+

WO2018078769A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2018078769A1
WO2018078769A1 PCT/JP2016/081917 JP2016081917W WO2018078769A1 WO 2018078769 A1 WO2018078769 A1 WO 2018078769A1 JP 2016081917 W JP2016081917 W JP 2016081917W WO 2018078769 A1 WO2018078769 A1 WO 2018078769A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control
diagnosis
diagnosis unit
control device
Prior art date
Application number
PCT/JP2016/081917
Other languages
French (fr)
Japanese (ja)
Inventor
中川 慎二
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/081917 priority Critical patent/WO2018078769A1/en
Publication of WO2018078769A1 publication Critical patent/WO2018078769A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a control device.
  • Patent Document 1 describes a “method for monitoring the operation of a control loop in a process plant, in a first operation region of the control loop in the process plant related to the operation of a unit in the process plant.
  • this Patent Document 1 discloses a “method for monitoring the operation of a control loop in a process plant, and collects process gain data related to the first operation region of the control loop in the process plant. Determining a predicted behavior of the process gain of the first operating region based on the collected process gain data; and for an expert engine, the process gain of the first operating region. Providing data indicative of predicted behavior; providing data of process gain associated with the control loop to the expert engine during operation of the control loop; and predicting behavior of the process gain. Based on the data shown and the process gain data associated with the control loop during operation of the control loop, And a the use of the expert engine to detect an abnormal situation associated with the control loop, is described as a method "(see [Claim 16]).
  • Patent Document 1 does not change the contents of the control function using the result of detecting the abnormality of the control function.
  • an abnormality detection function (diagnostic function) having different functions (a function capable of detecting an unknown abnormality / a function of detecting a known abnormality) is not operated simultaneously (in parallel).
  • An object of the present invention is to provide a control device capable of changing the control according to the diagnosis result while improving the reliability of the diagnosis.
  • the present invention provides a control unit that calculates an output signal used for control based on an input signal, and a first determination at a first timing based on target data indicating data handled by the control unit.
  • a second diagnosis unit that diagnoses the target data; and a control change unit that executes a process corresponding to a combination of the diagnosis result of the first diagnosis unit and the diagnosis result of the second diagnosis unit.
  • control can be changed according to the diagnosis result while improving the reliability of the diagnosis.
  • FIG. 9 is an overall system diagram in which the control device according to the first to eighth embodiments operates.
  • FIG. 6 is a diagram showing processing contents implemented in a ROM in the first to fourth embodiments.
  • FIG. 9 is a diagram showing the entire diagnosis unit 1 in Embodiments 1 and 5 to 8.
  • FIG. 10 is a diagram illustrating processing of a determination criterion update unit A in the first, fifth to eighth embodiments. It is a figure which shows the example of a process result of the judgment reference update part A in Embodiment 1.
  • FIG. FIG. 10 is a diagram showing processing of a determination criterion update unit B in Embodiments 1, 5 to 8. It is a figure which shows the example of a process result of the judgment reference update part B in Embodiment 1.
  • FIG. 10 is a diagram illustrating processing of a determination unit in the first, fifth, and eighth embodiments. It is the figure which showed the process of the diagnostic part 2 in Embodiment 1, 5, 6.
  • FIG. FIG. 6 is a diagram showing processing of a control change unit in the first to fourth embodiments. It is a figure showing the whole diagnostic part 1 in Embodiment 2.
  • FIG. FIG. 10 is a diagram illustrating a process of a determination criterion update unit A in the second embodiment.
  • FIG. 10 is a diagram illustrating processing of a determination criterion update unit B in the second embodiment.
  • FIG. 10 is a diagram illustrating processing of a determination unit in the second embodiment.
  • FIG. 10 is a diagram showing processing of a diagnosis unit 2 in Embodiments 2 to 4, 7, and 8.
  • FIG. 10 is a diagram illustrating processing contents mounted on a ROM according to a fifth embodiment.
  • FIG. 18 is a diagram illustrating processing contents implemented in a ROM according to a sixth embodiment. It is the figure which showed the process of the control part in Embodiment 6.
  • FIG. 20 is a diagram illustrating processing contents implemented in a ROM according to the seventh embodiment.
  • FIG. 20 is a diagram illustrating processing contents implemented in a ROM according to an eighth embodiment. It is a figure which shows the control table of Embodiment 1.
  • FIG. 3 is a time chart for explaining the control of the first embodiment. It is a figure which shows the control table of Embodiment 5, 7, and 8.
  • FIG. 10 is a time chart for illustrating control of Embodiments 5, 7, and 8. It is a figure which shows the control table of Embodiment 6. 10 is a time chart for explaining the control of the sixth embodiment.
  • the control device includes a diagnosis unit 1 that diagnoses a control function according to a determination criterion that is updated based on an output value or the like of the control function, and a diagnosis unit 1 that is determined according to a predetermined determination criterion.
  • a diagnosis unit 1 that diagnoses a control function according to a determination criterion that is updated based on an output value or the like of the control function
  • a diagnosis unit 1 that is determined according to a predetermined determination criterion.
  • the diagnosis unit 2 Independently (in parallel processing), the diagnosis unit 2 for diagnosing the control function, and depending on the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2, predetermined processing (control content of the control function is set)
  • a control change unit that executes (including processing to change).
  • Embodiment 1 the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
  • FIG. 1 is a diagram showing the entire control device.
  • the control device 11 is provided with an input circuit 16 for processing an external signal.
  • Examples of the signal from the outside here include a sensor signal, an information signal from a server, an information signal from another control device or a data processing device, and the like. Signals from the outside are transmitted via a data bus, a dedicated line, wireless, or the like. A signal from the outside passes through the input circuit 16 and becomes an input signal and is sent to the input / output port 17. The input information sent to the input / output port 17 is written into the RAM 14 through the data bus 15.
  • the input circuit 16 and the input / output port 17 constitute an input device for inputting an input signal.
  • Various processes are written in the ROM 13 and executed by the CPU 12. At that time, the value written in the RAM 14 is used as appropriate for calculation. Of the calculation results, information (value) to be sent to the outside is sent to the input / output port 17 through the data bus 15 and sent to the output circuit 18 as an output signal. The signal is output from the output circuit 18 to the outside of the control device 11.
  • the signal to the outside here may be a drive signal to an actuator, an information signal to a server, an information signal to another control device or a data processing device, and the like.
  • the input / output port 17 and the output circuit 18 constitute an output device that outputs an output signal.
  • FIG. 2 shows the contents of the process written in the ROM 13. As described above, using the input signal written in the RAM 14 through the input circuit 16 and the input / output port 17, the control unit 21 calculates an output signal such as a control signal necessary for control.
  • control unit 21 calculates an output signal used for control based on the input signal.
  • the CPU 12 (arithmetic unit) functions as the control unit 21, the diagnostic unit 1 (22), the diagnostic unit 2 (23), and the control change unit 24 by executing the processing contents (program) stored in the ROM 13. To do. That is, the CPU 12 (arithmetic unit) includes a control unit, a diagnosis unit 1, a diagnosis unit 2, and a control change unit (hereinafter, the same applies to other embodiments).
  • the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18.
  • Each of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) detects an abnormality of the control unit 21 using parameters calculated by the control unit 21.
  • the parameter calculated by the control unit 21 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit 21.
  • the control change unit 24 performs control change (in this embodiment, abnormality notification) using the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
  • the diagnosis unit 1 (22) updates the first determination criterion at the first timing based on the target data indicating the data handled by the control unit 21, and according to the updated first determination criterion (first rule).
  • the target data at the second timing after the first timing is diagnosed.
  • the diagnosis unit 2 (23) diagnoses the target data at the second timing according to a predetermined second determination criterion (second rule).
  • the control change unit 24 executes processing (abnormality notification) corresponding to the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
  • Parameter transmission / reception among the control unit 21, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 24 is generally sent via the data bus via the RAM 14.
  • the abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
  • FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units. ⁇ Criteria update part A (100) ⁇ Criteria update part B (110) ⁇ Decision part (120)
  • Clustering vectorized learning data / parameter values (vectors) using machine learning k-means is output by the k-means method.
  • the clustering result here is ⁇ Cluster number to which data divided by k-means method belongs ⁇ Average value of data belonging to each cluster (center vector) Point to.
  • the determination criterion update unit A (diagnosis unit 1) extracts the characteristics of the target data.
  • FIG. 5 shows an example of the result of clustering a data group consisting of a certain two-dimensional vector with 4 clusters by the k-means method.
  • the minimum value of each dimension of the data belonging to each cluster is set as the lower limit of each dimension in the range corresponding to each cluster.
  • the maximum value of each dimension of data belonging to each cluster is set as the upper limit of each dimension in the range corresponding to each cluster.
  • the criterion 1 here is: -Refers to the lower and upper limits of each dimension that define the range corresponding to each cluster (center vector).
  • the determination criterion update unit B (diagnosis unit 1) updates the determination criterion 1 based on the characteristics extracted by the determination criterion update unit A.
  • FIG. 7 shows an example of the result of setting the range by the setting means based on the division result shown in FIG.
  • Specify the closest center vector in terms of L2 distance to the data / parameter value (vector) at the time of diagnosis.
  • FIG. 9 The processing content of the diagnosis part 2 (23) is shown. Specifically, it is shown in FIG.
  • x1 and x2 are data / parameter values (vectors) at the time of diagnosis.
  • k_x1_L, k_x1_H, k_x2_L, and k_x2_H are values that are determined in advance, and are desirably set as values corresponding to levels at which the control function is abnormal.
  • Control change part 24 The processing content of the control change part 24 is shown. Specifically, it is shown in FIG.
  • f_ano_F 0 is set, and no abnormality is reported.
  • the ROM 13 (storage device) of the control device 11 stores a control table (database) as shown in FIG. 34A.
  • the control change unit 24 reads a process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the control table, and executes the read process (emergency control 1: notification).
  • FIG. 34B is an example of a time chart of f_ano_1, f_ano_2, and f_ano_F.
  • f_ano_F 1
  • the CPU 12 (arithmetic unit) may turn on a warning lamp.
  • both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) can be expanded in dimension, and are applied only to two-dimensional data. It is added that it is not a thing.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
  • the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120).
  • the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • -Function-Diagnosis unit 1 Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • -Action-Diagnosis unit 1 Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data. It is possible to detect normal / abnormal (dangerous) unknown (hidden by humans) hidden in the data.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  • the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
  • control can be changed according to the diagnosis result while improving the reliability of the diagnosis.
  • the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses dimension reduction processing (sparse modeling).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
  • a notification is given.
  • the present embodiment is different from the first embodiment in that the judgment criterion of the diagnosis unit 1 is updated using the dimension reduction process.
  • the configuration and operation of the control apparatus according to the second embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 2 shows the contents of the process written in the ROM 13, but it is the same as that of the first embodiment and will not be described in detail. Details of each process will be described below.
  • FIG. 11 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
  • the output is the criterion 1a (linear format) and Phi (evaluation function value).
  • the criterion 1a is a result of dimension reduction and line approximation by sparse modeling.
  • Phi is the value of the evaluation function used for dimension reduction and linear approximation, and indicates the accuracy of linear approximation. Details of sparse modeling such as lasso regression have been described in many documents and books, and will not be described in detail here.
  • ⁇ Judgment Criteria Updater B (FIG. 13)>
  • the allowable range is defined using Phi, which is the accuracy of linear approximation.
  • Phi is multiplied by k1, but another function related to Phi may be used.
  • FIG. 15 The processing content of the diagnosis part 2 (23) is shown. Specifically, it is shown in FIG.
  • k_x1_L, k_x1_H, k_x2_L, k_x2_H,..., K_xn_L, k_xn_H are values that are determined in advance, and are preferably set as values corresponding to levels at which the control function is abnormal.
  • Control change part 24 The processing content of the control change part 24 is shown. Specifically, although it is shown in FIG. 10, it is the same as that of the first embodiment, and therefore will not be described in detail.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination criterion update unit A (130) and the determination criterion update unit B (140) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (150) may be implemented in each terminal and detect an abnormality in the control unit of each terminal.
  • the data used in the judgment standard update unit A (130) and the judgment standard update unit B (140) are different from the data used in the judgment unit (150).
  • the determination reference update unit A (130) and the determination reference update unit B (140) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (150) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • Diagnosis unit 1 Dimension reduction Uses data to generate diagnostic criteria (formulas, models, etc.) represented by only significant dimensions, leaving only significant dimensions for data with a very large number of dimensions. To do. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • -Action-Diagnosis unit 1 Dimension reduction Identifies normal / abnormal (danger) based on diagnostic criteria generated using data. It may be possible to detect unknown normality / abnormality (danger) hidden in data. Alternatively, an abnormality (danger) can be predicted.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnosis unit 1: Dimension reduction Unknown abnormality (danger) may be avoided. Or you can expect.
  • the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
  • the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses compression processing (frequency analysis).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
  • the present embodiment is different from the first embodiment in that the determination standard of the diagnosis unit 1 is updated using the compression process.
  • the configuration and operation of a control device according to Embodiment 3 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 2 shows the contents of the process written in the ROM 13, but it is the same as that of the first embodiment and will not be described in detail. Details of each process will be described below.
  • FIG. 16 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
  • F_1_k (determination criterion 1) is calculated using the calculation result in the determination criterion update unit A. Specifically, as shown in FIG. 18, F_1_k (judgment criterion 1b) is obtained by the following processing.
  • ⁇ F_i_k is a frequency whose power spectrum is greater than or equal to the predetermined value k_F1_i.
  • i 1, 2, 3, ..., number of vector elements (number of components), k: 1, 2, 3,..., number of relevant frequencies k_F1_i is preferably set for each element (each component).
  • the target frequency is F_i_k.
  • power other than F_i_k is also targeted, and it may be determined as abnormal when the power exceeds a predetermined value.
  • FIG. 15 The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 15, but are not described in detail because they are the same as those in the second embodiment.
  • Control change part (FIG. 10)> The processing contents of the control change unit 24 are specifically shown in FIG. 10, but are not described in detail because they are the same as those in the first embodiment.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination criterion update unit A (160) and the determination criterion update unit B (170) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (180) may be implemented in each terminal and detect an abnormality in the control unit of each terminal.
  • the data used in the judgment standard update unit A (160) and the judgment standard update unit B (170) are different from the data used in the judgment unit (180).
  • the determination reference update unit A (160) and the determination reference update unit B (170) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (180) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • ⁇ Function ⁇ Diagnostic unit 1 Compression (frequency analysis) Using the data, only a significant frequency is left for data with a large number of data points in the time direction, and a diagnostic criterion represented only by the significant frequency is generated. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • Diagnostic unit 1 Compression (frequency analysis) Identify normal / abnormal (dangerous) based on diagnostic criteria generated using data.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic unit 1: Compression (frequency analysis) An unknown abnormality (danger) may be avoided. Or you can expect.
  • the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
  • the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses statistical processing (calculating an average value and a variance value).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
  • this embodiment is different from the first embodiment in that the determination criteria of the diagnosis unit 1 are updated using statistical processing.
  • the configuration and operation of a control device according to Embodiment 4 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 2 shows the contents of the process written in the ROM 13, but it is the same as that of the first embodiment and will not be described in detail. Details of each process will be described below.
  • FIG. 20 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
  • e_Li, e_Hi, and w_sigma_i are calculated using the calculation result in the determination criterion update unit A. Specifically, as shown in FIG. 22, e_Li, e_Hi, and w_sigma_i (determination criterion 1) are obtained by the following processing.
  • FIG. 15 The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 15, but are not described in detail because they are the same as those in the second embodiment.
  • Control change part (FIG. 10)> The processing contents of the control change unit 24 are specifically shown in FIG. 10, but are not described in detail because they are the same as those in the first embodiment.
  • a method for obtaining an average value and a variance value assuming a normal distribution is used as a statistical process.
  • a method for obtaining an arbitrary distribution that does not assume a normal distribution such as the MCMC method (Markov chain Monte Carlo method). Such a method may be used.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination criterion update unit A (190) and the determination criterion update unit B (200) may be processed in the cloud, and the calculation results of the control units in a plurality of terminals may be used as data used at that time.
  • the determination unit (210) may be implemented in each terminal and detect an abnormality in the control unit of each terminal.
  • the data used in the judgment standard update unit A (190) and the judgment standard update unit B (200) is different from the data used in the judgment unit (210).
  • the determination reference update unit A (190) and the determination reference update unit B (200) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (210) is implemented to detect whether there is a problem in the processing contents of the control unit 21 (when there is no record) and whether or not the function (software) is abnormal. As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • Diagnosis unit 1 Statistical processing Using data, only significant information (average value, variance value, etc.) indicating statistical characteristics is left for data with a large number of data points. Generated diagnostic criteria. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • Diagnostic unit 1 Compression (frequency analysis) Identify normal / abnormal (dangerous) based on diagnostic criteria generated using data. It may be possible to detect unknown normality / abnormality (danger) hidden in data. Alternatively, an abnormality (danger) can be predicted.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic unit 1: Compression (frequency analysis) An unknown abnormality (danger) may be avoided. Or you can expect.
  • the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
  • the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
  • diagnosis result of the diagnosis unit 1 When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given. Further, when the diagnosis result of the diagnosis unit 1 is normal and the diagnosis result of the diagnosis unit 2 is abnormal, the internal calculation value of the control function is restricted within a predetermined range. Further, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal, the control function is stopped.
  • control content of the control function (control unit) is controlled normally or according to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2.
  • the point of changing to one of emergency controls 1 to 4 is different.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 24 shows the contents of processing written in the ROM 13.
  • the control unit 31 calculates an output signal such as a control signal necessary for control using the input signal written in the RAM 14 via the input circuit 16 and the input / output port 17. As described above, the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18.
  • Each of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) detects an abnormality of the control unit 31 using parameters calculated by the control unit 31.
  • the parameter calculated by the control unit 31 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit 31.
  • the control change unit 32 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
  • control change unit 32 executes a process of changing the control of the control unit 31 as a process corresponding to the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23). To do.
  • Parameter transmission / reception among the control unit 31, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 32 is generally sent via the data bus via the RAM 14.
  • the abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
  • FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
  • FIG. 4 ⁇ Judgment Criteria Update Unit A (FIG. 4)>
  • clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
  • FIG. 9 The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 9, but will not be described in detail because they are the same as those in the first embodiment.
  • Control change unit (FIG. 25)> The processing content of the control change part 32 is shown. Specifically, it is shown in FIG.
  • the ROM 13 (storage device) of the control device 11 stores a control table (database) as shown in FIG. 35A.
  • the control table stores a combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 and a process corresponding to this combination in association with each other.
  • the control change unit 32 reads a process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the control table, and executes the read process (a process for changing the control of the control unit 31).
  • Control unit (FIG. 26)> The processing content of the control part 31 is shown. Specifically, it is shown in FIG.
  • FIG. 35B is an example of a time chart of f_ano_1, f_ano_2, and c_mode.
  • the control unit 31 changes the control to either normal control or emergency control 1 to 3 according to c_mode.
  • x1 and x2 may be restricted to the following ranges from the diagnosis unit 2 (23) (FIG. 9).
  • control change unit 32 changes the target data to the data of the nearest cluster.
  • fail-safe processing may be performed.
  • the fail-safe process is an existing control and depends on the control target, the control system, and the like, and thus will not be described in detail here.
  • both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) can be expanded in dimension. It should be added that it does not apply only to two-dimensional data.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
  • the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120).
  • the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • -Function-Diagnosis unit 1 Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • -Action-Diagnosis unit 1 Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  • the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Since the control is changed based on the diagnosis result of 1 and the diagnosis unit 2, the control according to the nature of the abnormality is possible, and the performance / reliability of the control system is increased.
  • the first diagnosis unit and the second diagnosis unit determine whether the input value to the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
  • the diagnosis unit 1 or the diagnosis unit 2 determines that the input value to the control function is abnormal, the input value to the control function is set to a different value or the operation of the control function is not performed (stopped).
  • the present embodiment is different from the first embodiment in that normality or abnormality of the input value to the control function (control unit) is determined. Also, the control content of the control function (control unit) is changed to either normal control or emergency control 2 according to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 30 shows the contents of processing written in the ROM 13.
  • the control unit 21 calculates an output signal such as a control signal necessary for control.
  • the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18.
  • the diagnosis unit 1 (22) and the diagnosis unit 2 (23) each detect an input abnormality to the control unit 21 by using an input value to the control unit 21.
  • the control change unit 51 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
  • the parameter transmission / reception among the control unit 21, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 51 is generally sent via the data bus via the RAM 14.
  • the abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
  • FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
  • FIG. 4 ⁇ Judgment Criteria Update Unit A (FIG. 4)>
  • clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
  • FIG. 9 The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 9, but will not be described in detail because they are the same as those in the first embodiment.
  • Control change part 51 The content of the control change part 51 is shown. Specifically, it is shown in FIG.
  • x1 and x2 may be restricted to the following ranges.
  • the ROM 13 (storage device) of the control device 11 stores a control table (database) as shown in FIG. 36A.
  • the control table stores a combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 and a process corresponding to this combination in association with each other.
  • the control change unit 51 reads a process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the control table, and executes the read process (a process for changing the control of the control unit 21).
  • FIG. 36B is an example of a time chart showing the operations of f_ano_1, f_ano_2, and the control unit 21.
  • the control change unit 51 may stop the control unit 21 when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
  • the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120).
  • the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • -Function-Diagnosis unit 1 Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • -Action-Diagnosis unit 1 Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  • the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects are used to diagnose the input value to the control unit 21, If it is determined that there is an abnormality, the input value is restricted to the normal range, so that the risk of unexpected operation abnormality of the control unit 21 can be suppressed and highly reliable control can be performed.
  • the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
  • diagnosis result of the diagnosis unit 1 When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given. Further, when the diagnosis result of the diagnosis unit 1 is normal and the diagnosis result of the diagnosis unit 2 is abnormal, the internal calculation value of the control function is restricted within a predetermined range. Further, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal, the control function is stopped.
  • control target is an internal combustion engine
  • output value of the control function is the air amount, fuel injection amount, and ignition timing of the internal combustion engine.
  • control device of the fifth embodiment is applied to the control of the internal combustion engine.
  • Embodiment 7 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 32 shows the contents of processing written in the ROM 13.
  • the control unit 61 uses the input signal written in the RAM 14 via the input circuit 16 and the input / output port 17 to control signals (target ignition timing, target fuel injection amount, target air) required for control.
  • the output signal is calculated.
  • the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18.
  • the diagnosis unit 1 (22) and the diagnosis unit 2 (23) detect an abnormality of the control unit 61 using parameters (target ignition timing, target fuel injection amount, target air amount) calculated by the control unit 61.
  • the parameter calculated by the control unit 61 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit.
  • the control change unit 32 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
  • Parameter transmission / reception among the control unit 61, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 32 is generally sent via the data bus via the RAM 14.
  • the abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
  • FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
  • FIG. 4 ⁇ Judgment Criteria Update Unit A (FIG. 4)>
  • clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
  • ⁇ Decision part (FIG. 8)> it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, although shown in FIG. 8, it is the same as that of the first embodiment, and therefore will not be described in detail. In FIG. 8, two-dimensional results are shown, but the parameters (target ignition timing, target fuel injection amount, target air amount) calculated by the control unit 61 are three-dimensional and are expanded to three dimensions. This process is performed.
  • FIG. 15 The processing content of the diagnosis part 2 (23) is shown. Specifically, although it is shown in FIG. 15, it is not described in detail because it is the same as the second embodiment.
  • Control change unit (FIG. 25)> The processing content of the control change part 32 is shown. Specifically, although shown in FIG. 25, since it is the same as Embodiment 5, it does not elaborate.
  • Control unit (FIG. 26)> The processing content of the control part 61 is shown. Specifically, it is shown in FIG.
  • an abnormal lamp may be turned on so that the driver can understand.
  • x1 and x2 may be restricted to the following ranges from the diagnosis unit 2 (23) (FIG. 9).
  • diagnosis unit 1 and the diagnosis unit 2 have determined that there is an abnormality, it is determined that it is dangerous to continue the control, the control is stopped, and the operation of the internal combustion engine is stopped.
  • Fail-safe processing for internal combustion engines is an existing control and will not be described in detail here.
  • both of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) are dimension. It should be noted that these extensions are possible and not applicable only to three-dimensional data.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
  • the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120).
  • the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • -Function-Diagnosis unit 1 Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • -Action-Diagnosis unit 1 Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data. It may be possible to detect unknown normality / abnormality (danger) hidden in data.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  • the function of the control unit 61 is diagnosed by using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects, and the diagnosis unit Since the control is changed based on the diagnosis result of 1 and the diagnosis unit 2, the control according to the nature of the abnormality is possible, and the performance / reliability of the control system of the internal combustion engine is increased.
  • the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal.
  • the means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering).
  • the diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
  • diagnosis result of the diagnosis unit 1 When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given. Further, when the diagnosis result of the diagnosis unit 1 is normal and the diagnosis result of the diagnosis unit 2 is abnormal, the internal calculation value of the control function is restricted within a predetermined range. Further, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal, the control function is stopped.
  • the controlled object is the rolling process of the steel plant
  • the output values of the control function are the target tension, the target reduction position, and the target roller speed.
  • the control device calculates an output signal used for controlling the tension, the reduction position, or the rolling material moving speed of the rolling device, and controls the rolling device.
  • control device of the fifth embodiment is applied to the control of the rolling device.
  • control apparatus according to the eighth embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
  • FIG. 33 shows the contents of the process written in the ROM 13.
  • the control unit 61 uses the control signals (target tension, target pressure reduction position, target roller speed) necessary for control.
  • the output signal is calculated.
  • the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18.
  • the diagnosis unit 1 (22) and the diagnosis unit 2 (23) detect an abnormality of the control unit 61 using parameters (target tension, target reduction position, target roller speed) calculated by the control unit 61.
  • the parameter calculated by the control unit 61 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit.
  • the control change unit 32 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
  • Parameter transmission / reception among the control unit 61, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 32 is generally sent via the data bus via the RAM 14.
  • the abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
  • FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
  • FIG. 4 ⁇ Judgment Criteria Update Unit A (FIG. 4)>
  • clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
  • ⁇ Decision part (FIG. 8)> it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, although shown in FIG. 8, it is the same as that of the first embodiment, and therefore will not be described in detail. In FIG. 8, two-dimensional results are shown, but the parameters (target tension, target reduction position, target roller speed) calculated by the control unit 61 are three-dimensional and are expanded to three dimensions. Processing is performed.
  • FIG. 15 The processing content of the diagnosis part 2 (23) is shown. Specifically, although it is shown in FIG. 15, it is not described in detail because it is the same as the second embodiment.
  • Control change unit (FIG. 25)> The processing content of the control change part 32 is shown. Specifically, although shown in FIG. 25, since it is the same as Embodiment 5, it does not elaborate.
  • Control unit (FIG. 26)> The processing content of the control part 71 is shown. Specifically, it is shown in FIG.
  • ⁇ A As a method of notifying the abnormality, in the case of rolling process control, it is conceivable to turn on the abnormal light in the central control room so that the process supervisor can understand.
  • x1 and x2 may be restricted to the following ranges from the diagnosis unit 2 (23) (FIG. 9).
  • both of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) are dimension. It should be noted that these extensions are possible and not applicable only to three-dimensional data.
  • This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals.
  • the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time.
  • the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
  • the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120).
  • the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record).
  • the determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
  • -Function-Diagnosis unit 1 Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  • Diagnosis unit 2 Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
  • -Action-Diagnosis unit 1 Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
  • Diagnosis unit 2 Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ⁇ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  • the function of the control unit 71 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects, and the diagnosis unit Since the control is changed based on the diagnosis result of 1 and the diagnosis unit 2, the control according to the nature of the abnormality is possible, and the performance / reliability of the control system of the rolling process is increased.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • each of the above-described configurations, functions, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor (CPU).
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the CPU 12 (control change unit 24) reads the process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the ROM 12 (control table) and executes the read process. To do.
  • the cooperation of hardware resources (CPU 12, ROM 13, etc.) has an advantageous effect that the control can be changed according to the diagnosis result while improving the reliability of the diagnosis.
  • a first diagnosis unit for diagnosing a control function according to a determination criterion updated based on at least an input value to the control function, an internal operation value of the control function or an output value of the control function, and a predetermined determination According to the criteria, independently of the first diagnosis unit (in parallel processing), a second diagnosis unit that diagnoses the control function, a diagnosis result of the first diagnosis unit, and a diagnosis result of the second diagnosis unit
  • a control apparatus comprising: a control change unit that changes the control content of the control function according to the combination.
  • the means for updating the determination criteria of the first diagnosis unit is configured to input (some) characteristic or property of an input value to the control function, an internal calculation value of the control function, or an output value of the control function.
  • a control apparatus characterized by being a calculation method for extraction.
  • the second diagnosis unit diagnoses by a rule-based method, and the predetermined criterion of the second diagnosis unit is described by a rule-based method apparatus.
  • control target is an internal combustion engine
  • output value of the control function is at least an air amount, a fuel injection amount, and an ignition timing of the internal combustion engine.
  • a control target is a rolling process of a steel plant
  • an output value of the control function is at least a tension, a reduction position, and a rolling material moving speed in the rolling process.
  • Control device or data processing device 12 ... CPU of control device or data processing device 13 ... ROM of control device or data processing device 14 ... RAM of control device or data processing device 15 ... Data bus 16 of control device or data processing device ... Input circuit 17 of control device or data processing device ... Input / output port 18 of control device or data processing device ... Output circuit 21 of control device or data processing device ... Write to ROM Control unit 22 to be executed: diagnostic unit 1 written in ROM 23 ... Diagnostic unit 2 written in ROM 24: Control change unit 31 written in ROM ... Control unit 32 written in ROM ...
  • Judgment standard update part B 171 Internal 180 of the judgment reference updating unit B ... Determination part 181 ... Internal of the judgment part 190 ... Determination standard updating part A 191 ... Inside of the criterion update unit A (statistical processing: average value and variance value) 200 ... Judgment standard update part B 201 ... Inside of judgment criterion update unit B 210 ... Determination unit 211 ... Inside of judgment unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A control unit 21 calculates an output signal used for control, on the basis of an input signal. A diagnostic unit 1 (22) updates first criteria at a first point in time on the basis of target data representing data handled by the control unit 21, and diagnoses the target data at a second point in time subsequent to the first point in time in accordance with the updated first criteria. A diagnostic unit 2 (23), meanwhile, diagnoses the target data at the second point in time in accordance with predetermined second criteria. A control changing unit 24 performs a process matching the combination of diagnostic results 1 from the diagnostic unit 1 (22) and diagnostic results 2 from the diagnostic unit 2 (23).

Description

制御装置Control device
 本発明は、制御装置に関する。 The present invention relates to a control device.
 本技術分野の背景技術として、特表2008-503012(特許文献1)がある。この特許文献1には、「プロセスプラント内の制御ループの動作を監視するための方法であって、プロセスプラント内のユニットの動作に関連する該プロセスプラント内の制御ループの第一の動作領域に関連するプロセス利得データを収集することと、収集された前記プロセス利得データに基づいて、前記第一の動作領域におけるプロセス利得予測挙動を求めることと、前記制御ループの動作中、前記第一の動作領域において前記プロセス利得を監視することと、監視されている前記プロセス利得が、前記第一の動作領域における前記プロセス利得予測挙動から実質的にズレているときを判定することと、前記第一の動作領域における前記プロセス利得予測挙動からの実質的なズレに少なくとも基づいて、前記制御ループおよび前記ユニットの動作のうちの少なくとも一つに関連する異常状況を判定することとを含む、方法」と記載されている(〔請求項1〕参照)。 There is a special table 2008-503012 (Patent Document 1) as background technology in this technical field. This patent document 1 describes a “method for monitoring the operation of a control loop in a process plant, in a first operation region of the control loop in the process plant related to the operation of a unit in the process plant. Collecting relevant process gain data; determining a process gain prediction behavior in the first operating region based on the collected process gain data; and during operation of the control loop, the first operation Monitoring the process gain in a region; determining when the process gain being monitored is substantially deviated from the process gain prediction behavior in the first operating region; and Based on at least a substantial deviation from the process gain prediction behavior in the operating region, the control loop and the unit And a determining the abnormal situation associated with at least one of the operations have been described as methods "([Claim 1] see).
 また、本特許文献1には、「プロセスプラント内の制御ループの動作を監視するための方法であって、プロセスプラント内の制御ループの第一の動作領域に関連するプロセス利得のデータを収集することと、収集された前記プロセス利得のデータに基づいて、前記第一の動作領域の前記プロセス利得の予測挙動を求めることと、エキスパートエンジンに対して、前記第一の動作領域の前記プロセス利得の予測挙動を示しているデータの提供することと、前記制御ループの動作中に、前記エキスパートエンジンに対して前記制御ループに関連するプロセス利得のデータを提供することと、前記プロセス利得の予測挙動を示しているデータおよび前記制御ループの動作中の前記制御ループに関連する前記プロセス利得のデータに基づいて、前記制御ループに関連する異常状況を検出するために前記エキスパートエンジンを用いることとを含む、方法」と記載されている(〔請求項16〕参照)。 In addition, this Patent Document 1 discloses a “method for monitoring the operation of a control loop in a process plant, and collects process gain data related to the first operation region of the control loop in the process plant. Determining a predicted behavior of the process gain of the first operating region based on the collected process gain data; and for an expert engine, the process gain of the first operating region. Providing data indicative of predicted behavior; providing data of process gain associated with the control loop to the expert engine during operation of the control loop; and predicting behavior of the process gain. Based on the data shown and the process gain data associated with the control loop during operation of the control loop, And a the use of the expert engine to detect an abnormal situation associated with the control loop, is described as a method "(see [Claim 16]).
特表2008-503012号公報Special table 2008-503012 gazette
 しかしながら、前述の先行技術(特許文献1)は、制御機能の異常を検出した結果を用いて制御機能内容を変更するものではない。また、異なる機能(未知の異常を検出し得る機能/既知の異常を検出する機能)を持つ異常検出機能(診断機能)を同時(並列)に動作させるものでもない。 However, the above-mentioned prior art (Patent Document 1) does not change the contents of the control function using the result of detecting the abnormality of the control function. In addition, an abnormality detection function (diagnostic function) having different functions (a function capable of detecting an unknown abnormality / a function of detecting a known abnormality) is not operated simultaneously (in parallel).
 本発明の目的は、診断の信頼性を向上しつつ、診断結果に応じて制御を変更することができる制御装置を提供することにある。 An object of the present invention is to provide a control device capable of changing the control according to the diagnosis result while improving the reliability of the diagnosis.
 上記目的を達成するために、本発明は、入力信号に基づいて制御に用いられる出力信号を演算する制御部と、前記制御部が扱うデータを示す対象データに基づいて第1タイミングで第1判断基準を更新し、更新された前記第1判断基準に従って前記第1タイミング後の第2タイミングの前記対象データを診断する第1診断部と、予め定められた第2判断基準に従って前記第2タイミングの前記対象データを診断する第2診断部と、前記第1診断部の診断結果と前記第2診断部の診断結果の組合せに対応する処理を実行する制御変更部と、を備える。 In order to achieve the above object, the present invention provides a control unit that calculates an output signal used for control based on an input signal, and a first determination at a first timing based on target data indicating data handled by the control unit. A first diagnosing unit for diagnosing the target data at a second timing after the first timing according to the updated first determination criterion; and a second timing according to a predetermined second determination criterion. A second diagnosis unit that diagnoses the target data; and a control change unit that executes a process corresponding to a combination of the diagnosis result of the first diagnosis unit and the diagnosis result of the second diagnosis unit.
 本発明によれば、診断の信頼性を向上しつつ、診断結果に応じて制御を変更することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the control can be changed according to the diagnosis result while improving the reliability of the diagnosis. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
実施形態1~8における制御装置が作動するシステム全体図である。FIG. 9 is an overall system diagram in which the control device according to the first to eighth embodiments operates. 実施形態1~4におけるROMに実装される処理内容を示す図である。FIG. 6 is a diagram showing processing contents implemented in a ROM in the first to fourth embodiments. 実施形態1、5~8における診断部1の全体を表した図である。FIG. 9 is a diagram showing the entire diagnosis unit 1 in Embodiments 1 and 5 to 8. 実施形態1、5~8における判断基準更新部Aの処理を示した図である。FIG. 10 is a diagram illustrating processing of a determination criterion update unit A in the first, fifth to eighth embodiments. 実施形態1における判断基準更新部Aの処理結果例を示す図である。It is a figure which shows the example of a process result of the judgment reference update part A in Embodiment 1. FIG. 実施形態1、5~8における判断基準更新部Bの処理を示した図である。FIG. 10 is a diagram showing processing of a determination criterion update unit B in Embodiments 1, 5 to 8. 実施形態1における判断基準更新部Bの処理結果例を示す図である。It is a figure which shows the example of a process result of the judgment reference update part B in Embodiment 1. FIG. 実施形態1、5~8における判断部の処理を示した図である。FIG. 10 is a diagram illustrating processing of a determination unit in the first, fifth, and eighth embodiments. 実施形態1、5、6における診断部2の処理を示した図である。It is the figure which showed the process of the diagnostic part 2 in Embodiment 1, 5, 6. FIG. 実施形態1~4における制御変更部の処理を示した図である。FIG. 6 is a diagram showing processing of a control change unit in the first to fourth embodiments. 実施形態2における診断部1の全体を表した図である。It is a figure showing the whole diagnostic part 1 in Embodiment 2. FIG. 実施形態2における判断基準更新部Aの処理を示した図である。FIG. 10 is a diagram illustrating a process of a determination criterion update unit A in the second embodiment. 実施形態2における判断基準更新部Bの処理を示した図である。FIG. 10 is a diagram illustrating processing of a determination criterion update unit B in the second embodiment. 実施形態2における判断部の処理を示した図である。FIG. 10 is a diagram illustrating processing of a determination unit in the second embodiment. 実施形態2~4、7、8における診断部2の処理を示した図である。FIG. 10 is a diagram showing processing of a diagnosis unit 2 in Embodiments 2 to 4, 7, and 8. 実施形態3における診断部1の全体を表した図である。It is a figure showing the whole diagnostic part 1 in Embodiment 3. FIG. 実施形態3における判断基準更新部Aの処理を示した図である。It is the figure which showed the process of the judgment reference update part A in Embodiment 3. FIG. 実施形態3における判断基準更新部Bの処理を示した図である。It is the figure which showed the process of the judgment reference update part B in Embodiment 3. FIG. 実施形態3における判断部の処理を示した図である。It is a figure showing processing of a judgment part in Embodiment 3. 実施形態4における診断部1の全体を表した図である。It is a figure showing the whole diagnostic part 1 in Embodiment 4. FIG. 実施形態4における判断基準更新部Aの処理を示した図である。It is the figure which showed the process of the judgment reference update part A in Embodiment 4. FIG. 実施形態4における判断基準更新部Bの処理を示した図である。It is the figure which showed the process of the judgment reference update part B in Embodiment 4. FIG. 実施形態4における判断部の処理を示した図である。It is the figure which showed the process of the judgment part in Embodiment 4. 実施形態5におけるROMに実装される処理内容を示す図である。FIG. 10 is a diagram illustrating processing contents mounted on a ROM according to a fifth embodiment. 実施形態5、7、8における制御変更部の処理を示した図である。It is the figure which showed the process of the control change part in Embodiment 5, 7, and 8. FIG. 実施形態5、7、8における制御部の処理を示した図である。It is the figure which showed the process of the control part in Embodiment 5, 7, and 8. FIG. 実施形態5、7、8における非常時制御1の処理を示した図である。It is the figure which showed the process of emergency control 1 in Embodiment 5, 7, and 8. FIG. 実施形態5、7、8における非常時制御2の処理を示した図である。It is the figure which showed the process of emergency control 2 in Embodiment 5, 7, and 8. FIG. 実施形態5、7、8における非常時制御3の処理を示した図である。It is the figure which showed the process of emergency control 3 in Embodiment 5, 7, and 8. FIG. 実施形態6におけるROMに実装される処理内容を示す図である。FIG. 18 is a diagram illustrating processing contents implemented in a ROM according to a sixth embodiment. 実施形態6における制御部の処理を示した図である。It is the figure which showed the process of the control part in Embodiment 6. 実施形態7におけるROMに実装される処理内容を示す図である。FIG. 20 is a diagram illustrating processing contents implemented in a ROM according to the seventh embodiment. 実施形態8におけるROMに実装される処理内容を示す図である。FIG. 20 is a diagram illustrating processing contents implemented in a ROM according to an eighth embodiment. 実施形態1の制御テーブルを示す図である。It is a figure which shows the control table of Embodiment 1. FIG. 実施形態1の制御を説明するためのタイムチャートである。3 is a time chart for explaining the control of the first embodiment. 実施形態5、7、8の制御テーブルを示す図である。It is a figure which shows the control table of Embodiment 5, 7, and 8. FIG. 実施形態5、7、8の制御を説明するためのタイムチャートである。10 is a time chart for illustrating control of Embodiments 5, 7, and 8. 実施形態6の制御テーブルを示す図である。It is a figure which shows the control table of Embodiment 6. 実施形態6の制御を説明するためのタイムチャートである。10 is a time chart for explaining the control of the sixth embodiment.
 以下、本発明の実施形態1~7による制御装置の構成及び動作を説明する。実施形態1~8による制御装置は、制御機能の出力値等に基づいて更新される判定基準に従って、制御機能の診断を行う診断部1と、予め定められた判定基準に従って、診断部1とは独立して(並列処理で)、制御機能の診断を行う診断部2と、診断部1の診断結果と診断部2の診断結果との組み合わせに応じて、所定の処理(制御機能の制御内容を変更する処理を含む)を実行する制御変更部とを備えている。 Hereinafter, the configuration and operation of the control device according to the first to seventh embodiments of the present invention will be described. The control device according to the first to eighth embodiments includes a diagnosis unit 1 that diagnoses a control function according to a determination criterion that is updated based on an output value or the like of the control function, and a diagnosis unit 1 that is determined according to a predetermined determination criterion. Independently (in parallel processing), the diagnosis unit 2 for diagnosing the control function, and depending on the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2, predetermined processing (control content of the control function is set) And a control change unit that executes (including processing to change).
 〔実施形態1〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、機械学習(クラスタリング)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。
Embodiment 1
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
 以下、図面を用いて、本発明の実施形態1による制御装置の構成及び動作を説明する。 Hereinafter, the configuration and operation of the control device according to Embodiment 1 of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図である。制御装置11には、外部からの信号を処理する入力回路16が設けてある。ここでいう外部からの信号とは、例えば、センサ信号、サーバーからの情報信号、他の制御装置もしくはデータ処理装置からの情報信号等が考えられる。外部からの信号は、データバス、専用回線、無線などで伝送される。外部からの信号は、入力回路16を経て、入力信号となり入出力ポート17へ送られる。入出力ポート17に送られた入力情報は、データバス15を通って、RAM14に書き込まれる。 FIG. 1 is a diagram showing the entire control device. The control device 11 is provided with an input circuit 16 for processing an external signal. Examples of the signal from the outside here include a sensor signal, an information signal from a server, an information signal from another control device or a data processing device, and the like. Signals from the outside are transmitted via a data bus, a dedicated line, wireless, or the like. A signal from the outside passes through the input circuit 16 and becomes an input signal and is sent to the input / output port 17. The input information sent to the input / output port 17 is written into the RAM 14 through the data bus 15.
 なお、入力回路16及び入出力ポート17は、入力信号を入力する入力装置を構成する。 The input circuit 16 and the input / output port 17 constitute an input device for inputting an input signal.
 ROM13には、様々な処理(プログラム)が書き込まれていて、CPU12で実行される。その際、RAM14に書き込まれた値を、適宜、用いて演算を行う。演算結果の内、外部へ送り出す情報(値)は、データバス15を通って、入出力ポート17に送られ、出力信号として、出力回路18に送られる。出力回路18から外部への信号として、制御装置11の外部に出力される。ここでいう外部への信号とは、アクチュエータへの駆動信号、サーバーへの情報信号、他の制御装置もしくはデータ処理装置への情報信号などが考えられる。 Various processes (programs) are written in the ROM 13 and executed by the CPU 12. At that time, the value written in the RAM 14 is used as appropriate for calculation. Of the calculation results, information (value) to be sent to the outside is sent to the input / output port 17 through the data bus 15 and sent to the output circuit 18 as an output signal. The signal is output from the output circuit 18 to the outside of the control device 11. The signal to the outside here may be a drive signal to an actuator, an information signal to a server, an information signal to another control device or a data processing device, and the like.
 なお、入出力ポート17、出力回路18は、出力信号を出力する出力装置を構成する。 The input / output port 17 and the output circuit 18 constitute an output device that outputs an output signal.
 図2は、ROM13に書き込まれる処理の内容を示している。前述したように、入力回路16、入出力ポート17を経て、RAM14に書き込まれた入力信号を用いて、制御部21は、制御に必要な制御信号などの出力信号を演算する。 FIG. 2 shows the contents of the process written in the ROM 13. As described above, using the input signal written in the RAM 14 through the input circuit 16 and the input / output port 17, the control unit 21 calculates an output signal such as a control signal necessary for control.
 換言すれば、制御部21は、入力信号に基づいて制御に用いられる出力信号を演算する。なお、CPU12(演算装置)は、ROM13に記憶された処理の内容(プログラム)を実行することにより、制御部21、診断部1(22)、診断部2(23)、制御変更部24として機能する。つまり、CPU12(演算装置)は、制御部、診断部1、診断部2、制御変更部を有する(以下、他の実施形態でも同様)。 In other words, the control unit 21 calculates an output signal used for control based on the input signal. The CPU 12 (arithmetic unit) functions as the control unit 21, the diagnostic unit 1 (22), the diagnostic unit 2 (23), and the control change unit 24 by executing the processing contents (program) stored in the ROM 13. To do. That is, the CPU 12 (arithmetic unit) includes a control unit, a diagnosis unit 1, a diagnosis unit 2, and a control change unit (hereinafter, the same applies to other embodiments).
 出力信号は、前述したように、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。診断部1(22)と診断部2(23)はそれぞれ、制御部21で演算されるパラメータを用いて、制御部21の異常を検知する。制御部21で演算されるパラメータは、途中演算結果でも良いし、制御部21への入力信号あるいは出力信号でもよい。制御変更部24は、診断部1(22)の診断結果1と診断部2(23)の診断結果2を用いて、制御の変更(本実施形態では異常報知)を行う。 As described above, the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Each of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) detects an abnormality of the control unit 21 using parameters calculated by the control unit 21. The parameter calculated by the control unit 21 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit 21. The control change unit 24 performs control change (in this embodiment, abnormality notification) using the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
 換言すれば、診断部1(22)は、制御部21が扱うデータを示す対象データに基づいて第1タイミングで第1判断基準を更新し、更新された第1判断基準(第1ルール)に従って第1タイミング後の第2タイミングの対象データを診断する。一方、診断部2(23)は、予め定められた第2判断基準(第2ルール)に従って第2タイミングの対象データを診断する。制御変更部24は、診断部1(22)の診断結果1と診断部2(23)の診断結果2の組合せに対応する処理(異常報知)を実行する。 In other words, the diagnosis unit 1 (22) updates the first determination criterion at the first timing based on the target data indicating the data handled by the control unit 21, and according to the updated first determination criterion (first rule). The target data at the second timing after the first timing is diagnosed. On the other hand, the diagnosis unit 2 (23) diagnoses the target data at the second timing according to a predetermined second determination criterion (second rule). The control change unit 24 executes processing (abnormality notification) corresponding to the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
 制御部21、診断部1(22)、診断部2(23)、制御変更部24間のパラメータの送受信は、一般に、RAM14を介して、データバスを通って送られる。異常報知は、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。以下、各処理の詳細を説明する。 Parameter transmission / reception among the control unit 21, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 24 is generally sent via the data bus via the RAM 14. The abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
 <診断部1(図3)>
 図3は診断部1(22)の全体を表した図であり、以下の演算部から構成される。
 ・判断基準更新部A(100)
 ・判断基準更新部B(110)
 ・判断部(120)
<Diagnostic section 1 (FIG. 3)>
FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
・ Criteria update part A (100)
・ Criteria update part B (110)
・ Decision part (120)
 以下、診断部1の各部の詳細を説明する。 Hereinafter, details of each part of the diagnosis unit 1 will be described.
 <判断基準更新部A(図4)>
 本処理では、データを用いて、クラスタリング情報を演算する。具体的には、図4に示される。
<Judgment Criteria Update Unit A (FIG. 4)>
In this process, clustering information is calculated using data. Specifically, it is shown in FIG.
 ベクトル化された学習時のデータ/パラメータ値(ベクトル)を機械学習k-meansを用いてクラスタリングする。k-means法により、得られたクラスタリング結果を出力する。ここでいうクラスタリング結果とは、
 ・k-means法によって分割されたデータが属するクラスタ番号
 ・各クラスタに属するデータの平均値(中心ベクトル)
 を指す。換言すれば、判断基準更新部A(診断部1)は、対象データの特性を抽出する。
Clustering vectorized learning data / parameter values (vectors) using machine learning k-means. The obtained clustering result is output by the k-means method. The clustering result here is
・ Cluster number to which data divided by k-means method belongs ・ Average value of data belonging to each cluster (center vector)
Point to. In other words, the determination criterion update unit A (diagnosis unit 1) extracts the characteristics of the target data.
 なお、k-means法の詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。図5は、ある2次元のベクトルからなるデータ群をk-means法により、クラスタ数4でクラスタリングした結果例である。 The details of the k-means method are described in many documents and books, and will not be described in detail here. FIG. 5 shows an example of the result of clustering a data group consisting of a certain two-dimensional vector with 4 clusters by the k-means method.
 <判断基準更新部B(図6)>
 本処理では、判断基準更新部Aで演算した上述のクラスタリング情報を用いて、クラスタリングされたデータ集合毎に、データ範囲を設定し、その結果を範囲情報として出力する。具体的には、図6に示される。
<Judgment Criteria Update Unit B (FIG. 6)>
In this process, the data range is set for each clustered data set using the above-described clustering information calculated by the determination criterion update unit A, and the result is output as range information. Specifically, it is shown in FIG.
 ・各クラスタに属するデータの各次元の最小値を各クラスタに対応する範囲の各次元の下限とする。 ・ The minimum value of each dimension of the data belonging to each cluster is set as the lower limit of each dimension in the range corresponding to each cluster.
 ・各クラスタに属するデータの各次元の最大値を各クラスタに対応する範囲の各次元の上限とする。 ・ The maximum value of each dimension of data belonging to each cluster is set as the upper limit of each dimension in the range corresponding to each cluster.
 ここでいう判断基準1とは、
 ・各クラスタ(中心ベクトル)に対応する範囲を規定する各次元の下限値と上限値
 を指す。換言すれば、判断基準更新部B(診断部1)は、判断基準更新部Aによって抽出された特性に基づいて判断基準1を更新する。
The criterion 1 here is:
-Refers to the lower and upper limits of each dimension that define the range corresponding to each cluster (center vector). In other words, the determination criterion update unit B (diagnosis unit 1) updates the determination criterion 1 based on the characteristics extracted by the determination criterion update unit A.
 図7は、図5で示した分割結果を基に、本設定手段により範囲を設定した結果例である。 FIG. 7 shows an example of the result of setting the range by the setting means based on the division result shown in FIG.
 <判断部(図8)>
 本処理では、上述の範囲情報に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図8に示される。
<Decision part (FIG. 8)>
In this process, it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, it is shown in FIG.
 ・診断時のデータ/パラメータ値(ベクトル)に対して、L2距離の意味で、もっとも近い中心ベクトルを特定する。 ∙ Specify the closest center vector in terms of L2 distance to the data / parameter value (vector) at the time of diagnosis.
 ・特定した中心ベクトルに対応する範囲の内部に、上記診断時のデータ/パラメータ値(ベクトル)が存在していれば、正常と判定しf_ano_1=0とする。存在していなければ、異常と判定しf_ano_1=1とする。 ・ If the data / parameter value (vector) at the time of diagnosis exists within the range corresponding to the specified center vector, it is determined as normal and f_ano_1 = 0. If it does not exist, it is determined as abnormal and f_ano_1 = 1.
 <診断部2(図9)>
 診断部2(23)の処理内容を示す。具体的には、図9に示される。
<Diagnostic section 2 (FIG. 9)>
The processing content of the diagnosis part 2 (23) is shown. Specifically, it is shown in FIG.
 診断時のデータ/パラメータ値(ベクトル)であるx1、x2(ここでは2次元)に対して、下記のルールベースの処理を行う。 The following rule-based processing is performed on x1 and x2 (two dimensions here) that are data / parameter values (vectors) at the time of diagnosis.
 if 
   x1≦k_x1_L
      or
   x1≧k_x1_H
      or
   x2≦k_x2_L
      or
   x2≧k_x2_H
 then
   f_ano_2=1
 else
   f_ano_2=0
 ここに、k_x1_L、 k_x1_H、 k_x2_L、 k_x2_Hは、予め決定しておく値であり、制御機能が異常をきたすレベル相当の値として設定するのが望ましい。
if
x1 ≦ k_x1_L
or
x1 ≧ k_x1_H
or
x2 ≦ k_x2_L
or
x2 ≧ k_x2_H
then
f_ano_2 = 1
else
f_ano_2 = 0
Here, k_x1_L, k_x1_H, k_x2_L, and k_x2_H are values that are determined in advance, and are desirably set as values corresponding to levels at which the control function is abnormal.
 <制御変更部(図10)>
 制御変更部24の処理内容を示す。具体的には、図10に示される。
<Control change part (FIG. 10)>
The processing content of the control change part 24 is shown. Specifically, it is shown in FIG.
 ・f_ano_1=1かつf_ano_2=0
  のとき、f_ano_F=1とし、異常を報知する。
・ F_ano_1 = 1 and f_ano_2 = 0
In this case, f_ano_F = 1 is set and an abnormality is notified.
 ・それ以外のとき、
  f_ano_F=0とし、異常を報知しない。
・ Other than that,
f_ano_F = 0 is set, and no abnormality is reported.
 なお、制御装置11のROM13(記憶装置)は、図34Aに示すように、制御テーブル(データベース)を記憶する。本実施形態の制御テーブルは、診断部1の診断結果が異常(f_ano_1=1)、かつ、診断部2の診断結果が正常(f_ano_2=0)という組合せと、この組合せに対応する処理としての非常時制御1(f_ano_F=1)を対応付けて記憶する。制御変更部24は、診断部1の診断結果と診断部2の診断結果の組合せに対応する処理を制御テーブルから読み出し、読み出した処理(非常時制御1:報知)を実行する。 Note that the ROM 13 (storage device) of the control device 11 stores a control table (database) as shown in FIG. 34A. The control table of the present embodiment is a combination of the diagnosis result of the diagnosis unit 1 being abnormal (f_ano_1 = 1) and the diagnosis result of the diagnosis unit 2 being normal (f_ano_2 = 0), and an emergency process as a process corresponding to this combination. Time control 1 (f_ano_F = 1) is associated and stored. The control change unit 24 reads a process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the control table, and executes the read process (emergency control 1: notification).
 図34Bは、f_ano_1、f_ano_2及びf_ano_Fのタイムチャートの一例である。CPU12(演算装置)は、f_ano_F=1の場合、例えば、警告灯を点灯させてもよい。 FIG. 34B is an example of a time chart of f_ano_1, f_ano_2, and f_ano_F. For example, when f_ano_F = 1, the CPU 12 (arithmetic unit) may turn on a warning lamp.
 本実施形態では、2次元のデータでの診断例を示しているが、診断部1(22)、診断部2(23)共に、次元の拡張は可能であり、2次元のデータのみに適用されるものではないことを付言しておく。 In this embodiment, an example of diagnosis using two-dimensional data is shown. However, both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) can be expanded in dimension, and are applied only to two-dimensional data. It is added that it is not a thing.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(100)と判断基準更新部B(110)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(120)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(100)と判断基準更新部B(110)で用いるデータと判断部(120)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(100)と判断基準更新部B(110)は処理を行う。判断部(120)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120). For example, the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:機械学習
    データを用いて、例えば距離が近いなどを基準にして、クラスタリングによりデータを各集合に分ける。診断結果は、基準生成時に用いたデータの特性に応じて変化。
-Function-Diagnosis unit 1: Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:機械学習
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
    データに隠された未知(人間が気付いていない)の正常/異常(危険)を検知できることがある。
-Action-Diagnosis unit 1: Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
It is possible to detect normal / abnormal (dangerous) unknown (hidden by humans) hidden in the data.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:機械学習
    未知の異常(危険)を回避できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部21の機能を診断するので、より信頼性の高い診断が可能となる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
 そのため、診断の信頼性を向上しつつ、診断結果に応じて制御を変更することができる。 Therefore, the control can be changed according to the diagnosis result while improving the reliability of the diagnosis.
 〔実施形態2〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、次元削減処理(スパースモデリング)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。
[Embodiment 2]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses dimension reduction processing (sparse modeling). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
 すなわち、本実施形態では、第1の実施形態と比較して、次元削減処理を用いて診断部1の判断基準を更新する点が異なる。以下、図面を用いて、本発明の実施形態2による制御装置の構成及び動作を説明する。 That is, the present embodiment is different from the first embodiment in that the judgment criterion of the diagnosis unit 1 is updated using the dimension reduction process. Hereinafter, the configuration and operation of the control apparatus according to the second embodiment of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。図2は、ROM13に書き込まれる処理の内容を示しているが、実施形態1と同じであるので詳述しない。以下、各処理の詳細を説明する。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail. FIG. 2 shows the contents of the process written in the ROM 13, but it is the same as that of the first embodiment and will not be described in detail. Details of each process will be described below.
 <診断部1(図11)>
 図11は診断部1(22)の全体を表した図であり、以下の演算部から構成される。
<Diagnostic section 1 (FIG. 11)>
FIG. 11 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
 ・判断基準更新部A(130)
 ・判断基準更新部B(140)
 ・判断部(150)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (130)
・ Criteria update part B (140)
・ Decision part (150)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図12)>
 本処理では、データを用いて、次元削減処理を行う。具体的には、図12に示される。
<Judgment Criteria Update Unit A (FIG. 12)>
In this processing, dimension reduction processing is performed using data. Specifically, it is shown in FIG.
 ベクトル化された学習時のデータ/パラメータ値(ベクトル)を、スパースモデリング(lassoなど)を用いて、データの次元を削減する。出力は、判断基準1a(線形式)とPhi(評価関数値)である。判断基準1aは、スパースモデリングにより次元削減および線近似した結果である。Phiは、次元削減および線形近似に用いた評価関数の値であり、線形近似の精度を示す。なお、lasso回帰などスパースモデリングの詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。 ∙ Reduce dimensionality of data / parameter values (vectors) during vectorization using sparse modeling (such as lasso). The output is the criterion 1a (linear format) and Phi (evaluation function value). The criterion 1a is a result of dimension reduction and line approximation by sparse modeling. Phi is the value of the evaluation function used for dimension reduction and linear approximation, and indicates the accuracy of linear approximation. Details of sparse modeling such as lasso regression have been described in many documents and books, and will not be described in detail here.
 <判断基準更新部B(図13)>
 本処理では、判断基準更新部Aでの演算結果を用いて、判断基準1bを演算する。具体的には、図13に示され、Div1(判断基準1b)は、下記で演算される。
  Div1=k1×Phi
<Judgment Criteria Updater B (FIG. 13)>
In this process, the criterion 1b is calculated using the calculation result in the criterion update unit A. Specifically, as shown in FIG. 13, Div1 (judgment criterion 1b) is calculated as follows.
Div1 = k1 × Phi
 線形近似の精度であるPhiを用いて、許容範囲を規定するものである。なお、ここでは、Phiにk1を乗じる方式としたが、Phiに関する他の関数としてもよい。 The allowable range is defined using Phi, which is the accuracy of linear approximation. In this example, Phi is multiplied by k1, but another function related to Phi may be used.
 <判断部(図14)>
 本処理では、判断基準更新部Bで得られた判断基準1bに基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図14に示される。
<Decision part (FIG. 14)>
In this process, it is determined whether the newly obtained data is normal (abnormal) based on the determination criterion 1b obtained by the determination criterion update unit B. Specifically, it is shown in FIG.
 ・診断対象のデータ(ベクトル)の内、判断基準1aである線形式を構成している次元の要素だけ抜き出す。 ・ From the data (vector) to be diagnosed, extract only the dimension elements that make up the linear format that is the criterion 1a.
 ・抜き出した要素だけで構成される新たなベクトルと判断基準1a(線形式)の距離(法線の長さ)を求める。 ・ A distance (normal length) between a new vector composed only of extracted elements and a criterion 1a (line format) is obtained.
 ・(法線の長さ)≧Div1のときf_ano_1=1とする。 ・ When (normal length) ≧ Div1, set f_ano_1 = 1.
  それ以外は、f_ano_1=0とする。 Otherwise, f_ano_1 = 0.
 <診断部2(図15)>
 診断部2(23)の処理内容を示す。具体的には、図15に示される。
<Diagnostic section 2 (FIG. 15)>
The processing content of the diagnosis part 2 (23) is shown. Specifically, it is shown in FIG.
 診断時のデータ/パラメータ値(ベクトル)であるx1、x2、・・・xn(n次元)に対して、下記のルールベースの処理を行う。 The following rule-based processing is performed on x1, x2, ... xn (n dimensions) that are data / parameter values (vectors) at the time of diagnosis.
 if 
   x1≦k_x1_L
      or
   x1≧k_x1_H
      or
   x2≦k_x2_L
      or
   x2≧k_x2_H
     ・・・
      or
   xn≦k_xn_L
      or
   xn≧k_xn_H
 then
   f_ano_2=1
 else
   f_ano_2=0
 ここに、k_x1_L、 k_x1_H、 k_x2_L、 k_x2_H、・・・、 k_xn_L、 k_xn_Hは、予め決定しておく値であり、制御機能が異常をきたすレベル相当の値として設定するのが望ましい。
if
x1 ≦ k_x1_L
or
x1 ≧ k_x1_H
or
x2 ≦ k_x2_L
or
x2 ≧ k_x2_H
...
or
xn ≦ k_xn_L
or
xn ≧ k_xn_H
then
f_ano_2 = 1
else
f_ano_2 = 0
Here, k_x1_L, k_x1_H, k_x2_L, k_x2_H,..., K_xn_L, k_xn_H are values that are determined in advance, and are preferably set as values corresponding to levels at which the control function is abnormal.
 <制御変更部(図10)>
 制御変更部24の処理内容を示す。具体的には、図10に示されるが、実施形態1と同じであるので、詳述しない。
<Control change part (FIG. 10)>
The processing content of the control change part 24 is shown. Specifically, although it is shown in FIG. 10, it is the same as that of the first embodiment, and therefore will not be described in detail.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(130)と判断基準更新部B(140)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(150)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination criterion update unit A (130) and the determination criterion update unit B (140) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (150) may be implemented in each terminal and detect an abnormality in the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(130)と判断基準更新部B(140)で用いるデータと判断部(150)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(130)と判断基準更新部B(140)は処理を行う。判断部(150)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (130) and the judgment standard update unit B (140) are different from the data used in the judgment unit (150). For example, the determination reference update unit A (130) and the determination reference update unit B (140) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (150) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:次元削減
    データを用いて、次元数の非常に多いデータに対して、有意な次元のみを残し、有意な次元のみで表された診断基準(式、モデルなど)を生成する。診断結果は、基準生成時に用いたデータの特性に応じて変化。
・ Function ・ Diagnosis unit 1: Dimension reduction Uses data to generate diagnostic criteria (formulas, models, etc.) represented by only significant dimensions, leaving only significant dimensions for data with a very large number of dimensions. To do. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:次元削減
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
    データに隠された未知の正常/異常(危険)を検知できることがある。あるいは、異常(危険)を予測できることがある。
-Action-Diagnosis unit 1: Dimension reduction Identifies normal / abnormal (danger) based on diagnostic criteria generated using data.
It may be possible to detect unknown normality / abnormality (danger) hidden in data. Alternatively, an abnormality (danger) can be predicted.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:次元削減
    未知の異常(危険)を回避できることがある。あるいは予想できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnosis unit 1: Dimension reduction Unknown abnormality (danger) may be avoided. Or you can expect.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部21の機能を診断するので、より信頼性の高い診断が可能となる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
 〔実施形態3〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、圧縮処理(周波数解析)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。
[Embodiment 3]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses compression processing (frequency analysis). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
 すなわち、本実施形態では、第1の実施形態と比較して、圧縮処理を用いて診断部1の判断基準を更新する点が異なる。以下、図面を用いて、本発明の実施形態3による制御装置の構成及び動作を説明する。 That is, the present embodiment is different from the first embodiment in that the determination standard of the diagnosis unit 1 is updated using the compression process. Hereinafter, the configuration and operation of a control device according to Embodiment 3 of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。図2は、ROM13に書き込まれる処理の内容を示しているが、実施形態1と同じであるので詳述しない。以下、各処理の詳細を説明する。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail. FIG. 2 shows the contents of the process written in the ROM 13, but it is the same as that of the first embodiment and will not be described in detail. Details of each process will be described below.
 <診断部1(図16)>
 図16は診断部1(22)の全体を表した図であり、以下の演算部から構成される。
<Diagnostic section 1 (FIG. 16)>
FIG. 16 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
 ・判断基準更新部A(160)
 ・判断基準更新部B(170)
 ・判断部(180)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (160)
・ Criteria update part B (170)
・ Judgment part (180)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図17)>
 本処理では、データを用いて、周波数解析処理を行う。具体的には、図17に示される。
<Judgment Criteria Update Unit A (FIG. 17)>
In this processing, frequency analysis processing is performed using data. Specifically, it is shown in FIG.
 ベクトル化された学習時のデータ/パラメータ値(ベクトル)の成分ごとに周波数解析(フーリエ変換など)を用いて、周波数解析の結果を得る。なお、フーリエ変換など周波数解析の詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。 ∙ Use frequency analysis (Fourier transform etc.) for each component of vectorized learning data / parameter value (vector) to obtain the result of frequency analysis. Note that details of frequency analysis such as Fourier transform have been described in many documents and books, and will not be described in detail here.
 <判断基準更新部B(図18)>
 本処理では、判断基準更新部Aでの演算結果を用いて、F_1_k(判断基準1)を演算する。具体的には、図18に示され、F_1_k(判断基準1b)は、下記処理で求められる。
<Judgment Criteria Updater B (FIG. 18)>
In this process, F_1_k (determination criterion 1) is calculated using the calculation result in the determination criterion update unit A. Specifically, as shown in FIG. 18, F_1_k (judgment criterion 1b) is obtained by the following processing.
 ・パワースペクトルが所定値k_F1_i以上の周波数をF_i_kとする。 ・ F_i_k is a frequency whose power spectrum is greater than or equal to the predetermined value k_F1_i.
   i:1、2、3、・・・、ベクトルの要素数(成分数)、
   k:1、2、3、・・・、該当周波数の数
  k_F1_iは、要素毎(成分毎)に設定するのが望ましい。
i: 1, 2, 3, ..., number of vector elements (number of components),
k: 1, 2, 3,..., number of relevant frequencies k_F1_i is preferably set for each element (each component).
 <判断部(図19)>
 本処理では、判断基準更新部Bで得られた判断基準1に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図19に示される。
<Decision part (FIG. 19)>
In this process, based on the determination criterion 1 obtained by the determination criterion update unit B, it is determined whether the newly obtained data is normal (abnormal). Specifically, it is shown in FIG.
 ・診断対象のデータ(ベクトル)の各要素を周波数解析する。 ・ Frequency analysis of each element of diagnosis target data (vector).
  ただし、対象周波数は、F_i_kとする。 However, the target frequency is F_i_k.
 ・各周波数F_i_kのパワースペクトルの値が、k_F2_i以上のとき、
  f_ano_1=1とする。
・ When the power spectrum value of each frequency F_i_k is greater than or equal to k_F2_i
Let f_ano_1 = 1.
 ・それ以外は、f_ano_1=0とする。 ・ F_ano_1 = 0 otherwise.
 なお、F_i_k以外のパワーも対象として、当該パワーが所定値以上となったとき異常と判断するのもよい。 It should be noted that power other than F_i_k is also targeted, and it may be determined as abnormal when the power exceeds a predetermined value.
 <診断部2(図15)>
 診断部2(23)の処理内容は、具体的には、図15に示されるが、実施形態2と同じであるので、詳述しない。
<Diagnostic section 2 (FIG. 15)>
The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 15, but are not described in detail because they are the same as those in the second embodiment.
 <制御変更部(図10)>
 制御変更部24の処理内容は、具体的には、図10に示されるが、実施形態1と同じであるので、詳述しない。
<Control change part (FIG. 10)>
The processing contents of the control change unit 24 are specifically shown in FIG. 10, but are not described in detail because they are the same as those in the first embodiment.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(160)と判断基準更新部B(170)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(180)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination criterion update unit A (160) and the determination criterion update unit B (170) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (180) may be implemented in each terminal and detect an abnormality in the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(160)と判断基準更新部B(170)で用いるデータと判断部(180)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(160)と判断基準更新部B(170)は処理を行う。判断部(180)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (160) and the judgment standard update unit B (170) are different from the data used in the judgment unit (180). For example, the determination reference update unit A (160) and the determination reference update unit B (170) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (180) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:圧縮(周波数解析)
    データを用いて、時間方向にデータ点数の多いデータに対して、有意な周波数のみを残し、有意な周波数のみで表された診断基準を生成する。診断結果は、基準生成時に用いたデータの特性に応じて変化。
・ Function ・ Diagnostic unit 1: Compression (frequency analysis)
Using the data, only a significant frequency is left for data with a large number of data points in the time direction, and a diagnostic criterion represented only by the significant frequency is generated. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:圧縮(周波数解析)
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
・ Operation ・ Diagnostic unit 1: Compression (frequency analysis)
Identify normal / abnormal (dangerous) based on diagnostic criteria generated using data.
    データに隠された未知の正常/異常(危険)を検知できることがある。あるいは、異常(危険)を予測できることがある。 It may be possible to detect unknown normal / abnormality (danger) hidden in the data. Alternatively, an abnormality (danger) can be predicted.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:圧縮(周波数解析)
    未知の異常(危険)を回避できることがある。あるいは予想できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic unit 1: Compression (frequency analysis)
An unknown abnormality (danger) may be avoided. Or you can expect.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部21の機能を診断するので、より信頼性の高い診断が可能となる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
 〔実施形態4〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、統計処理(平均値と分散値を演算)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。
[Embodiment 4]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses statistical processing (calculating an average value and a variance value). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given.
 すなわち、本実施形態では、第1の実施形態と比較して、統計処理を用いて診断部1の判断基準を更新する点が異なる。以下、図面を用いて、本発明の実施形態4による制御装置の構成及び動作を説明する。 That is, this embodiment is different from the first embodiment in that the determination criteria of the diagnosis unit 1 are updated using statistical processing. Hereinafter, the configuration and operation of a control device according to Embodiment 4 of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。図2は、ROM13に書き込まれる処理の内容を示しているが、実施形態1と同じであるので詳述しない。以下、各処理の詳細を説明する。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail. FIG. 2 shows the contents of the process written in the ROM 13, but it is the same as that of the first embodiment and will not be described in detail. Details of each process will be described below.
 <診断部1(図20)>
 図20は診断部1(22)の全体を表した図であり、以下の演算部から構成される。
<Diagnostic section 1 (FIG. 20)>
FIG. 20 is a diagram showing the entire diagnosis unit 1 (22), and includes the following calculation units.
 ・判断基準更新部A(190)
 ・判断基準更新部B(200)
 ・判断部(210)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (190)
・ Criteria update part B (200)
・ Decision part (210)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図21)>
 本処理では、データを用いて、統計処理を行う。具体的には、図21に示される。
<Judgment Criteria Update Unit A (FIG. 21)>
In this processing, statistical processing is performed using data. Specifically, it is shown in FIG.
 ベクトル化された学習時のデータ/パラメータ値(ベクトル)の成分ごとに統計処理を行い、平均値(e_i)と分散値(sigma_i)の結果を得る(i:1、2、3、・・・、要素数)。 Statistical processing is performed for each component of vectorized learning data / parameter values (vectors), and results of average values (e_i) and variance values (sigma_i) are obtained (i: 1, 2, 3,... ,Element count).
 <判断基準更新部B(図22)>
 本処理では、判断基準更新部Aでの演算結果を用いて、e_Li、 e_Hi、 w_sigma_i(判断基準1)を演算する。具体的には、図22に示され、e_Li、 e_Hi、 w_sigma_i(判断基準1)は、下記処理で求められる。
<Judgment Criteria Update Unit B (FIG. 22)>
In this process, e_Li, e_Hi, and w_sigma_i (determination criterion 1) are calculated using the calculation result in the determination criterion update unit A. Specifically, as shown in FIG. 22, e_Li, e_Hi, and w_sigma_i (determination criterion 1) are obtained by the following processing.
 ・e_L_i = e_i - k_e_L_i
 ・e_H_i = e_i + k_e_H_i
 ・w_sigma_i = k_i_sigma×sigma_i
    i:1、2、3、・・・、要素数(成分数)
  k_e_L_i、 k_e_H_i、 k_i_sigmaは、要素毎(成分毎)に設定
・ E_L_i = e_i-k_e_L_i
・ E_H_i = e_i + k_e_H_i
・ W_sigma_i = k_i_sigma × sigma_i
i: 1, 2, 3, ..., number of elements (number of components)
k_e_L_i, k_e_H_i, k_i_sigma are set for each element (each component)
 <判断部(図23)>
 本処理では、判断基準更新部Bで得られた判断基準1に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図23に示される。
<Determining part (FIG. 23)>
In this process, based on the determination criterion 1 obtained by the determination criterion update unit B, it is determined whether the newly obtained data is normal (abnormal). Specifically, it is shown in FIG.
 ・診断対象のデータ(ベクトル)の各要素を統計処理する(平均値、分散)
 ・(i番目の要素の平均値)≦e_Li
        もしくは
  (i番目の要素の平均値)≧e_Hi
        もしくは
  (i番目の要素の分散) ≧w_sigma_i
   のとき、f_ano_1=1とする。
・ Statistically process each element of diagnosis target data (vector) (average, variance)
・ (Average value of i-th element) ≦ e_Li
Or (average value of i-th element) ≧ e_Hi
Or (dispersion of i-th element) ≧ w_sigma_i
In this case, f_ano_1 = 1.
 ・それ以外のときは、f_ano_1=0とする。 ・ In other cases, set f_ano_1 = 0.
 <診断部2(図15)>
 診断部2(23)の処理内容は、具体的には、図15に示されるが、実施形態2と同じであるので、詳述しない。
<Diagnostic section 2 (FIG. 15)>
The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 15, but are not described in detail because they are the same as those in the second embodiment.
 <制御変更部(図10)>
 制御変更部24の処理内容は、具体的には、図10に示されるが、実施形態1と同じであるので、詳述しない。
<Control change part (FIG. 10)>
The processing contents of the control change unit 24 are specifically shown in FIG. 10, but are not described in detail because they are the same as those in the first embodiment.
 本実施形態では、統計処理として、正規分布を仮定した平均値、分散値を求める手法としたが、MCMC法(マルコフ連鎖モンテカルロ法)など正規分布を前提としない任意分布を求める手法もある。このような手法を用いても良い。 In the present embodiment, as a statistical process, a method for obtaining an average value and a variance value assuming a normal distribution is used. However, there is a method for obtaining an arbitrary distribution that does not assume a normal distribution, such as the MCMC method (Markov chain Monte Carlo method). Such a method may be used.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(190)と判断基準更新部B(200)は、クラウドで処理し、その際用いるデータは、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(210)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination criterion update unit A (190) and the determination criterion update unit B (200) may be processed in the cloud, and the calculation results of the control units in a plurality of terminals may be used as data used at that time. Further, the determination unit (210) may be implemented in each terminal and detect an abnormality in the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(190)と判断基準更新部B(200)で用いるデータと判断部(210)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(190)と判断基準更新部B(200)は処理を行う。判断部(210)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (190) and the judgment standard update unit B (200) is different from the data used in the judgment unit (210). For example, the determination reference update unit A (190) and the determination reference update unit B (200) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (210) is implemented to detect whether there is a problem in the processing contents of the control unit 21 (when there is no record) and whether or not the function (software) is abnormal. As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:統計処理
    データを用いて、データ点数の多いデータに対して、統計的な特徴を示す有意な情報(平均値、分散値など)のみを残し、有意な情報のみで表された診断基準を生成する。診断結果は、基準生成時に用いたデータの特性に応じて変化。
・ Function ・ Diagnosis unit 1: Statistical processing Using data, only significant information (average value, variance value, etc.) indicating statistical characteristics is left for data with a large number of data points. Generated diagnostic criteria. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:圧縮(周波数解析)
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
    データに隠された未知の正常/異常(危険)を検知できることがある。あるいは、異常(危険)を予測できることがある。
・ Operation ・ Diagnostic unit 1: Compression (frequency analysis)
Identify normal / abnormal (dangerous) based on diagnostic criteria generated using data.
It may be possible to detect unknown normality / abnormality (danger) hidden in data. Alternatively, an abnormality (danger) can be predicted.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:圧縮(周波数解析)
    未知の異常(危険)を回避できることがある。あるいは予想できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic unit 1: Compression (frequency analysis)
An unknown abnormality (danger) may be avoided. Or you can expect.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部21の機能を診断するので、より信頼性の高い診断が可能となる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Highly reliable diagnosis is possible.
 〔実施形態5〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、機械学習(クラスタリング)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。
[Embodiment 5]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
 診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。また、診断部1の診断結果が正常かつ診断部2の診断結果が異常のとき、制御機能の内部演算値を所定範囲内に制約する。また、診断部1の診断結果が異常かつ診断部2の診断結果が異常のとき、制御機能を停止させる。 When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given. Further, when the diagnosis result of the diagnosis unit 1 is normal and the diagnosis result of the diagnosis unit 2 is abnormal, the internal calculation value of the control function is restricted within a predetermined range. Further, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal, the control function is stopped.
 すなわち、本実施形態では、第1の実施形態と比較して、診断部1の診断結果と診断部2の診断結果との組み合わせに応じて、制御機能(制御部)の制御内容を通常制御又は非常時制御1~4のいずれかに変更する点が異なる。以下、図面を用いて、本発明の実施形態5による制御装置の構成及び動作を説明する。 That is, in the present embodiment, compared with the first embodiment, the control content of the control function (control unit) is controlled normally or according to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2. The point of changing to one of emergency controls 1 to 4 is different. Hereinafter, the configuration and operation of a control device according to Embodiment 5 of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
 図24は、ROM13に書き込まれる処理の内容を示している。前述したように、入力回路16、入出力ポート17を経て、RAM14に書き込まれた入力信号を用いて、制御部31は、制御に必要な制御信号などの出力信号を演算する。出力信号は、前述したように、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。診断部1(22)と診断部2(23)はそれぞれ、制御部31で演算されるパラメータを用いて、制御部31の異常を検知する。制御部31で演算されるパラメータは、途中演算結果でも良いし、制御部31への入力信号あるいは出力信号でもよい。制御変更部32は、診断部1(22)の診断結果1と診断部2(23)の診断結果2の組み合わせに基づいて、制御の変更を行う。 FIG. 24 shows the contents of processing written in the ROM 13. As described above, the control unit 31 calculates an output signal such as a control signal necessary for control using the input signal written in the RAM 14 via the input circuit 16 and the input / output port 17. As described above, the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Each of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) detects an abnormality of the control unit 31 using parameters calculated by the control unit 31. The parameter calculated by the control unit 31 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit 31. The control change unit 32 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23).
 換言すれば、制御変更部32は、診断部1(22)の診断結果1と診断部2(23)の診断結果2の組合せに対応する処理として、制御部31の制御を変更する処理を実行する。 In other words, the control change unit 32 executes a process of changing the control of the control unit 31 as a process corresponding to the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23). To do.
 制御部31、診断部1(22)、診断部2(23)、制御変更部32間のパラメータの送受信は、一般に、RAM14を介して、データバスを通って送られる。異常報知は、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。以下、各処理の詳細を説明する。 Parameter transmission / reception among the control unit 31, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 32 is generally sent via the data bus via the RAM 14. The abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
 <診断部1(図3)>
 図3は診断部1(22)の全体を表した図であり、以下の演算部から構成され、実施形態1と同じである。
<Diagnostic section 1 (FIG. 3)>
FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
 ・判断基準更新部A(100)
 ・判断基準更新部B(110)
 ・判断部(120)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (100)
・ Criteria update part B (110)
・ Decision part (120)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図4)>
 本処理では、データを用いて、クラスタリング情報を演算する。具体的には、図4に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit A (FIG. 4)>
In this process, clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
 <判断基準更新部B(図6)>
 本処理では、判断基準更新部Aで演算した上述のクラスタリング情報を用いて、クラスタリングされたデータ集合毎に、データ範囲を設定し、その結果を範囲情報として出力する。具体的には、図6に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit B (FIG. 6)>
In this process, the data range is set for each clustered data set using the above-described clustering information calculated by the determination criterion update unit A, and the result is output as range information. Specifically, although it is shown in FIG. 6, it is not described in detail because it is the same as the first embodiment.
 <判断部(図8)>
 本処理では、上述の範囲情報に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図8に示されるが、実施形態1と同じであるので詳述しない。
<Decision part (FIG. 8)>
In this process, it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, although shown in FIG. 8, it is the same as that of the first embodiment, and therefore will not be described in detail.
 <診断部2(図9)>
 診断部2(23)の処理内容は、具体的には、図9に示されるが、実施形態1と同じであるので詳述しない。
<Diagnostic section 2 (FIG. 9)>
The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 9, but will not be described in detail because they are the same as those in the first embodiment.
 <制御変更部(図25)>
 制御変更部32の処理内容を示す。具体的には、図25に示される。
<Control change unit (FIG. 25)>
The processing content of the control change part 32 is shown. Specifically, it is shown in FIG.
 ・f_ano_1=0かつf_ano_2=0
  のとき、c_mode=0
 ・f_ano_1=1かつf_ano_2=0
  のとき、c_mode=1
 ・f_ano_1=0かつf_ano_2=1
  のとき、c_mode=2
 ・f_ano_1=1かつf_ano_2=1
  のとき、c_mode=3
 なお、制御装置11のROM13(記憶装置)は、図35Aに示すように、制御テーブル(データベース)を記憶する。制御テーブルは、診断部1の診断結果と診断部2の診断結果の組合せと、この組合せに対応する処理とを対応付けて記憶する。制御変更部32は、診断部1の診断結果と診断部2の診断結果の組合せに対応する処理を制御テーブルから読み出し、読み出した処理(制御部31の制御を変更する処理)を実行する。
・ F_ano_1 = 0 and f_ano_2 = 0
When c_mode = 0
・ F_ano_1 = 1 and f_ano_2 = 0
When c_mode = 1
・ F_ano_1 = 0 and f_ano_2 = 1
When c_mode = 2
・ F_ano_1 = 1 and f_ano_2 = 1
C_mode = 3
Note that the ROM 13 (storage device) of the control device 11 stores a control table (database) as shown in FIG. 35A. The control table stores a combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 and a process corresponding to this combination in association with each other. The control change unit 32 reads a process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the control table, and executes the read process (a process for changing the control of the control unit 31).
 <制御部(図26)>
 制御部31の処理内容を示す。具体的には、図26に示される。
<Control unit (FIG. 26)>
The processing content of the control part 31 is shown. Specifically, it is shown in FIG.
 ・c_mode=0のとき
  通常制御を実施する。
・ When c_mode = 0 Normal control is performed.
  なお、通常制御の内容は、既存の制御であり、制御対象および制御システムなどに依存し多岐に渡るので、ここでは詳述しない。 It should be noted that the contents of normal control are existing control and depend on the control target and control system.
 ・c_mode=1のとき
  非常時制御1(41)を実施する。
-When c_mode = 1 Emergency control 1 (41) is executed.
 ・c_mode=2のとき
  非常時制御2(42)を実施する。
・ When c_mode = 2: Perform emergency control 2 (42).
 ・c_mode=3のとき
  非常時制御3(43)を実施する。
・ When c_mode = 3: Perform emergency control 3 (43).
 図35Bは、f_ano_1、f_ano_2及びc_modeのタイムチャートの一例である。制御部31は、c_modeに応じて、制御を通常制御、非常時制御1~3のいずれかに変更する。 FIG. 35B is an example of a time chart of f_ano_1, f_ano_2, and c_mode. The control unit 31 changes the control to either normal control or emergency control 1 to 3 according to c_mode.
 <非常時制御1(図27)>
 非常時制御1(41)の内容を示す。具体的には、図27に示される。
<Emergency control 1 (FIG. 27)>
The contents of emergency control 1 (41) are shown. Specifically, it is shown in FIG.
 ・c_mode=1のとき、
  f_ano_F=1として、異常を報知する。
・ When c_mode = 1
Anomaly is reported as f_ano_F = 1.
 ・それ以外のとき、
  f_ano_F=0
 <非常時制御2(図28)>
 非常時制御2(42)の内容を示す。具体的には、図28に示される。
・ Other than that,
f_ano_F = 0
<Emergency control 2 (FIG. 28)>
The contents of emergency control 2 (42) are shown. Specifically, it is shown in FIG.
 ・c_mode=2のとき、
   もっとも近い正常範囲にデータ/パラメータ値を変更する。
・ When c_mode = 2
Change the data / parameter value to the nearest normal range.
 ・それ以外のとき
   変更を行わない。
・ Other than that, no change is made.
 c_mode=2のときは、診断部2が異常判定をしているので、診断部2(23)(図9)から、x1、x2を下記の範囲に制約するのも良い。 When c_mode = 2, since the diagnosis unit 2 makes an abnormality determination, x1 and x2 may be restricted to the following ranges from the diagnosis unit 2 (23) (FIG. 9).
  k_x1_L<x1<k_x1_H
  k_x2_L<x2<k_x2_H
 なお、換言すれば、制御変更部32は、診断部1の診断結果が異常であり、かつ、診断部2の診断結果が正常である場合、対象データを最も近いクラスタのデータに変更する。
k_x1_L <x1 <k_x1_H
k_x2_L <x2 <k_x2_H
In other words, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, the control change unit 32 changes the target data to the data of the nearest cluster.
 <非常時制御3(図29)>
 非常時制御3(43)の内容を示す。具体的には、図29に示される。
<Emergency control 3 (FIG. 29)>
The contents of emergency control 3 (43) are shown. Specifically, it is shown in FIG.
 ・c_mode=3のとき、 
  制御を停止する。
・ When c_mode = 3
Stop control.
 ・それ以外のとき、
  通常制御を実施。
・ Other than that,
Normal control is implemented.
 あるいは、c_mode=3のときは、フェールセーフの処理を実施してもよい。フェールセーフの処理は、既存の制御であり、制御対象および制御システムなどに依存し多岐に渡るので、ここでは詳述しない。 Or, when c_mode = 3, fail-safe processing may be performed. The fail-safe process is an existing control and depends on the control target, the control system, and the like, and thus will not be described in detail here.
 本実施形態では、2次元のデータでの診断例を示しているが、実施形態1でも述べたように、診断部1(22)、診断部2(23)共に、次元の拡張は可能であり、2次元のデータのみに適用されるものではないことを付言しておく。 In the present embodiment, an example of diagnosis using two-dimensional data is shown. However, as described in the first embodiment, both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) can be expanded in dimension. It should be added that it does not apply only to two-dimensional data.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(100)と判断基準更新部B(110)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(120)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(100)と判断基準更新部B(110)で用いるデータと判断部(120)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(100)と判断基準更新部B(110)は処理を行う。判断部(120)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120). For example, the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:機械学習
    データを用いて、例えば距離が近いなどを基準にして、クラスタリングによりデータを各集合に分ける。診断結果は、基準生成時に用いたデータの特性に応じて変化。
-Function-Diagnosis unit 1: Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:機械学習
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
-Action-Diagnosis unit 1: Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
    データに隠された未知の正常/異常(危険)を検知できることがある。 It may be possible to detect unknown normal / abnormality (danger) hidden in the data.
 ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:機械学習
    未知の異常(危険)を回避できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部21の機能を診断し、診断部1と診断部2の診断結果に基づいて、制御を変更するので、異常の性質に応じた制御が可能となり、制御システムの性能/信頼性が高まる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 21 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects. Since the control is changed based on the diagnosis result of 1 and the diagnosis unit 2, the control according to the nature of the abnormality is possible, and the performance / reliability of the control system is increased.
 〔実施形態6〕
 本実施形態では、第1診断部および第2診断部は、制御機能への入力値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、機械学習(クラスタリング)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。診断部1もしくは診断部2が制御機能への入力値が異常と判定したとき、制御機能への入力値を異なる値に設定もしくは、制御機能の動作を行わない(停止させる)。
[Embodiment 6]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the input value to the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method. When the diagnosis unit 1 or the diagnosis unit 2 determines that the input value to the control function is abnormal, the input value to the control function is set to a different value or the operation of the control function is not performed (stopped).
 すなわち、本実施形態では、第1の実施形態と比較して、制御機能(制御部)への入力値の正常もしくは異常を判定する点が異なる。また、診断部1の診断結果と診断部2の診断結果との組み合わせに応じて、制御機能(制御部)の制御内容を通常制御又は非常時制御2のいずれかに変更する点が異なる。 That is, the present embodiment is different from the first embodiment in that normality or abnormality of the input value to the control function (control unit) is determined. Also, the control content of the control function (control unit) is changed to either normal control or emergency control 2 according to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
 図30は、ROM13に書き込まれる処理の内容を示している。前述したように、入力回路16、入出力ポート17を経て、RAM14に書き込まれた入力信号を用いて、制御部21は、制御に必要な制御信号などの出力信号を演算する。出力信号は、前述したように、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。診断部1(22)と診断部2(23)はそれぞれ、制御部21への入力値を用いて、制御部21への入力異常を検知する。制御変更部51は、診断部1(22)の診断結果1と診断部2(23)の診断結果2の組み合わせに基づいて、制御の変更を行う。制御部21、診断部1(22)、診断部2(23)、制御変更部51間のパラメータの送受信は、一般に、RAM14を介して、データバスを通って送られる。異常報知は、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。以下、各処理の詳細を説明する。 FIG. 30 shows the contents of processing written in the ROM 13. As described above, using the input signal written in the RAM 14 through the input circuit 16 and the input / output port 17, the control unit 21 calculates an output signal such as a control signal necessary for control. As described above, the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. The diagnosis unit 1 (22) and the diagnosis unit 2 (23) each detect an input abnormality to the control unit 21 by using an input value to the control unit 21. The control change unit 51 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23). The parameter transmission / reception among the control unit 21, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 51 is generally sent via the data bus via the RAM 14. The abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
 <診断部1(図3)>
 図3は診断部1(22)の全体を表した図であり、以下の演算部から構成され、実施形態1と同じである。
<Diagnostic section 1 (FIG. 3)>
FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
 ・判断基準更新部A(100)
 ・判断基準更新部B(110)
 ・判断部(120)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (100)
・ Criteria update part B (110)
・ Decision part (120)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図4)>
 本処理では、データを用いて、クラスタリング情報を演算する。具体的には、図4に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit A (FIG. 4)>
In this process, clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
 <判断基準更新部B(図6)>
 本処理では、判断基準更新部Aで演算した上述のクラスタリング情報を用いて、クラスタリングされたデータ集合毎に、データ範囲を設定し、その結果を範囲情報として出力する。具体的には、図6に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit B (FIG. 6)>
In this process, the data range is set for each clustered data set using the above-described clustering information calculated by the determination criterion update unit A, and the result is output as range information. Specifically, although it is shown in FIG. 6, it is not described in detail because it is the same as the first embodiment.
 <判断部(図8)>
 本処理では、上述の範囲情報に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図8に示されるが、実施形態1と同じであるので詳述しない。
<Decision part (FIG. 8)>
In this process, it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, although shown in FIG. 8, it is the same as that of the first embodiment, and therefore will not be described in detail.
 <診断部2(図9)>
 診断部2(23)の処理内容は、具体的には、図9に示されるが、実施形態1と同じであるので詳述しない。
<Diagnostic section 2 (FIG. 9)>
The processing contents of the diagnosis unit 2 (23) are specifically shown in FIG. 9, but will not be described in detail because they are the same as those in the first embodiment.
 <制御変更部(図31)>
 制御変更部51の内容を示す。具体的には、図31に示される。
<Control change part (FIG. 31)>
The content of the control change part 51 is shown. Specifically, it is shown in FIG.
 ・f_ano_1=1もしくはf_ano_2=1のとき、 
   もっとも近い正常範囲に制御部への入力値であるデータ/パラメータ値を変更する。
・ When f_ano_1 = 1 or f_ano_2 = 1
Change the data / parameter value that is the input value to the control unit to the nearest normal range.
 ・それ以外のとき
   変更を行わない。
・ Other than that, no change is made.
   あるいは、f_ano_2=1のときは、診断部2が異常判定をしているので、診断部2(23)(図9)から、x1、x2を下記の範囲に制約するのも良い。 Alternatively, when f_ano_2 = 1, the diagnosis unit 2 makes an abnormality determination. Therefore, from the diagnosis unit 2 (23) (FIG. 9), x1 and x2 may be restricted to the following ranges.
  k_x1_L<x1<k_x1_H
  k_x2_L<x2<k_x2_H
 なお、制御装置11のROM13(記憶装置)は、図36Aに示すように、制御テーブル(データベース)を記憶する。制御テーブルは、診断部1の診断結果と診断部2の診断結果の組合せと、この組合せに対応する処理とを対応付けて記憶する。制御変更部51は、診断部1の診断結果と診断部2の診断結果の組合せに対応する処理を制御テーブルから読み出し、読み出した処理(制御部21の制御を変更する処理)を実行する。
k_x1_L <x1 <k_x1_H
k_x2_L <x2 <k_x2_H
Note that the ROM 13 (storage device) of the control device 11 stores a control table (database) as shown in FIG. 36A. The control table stores a combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 and a process corresponding to this combination in association with each other. The control change unit 51 reads a process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the control table, and executes the read process (a process for changing the control of the control unit 21).
 図36Bは、f_ano_1、f_ano_2及び制御部21の動作を示すタイムチャートの一例である。制御部21は、f_ano_1=1又はf_ano_2=1の場合、制御を非常時制御2に変更する。なお、制御変更部51は、診断部1の診断結果が異常であり、かつ、診断部2の診断結果が異常の場合、制御部21を停止するようにしてもよい。 FIG. 36B is an example of a time chart showing the operations of f_ano_1, f_ano_2, and the control unit 21. The control unit 21 changes the control to emergency control 2 when f_ano_1 = 1 or f_ano_2 = 1. Note that the control change unit 51 may stop the control unit 21 when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(100)と判断基準更新部B(110)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(120)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(100)と判断基準更新部B(110)で用いるデータと判断部(120)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(100)と判断基準更新部B(110)は処理を行う。判断部(120)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120). For example, the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:機械学習
    データを用いて、例えば距離が近いなどを基準にして、クラスタリングによりデータを各集合に分ける。診断結果は、基準生成時に用いたデータの特性に応じて変化。
-Function-Diagnosis unit 1: Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:機械学習
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
-Action-Diagnosis unit 1: Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
    データに隠された未知の正常/異常(危険)を検知できることがある。 It may be possible to detect unknown normal / abnormality (danger) hidden in the data.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:機械学習
    未知の異常(危険)を回避できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部21への入力値を診断し、異常と判定された場合は、入力値を正常範囲に制約するので、制御部21の予期せぬ動作異常を起こすリスクを抑制でき信頼性の高い制御を行える。 As described above, according to the configuration shown in the present embodiment, the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects are used to diagnose the input value to the control unit 21, If it is determined that there is an abnormality, the input value is restricted to the normal range, so that the risk of unexpected operation abnormality of the control unit 21 can be suppressed and highly reliable control can be performed.
 〔実施形態7〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、機械学習(クラスタリング)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。
[Embodiment 7]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
 診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。また、診断部1の診断結果が正常かつ診断部2の診断結果が異常のとき、制御機能の内部演算値を所定範囲内に制約する。また、診断部1の診断結果が異常かつ診断部2の診断結果が異常のとき、制御機能を停止させる。 When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given. Further, when the diagnosis result of the diagnosis unit 1 is normal and the diagnosis result of the diagnosis unit 2 is abnormal, the internal calculation value of the control function is restricted within a predetermined range. Further, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal, the control function is stopped.
 また、制御対象は内燃機関であり、制御機能の出力値は、内燃機関の空気量、燃料噴射量、点火時期である。 Also, the control target is an internal combustion engine, and the output value of the control function is the air amount, fuel injection amount, and ignition timing of the internal combustion engine.
 すなわち、本実施形態では、実施形態5の制御装置を内燃機関の制御に適用している。以下、図面を用いて、本発明の実施形態7による制御装置の構成及び動作を説明する。 That is, in the present embodiment, the control device of the fifth embodiment is applied to the control of the internal combustion engine. Hereinafter, the configuration and operation of a control device according to Embodiment 7 of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
 図32は、ROM13に書き込まれる処理の内容を示している。前述したように、入力回路16、入出力ポート17を経て、RAM14に書き込まれた入力信号を用いて、制御部61では、制御に必要な制御信号(目標点火時期、目標燃料噴射量、目標空気量)などの出力信号を演算する。出力信号は、前述したように、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。診断部1(22)と診断部2(23)では、制御部61で演算されるパラメータ(目標点火時期、目標燃料噴射量、目標空気量)を用いて、制御部61の異常を検知する。制御部61で演算されるパラメータは、途中演算結果でも良いし、制御部への入力信号あるいは出力信号でもよい。制御変更部32では、診断部1(22)の診断結果1と診断部2(23)の診断結果2の組み合わせに基づいて、制御の変更を行う。制御部61、診断部1(22)、診断部2(23)、制御変更部32間のパラメータの送受信は、一般に、RAM14を介して、データバスを通って送られる。異常報知は、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。以下、各処理の詳細を説明する。 FIG. 32 shows the contents of processing written in the ROM 13. As described above, the control unit 61 uses the input signal written in the RAM 14 via the input circuit 16 and the input / output port 17 to control signals (target ignition timing, target fuel injection amount, target air) required for control. The output signal is calculated. As described above, the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. The diagnosis unit 1 (22) and the diagnosis unit 2 (23) detect an abnormality of the control unit 61 using parameters (target ignition timing, target fuel injection amount, target air amount) calculated by the control unit 61. The parameter calculated by the control unit 61 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit. The control change unit 32 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23). Parameter transmission / reception among the control unit 61, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 32 is generally sent via the data bus via the RAM 14. The abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
 <診断部1(図3)>
 図3は診断部1(22)の全体を表した図であり、以下の演算部から構成され、実施形態1と同じである。
<Diagnostic section 1 (FIG. 3)>
FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
 ・判断基準更新部A(100)
 ・判断基準更新部B(110)
 ・判断部(120)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (100)
・ Criteria update part B (110)
・ Decision part (120)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図4)>
 本処理では、データを用いて、クラスタリング情報を演算する。具体的には、図4に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit A (FIG. 4)>
In this process, clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
 <判断基準更新部B(図6)>
 本処理では、判断基準更新部Aで演算した上述のクラスタリング情報を用いて、クラスタリングされたデータ集合毎に、データ範囲を設定し、その結果を範囲情報として出力する。具体的には、図6に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit B (FIG. 6)>
In this process, the data range is set for each clustered data set using the above-described clustering information calculated by the determination criterion update unit A, and the result is output as range information. Specifically, although it is shown in FIG. 6, it is not described in detail because it is the same as the first embodiment.
 <判断部(図8)>
 本処理では、上述の範囲情報に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図8に示されるが、実施形態1と同じであるので詳述しない。なお、図8では、2次元の結果が示されているが、制御部61で演算されるパラメータ(目標点火時期、目標燃料噴射量、目標空気量)は3次元であり、3次元に拡張されて本処理が行われる。
<Decision part (FIG. 8)>
In this process, it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, although shown in FIG. 8, it is the same as that of the first embodiment, and therefore will not be described in detail. In FIG. 8, two-dimensional results are shown, but the parameters (target ignition timing, target fuel injection amount, target air amount) calculated by the control unit 61 are three-dimensional and are expanded to three dimensions. This process is performed.
 <診断部2(図15)>
 診断部2(23)の処理内容を示す。具体的には、図15に示されるが、実施形態2と同じであるので詳述しない。
<Diagnostic section 2 (FIG. 15)>
The processing content of the diagnosis part 2 (23) is shown. Specifically, although it is shown in FIG. 15, it is not described in detail because it is the same as the second embodiment.
 <制御変更部(図25)>
 制御変更部32の処理内容を示す。具体的には、図25に示されるが、実施形態5と同じであるので詳述しない。
<Control change unit (FIG. 25)>
The processing content of the control change part 32 is shown. Specifically, although shown in FIG. 25, since it is the same as Embodiment 5, it does not elaborate.
 <制御部(図26)>
 制御部61の処理内容を示す。具体的には、図26に示される。
<Control unit (FIG. 26)>
The processing content of the control part 61 is shown. Specifically, it is shown in FIG.
 ・c_mode=0のとき
  通常制御を実施する。
・ When c_mode = 0 Normal control is performed.
  なお、通常制御の内容は、既存のエンジン制御であり、ここでは詳述しない。 Note that the contents of normal control are existing engine control, and will not be described in detail here.
 ・c_mode=1のとき
  非常時制御1(41)を実施する。
-When c_mode = 1 Emergency control 1 (41) is executed.
 ・c_mode=2のとき
  非常時制御2(42)を実施する。
・ When c_mode = 2: Perform emergency control 2 (42).
 ・c_mode=3のとき
  非常時制御3(43)を実施する。
・ When c_mode = 3: Perform emergency control 3 (43).
 <非常時制御1(図27)>
 非常時制御1(41)の内容を示す。具体的には、図27に示される。
<Emergency control 1 (FIG. 27)>
The contents of emergency control 1 (41) are shown. Specifically, it is shown in FIG.
 ・c_mode=1のとき、
  f_ano_F=1として、異常を報知する。
・ When c_mode = 1
Anomaly is reported as f_ano_F = 1.
  異常報知の方法としては、自動車用の内燃機関の場合は、運転者がわかるよう、異常灯を点灯するなどが考えられる。 As an abnormality notification method, in the case of an internal combustion engine for automobiles, an abnormal lamp may be turned on so that the driver can understand.
 ・それ以外のとき、
  f_ano_F=0
 <非常時制御2(図28)>
 非常時制御1(42)の内容を示す。具体的には、図28に示される。
・ Other than that,
f_ano_F = 0
<Emergency control 2 (FIG. 28)>
The contents of emergency control 1 (42) are shown. Specifically, it is shown in FIG.
 ・c_mode=2のとき、 
   もっとも近い正常範囲にデータ/パラメータ値を変更する。
・ When c_mode = 2
Change the data / parameter value to the nearest normal range.
 ・それ以外のとき
   変更を行わない。
・ Other than that, no change is made.
 c_mode=2のときは、診断部2が異常判定をしているので、診断部2(23)(図9)から、x1、x2を下記の範囲に制約するのも良い。
  k_x1_L<x1<k_x1_H
  k_x2_L<x2<k_x2_H
When c_mode = 2, since the diagnosis unit 2 makes an abnormality determination, x1 and x2 may be restricted to the following ranges from the diagnosis unit 2 (23) (FIG. 9).
k_x1_L <x1 <k_x1_H
k_x2_L <x2 <k_x2_H
 すなわち、c_mode=2のときは、内燃機関への目標燃料噴射量、目標空気量、目標点火時期を所定範囲に制約することで、内燃機関の異常運転を防止すると共に、運転を継続し得るものである。 That is, when c_mode = 2, by limiting the target fuel injection amount, target air amount, and target ignition timing to the internal combustion engine to predetermined ranges, abnormal operation of the internal combustion engine can be prevented and operation can be continued. It is.
 <非常時制御3(図29)>
 非常時制御3(43)の内容を示す。具体的には、図29に示される。
<Emergency control 3 (FIG. 29)>
The contents of emergency control 3 (43) are shown. Specifically, it is shown in FIG.
 ・c_mode=3のとき、
  制御を停止する。
・ When c_mode = 3
Stop control.
  すなわち、診断部1と診断部2の双方が異常と判断したので、制御を継続実施するのは、危険と判断し、制御を停止し、内燃機関の運転を止めるものである。 That is, since both the diagnosis unit 1 and the diagnosis unit 2 have determined that there is an abnormality, it is determined that it is dangerous to continue the control, the control is stopped, and the operation of the internal combustion engine is stopped.
 ・それ以外のとき、
  通常制御を実施。
・ Other than that,
Normal control is implemented.
 あるいは、c_mode=3のときは、フェールセーフの処理を実施してもよい。内燃機関用のフェールセーフの処理は、既存の制御であり、ここでは詳述しない。 Or, when c_mode = 3, fail-safe processing may be performed. Fail-safe processing for internal combustion engines is an existing control and will not be described in detail here.
 本実施形態では、3次元のデータでの診断例を示しているが、実施形態1および本実施形態の文中でも述べたように、診断部1(22)、診断部2(23)共に、次元の拡張は可能であり、3次元のデータのみに適用されるものではないことを付言しておく。 In the present embodiment, an example of diagnosis using three-dimensional data is shown. However, as described in the text of the first embodiment and the present embodiment, both of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) are dimension. It should be noted that these extensions are possible and not applicable only to three-dimensional data.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(100)と判断基準更新部B(110)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(120)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(100)と判断基準更新部B(110)で用いるデータと判断部(120)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(100)と判断基準更新部B(110)は処理を行う。判断部(120)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120). For example, the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。 The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
 ・機能
  ・診断部1:機械学習
    データを用いて、例えば距離が近いなどを基準にして、クラスタリングによりデータを各集合に分ける。診断結果は、基準生成時に用いたデータの特性に応じて変化。
-Function-Diagnosis unit 1: Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:機械学習
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
    データに隠された未知の正常/異常(危険)を検知できることがある。
-Action-Diagnosis unit 1: Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
It may be possible to detect unknown normality / abnormality (danger) hidden in data.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
  ・診断部1:機械学習
    未知の異常(危険)を回避できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
  ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部61の機能を診断し、診断部1と診断部2の診断結果に基づいて、制御を変更するので、異常の性質に応じた制御が可能となり、内燃機関の制御システムの性能/信頼性が高まる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 61 is diagnosed by using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects, and the diagnosis unit Since the control is changed based on the diagnosis result of 1 and the diagnosis unit 2, the control according to the nature of the abnormality is possible, and the performance / reliability of the control system of the internal combustion engine is increased.
 〔実施形態8〕
 本実施形態では、第1診断部および第2診断部は、制御機能の内部演算値の正常もしくは異常を判定する。診断部1の判定基準を更新する手段は、機械学習(クラスタリング)を用いる。診断部2は、ルールベース方式で診断し、診断部2の予め定められた判定基準は、ルールベース方式で記述されている。
[Embodiment 8]
In the present embodiment, the first diagnosis unit and the second diagnosis unit determine whether the internal calculation value of the control function is normal or abnormal. The means for updating the determination criteria of the diagnosis unit 1 uses machine learning (clustering). The diagnosis unit 2 performs a diagnosis based on a rule-based method, and a predetermined criterion for the diagnosis unit 2 is described using a rule-based method.
 診断部1の診断結果が異常かつ診断部2の診断結果が正常のとき、報知する。また、診断部1の診断結果が正常かつ診断部2の診断結果が異常のとき、制御機能の内部演算値を所定範囲内に制約する。また、診断部1の診断結果が異常かつ診断部2の診断結果が異常のとき、制御機能を停止させる。 When the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is normal, a notification is given. Further, when the diagnosis result of the diagnosis unit 1 is normal and the diagnosis result of the diagnosis unit 2 is abnormal, the internal calculation value of the control function is restricted within a predetermined range. Further, when the diagnosis result of the diagnosis unit 1 is abnormal and the diagnosis result of the diagnosis unit 2 is abnormal, the control function is stopped.
 また、制御対象は鉄鋼プラントの圧延プロセスとし、制御機能の出力値は、目標張力、目標圧下位置、目標ローラー速度である。換言すれば、制御装置は、圧延装置の張力、圧下位置、又は圧延材移動速度の制御に用いられる出力信号を演算し、圧延装置を制御する。 Also, the controlled object is the rolling process of the steel plant, and the output values of the control function are the target tension, the target reduction position, and the target roller speed. In other words, the control device calculates an output signal used for controlling the tension, the reduction position, or the rolling material moving speed of the rolling device, and controls the rolling device.
 すなわち、本実施形態では、実施形態5の制御装置を圧延装置の制御に適用している。以下、図面を用いて、本発明の実施形態8による制御装置の構成及び動作を説明する。 That is, in this embodiment, the control device of the fifth embodiment is applied to the control of the rolling device. Hereinafter, the configuration and operation of the control apparatus according to the eighth embodiment of the present invention will be described with reference to the drawings.
 図1は、制御装置の全体を表した図であるが、実施形態1と同じであるので、詳述しない。 FIG. 1 is a diagram showing the entire control apparatus, but since it is the same as that of the first embodiment, it will not be described in detail.
 図33は、ROM13に書き込まれる処理の内容を示している。前述したように、入力回路16、入出力ポート17を経て、RAM14に書き込まれた入力信号を用いて、制御部61では、制御に必要な制御信号(目標張力、目標圧下位置、目標ローラー速度)などの出力信号を演算する。出力信号は、前述したように、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。診断部1(22)と診断部2(23)では、制御部61で演算されるパラメータ(目標張力、目標圧下位置、目標ローラー速度)を用いて、制御部61の異常を検知する。制御部61で演算されるパラメータは、途中演算結果でも良いし、制御部への入力信号あるいは出力信号でもよい。制御変更部32では、診断部1(22)の診断結果1と診断部2(23)の診断結果2の組み合わせに基づいて、制御の変更を行う。制御部61、診断部1(22)、診断部2(23)、制御変更部32間のパラメータの送受信は、一般に、RAM14を介して、データバスを通って送られる。異常報知は、RAM14、入出力ポート17、出力回路18を経て、外部への信号として、出力される。以下、各処理の詳細を説明する。 FIG. 33 shows the contents of the process written in the ROM 13. As described above, using the input signal written in the RAM 14 via the input circuit 16 and the input / output port 17, the control unit 61 uses the control signals (target tension, target pressure reduction position, target roller speed) necessary for control. The output signal is calculated. As described above, the output signal is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. The diagnosis unit 1 (22) and the diagnosis unit 2 (23) detect an abnormality of the control unit 61 using parameters (target tension, target reduction position, target roller speed) calculated by the control unit 61. The parameter calculated by the control unit 61 may be an intermediate calculation result, or may be an input signal or an output signal to the control unit. The control change unit 32 changes the control based on the combination of the diagnosis result 1 of the diagnosis unit 1 (22) and the diagnosis result 2 of the diagnosis unit 2 (23). Parameter transmission / reception among the control unit 61, the diagnosis unit 1 (22), the diagnosis unit 2 (23), and the control change unit 32 is generally sent via the data bus via the RAM 14. The abnormality notification is output as a signal to the outside through the RAM 14, the input / output port 17, and the output circuit 18. Details of each process will be described below.
 <診断部1(図3)>
 図3は診断部1(22)の全体を表した図であり、以下の演算部から構成され、実施形態1と同じである。
<Diagnostic section 1 (FIG. 3)>
FIG. 3 is a diagram showing the entire diagnosis unit 1 (22), which includes the following calculation units and is the same as in the first embodiment.
 ・判断基準更新部A(100)
 ・判断基準更新部B(110)
 ・判断部(120)
 以下、診断部1の各部の詳細を説明する。
・ Criteria update part A (100)
・ Criteria update part B (110)
・ Decision part (120)
Hereinafter, the detail of each part of the diagnostic part 1 is demonstrated.
 <判断基準更新部A(図4)>
 本処理では、データを用いて、クラスタリング情報を演算する。具体的には、図4に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit A (FIG. 4)>
In this process, clustering information is calculated using data. Specifically, although it is shown in FIG. 4, it is not described in detail because it is the same as the first embodiment.
 <判断基準更新部B(図6)>
 本処理では、判断基準更新部Aで演算した上述のクラスタリング情報を用いて、クラスタリングされたデータ集合毎に、データ範囲を設定し、その結果を範囲情報として出力する。具体的には、図6に示されるが、実施形態1と同じであるので詳述しない。
<Judgment Criteria Update Unit B (FIG. 6)>
In this process, the data range is set for each clustered data set using the above-described clustering information calculated by the determination criterion update unit A, and the result is output as range information. Specifically, although it is shown in FIG. 6, it is not described in detail because it is the same as the first embodiment.
 <判断部(図8)>
 本処理では、上述の範囲情報に基づいて、新たに得られたデータが正常(異常)かを判断する。具体的には、図8に示されるが、実施形態1と同じであるので詳述しない。なお、図8では、2次元の結果が示されているが、制御部61で演算されるパラメータ(目標張力、目標圧下位置、目標ローラー速度)は3次元であり、3次元に拡張されて本処理が行われる。
<Decision part (FIG. 8)>
In this process, it is determined whether newly obtained data is normal (abnormal) based on the above-described range information. Specifically, although shown in FIG. 8, it is the same as that of the first embodiment, and therefore will not be described in detail. In FIG. 8, two-dimensional results are shown, but the parameters (target tension, target reduction position, target roller speed) calculated by the control unit 61 are three-dimensional and are expanded to three dimensions. Processing is performed.
 <診断部2(図15)>
 診断部2(23)の処理内容を示す。具体的には、図15に示されるが、実施形態2と同じであるので詳述しない。
<Diagnostic section 2 (FIG. 15)>
The processing content of the diagnosis part 2 (23) is shown. Specifically, although it is shown in FIG. 15, it is not described in detail because it is the same as the second embodiment.
 <制御変更部(図25)>
 制御変更部32の処理内容を示す。具体的には、図25に示されるが、実施形態5と同じであるので詳述しない。
<Control change unit (FIG. 25)>
The processing content of the control change part 32 is shown. Specifically, although shown in FIG. 25, since it is the same as Embodiment 5, it does not elaborate.
 <制御部(図26)>
 制御部71の処理内容を示す。具体的には、図26に示される。
<Control unit (FIG. 26)>
The processing content of the control part 71 is shown. Specifically, it is shown in FIG.
 ・c_mode=0のとき
  通常制御を実施する。
・ When c_mode = 0 Normal control is performed.
  なお、通常制御の内容は、既存の圧延プロセス制御であり、ここでは詳述しない。 Note that the contents of the normal control are the existing rolling process control and will not be described in detail here.
 ・c_mode=1のとき
  非常時制御1(41)を実施する。
-When c_mode = 1 Emergency control 1 (41) is executed.
 ・c_mode=2のとき
  非常時制御2(42)を実施する。
・ When c_mode = 2: Perform emergency control 2 (42).
 ・c_mode=3のとき
  非常時制御3(43)を実施する。
・ When c_mode = 3: Perform emergency control 3 (43).
 <非常時制御1(図27)>
 非常時制御1(41)の内容を示す。具体的には、図27に示される。
<Emergency control 1 (FIG. 27)>
The contents of emergency control 1 (41) are shown. Specifically, it is shown in FIG.
 ・c_mode=1のとき、
  f_ano_F=1として、異常を報知する。
・ When c_mode = 1
Anomaly is reported as f_ano_F = 1.
  異常報知の方法としては、圧延プロセス制御の場合は、プロセス監視者がわかるよう、集中管理室の異常灯を点灯するなどが考えられる。 ¡As a method of notifying the abnormality, in the case of rolling process control, it is conceivable to turn on the abnormal light in the central control room so that the process supervisor can understand.
 ・それ以外のとき、
  f_ano_F=0
 <非常時制御2(図28)>
非常時制御1 42の内容を示す。具体的には、図28に示される。
・ Other than that,
f_ano_F = 0
<Emergency control 2 (FIG. 28)>
The contents of emergency control 142 are shown. Specifically, it is shown in FIG.
 ・c_mode=2のとき、 
   もっとも近い正常範囲にデータ/パラメータ値を変更する。
・ When c_mode = 2
Change the data / parameter value to the nearest normal range.
 ・それ以外のとき
   変更を行わない。
・ Other than that, no change is made.
 c_mode=2のときは、診断部2が異常判定をしているので、診断部2(23)(図9)から、x1、x2を下記の範囲に制約するのも良い。 When c_mode = 2, since the diagnosis unit 2 makes an abnormality determination, x1 and x2 may be restricted to the following ranges from the diagnosis unit 2 (23) (FIG. 9).
  k_x1_L<x1<k_x1_H
  k_x2_L<x2<k_x2_H
 すなわち、c_mode=2のときは、圧延プロセスの目標張力、目標圧下位置、目標ローラー速度を所定範囲に制約することで、圧延プロセスの異常運転を防止すると共に、運転を継続し得るものである。
k_x1_L <x1 <k_x1_H
k_x2_L <x2 <k_x2_H
That is, when c_mode = 2, by restricting the target tension, target reduction position, and target roller speed of the rolling process to predetermined ranges, abnormal operation of the rolling process can be prevented and the operation can be continued.
 <非常時制御3(図29)>
 非常時制御3(43)の内容を示す。具体的には、図29に示される。
<Emergency control 3 (FIG. 29)>
The contents of emergency control 3 (43) are shown. Specifically, it is shown in FIG.
 ・c_mode=3のとき、
  制御を停止する。
・ When c_mode = 3
Stop control.
  すなわち、診断部1と診断部2の双方が異常と判断したので、制御を継続実施するのは、危険と判断し、制御を停止し、圧延プロセスの運転を止めるものである。 That is, since both the diagnosis unit 1 and the diagnosis unit 2 have determined that there is an abnormality, it is determined that it is dangerous to continue the control, the control is stopped, and the operation of the rolling process is stopped.
 ・それ以外のとき、
  通常制御を実施。
あるいは、c_mode=3のときは、フェールセーフの処理を実施してもよい。圧延プロセス用のフェールセーフの処理は、既存の制御であり、ここでは詳述しない。
・ Other than that,
Normal control is implemented.
Alternatively, when c_mode = 3, fail-safe processing may be performed. Fail-safe processing for the rolling process is an existing control and will not be described in detail here.
 本実施形態では、3次元のデータでの診断例を示しているが、実施形態1および本実施形態の文中でも述べたように、診断部1(22)、診断部2(23)共に、次元の拡張は可能であり、3次元のデータのみに適用されるものではないことを付言しておく。 In the present embodiment, an example of diagnosis using three-dimensional data is shown. However, as described in the text of the first embodiment and the present embodiment, both of the diagnosis unit 1 (22) and the diagnosis unit 2 (23) are dimension. It should be noted that these extensions are possible and not applicable only to three-dimensional data.
 本構成は、クラウドに代表される集中処理装置と複数の端末で構成されるシステムにも適用される。この場合、判断基準更新部A(100)と判断基準更新部B(110)は、クラウドで処理し、その際用いるデータとして、複数の端末における制御部の演算結果を用いるのも良い。また、判断部(120)は、各端末で実施し、各端末の制御部の異常を検知するのも良い。 This configuration is also applied to a system composed of a central processing unit represented by a cloud and a plurality of terminals. In this case, the determination reference update unit A (100) and the determination reference update unit B (110) may perform processing in the cloud and use the calculation results of the control units in a plurality of terminals as data used at that time. Further, the determination unit (120) may be implemented at each terminal and detect an abnormality of the control unit of each terminal.
 本文中でも述べているが、判断基準更新部A(100)と判断基準更新部B(110)で用いるデータと判断部(120)で用いるデータは異なる。例えば、制御部21の処理に問題がないとき(実績があるとき)のデータを用いて、判断基準更新部A(100)と判断基準更新部B(110)は処理を行う。判断部(120)は、制御部21の処理内容に問題がある可能性があるとき(実績がないとき)に、機能(ソフト)の異常か否かを検知するために実施する。問題がある可能性があるとき(実績がないとき)の一例として、制御部21の処理内容が更新されたときなどが考えられる。 As described in the text, the data used in the judgment standard update unit A (100) and the judgment standard update unit B (110) are different from the data used in the judgment unit (120). For example, the determination reference update unit A (100) and the determination reference update unit B (110) perform processing using data when there is no problem in the processing of the control unit 21 (when there is a track record). The determination unit (120) is implemented to detect whether there is a problem in the function (software) when there is a possibility that there is a problem in the processing contents of the control unit 21 (when there is no record). As an example when there is a possibility that there is a problem (when there is no record), a case where the processing content of the control unit 21 is updated is considered.
 なお、診断部1(22)と診断部2(23)の機能/作用/効果の差異を下記する。
・機能
 ・診断部1:機械学習
    データを用いて、例えば距離が近いなどを基準にして、クラスタリングによりデータを各集合に分ける。診断結果は、基準生成時に用いたデータの特性に応じて変化。
The difference in function / action / effect between the diagnosis unit 1 (22) and the diagnosis unit 2 (23) will be described below.
-Function-Diagnosis unit 1: Machine learning Using data, for example, the data is divided into each set by clustering on the basis of a short distance. Diagnosis results vary according to the characteristics of the data used when generating the reference.
 ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定。診断結果は不変。
・ Diagnosis unit 2: Rule base Based on "known information (information that people know)", (generally) people specify criteria. The diagnosis result is unchanged.
 ・作用
  ・診断部1:機械学習
    データを用いて生成した診断基準に基づいて正常/異常(危険)を識別。
-Action-Diagnosis unit 1: Machine learning Identify normal / abnormal (danger) based on diagnostic criteria generated using data.
    データに隠された未知の正常/異常(危険)を検知できることがある。 It may be possible to detect unknown normal / abnormality (danger) hidden in the data.
  ・診断部2:ルールベース
    「既知の情報(人が知り得ている情報)」を基に、(一般に)人が基準を指定するので、既知(不変)の正常/異常(危険)を識別
 ・効果
 ・診断部1:機械学習
    未知の異常(危険)を回避できることがある。
・ Diagnosis unit 2: Rule base Based on “known information (information that people know)”, (generally) people specify criteria, so they identify known (invariant) normal / abnormal (danger) Effect ・ Diagnostic part 1: Machine learning An unknown abnormality (danger) may be avoided.
 ・診断部2:ルールベース
    既知の異常(危険)を回避できる。
-Diagnosis unit 2: Rule base A known abnormality (danger) can be avoided.
 以上、本実施形態で示した構成によれば、機能/作用/効果の異なる診断部1(22)と診断部2(23)の双方を用いて、制御部71の機能を診断し、診断部1と診断部2の診断結果に基づいて、制御を変更するので、異常の性質に応じた制御が可能となり、圧延プロセスの制御システムの性能/信頼性が高まる。 As described above, according to the configuration shown in the present embodiment, the function of the control unit 71 is diagnosed using both the diagnosis unit 1 (22) and the diagnosis unit 2 (23) having different functions / actions / effects, and the diagnosis unit Since the control is changed based on the diagnosis result of 1 and the diagnosis unit 2, the control according to the nature of the abnormality is possible, and the performance / reliability of the control system of the rolling process is increased.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサ(CPU)がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor (CPU). Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 上記実施形態1~8では、CPU12(制御変更部24)は、診断部1の診断結果と診断部2の診断結果の組合せに対応する処理をROM12(制御テーブル)から読み出し、読み出した処理を実行する。このように、ハードウェア資源(CPU12、ROM13等)が協働することにより、診断の信頼性を向上しつつ、診断結果に応じて制御を変更することができるという有利な効果を奏する。 In the first to eighth embodiments, the CPU 12 (control change unit 24) reads the process corresponding to the combination of the diagnosis result of the diagnosis unit 1 and the diagnosis result of the diagnosis unit 2 from the ROM 12 (control table) and executes the read process. To do. As described above, the cooperation of hardware resources (CPU 12, ROM 13, etc.) has an advantageous effect that the control can be changed according to the diagnosis result while improving the reliability of the diagnosis.
 なお、本発明の実施形態は、以下の態様であってもよい。 In addition, the following aspects may be sufficient as embodiment of this invention.
 (1)少なくとも制御機能への入力値もしくは制御機能の内部演算値もしくは制御機能の出力値に基づいて更新される判定基準に従って、制御機能の診断を行う第1診断部と、予め定められた判定基準に従って、前記第1診断部とは独立して(並列処理で)、前記制御機能の診断を行う第2診断部と、前記第1診断部の診断結果と前記第2診断部の診断結果との組み合わせに応じて、前記制御機能の制御内容を変更する制御変更部とを備える制御装置。 (1) a first diagnosis unit for diagnosing a control function according to a determination criterion updated based on at least an input value to the control function, an internal operation value of the control function or an output value of the control function, and a predetermined determination According to the criteria, independently of the first diagnosis unit (in parallel processing), a second diagnosis unit that diagnoses the control function, a diagnosis result of the first diagnosis unit, and a diagnosis result of the second diagnosis unit A control apparatus comprising: a control change unit that changes the control content of the control function according to the combination.
 (2)(1)において、前記第1診断部は、少なくとも制御機能への入力値もしくは制御機能の内部演算値もしくは制御機能の出力値の正常もしくは異常を判定することを特徴とする制御装置。 (2) The control device according to (1), wherein the first diagnosis unit determines at least normality or abnormality of an input value to the control function, an internal calculation value of the control function, or an output value of the control function.
 (3)(1)において、前記第2診断部は、少なくとも制御機能への入力値もしくは制御機能の内部演算値もしくは制御機能の出力値の正常もしくは異常を判定することを特徴とする制御装置。 (3) The control device according to (1), wherein the second diagnostic unit determines at least normality or abnormality of an input value to the control function, an internal calculation value of the control function, or an output value of the control function.
 (4)(1)において、前記第1診断部の判定基準を更新する手段は、前記制御機能への入力値もしくは制御機能の内部演算値もしくは制御機能の出力値の(何らかの)特徴もしくは性質を抽出する演算手法であることを特徴とする制御装置。 (4) In (1), the means for updating the determination criteria of the first diagnosis unit is configured to input (some) characteristic or property of an input value to the control function, an internal calculation value of the control function, or an output value of the control function. A control apparatus characterized by being a calculation method for extraction.
 (5)(1)において、前記第1診断部の判定基準を更新する手段は、少なくとも機械学習を用いることを特徴とする制御装置。 (5) The control device according to (1), wherein the means for updating the determination criterion of the first diagnosis unit uses at least machine learning.
 (6)(1)において、前記第1診断部の判定基準を更新する手段は、少なくとも次元削減処理であることを特徴とする制御装置。 (6) The control device according to (1), wherein the means for updating the determination criterion of the first diagnosis unit is at least a dimension reduction process.
 (7)(1)において、前記第1診断部の判定基準を更新する手段は、少なくともデータ圧縮処理であることを特徴とする制御装置。 (7) The control apparatus according to (1), wherein the means for updating the determination criterion of the first diagnosis unit is at least a data compression process.
 (8)(1)において、前記第1診断部の判定基準を更新する手段は、少なくとも統計処理であることを特徴とする制御装置。 (8) The control device according to (1), wherein the means for updating the determination criterion of the first diagnosis unit is at least statistical processing.
 (9)(1)において、前記第2診断部は、ルールベース方式で診断し、前記第2診断部の予め定められた判定基準は、ルールベース方式で記述されていることを特徴とする制御装置。 (9) In (1), the second diagnosis unit diagnoses by a rule-based method, and the predetermined criterion of the second diagnosis unit is described by a rule-based method apparatus.
 (10)(1)において、前記第1診断部の診断結果が異常かつ前記第2診断部の診断結果が正常のとき、報知することを、特徴とする制御装置。 (10) The control device according to (10), wherein a notification is made when the diagnosis result of the first diagnosis unit is abnormal and the diagnosis result of the second diagnosis unit is normal.
 (11)(1)において、前記第1診断部の診断結果が正常かつ前記第2診断部の診断結果が異常のとき、前記制御機能への入力値もしくは制御機能の内部演算値もしくは制御機能の出力値を所定範囲内に制約することを特徴とする制御装置。 (11) In (1), when the diagnosis result of the first diagnosis unit is normal and the diagnosis result of the second diagnosis unit is abnormal, the input value to the control function, the internal calculation value of the control function, or the control function A control device that restricts an output value within a predetermined range.
 (12)(1)において、前記第1診断部の診断結果が異常かつ前記第2診断部の診断結果が異常のとき、前記制御機能をフェールセーフモードに切り替え、もしくは停止させることを特徴とする制御装置。 (12) In (1), when the diagnosis result of the first diagnosis unit is abnormal and the diagnosis result of the second diagnosis unit is abnormal, the control function is switched to a fail-safe mode or stopped. apparatus.
 (13)(1)において、前記第1診断部もしくは第2診断部が、前記制御機能への入力値が異常と判定したとき、前記制御機能への入力値を異なる値に設定もしくは、制御機能の動作を行わない(停止させる)ことを特徴とする制御装置。 (13) In (1), when the first diagnosis unit or the second diagnosis unit determines that the input value to the control function is abnormal, the input value to the control function is set to a different value or the control function A control device characterized by not performing (stopping) the operation.
 (14)(1)において、制御対象が内燃機関であり、前記制御機能の出力値は、少なくとも前記内燃機関の空気量、燃料噴射量、点火時期であることを特徴とする制御装置。 (14) The control device according to (1), wherein the control target is an internal combustion engine, and the output value of the control function is at least an air amount, a fuel injection amount, and an ignition timing of the internal combustion engine.
 (15)(1)において、制御対象が鉄鋼プラントの圧延プロセスであり、前記制御機能の出力値は、少なくとも前記圧延プロセスにおける張力、圧下位置、圧延材移動速度あることを特徴とする制御装置。 (15) The control device according to (1), wherein a control target is a rolling process of a steel plant, and an output value of the control function is at least a tension, a reduction position, and a rolling material moving speed in the rolling process.
1…エンジン
2…燃料噴射弁
3…電子スロットル
4…点火プラグ
5…鉄鋼プラントにおける圧延プロセス
11…制御装置もしくはデータ処理装置
12…制御装置もしくはデータ処理装置のCPU
13…制御装置もしくはデータ処理装置のROM
14…制御装置もしくはデータ処理装置のRAM
15…制御装置もしくはデータ処理装置のデータバス
16…制御装置もしくはデータ処理装置の入力回路
17…制御装置もしくはデータ処理装置の入出力ポート
18…制御装置もしくはデータ処理装置の出力回路
21…ROMに書き込まれる制御部
22…ROMに書き込まれる診断部1
23…ROMに書き込まれる診断部2
24…ROMに書き込まれる制御変更部
31…ROMに書き込まれる制御部
32…ROMに書き込まれる制御変更部
41…非常時制御1
42…非常時制御2
43…非常時制御3
51…ROMに書き込まれる制御変更部
61…制御部
71…制御部
100…判断基準更新部A
101…判断基準更新部Aの内部(機械学習:k-means法)
110…判断基準更新部B
111…判断基準更新部Bの内部
120…判断部
121…判断部の内部
130…判断基準更新部A
131…判断基準更新部Aの内部(次元削減:スパースモデリング)
140…判断基準更新部B
141…判断基準更新部Bの内部
150…判断部
151…判断部の内部
160…判断基準更新部A
161…判断基準更新部Aの内部(圧縮:周波数解析)
170…判断基準更新部B
171…判断基準更新部Bの内部
180…判断部
181…判断部の内部
190…判断基準更新部A
191…判断基準更新部Aの内部(統計処理:平均値と分散値)
200…判断基準更新部B
201…判断基準更新部Bの内部
210…判断部
211…判断部の内部
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Fuel injection valve 3 ... Electronic throttle 4 ... Spark plug 5 ... Rolling process 11 in steel plant ... Control device or data processing device 12 ... CPU of control device or data processing device
13 ... ROM of control device or data processing device
14 ... RAM of control device or data processing device
15 ... Data bus 16 of control device or data processing device ... Input circuit 17 of control device or data processing device ... Input / output port 18 of control device or data processing device ... Output circuit 21 of control device or data processing device ... Write to ROM Control unit 22 to be executed: diagnostic unit 1 written in ROM
23 ... Diagnostic unit 2 written in ROM
24: Control change unit 31 written in ROM ... Control unit 32 written in ROM ... Control change unit 41 written in ROM ... Emergency control 1
42 ... Emergency control 2
43 ... Emergency control 3
51 ... Control change unit 61 written in ROM ... Control unit 71 ... Control unit 100 ... Judgment reference update unit A
101 .. Inside of judgment criterion update unit A (machine learning: k-means method)
110 ... Judgment standard update part B
111... Internal 120 of the judgment criterion update unit B... Judgment unit 121.
131 ... Inside of the judgment reference update unit A (dimensional reduction: sparse modeling)
140... Criteria update unit B
141 ... Inside 150 of the judgment reference updating unit B ... Judging unit 151 ... Inside the judgment unit 160 ... Judgment standard updating unit A
161. Inside of the judgment reference update unit A (compression: frequency analysis)
170 ... Judgment standard update part B
171 ... Internal 180 of the judgment reference updating unit B ... Determination part 181 ... Internal of the judgment part 190 ... Determination standard updating part A
191 ... Inside of the criterion update unit A (statistical processing: average value and variance value)
200 ... Judgment standard update part B
201 ... Inside of judgment criterion update unit B 210 ... Determination unit 211 ... Inside of judgment unit

Claims (15)

  1.  入力信号に基づいて制御に用いられる出力信号を演算する制御部と、
     前記制御部が扱うデータを示す対象データに基づいて第1タイミングで第1判断基準を更新し、更新された前記第1判断基準に従って前記第1タイミング後の第2タイミングの前記対象データを診断する第1診断部と、
     予め定められた第2判断基準に従って前記第2タイミングの前記対象データを診断する第2診断部と、
     前記第1診断部の診断結果と前記第2診断部の診断結果の組合せに対応する処理を実行する制御変更部と、
     を備えることを特徴とする制御装置。
    A control unit that calculates an output signal used for control based on an input signal;
    The first determination criterion is updated at a first timing based on target data indicating data handled by the control unit, and the target data at the second timing after the first timing is diagnosed according to the updated first determination criterion. A first diagnosis unit;
    A second diagnosis unit for diagnosing the target data at the second timing according to a predetermined second determination criterion;
    A control change unit that executes a process corresponding to a combination of the diagnosis result of the first diagnosis unit and the diagnosis result of the second diagnosis unit;
    A control device comprising:
  2.  請求項1に記載の制御装置であって、
     前記第1診断部の診断結果と前記第2診断部の診断結果の組合せに対応する処理は、前記制御部の制御を変更する処理を含む
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The process corresponding to the combination of the diagnosis result of the first diagnosis unit and the diagnosis result of the second diagnosis unit includes a process of changing the control of the control unit.
  3.  請求項1に記載の制御装置であって、
     前記入力信号を入力する入力装置と、
     前記第1診断部の診断結果と前記第2診断部の診断結果の組合せと、前記組合せに対応する処理とを対応付けて記憶する記憶装置と、
     前記制御部、前記第1診断部、前記第2診断部、及び前記制御変更部を有する演算装置と、
     前記出力信号を出力する出力装置と、を備え、
     前記制御変更部は、
     前記第1診断部の診断結果と前記第2診断部の診断結果の組合せに対応する処理を前記記憶装置から読み出し、読み出した処理を実行する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    An input device for inputting the input signal;
    A storage device that stores a combination of a diagnosis result of the first diagnosis unit and a diagnosis result of the second diagnosis unit and a process corresponding to the combination;
    An arithmetic unit having the control unit, the first diagnosis unit, the second diagnosis unit, and the control change unit;
    An output device for outputting the output signal,
    The control change unit
    A control device that reads a process corresponding to a combination of a diagnosis result of the first diagnosis unit and a diagnosis result of the second diagnosis unit from the storage device and executes the read process.
  4.  請求項1に記載の制御装置であって、
     前記対象データは、
     前記入力信号、前記入力信号から前記出力信号を演算する途中の前記制御部の演算結果、又は前記出力信号が示すデータである
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The target data is
    The control device, wherein the control signal is the input signal, a calculation result of the control unit that is calculating the output signal from the input signal, or data indicated by the output signal.
  5.  請求項4に記載の制御装置であって、
     前記第1診断部は、
     前記対象データの特性を抽出し、
     抽出された特性に基づいて前記第1判断基準を更新する
     ことを特徴とする制御装置。
    The control device according to claim 4,
    The first diagnosis unit includes:
    Extracting the characteristics of the target data;
    The control device updates the first determination criterion based on the extracted characteristic.
  6.  請求項1に記載の制御装置であって、
     前記第1診断部は、
     機械学習を用いて前記第1判断基準を更新する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The first diagnosis unit includes:
    The control device updates the first determination criterion using machine learning.
  7.  請求項1に記載の制御装置であって、
     前記第1診断部は、
     次元削減処理を用いて前記第1判断基準を更新する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The first diagnosis unit includes:
    The control device, wherein the first determination criterion is updated using a dimension reduction process.
  8.  請求項1に記載の制御装置であって、
     前記第1診断部は、
     圧縮処理を用いて前記第1判断基準を更新する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The first diagnosis unit includes:
    The control apparatus updates the first determination criterion using a compression process.
  9.  請求項1に記載の制御装置であって、
     前記第1診断部は、
     統計処理を用いて前記第1判断基準を更新する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The first diagnosis unit includes:
    The control device updates the first determination criterion using statistical processing.
  10.  請求項1に記載の制御装置であって、
     前記制御変更部は、
     前記第1診断部の診断結果が異常であり、かつ、前記第2診断部の診断結果が正常である場合、異常を報知する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The control change unit
    An abnormality is reported when the diagnosis result of the first diagnosis unit is abnormal and the diagnosis result of the second diagnosis unit is normal.
  11.  請求項6に記載の制御装置であって、
     前記第1診断部は、
     機械学習を用いて前記対象データをクラスタリングし、
     前記制御変更部は、
     前記第1診断部の診断結果が異常であり、かつ、前記第2診断部の診断結果が正常である場合、前記第2タイミングの前記対象データを最も近いクラスタのデータに変更する
     ことを特徴とする制御装置。
    The control device according to claim 6,
    The first diagnosis unit includes:
    Clustering the target data using machine learning,
    The control change unit
    When the diagnosis result of the first diagnosis unit is abnormal and the diagnosis result of the second diagnosis unit is normal, the target data at the second timing is changed to data of the nearest cluster. Control device.
  12.  請求項1に記載の制御装置であって、
     前記制御変更部は、
     前記第1診断部の診断結果が異常であり、かつ、前記第2診断部の診断結果が異常である場合、前記制御部にフェールセーフ処理を実行させる又は前記制御部を停止する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The control change unit
    When the diagnosis result of the first diagnosis unit is abnormal and the diagnosis result of the second diagnosis unit is abnormal, the control unit is caused to execute fail-safe processing or the control unit is stopped. Control device.
  13.  請求項1に記載の制御装置であって、
     前記対象データは、
     前記入力信号が示すデータであり、
     前記第1診断部は、
     機械学習を用いて前記対象データをクラスタリングし、
     前記制御変更部は、
     前記第1診断部の診断結果が異常であり、又は前記第2診断部の診断結果が異常である場合、前記第2タイミングの前記対象データを最も近いクラスタのデータに変更する、又は前記制御部を停止する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The target data is
    The data indicated by the input signal,
    The first diagnosis unit includes:
    Clustering the target data using machine learning,
    The control change unit
    When the diagnosis result of the first diagnosis unit is abnormal or the diagnosis result of the second diagnosis unit is abnormal, the target data at the second timing is changed to data of the nearest cluster, or the control unit The control device characterized by stopping.
  14.  請求項1に記載の制御装置であって、
     前記制御部は、
     内燃機関の空気量、燃料噴射量、又は点火時期の制御に用いられる出力信号を演算し、前記内燃機関を制御する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The controller is
    A control device that controls an internal combustion engine by calculating an output signal used for controlling an air amount, a fuel injection amount, or an ignition timing of the internal combustion engine.
  15.  請求項1に記載の制御装置であって、
     前記制御部は、
     圧延装置の張力、圧下位置、又は圧延材移動速度の制御に用いられる出力信号を演算し、前記圧延装置を制御する
     ことを特徴とする制御装置。
    The control device according to claim 1,
    The controller is
    A control device that calculates an output signal used to control a tension, a rolling position, or a rolling material moving speed of a rolling device, and controls the rolling device.
PCT/JP2016/081917 2016-10-27 2016-10-27 Control device WO2018078769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081917 WO2018078769A1 (en) 2016-10-27 2016-10-27 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081917 WO2018078769A1 (en) 2016-10-27 2016-10-27 Control device

Publications (1)

Publication Number Publication Date
WO2018078769A1 true WO2018078769A1 (en) 2018-05-03

Family

ID=62024144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081917 WO2018078769A1 (en) 2016-10-27 2016-10-27 Control device

Country Status (1)

Country Link
WO (1) WO2018078769A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089555A (en) * 2019-12-04 2021-06-10 株式会社ビデオリサーチ Behavior trend analysis method and behavior trend analysis device
JP2022181936A (en) * 2021-05-27 2022-12-08 いすゞ自動車株式会社 Information processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002312026A (en) * 2001-04-09 2002-10-25 Yasuoka:Kk Control method for monitoring machine
JP2009043266A (en) * 2001-08-21 2009-02-26 Rosemount Analytical Inc Shared-use data processing for process control system
JP2012246865A (en) * 2011-05-30 2012-12-13 Ebara Corp Pump facility
JP2013191136A (en) * 2012-03-15 2013-09-26 Ihi Corp Abnormality diagnostic device
JP2014149840A (en) * 2014-03-12 2014-08-21 Hitachi Ltd Abnormality detection method and system therefor
JP2015232914A (en) * 2015-10-01 2015-12-24 株式会社Ihi Abnormality diagnosis apparatus, abnormality diagnosis method, and abnormality diagnosis program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002312026A (en) * 2001-04-09 2002-10-25 Yasuoka:Kk Control method for monitoring machine
JP2009043266A (en) * 2001-08-21 2009-02-26 Rosemount Analytical Inc Shared-use data processing for process control system
JP2012246865A (en) * 2011-05-30 2012-12-13 Ebara Corp Pump facility
JP2013191136A (en) * 2012-03-15 2013-09-26 Ihi Corp Abnormality diagnostic device
JP2014149840A (en) * 2014-03-12 2014-08-21 Hitachi Ltd Abnormality detection method and system therefor
JP2015232914A (en) * 2015-10-01 2015-12-24 株式会社Ihi Abnormality diagnosis apparatus, abnormality diagnosis method, and abnormality diagnosis program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089555A (en) * 2019-12-04 2021-06-10 株式会社ビデオリサーチ Behavior trend analysis method and behavior trend analysis device
JP2022181936A (en) * 2021-05-27 2022-12-08 いすゞ自動車株式会社 Information processing device

Similar Documents

Publication Publication Date Title
US11170314B2 (en) Detection and protection against mode switching attacks in cyber-physical systems
US10671060B2 (en) Data-driven model construction for industrial asset decision boundary classification
EP3515040B1 (en) Reliable cyber-threat detection in rapidly changing environments
US11503045B2 (en) Scalable hierarchical abnormality localization in cyber-physical systems
EP3515037A1 (en) Dynamic concurrent learning method to neutralize cyber attacks and faults for industrial asset monitoring nodes
US10990668B2 (en) Local and global decision fusion for cyber-physical system abnormality detection
US20200150159A1 (en) Anomaly detection device, anomaly detection method, and storage medium
US9075701B2 (en) Apparatus and method for monitoring abnormal state of vehicle using clustering technique
KR102026300B1 (en) Method for detecting abnormal signal of vehicle by using artificial intelligence system
CN115202314A (en) System, method and computer readable medium for protecting network physical system
KR101316486B1 (en) Error detection method and system
US20220357729A1 (en) Systems and methods for global cyber-attack or fault detection model
JP2018139101A (en) Feature and boundary adjustment for threat detection in industrial asset control systems
da Silva et al. A new methodology for multiple incipient fault diagnosis in transmission lines using QTA and Naïve Bayes classifier
US11880464B2 (en) Vulnerability-driven cyberattack protection system and method for industrial assets
CN115204248A (en) System, method and computer readable medium for protecting network physical system
CN113255783A (en) Sensor fault detection method and device based on unsupervised learning
JP6678182B2 (en) Anomaly detection device
EP2135144B1 (en) Machine condition monitoring using pattern rules
WO2018078769A1 (en) Control device
Zhu et al. Equipment Operational Reliability Evaluation Method Based on RVM and PCA‐Fused Features
Liu et al. A divide and conquer approach to anomaly detection, localization and diagnosis
Inacio et al. Fault diagnosis with evolving fuzzy classifier based on clustering algorithm and drift detection
RU2708965C1 (en) Method of analyzing functional behavior of a technical system and a processing unit
CN114674511A (en) Bridge modal anomaly early warning method for eliminating time-varying environmental factor influence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载