WO2018073819A1 - Flame-retarded polyester formulations - Google Patents
Flame-retarded polyester formulations Download PDFInfo
- Publication number
- WO2018073819A1 WO2018073819A1 PCT/IL2017/051143 IL2017051143W WO2018073819A1 WO 2018073819 A1 WO2018073819 A1 WO 2018073819A1 IL 2017051143 W IL2017051143 W IL 2017051143W WO 2018073819 A1 WO2018073819 A1 WO 2018073819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- composition
- pbt
- composition according
- glass fibers
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 102
- 229920000728 polyester Polymers 0.000 title claims abstract description 30
- 238000009472 formulation Methods 0.000 title description 6
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 36
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims abstract description 34
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000003063 flame retardant Substances 0.000 claims abstract description 29
- 229910001377 aluminum hypophosphite Inorganic materials 0.000 claims abstract description 27
- 229920000642 polymer Polymers 0.000 claims abstract description 26
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 46
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000003365 glass fiber Substances 0.000 claims description 24
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical class N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 23
- 238000012360 testing method Methods 0.000 claims description 22
- 239000000654 additive Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- -1 polytetrafluoroethylene Polymers 0.000 claims description 13
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 12
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 12
- 230000000996 additive effect Effects 0.000 claims description 11
- 239000004793 Polystyrene Substances 0.000 claims description 10
- 229920002223 polystyrene Polymers 0.000 claims description 10
- GRKDVZMVHOLESV-UHFFFAOYSA-N (2,3,4,5,6-pentabromophenyl)methyl prop-2-enoate Chemical compound BrC1=C(Br)C(Br)=C(COC(=O)C=C)C(Br)=C1Br GRKDVZMVHOLESV-UHFFFAOYSA-N 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 8
- 229920000647 polyepoxide Polymers 0.000 claims description 8
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical class C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 239000012763 reinforcing filler Substances 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000008188 pellet Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- BZQKBFHEWDPQHD-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-[2-(2,3,4,5,6-pentabromophenyl)ethyl]benzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1CCC1=C(Br)C(Br)=C(Br)C(Br)=C1Br BZQKBFHEWDPQHD-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- OWICEWMBIBPFAH-UHFFFAOYSA-N (3-diphenoxyphosphoryloxyphenyl) diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=C(OP(=O)(OC=2C=CC=CC=2)OC=2C=CC=CC=2)C=CC=1)(=O)OC1=CC=CC=C1 OWICEWMBIBPFAH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- BHIIGRBMZRSDRI-UHFFFAOYSA-N [chloro(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(Cl)OC1=CC=CC=C1 BHIIGRBMZRSDRI-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910001382 calcium hypophosphite Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- ASMQGLCHMVWBQR-UHFFFAOYSA-M diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1 ASMQGLCHMVWBQR-UHFFFAOYSA-M 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000010603 pastilles Nutrition 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- LJSAJMXWXGSVNA-UHFFFAOYSA-N a805044 Chemical compound OC1=CC=C(O)C=C1.OC1=CC=C(O)C=C1 LJSAJMXWXGSVNA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- PWAYUHFEKDQEMK-UHFFFAOYSA-N benzene-1,4-diol;phosphoric acid Chemical class OP(O)(O)=O.OP(O)(O)=O.OC1=CC=C(O)C=C1 PWAYUHFEKDQEMK-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000005340 bisphosphate group Chemical group 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229940064002 calcium hypophosphite Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000007706 flame test Methods 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- QVTWBMUAJHVAIJ-UHFFFAOYSA-N hexane-1,4-diol Chemical compound CCC(O)CCCO QVTWBMUAJHVAIJ-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- CNALVHVMBXLLIY-IUCAKERBSA-N tert-butyl n-[(3s,5s)-5-methylpiperidin-3-yl]carbamate Chemical compound C[C@@H]1CNC[C@@H](NC(=O)OC(C)(C)C)C1 CNALVHVMBXLLIY-IUCAKERBSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 125000002256 xylenyl group Chemical group C1(C(C=CC=C1)C)(C)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/329—Phosphorus containing acids
Definitions
- PBT/GF Glass-fiber reinforced poly ( 1 , 4-butylene terephthalate) , hereinafter abbreviated PBT/GF, is used in various insulating parts for electrical and electronic devices.
- the commonly used grades are generally reinforced with 30 wt% glass fibers based on the total weight of the composition (hereinafter abbreviated
- PBT/GF e.g., PBT/GF30
- PBT/GF30 is more difficult to flame retard than the non-reinforced polymer.
- the flammability characteristics of plastic materials are usually quantifiable according to a method specified by Underwriter Laboratories standard UL 94, where an open flame is applied to the lowermost edge of a vertically mounted test specimen made of the tested polymer formulation.
- the specimens used in the UL 94 test method vary in thickness (typical thicknesses are -3.2 mm, -1.6 mm, -0.8 mm and -0.4 mm) . During the test, various features of the flammability of the test specimens are recorded.
- the polymer formulation is assigned with either V-0, V-l or V-2 rating at the measured thickness of the test specimen.
- Polymer formulation assigned with the V-0 rating is the less flammable.
- the thinner the specimens are, the longer the burning time. Therefore, the requirements of UL 94 V-0 rating for thin PBT/GF30 test specimens (e.g., 0.8 or 0.4 mm thick samples) are not easily met .
- Metal salts of hypophosphorous acid that is, metal hypophosphite
- metal hypophosphite have been found to be effective flame retardants in polyesters, with the predominance of literature focusing on aluminum hypophosphite .
- aluminum hypophosphite, A1(H2P02)3 can be used in PBT/GF, in combination with melamine cyanurate.
- Table 2 of US 7,700,680 suggest that the aforementioned combination does not fulfill the requirements of UL 94 V-0 rating for thin PBT/GF30 specimens (e.g., 0.8 mm or 0.4 mm) .
- polyesters such as PBT/GF30 can be flame retarded with the aid of the aforementioned mixture even in the absence of antimony trioxide
- antimony trioxide Normally bromine-containing flame retardants are added to plastic polymers together with antimony trioxide, which functions synergistically to enhance the activity of the flame retardant, usually at about 2:1-5:1 weight ratio (calculated as the ratio between the concentrations of bromine supplied by the flame retardant and Sb203 in the polymer composition) .
- GWIT Glow Wire Ignition Temperature
- the present invention is therefore primarily directed to a composition comprising polyester and a mixture of flame retardants having at least the following two components:
- composition of the invention is substantially Sb203-free.
- substantially Sb203-free is meant that the concentration of antimony trioxide in the composition is well below the acceptable amount used in plastic composites in conjunction with halogenated additives, e.g., not more 1.0% by weight, more preferably, up 0.5% by weight, e.g., 0.0-0.3% by weight (based on the total weight of the composition) .
- the compositions of the invention are totally devoid of antimony trioxide.
- the concentration of the mixture of flame retardants in the polyester composition is preferably from 10 to 30% by weight, more specifically from 15 to 25% by weight, for example 17 to 23% by weight based on the total weight of the composition, and the mixture is proportioned such that the ratio between the weight concentrations of bromine (supplied by the brominated additive) and aluminum hypophosphite is preferably not less than 1:1, e.g., from 1.05 to 2.0, e.g., from 1.05 to 1.8 (in favor of bromine) .
- the concentration of bromine in the polyester composition is calculated by multiplying the bromine content of the flame retardant used (designated herein Br F r name and expressed as % by weight) by the weight concentration of that flame retardant in the polyester composition, as illustrated below.
- the first component of the additive mixture is aluminum hypophosphite.
- This salt is available on the market from various manufacturers; it can be made by reacting an aluminum salt with hypophosphorous acid (e.g., with slow heating at 80- 90°C (see Handbook of inorganic compounds, second Edition by D. L. Perry; see also US 7, 700, 680 and J. Chem. Soc. P. 2945 (1952) ) .
- the second component of the additive mixture is a bromine-containing polymer.
- a bromine-containing polymer can be used in combination with A1(H2P02)3 according to the present invention, for example: i) Poly (pentabromobenzyl acrylate) , represented by the following formula:
- the polymer (abbreviated PBBPA) is produced by polymerizing the corresponding monomer pentabromobenzyl acrylate, either in bulk (in an extruder at a temperature in the range from 120°C to 290°C as described in US 4,996,276), or in solution, see US 4,128,709 or 6,028,156.
- the polymer is also available on the market, being sold by ICL-IP (FR-1025) .
- the polymer is prepared by methods known in the art (see US 4,879,353 and US 5,532,322) .
- Suitable grades have weight average molecular weight in the range from 500,000 to 600,000, with bromine content preferably exceeding 60 or even 65 % by weight (that is, average of 2-3 bromine atoms per aromatic ring in the polymer backbone chain) .
- Such polymers in the form of a free flowing powder or in granular form, are available on the market, e.g., from ICL-IP (FR 803P) .
- Ri and R2 are independently selected from the group consisting of the following:
- epoxy-terminated resins that is, resin having glycidyl end groups
- Formula (la) Preferred are epoxy-terminated resins (that is, resin having glycidyl end groups) represented by the following Formula (la) :
- the epoxy resins are obtainable by reacting tetrabromobisphenol A with epichlorohydrin .
- Commercially available examples include F- 2100 from ICL-IP, with molecular weight of about 20,000.
- composition of the invention comprises not less than 10% by weight, e.g., from 20 to 70% by weight and preferably from 20 to 60% by weight of a thermoplastic polyester (e.g., 35-55%), in particular polyesters of the classes based on: aromatic dicarboxylic acids and aliphatic dihydroxy compounds; and
- aromatic dicarboxylic acids and aromatic dihydroxy compounds aromatic dicarboxylic acids and aromatic dihydroxy compounds.
- linear polyesters obtained from terephthalic acid, isophthalic acid and 2,6 naphathalenedicarboxylic acid, wherein the aliphatic dihydroxy compound is a diol having from 2 to 6 carbon atoms, such as 1 , 2-ethanediol , 1 , 3-propanediol , 1 , 4-butanediol , 1,6- hexanediol, 1 , 4-hexanediol , and mixtures thereof.
- Particularly preferred are polyalkylene terephthalates derived from alkanediols having from 2 to 6 carbon atoms.
- polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) are also contemplated for use in the invention. Additional details regarding suitable polyesters can be found in US 6,503,969 and US 8,188,172.
- PBT is available from various manufacturers, e.g., BASF and Ticona.
- the melt flow index of the PBT (MFI; ISO 1133 250°C/2.16 kg) may vary from 25 g/10 min to 50 g/10 min, e.g., from 20 to 35 g/10 min or from 35 to 50 g/10 min .
- the composition of the invention preferably comprises reinforcing filler, especially glass fibers, which are usually pre-coated by manufacturers in order to improve their compatibility with the polymer in question (e.g., polyester in the present case) .
- the major constituents of glass fibers applied for reinforcing polyester intended for use in electrical devices are alumino-borosilicates ; such type of glass in known as E-glass.
- the glass fibers comprise filaments with diameter in the range from 1 ⁇ to 30 ⁇ , and are applied in the form of chopped strands with length in the range from 2 to 10 mm, e.g., from 3 to 4.5 mm.
- the concentration of the glass fibers is usually from 5% to 40% by weight, e.g., from 10% to 40% by weight, preferably at least 20% by weight, e.g. from 20 to 35% by weight, in particular from 24 to 35% by weight and especially from 27 to 33% by weight, i.e., around 30% by weight, based on the total weight of the composition.
- the preferred compositions of the invention are therefore designated PBT/ GF20-35, PBT/ GF24-35 and PBT/ GF27-33, in particular, the aforementioned PBT/ GF30 .
- the invention specifically provides a composition comprising: from 20 to 60% by weight of a polyester (e.g., 35-55%), in particular polyalkylene terephthalate, and especially polybutylene terephthalate (PBT) ;
- a polyester e.g., 35-55%
- PBT polybutylene terephthalate
- a reinforcing filler in particular glass fibers (e.g., 24-35% and especially 27-33%); and
- a mixture of flame retardants comprising aluminum hypophosphite and bromine-containing polymer selected from the group consisting of poly (pentabromobenzyl acrylate) , brominated polystyrene and brominated epoxy resin of Formula (la), wherein the concentration of said aluminum hypophosphite is preferably in the range from 5% to 10% (e.g., 6 to 9%) by weight based on the total weight of the composition, and the concentration of the bromine-containing polymer is adjusted such that the bromine concentration of the composition is from 7.0 to 12% (e.g., 8 to 11%) by weight based on the total weight of the composition .
- the concentration of bromine in the composition is calculated by multiplying the bromine content of a given flame retardant (designated herein Br F r name and expressed as % by weight) by the weight concentration of that flame retardant in the composition.
- a given flame retardant designated herein Br F r name and expressed as % by weight
- compositions according to the present invention also include one or more anti-dripping agents such as polytetrafluoroethylene (abbreviated PTFE) in a preferred amount between 0.1 and 1.0 wt%, more preferably between 0.3 and 0.7 wt%, and even more preferably between 0.3 and 0.5 wt%, based on the total weight of the composition.
- PTFE polytetrafluoroethylene
- the invention is especially directed to a composition characterized in that it achieves a UL-94 flammability test rating of V-0 at a thickness equal to or less than 0.8 mm, e.g., at 0.8 mm and preferably also at 0.4 mm.
- compositions comprising: from 40 to 55 % by weight of PBT (e.g., from 45 to 55 %), from 20 to 35 % by weight of glass fibers (e.g., 27 to 33%), from 5 to 10% by weight of A1(H 2 P0 2 ) 3 (e.g., 6 to 9%), from 10 to 15% by weight of poly (pentabromobenzyl acrylate) and from 0.1 to 1.0% by weight of PTFE (e.g., from 0.3 to 0.7); or from 40 to 55 % by weight of PBT (e.g., from 45 to 55 %), from 20 to 35 % by weight of glass fibers (e.g., 27 to 33%), from 5 to 10% by weight of A1(H 2 P0 2 ) 3 (e.g., 6 to 9%), from 10 to 18% by weight of brominated polystyrene (e.g., from 10 to 15%) and from 0.1 to 1.0% by weight of PTFE (e.g.,
- auxiliary flame retardants may be added to the composition, in particular, phosphorous- containing flame retardants, e.g., phosphate esters.
- Formula (II ' wherein R 1 , R 2 , R 3 and R 4 each independently is aryl (e.g., phenyl) or alkyl-substituted aryl (e.g., xylenyl), optionally interrupted with heteroatoms, and n has an average value of from about 1.0 to about 2.0, may be used.
- the compounds of Formula (II) are described in EP 2089402.
- the hydroquinone bis-phosphates of Formula II are prepared by reacting a diaryl halophosphate with hydroquinone in the presence of a catalyst.
- DPCP diphenylchlorophosphate
- MgCl2 hydroquinone bis- (diphenyl phosphate)
- DPCP diphenylchlorophosphate
- MgCl2 hydroquinone bis- (diphenyl phosphate)
- Detailed methods for synthesizing compounds of Formula (II) can be found in EP 2089402.
- phosphate ester flame retardant that can be added to the polyester composition of the invention is resorcinol bis (diphenyl phosphate) , which is a liquid bis-phosphate available from ICL-IP (CAS no.: 57583-54-7; Fyrolflex ® RDP) ; it can be formulated into masterbatch pellets in PBT carrier for use in the invention.
- the composition of this invention may further contain conventional additives, such as UV stabilizers (e.g., benzotriazole derivative), processing aids, antioxidants (e.g., hindered phenol type), lubricants, pigments, dies and the like.
- UV stabilizers e.g., benzotriazole derivative
- processing aids e.g., antioxidants (e.g., hindered phenol type)
- antioxidants e.g., hindered phenol type
- lubricants pigments, dies and the like.
- the total concentration of these auxiliary additives is typically not more than 3 % by weight.
- polyester compositions of the invention may be carried out using different methods known in the art.
- the polyester compositions are produced by melt- mixing the components, e.g., in a co-kneader or twin screw extruder, wherein the mixing temperature is in the range from 220 to 280°C. It is possible to feed all the ingredients to the extrusion throat together, but it is generally preferred to first dry-mix some of the components, and then to introduce the dry blend into the main feed port of the extruder, with one or more of the ingredients being optionally added downstream.
- the polyester, aluminum hypophosphite, the bromine containing flame retardant, one or more of the conventional additives are dry blended and the blend is fed to the extruder throat, followed by the addition of glass fibers downstream.
- Process parameters such as barrel temperature, melt temperature and screw speed are described in more detail in the examples that follow.
- the resultant extrudates are comminuted into pellets.
- the dried pellets are suitable for feed to an article shaping process, injection molding, extrusion molding, compression molding, optionally followed by another shaping method.
- Articles molded from the polyester compositions form another aspect of the invention.
- Specific examples of articles include electric and electronic parts, such as connectors, circuit breakers and power plugs .
- a non-polymeric bromine- containing flame retardant that was tested (decabromodiphenyl ethane, an additive which has gained commercial acceptance for many applications, including PBT) was unable to achieve UL 94 V-0/0.8 mm rating when combined with aluminum hypophosphite. It appears that aluminum hypophosphite is able to offset the absence of antimony trioxide when polymeric brominated flame retardants such as poly (pentabromobenzyl acrylate) , brominated polystyrene and brominated epoxy resins are used in PBT, but not when decabromodiphenyl ethane is used.
- polymeric brominated flame retardants such as poly (pentabromobenzyl acrylate) , brominated polystyrene and brominated epoxy resins are used in PBT, but not when decabromodiphenyl ethane is used.
- the amount of the polymeric brominated flame retardant is adjusted such that the bromine content of the composition is preferably from 7.0 to 12% by weight based on the total weight of the composition, and the amount of aluminum hypophosphite is adjusted such that its concentration is preferably from 5 to 10% by weight by weight based on the total weight of the composition.
- the polymeric brominated flame retardant is selected from the group mentioned above, with the brominated epoxy resin of Formula (la) :
- weight-average molar mass between 15000 to 25000, being especially preferred.
- a direct flame test was carried out according to the Underwriters-Laboratories standard UL 94 in a gas methane operated flammability hood, applying the vertical burn on specimens of 0.8 mm or 0.4 mm thickness.
- Glow Wire Ignition Temperature were measured according to the IEC EN 60695-2-13 method.
- the instrument used was the PLT Glow Wire test instrument with pulse timer type T-03-24 (3.2 mm thick plate) .
- the Notched Izod impact test was carried out according to ASTM D256-81 using Instron Ceast 9050 pendulum impact system. Tensile properties were determined according to ASTM D638 using Zwick 1435 material testing machine (type 2 dumbbells were used, with a speed test of 5 mm/min) .
- Heat distortion temperature (abbreviated HDT; this is the temperature at which a polymer sample deforms under a specific load) was measured according to ASTM D-648 with load of 1820 MPa and heating rate of 120°C/hour.
- the instrument was HDT/VICAT -plus Daveport, Lloyd instruments.
- combinations consisting aluminum hypophosphite and a brominated flame retardant selected from the group consisting of poly (pentabromobenyzl acrylate) , brominated polystyrene and brominated epoxy resin were tested to determine their ability to reduce the flammability of PBT/GF30 in the absence of antimony trioxide.
- Test specimens with thickness of 0.8 mm or 0.4 mm were prepared. In addition, mechanical and thermal properties were measured.
- Feeding rate 12 kg/hour.
- the strands produced were pelletized in a pelletizer 750/3 from Accrapak Systems Ltd.
- the resultant pellets were dried in a circulating air oven (Heraeus Instruments) at 120°C for 4 hours.
- the dried pellets were injection molded into test specimens using Allrounder 500-150 from Arburg under the conditions tabulated below:
- Table 3 The results set out in Table 3 indicate the high efficacy of a combination consisting of aluminum hypophosphite salt and either poly (pentabromobenyzl acrylate) - Examples 1 and 2, brominated polystyrene - Examples 3 and 4, or brominated epoxy resin - Examples 5 and 6 in reducing the flammability of thin polyester test specimens, achieving UL 94 V-0 rating down to 0.4 mm thickness.
- FR- 1410 decabromodiphenyl ethane, a flame retardant containing 82% aromatic bromine, which is considered the additive of choice for a large variety of applications, including PBT
- FR-1410/aluminum hypophosphite failed to gain UL 94 V-0/0.8 mm rating.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A composition comprising polyester and a mixture of flame retardants having at least the following two components: aluminum hypophosphite and bromine-containing polymer.
Description
Flame-retarded polyester formulations
Glass-fiber reinforced poly ( 1 , 4-butylene terephthalate) , hereinafter abbreviated PBT/GF, is used in various insulating parts for electrical and electronic devices. The commonly used grades are generally reinforced with 30 wt% glass fibers based on the total weight of the composition (hereinafter abbreviated
Many polymers in commercial use contain flame retardants to reduce their flammability and PBT/GF is no exception to this rule. PBT/GF, e.g., PBT/GF30, is more difficult to flame retard than the non-reinforced polymer. The flammability characteristics of plastic materials are usually quantifiable according to a method specified by Underwriter Laboratories standard UL 94, where an open flame is applied to the lowermost edge of a vertically mounted test specimen made of the tested polymer formulation. The specimens used in the UL 94 test method vary in thickness (typical thicknesses are -3.2 mm, -1.6 mm, -0.8 mm and -0.4 mm) . During the test, various features of the flammability of the test specimens are recorded. Then, according to the classification requirements, the polymer formulation is assigned with either V-0, V-l or V-2 rating at the measured thickness of the test specimen. Polymer formulation assigned with the V-0 rating is the less flammable. Furthermore, in the UL-94 burning test, the thinner the specimens are, the longer the burning time. Therefore, the requirements of UL 94 V-0 rating for thin PBT/GF30 test specimens (e.g., 0.8 or 0.4 mm thick samples) are not easily met .
Metal salts of hypophosphorous acid, that is, metal hypophosphite, have been found to be effective flame retardants in polyesters, with the predominance of literature focusing on
aluminum hypophosphite . In US 7,700,680 it was shown that aluminum hypophosphite, A1(H2P02)3, can be used in PBT/GF, in combination with melamine cyanurate. Yet, the experimental results reported in Table 2 of US 7,700,680 suggest that the aforementioned combination does not fulfill the requirements of UL 94 V-0 rating for thin PBT/GF30 specimens (e.g., 0.8 mm or 0.4 mm) . UL 94 V-0/0.8 mm rating was reported for PBT/GF30 with the aid of a ternary system consisting of A1(H2P02)3, melamine cyanurate and polycarbonate as a charring agent with 10 wt% , 10 wt% and 7.5 wt% loadings, respectively - see Yang et al . [Industrial & Engineering Chemistry Research 50, p. 11975-11981 (2011)]. Chen et al . [Polymer Degradation and Stability 97, p. 158-165 (2012)] reported that A1(H2P02)3 is able to secure UL 94 V-0/1.6 mm rating for PBT/GF30 as a sole flame retardant additive at a concentration of 25% by weight. As to other metal hypophosphite salts, calcium hypophosphite Ca(H2P02)2 is mentioned in US 6, 503, 969 (in the name BASF) and WO 2012/113146 (in the name of Rhodia) .
There exists a need for a suitable system of flame retardants to effectively reduce the flammability of thin polyester parts, especially thin PBT/GF30 parts, that is, where the thickness of the test specimen is 0.8 mm or less. We have now found that aluminum hypophosphite in combination with bromine-containing polymers fulfill the UL 94 V-0 requirements for such thin PBT/GF3o-made parts used in electrical engineering and electronics applications (that is, UL 94 V-0/0.8 mm and preferably also UL 94 V-0/0.4mm) . Notably, polyesters such as PBT/GF30 can be flame retarded with the aid of the aforementioned mixture even in the absence of antimony trioxide [Normally bromine-containing flame retardants are added to plastic polymers together with antimony trioxide, which functions synergistically to enhance the activity of the flame retardant, usually at about 2:1-5:1 weight ratio (calculated as
the ratio between the concentrations of bromine supplied by the flame retardant and Sb203 in the polymer composition) .
Another method used for evaluating the flammability of polyester compositions of the invention is based on measuring their Glow Wire Ignition Temperature (GWIT) . GWIT is the lowest temperature at which a material ignites and burns for longer than 5 seconds under the glow wire test (IEC 60695-2-13 standard) . For some preferred polyester compositions of the invention the GWIT measured was above 800°C, and even above 850°C (GWIT > 870°C, e.g., from 870-900°C (for plate test thickness of 3.2 mm) ) .
The present invention is therefore primarily directed to a composition comprising polyester and a mixture of flame retardants having at least the following two components:
A) aluminum hypophosphite and B ) bromine-containing polymer.
The composition of the invention is substantially Sb203-free. By "substantially Sb203-free" is meant that the concentration of antimony trioxide in the composition is well below the acceptable amount used in plastic composites in conjunction with halogenated additives, e.g., not more 1.0% by weight, more preferably, up 0.5% by weight, e.g., 0.0-0.3% by weight (based on the total weight of the composition) . Most preferably, the compositions of the invention are totally devoid of antimony trioxide.
The concentration of the mixture of flame retardants in the polyester composition is preferably from 10 to 30% by weight, more specifically from 15 to 25% by weight, for example 17 to 23% by weight based on the total weight of the composition, and the mixture is proportioned such that the ratio between the weight concentrations of bromine (supplied by the
brominated additive) and aluminum hypophosphite is preferably not less than 1:1, e.g., from 1.05 to 2.0, e.g., from 1.05 to 1.8 (in favor of bromine) . The concentration of bromine in the polyester composition is calculated by multiplying the bromine content of the flame retardant used (designated herein Br Fr name and expressed as % by weight) by the weight concentration of that flame retardant in the polyester composition, as illustrated below.
The first component of the additive mixture is aluminum hypophosphite. This salt is available on the market from various manufacturers; it can be made by reacting an aluminum salt with hypophosphorous acid (e.g., with slow heating at 80- 90°C (see Handbook of inorganic compounds, second Edition by D. L. Perry; see also US 7, 700, 680 and J. Chem. Soc. P. 2945 (1952) ) .
The second component of the additive mixture is a bromine- containing polymer. Different types of bromine-containing polymers can be used in combination with A1(H2P02)3 according to the present invention, for example: i) Poly (pentabromobenzyl acrylate) , represented by the following formula:
(n=degree of polymerization)
The polymer (abbreviated PBBPA) is produced by polymerizing the corresponding monomer pentabromobenzyl acrylate, either in
bulk (in an extruder at a temperature in the range from 120°C to 290°C as described in US 4,996,276), or in solution, see US 4,128,709 or 6,028,156. The polymer is also available on the market, being sold by ICL-IP (FR-1025) . ii) Brominated polystyrene, represented by the following formula :
(n=degree of polymerization; m= 1,2,3,4 or 5)
The polymer is prepared by methods known in the art (see US 4,879,353 and US 5,532,322) . Suitable grades have weight average molecular weight in the range from 500,000 to 600,000, with bromine content preferably exceeding 60 or even 65 % by weight (that is, average of 2-3 bromine atoms per aromatic ring in the polymer backbone chain) . Such polymers, in the form of a free flowing powder or in granular form, are available on the market, e.g., from ICL-IP (FR 803P) . iii) brominated epoxy resins and end-capped derivatives thereof, represented by the Formula (I) :
(m=degree of polymerization) ; wherein Ri and R2 are independently selected from the group consisting of the following:
and
Preferred are epoxy-terminated resins (that is, resin having glycidyl end groups) represented by the following Formula (la) :
with weight-average molar mass between 2500 and 30000, preferably from 15000 to 25000. The epoxy resins are obtainable by reacting tetrabromobisphenol A with epichlorohydrin . Commercially available examples include F- 2100 from ICL-IP, with molecular weight of about 20,000.
The composition of the invention comprises not less than 10% by weight, e.g., from 20 to 70% by weight and preferably from 20
to 60% by weight of a thermoplastic polyester (e.g., 35-55%), in particular polyesters of the classes based on: aromatic dicarboxylic acids and aliphatic dihydroxy compounds; and
aromatic dicarboxylic acids and aromatic dihydroxy compounds.
Of the former class, preferred are linear polyesters obtained from terephthalic acid, isophthalic acid and 2,6 naphathalenedicarboxylic acid, wherein the aliphatic dihydroxy compound is a diol having from 2 to 6 carbon atoms, such as 1 , 2-ethanediol , 1 , 3-propanediol , 1 , 4-butanediol , 1,6- hexanediol, 1 , 4-hexanediol , and mixtures thereof. Particularly preferred are polyalkylene terephthalates derived from alkanediols having from 2 to 6 carbon atoms. Among these, especially preferred are polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) . Copolymers and/or polyblends available in the market for many linear polyesters are also contemplated for use in the invention. Additional details regarding suitable polyesters can be found in US 6,503,969 and US 8,188,172. PBT is available from various manufacturers, e.g., BASF and Ticona. For example, the melt flow index of the PBT (MFI; ISO 1133 250°C/2.16 kg) may vary from 25 g/10 min to 50 g/10 min, e.g., from 20 to 35 g/10 min or from 35 to 50 g/10 min .
The composition of the invention preferably comprises reinforcing filler, especially glass fibers, which are usually pre-coated by manufacturers in order to improve their compatibility with the polymer in question (e.g., polyester in the present case) . The major constituents of glass fibers applied for reinforcing polyester intended for use in electrical devices are alumino-borosilicates ; such type of glass in known as E-glass. The glass fibers comprise filaments
with diameter in the range from 1μ to 30μ, and are applied in the form of chopped strands with length in the range from 2 to 10 mm, e.g., from 3 to 4.5 mm. The concentration of the glass fibers is usually from 5% to 40% by weight, e.g., from 10% to 40% by weight, preferably at least 20% by weight, e.g. from 20 to 35% by weight, in particular from 24 to 35% by weight and especially from 27 to 33% by weight, i.e., around 30% by weight, based on the total weight of the composition. The preferred compositions of the invention are therefore designated PBT/ GF20-35, PBT/ GF24-35 and PBT/ GF27-33, in particular, the aforementioned PBT/ GF30 .
The invention specifically provides a composition comprising: from 20 to 60% by weight of a polyester (e.g., 35-55%), in particular polyalkylene terephthalate, and especially polybutylene terephthalate (PBT) ;
from 20 to 35% by weight of a reinforcing filler, in particular glass fibers (e.g., 24-35% and especially 27-33%); and
a mixture of flame retardants comprising aluminum hypophosphite and bromine-containing polymer selected from the group consisting of poly (pentabromobenzyl acrylate) , brominated polystyrene and brominated epoxy resin of Formula (la), wherein the concentration of said aluminum hypophosphite is preferably in the range from 5% to 10% (e.g., 6 to 9%) by weight based on the total weight of the composition, and the concentration of the bromine-containing polymer is adjusted such that the bromine concentration of the composition is from 7.0 to 12% (e.g., 8 to 11%) by weight based on the total weight of the composition .
The concentration of bromine in the composition is calculated by multiplying the bromine content of a given flame retardant (designated herein Br Fr name and expressed as % by weight) by the weight concentration of that flame retardant in the
composition. For example, the bromine contents of commercially available FR-1025, FR-803P and F-2100 are Br FR-IO25 = 71%, Br FR-803P = 66% and Br F-2100 = 52%, respectively. Therefore, to incorporate 10% by weight bromine into the polyester composition, the corresponding concentrations of these three flame retardants should be 14.1%, 15.1% and 19.3% (by weight relative to the total weight of the composition) .
The compositions according to the present invention also include one or more anti-dripping agents such as polytetrafluoroethylene (abbreviated PTFE) in a preferred amount between 0.1 and 1.0 wt%, more preferably between 0.3 and 0.7 wt%, and even more preferably between 0.3 and 0.5 wt%, based on the total weight of the composition. PTFE is described, for example, in US 6,503,988.
The invention is especially directed to a composition characterized in that it achieves a UL-94 flammability test rating of V-0 at a thickness equal to or less than 0.8 mm, e.g., at 0.8 mm and preferably also at 0.4 mm. For example, compositions comprising: from 40 to 55 % by weight of PBT (e.g., from 45 to 55 %), from 20 to 35 % by weight of glass fibers (e.g., 27 to 33%), from 5 to 10% by weight of A1(H2P02) 3 (e.g., 6 to 9%), from 10 to 15% by weight of poly (pentabromobenzyl acrylate) and from 0.1 to 1.0% by weight of PTFE (e.g., from 0.3 to 0.7); or from 40 to 55 % by weight of PBT (e.g., from 45 to 55 %), from 20 to 35 % by weight of glass fibers (e.g., 27 to 33%), from 5 to 10% by weight of A1(H2P02) 3 (e.g., 6 to 9%), from 10 to 18% by weight of brominated polystyrene (e.g., from 10 to 15%) and from 0.1 to 1.0% by weight of PTFE (e.g., 0.3 to 0.7%); or
from 40 to 50 % by weight of PBT (e.g., 40 to 45%), from 20 to 35 % by weight of glass fibers (e.g., 27 to 33%), from 5 to 10% by weight of A1(H2P02)3 (e.g., 6 to 9%), from 15 to 20% by weight of brominated epoxy resin of Formula (I) or (la) and from 0.1 to 1.0% by weight of PTFE (e.g., 0.3 to 0.7%); were found to possess the desired flammability properties, that is, fulfilling the requirements for UL 94 V-0/0.8 mm rating (and in some cases also UL 94 V-0/0.4 mm rating) .
In general, good results are obtained when the mixture of flame retardants used consists solely of aluminum hypophosphite and a bromine-containing polymer, devoid of other flame retardants. But in some embodiments, one or more auxiliary flame retardants may be added to the composition, in particular, phosphorous- containing flame retardants, e.g., phosphate esters.
For example, an aryl phosphate ester of hydroquinone (1,4- dihydroxybenzene ) of Formula (II) :
Formula (II' wherein R1, R2, R3 and R4 each independently is aryl (e.g., phenyl) or alkyl-substituted aryl (e.g., xylenyl), optionally interrupted with heteroatoms, and n has an average value of from about 1.0 to about 2.0, may be used. The compounds of Formula (II) are described in EP 2089402. In general, the hydroquinone bis-phosphates of Formula II are prepared by reacting a diaryl halophosphate with hydroquinone in the presence of a catalyst. For example, diphenylchlorophosphate
(DPCP) is reacted with hydroquinone in the presence of MgCl2 to produce hydroquinone bis- (diphenyl phosphate) . Detailed methods for synthesizing compounds of Formula (II) can be found in EP 2089402. One preferred compound of Formula (II) to be used in this invention has Ri=R2=R3= 4=phenyl and 1.0<n≤l.l, that is, hydroquinone bis (diphenyl phosphate) with an n average value of about 1.0<n<1.05. The compound is obtainable in a solid form, see Example 1 of EP 2089402. It is available on the market from ICL-IP in the form of pastilles; the pastilles, when compounded with thermoplastics, avoid various handling problems as well as impart improved thermal properties, such as resin flow. Another phosphate ester flame retardant that can be added to the polyester composition of the invention is resorcinol bis (diphenyl phosphate) , which is a liquid bis-phosphate available from ICL-IP (CAS no.: 57583-54-7; Fyrolflex® RDP) ; it can be formulated into masterbatch pellets in PBT carrier for use in the invention.
Apart from a polyester, a reinforcing filler, a mixture of flame retardants and an anti-dripping agent, the composition of this invention may further contain conventional additives, such as UV stabilizers (e.g., benzotriazole derivative), processing aids, antioxidants (e.g., hindered phenol type), lubricants, pigments, dies and the like. The total concentration of these auxiliary additives is typically not more than 3 % by weight.
The preparation of the polyester compositions of the invention may be carried out using different methods known in the art. For example, the polyester compositions are produced by melt- mixing the components, e.g., in a co-kneader or twin screw extruder, wherein the mixing temperature is in the range from 220 to 280°C. It is possible to feed all the ingredients to the
extrusion throat together, but it is generally preferred to first dry-mix some of the components, and then to introduce the dry blend into the main feed port of the extruder, with one or more of the ingredients being optionally added downstream. For example, the polyester, aluminum hypophosphite, the bromine containing flame retardant, one or more of the conventional additives are dry blended and the blend is fed to the extruder throat, followed by the addition of glass fibers downstream. Process parameters such as barrel temperature, melt temperature and screw speed are described in more detail in the examples that follow.
The resultant extrudates are comminuted into pellets. The dried pellets are suitable for feed to an article shaping process, injection molding, extrusion molding, compression molding, optionally followed by another shaping method. Articles molded from the polyester compositions form another aspect of the invention. Specific examples of articles include electric and electronic parts, such as connectors, circuit breakers and power plugs .
As pointed out above, flame retarded PBT/GF compositions with UL 94/0.8 mm V-0 rating are difficult to produce, let alone PBT/GF compositions having UL 94/0.4 mm V-0 rating that are flame retarded with a bromine-containing additive absent a conventional synergist, e.g., the antimony trioxide synergist that normally promotes the action of the brominated flame retardant in plastics. But the experimental results reported herein show that the goal can be achieved using a combination of polymeric brominated flame retardant and aluminum hypophosphite (the terms "bromine-containing polymer" and "polymeric brominated flame retardant" are used herein interchangeably) . Quite the opposite, a non-polymeric bromine- containing flame retardant that was tested (decabromodiphenyl
ethane, an additive which has gained commercial acceptance for many applications, including PBT) was unable to achieve UL 94 V-0/0.8 mm rating when combined with aluminum hypophosphite. It appears that aluminum hypophosphite is able to offset the absence of antimony trioxide when polymeric brominated flame retardants such as poly (pentabromobenzyl acrylate) , brominated polystyrene and brominated epoxy resins are used in PBT, but not when decabromodiphenyl ethane is used.
Hence, there is also provided by the invention a method of minimizing the amount of antimony trioxide in glass-fiber reinforced poly (butylene terephthalate ) composition which is flame retarded with bromine-containing additive, comprising the steps of using a polymeric brominated flame retardant in the role of said bromine containing additive, and adding aluminum hypophosphite to said composition, thereby achieving a UL-94 flammability test rating of V-0 at a thickness equal to or less than 0.8 mm when the amount of antimony trioxide is from 0.0- 0.5% by weight based on the total weight of the composition, including in antimony trioxide-free composition { [Sb203] =0 } . To this end, the amount of the polymeric brominated flame retardant is adjusted such that the bromine content of the composition is preferably from 7.0 to 12% by weight based on the total weight of the composition, and the amount of aluminum hypophosphite is adjusted such that its concentration is preferably from 5 to 10% by weight by weight based on the total weight of the composition. The polymeric brominated flame retardant is selected from the group mentioned above, with the brominated epoxy resin of Formula (la) :
with weight-average molar mass between 15000 to 25000, being especially preferred.
Examples
Materials and methods
The materials used for preparing the PBT/GF30 formulations are tabulated in Table 1 (FR is abbreviation of flame retardant) :
Table 1
Flammability properties
A direct flame test was carried out according to the Underwriters-Laboratories standard UL 94 in a gas methane operated flammability hood, applying the vertical burn on specimens of 0.8 mm or 0.4 mm thickness.
Glow Wire Ignition Temperature (GWIT) were measured according to the IEC EN 60695-2-13 method. The instrument used was the PLT Glow Wire test instrument with pulse timer type T-03-24 (3.2 mm thick plate) .
Mechanical properties
The Notched Izod impact test was carried out according to ASTM D256-81 using Instron Ceast 9050 pendulum impact system.
Tensile properties were determined according to ASTM D638 using Zwick 1435 material testing machine (type 2 dumbbells were used, with a speed test of 5 mm/min) .
Thermal properties
Heat distortion temperature (abbreviated HDT; this is the temperature at which a polymer sample deforms under a specific load) was measured according to ASTM D-648 with load of 1820 MPa and heating rate of 120°C/hour. The instrument was HDT/VICAT -plus Daveport, Lloyd instruments.
Examples 1 to 6 (of the invention) and 7 (comparative) PBT/GF30 flame retarded with aluminum hypophosphite and
bromine-containing polymers
In this set of examples, combinations consisting aluminum hypophosphite and a brominated flame retardant selected from the group consisting of poly (pentabromobenyzl acrylate) , brominated polystyrene and brominated epoxy resin were tested to determine their ability to reduce the flammability of PBT/GF30 in the absence of antimony trioxide. Test specimens with thickness of 0.8 mm or 0.4 mm were prepared. In addition, mechanical and thermal properties were measured.
To prepare the compositions, PBT and additives (with the exception of the brominated FR and glass fibers) were premixed and the blend was fed via Feeder no. 1 into the main port of a twin-screw co-rotating extruder ZE25 with L/D=32 (Berstorff ) . The brominated FR was fed via Feeder no. 2 to the extruder main port. The glass fibers were added downstream, via Feeder no. 3 to the fifth zone of the barrel through a lateral feeder. Operating parameters of the extruder were as follows:
Barrel temperature (from feed end to discharge end) : 220°C, 250°C, 260°C, 260°C, 260°C, 265°C, 270°C, die - 275°C.
Screw rotation speed: 350 rpm
Feeding rate: 12 kg/hour.
The strands produced were pelletized in a pelletizer 750/3 from Accrapak Systems Ltd. The resultant pellets were dried in a circulating air oven (Heraeus Instruments) at 120°C for 4 hours. The dried pellets were injection molded into test specimens using Allrounder 500-150 from Arburg under the conditions tabulated below:
Table 2
Specimens of various thicknesses were prepared. The test specimens were conditioned for one week at 23°C, and were then subjected to the tests to determine their properties. The compositions and the results are set out in Table 3.
Table 3
The results set out in Table 3 indicate the high efficacy of a combination consisting of aluminum hypophosphite salt and either poly (pentabromobenyzl acrylate) - Examples 1 and 2, brominated polystyrene - Examples 3 and 4, or brominated epoxy resin - Examples 5 and 6 in reducing the flammability of thin polyester test specimens, achieving UL 94 V-0 rating down to 0.4 mm thickness.
A non-polymeric bromine-containing flame retardant tested (FR- 1410; decabromodiphenyl ethane, a flame retardant containing 82% aromatic bromine, which is considered the additive of choice for a large variety of applications, including PBT) was shown to be ineffective in Sb203-free system, seeing that the combination FR-1410/aluminum hypophosphite failed to gain UL 94 V-0/0.8 mm rating.
Claims
Claims
1) A composition comprising polyester and a mixture of flame retardants having at least the following two components:
aluminum hypophosphite and bromine-containing polymer.
2) A composition according to claim 1, which is substantially free of antimony trioxide.
3) A composition according to claim 1 or 2, wherein the polyester is poly (butylene terephthalate ) (PBT) .
4) A composition according to any one of the preceding claims, which further comprises reinforcing filler.
5) A composition according to claim 4, wherein the reinforcing filler comprises glass fibers, with the concentration of the glass fibers in the composition being from 10 to 40% by weight, based on the total weight of the composition.
6) A composition according to claim 5, comprising PBT reinforced with glass fibers at a concentration of 20 to 35% by weight .
7) A composition according to any one of the preceding claims, wherein the bromine-containing polymer is selected from the group consisting of:
i) poly (pentabromobenzyl acrylate) ;
ii) brominated polystyrene; and
wherein m indicates the degree of polymerization and Ri and R2 are independently selected from the group consisting of:
and
8) A composition according to any one of the preceding claims, wherein the bromine content of the composition is from 7.0 to 12% by weight based on the total weight of the composition, and the concentration of the aluminum hypophosphite is from 5 to 10% by weight by weight based on the total weight of the composition, wherein the composition is devoid of antimony trioxide .
9) A composition according to claim 7 or 8, comprising PBT, glass fibers, aluminum hypophosphite, poly (pentabromobenzyl acrylate) and polytetrafluoroethylene .
10) A composition according to claim 9, comprising from 40 to 55 % by weight of PBT, from 20 to 35 % by weight of glass fibers, from 5 to 10% by weight of A1(H2P02)3, from 10 to 15% by weight of poly (pentabromobenzyl acrylate) and from 0.1 to 1.0% by weight of polytetrafluoroethylene, based on the total weight of the composition.
11) A composition according to claim 7 or 8, comprising PBT, glass fibers, aluminum hypophosphite, brominated polystyrene and polytetrafluoroethylene .
12) A composition according to claim 11, comprising from 40 to 55 % by weight of PBT, from 20 to 35 % by weight of glass fibers, from 5 to 10% by weight of A1(H2P02)3, from 10 to 18% by weight of brominated polystyrene and from 0.1 to 1.0% by weight of polytetrafluoroethylene, based on the total weight of the composition .
13) A composition according to claim 7 or 8, comprising PBT, glass fibers, aluminum hypophosphite, brominated epoxy resin of the formula la:
with weight-average molar mass between 15000 and 25000, and polytetrafluoroethylene .
14) A composition according to claim 13, comprising from 40 to 50 % by weight of PBT, from 20 to 35 % by weight of glass fibers, from 5 to 10% by weight of A1(H2P02)3, from 15 to 20% by weight of brominated epoxy resin of the formula la:
and from 0.1 to 1.0% by weight of polytetrafluoroethylene, based on the total weight of the composition.
15) A composition according to any one of the preceding claims, characterized in that it achieves a UL-94 flammability test rating of V-0 at a thickness equal to or less than 0.8 mm.
16) A composition according to claim 15, characterized in that it achieves a UL-94 flammability test rating of V-0 at a thickness of 0.4 mm.
17) A method of minimizing the amount of antimony trioxide in glass-fiber reinforced poly (butylene terephthalate ) composition which is flame retarded with bromine-containing additive, comprising the steps of using a polymeric brominated flame retardant in the role of said bromine containing additive, and adding aluminum hypophosphite to said composition, thereby achieving a UL-94 flammability test rating of V-0 at a thickness equal to or less than 0.8 mm when the amount of antimony trioxide is from 0.0-0.5% by weight based on the total weight of the composition.
18) A method according to claim 17, achieving UL-94 flammability test rating of V-0 at a thickness equal to or less than 0.8 mm when the composition is antimony trioxide-free .
19) A method according to claim 17 or 18, wherein the amount of the polymeric brominated flame retardant is adjusted such that the bromine content of the composition is from 7.0 to 12% by weight based on the total weight of the composition, and the amount of aluminum hypophosphite is adjusted such that its concentration is from 5 to 10% by weight based on the total weight of the composition.
20) A method according to any one of claims 17 to 19, wherein the polymeric brominated flame retardant is selected from the group consisting of:
i) poly (pentabromobenzyl acrylate) ;
ii) brominated polystyrene; and
iii) brominated epoxy resins and end-capped derivatives thereof, represented by the Formula (I) :
wherein m indicates the degree of polymerization and Ri and R2 are independently selected from the group consisting of:
and
21) An article molded from the composition of any one of the claims 1 to 16.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662409405P | 2016-10-18 | 2016-10-18 | |
US62/409,405 | 2016-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018073819A1 true WO2018073819A1 (en) | 2018-04-26 |
Family
ID=60480353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2017/051143 WO2018073819A1 (en) | 2016-10-18 | 2017-10-17 | Flame-retarded polyester formulations |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018073819A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020201811A1 (en) | 2019-04-02 | 2020-10-08 | Italmatch Chemicals S.P.A. | Non-flammable hypophosphite metal salt based powders and their use as flame retardant ingredients |
CN111909492A (en) * | 2020-06-29 | 2020-11-10 | 江苏金发科技新材料有限公司 | Glass fiber reinforced polybutylene terephthalate composition with low fiber floating effect |
CN112759904A (en) * | 2020-12-28 | 2021-05-07 | 金发科技股份有限公司 | High-yellowing-resistance flame-retardant PBT (polybutylene terephthalate), and preparation method and application thereof |
WO2021105175A1 (en) | 2019-11-26 | 2021-06-03 | Basf Se | Flame-retardant polyester molding compositions |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1025E (en) | 1902-09-08 | 1903-05-18 | Renfrew Crusher Company Ltd | Advanced grinder system |
FR1410E (en) | 1902-12-24 | 1903-07-22 | Societe Besnard Pere, Fils Et Gendres | Alcohol stove |
US4128709A (en) | 1975-06-21 | 1978-12-05 | Dynamit Nobel Aktiengesellschaft | Acrylate-based polymers and their use as flameproofing agents |
US4879353A (en) | 1987-01-28 | 1989-11-07 | Great Lakes Chemical Corporation | Bromination of polystyrene using bromine as the reaction solvent |
US4996276A (en) | 1988-06-02 | 1991-02-26 | Fishler Theodor Morel | Process for the polymerization of pentabromobenzylester monoacrylate |
US5532322A (en) | 1995-09-26 | 1996-07-02 | Manac Inc. | Process for preparing brominated polystyrene |
US6028156A (en) | 1996-01-16 | 2000-02-22 | Bromine Compounds, Ltd. | Process for the preparation of poly-(halobenzyl acrylate) |
US6503969B1 (en) | 1998-05-07 | 2003-01-07 | Basf Aktiengesellschaft | Flame-retardant polyester molding compositions containing flame retardant nitrogen compounds and diphosphinates |
US6503988B1 (en) | 1995-11-09 | 2003-01-07 | Daikin Industries, Ltd. | Polytetrafluoroethylene fine powders and their use |
DE10132058A1 (en) * | 2001-07-05 | 2003-01-16 | Basf Ag | Flameproof thermoplastic molding material, e.g. for electrical plugs and lamp parts, contains polyester, halogenated fire retardant, antimony oxide, calcium phosphonate or aluminum phosphinate and anti-drip additive |
EP2089402A1 (en) | 2006-08-31 | 2009-08-19 | Supresta LLC | Oligomeric bis-phosphate flame retardants and compositions containing the same |
US7700680B2 (en) | 2004-06-10 | 2010-04-20 | Italmatch Chemicals S.P.A. | Polyester compositions flame retarded with halogen-free additives |
US8188172B2 (en) | 2003-12-17 | 2012-05-29 | Sabic Innovative Plastics Ip B.V. | Polyester compositions, method of manufacture, and uses thereof |
WO2012113146A1 (en) | 2011-02-24 | 2012-08-30 | Rhodia (China) Co., Ltd. | Flame retardant polymer compositions comprising stabilized hypophosphite salts |
CN107163518A (en) * | 2017-06-26 | 2017-09-15 | 东莞市东翔塑胶有限公司 | It is a kind of can laser marking high glowing filament ignition temperature flame-retardant PBT composite and preparation method thereof |
-
2017
- 2017-10-17 WO PCT/IL2017/051143 patent/WO2018073819A1/en active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1025E (en) | 1902-09-08 | 1903-05-18 | Renfrew Crusher Company Ltd | Advanced grinder system |
FR1410E (en) | 1902-12-24 | 1903-07-22 | Societe Besnard Pere, Fils Et Gendres | Alcohol stove |
US4128709A (en) | 1975-06-21 | 1978-12-05 | Dynamit Nobel Aktiengesellschaft | Acrylate-based polymers and their use as flameproofing agents |
US4879353A (en) | 1987-01-28 | 1989-11-07 | Great Lakes Chemical Corporation | Bromination of polystyrene using bromine as the reaction solvent |
US4996276A (en) | 1988-06-02 | 1991-02-26 | Fishler Theodor Morel | Process for the polymerization of pentabromobenzylester monoacrylate |
US5532322A (en) | 1995-09-26 | 1996-07-02 | Manac Inc. | Process for preparing brominated polystyrene |
US5532322B1 (en) | 1995-09-26 | 1999-12-07 | Manac Inc | Process for preparing brominated polystyrene |
US6503988B1 (en) | 1995-11-09 | 2003-01-07 | Daikin Industries, Ltd. | Polytetrafluoroethylene fine powders and their use |
US6028156A (en) | 1996-01-16 | 2000-02-22 | Bromine Compounds, Ltd. | Process for the preparation of poly-(halobenzyl acrylate) |
US6503969B1 (en) | 1998-05-07 | 2003-01-07 | Basf Aktiengesellschaft | Flame-retardant polyester molding compositions containing flame retardant nitrogen compounds and diphosphinates |
DE10132058A1 (en) * | 2001-07-05 | 2003-01-16 | Basf Ag | Flameproof thermoplastic molding material, e.g. for electrical plugs and lamp parts, contains polyester, halogenated fire retardant, antimony oxide, calcium phosphonate or aluminum phosphinate and anti-drip additive |
US8188172B2 (en) | 2003-12-17 | 2012-05-29 | Sabic Innovative Plastics Ip B.V. | Polyester compositions, method of manufacture, and uses thereof |
US7700680B2 (en) | 2004-06-10 | 2010-04-20 | Italmatch Chemicals S.P.A. | Polyester compositions flame retarded with halogen-free additives |
EP2089402A1 (en) | 2006-08-31 | 2009-08-19 | Supresta LLC | Oligomeric bis-phosphate flame retardants and compositions containing the same |
WO2012113146A1 (en) | 2011-02-24 | 2012-08-30 | Rhodia (China) Co., Ltd. | Flame retardant polymer compositions comprising stabilized hypophosphite salts |
CN107163518A (en) * | 2017-06-26 | 2017-09-15 | 东莞市东翔塑胶有限公司 | It is a kind of can laser marking high glowing filament ignition temperature flame-retardant PBT composite and preparation method thereof |
Non-Patent Citations (5)
Title |
---|
CHEN ET AL., POLYMER DEGRADATION AND STABILITY, vol. 97, 2012, pages 158 - 165 |
D. L. PERRY: "Handbook of inorganic compounds" |
DATABASE WPI Week 201769, Derwent World Patents Index; AN 2017-66072X, XP002777443 * |
J. CHEM. SOC. P., vol. 2945, 1952 |
YANG ET AL., INDUSTRIAL ENGINEERING CHEMISTRY RESEARCH, vol. 50, 2011, pages 11975 - 11981 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020201811A1 (en) | 2019-04-02 | 2020-10-08 | Italmatch Chemicals S.P.A. | Non-flammable hypophosphite metal salt based powders and their use as flame retardant ingredients |
US12031081B2 (en) | 2019-04-02 | 2024-07-09 | Italmatch Chemicals S.P.A. | Non-flammable hypophosphite metal salt based powders and their use as flame retardant ingredients |
WO2021105175A1 (en) | 2019-11-26 | 2021-06-03 | Basf Se | Flame-retardant polyester molding compositions |
CN111909492A (en) * | 2020-06-29 | 2020-11-10 | 江苏金发科技新材料有限公司 | Glass fiber reinforced polybutylene terephthalate composition with low fiber floating effect |
CN112759904A (en) * | 2020-12-28 | 2021-05-07 | 金发科技股份有限公司 | High-yellowing-resistance flame-retardant PBT (polybutylene terephthalate), and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110121525B (en) | flame retardant polyester composition | |
JP5166866B2 (en) | Flame retardant polyester resin composition | |
EP2480601B1 (en) | Thermoplastic polyester compositions, methods of manufacture, and articles thereof | |
KR102458773B1 (en) | Flame Retardant Styrene-Containing Formulations | |
EP1709120B1 (en) | Halogen-free flame-retarded polyester composition | |
WO2018073819A1 (en) | Flame-retarded polyester formulations | |
JP6177252B2 (en) | Polybutylene terephthalate resin composition | |
KR101632571B1 (en) | Halogen-free flame retardant polyester resin composition with good mechanical properties and molded article thereof | |
CN109563304B (en) | flame retardant polyester composition | |
JP7153029B2 (en) | Flame-retardant styrene-containing composition | |
JP2005306975A (en) | Flame-retardant polyester resin composition | |
JPH10316843A (en) | Flame retardant polyester resin composition | |
JPH02245057A (en) | Flame-retardant polyester composition | |
JP2000119497A (en) | Reinforced flame-retardant polyester resin composition | |
KR102161115B1 (en) | Polybutylene terephthalate resin composition having excellent flame retardancy and hydrolysis resistance and molded article produced therefrom | |
JPH10120881A (en) | Flame-retardant polyester resin composition | |
JPH10251497A (en) | Flame-retardant resin composition | |
JP3484804B2 (en) | Flame retardant resin composition | |
WO2022144881A1 (en) | Polymeric flame retardants | |
JP2022070453A (en) | Flame-retardant polybutylene terephthalate resin composition, molded article made from flame-retardant polybutylene terephthalate resin composition, viscosity rise inhibitor of flame-retardant polybutylene terephthalate resin composition, and hydrolysis inhibitor of molded article made from flame-retardant polybutylene terephthalate resin composition | |
JP2013112698A (en) | Flame-retardant thermoplastic polyester resin composition | |
JPH07304959A (en) | Flame-retardant polymer composition and molded item thereof | |
JPH07300561A (en) | Flame-retardant resin composition | |
JPH11106618A (en) | Flame retardant resin composition | |
JPH10139987A (en) | Flame-retardant polyester resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17804970 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17804970 Country of ref document: EP Kind code of ref document: A1 |