、モバイルルータ等のデータ通信装置、等の、無線通信機能を有する移動局又はユーザ端末が挙げられる。なお、移動局は、例えば車両等の移動体に取り付けられて移動してもよい。また、UE210は、これらの移動局又はユーザ端末の他にも、無線通信機能を有するセンサ等の装置(Integrated Circuit(IC)チップを含む)であってもよい。 UE 210 is an example of a wireless terminal. As a wireless terminal, for example, a mobile station or user terminal having a wireless communication function, such as a mobile phone such as a smartphone, a mobile personal computer (PC) such as a laptop, a data communication device such as a mobile router, etc. Is mentioned. The mobile station may be attached to a moving body such as a vehicle and move. In addition to these mobile stations or user terminals, the UE 210 may be a device such as a sensor (including an Integrated Circuit (IC) chip) having a wireless communication function.
 UE210-1及び210-2の各々は、eNB220との間で無線通信を行なうことにより、eNB220を介してパケットコア網280及びネットワーク260との間で通信が可能である。また、UE210-1及び210-2は、eNB220を介して互いに通信可能である。 Each of the UEs 210-1 and 210-2 can communicate with the packet core network 280 and the network 260 via the eNB 220 by performing wireless communication with the eNB 220. Further, the UEs 210-1 and 210-2 can communicate with each other via the eNB 220.
 eNB220は基地局の一例である。基地局としては、例えば、マクロ基地局、マイクロ基地局、フェムト基地局、ピコ基地局、メトロ基地局、ホーム基地局、又はC-RAN(Centralized - RAN)に接続される無線信号送受信装置等であってもよい。なお、RANはRadio Access Networkの略称である。また、基地局が形成する無線エリアは、セル又はセクタであってよい。セルには、マクロセル、マイクロセル、フェムトセル、ピコセル、メトロセル、又はホームセル等のセルが含まれてよい。 ENB 220 is an example of a base station. Examples of the base station include a macro base station, a micro base station, a femto base station, a pico base station, a metro base station, a home base station, or a radio signal transmitting / receiving apparatus connected to a C-RAN (Centralized-RAN). There may be. RAN is an abbreviation for Radio | Access | Network. Further, the radio area formed by the base station may be a cell or a sector. The cell may include a cell such as a macro cell, a micro cell, a femto cell, a pico cell, a metro cell, or a home cell.
 eNB220は、UE210との間で無線通信を行なうことにより、UE210間の通信を中継する。無線通信は、eNB220からUE210に割り当てられた無線リソースを用いて行なわれてよい。なお、無線リソースは時間及び周波数に関連するリソースであってよい。また、eNB220は、例えばS1インタフェースを介してMME230に接続されてよい。 ENB220 relays communication between UE210 by performing radio | wireless communication between UE210. The radio communication may be performed using radio resources allocated from the eNB 220 to the UE 210. The radio resource may be a resource related to time and frequency. Further, the eNB 220 may be connected to the MME 230 via, for example, an S1 interface.
 eNB220は、UE210間の折り返し通信に関する処理が可能である。なお、eNB220は、UE210間の近接通信サービスに関する処理を行なってもよい。折り返し通信及び近接通信サービスについては後述する。 The eNB 220 can perform processing related to loopback communication between the UEs 210. In addition, eNB220 may perform the process regarding the near field communication service between UE210. The return communication and the proximity communication service will be described later.
 MME230は、eNB220を収容し、ネットワーク制御のControl Plane(C-plane)の処理を行なう。また、MME230は、UE210の地理的な位置に関する位置登録を処理及び管理してよい。さらに、MME230は、折り返し通信や近接通信サービスを制御してよい。 The MME 230 accommodates the eNB 220 and performs the process of Control Plane (C-plane) for network control. In addition, the MME 230 may process and manage location registration related to the geographical location of the UE 210. Further, the MME 230 may control the return communication and the near field communication service.
 SGW240及びPGW250は、パケットコア網280におけるゲートウェイの一例である。例えば、SGW240は、User Plane(U-plane)のデータ(ユーザデータ)を処理する。PGW250は、外部のネットワーク260と接続されてよく、UE210等の無線通信システム200内の機器と外部のネットワーク260との間のゲートウェイとして機能してよい。ネットワーク260は、例えばインターネットや企業イントラネット等のパケットデータネットワークであってよい。 The SGW 240 and the PGW 250 are examples of gateways in the packet core network 280. For example, the SGW 240 processes User Plane (U-plane) data (user data). The PGW 250 may be connected to an external network 260 and may function as a gateway between a device in the wireless communication system 200 such as the UE 210 and the external network 260. The network 260 may be a packet data network such as the Internet or a corporate intranet.
 (折り返し通信)
 ここで、無線通信システム200で実施される折り返し通信について説明する。無線通信システム200では、パケットコア網280のトラフィック流量を低減するために、eNB220内での折り返し通信が行なわれてよい。折り返し通信としては、例えばEnhancements for Infrastructure-based Data Communication between Devices (eICBD)が挙げられる。
(Return communication)
Here, the loopback communication performed in the wireless communication system 200 will be described. In the wireless communication system 200, loopback communication within the eNB 220 may be performed in order to reduce the traffic flow rate of the packet core network 280. An example of the loopback communication is Enhancements for Infrastructure-based Data Communication between Devices (eICBD).
 折り返し通信の制御は、後述するように、MME230及びeNB220の一方によって行なわれてもよいし、MME230及びeNB220の双方によって行なわれてもよい。 The control of the loopback communication may be performed by one of the MME 230 and the eNB 220 or may be performed by both the MME 230 and the eNB 220 as described later.
 折り返し通信では、図4に例示するように、eNB220の無線エリア内に位置するUE210-1及び210-3が、eNB220での折り返し経路であってパケットコア網280を経由しない経路によって互いに通信可能である。 In the loopback communication, as illustrated in FIG. 4, UEs 210-1 and 210-3 located in the radio area of the eNB 220 can communicate with each other via a loopback path in the eNB 220 and not via the packet core network 280. is there.
 折り返し通信により、無線通信システム200におけるパケットコア網280、例えばMME230等を含むコアネットワークのトラフィック流量を低減でき、また、パケットコア網280を経由するよりも、UE210間の伝送遅延時間を短縮できる。 The loopback communication can reduce the traffic flow of the core network including the packet core network 280 in the wireless communication system 200, for example, the MME 230, and the transmission delay time between the UEs 210 can be shortened compared with the packet core network 280.
 なお、折り返し通信は、UE210-1~210-3のいずれか2以上の組み合わせのUE210間で行なわれてよい。 Note that the loopback communication may be performed between any two or more combinations of UEs 210-1 to 210-3.
 また、図4では1つのeNB220を経由する折り返し通信の例について説明したが、複数のeNB220を経由する折り返し通信が行なわれてもよい。例えば、UE210-4は、eNB220の無線エリア内には位置しておらず、例えば他のeNB220の無線エリア内に位置してよい。この場合、UE210-1~210-3の少なくとも1つと、UE210-4との間で、それぞれと接続するeNB220を経由する経路によって折り返し通信が行なわれてもよい。なお、複数のeNB220の間の経路には、例えばX2インタフェースが用いられてもよい。X2インタフェースは、基地局間通信インタフェースの一例である。なお、X2インタフェースは、上位ネットワーク(例えばパケットコア網280)とは異なるネットワークであってよい。 In addition, although an example of loopback communication via one eNB 220 has been described in FIG. 4, loopback communication via a plurality of eNBs 220 may be performed. For example, the UE 210-4 may not be located in the radio area of the eNB 220 but may be located in the radio area of another eNB 220, for example. In this case, return communication may be performed between at least one of the UEs 210-1 to 210-3 and the UE 210-4 through a route that passes through the eNB 220 connected to each of the UEs 210-4. Note that, for example, an X2 interface may be used as a route between the plurality of eNBs 220. The X2 interface is an example of a communication interface between base stations. Note that the X2 interface may be a network different from the host network (for example, the packet core network 280).
 (近接通信サービス)
 次に、無線通信システム200で実施可能な近接通信サービスについて説明する。近接通信サービスは、UE210間での直接通信を可能にするサービスである。近接通信サービスとしては、例えば、3GPPで検討されているProximity Service(ProSe)が挙げられる。
(Proximity communication service)
Next, a near field communication service that can be performed in the wireless communication system 200 will be described. The near field communication service is a service that enables direct communication between the UEs 210. As the near field communication service, for example, Proximity Service (ProSe) studied by 3GPP can be cited.
 近接通信サービスの制御は、MME230及びeNB220の一方によって行なわれてもよいし、MME230及びeNB220の双方によって行なわれてもよい。また、近接通信サービスの制御は、MME230に代えて、近接通信サービスを提供するProSe Function(ProSe Func)装置等の通信装置により行なわれてもよい。ProSe Func装置は、例えばパケットコア網280に含まれてよい。 The control of the near field communication service may be performed by one of the MME 230 and the eNB 220, or may be performed by both the MME 230 and the eNB 220. The control of the proximity communication service may be performed by a communication device such as a ProSe Function (ProSe Func) device that provides the proximity communication service instead of the MME 230. The ProSe Func device may be included in the packet core network 280, for example.
 近接通信サービスでは、図5に例示するように、eNB220の無線エリア内に位置するUE210-1及び210-2が、eNB220の制御によって互いに無線通信可能である。図5の例では、eNB220の無線エリア内に位置するUE210-3と、eNB220の無線エリア外に位置するUE210-4とが、UE210-3と接続するeNB220の制御によって互いに無線通信可能である。 In the near field communication service, as illustrated in FIG. 5, the UEs 210-1 and 210-2 located in the radio area of the eNB 220 can communicate with each other under the control of the eNB 220. In the example of FIG. 5, the UE 210-3 located within the radio area of the eNB 220 and the UE 210-4 located outside the radio area of the eNB 220 can communicate with each other under the control of the eNB 220 connected to the UE 210-3.
 近接通信サービスによっても、無線通信システム200におけるパケットコア網280のトラフィック流量を低減でき、また、パケットコア網280を経由するよりも、UE210間の伝送遅延時間を短縮できる。 The near field communication service can also reduce the traffic flow rate of the packet core network 280 in the wireless communication system 200, and the transmission delay time between the UEs 210 can be shortened compared with the case of passing through the packet core network 280.
 (位置登録情報の管理)
 次に、無線通信システム200で実施される位置登録情報の管理について説明する。無線通信システム200では、UE210は、当該UE210が位置するエリアの情報を、eNB220を介してMME230に通知し、MME230にエリアを登録できる。
(Management of location registration information)
Next, management of location registration information performed in the wireless communication system 200 will be described. In the radio communication system 200, the UE 210 can notify the MME 230 of information on the area where the UE 210 is located via the eNB 220, and can register the area in the MME 230.
 なお、「通知」の用語は、通知対象の情報を含む信号が送信元から送信先へ送信され、送信先で当該信号が受信される(又は、さらに送信先で通知対象の情報が認識される)ことを意味する用語として用いられてよい。通知対象の情報を含む信号は、無線信号、光信号、及び電気信号のいずれの信号形態を含んでもよく、「通知」の過程で他の信号形態に変換されてもよい。通知対象の情報を含む信号は制御信号と称してもよい。また、通知はシグナリングと称してもよい。 The term “notification” means that a signal including information to be notified is transmitted from the transmission source to the transmission destination, and the signal is received at the transmission destination (or the information to be notified is further recognized at the transmission destination. ) May be used as a term meaning. The signal including the information to be notified may include any signal form of a radio signal, an optical signal, and an electric signal, and may be converted into another signal form in the process of “notification”. A signal including information to be notified may be referred to as a control signal. The notification may be referred to as signaling.
 UE210がMME230に通知するエリアの情報は、UE210がパケットコア網280に対して位置登録を行なう際に送信する位置登録情報の一例である。MME230に登録されるUE210の位置登録情報は、UE210への着呼の制御等においてMME230に用いられてよい。 The area information notified by the UE 210 to the MME 230 is an example of location registration information that is transmitted when the UE 210 performs location registration with respect to the packet core network 280. The location registration information of the UE 210 registered in the MME 230 may be used in the MME 230 in controlling an incoming call to the UE 210.
 なお、位置登録情報は、例えばNon Access Stratum(NAS;非アクセス層)のプロトコルによってUE210がMME230に送信されるため、eNB220は位置登録情報の内容を認識しない。 Note that the location registration information is transmitted from the UE 210 to the MME 230 using, for example, the Non-Access Stratum (NAS; non-access layer) protocol, so the eNB 220 does not recognize the content of the location registration information.
 位置登録情報としては、例えば位置登録エリア(Tracking Area;TA)を示すTA Identity(TAI)が挙げられる。TAIには、Public Land Mobile Network Identifier(PLMN ID)及びTracking Area Code(TAC)が含まれてよい。PLMN IDは、事業者ごとのIDの一例であり、国番号を表すMobile Country Code(MCC)番号及び事業者コードを表すMobile Network Code(MNC)番号を含んでよい。 As the location registration information, for example, TA identity (TAI) indicating a location registration area (Tracking Area) (TA) can be mentioned. The TAI may include Public Land Mobile Mobile Network Identifier (PLMN ID) and Tracking Area Code (TAC). The PLMN ID is an example of an ID for each carrier, and may include a Mobile Country Code (MCC) number representing a country code and a Mobile Network Code (MNC) number representing a carrier code.
 無線通信システム200において、eNB220は、例えばS1-Flex等の仕組みにより複数のMME230に帰属してよい。例えば、図6に示すように、eNB#1で示されるeNB220-1は、MME#a及びMME#xでそれぞれ示されるMME230-a及びMME230-xにより制御される。また、eNB#nで示されるeNB220-nも、MME#a及びMME#xにより制御される。 In the radio communication system 200, the eNB 220 may belong to a plurality of MMEs 230 by a mechanism such as S1-Flex. For example, as illustrated in FIG. 6, the eNB 220-1 indicated by eNB # 1 is controlled by the MME 230-a and MME 230-x indicated by MME # a and MME # x, respectively. The eNB 220-n indicated by eNB # n is also controlled by MME # a and MME # x.
 また、無線通信システム200では、MME230とeNB220との間でメッシュ接続(例えばフルメッシュ接続)されるプールエリア(Pool Area)290が形成されてよい。プールエリア290には、複数のTA292が構成されてよい。図6の例では、Pool Area#1で示されるプールエリア290に、TA#1-1、TA#1-2、及び、TA#1-3でそれぞれ示されるTA292-1~292-3が含まれている。 Also, in the wireless communication system 200, a pool area (Pool Area) 290 that is mesh-connected (for example, full mesh connection) between the MME 230 and the eNB 220 may be formed. In the pool area 290, a plurality of TAs 292 may be configured. In the example of FIG. 6, TA # 1-1, TA # 1-2, and TA292-1 to 292-3 respectively indicated by TA # 1-1, TA # 1-2, and TA # 1-3 are included in the pool area 290 indicated by Pool Area # 1. It is.
 図6の例では、説明の簡略化のため、eNB#1がTA#1-1を構成し、eNB#nがTA1-3を構成するように示しているが、1つ又は複数のeNB220により1つのTA292が構成されてもよい。 In the example of FIG. 6, for simplification of explanation, eNB # 1 is configured as TA # 1-1 and eNB # n is configured as TA1-3. One TA 292 may be configured.
 プールエリア290では、パケットコア網280や、MME230-eNB220間等のネットワークの輻輳を軽減させる等の目的で、TA292のエリアを変化させることができる。換言すれば、MME230は、複数のTA292を管理できる。 In the pool area 290, the TA292 area can be changed for the purpose of reducing the congestion of the network such as the packet core network 280 or between the MME 230 and the eNB 220. In other words, the MME 230 can manage a plurality of TAs 292.
 eNB220は、MME230の識別情報、例えばMME codeによって、プールエリア290内のMME230を選択できる。 The eNB 220 can select the MME 230 in the pool area 290 by the identification information of the MME 230, for example, the MME code.
 上述のように、複数のeNB220により1つのTA292を構成する場合があり、また、TA292のエリアは変化することがある。従って、MME230は、UE210から通知されるTA292(又はTAI)によって、UE210の接続先のeNB220を識別することが困難な場合がある。 As described above, one TA 292 may be configured by a plurality of eNBs 220, and the area of the TA 292 may change. Therefore, it may be difficult for the MME 230 to identify the eNB 220 to which the UE 210 is connected based on the TA 292 (or TAI) notified from the UE 210.
 換言すれば、通信を行なう2つのUE210のTA292が一致又は近接していても、2つのUE210が同一のeNB220と接続しているか否かが不明なため、MME230は折り返し通信が可能か否かの判定が困難な場合がある。 In other words, even if the TAs 292 of the two UEs 210 that communicate with each other match or are close to each other, it is unknown whether the two UEs 210 are connected to the same eNB 220. Judgment may be difficult.
 〔2-1〕第2実施形態に係る折り返し通信の制御の一例
 そこで、第2実施形態に係る無線通信システム200は、以下のように、UE210の接続先のeNB220を識別することで、折り返し通信の効率的な制御を可能とする。換言すれば、パケットコア網280を経由しないeNB220経由の端末間通信の実現を容易化できる。
[2-1] Example of Control of Return Communication According to Second Embodiment Accordingly, the wireless communication system 200 according to the second embodiment identifies the return eNB 220 as a connection destination of the UE 210 as described below. Enabling efficient control of In other words, it is possible to facilitate the inter-terminal communication via the eNB 220 not via the packet core network 280.
 (a)UE210が接続先のeNB220と無線回線を設定する手順においてパケットコア網280に対して位置登録を行なう際に、当該eNB220を識別可能なeNB識別情報を、パケットコア網280へ送信する。 (A) When the UE 210 performs location registration with respect to the packet core network 280 in the procedure of setting the radio channel with the connection destination eNB 220, eNB identification information that can identify the eNB 220 is transmitted to the packet core network 280.
 (b)発信元及び発信先のUE210が接続中のそれぞれのeNB識別情報を比較し、eNB220での折り返し通信が可能か否かを判定する。 (B) The eNB identification information to which the source and destination UEs 210 are connected is compared, and it is determined whether or not the return communication at the eNB 220 is possible.
 (c)eNB220での折り返し通信が可能と判断した場合、eNB220に対して、eNB折り返し通信の開始を通知する。 (C) When it is determined that the return communication at the eNB 220 is possible, the eNB 220 is notified of the start of the eNB return communication.
 ・上記(a)の処理について
 上記(a)において、eNB識別情報としては、例えば、eNB220が提供する無線エリアの識別情報であってもよいし、eNB220固有の識別情報であってもよく、これらの組み合わせでもよい。なお、eNB220が複数のセル又はセクタを構成する場合(例えばC-RANを含んでよい)、eNB識別情報としてeNB220固有の識別情報が用いられてよい。
-Regarding the process (a) In the above (a), the eNB identification information may be, for example, identification information of a radio area provided by the eNB 220, or identification information unique to the eNB 220. A combination of these may be used. When eNB 220 configures a plurality of cells or sectors (for example, C-RAN may be included), identification information unique to eNB 220 may be used as eNB identification information.
 eNB220が提供する無線エリアの識別情報としては、例えば、Cell Global Identifier(CGI)や、Cell Identifier(セルID)が挙げられる。eNB220固有の識別情報としては、例えば、Base Station Identifier Code(BSIC)が挙げられる。なお、CGIは、例えば3GPP TS23.003、TS36.331、及びTS36.413等で規定される。また、BSICは、例えば3GPP TS23.003で規定される。 As the identification information of the wireless area provided by the eNB 220, for example, a Cell Global Identifier (CGI) or a Cell Identifier (cell ID) may be mentioned. Examples of identification information unique to the eNB 220 include Base Station Identifier Code (BSIC). The CGI is defined by 3GPP TS23.003, TS36.331, TS36.413, and the like, for example. BSIC is defined by, for example, 3GPP TS 23.003.
 例えば、CGIは、TS36.331 V13.1.0(2016-03)の6.3.4節で、“CellGlobalIdEUTRA IE”として定義されている。LTEのCGIは、ネットワークのIDであるPLMN IDと、セルIDとで構成されてよい。セルIDは、事業者の構成するネットワーク内ではユニーク、すなわちセルを識別可能であってよい。 For example, CGI is defined as “CellGlobalIdEUTRA IE” in section 6.3.4 of TS36.331 V13.1.0 (2016-03). The LTE CGI may be composed of a PLMN ID, which is a network ID, and a cell ID. The cell ID may be unique within the network configured by the operator, that is, the cell can be identified.
 また、TS36.331の6.2.2節には、“SystemInformationBlockType1”(SIB1)が定義されている。SIB1は、Evolved Universal Terrestrial Radio Access Network(E-UTRAN)例えば基地局から無線端末へ通知されるシステム情報の一例であり、PLMN ID及びセルIDを含んでよい。SIB1は、例えば、Broadcast Channel(BCH、報知チャネル)又はPhysical Broadcast Channel(PBCH、物理報知チャネル(無線報知チャネル))によって周期的に報知されてよい。 Also, “SystemInformationBlockType1” (SIB1) is defined in section 6.2.2 of TS36.331. The SIB1 is an example of system information notified from an Evolved Universal Terrestrial Radio Access Network (E-UTRAN), for example, a base station to a wireless terminal, and may include a PLMN ID and a cell ID. SIB1 may be periodically broadcast by, for example, Broadcast Channel (BCH, broadcast channel) or Physical Broadcast Channel (PBCH, physical broadcast channel (wireless broadcast channel)).
 このように、eNB220がUE210にSIB1を通知することにより、実質的にCGIがUE210に通知されてよい。なお、SIB1は、UE210によるセル選択に用いられる情報を含んでよい。UE210は、さらにセル選択に必要な情報であるSIB5を受信する前に、SIB1を受信してよい。 Thus, the CGI may be substantially notified to the UE 210 by the eNB 220 notifying the UE 210 of the SIB1. Note that SIB1 may include information used for cell selection by UE 210. The UE 210 may receive SIB1 before receiving SIB5 that is information necessary for cell selection.
 例えば、図24に示すように、UE210は、SIB1を受信し(処理C1)、SIB2を受信することで(処理C2)、SIB5の送信タイミングを知ることができる。また、UE210は、例えば、同期信号/パイロット(処理C3)や、SIB5を受信できる。UE210は、SIB5を受信することでセル選択に用いるパラメータが分かり、セル選択が可能となる(処理C4)。なお、SIB2及びSIB5は、共有無線チャネルを用いて伝送されてよい。なお、他の無線通信システムでは、例えば、SIB2以降のSIBは、無線報知チャネルや、SDSCHのトランスポートチャネルであるDL-SCHで伝送されてもよい。 For example, as shown in FIG. 24, the UE 210 can know the transmission timing of SIB5 by receiving SIB1 (process C1) and receiving SIB2 (process C2). Further, the UE 210 can receive, for example, a synchronization signal / pilot (process C3) and SIB5. The UE 210 receives the SIB5 to know the parameters used for cell selection, and enables cell selection (processing C4). Note that SIB2 and SIB5 may be transmitted using a shared radio channel. In other wireless communication systems, for example, SIBs after SIB2 may be transmitted on a radio broadcast channel or a DL-SCH that is a transport channel of SDSCH.
 なお、SIB5にはセル選択を実施するためのパラメータが含まれている。UE210は、同期信号又は/及びパイロットを用いて同期を行なった後、パイロットを受信してパイロット受信電力及びパイロット受信品質を測定することで、セル選択が可能となる。なお、パイロット受信電力としては、LTEではRS Received Power(RSRP)が挙げられる。パイロット受信品質としては、LTEではRS Received Quality(RSRQ)が挙げられる。 Note that SIB5 includes parameters for performing cell selection. After performing synchronization using the synchronization signal or / and the pilot, the UE 210 receives the pilot and measures the pilot reception power and the pilot reception quality, thereby enabling cell selection. As the pilot reception power, RS Received Power (RSRP) is cited in LTE. As the pilot reception quality, RS Received Quality (RSRQ) is mentioned in LTE.
 セル選択の実施後、ランダムアクセス手順及びRRC接続処理を実施することで(処理C5)、UE210は送信可能となり、位置登録が可能となる(処理C6)。換言すれば、位置登録は、UE210によるセル選択の実施後に行なわれてよく、位置登録の実施前にCGIがUE210に通知されてよい。なお、UE210は、位置登録終了後、回線を切り(回線断)、待ち受け状態となってもよく、そのまま通信を継続してもよい。 After performing the cell selection, the UE 210 can transmit and perform location registration by performing the random access procedure and the RRC connection process (process C5) (process C6). In other words, the location registration may be performed after the cell selection by the UE 210, and the CGI may be notified to the UE 210 before the location registration is performed. Note that after the location registration is completed, the UE 210 may disconnect the line (line disconnection), enter a standby state, or continue communication as it is.
 なお、LTEや3GPPでは、1つのeNB220が1つのセルを提供する構成を想定している。このため、セルIDを基地局IDとして認識できる。一方、例えば、同じ通信エリア(例えば無線エリア)であっても周波数が異なれば異なるセルとなる。このように、実際の基地局では、1つの基地局が周波数の異なる複数のセルを構成することも可能である。また、1つの基地局が、通信エリアの異なる複数のセクタ(LTEではセル)を構成することも可能である。 Note that LTE and 3GPP assume a configuration in which one eNB 220 provides one cell. For this reason, cell ID can be recognized as base station ID. On the other hand, for example, even in the same communication area (for example, a wireless area), different cells become different if the frequency is different. Thus, in an actual base station, it is also possible for one base station to configure a plurality of cells having different frequencies. Also, one base station can constitute a plurality of sectors (cells in LTE) having different communication areas.
 無線通信システム200による折り返し通信では、セルが異なっていても同一基地局内で折り返し通信を実施することが可能である。これにより、上位装置、例えばMME230を介した通信で生じる伝送遅延を解消できる。 In the loopback communication by the wireless communication system 200, it is possible to perform the loopback communication within the same base station even if the cells are different. Thereby, the transmission delay which arises by communication via a high-order apparatus, for example, MME230, can be eliminated.
 なお、上述のように、無線通信システム200では、BSIC等のeNB220固有の識別情報のように、複数のセルを構成可能な基地局を識別するeNB識別情報が用いられてもよい。 Note that, as described above, in the wireless communication system 200, eNB identification information for identifying base stations capable of configuring a plurality of cells may be used, such as identification information unique to the eNB 220 such as BSIC.
 BSICは、TS36.331 V13.1.0(2016-03)の6.3.4節において、“PhysCellIdGERAN IE”として定義されている。BSICは、3ビットの“NetworkColourCode”と3ビットの“BaseStationColourCode”とにより構成され、GERANすなわちGSM(登録商標)システムで規定されている基地局識別子である。なお、GERANは、GSM EDGE Radio Access Networkの略称であり、GSMはGlobal System for Mobile Communicationsの略称である。EDGEはEnhanced Data rates for GSM Evolutionの略称である。 BSIC is defined as “PhysCellIdGERAN IE” in section 6.3.4 of TS36.331 V13.1.0 (2016-03). BSIC is a base station identifier defined by a GERAN, that is, a GSM (registered trademark) system, which is composed of a 3-bit “NetworkColourCode” and a 3-bit “BaseStationColourCode”. GERAN is an abbreviation for GSM-EDGE-Radio-Access-Network, and GSM is an abbreviation for Global-System-for-Mobile-Communications. EDGE is an abbreviation for Enhanced Data Data rates for GSM Evolution.
 例えば、LTEの基地局は、無線回線品質測定を可能とするために、無線端末に対して、BSIC例えば“MeasObjectGERAN IE”等を通知する。これにより、無線端末によるLTEからGSMへのハンドオーバが可能となる。BSICは、例えば、ランダムアクセスを実施し基地局と無線端末との間の無線回線が確立し、さらにリンク(無線端末と通信相手装置との間の回線や基地局と上位装置との間の回線等。以下、リンクと総称する)が確立した後に通知される測定に関する制御情報の一部として、基地局から無線端末に通知されてよい。 For example, an LTE base station notifies a wireless terminal of BSIC, for example, “MeasObjectGERANIE”, etc., in order to enable wireless channel quality measurement. This enables handover from LTE to GSM by the wireless terminal. The BSIC performs, for example, random access, establishes a radio link between the base station and the radio terminal, and further links (links between the radio terminal and the communication partner device or lines between the base station and the host device). Etc. (hereinafter collectively referred to as a link) may be notified from the base station to the wireless terminal as part of the control information related to the measurement notified after the establishment.
 このように、BSICは、GSMシステムの基地局の識別情報であるが、LTEのeNB識別情報として用いられてもよい。 Thus, the BSIC is identification information of a base station of the GSM system, but may be used as LTE eNB identification information.
 以下の説明では、eNB識別情報がCGIであるものとする。 In the following description, it is assumed that the eNB identification information is CGI.
 上記(a)の処理は、例えば、各UE210の起動後や通信の開始前等のタイミングで実施されてもよい。また、上記(a)の処理は、UE210とeNB220との通信が切断され、UE210が待ち受け中の場合に実施されてもよい。 The process (a) may be performed, for example, at a timing such as after activation of each UE 210 or before the start of communication. The process (a) may be performed when the communication between the UE 210 and the eNB 220 is disconnected and the UE 210 is on standby.
 一例として、図7に示すように、eNB識別情報は、パケットコア網280へ送信する位置登録の要求に含まれてもよい。位置登録の要求としては、例えば、TS24.301の5.5.1節に記載されたATTACH REQUESTが挙げられる。図7に例示するように、UE210からeNB220を介してMME230へ送信されるATTACH REQUESTに、位置登録情報の一例としてのTAIと、eNB識別情報の一例としてのCGIが含まれてよい(処理A1)。なお、ATTACH REQUESTに対して、eNB220からUE210にATTACH ACCEPTが応答されてもよい(処理A2)。 As an example, as illustrated in FIG. 7, the eNB identification information may be included in a location registration request transmitted to the packet core network 280. An example of the location registration request is ATTACH REQUEST described in section 5.5.1 of TS24.301. As illustrated in FIG. 7, the ATTACH REQUEST transmitted from the UE 210 to the MME 230 via the eNB 220 may include a TAI as an example of location registration information and a CGI as an example of eNB identification information (processing A1). . Note that the ATTACH ACCEPT may be returned from the eNB 220 to the UE 210 in response to the ATTACH REQUEST (processing A2).
 ATTACHは、例えば、無線端末が新しい位置登録エリア、例えばTAに入った場合や、タイマが満了した場合(例えば位置登録周期が終わった場合)に実施される。この場合、TAIが無線端末から基地局の上位装置、例えばMMEや位置管理サーバへ通知される。 ATTACH is performed, for example, when the wireless terminal enters a new location registration area, for example, TA, or when the timer expires (for example, when the location registration cycle ends). In this case, the TAI is notified from the wireless terminal to a higher-level device of the base station, such as an MME or a location management server.
 なお、位置登録の要求は、ATTACH REQUESTとは異なる既存の制御信号又は新たに規定される制御信号により行なわれてもよい。他の例として、図8に示すように、eNB識別情報は、パケットコア網280へ送信する位置登録の要求送信後であって、eNB220及びパケットコア網280との間の回線設定前に送信されてもよい。なお、回線設定とは、例えばUE210がサービスを受けるための手順であってよく、一例として、ベアラ設定が挙げられる。 The location registration request may be made by an existing control signal different from ATTACH REQUEST or a newly defined control signal. As another example, as illustrated in FIG. 8, the eNB identification information is transmitted after the request for location registration to be transmitted to the packet core network 280 and before the line is set up between the eNB 220 and the packet core network 280. May be. Note that the line setting may be a procedure for the UE 210 to receive a service, for example, bearer setting.
 図8の例では、位置登録情報の一例としてのTAIを含むATTACH REQUESTがUE210からeNB220を介してMME230へ送信される(処理B1)。また、ATTACH REQUESTに対して、eNB220からUE210にATTACH ACCEPTが応答される(処理B2)。次いで、eNB識別情報の一例としてのCGIを含む制御信号がUE210からeNB220を介してMME230へ送信される(処理B3)。なお、処理B2と処理B3とは逆であってもよい。そして、UE210、eNB220、及びMME230(パケットコア網280の他の装置を含んでよい)間で、回線設定が行なわれる(処理B4)。 In the example of FIG. 8, ATTACH REQUEST including TAI as an example of location registration information is transmitted from the UE 210 to the MME 230 via the eNB 220 (processing B1). Moreover, ATTACH ACCEPT is responded from eNB220 to UE210 with respect to ATTACH REQUEST (process B2). Next, a control signal including CGI as an example of eNB identification information is transmitted from the UE 210 to the MME 230 via the eNB 220 (process B3). Note that the process B2 and the process B3 may be reversed. Then, line setting is performed between the UE 210, the eNB 220, and the MME 230 (which may include other devices of the packet core network 280) (process B4).
 このように、eNB識別情報が、位置登録情報の通知後であって回線設定前に、制御信号によってUE210からMME230に通知されてもよい。なお、eNB識別情報を含む制御信号は、既存の制御信号であってもよいし、新たに規定される制御信号であってもよい。 As described above, the eNB identification information may be notified from the UE 210 to the MME 230 by the control signal after the notification of the location registration information and before the line setting. Note that the control signal including the eNB identification information may be an existing control signal or a newly defined control signal.
 図7及び図8に示すように、eNB識別情報は、少なくともUE210に係る回線設定(例えばベアラ設定)が行なわれる前に、MME230に通知される。 7 and 8, the eNB identification information is notified to the MME 230 at least before line setting (for example, bearer setting) related to the UE 210 is performed.
 回線設定、例えばベアラ設定には、パケットコア網280における課金やQuality of Service(QoS)等の制御が含まれてよい。上記(a)の処理によれば、折り返し通信の判定に用いられるeNB識別情報が、ベアラ設定の前にMME230に通知される。従って、折り返し通信が可能な場合、ユーザパケットはパケットコア網280を経由しないため、ベアラ設定の一部又は全部、例えば、少なくとも課金等の制御が不要となる。これにより、課金等の制御を含むベアラ設定を行なうよりも処理が簡単になるため、早いタイミングで折り返し通信の制御が可能となる。例えば、ベアラ設定を行なわずに(或いは一部を実行せずに)、UE210の端末間通信を、最初の通信からeNB220での折り返し経路に設定でき、端末間通信の伝送遅延時間を短縮できる。 The line setting, for example, bearer setting, may include charging in the packet core network 280 and control such as Quality of Service (QoS). According to the process (a), the eNB identification information used for the determination of the return communication is notified to the MME 230 before the bearer setting. Therefore, when the return communication is possible, the user packet does not pass through the packet core network 280, and therefore part or all of the bearer setting, for example, at least control such as charging is not required. As a result, the processing becomes simpler than the bearer setting including control such as charging, so that the loopback communication can be controlled at an early timing. For example, without performing bearer setting (or without executing a part thereof), inter-terminal communication of UE 210 can be set as a return path in eNB 220 from the initial communication, and the transmission delay time of inter-terminal communication can be shortened.
 なお、課金やQoS等は、例えばPolicy and Charging Control(PCC)として制御されてよい。PCCは、ポリシ及び課金に関する制御手法の一例であり、QoSは、PCCのポリシに相当する。 Note that billing, QoS, and the like may be controlled as Policy Charging Control (PCC), for example. PCC is an example of a control method related to policy and charging, and QoS corresponds to a policy of PCC.
 PCCは、Policy and Charging Rules Function(PCRF)、Policy and Charging Enforcement Function(PCEF)、及びBearer Binding and Event Reporting Function(BBERF)の3つのエンティティから構成されてよい。例えば、PCEFは、PGW250に備えられてもよく、BBERFはSGW240に備えられてもよい。 The PCC may be composed of three entities: Policy and Charging Rules Function (PCRF), Policy and Charging Enforcement Function (PCEF), and Bearer Binding and Event Reporting Function (BBERF). For example, the PCEF may be provided in the PGW 250 and the BBERF may be provided in the SGW 240.
 PCRFは、ユーザの契約情報及び/又はユーザが利用するアプリケーションに応じて、パケットに適用するポリシ情報、課金ルール、及びこれらの情報による制御の対象となるパケットを特定する情報等を決定する。このように、PCRFは、例えば、QoS及び/又はQCIを管理してよい。 The PCRF determines policy information to be applied to a packet, charging rules, information for specifying a packet to be controlled based on the information, and the like according to user contract information and / or an application used by the user. Thus, the PCRF may manage, for example, QoS and / or QCI.
 なお、ポリシ情報には、例えば、優先制御又はゲートウェイにおける転送可否ルール等が含まれてよい。課金ルールには、例えば、パケット量に応じた課金等のルールが含まれてよい。制御の対象となるパケットを特定する情報には、送信元及び宛先のIPアドレス及びポート番号等が含まれてよい。 The policy information may include, for example, priority control or a transfer permission / prohibition rule in the gateway. The charging rule may include a rule such as charging according to the packet amount, for example. The information specifying the packet to be controlled may include the IP address and port number of the source and destination.
 PCEFは、PCRFから通知された情報に従い、IPフロー単位でポリシ制御の実施及び課金を行なう。 PCEF performs policy control and charges for each IP flow according to the information notified from the PCRF.
 BBERFは、PCEFと同様の処理を行なうが、課金処理は行なわない。また、BBERFは、アクセスシステム固有のQoS制御との連携処理を実施する。連携処理には、例えばPGW250から受信したパケットをeNB220へ転送するLTE無線アクセスベアラの特定等が含まれてもよい。 BBERF performs the same processing as PCEF, but does not perform billing processing. Further, BBERF performs cooperation processing with QoS control unique to the access system. The cooperation processing may include, for example, identification of an LTE radio access bearer that transfers a packet received from the PGW 250 to the eNB 220.
 このように、課金やQoS等の制御を含むベアラ設定では、無線通信システム200のパケットコア網280の各エンティティ(図3で図示を省略するPCRF、PCEF、及びBBERFを含む)による処理が実施される。このような処理のうち、折り返し通信が可能な場合、少なくとも課金に関する処理が不要となるため、パケットコア網280の処理負荷も低減できる。 In this way, in bearer setting including control such as charging and QoS, processing by each entity (including PCRF, PCEF, and BBERF, not shown in FIG. 3) of the packet core network 280 of the wireless communication system 200 is performed. The Among such processes, when return communication is possible, at least the process related to charging is not required, and therefore the processing load on the packet core network 280 can be reduced.
 ・上記(b)の処理について
 上記(b)の処理は、例えばパケットコア網280のMME230が行なってよい。MME230は、eNB220を介して各UE210から通知されたeNB識別情報を比較し、比較結果によって、パケットコア網280を経由しないeNB220経由の折り返し通信を実施するか否かを判定してよい。
-Regarding the process (b) The process (b) may be performed by the MME 230 of the packet core network 280, for example. The MME 230 may compare eNB identification information notified from each UE 210 via the eNB 220, and may determine whether or not to implement loopback communication via the eNB 220 that does not pass through the packet core network 280, based on the comparison result.
 なお、MME230は、折り返し通信の可否の判定の際に、UE210から通知された位置登録情報、例えばTA292(又はTAI)の一致を確認しなくてもよい。なお、UE210がTA292間を移動する場合のように、MME230が管理するTA292が変化する場合には、MME230は、折り返し通信の可否の判定の際に、TA292(又はTAI)等の位置登録情報の一致を確認してもよい。 Note that the MME 230 does not need to confirm the coincidence of the location registration information notified from the UE 210, for example, TA292 (or TAI), when determining whether or not return communication is possible. When the TA 292 managed by the MME 230 changes, such as when the UE 210 moves between the TAs 292, the MME 230 determines the location registration information such as the TA 292 (or TAI) when determining whether or not return communication is possible. A match may be confirmed.
 上述のように、TA292(又はTAI)が一致してもeNB220が異なる場合がある。これに対し、MME230は、端末間通信の対象となるUE210から受信したeNB識別情報の比較結果によって、端末間通信を折り返し通信に制御できる。従って、例えばeNB識別情報が一致する場合に折り返し通信を行なうと判定できるため、効率的に折り返し通信の可否を判定でき、又は、判定精度を向上できる。 As described above, the eNB 220 may be different even if the TA292 (or TAI) matches. On the other hand, MME230 can control communication between terminals to return communication by the comparison result of the eNB identification information received from UE210 used as the object of communication between terminals. Therefore, for example, it can be determined that the loopback communication is performed when the eNB identification information matches, so that it is possible to efficiently determine whether the loopback communication is possible or to improve the determination accuracy.
 ・上記(c)の処理について
 上記(c)の処理は、例えばパケットコア網280内のMME230が行なってよい。MME230は、上記(b)の処理の判定結果によって折り返し通信が可能と判定した場合、eNB220に対して、折り返し通信の開始を通知してよい。例えばMME230は、折り返し通信の開始指示を含む制御情報を、S1インタフェースを介してeNB220へ送信してよい。S1インタフェースは、基地局と制御装置との間の通信インタフェースの一例である。
Process (c) The process (c) may be performed by the MME 230 in the packet core network 280, for example. When the MME 230 determines that the return communication is possible based on the determination result of the process (b), the MME 230 may notify the eNB 220 of the start of the return communication. For example, the MME 230 may transmit control information including a return communication start instruction to the eNB 220 via the S1 interface. The S1 interface is an example of a communication interface between the base station and the control device.
 折り返し通信の開始指示には、例えば、折り返し通信を行なうことを示す情報と、折り返し通信を行なうUE210を識別可能な識別情報とが含まれてもよい。UE210を識別可能な識別情報としては、IMSI、TMSI、C-RNTI、又は、EPUID等が挙げられる。IMSIはInternational Mobile Subscriber Identityの略称であり、UE210に割り当てられる端末番号の一例である。TMSIはTemporary Mobile Subscriber Identityの略称であり、UE210とネットワークとの間でランダムに生成され、IMSIの代わりに使用される。C-RNTIはCell - Radio Network Temporary Identifierの略称であり、eNB220が割り当て、eNB220とUE210との間で使用される。EPUIDはEPC ProSe User IDの略称である。 The return communication start instruction may include, for example, information indicating that the return communication is performed and identification information that can identify the UE 210 that performs the return communication. Examples of identification information that can identify the UE 210 include IMSI, TMSI, C-RNTI, and EPUID. IMSI is an abbreviation for International Mobile Subscriber Identity, and is an example of a terminal number assigned to UE 210. TMSI is an abbreviation for “Temporary Mobile Subscriber 、 Identity”, which is randomly generated between the UE 210 and the network and used instead of the IMSI. C-RNTI is an abbreviation for Cell-> Radio-Network-Temporary-Identifier, assigned by eNB 220 and used between eNB 220 and UE 210. EPUID is an abbreviation for EPC ProSe User ID.
 MME230から折り返し通信の開始を通知されると、eNB220は、折り返し通信の開始指示によって、折り返し通信の対象となるUE210間の端末間通信を、パケットコア網280を経由しないeNB220経由の通信に制御してよい。 When notified of the start of the loopback communication from the MME 230, the eNB 220 controls the inter-terminal communication between the UEs 210 that are the target of the loopback communication to the communication via the eNB 220 not via the packet core network 280 according to the loopback communication start instruction. It's okay.
 以上のように、UE210-1及び210-2は、パケットコア網280に対して位置登録を行なう際に、接続先のeNB220を識別可能なeNB識別情報を、eNB220を介して、パケットコア網280へ送信する第1及び第2の無線端末の一例である。位置登録は、UE210がeNB220との無線回線を設定する手順において行なわれてよい。 As described above, when the UEs 210-1 and 210-2 perform location registration with respect to the packet core network 280, the eNB identification information that can identify the destination eNB 220 is transmitted via the eNB 220 to the packet core network 280. It is an example of the 1st and 2nd radio | wireless terminal which transmits to. The location registration may be performed in a procedure in which the UE 210 sets a radio channel with the eNB 220.
 また、MME230及びeNB220の少なくとも一方は、eNB220-1が送信した第1のeNB識別情報と、UE210-2が送信した第2のeNB識別情報と、を受信する制御装置の一例である。制御装置は、受信した各eNB識別情報によって、UE210-1及び210-2の間の端末間通信を、パケットコア網280を経由しないeNB220経由の通信に制御してよい。 In addition, at least one of the MME 230 and the eNB 220 is an example of a control device that receives the first eNB identification information transmitted from the eNB 220-1 and the second eNB identification information transmitted from the UE 210-2. The control device may control the inter-terminal communication between the UEs 210-1 and 210-2 to the communication via the eNB 220 that does not pass through the packet core network 280 by the received eNB identification information.
 なお、頻繁な報告による上りのトラフィックの増加を回避するために、折り返し通信を実施しない場合があってもよい。なお、「報告」としては、UE210からeNB220又はパケットコア網280(例えばMME230)に対する、折り返し通信を継続するか否かの指標となる情報の送信、例えば、サービスとは別の通信が挙げられる。 In order to avoid an increase in upstream traffic due to frequent reports, there may be cases where loopback communication is not performed. Note that the “report” includes transmission of information that is an index as to whether or not to continue loopback communication from the UE 210 to the eNB 220 or the packet core network 280 (for example, the MME 230), for example, communication different from the service.
 例えば、eNB220又はMME230は、UE210から、定期的な位置情報の測定結果、通信の状況、サービスの変更等に関する情報を取得し、取得した情報に基づいて、折り返し通信を実施するか否かや継続するか否かを判定してもよい。これらの情報の報告は、上り通信量を増加させ、トラフィックの輻輳による伝送遅延を引き起こす可能性がある。 For example, the eNB 220 or the MME 230 acquires information on periodic position information measurement results, communication status, service changes, and the like from the UE 210, and continues whether or not to implement loopback communication based on the acquired information. It may be determined whether or not to do so. The reporting of such information may increase the amount of uplink communication and cause a transmission delay due to traffic congestion.
 そこで、UE210は、報告対象の情報に応じて、例えば閾値を設け、報告対象の情報が閾値よりも劣化した場合、或いは、折り返し通信制御の変更を行なうと判断した場合に、当該情報を報告してもよい。これにより、上り通信量を削減できる。 Therefore, the UE 210 sets a threshold value, for example, according to the report target information, and reports the information when the report target information is deteriorated below the threshold value or when it is determined to change the loopback communication control. May be. Thereby, the amount of uplink communication can be reduced.
 また、MME230又はeNB220は、UE210が要求する種別、要求品質、及び、許容遅延時間(例えばMax Delay)の少なくとも1つのパラメータによって、折り返し通信の実施を制限してもよい。種別としては、サービス等が挙げられる。要求品質としては、QoS等が挙げられる。 Further, the MME 230 or the eNB 220 may limit the implementation of the loopback communication according to at least one parameter of the type requested by the UE 210, the required quality, and the allowable delay time (for example, Max Delay). Examples of the type include service. The required quality includes QoS and the like.
 〔2-2〕第2実施形態の動作例
 次に、上述の如く構成された無線通信システム200の動作例について、図9及び図10を参照して説明する。なお、以下、端末間通信の発呼元のUE210をUE#1又はUEs(Source UE)と表記し、発呼先のUE210をUE#2又はUEd(Destination UE)と表記する場合がある。
[2-2] Operation Example of Second Embodiment Next, an operation example of the wireless communication system 200 configured as described above will be described with reference to FIG. 9 and FIG. Hereinafter, the UE 210 that is the call source for inter-terminal communication may be referred to as UE # 1 or UEs (Source UE), and the UE 210 that is the call destination may be referred to as UE # 2 or UEd (Destination UE).
 図9に示すように、UE#1として示されるUE210-1が、TAI及びCGIを含むATTACH REQUESTを、eNB220を介してMME230に送信する(処理T1;図10のステップS1)。これにより、MME230では、UEsの位置登録が行なわれる。なお、ATTACH REQUESTに含まれるeNB識別情報は、CGIではなくBSICであってもよい。以下の説明でも同様である。 As shown in FIG. 9, UE 210-1 shown as UE # 1 transmits ATTACH REQUEST including TAI and CGI to MME 230 via eNB 220 (process T1; step S1 in FIG. 10). Thereby, in MME230, the location registration of UEs is performed. The eNB identification information included in the ATTACH REQUEST may be BSIC instead of CGI. The same applies to the following description.
 また、UE#2として示されるUE210-2が、TAI及びCGIを含むATTACH REQUESTを、eNB220を介してMME230に送信する(処理T2;図10のステップS2)。これにより、MME230では、UEdの位置登録が行なわれる。 Further, UE 210-2 indicated as UE # 2 transmits ATTACH REQUEST including TAI and CGI to MME 230 via eNB 220 (process T2; step S2 in FIG. 10). Thereby, in MME230, the location registration of UEd is performed.
 次に、UE#1がUE#2との通信を発呼する(図10のステップS3)。なお、通信の発呼によって、UE210とeNB220との間で、RA手順及びRadio Resource Control(RRC)接続処理が行なわれてよい。また、RRC接続後、UE210、eNB220、及び、MME230を含む複数の装置によって、これらの装置間でベアラ設定の少なくとも一部(例えばQoSの設定等)が行なわれてもよい。そして、UE#1-eNB220間及びUE#2-eNB220間の無線回線が設定される。 Next, UE # 1 initiates communication with UE # 2 (step S3 in FIG. 10). Note that an RA procedure and a radio resource control (RRC) connection process may be performed between the UE 210 and the eNB 220 by communication call. In addition, after RRC connection, a plurality of devices including the UE 210, the eNB 220, and the MME 230 may perform at least a part of the bearer setting (for example, QoS setting) between these devices. Then, a radio channel between UE # 1 and eNB 220 and between UE # 2 and eNB 220 is set.
 MME230は、各UE210から通知されたCGIによって、UE#1とUE#2との間の(例えばUEsからUEdへの)通信をeNB220での折り返し通信に設定又は制御できるか否かを判定する(処理T3;図10のステップS4)。 The MME 230 determines whether or not the communication between the UE # 1 and the UE # 2 (for example, from UEs to the UEd) can be set or controlled to be the return communication in the eNB 220 based on the CGI notified from each UE 210 ( Process T3; Step S4 in FIG.
 各UE210から通知されたCGIが一致して、折り返し通信が可能な場合(図10のステップS4でYes)、MME230は、eNB220に対して、UE#1とUE#2との間の通信について、eNB220での折り返し通信の開始を通知する(処理T4)。 When the CGI notified from each UE 210 matches and the return communication is possible (Yes in step S4 in FIG. 10), the MME 230 instructs the eNB 220 to communicate between the UE # 1 and the UE # 2. The start of loopback communication at the eNB 220 is notified (process T4).
 eNB220は、MME230から受信した折り返し通信の開始の通知によって、UE#1とUE#2との間の(例えばUEsからUEdへの)通信について、eNB220での折り返し通信を実施する(処理T5及びT6;図10のステップS5)。 The eNB 220 performs the loopback communication in the eNB220 for the communication between the UE # 1 and the UE # 2 (for example, from the UEs to the UEd) based on the notification of the start of the loopback communication received from the MME 230 (processing T5 and T6). ; Step S5 in FIG. 10).
 一方、各UE210から通知されたCGIが一致せず、折り返し通信が不可能な場合(図10のステップS4でNo)、MME230は、eNB220に対して、UE#1とUE#2との間の通信について、折り返し通信を行なわない旨を通知してもよい。或いは、MME230は、eNB220への通知を行なわなくてもよい。 On the other hand, when the CGI notified from each UE 210 does not match and the return communication is not possible (No in step S4 in FIG. 10), the MME 230 sends a message between UE # 1 and UE # 2 to the eNB 220. With respect to communication, notification of not performing return communication may be made. Or MME230 does not need to notify eNB220.
 eNB220は、折り返し通信を行なわない場合(折り返し通信の開始通知(又は制御情報。以下開始通知と総称する)を受けていない場合)、UE#1とUE#2との間の(例えばUEsからUEdへの)通信について、パケットコア網280を経由する通常の通信を実施する(図10のステップS6)。なお、通常の通信を実施する場合、UE#1及びUE#2は、それぞれ、MME230等との間で、課金等の制御を含むベアラ設定を行なってもよい。 When the eNB 220 does not perform the loopback communication (when the loopback communication start notification (or control information; hereinafter collectively referred to as the start notification) is not received), the eNB 220 is configured between the UE # 1 and the UE # 2 (for example, UEs to UEd). As for communication, normal communication via the packet core network 280 is performed (step S6 in FIG. 10). In addition, when performing normal communication, UE # 1 and UE # 2 may perform bearer setting including control such as charging with the MME 230, respectively.
 以上のように、第2実施形態に係る無線通信システム200によれば、UE210がパケットコア網280に対して位置登録を行なう際に、接続先のeNB220を識別可能なeNB識別情報が、eNB220を介してパケットコア網280に送信される。 As described above, according to the wireless communication system 200 according to the second embodiment, when the UE 210 performs location registration with respect to the packet core network 280, the eNB identification information that can identify the connection-target eNB 220 is the eNB 220. Via the packet core network 280.
 従って、例えばMME230は、折り返し通信が可能か否かを容易に判定できる。また、折り返し通信が可能となることで、端末間通信の伝送遅延時間を短縮できる。 Therefore, for example, the MME 230 can easily determine whether or not return communication is possible. In addition, since return communication is possible, the transmission delay time of communication between terminals can be shortened.
 (比較例)
 ここで、図11を参照して、第2実施形態に係る無線通信システム200の比較例について説明する。比較例としての無線通信システム1000は、図11に示すように、例示的に、2つのUE1010、3つのeNB1020、MME1030、ProSe Func装置1040、S/PGW1050、及び、HSS1060を備える。HSSはHome Subscriber Server(ホーム加入者サーバ)の略称である。HSS1060は、サービス制御や加入者データの処理を行なう。なお、MME1030、ProSe Func装置1040、S/PGW1050、及び、HSS1060は、EPCを構成する。
(Comparative example)
Here, a comparative example of the wireless communication system 200 according to the second embodiment will be described with reference to FIG. As illustrated in FIG. 11, the wireless communication system 1000 as a comparative example illustratively includes two UEs 1010, three eNBs 1020, an MME 1030, a ProSe Func device 1040, an S / PGW 1050, and an HSS 1060. HSS is an abbreviation for Home Subscriber Server. The HSS 1060 performs service control and subscriber data processing. Note that the MME 1030, the ProSe Func device 1040, the S / PGW 1050, and the HSS 1060 constitute an EPC.
 MME1030は、NASの通信をサポートし、NASプロトコルによるUE1010からの要求を、eNB1020及びS1インタフェースを介して受信できる。 The MME 1030 supports NAS communication, and can receive a request from the UE 1010 based on the NAS protocol via the eNB 1020 and the S1 interface.
 ProSe Func装置1040は、ProSeレイヤを制御する。ProSe Func装置1040は、位置情報サーバ(例えば、MME1030)と連携してUE1010の地理的な位置情報、例えばLocation Service(LCS)情報を取得できる。 The ProSe Func device 1040 controls the ProSe layer. The ProSe Func device 1040 can acquire geographical location information of the UE 1010, for example, Location Service (LCS) information, in cooperation with a location information server (eg, the MME 1030).
 無線通信システム1000は、eNB1020にProSeレイヤを実装し、コア網(EPC)側で規定されているProSeディスカバリ手順を利用して、UE1010間の地理的な近さを把握し、eNB1020での折り返し通信を実現する。 The radio communication system 1000 implements a ProSe layer in the eNB 1020, uses a ProSe discovery procedure defined on the core network (EPC) side, grasps the geographical proximity between the UEs 1010, and performs return communication in the eNB 1020 Is realized.
 例えば、ProSe Func装置1040が、取得した位置情報(例えばLCS情報)とUE1010の識別情報(例えばProSe UE ID)とをeNB1020に通知することで、eNB1020は、各UE1010の個別の位置情報を把握する。これにより、eNB1020は、各UE1010が地理的に近い場合には、ルーティングの最適化、例えば折り返し通信を実施できる。 For example, the ProSe Func device 1040 notifies the eNB 1020 of the acquired location information (eg, LCS information) and identification information (eg, ProSe UE ID) of the UE 1010, so that the eNB 1020 grasps the individual location information of each UE 1010. . Thereby, eNB1020 can implement routing optimization, for example, return communication, when each UE1010 is geographically close.
 図11の例において、EPCは、折り返し通信の可否を効率的に判定するために、ベアラを設定する手順において、UE1010の接続先の基地局の識別子を取得できる。 In the example of FIG. 11, the EPC can acquire the identifier of the base station to which the UE 1010 is connected in the procedure of setting a bearer in order to efficiently determine whether or not return communication is possible.
 これに対し、第2実施形態に係る無線通信システム200によれば、図7及び図8を用いて既述のように、ベアラ設定の一部又は全部、例えば、少なくとも課金等の制御が不要となり、早いタイミングで折り返し通信の制御を行なうことができる。例えば、UE210の端末間通信を、最初の通信からeNB220での折り返し経路に設定でき、端末間通信の伝送遅延時間を短縮できる。 On the other hand, according to the wireless communication system 200 according to the second embodiment, as described above with reference to FIGS. 7 and 8, part or all of the bearer setting, for example, at least control such as charging is not required. The return communication can be controlled at an early timing. For example, the inter-terminal communication of the UE 210 can be set as a return path in the eNB 220 from the initial communication, and the transmission delay time of the inter-terminal communication can be shortened.
 〔3〕第3実施形態
 次に、第3実施形態について説明する。第3実施形態では、第1又は第2実施形態に加えて、UEが、当該UEのInternet Protocol Address(IPアドレス)を接続先のeNBに通知してよい。eNBは、各UEから受信したIPアドレスによって、端末間通信を折り返し通信に制御してよい。IPアドレスは、UEを識別可能な端末識別情報の一例である。
[3] Third Embodiment Next, a third embodiment will be described. In the third embodiment, in addition to the first or second embodiment, the UE may notify the eNB of the connection destination of the Internet Protocol Address (IP address) of the UE. The eNB may control the terminal-to-terminal communication to return communication based on the IP address received from each UE. The IP address is an example of terminal identification information that can identify the UE.
 なお、eNBは、MMEから折り返し通信の開始通知を受けた場合に、IPアドレスによる折り返し通信の制御を行なってもよい。 Note that the eNB may control the return communication using the IP address when receiving a start notification of the return communication from the MME.
 eNBは、IPアドレスによって折り返し通信を制御することで、マルチサービスにも対応できる。 ENB can cope with multi-service by controlling loopback communication by IP address.
 例えば、UEに複数のIPアドレスが割り当てられる場合や、UEが複数のIPアドレス(通信先)と通信する場合に、折り返し通信を行なうIPアドレスと、折り返し通信を行なわないIPアドレスとが分かれてもよい。折り返し通信を行なう/行なわないIPアドレスは、例えばサービスごとに分かれてもよい。これにより、折り返し通信を行なうIPアドレス間の通信(例えばサービス)については、折り返し通信が実施され、折り返し通信を行なわないIPアドレス間の通信(例えばサービス)については折り返し通信が不要と判断されてもよい。 For example, when a plurality of IP addresses are assigned to the UE, or when the UE communicates with a plurality of IP addresses (communication destinations), an IP address that performs loopback communication and an IP address that does not perform loopback communication are separated. Good. The IP address for performing / not performing the return communication may be divided for each service, for example. As a result, loopback communication is performed for communication (for example, service) between IP addresses that perform loopback communication, and loopback communication is determined to be unnecessary for communication (for example, service) between IP addresses that do not perform loopback communication. Good.
 図12は、第3実施形態に係る無線通信システム300の構成例を示すブロック図である。無線通信システム300は、図12に示すように、例示的に、複数(図12の例では2つ)のUE310-1及び310-2、eNB320、MME330、SGW340、並びに、ネットワーク360に接続されるPGW350を備えてよい。 FIG. 12 is a block diagram illustrating a configuration example of a wireless communication system 300 according to the third embodiment. The wireless communication system 300 is illustratively connected to a plurality (two in the example of FIG. 12) UEs 310-1 and 310-2, eNB 320, MME 330, SGW 340, and network 360, as shown in FIG. A PGW 350 may be provided.
 UE310及びeNB320は、無線通信が行なわれる無線アクセス網370に含まれてよい。また、MME330、SGW340、及び、PGW350は、パケット通信が行なわれるパケットコア網380を形成してよい。 UE 310 and eNB 320 may be included in a radio access network 370 in which radio communication is performed. Further, the MME 330, the SGW 340, and the PGW 350 may form a packet core network 380 in which packet communication is performed.
 第3実施形態に係る無線通信システム300は、特に言及しない限り、第2実施形態に係る無線通信システム200と同様でよい。UE310、eNB320、MME330、SGW340、PGW350、ネットワーク360、無線アクセス網370、及び、パケットコア網380についても、特に言及しない限り、無線通信システム200における同一名の装置等とそれぞれ同様でよい。 The radio communication system 300 according to the third embodiment may be the same as the radio communication system 200 according to the second embodiment unless otherwise specified. The UE 310, the eNB 320, the MME 330, the SGW 340, the PGW 350, the network 360, the radio access network 370, and the packet core network 380 may be the same as the devices of the same name in the radio communication system 200 unless otherwise specified.
 以下、第3実施形態の動作例について、図13及び図14を参照して説明する。なお、以下、端末間通信の発呼元のUE310をUE#1又はUEsと表記し、発呼先のUE310をUE#2又はUEdと表記する場合がある。 Hereinafter, an operation example of the third embodiment will be described with reference to FIGS. 13 and 14. Hereinafter, the UE 310 that is a call source for inter-terminal communication may be referred to as UE # 1 or UEs, and the UE 310 that is the call destination may be referred to as UE # 2 or UEd.
 図13に示すように、UE#1として示されるUE310-1が、TAI及びCGIを含むATTACH REQUESTを、eNB320を介してMME330に送信する(処理T11;図14のステップS11)。これにより、MME330では、UEsの位置登録が行なわれる。なお、ATTACH REQUESTに含まれるeNB識別情報は、CGIではなくBSICであってもよい。以下の説明でも同様である。 As shown in FIG. 13, UE 310-1 shown as UE # 1 transmits ATTACH REQUEST including TAI and CGI to MME 330 via eNB 320 (process T11; step S11 in FIG. 14). Thereby, the location registration of UEs is performed in MME330. The eNB identification information included in the ATTACH REQUEST may be BSIC instead of CGI. The same applies to the following description.
 また、UE#2として示されるUE310-2が、TAI及びCGIを含むATTACH REQUESTを、eNB320を介してMME330に送信する(処理T12;図14のステップS12)。これにより、MME330では、UEdの位置登録が行なわれる。 Further, UE 310-2 indicated as UE # 2 transmits ATTACH REQUEST including TAI and CGI to MME 330 via eNB 320 (process T12; step S12 in FIG. 14). Thereby, in MME330, the location registration of UEd is performed.
 次に、UE#1がUE#2との通信を発呼する(図14のステップS13)。なお、通信の発呼によって、UE310とeNB320との間で、RA手順及びRRC接続処理が行なわれてよい。また、RRC接続後、UE310、eNB320、及び、MME330を含む複数の装置によって、これらの装置間でベアラ設定の少なくとも一部が行なわれてもよい。そして、UE#1-eNB320間及びUE#2-eNB320間の無線回線が設定される。 Next, UE # 1 initiates communication with UE # 2 (step S13 in FIG. 14). Note that the RA procedure and the RRC connection process may be performed between the UE 310 and the eNB 320 by communication call. Further, after RRC connection, at least a part of the bearer setting may be performed between a plurality of devices including the UE 310, the eNB 320, and the MME 330. Then, a radio channel between UE # 1 and eNB 320 and between UE # 2 and eNB 320 is set.
 次いで、UE#1、eNB320、MME330、及び、PGW350を含む複数の装置によって、UE#1にIPアドレスが割り当てられる(処理T13)。また、UE#2、eNB320、MME330、及び、PGW350を含む複数の装置によって、UE#2にIPアドレスが割り当てられる(処理T14)。 Next, an IP address is assigned to UE # 1 by a plurality of devices including UE # 1, eNB 320, MME 330, and PGW 350 (process T13). In addition, an IP address is assigned to UE # 2 by a plurality of devices including UE # 2, eNB320, MME330, and PGW350 (process T14).
 MME330は、各UE310から通知されたCGIによって、UE#1とUE#2との間の(例えばUEsからUEdへの)通信をeNB320での折り返し通信にできるか否かを判定する(処理T15;図14のステップS14)。 The MME 330 determines whether or not communication between the UE # 1 and the UE # 2 (for example, from UEs to UEd) can be turned back to the eNB 320 based on the CGI notified from each UE 310 (process T15; Step S14 in FIG.
 各UE310から通知されたCGIが一致して、折り返し通信が可能な場合(図14のステップS14でYes)、MME330は、eNB320に対して、eNB折り返し通信の可否の制御要求を送信する(処理T16)。 When the CGI notified from each UE 310 matches and the return communication is possible (Yes in step S14 in FIG. 14), the MME 330 transmits a control request for eNB return communication permission to the eNB 320 (process T16). ).
 eNB折り返し通信の可否の制御要求は、第2実施形態における折り返し通信の開始通知と同様に通知されてもよいし、既存の制御信号又は新たな制御信号によって送信されてもよい。 The control request as to whether or not eNB return communication is possible may be notified in the same manner as the start notification of return communication in the second embodiment, or may be transmitted by an existing control signal or a new control signal.
 eNB折り返し通信の可否の制御要求には、折り返し通信の対象となるUE#1及びUE#2のIPアドレスが含まれてもよい(図14のステップS15及びS16)。なお、MME330は、PGW350から各UE310のIPアドレスを取得しておいてよい。或いは、eNB320は、UE310に対してIPアドレスの送信を要求してよく、UE310は、eNB320から要求を受信すると、IPアドレスをeNB320宛の信号に含めて送信してもよい(処理T17)。 The eNB loopback communication control request may include the IP addresses of UE # 1 and UE # 2 that are the targets of loopback communication (steps S15 and S16 in FIG. 14). The MME 330 may acquire the IP address of each UE 310 from the PGW 350. Or eNB320 may request | require transmission of an IP address with respect to UE310, UE310 may include an IP address in the signal addressed to eNB320, and may transmit, when a request | requirement is received from eNB320 (process T17).
 eNB320は、処理T16及び処理T17の少なくとも一方により、折り返し通信の可否の制御対象である各UE310のIPアドレスを取得できる。なお、処理T16の制御要求に対象UE310のIPアドレスが含まれる場合、処理T17は実行されなくてもよい。 The eNB 320 can acquire the IP address of each UE 310 that is a control target of whether or not return communication is possible by at least one of the process T16 and the process T17. Note that when the control request in process T16 includes the IP address of the target UE 310, the process T17 may not be executed.
 eNB320は、MME330又は各UE310から受信した、折り返し通信の可否の制御対象である各UE310のIPアドレスを登録し、管理する(図14のステップS17)。例えば、eNB320は、UE#1及びUE#2のIPアドレスをそれぞれ管理してよい。 The eNB 320 registers and manages the IP address of each UE 310 that is received from the MME 330 or each UE 310 and is subject to control of whether or not return communication is possible (step S17 in FIG. 14). For example, the eNB 320 may manage the IP addresses of UE # 1 and UE # 2, respectively.
 次いで、eNB320は、UE310、例えばUE#1から送信された信号に含まれる発信元及び発信先のIPアドレスを取得する。発信元及び発信先のIPアドレスは、eNB320が信号から取得してもよいし、パケットコア網380、例えばMME330が信号から取得し、取得したIPアドレスをeNB320に通知してもよい。 Next, the eNB 320 acquires the source and destination IP addresses included in the signal transmitted from the UE 310, for example, the UE # 1. The source and destination IP addresses may be acquired from the signal by the eNB 320, or may be acquired from the signal by the packet core network 380, for example, the MME 330, and the acquired IP address may be notified to the eNB 320.
 信号からの発信元及び発信先のIPアドレスの取得は、図15に例示するように、伝送されるIPパケットのヘッダから、ソースIPアドレス及びデスティネーションIPアドレスを確認することで行なわれてよい。 The acquisition of the source and destination IP addresses from the signal may be performed by confirming the source IP address and the destination IP address from the header of the transmitted IP packet, as illustrated in FIG.
 なお、従来、eNBは、信号、例えばIPパケットの内容を確認しない。また、UEのIPアドレスはPGWから割り当てられるため、eNBはUEのIPアドレスを把握しない。これに対し、第3実施形態では、eNB320が、伝送されるIPパケットのヘッダから、発信元及び発信先のIPアドレスを取得することで、IPアドレスによる折り返し通信の可否の判定を行なうことができる。 Note that conventionally, the eNB does not confirm the content of a signal, for example, an IP packet. Moreover, since the IP address of the UE is assigned from the PGW, the eNB does not grasp the IP address of the UE. On the other hand, in the third embodiment, the eNB 320 can determine whether or not return communication by the IP address is possible by acquiring the IP address of the source and destination from the header of the transmitted IP packet. .
 なお、eNB320は、UDP又はGTP等のパケットのヘッダや、伝送に使用されたヘッダ(例えば中継元又は中継先のソースアドレス又はデスティネーションアドレス)については、IPアドレスを取得しなくてもよい。なお、UDPはUser Datagram Protocolの略称であり、GTPはGeneral Packet Radio Switching(GPRS) Tunneling Protocolの略称である。 Note that the eNB 320 does not have to acquire an IP address for a packet header such as UDP or GTP or a header used for transmission (for example, a source address or a destination address of a relay source or a relay destination). UDP is an abbreviation for User Datagram Protocol, and GTP is an abbreviation for General Packet Radio Switching (GPRS) Tunneling Protocol.
 図13の説明に戻り、eNB320は、受信した信号から取得した発信元及び発信先のIPアドレスと、管理するIPアドレスとを比較し、UE310間の通信をeNB320での折り返し通信にできるか否かを判定する(処理T18;図14のステップS18)。 Returning to the description of FIG. 13, the eNB 320 compares the IP address of the transmission source and the transmission destination acquired from the received signal with the IP address to be managed, and whether or not the communication between the UEs 310 can be the return communication in the eNB 320. Is determined (process T18; step S18 in FIG. 14).
 IPアドレスとが一致する場合(図14のステップS18でYes)、例えば、受信したIPアドレスの発信元がUE#1、発信先がUE#2である場合、eNB320での折り返し通信が可能である。この場合、eNB320は、MME330に対して、eNB折返通信の開始通知を送信する(処理T19;図14のステップS19)。 When the IP address matches (Yes in step S18 in FIG. 14), for example, when the source of the received IP address is UE # 1 and the destination is UE # 2, loopback communication at the eNB 320 is possible. . In this case, the eNB 320 transmits an eNB return communication start notification to the MME 330 (process T19; step S19 in FIG. 14).
 また、eNB320は、PGW350に対して、eNB折返通信の開始通知を送信する(処理T20;図14のステップS19)。なお、MME330が、処理T19で受信したeNB折返通信の開始通知をPGW350に転送してもよく、この場合、処理T20は行なわれなくてよい。 Also, the eNB 320 transmits an eNB return communication start notification to the PGW 350 (process T20; step S19 in FIG. 14). Note that the MME 330 may transfer the eNB return communication start notification received in the process T19 to the PGW 350, and in this case, the process T20 may not be performed.
 なお、折り返し通信の開始通知は、課金等を行なうための情報を含んでよい。上述のように、折り返し通信では、ユーザデータがパケットコア網380を経由しない。そこで、eNB320は、課金等の制御を行なうトリガとして、開始通知をMME330又はPGW350に送信してよい。開始通知の送信先は、MME330又はPGW350に限らず、例えば、PCCのうちの少なくとも1つの装置であってもよい。 Note that the return communication start notification may include information for charging. As described above, user data does not pass through the packet core network 380 in loopback communication. Therefore, the eNB 320 may transmit a start notification to the MME 330 or the PGW 350 as a trigger for performing control such as charging. The transmission destination of the start notification is not limited to the MME 330 or the PGW 350, and may be, for example, at least one device of the PCC.
 なお、eNB320は、例えば、PGW350等に代わり、使用量の計測等を行ない、定期的に計測した情報をPGW350に通知してもよい。 Note that, for example, the eNB 320 may measure the usage amount instead of the PGW 350 or the like, and notify the PGW 350 of the information measured periodically.
 eNB折返通信の開始通知は、処理T16でMME330から通知されるeNB折り返し通信の可否の制御要求への応答として送信されてもよいし、既存の制御信号又は新たな制御信号によって送信されてもよい。 The start notification of the eNB return communication may be transmitted as a response to the eNB return communication availability control request notified from the MME 330 in the process T16, or may be transmitted by an existing control signal or a new control signal. .
 そして、eNB320は、UE310から受信した信号を、eNB320での折り返し通信によって信号の発信先に送信することで、eNBでの折り返し通信を実施する(処理T21及びT22;図14のステップS20)。例えば、eNB320は、UE#1からUE#2への通信を、eNB320での折り返し通信に制御してよい。 Then, the eNB 320 performs the return communication in the eNB by transmitting the signal received from the UE 310 to the signal transmission destination by the return communication in the eNB 320 (processing T21 and T22; step S20 in FIG. 14). For example, the eNB 320 may control communication from the UE # 1 to the UE # 2 to return communication at the eNB 320.
 なお、eNB320は、ステップS20において、UE310から受信する他の(例えば後続の)信号についても、発信元及び発信先のIPアドレスが、管理するIPアドレスと一致すれば、当該IPパケットについて折り返し通信を実施してよい。 Note that, in step S20, the eNB 320 also performs loopback communication for the IP packet if the source and destination IP addresses match the IP address to be managed for other (for example, subsequent) signals received from the UE 310. May be implemented.
 換言すれば、UE310から受信するIPパケットの発信元及び発信先のIPアドレスが、いずれも同一のeNB320に接続されるUE310のIPアドレスである場合、eNB320は、当該IPパケットについて折り返し通信を実施してよい。 In other words, when the IP address of the IP packet received from the UE 310 is the IP address of the UE 310 connected to the same eNB 320, the eNB 320 performs loopback communication for the IP packet. It's okay.
 一方、図14のステップS18において、IPアドレスが一致しない場合(ステップS18でNo)、eNB320は、UE#1とUE#2との間の通信について、パケットコア網380を経由する通常の通信を実施する(図14のステップS21)。 On the other hand, if the IP addresses do not match in step S18 of FIG. 14 (No in step S18), the eNB 320 performs normal communication via the packet core network 380 for communication between UE # 1 and UE # 2. It implements (step S21 of FIG. 14).
 また、図14のステップS14において、各UE310から通知されたCGIが一致せず、折り返し通信が不可能な場合(図14のステップS14でNo)、eNB320は、UE#1とUE#2との間で通常の通信を実施する(図14のステップS21)。 Moreover, in step S14 of FIG. 14, when CGI notified from each UE310 does not correspond and return communication is impossible (No in step S14 of FIG. 14), the eNB 320 determines that UE # 1 and UE # 2 Normal communication is performed between them (step S21 in FIG. 14).
 なお、図14のステップS14でNoの場合、MME330は、eNB320に対して、UE#1とUE#2との間の通信について、折り返し通信を行なわない旨を通知してもよい。或いは、MME330は、eNB320への通知を行なわなくてもよい。この場合、MME330やPGW350等により、課金やQoS等の制御を含むベアラが設定されてもよい。 Note that, in the case of No in step S14 of FIG. 14, the MME 330 may notify the eNB 320 that the communication between the UE # 1 and the UE # 2 is not performed. Alternatively, the MME 330 may not notify the eNB 320. In this case, a bearer including control such as charging and QoS may be set by the MME 330, the PGW 350, and the like.
 以上のように、第3実施形態に係る無線通信システム300によれば、第2実施形態と同様の効果を奏することができる。また、eNB320によりIPパケットごとに折り返し通信の可否を判定できるため、マルチサービスにも適用できる。 As described above, according to the wireless communication system 300 according to the third embodiment, the same effects as those of the second embodiment can be obtained. In addition, since eNB 320 can determine whether or not return communication is possible for each IP packet, it can also be applied to multiservice.
 なお、MME330及びeNB320の処理は、MME330が実施してもよいし、eNB320が実施してもよい。 Note that the processing of the MME 330 and the eNB 320 may be performed by the MME 330 or the eNB 320.
 〔4〕第4実施形態
 第3実施形態は、第1又は第2実施形態を前提としなくてもよい。例えば、図13において、MME330の処理T15及びT16は実施されなくてもよく、図14において、ステップS14は実施されなくてもよい。この場合、ステップS15及びS16におけるIPアドレスの通知は、図13の処理T17のように、UE310から行なわれてもよい。
[4] Fourth Embodiment The third embodiment may not be based on the first or second embodiment. For example, in FIG. 13, the processes T15 and T16 of the MME 330 may not be performed, and in FIG. 14, step S14 may not be performed. In this case, the notification of the IP address in steps S15 and S16 may be performed from the UE 310 as in process T17 of FIG.
 第4実施形態によっても、eNB320によりIPパケットごとに折り返し通信の可否を判定できるため、マルチサービスにも適用できる。 Also in the fourth embodiment, since eNB 320 can determine whether or not return communication is possible for each IP packet, it can also be applied to a multi-service.
 〔5〕第1~第4実施形態の装置構成例
 次に、上述した第1~第4実施形態に係る無線通信システム100、200、及び、300の装置構成例について説明する。
[5] Device Configuration Examples of First to Fourth Embodiments Next, device configuration examples of the wireless communication systems 100, 200, and 300 according to the first to fourth embodiments described above will be described.
 〔5-1〕機能構成例
 図16は無線端末410の機能構成例を示すブロック図である。図17は基地局420の機能構成例を示すブロック図である。図18はMME430の機能構成例を示すブロック図である。図19はSGW440の機能構成例を示すブロック図である。図20はPGW450の機能構成例を示すブロック図である。
[5-1] Functional Configuration Example FIG. 16 is a block diagram illustrating a functional configuration example of the wireless terminal 410. FIG. 17 is a block diagram illustrating a functional configuration example of the base station 420. FIG. 18 is a block diagram illustrating a functional configuration example of the MME 430. FIG. 19 is a block diagram illustrating a functional configuration example of the SGW 440. FIG. 20 is a block diagram illustrating a functional configuration example of the PGW 450.
 無線端末410は、無線端末110、UE210、及び、UE310の一例である。基地局420は、基地局120、eNB220、及び、eNB320の一例である。MME430は、制御装置130、MME230、及び、MME330の一例である。SGW440は、SGW240、及び、SGW340の一例である。PGW450は、PGW250、及び、PGW350の一例である。 The wireless terminal 410 is an example of the wireless terminal 110, the UE 210, and the UE 310. Base station 420 is an example of base station 120, eNB 220, and eNB 320. The MME 430 is an example of the control device 130, the MME 230, and the MME 330. The SGW 440 is an example of the SGW 240 and the SGW 340. The PGW 450 is an example of the PGW 250 and the PGW 350.
 (無線端末)
 無線端末410は、図16に示すように、例示的に、アンテナ411、無線受信部412、端末側制御部413、制御信号生成部414、及び、無線送信部415を備えてよい。
(Wireless terminal)
As illustrated in FIG. 16, the wireless terminal 410 may exemplarily include an antenna 411, a wireless reception unit 412, a terminal-side control unit 413, a control signal generation unit 414, and a wireless transmission unit 415.
 アンテナ411は、基地局420から送信されたDL(Downlink;下り)の無線信号を受信する。また、アンテナ411は、UL(Uplink;上り)の無線信号を基地局420へ送信する。 The antenna 411 receives a DL (Downlink) radio signal transmitted from the base station 420. Further, the antenna 411 transmits a UL (Uplink) radio signal to the base station 420.
 無線受信部412は、アンテナ411で受信されたDLの受信信号について所定の受信処理を施して、基地局420が送信したDLの信号を取得する。受信処理には、例示的に、受信信号の低雑音増幅、ベースバンド周波数への周波数変換(ダウンコンバート)、利得調整、復調、復号等が含まれてよい。 The radio reception unit 412 performs a predetermined reception process on the DL reception signal received by the antenna 411, and acquires the DL signal transmitted by the base station 420. The reception process may include, for example, low-noise amplification of the received signal, frequency conversion (down-conversion) to a baseband frequency, gain adjustment, demodulation, decoding, and the like.
 無線受信部412が取得した信号は、端末側制御部413に出力されてよい。また、無線受信部412が取得した信号は、図示しない処理部等にも出力されてよく、処理部等において端末側制御部413での処理以外の用途に用いられてもよい。 The signal acquired by the wireless reception unit 412 may be output to the terminal-side control unit 413. In addition, the signal acquired by the wireless reception unit 412 may be output to a processing unit (not shown) or the like, and may be used for a purpose other than processing in the terminal-side control unit 413 in the processing unit or the like.
 端末側制御部413は、基地局420との間で送受信する制御信号やユーザデータに関する種々の処理を行なう。端末側制御部413による処理は、第1~第4実施形態における無線端末110、UE210、及び、UE310の少なくとも1つが実行する処理を含んでよい。 The terminal-side control unit 413 performs various processes relating to control signals and user data transmitted to and received from the base station 420. The processing by the terminal side control unit 413 may include processing executed by at least one of the radio terminal 110, the UE 210, and the UE 310 in the first to fourth embodiments.
 制御信号生成部414は、基地局420に向けて送信する種々の制御信号を生成する。制御信号には、MME430宛の位置登録の際に送信する、eNB識別情報(例えばCGI又はBSIC)を含む制御信号や、eNB420宛にIPアドレスを通知する制御信号等が含まれてよい。 The control signal generation unit 414 generates various control signals to be transmitted to the base station 420. The control signal may include a control signal including eNB identification information (for example, CGI or BSIC) transmitted at the time of location registration addressed to the MME 430, a control signal for notifying the eNB 420 of the IP address, and the like.
 無線送信部415は、ULの信号について所定の送信処理を施して送信信号を生成し、アンテナ411へ出力する。送信処理には、例示的に、信号の符号化、変調、無線周波数への周波数変換(アップコンバート)、電力増幅等が含まれてよい。ULの信号には、制御信号生成部414で生成された制御信号、又は/及び、端末側制御部413又は図示しない処理部等で生成されたユーザデータ等が含まれてよい。 The wireless transmission unit 415 performs a predetermined transmission process on the UL signal, generates a transmission signal, and outputs the transmission signal to the antenna 411. The transmission processing may include, for example, signal encoding, modulation, frequency conversion (up-conversion) to a radio frequency, power amplification, and the like. The UL signal may include a control signal generated by the control signal generation unit 414 and / or user data generated by the terminal-side control unit 413 or a processing unit (not shown).
 上述した制御信号生成部414及び無線送信部415は、パケットコア網に対して位置登録を行なう際に、接続先の基地局420を識別可能な基地局識別情報を、基地局420を介してパケットコア網へ送信する送信部の一例である。 The control signal generation unit 414 and the wireless transmission unit 415 described above, when performing location registration with respect to the packet core network, transmit the base station identification information that can identify the connection destination base station 420 via the base station 420. It is an example of the transmission part which transmits to a core network.
 (基地局)
 基地局420は、図17に示すように、例示的に、アンテナ421、無線受信部422、SW423及び427、基地局側制御部424、制御信号生成部425、折り返し制御部426、並びに、無線送信部428を備えてよい。
(base station)
As illustrated in FIG. 17, the base station 420 exemplarily includes an antenna 421, a radio reception unit 422, SWs 423 and 427, a base station side control unit 424, a control signal generation unit 425, a loopback control unit 426, and radio transmission. A portion 428 may be provided.
 アンテナ421は、無線端末410から送信されたULの無線信号を受信する。また、アンテナ421は、DLの無線信号を無線端末410へ送信する。 The antenna 421 receives a UL radio signal transmitted from the radio terminal 410. The antenna 421 transmits a DL radio signal to the radio terminal 410.
 無線受信部422は、アンテナ421で受信されたULの受信信号について所定の受信処理を施して、無線端末410が送信したULの信号を取得する。受信処理には、例示的に、受信信号の低雑音増幅、ベースバンド周波数への周波数変換(ダウンコンバート)、利得調整、復調、復号等が含まれてよい。 The wireless reception unit 422 performs a predetermined reception process on the UL reception signal received by the antenna 421 and acquires the UL signal transmitted by the wireless terminal 410. The reception process may include, for example, low-noise amplification of the received signal, frequency conversion (down-conversion) to a baseband frequency, gain adjustment, demodulation, decoding, and the like.
 無線受信部422が取得した信号は、SW423に出力されてよい。なお、無線端末410が送信したULの信号には、基地局420に接続された他の無線端末410宛の信号、換言すれば、折り返し通信の対象となる信号が含まれてよい。 The signal acquired by the wireless reception unit 422 may be output to the SW 423. Note that the UL signal transmitted by the wireless terminal 410 may include a signal addressed to another wireless terminal 410 connected to the base station 420, in other words, a signal that is a target of loopback communication.
 SW(スイッチ)423は、折り返し制御部426による制御によって、無線受信部422が取得した信号を、基地局側制御部424、SW427、又は、SGW440に、選択的に出力する。例えば、SW423は、基地局420での折り返し通信の対象となるユーザデータをSW427に出力し、制御信号、及び、折り返し通信の対象外のユーザデータ等を、基地局側制御部424又はSGW440に出力してよい。 The SW (switch) 423 selectively outputs the signal acquired by the wireless reception unit 422 to the base station side control unit 424, SW 427, or SGW 440 under the control of the loopback control unit 426. For example, the SW 423 outputs user data targeted for loopback communication at the base station 420 to the SW 427, and outputs a control signal, user data outside loopback communication target, and the like to the base station side control unit 424 or the SGW 440. You can do it.
 基地局側制御部424は、無線端末410又はMME430との間で送受信する制御信号又はユーザデータに関する種々の処理を行なう。基地局側制御部424による処理は、第1~第4実施形態における基地局120、eNB220、及び、eNB320の少なくとも1つが実行する処理を含んでよい。 The base station side control unit 424 performs various processes related to control signals or user data transmitted / received to / from the wireless terminal 410 or the MME 430. The processing by the base station side control unit 424 may include processing executed by at least one of the base station 120, the eNB 220, and the eNB 320 in the first to fourth embodiments.
 制御信号生成部425は、無線端末410に送信する種々の制御信号を生成する。制御信号には、無線端末410にIPアドレスの通知を要求する制御信号等が含まれてよい。 The control signal generation unit 425 generates various control signals to be transmitted to the wireless terminal 410. The control signal may include a control signal that requests the wireless terminal 410 to notify the IP address.
 折り返し制御部426は、無線端末410から受信した信号に対して、基地局420での折り返し通信の制御を行なう。折り返し制御部426による処理は、第1~第4実施形態における基地局120、eNB220、及び、eNB320の少なくとも1つが実行する、折り返し制御に関する処理を含んでよい。 The loopback control unit 426 controls loopback communication at the base station 420 with respect to the signal received from the wireless terminal 410. The process by the loopback control unit 426 may include a process related to loopback control executed by at least one of the base station 120, the eNB 220, and the eNB 320 in the first to fourth embodiments.
 例えば、折り返し制御部426は、MME430との間で制御信号による制御情報等を送受信してよい。MME430に送信する制御信号は、無線端末410が送信したeNB識別情報を含む制御信号、又は、折り返し通信の制御情報等を含んでよい。MME430から受信する制御信号は、折り返し通信の開始通知、又は、折り返し通信可否の制御要求等を含んでよい。 For example, the loopback control unit 426 may transmit / receive control information or the like by a control signal to / from the MME 430. The control signal transmitted to the MME 430 may include a control signal including eNB identification information transmitted by the radio terminal 410, control information for loopback communication, or the like. The control signal received from the MME 430 may include a return communication start notification or a request for control of return communication.
 また、折り返し制御部426は、無線端末410又はMME430から受信した、無線端末410のIPアドレスの情報を、例えば後述する図22のメモリ522に格納し、管理してよい。 Further, the loopback control unit 426 may store and manage the IP address information of the wireless terminal 410 received from the wireless terminal 410 or the MME 430, for example, in the memory 522 of FIG.
 さらに、折り返し制御部426は、無線端末410から受信した信号によって、折り返し通信の可否を判定し、判定結果によって、SW423及び427の切り替えを制御してよい。折り返し制御部426による判定には、例えば、SW423に入力された、又は、SW423から出力されるIPパケットのヘッダから、発信元及び発信先のIPアドレスを取得し、取得したIPアドレスと、管理するIPアドレスとを比較する処理が含まれてよい。 Further, the loopback control unit 426 may determine whether or not loopback communication is possible based on a signal received from the wireless terminal 410, and may control switching of the SW423 and 427 based on the determination result. For the determination by the loopback control unit 426, for example, the source and destination IP addresses are acquired from the header of the IP packet input to the SW 423 or output from the SW 423, and the acquired IP address is managed. A process of comparing with an IP address may be included.
 なお、例えば無線受信部422が取得したパケットが、IPパケットを分割して所定の手順で結合したパケット(例えば、MAC PDU)の場合、折り返し制御部426は、IPパケットのヘッダを含むMAC PDUからIPアドレスを取得してもよい。この場合、折り返し制御部426は、同じ宛先(例えば元のIPパケットのデータを含む後続のMAC PDU)については、判定を行なわずに、先に行なった判定結果を用いて折り返し通信を制御してもよい。 For example, when the packet acquired by the wireless reception unit 422 is a packet (for example, a MAC PDU) obtained by dividing an IP packet and combining the packets in a predetermined procedure, the loopback control unit 426 uses the MAC PDU including the header of the IP packet. An IP address may be acquired. In this case, the loopback control unit 426 controls the loopback communication using the determination result made earlier without performing the determination for the same destination (for example, the subsequent MAC PDU including the data of the original IP packet). Also good.
 なお、折り返し制御部426による判定のために、SW423と無線受信部422との間、又は、SW423内に、例えばバッファが設けられてもよい。バッファは、折り返し制御部426がIPパケットのヘッダ内のIPアドレスによって折り返し通信の可否を判定し、SW423を制御するまでの間、当該IPパケットを格納するのに用いられてよい。なお、バッファは、例えば図22のメモリ522の一部の記憶領域が用いられてもよい。 For the determination by the loopback control unit 426, for example, a buffer may be provided between the SW423 and the wireless reception unit 422 or in the SW423. The buffer may be used for storing the IP packet until the return control unit 426 determines whether or not return communication is possible based on the IP address in the header of the IP packet and controls the SW 423. For example, a part of the storage area of the memory 522 in FIG. 22 may be used as the buffer.
 SW427は、折り返し制御部426による制御によって、SW423、制御信号生成部425、又は、SGW440から入力される信号を、選択的に、無線送信部428に出力する。例えば、SW427は、SGW440から受信した無線端末410宛のユーザデータ、制御信号生成部425で生成された制御信号、又は、SW423から入力される折り返し通信の対象のユーザデータを、無線送信部428に出力してよい。 The SW 427 selectively outputs a signal input from the SW 423, the control signal generation unit 425, or the SGW 440 to the wireless transmission unit 428 under the control of the return control unit 426. For example, the SW 427 sends the user data addressed to the wireless terminal 410 received from the SGW 440, the control signal generated by the control signal generation unit 425, or the user data targeted for loopback communication input from the SW 423 to the wireless transmission unit 428. You may output.
 無線送信部428は、DLの信号について所定の送信処理を施して送信信号を生成し、アンテナ421へ出力する。送信処理には、例示的に、信号の符号化、変調、無線周波数への周波数変換(アップコンバート)、電力増幅等が含まれてよい。DLの信号には、制御信号生成部425で生成された制御信号、又は/及び、SGW440から受信した無線端末410宛のユーザデータ等が含まれてよい。 The wireless transmission unit 428 performs a predetermined transmission process on the DL signal to generate a transmission signal, and outputs the transmission signal to the antenna 421. The transmission processing may include, for example, signal encoding, modulation, frequency conversion (up-conversion) to a radio frequency, power amplification, and the like. The DL signal may include a control signal generated by the control signal generation unit 425 or / and user data addressed to the wireless terminal 410 received from the SGW 440 or the like.
 なお、折り返し制御部426による折り返し通信の可否の判定のために、SW427と無線送信部428との間、又は、SW427内に、バッファが設けられてもよい。 Note that a buffer may be provided between the SW 427 and the wireless transmission unit 428 or in the SW 427 in order to determine whether or not return communication is possible by the return control unit 426.
 上述したアンテナ421、無線受信部422、SW423、及び、折り返し制御部426は、通信部の一例である。通信部は、無線端末410がパケットコア網に対して位置登録を行なう際に送信した、接続先の基地局420を識別可能な基地局識別情報を受信してパケットコア網におけるMME430宛に送信してよい。 The above-described antenna 421, wireless reception unit 422, SW 423, and loopback control unit 426 are examples of a communication unit. The communication unit receives the base station identification information that can be used to identify the connection-destination base station 420 and is transmitted to the MME 430 in the packet core network. It's okay.
 また、上述したSW423及び427、並びに、折り返し制御部426は、制御部の一例である。制御部は、第1の無線端末410が送信した第1の前記基地局識別情報と、第2の無線端末410が送信した第2の基地局識別情報と、を受信したMME430からの制御に従って、端末間通信を折り返し通信に制御してよい。 Further, the above-described SW 423 and 427 and the loopback control unit 426 are examples of the control unit. The control unit, according to the control from the MME 430 that has received the first base station identification information transmitted by the first wireless terminal 410 and the second base station identification information transmitted by the second wireless terminal 410, Inter-terminal communication may be controlled to return communication.
 (MME)
 MME430は、図18に示すように、例示的に、回線制御部431を備えてよい。
(MME)
As illustrated in FIG. 18, the MME 430 may include a line control unit 431, for example.
 回線制御部431は、基地局420、SGW440、又は、PGW450との間で送受信する信号に対して、種々の制御を行なう。回線制御部431による処理は、無線通信システムにおける回線の制御に関する処理を含んでよく、第1~第4実施形態における制御装置130、MME230、及び、MME330の少なくとも1つが実行する処理を含んでよい。 The line control unit 431 performs various controls on signals transmitted to and received from the base station 420, the SGW 440, or the PGW 450. The processing by the line control unit 431 may include processing related to line control in the wireless communication system, and may include processing executed by at least one of the control device 130, the MME 230, and the MME 330 in the first to fourth embodiments. .
 例えば、回線制御部431は、無線端末410から送信されたeNB識別情報を基地局420を介して受信し、折り返し通信の制御を行なってよい。また、回線制御部431は、基地局420、SGW440、又は、PGW450との間で、制御信号により、折り返し通信の制御情報を含む種々の制御情報を送受信してよい。 For example, the line control unit 431 may receive the eNB identification information transmitted from the wireless terminal 410 via the base station 420 and control the return communication. Further, the line control unit 431 may transmit / receive various control information including control information of loopback communication to / from the base station 420, the SGW 440, or the PGW 450 by a control signal.
 上述した回線制御部431は、無線端末410がパケットコア網に対して位置登録を行なう際に送信した、接続先の基地局420を識別可能な基地局識別情報を受信する通信部の一例である。 The line control unit 431 described above is an example of a communication unit that receives base station identification information that can be used to identify a connection destination base station 420 that is transmitted when the wireless terminal 410 performs location registration with respect to the packet core network. .
 また、上述した回線制御部431は、第1の無線端末410が送信した第1の基地局識別情報と、第2の無線端末410が送信した第2の基地局識別情報と、によって、端末間通信を折り返し通信に制御する制御部の一例である。 In addition, the above-described line control unit 431 uses the first base station identification information transmitted from the first wireless terminal 410 and the second base station identification information transmitted from the second wireless terminal 410 to communicate between terminals. It is an example of the control part which controls communication to return communication.
 (SGW)
 SGW440は、図19に示すように、例示的に、データ制御部441を備えてよい。
(SGW)
As illustrated in FIG. 19, the SGW 440 may include a data control unit 441, for example.
 データ制御部441は、基地局420、MME430、又は、PGW450との間で送受信する信号に対して、種々の制御を行なう。データ制御部441による処理は、ユーザデータの制御に関する処理を含んでよく、第2~第4実施形態におけるSGW240、及び、SGW340の少なくとも1つが実行する処理を含んでよい。 The data control unit 441 performs various controls on signals transmitted to and received from the base station 420, the MME 430, or the PGW 450. The processing by the data control unit 441 may include processing related to user data control, and may include processing executed by at least one of the SGW 240 and the SGW 340 in the second to fourth embodiments.
 例えば、データ制御部441は、基地局420及びPGW450との間で、ユーザデータの送受信を行なってよい。また、データ制御部441は、MME430との間で、制御信号により、折り返し通信の制御情報を含む種々の制御情報を送受信してよい。 For example, the data control unit 441 may transmit / receive user data to / from the base station 420 and the PGW 450. Further, the data control unit 441 may transmit / receive various control information including control information for loopback communication to / from the MME 430 by a control signal.
 (PGW)
 PGW450は、図20に示すように、例示的に、回線制御部451を備えてよい。
(PGW)
As shown in FIG. 20, the PGW 450 may include a line control unit 451, for example.
 回線制御部451は、MME430、SGW440、又は、図示しないネットワーク(例えばコアネットワーク)との間で送受信する信号に対して、種々の制御を行なう。回線制御部451による処理は、無線通信システムにおける回線の制御に関する処理を含んでよく、第2~第4実施形態におけるPGW250、及び、PGW350の少なくとも1つが実行する処理を含んでよい。 The line control unit 451 performs various controls on signals transmitted to and received from the MME 430, the SGW 440, or a network (not shown) (for example, a core network). The processing by the line control unit 451 may include processing related to line control in the wireless communication system, and may include processing executed by at least one of the PGW 250 and the PGW 350 in the second to fourth embodiments.
 例えば、回線制御部451は、SGW440及びネットワークとの間で、ユーザデータの送受信を行なってよい。また、回線制御部451は、MME430との間で、制御信号により、折り返し通信の制御情報を含む種々の制御情報を送受信してよい。 For example, the line control unit 451 may transmit and receive user data between the SGW 440 and the network. The line control unit 451 may transmit and receive various control information including control information for loopback communication with the MME 430 by a control signal.
 〔5-2〕ハードウェア構成例
 図21は、図16に示す無線端末410のハードウェア構成例を示すブロック図である。図22は、図17に示す基地局420のハードウェア構成例を示すブロック図である。図23は、図18~図20に示すMME430、SGW440、又は、PGW450のハードウェア構成例を示すブロック図である。
[5-2] Hardware Configuration Example FIG. 21 is a block diagram illustrating a hardware configuration example of the wireless terminal 410 illustrated in FIG. FIG. 22 is a block diagram illustrating a hardware configuration example of the base station 420 illustrated in FIG. FIG. 23 is a block diagram illustrating a hardware configuration example of the MME 430, the SGW 440, or the PGW 450 illustrated in FIGS.
 (無線端末)
 図21に示すように、無線端末510は、例示的に、プロセッサ511、メモリ512、RF部513、及び、アンテナ514を備えてよい。なお、RFはRadio Frequencyの略称である。
(Wireless terminal)
As illustrated in FIG. 21, the wireless terminal 510 may include a processor 511, a memory 512, an RF unit 513, and an antenna 514, for example. Note that RF is an abbreviation for Radio Frequency.
 プロセッサ511は、種々の制御や演算を行なう。プロセッサ511は、無線端末510内の各ブロックとバスで相互に通信可能に接続されてよい。なお、プロセッサ511としては、Central Processing Unit(CPU)、Micro Processing Unit(MPU)、Application Specific Integrated Circuit(ASIC)、又は、Field Programmable Gate Array(FPGA)等の集積回路(IC)が挙げられる。 The processor 511 performs various controls and calculations. The processor 511 may be communicably connected to each block in the wireless terminal 510 via a bus. Examples of the processor 511 include an integrated circuit (IC) such as a Central / Processing / Unit (CPU), a Micro / Processing / Unit (MPU), an Application / Specific / Integrated / Circuit (ASIC), or a Field / Programmable / Gate Array (FPGA).
 メモリ512は、制御信号やユーザデータ等の種々のデータ及びプログラム等の情報を格納するハードウェアの一例である。メモリ512としては、揮発性メモリ及び不揮発性メモリの少なくとも一方が用いられてよい。揮発性メモリとしては、例えばRandom Access Memory(RAM)が挙げられる。不揮発性メモリとしては、例えばRead Only Memory(ROM)、フラッシュメモリ、又は、Electrically Erasable Programmable Read-Only Memory(EEPROM)が挙げられる。 The memory 512 is an example of hardware that stores various data such as control signals and user data, and information such as programs. As the memory 512, at least one of a volatile memory and a nonvolatile memory may be used. Examples of the volatile memory include Random Access Memory (RAM). Non-volatile memory includes, for example, Read Only Memory (ROM), flash memory, or Electrically Erasable Programmable Read-Only Memory (EEPROM).
 RF部513は、例えばRF回路を含んでよい。RF部513は、図16に示す無線受信部412及び無線送信部415の一例である。アンテナ514は、図16に示すアンテナ411の一例であり、基地局520(図22参照)との間で無線信号の送受信を行なってよい。 The RF unit 513 may include an RF circuit, for example. The RF unit 513 is an example of the wireless reception unit 412 and the wireless transmission unit 415 illustrated in FIG. The antenna 514 is an example of the antenna 411 illustrated in FIG. 16, and may transmit and receive a radio signal to and from the base station 520 (see FIG. 22).
 例えば、プロセッサ511は、メモリ512に格納されたプログラムを実行することにより、図16に示す無線端末410の機能を実現できる。一例として、図16に示す端末側制御部413及び制御信号生成部414の機能は、プロセッサ511により実現されてよい。また、無線受信部412及び無線送信部415の少なくとも一部の機能は、プロセッサ511により実現されてよい。 For example, the processor 511 can implement the function of the wireless terminal 410 illustrated in FIG. 16 by executing a program stored in the memory 512. As an example, the functions of the terminal-side control unit 413 and the control signal generation unit 414 illustrated in FIG. 16 may be realized by the processor 511. In addition, at least some of the functions of the wireless reception unit 412 and the wireless transmission unit 415 may be realized by the processor 511.
 (基地局)
 図22に示すように、基地局520は、例示的に、プロセッサ521、メモリ522、RF部523、アンテナ524、及び、ネットワークIF525を備えてよい。なお、IFはInterfaceの略称である。
(base station)
As illustrated in FIG. 22, the base station 520 may include a processor 521, a memory 522, an RF unit 523, an antenna 524, and a network IF 525, for example. IF is an abbreviation for Interface.
 プロセッサ521は、種々の制御や演算を行なう。プロセッサ521は、基地局520内の各ブロックとバスで相互に通信可能に接続されてよい。なお、プロセッサ521としては、CPU、MPU、ASIC、又は、FPGA等の集積回路(IC)が挙げられる。 The processor 521 performs various controls and calculations. The processor 521 may be communicably connected to each block in the base station 520 via a bus. The processor 521 may be an integrated circuit (IC) such as a CPU, MPU, ASIC, or FPGA.
 メモリ522は、制御信号やユーザデータ等の種々のデータ及びプログラム等の情報を格納するハードウェアの一例である。メモリ522としては、揮発性メモリ及び不揮発性メモリの少なくとも一方が用いられてよい。揮発性メモリとしては、例えばRAMが挙げられる。不揮発性メモリとしては、例えばROM、フラッシュメモリ、又は、EEPROMが挙げられる。 The memory 522 is an example of hardware that stores various data such as control signals and user data, and information such as programs. As the memory 522, at least one of a volatile memory and a nonvolatile memory may be used. Examples of the volatile memory include a RAM. Examples of the non-volatile memory include a ROM, a flash memory, and an EEPROM.
 RF部523は、例えばRF回路を含んでよい。RF部523は、図17に示す無線受信部422及び無線送信部428の一例である。アンテナ524は、図17に示すアンテナ421の一例であり、無線端末510との間で無線信号の送受信を行なってよい。 The RF unit 523 may include an RF circuit, for example. The RF unit 523 is an example of the wireless reception unit 422 and the wireless transmission unit 428 illustrated in FIG. The antenna 524 is an example of the antenna 421 illustrated in FIG. 17, and may transmit / receive a radio signal to / from the wireless terminal 510.
 ネットワークIF525は、ネットワーク(上位ネットワーク)、例えばパケットコア網との間の接続及び通信の制御等を行なう通信インタフェースの一例であり、処理装置530(図23参照)との間で信号の送受信を行なってよい。 The network IF 525 is an example of a communication interface that controls connection and communication with a network (upper network), for example, a packet core network, and transmits and receives signals to and from the processing device 530 (see FIG. 23). It's okay.
 例えば、プロセッサ521は、メモリ522に格納されたプログラムを実行することにより、図17に示す基地局420の機能を実現できる。一例として、図17に示す基地局側制御部424、制御信号生成部425、及び、折り返し制御部426の機能は、プロセッサ521により実現されてよい。また、無線受信部422及び無線送信部428の少なくとも一部の機能は、プロセッサ521により実現されてよい。 For example, the processor 521 can implement the function of the base station 420 shown in FIG. 17 by executing a program stored in the memory 522. As an example, the functions of the base station side control unit 424, the control signal generation unit 425, and the loopback control unit 426 illustrated in FIG. 17 may be realized by the processor 521. In addition, at least some of the functions of the wireless reception unit 422 and the wireless transmission unit 428 may be realized by the processor 521.
 なお、図22において図示を省略しているが、基地局520は、図17に示すSW423及び427の一例としてのスイッチ回路を備えてもよい。 Although not shown in FIG. 22, the base station 520 may include a switch circuit as an example of the SWs 423 and 427 shown in FIG.
 (MME、SGW、及び、PGW)
 図18~図20に示すMME430、SGW440、及び、PGW450は、いずれも同様のハードウェア構成を備えてよい。従って、以下、MME430、SGW440、及び、PGW450の各々のハードウェア構成として、処理装置530を例に挙げて説明する。
(MME, SGW, and PGW)
The MME 430, the SGW 440, and the PGW 450 shown in FIGS. 18 to 20 may all have the same hardware configuration. Therefore, hereinafter, the processing apparatus 530 will be described as an example of the hardware configuration of each of the MME 430, the SGW 440, and the PGW 450.
 図23に示すように、処理装置530は、例示的に、プロセッサ531、メモリ532、及び、ネットワークIF533を備えてよい。 23, the processing device 530 may include a processor 531, a memory 532, and a network IF 533 exemplarily.
 プロセッサ531は、種々の制御や演算を行なう。プロセッサ531は、処理装置530内の各ブロックとバスで相互に通信可能に接続されてよい。なお、プロセッサ531としては、CPU、MPU、ASIC、又は、FPGA等の集積回路(IC)が挙げられる。 The processor 531 performs various controls and calculations. The processor 531 may be communicably connected to each block in the processing device 530 via a bus. Note that examples of the processor 531 include an integrated circuit (IC) such as a CPU, MPU, ASIC, or FPGA.
 メモリ532は、制御信号やユーザデータ等の種々のデータ及びプログラム等の情報を格納するハードウェアの一例である。メモリ532としては、揮発性メモリ及び不揮発性メモリの少なくとも一方が用いられてよい。揮発性メモリとしては、例えばRAMが挙げられる。不揮発性メモリとしては、例えばROM、フラッシュメモリ、又は、EEPROMが挙げられる。 The memory 532 is an example of hardware that stores various data such as control signals and user data, and information such as programs. As the memory 532, at least one of a volatile memory and a nonvolatile memory may be used. Examples of the volatile memory include a RAM. Examples of the non-volatile memory include a ROM, a flash memory, and an EEPROM.
 ネットワークIF533は、ネットワーク(上位ネットワーク)、例えばパケットコア網や外部のネットワークとの間の接続及び通信の制御等を行なう通信インタフェースの一例である。 The network IF 533 is an example of a communication interface that controls connection and communication with a network (upper network), for example, a packet core network or an external network.
 例えば、MME430は、ネットワークIF533により、基地局420、SGW440、及び、PGW450との間でそれぞれ信号の送受信を行なってよい。また、SGW440は、ネットワークIF533により、基地局420、MME430、及び、PGW450との間でそれぞれ信号の送受信を行なってよい。さらに、また、PGW450は、ネットワークIF533により、MME430及びSGW440、並びに、外部のネットワークとの間でそれぞれ信号の送受信を行なってよい。 For example, the MME 430 may transmit and receive signals to and from the base station 420, the SGW 440, and the PGW 450 through the network IF 533. The SGW 440 may transmit and receive signals to and from the base station 420, the MME 430, and the PGW 450 through the network IF 533. Furthermore, the PGW 450 may transmit / receive signals to / from the MME 430 and the SGW 440 and an external network via the network IF 533.
 例えば、プロセッサ531は、メモリ532に格納されたプログラムを実行することにより、図18~図20に示すMME430、SGW440、又は、PGW450の機能を実現できる。 For example, the processor 531 can implement the functions of the MME 430, the SGW 440, or the PGW 450 shown in FIGS. 18 to 20 by executing a program stored in the memory 532.
 一例として、図18に示すMME430の回線制御部431の機能は、プロセッサ531により実現されてよい。又は、図19に示すSGW440のデータ制御部441の機能は、プロセッサ531により実現されてよい。又は、図20に示すPGW450の回線制御部451の機能は、プロセッサ531により実現されてよい。 As an example, the function of the line control unit 431 of the MME 430 illustrated in FIG. 18 may be realized by the processor 531. Alternatively, the function of the data control unit 441 of the SGW 440 illustrated in FIG. 19 may be realized by the processor 531. Alternatively, the function of the line control unit 451 of the PGW 450 illustrated in FIG. 20 may be realized by the processor 531.
 〔6〕その他
 上述した第1~第4実施形態は、各実施形態の趣旨を逸脱しない範囲で種々変形して実施することができる。各実施形態の各構成及び各処理は、必要に応じて取捨選択することができ、あるいは適宜組み合わせてもよい。
[6] Others The first to fourth embodiments described above can be implemented with various modifications without departing from the spirit of each embodiment. Each configuration and each process of each embodiment can be selected as necessary, or may be appropriately combined.
 例えば、第1~第4実施形態において、基地局折り返し通信は、基地局間インタフェースを用いて、コア網を経由しない複数の基地局経由の経路で実施されてもよい。これにより、端末間通信を行なう無線端末が同一の基地局と接続されていなくても、端末間通信を基地局折り返し通信に制御できる。なお、制御装置は、各無線端末から受信した基地局識別情報で識別される複数の基地局が、基地局間インタフェースにより通信可能な場合に、端末間通信を基地局折り返し通信に制御してよい。 For example, in the first to fourth embodiments, the base station loopback communication may be performed using a plurality of base station paths that do not pass through the core network, using the inter-base station interface. Thereby, even if the radio | wireless terminal which performs communication between terminals is not connected with the same base station, communication between terminals can be controlled to base station return communication. The control device may control the inter-terminal communication to the base station loopback communication when a plurality of base stations identified by the base station identification information received from each radio terminal can communicate with each other through the inter-base station interface. .
 また、例えば、第1~第4実施形態は、いずれも、端末間通信を行なう無線端末の少なくとも一方をサーバとすることで、エッジコンピューティング(Edge Computing)またはモバイルエッジコンピューティング(Mobile Edge Computing:MEC)にも適用可能である。この場合、基地局に接続されるサーバは、無線端末と位置づけられてよい。なお、サーバは、基地局と無線又は有線で接続されてよい。 Also, for example, in any of the first to fourth embodiments, at least one of the wireless terminals that perform inter-terminal communication is used as a server, so that edge computing (Edge Computing) or mobile edge computing (Mobile Edge Computing: (MEC). In this case, the server connected to the base station may be positioned as a wireless terminal. The server may be connected to the base station wirelessly or by wire.
 エッジコンピューティングは、例えば無線端末とネットワークに接続されたサーバとの間の通信を高速化するために、基地局にサーバを接続する手法である。エッジコンピューティングでは、ネットワークを経由しないコア網経由の通信によって、無線端末とサーバとの間の通信を高速化できる。基地局に接続されるサーバは、例えばネットワークに接続されたサーバの少なくとも一部の機能、又は、特定のアプリケーション等を有してよい。 Edge computing is a method of connecting a server to a base station in order to speed up communication between a wireless terminal and a server connected to a network, for example. In edge computing, communication between a wireless terminal and a server can be speeded up by communication via a core network not via a network. The server connected to the base station may have, for example, at least a partial function of a server connected to the network, a specific application, or the like.
 第1~第4実施形態のいずれかをエッジコンピューティングに適用することで、折り返し通信が可能な場合、無線端末とサーバとの間の端末間通信を、コア網を経由しない基地局経由の通信に制御できる。従って、通常のエッジコンピューティングよりも、伝送遅延時間をさらに短縮できる。 When loopback communication is possible by applying any of the first to fourth embodiments to edge computing, communication between terminals between the wireless terminal and the server is performed via the base station without passing through the core network. Can be controlled. Therefore, the transmission delay time can be further shortened compared to normal edge computing.
 100、200、300  無線通信システム
 110、110-1、110-2、410、510  無線端末
 120、420、520  基地局
 130  制御装置
 140  上位ネットワーク
 210、210-1~210-4、310、310-1、310-2  UE
 220、220-1~220-n  eNB
 230、230-a~230-x、330、430  MME
 240、340、440  SGW
 250、350、450  PGW
 260、360  ネットワーク
 270、370  無線アクセス網
 280、380  パケットコア網
 292、292-1~292-3  TA
 290  プールエリア
 411、421  アンテナ
 412、422  無線受信部
 413  端末側制御部
 414、425  制御信号生成部
 415、428  無線送信部
 423、427  SW
 424  基地局側制御部
 426  折り返し制御部
 431、451  回線制御部
 441  データ制御部
 511、521、531  プロセッサ
 512、522、532  メモリ
 513、523  RF部
 514、524  アンテナ
 525、533  ネットワークIF
 530  処理装置
100, 200, 300 Wireless communication system 110, 110-1, 110-2, 410, 510 Wireless terminal 120, 420, 520 Base station 130 Controller 140 Host network 210, 210-1 to 210-4, 310, 310- 1, 310-2 UE
220, 220-1 to 220-n eNB
230, 230-a to 230-x, 330, 430 MME
240, 340, 440 SGW
250, 350, 450 PGW
260, 360 Network 270, 370 Radio access network 280, 380 Packet core network 292, 292-1 to 292-3 TA
290 Pool area 411, 421 Antenna 412, 422 Radio reception unit 413 Terminal side control unit 414, 425 Control signal generation unit 415, 428 Radio transmission unit 423, 427 SW
424 Base station side control unit 426 Loopback control unit 431, 451 Line control unit 441 Data control unit 511, 521, 531 Processor 512, 522, 532 Memory 513, 523 RF unit 514, 524 Antenna 525, 533 Network IF
530 processing equipment

Claims (23)

  1.  上位ネットワークに対して位置登録を行なう際に、前記基地局を識別可能な基地局識別情報を、前記基地局を介して、前記上位ネットワークへ送信する第1及び第2の無線端末と、
     前記第1の無線端末が送信した第1の前記基地局識別情報と、前記第2の無線端末が送信した第2の前記基地局識別情報と、を受信し、前記受信した各基地局識別情報によって、前記第1及び第2の無線端末の間の端末間通信を、前記上位ネットワークを経由しない前記基地局経由の通信に制御する制御装置と、
    を備えた、無線通信システム。
    First and second wireless terminals that transmit base station identification information capable of identifying the base station to the upper network via the base station when performing location registration with respect to the upper network;
    The first base station identification information transmitted by the first wireless terminal and the second base station identification information transmitted by the second wireless terminal are received, and each received base station identification information A control device for controlling inter-terminal communication between the first and second wireless terminals to communication via the base station not via the upper network;
    A wireless communication system comprising:
  2.  前記基地局識別情報は、前記上位ネットワークへ送信する位置登録要求に含まれる、
    請求項1記載の無線通信システム。
    The base station identification information is included in a location registration request to be transmitted to the upper network.
    The wireless communication system according to claim 1.
  3.  前記基地局識別情報は、前記上位ネットワークへ送信する位置登録要求の送信後であって、前記基地局及び前記上位ネットワークとの間の回線設定前に、前記第1又は第2の無線端末から送信される、
    請求項1記載の無線通信システム。
    The base station identification information is transmitted from the first or second wireless terminal after transmission of a location registration request to be transmitted to the upper network and before setting a line between the base station and the upper network. To be
    The wireless communication system according to claim 1.
  4.  前記基地局識別情報は、前記基地局から前記基地局が提供する無線エリアに送信されるシステム情報であって前記無線エリアに位置する無線端末がセル選択に用いる前記システム情報に含まれ、
     前記第1及び第2の無線端末の各々は、前記位置登録を行なう前に、前記基地局から前記システム情報を受信し前記基地局識別情報を取得する、
    請求項1~3のいずれか1項記載の無線通信システム。
    The base station identification information is system information transmitted from the base station to a radio area provided by the base station, and is included in the system information used for cell selection by a radio terminal located in the radio area,
    Each of the first and second wireless terminals receives the system information from the base station and acquires the base station identification information before performing the location registration.
    The wireless communication system according to any one of claims 1 to 3.
  5.  前記制御装置は、前記受信した各基地局識別情報を比較し、比較結果によって、前記端末間通信を前記上位ネットワークを経由しない前記基地局経由の通信に制御する、
    請求項1~4のいずれか1項記載の無線通信システム。
    The control device compares the received base station identification information, and controls the inter-terminal communication to the communication via the base station not via the upper network according to the comparison result.
    The wireless communication system according to any one of claims 1 to 4.
  6.  前記第1及び第2の無線端末の各々は、当該無線端末を識別可能な端末識別情報を前記接続先の基地局へ送信し、
     前記制御装置は、前記第1の無線端末が送信した第1の前記端末識別情報と、前記第2の無線端末が送信した第2の前記端末識別情報と、によって、前記端末間通信を前記上位ネットワークを経由しない前記基地局経由の通信に制御する、
    請求項1~5のいずれか1項記載の無線通信システム。
    Each of the first and second wireless terminals transmits terminal identification information capable of identifying the wireless terminal to the connection destination base station,
    The control device performs the inter-terminal communication based on the first terminal identification information transmitted from the first wireless terminal and the second terminal identification information transmitted from the second wireless terminal. Control to communicate via the base station without going through the network,
    The wireless communication system according to any one of claims 1 to 5.
  7.  前記基地局は、前記制御装置からの制御に従って、前記受信した各端末識別情報と、前記第1又は第2の無線端末から受信した無線信号に含まれる送信元及び送信先の端末識別情報と、を比較し、比較結果によって、前記受信した無線信号を、前記上位ネットワークを経由しない前記基地局経由で前記受信した無線信号の送信先に送信する、
    請求項6記載の無線通信システム。
    The base station, according to the control from the control device, each received terminal identification information, transmission source and destination terminal identification information included in the wireless signal received from the first or second wireless terminal, And according to the comparison result, the received radio signal is transmitted to the destination of the received radio signal via the base station not via the upper network.
    The wireless communication system according to claim 6.
  8.  前記基地局識別情報は、前記基地局が提供する無線エリアの識別情報を含む、
    請求項1~7のいずれか1項記載の無線通信システム。
    The base station identification information includes radio area identification information provided by the base station,
    The wireless communication system according to any one of claims 1 to 7.
  9.  前記制御装置は、前記端末間通信の種別、要求品質、及び、許容遅延時間の少なくとも1つのパラメータによって、前記端末間通信の実施を制限する、
    請求項1~8のいずれか1項記載の無線通信システム。
    The control device limits the implementation of the inter-terminal communication according to at least one parameter of the type of communication between terminals, required quality, and allowable delay time.
    The wireless communication system according to any one of claims 1 to 8.
  10.  上位ネットワークに対して位置登録を行なう際に、前記基地局を識別可能な基地局識別情報を、前記基地局を介して前記上位ネットワークへ送信する送信部
    を備えた、無線端末。
    A wireless terminal comprising: a transmission unit that transmits base station identification information capable of identifying the base station to the upper network via the base station when performing location registration with respect to the upper network.
  11.  前記基地局識別情報は、前記上位ネットワークへ送信する位置登録要求に含まれる、
    請求項10記載の無線端末。
    The base station identification information is included in a location registration request to be transmitted to the upper network.
    The wireless terminal according to claim 10.
  12.  前記基地局識別情報は、前記上位ネットワークへ送信する位置登録要求の送信後であって、前記基地局及び上位ネットワークとの間の回線設定前に送信される、
    請求項10記載の無線端末。
    The base station identification information is transmitted after transmission of a location registration request to be transmitted to the upper network and before setting a line between the base station and the upper network.
    The wireless terminal according to claim 10.
  13.  前記基地局識別情報は、前記基地局から前記基地局が提供する無線エリアに送信されるシステム情報であって前記無線エリアに位置する無線端末がセル選択に用いる前記システム情報に含まれ、
     前記位置登録を行なう前に、前記基地局から前記システム情報を受信し前記基地局識別情報を取得する、
    請求項10~12のいずれか1項記載の無線端末。
    The base station identification information is system information transmitted from the base station to a radio area provided by the base station, and is included in the system information used for cell selection by a radio terminal located in the radio area,
    Before performing the location registration, receiving the system information from the base station to obtain the base station identification information,
    The wireless terminal according to any one of claims 10 to 12.
  14.  前記送信部は、前記無線端末を識別可能な端末識別情報を前記接続先の基地局へ送信する、
    請求項10~13のいずれか1項記載の無線端末。
    The transmitting unit transmits terminal identification information capable of identifying the wireless terminal to the connection destination base station.
    The wireless terminal according to any one of claims 10 to 13.
  15.  無線端末が上位ネットワークに対して位置登録を行なう際に送信した、前記基地局を識別可能な基地局識別情報を受信して前記上位ネットワークにおける制御装置宛に送信する通信部と、
     第1の無線端末が送信した第1の前記基地局識別情報と、第2の無線端末が送信した第2の基地局識別情報と、を受信した前記制御装置からの制御に従って、前記第1及び第2の無線端末の間の端末間通信を、前記上位ネットワークを経由しない前記基地局経由の通信に制御する制御部と、
    を備えた、基地局。
    A communication unit that transmits when a wireless terminal performs location registration with respect to an upper network, receives base station identification information that can identify the base station, and transmits the information to a control device in the upper network;
    In accordance with control from the control device that has received the first base station identification information transmitted by the first wireless terminal and the second base station identification information transmitted by the second wireless terminal, the first and A control unit for controlling communication between terminals between the second wireless terminals to communication via the base station not via the upper network;
    With a base station.
  16.  前記基地局識別情報は、前記上位ネットワークへ送信する位置登録要求に含まれる、
    請求項15記載の基地局。
    The base station identification information is included in a location registration request to be transmitted to the upper network.
    The base station according to claim 15.
  17.  前記基地局識別情報は、前記上位ネットワークへ送信する位置登録要求の送信後であって、前記基地局及び前記上位ネットワークとの間の回線設定前に、前記第1又は第2の無線端末から送信される、
    請求項15記載の基地局。
    The base station identification information is transmitted from the first or second wireless terminal after transmission of a location registration request to be transmitted to the upper network and before setting a line between the base station and the upper network. To be
    The base station according to claim 15.
  18.  前記基地局が提供する無線エリアに位置する無線端末がセル選択に用いるシステム情報であって前記基地局識別情報を含む前記システム情報を、前記無線エリアに送信する送信部、を備え、
     前記第1及び第2の無線端末の各々は、前記位置登録を行なう前に、前記基地局から前記システム情報を受信し前記基地局識別情報を取得する、
    請求項15~17のいずれか1項記載の基地局。
    A radio unit located in a radio area provided by the base station, which is system information used for cell selection and includes the base station identification information, and a transmitter that transmits the system information to the radio area,
    Each of the first and second wireless terminals receives the system information from the base station and acquires the base station identification information before performing the location registration.
    The base station according to any one of claims 15 to 17.
  19.  前記通信部は、前記第1及び第2の無線端末の各々を識別可能な端末識別情報を、前記第1及び第2の無線端末から受信し、
     前記制御部は、前記制御装置からの制御に従って、前記第1の無線端末が送信した第1の前記端末識別情報と、前記第2の無線端末が送信した第2の前記端末識別情報と、によって、前記端末間通信を前記上位ネットワークを経由しない前記基地局経由の通信に制御する、
    請求項15~18のいずれか1項記載の基地局。
    The communication unit receives terminal identification information capable of identifying each of the first and second wireless terminals from the first and second wireless terminals,
    In accordance with control from the control device, the control unit includes the first terminal identification information transmitted from the first wireless terminal and the second terminal identification information transmitted from the second wireless terminal. , Control the communication between the terminals to the communication via the base station not via the upper network,
    The base station according to any one of claims 15 to 18.
  20.  前記制御部は、前記制御装置からの制御に従って、前記受信した各端末識別情報と、前記第1又は第2の無線端末から受信した無線信号に含まれる送信元及び送信先の端末識別情報と、を比較し、比較結果によって、前記受信した無線信号を、前記上位ネットワークを経由しない前記基地局経由で前記受信した無線信号の送信先に送信する、
    請求項19記載の基地局。
    The control unit, according to control from the control device, each received terminal identification information, transmission source and transmission destination terminal identification information included in the wireless signal received from the first or second wireless terminal, And according to the comparison result, the received radio signal is transmitted to the destination of the received radio signal via the base station not via the upper network.
    The base station according to claim 19.
  21.  前記基地局識別情報は、前記基地局が提供する無線エリアの識別情報を含む、
    請求項15~20のいずれか1項記載の基地局。
    The base station identification information includes radio area identification information provided by the base station,
    The base station according to any one of claims 15 to 20.
  22.  無線端末が上位ネットワークに対して位置登録を行なう際に送信した、前記基地局を識別可能な基地局識別情報を受信する通信部と、
     前記通信部が受信した、第1の無線端末が送信した第1の前記基地局識別情報と、第2の無線端末が送信した第2の基地局識別情報と、によって、前記第1及び第2の無線端末の間の端末間通信を、前記上位ネットワークを経由しない前記基地局経由の通信に制御する制御部と、
    を備えた、制御装置。
    A communication unit that receives base station identification information that can be used to identify the base station, which is transmitted when a wireless terminal performs location registration with respect to an upper network;
    The first and second base station identification information transmitted by the first wireless terminal and the second base station identification information transmitted by the second wireless terminal, received by the communication unit, A control unit for controlling communication between terminals between the wireless terminals to communication via the base station not via the upper network;
    A control device comprising:
  23.  第1及び第2の無線端末の各々が、上位ネットワークに対して位置登録を行なう際に、前記基地局を識別可能な基地局識別情報を、前記基地局を介して、前記上位ネットワークへ送信し、
     制御装置が、前記第1の無線端末が送信した第1の前記基地局識別情報と、前記第2の無線端末が送信した第2の前記基地局識別情報と、を受信し、前記受信した各基地局識別情報によって、前記第1及び第2の無線端末の間の端末間通信を、前記上位ネットワークを経由しない前記基地局経由の通信に制御する、
    無線通信方法。
    When each of the first and second wireless terminals performs location registration with respect to the upper network, base station identification information that can identify the base station is transmitted to the upper network via the base station. ,
    The control device receives the first base station identification information transmitted by the first wireless terminal and the second base station identification information transmitted by the second wireless terminal, and receives each received Controls inter-terminal communication between the first and second wireless terminals based on base station identification information to communication via the base station not via the upper network.
    Wireless communication method.
PCT/JP2016/069028 2016-06-27 2016-06-27 Wireless communication system, wireless terminal, base station, control device, and wireless communication method WO2018002993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069028 WO2018002993A1 (en) 2016-06-27 2016-06-27 Wireless communication system, wireless terminal, base station, control device, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069028 WO2018002993A1 (en) 2016-06-27 2016-06-27 Wireless communication system, wireless terminal, base station, control device, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2018002993A1 true WO2018002993A1 (en) 2018-01-04

Family

ID=60786767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069028 WO2018002993A1 (en) 2016-06-27 2016-06-27 Wireless communication system, wireless terminal, base station, control device, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2018002993A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204989A (en) * 2018-05-21 2019-11-28 ソフトバンク株式会社 Relay system and program
WO2023286783A1 (en) * 2021-07-16 2023-01-19 京セラ株式会社 Communication control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162262A1 (en) * 2010-06-21 2011-12-29 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method
WO2015178031A1 (en) * 2014-05-23 2015-11-26 日本電気株式会社 Communication device, communication method, communication system, and program
WO2016021010A1 (en) * 2014-08-06 2016-02-11 富士通株式会社 Communication system, communication method, communication device, and mobile terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162262A1 (en) * 2010-06-21 2011-12-29 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method
WO2015178031A1 (en) * 2014-05-23 2015-11-26 日本電気株式会社 Communication device, communication method, communication system, and program
WO2016021010A1 (en) * 2014-08-06 2016-02-11 富士通株式会社 Communication system, communication method, communication device, and mobile terminal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KPN ET AL.: "Conclusions for study on eICBD", 3GPP TSG-SA WG1#67 S1-143395, 22 August 2014 (2014-08-22), pages 1, XP050834832 *
KPN ET AL.: "Enhancements for Infrastructure based Communication Between Devices", 3GPP TSG-SA WG1#67 SL-143267, vol. 1, 22 August 2014 (2014-08-22), pages 6 - 8, XP050834768 *
LG ELECTRONICS: "Considerations for Forms of Data Paths in elCBD", 3GPP TSG-SA WG1#65 S1-140021, 24 January 2014 (2014-01-24), pages 1, XP050743152 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204989A (en) * 2018-05-21 2019-11-28 ソフトバンク株式会社 Relay system and program
WO2023286783A1 (en) * 2021-07-16 2023-01-19 京セラ株式会社 Communication control method
JP7668880B2 (en) 2021-07-16 2025-04-25 京セラ株式会社 COMMUNICATION CONTROL METHOD, BASE STATION, AND PROCESSOR

Similar Documents

Publication Publication Date Title
JP7370254B2 (en) Method and apparatus for reporting location information of user equipment in a wireless communication system
US10154475B2 (en) Method and device for selecting relay in wireless communication system
US10893405B2 (en) Network nodes and methods performed therein for enabling communication in a communication network
US9380495B2 (en) Method for data offloading in wireless communication system, and device for same
US10750418B2 (en) SDN based connectionless architecture with dual connectivity and carrier aggregation
US10298540B2 (en) Method and network node for transmitting IP address information, and method and user equipment for receiving IP address information
US20190349819A1 (en) Method and apparatus for supporting beam in wireless communication system
JP6769972B2 (en) PLMN selection method of terminals in wireless communication systems and devices for that purpose
US20190380172A1 (en) Method and device for managing interface for supporting lte/nr interworking in wireless communication system
US20190110243A1 (en) System information transmission method and base station, and system information reception method and user equipment
CN110463252B (en) Method for receiving report, network device, method for performing report, and base station
CN113613216B (en) Time-critical communication between user equipment
US10772038B2 (en) Method whereby terminal selects PLMN in wireless communication system, and device for same
AU2019274046B2 (en) User equipment, control apparatus, and communication control method
US9888403B2 (en) Method and apparatus for supporting minimization of drive tests for radio access network sharing in wireless communication system
US20190141760A1 (en) First Network Node, Receiving Network Node and Methods Performed Therein
US10084693B2 (en) Method for transmitting/receiving signal related to NBIFOM in wireless communication system, and apparatus therefor
US11218954B2 (en) Method and device for performing, by vehicle-to-everything user equipment, operation related to radio access technology switch in wireless communication system
CN108605242B (en) Data transmission method, base station, data transmission method and core node
US11743861B2 (en) Radio network node, user plane function (UPF) and methods performed therein for paging policy differentiation
US10440610B2 (en) Method and apparatus for obtaining radio access network sharing information in wireless communication system
US9674772B2 (en) Method and apparatus for acquiring information on access point in wireless communication system
WO2018002993A1 (en) Wireless communication system, wireless terminal, base station, control device, and wireless communication method
US10701739B2 (en) Call transmitting/receiving method in wireless communication system and device for same
US20170339620A1 (en) Wireless communications system, communications apparatus, terminal, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载