+

WO2017221519A1 - Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate - Google Patents

Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate Download PDF

Info

Publication number
WO2017221519A1
WO2017221519A1 PCT/JP2017/014762 JP2017014762W WO2017221519A1 WO 2017221519 A1 WO2017221519 A1 WO 2017221519A1 JP 2017014762 W JP2017014762 W JP 2017014762W WO 2017221519 A1 WO2017221519 A1 WO 2017221519A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
plane
superlattice
semiconductor substrate
Prior art date
Application number
PCT/JP2017/014762
Other languages
French (fr)
Japanese (ja)
Inventor
中山 雄介
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112017003057.9T priority Critical patent/DE112017003057T5/en
Priority to JP2018523352A priority patent/JPWO2017221519A1/en
Publication of WO2017221519A1 publication Critical patent/WO2017221519A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3216Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers

Definitions

  • the present disclosure relates to a nitride semiconductor device, a nitride semiconductor substrate, a method for manufacturing a nitride semiconductor device, and a method for manufacturing a nitride semiconductor substrate.
  • a nitride semiconductor substrate having a semipolar plane or nonpolar plane inclined by 20 ° or more in the a-axis direction from the c-plane as a main plane of crystal growth misfit dislocations of the substrate are the starting points. Pits occurred, causing current leakage and non-light emission due to the pits. Accordingly, it is possible to provide a nitride semiconductor device, a nitride semiconductor substrate, a method for manufacturing a nitride semiconductor device, and a method for manufacturing a nitride semiconductor substrate capable of suppressing the occurrence of current leakage and non-luminescence due to pits. Is desirable.
  • a first nitride semiconductor device includes a nitride semiconductor substrate having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane, and the main surface And a superlattice layer formed as a crystal growth surface.
  • composition ratio of the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer satisfies at least one of the expressions x1 ⁇ x2 and y1 ⁇ y2.
  • a nitride semiconductor substrate includes a nitride semiconductor substrate having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane, and the principal surface is crystallized. And a superlattice layer formed as a growth surface.
  • composition ratio of the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer satisfies at least one of the expressions x1 ⁇ x2 and y1 ⁇ y2.
  • a nitride semiconductor having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane The superlattice layer is formed on the main surface of the substrate. Thereby, generation
  • a first nitride semiconductor substrate manufacturing method includes a nitride semiconductor substrate having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the method includes a step of forming a superlattice layer using the main surface as a crystal growth surface.
  • composition ratio of the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer satisfies at least one of the expressions x1 ⁇ x2 and y1 ⁇ y2.
  • a nitride semiconductor substrate having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane The superlattice layer is formed on the main surface.
  • a second nitride semiconductor device includes a nitride semiconductor layer having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane, and the main And a junction structure layer formed with the surface as a crystal growth surface.
  • the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor layer side.
  • the main surface of the nitride semiconductor layer having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the junction structure layer is formed. Thereby, generation
  • a method for manufacturing a first nitride semiconductor device includes the following four steps.
  • (A1) A superlattice layer is formed on a nitride semiconductor substrate having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane with the principal surface as a crystal growth surface.
  • the composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of the expressions x1 ⁇ x2 and y1 ⁇ y2.
  • the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side.
  • a nitride semiconductor layer having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane is provided.
  • the superlattice layer is formed on the main surface, and the junction structure layer is formed on the superlattice layer via a bulk layer.
  • a second method for manufacturing a nitride semiconductor device is provided on a nitride semiconductor substrate having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the method includes a step of forming a junction structure layer using the main surface as a crystal growth surface.
  • the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side.
  • a nitride semiconductor substrate having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane is provided.
  • the junction structure layer is formed on the main surface.
  • the first nitride semiconductor device, the nitride semiconductor substrate, and the first nitride semiconductor substrate manufacturing method according to an embodiment of the present disclosure ⁇ ° or more (20 ° ⁇ 20 ° in the a-axis direction from the c-plane. ( ⁇ ⁇ 90 °) Since the superlattice layer is formed on the main surface of the nitride semiconductor substrate having the inclined main surface, current leakage and non-light emission caused by pits can be suppressed. Can do. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • the main component of the nitride semiconductor layer having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane. Since the bonding structure layer is formed on the surface, it is possible to suppress the occurrence of current leakage and non-luminescence due to the pits. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • a nitride semiconductor having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the superlattice layer is formed on the main surface of the layer, and the junction structure layer is formed on the superlattice layer via a bulk layer. Occurrence can be suppressed.
  • the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • a nitride semiconductor having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane Since the junction structure layer is formed on the main surface of the substrate, it is possible to suppress the occurrence of current leakage and non-luminescence due to pits.
  • the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 1 illustrates a cross-sectional configuration example of a semiconductor light emitting element 1 according to the present embodiment.
  • the semiconductor light emitting device 1 can be suitably applied as a blue to green light source.
  • the semiconductor light emitting element 1 includes, for example, a substrate 10, a superlattice layer 20, and a junction structure layer 30.
  • the superlattice layer 20 is formed using the main surface of the substrate 10 as a crystal growth surface.
  • the junction structure layer 30 is formed by using the surface of the superlattice layer 20 as a crystal growth surface.
  • the superlattice layer 20 and the junction structure layer 30 are formed by an epitaxial crystal growth method such as MOCVD (Metal Organic Chemical Vapor Deposition).
  • the substrate 10 is a nitride semiconductor substrate and is made of, for example, n-type GaN.
  • the nitride semiconductor substrate used for the substrate 10 has a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the crystal plane of the main surface is, for example, the (11-20) plane, the (11-22) plane, or the (11-24) plane.
  • the substrate 10 is doped with an n-type impurity such as silicon (Si).
  • the “main surface of the substrate 10” refers to a crystal plane inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the junction structure layer 30 has, for example, a double hetero junction structure.
  • the double heterojunction structure refers to a structure in which a heterogeneous semiconductor (an active layer 34 described later) with a narrow band gap is sandwiched between pn semiconductors (a lower cladding layer 32 and an upper cladding layer 36 described later) of the same material. Yes.
  • the junction structure layer 30 includes, for example, a base layer 31, a lower cladding layer 32, a lower guide layer 33, an active layer 34, an upper guide layer 35, an upper cladding layer 36, and a contact layer 37.
  • the junction structure layer 30 includes a base layer 31, a lower clad layer 32, a lower guide layer 33, an active layer 34, an upper guide layer 35, an upper clad layer 36, and a contact layer 37 in this order from the superlattice layer 20 side. Has been.
  • the underlayer 31 is made of n-type GaN, for example.
  • the lower cladding layer 32 is made of, for example, n-type AlGaN.
  • the lower guide layer 33 is made of, for example, n-type InGaN.
  • the underlayer 31, the lower cladding layer 32, and the lower guide layer 33 are doped with an n-type impurity such as silicon (Si).
  • the active layer 34 has, for example, a multiple quantum well (MQW) structure in which well layers made of InGaN and barrier layers made of AlGaN are alternately and repeatedly stacked.
  • the active layer 34 may be composed of a single layer.
  • the upper guide layer 35 is made of, for example, undoped InGaN.
  • the upper cladding layer 36 is made of, for example, p-type AlGaN.
  • the contact layer 37 is made of, for example, p-type GaN.
  • the upper cladding layer 36 and the contact layer 37 are doped with a p-type impurity such as magnesium (Mg).
  • the semiconductor light emitting device 1 may further include a lower electrode that is in contact with the substrate 10 or the lower cladding layer 32 and is electrically connected to the lower cladding layer 32.
  • the semiconductor light emitting device 1 may further include an upper electrode that is in contact with the contact layer 37 and is electrically connected to the upper cladding layer 36.
  • the bonding structure layer 30 may have a layer other than the above. In the bonding structure layer 30, the lower guide layer 33 and the upper guide layer 35 may be omitted, and the base layer 31 may be omitted. Further, a stripe-shaped ridge portion or a columnar mesa portion may be provided for the bonding structure layer 30.
  • FIG. 2 illustrates a cross-sectional configuration example of the superlattice layer 20.
  • the superlattice layer 20 is formed by using the main surface of the substrate 10 as a crystal growth surface. Therefore, no layer such as an underlayer is provided between the main surface of the substrate 10 and the superlattice layer 20.
  • the composition ratio of the Al x1 In y1 Gaz1 N layer 20A and the Al x2 In y2 Gaz2 N layer 20B satisfies at least one of the expressions x1 ⁇ x2 and y1 ⁇ y2.
  • the degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is 0.00048 or more.
  • the Al x1 In y1 Ga z1 N layer 20A is composed of Al 0.08 Ga 0.02 N with a thickness of 2.0 nm
  • the Al x2 In y2 Ga z2 N layer 20B is composed of GaN with a thickness of 2.0 nm.
  • the film thicknesses of the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B are 1 nm or more and 10 nm or less, respectively. It is preferable.
  • the number of stacked layers in the superlattice layer 20 is preferably 10 pairs or more, and more preferably 100 pairs or more.
  • FIG. 3A shows an example of the manufacturing process of the semiconductor light emitting device 1.
  • FIG. 3B shows an example of the manufacturing process following FIG. 3A.
  • nitride semiconductors are collectively formed on a substrate 10 made of, for example, GaN by an epitaxial crystal growth method such as an MOCVD method.
  • a substrate 10 made of, for example, GaN by an epitaxial crystal growth method such as an MOCVD method.
  • MOCVD method for example, trimethylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn), ammonia (NH 3 ) or the like is used as a compound semiconductor material, and monosilane (SiH) is used as a source material for donor impurities. 4 ) and the acceptor impurity material is, for example, biscyclopentadienylmagnesium (Cp 2 Mg) is used.
  • TMAl trimethylaluminum
  • TMGa trimethylgallium
  • TMIn trimethylindium
  • NH 3 ammonia
  • SiH monosilane
  • the acceptor impurity material is, for example, biscyclopenta
  • a substrate 10 having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane is prepared.
  • the superlattice layer 20 is formed on the substrate 10 with the main surface of the substrate 10 as a crystal growth surface.
  • the junction structure layer 30 is formed using the surface of the superlattice layer 20 as a crystal growth surface.
  • an upper electrode and a lower electrode are formed as necessary. In this way, the semiconductor light emitting element 1 is manufactured.
  • the laser beam having the oscillation wavelength ⁇ is emitted to the outside from the end surface having a relatively low reflectance.
  • the light generated in the active layer 34 Reflected by the layer 32 and the upper cladding layer 36 laser oscillation occurs at a predetermined oscillation wavelength ⁇ .
  • laser light having an oscillation wavelength ⁇ is emitted from the upper surface of the bonding structure layer 30 to the outside.
  • the junction structure layer 30 does not have a resonator structure and spontaneous emission light is output
  • light having an emission wavelength ⁇ generated in the active layer 34 is externally transmitted from the upper surface of the junction structure layer 30. Is emitted.
  • superlattice layer 20 is formed on the main surface of substrate 10 having the main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from c-plane.
  • strain stress is generated by the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B.
  • This strain stress causes misfit dislocations of the substrate to the superlattice layer 20 as a starting point. It is possible to suppress the occurrence of pits. As a result, it is possible to suppress the generation of pits even in the bonding structure layer 30 formed on the superlattice layer 20. Therefore, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits.
  • the lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B has a 0.00048 or more.
  • the strain stress generated in the superlattice layer 20 is small. Since it is difficult to suppress generation of pit starting points between the main surface of the substrate 10 and the superlattice layer 20, pits may be formed while the superlattice layer 20 is grown. High nature.
  • the junction structure layer 30 when the junction structure layer 30 is formed with the (11-20) plane, the (11-22) plane, or the (11-24) plane as the crystal growth plane, the m plane (1-100) is used as the cleavage plane.
  • the bonding structure layer 30 is formed directly on the (11-20) plane, the (11-22) plane, or the (11-24) plane of the substrate 10, pits are likely to be generated in the bonding structure layer 30. .
  • the superlattice layer 20 is formed on the (11-20) plane, the (11-22) plane, or the (11-24) plane of the substrate 10 and then the junction structure layer 30 is formed. Therefore, the occurrence of pits in the bonding structure layer 30 can be suppressed.
  • a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.
  • the junction structure layer 30 including the lower cladding layer 32, the active layer 34, and the upper cladding layer 36 in this order is formed on the main surface of the substrate 10 via the superlattice layer 20. Yes.
  • a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.
  • FIG. 4 illustrates a cross-sectional configuration example of the semiconductor light emitting element 2 according to the present embodiment.
  • the semiconductor light emitting element 2 can be suitably applied as a blue to green light source.
  • the semiconductor light emitting element 2 includes, for example, a substrate 10, a superlattice layer 20, and a junction structure layer 40.
  • the superlattice layer 20 is formed using the main surface of the substrate 10 as a crystal growth surface.
  • the junction structure layer 40 is formed using the surface of the superlattice layer 20 as a crystal growth surface.
  • the superlattice layer 20 and the junction structure layer 40 are formed by an epitaxial crystal growth method such as an MOCVD method, for example.
  • the junction structure layer 40 has, for example, one heterojunction structure in a double heterojunction.
  • the bonding structure layer 40 has a configuration in which the base layer 31 and the lower cladding layer 32 are omitted from the bonding structure layer 30 of the above embodiment.
  • the superlattice layer 20 also serves as the lower cladding layer 32 of the above embodiment. Accordingly, the superlattice layer 20 and the junction structure layer 40 constitute a double heterojunction.
  • the superlattice layer 20 is formed by a method similar to the method described in the first embodiment.
  • the superlattice layer with respect to the main surface of the substrate 10 having the main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane. 20 is formed.
  • strain stress is generated by the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B.
  • This strain stress causes misfit dislocations of the substrate to the superlattice layer 20 as a starting point. It is possible to suppress the occurrence of pits. As a result, the generation of pits can be suppressed even in the bonding structure layer 40 formed on the superlattice layer 20. Therefore, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits.
  • the lattice mismatch degree between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is 0.00048 or more, as in the above embodiment.
  • the junction structure layer 30 of the above embodiment is formed using the (11-20) plane, the (11-22) plane, or the (11-24) plane as the crystal growth plane, the m plane ( 1-100) can be used.
  • the junction structure layer 30 is formed directly on the (11-20) plane, the (11-22) plane, or the (11-24) plane, pits are easily generated in the junction structure layer 30.
  • the superlattice layer 20 is formed on the (11-20) plane, the (11-22) plane, or the (11-24) plane, the junction structure layer 40 is formed, and the superlattice layer is formed.
  • the layer 20 is also used as the lower clad layer 32 of the above embodiment, it is possible to suppress the generation of pits in the superlattice layer 20 and the junction structure layer 40.
  • a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.
  • FIG. 5 illustrates a cross-sectional configuration example of the semiconductor substrate 3 according to the present embodiment.
  • the semiconductor substrate 3 can be suitably applied as a substrate (so-called seed substrate) for crystal growth of the bonding structure layer 30 or the like that can function as a blue to green light source.
  • the semiconductor substrate 3 includes, for example, a base material 38, a superlattice layer 20, and a bulk layer 39.
  • the superlattice layer 20 is formed by using the main surface of the substrate 38 as a crystal growth surface.
  • the bulk layer 39 is formed using the surface of the superlattice layer 20 as a crystal growth surface.
  • the base material 38 is a nitride semiconductor wafer and is made of, for example, n-type GaN.
  • the nitride semiconductor wafer used for the base material 38 has a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the crystal plane of the main surface is, for example, the (11-20) plane, the (11-22) plane, or the (11-24) plane.
  • the base material 38 is doped with an n-type impurity such as silicon (Si).
  • the “main surface of the substrate 38” refers to a crystal plane inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane.
  • the bulk layer 39 is a nitride semiconductor layer and is made of, for example, n-type GaN.
  • the bulk layer 39 has a thickness of, for example, millimeter order.
  • the bulk layer 39 has a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane, like the base material 38.
  • the bulk layer 39 is formed by an epitaxial crystal growth method such as MOCVD method or HVPE (HydrideydVapor Phase Epitaxy) method.
  • the bulk layer 39 is doped with an n-type impurity such as silicon (Si).
  • FIG. 6A shows an example of the manufacturing process of the semiconductor substrate 3.
  • FIG. 6B shows an example of the manufacturing process following FIG. 6A.
  • nitride semiconductors are collectively formed on the base material 38 made of, for example, GaN by an epitaxial crystal growth method such as MOCVD method or HVPE method.
  • MOCVD method atomic layer deposition method
  • HVPE method epitaxial crystal growth method
  • trimethylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn), ammonia (NH 3 ), or the like is used as a compound semiconductor material
  • monosilane (SiH) is used as a source material for donor impurities. 4
  • acceptor impurity material for example, biscyclopentadienylmagnesium (Cp 2 Mg) is used.
  • a base material 38 having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane is prepared.
  • the superlattice layer 20 is formed on the substrate 38 with the main surface of the substrate 38 as a crystal growth surface.
  • the bulk layer 39 is formed using the surface of the superlattice layer 20 as a crystal growth surface. In this way, the semiconductor substrate 3 is manufactured.
  • the superlattice layer 20 is formed on the main surface of the base material 38 having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane. .
  • strain stress is generated by the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B.
  • This strain stress causes misfit dislocations of the substrate to the superlattice layer 20 as a starting point. It is possible to suppress the occurrence of pits. As a result, generation of pits can be suppressed also for the bulk layer 39 formed on the superlattice layer 20. Therefore, for example, as shown in FIG.
  • the junction structure layer 30 is formed by using the main surface of the bulk layer 39 (a crystal plane inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane) as a crystal growth surface. is there.
  • the degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is 0.00048 or more.
  • the junction structure layer 30 of the above embodiment is formed using the (11-20) plane, the (11-22) plane, or the (11-24) plane as the crystal growth plane, the m plane ( 1-100) can be used.
  • the bonding structure layer 30 is formed directly on the (11-20) surface, the (11-22) surface, or the (11-24) surface of the substrate 38, pits are generated in the bonding structure layer 30.
  • Cheap On the other hand, for example, as shown in FIG. 7, when the bonding structure layer 30 is formed on the semiconductor substrate 3 (bulk layer 39), the generation of pits in the bonding structure layer 30 can be suppressed.
  • a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.
  • a semiconductor substrate 4 made of a bulk layer 39 may be used instead of the semiconductor substrate 3, for example, as shown in FIGS. 8 and 9, a semiconductor substrate 4 made of a bulk layer 39 may be used.
  • the semiconductor substrate 4 is composed of, for example, a bulk layer 39 left by removing the base material 38 and the superlattice layer 20 from the semiconductor substrate 3.
  • the semiconductor light-emitting device 1 shown in FIG. 8 includes a semiconductor substrate 4 composed of a bulk layer 39 and a crystal tilted by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane. And a bonding structure layer 30 formed with the crystal plane as a crystal growth plane.
  • the junction structure layer 30 includes a lower clad layer 32, a lower guide layer 33, an active layer 34, an upper guide layer 35, an upper clad layer 36, and a contact layer 37 in this order from the semiconductor substrate 4 side. 7, for example, as shown in FIG.
  • the bonding structure layer 30 is formed on the semiconductor substrate 4 with the main surface of the semiconductor substrate 4 as the crystal growth surface. It may be formed. Even when the bonding structure layer 30 is formed by any method, in the bonding structure layer 30, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits as in the above embodiment.
  • this indication can take the following composition.
  • a nitride semiconductor device in which a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ⁇ x2 and y1 ⁇ y2.
  • the degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer is 0.00048 or more.
  • the junction structure layer includes an active layer and an upper clad layer in this order from the superlattice layer side,
  • the superlattice layer also serves as a lower cladding layer.
  • the nitride semiconductor device according to any one of (1) to (3).
  • a nitride semiconductor substrate having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane;
  • a superlattice layer formed using the main surface as a crystal growth surface, The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ z1 ⁇ 1, x1 + y1 + z1 1) and an Al x2 In y2 Ga z2 N layer (0 ⁇ x2).
  • a method for manufacturing a nitride semiconductor substrate wherein a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ⁇ x2 and y1 ⁇ y2.
  • a nitride semiconductor layer having a principal surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane;
  • a junction structure layer formed using the main surface as a crystal growth surface,
  • the junction structure layer includes a lower clad layer, an active layer, and an upper clad layer in this order from the nitride semiconductor layer side.
  • the composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of the expressions x1 ⁇ x2 and y1 ⁇ y2.
  • the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side.
  • junction structure layer (10) forming a junction structure layer with respect to a nitride semiconductor substrate having a main surface inclined by ⁇ ° or more (20 ° ⁇ ⁇ ⁇ 90 °) in the a-axis direction from the c-plane with the main surface as a crystal growth surface.
  • the junction structure layer includes a lower clad layer, an active layer, and an upper clad layer in this order from the nitride semiconductor substrate side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

According to one embodiment of the present disclosure, a nitride semiconductor element is provided with: a nitride semiconductor substrate having a main surface that is tilted in the a-axis direction at θ° or more (20°≤θ≤90°) from the c plane; and a superlattice layer formed by having the main surface as a crystal growing surface. The superlattice layer is configured by alternately laminating Alx1Iny1Gaz1N layers (0≤x1≤1, 0≤y1≤1, 0≤z1≤1, x1+y1+z1=1) and Alx2Iny2Gaz2N layers (0≤x2≤1, 0≤y2≤1, 0≤z2≤1, x2+y2+z2=1). The composition ratio of the Alx1Iny1Gaz1N layers and the Alx2Iny2Gaz2N layers satisfy formula of x1≠x2 and/or y1≠y2.

Description

窒化物半導体素子、窒化物半導体基板、窒化物半導体素子の製造方法、および窒化物半導体基板の製造方法Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate

 本開示は、窒化物半導体素子、窒化物半導体基板、窒化物半導体素子の製造方法、および窒化物半導体基板の製造方法に関する。 The present disclosure relates to a nitride semiconductor device, a nitride semiconductor substrate, a method for manufacturing a nitride semiconductor device, and a method for manufacturing a nitride semiconductor substrate.

 近年、光源用途として、窒化物半導体を用いた青色~緑色の発光ダイオードやレーザダイオードの開発が盛んになっている。その中でも、半極性もしくは非極性の窒化物半導体は、ピエゾ電界の影響を小さくできるため、発光波長を長波長化するための手段として効果的な材料である(例えば、特許文献1参照)。 In recent years, blue-green light-emitting diodes and laser diodes using nitride semiconductors have been actively developed as light source applications. Among these, semipolar or nonpolar nitride semiconductors are effective materials as means for increasing the emission wavelength because the influence of the piezoelectric field can be reduced (see, for example, Patent Document 1).

特開2011-003661号公報JP 2011-003661 A

 しかしながら、c面からa軸方向に20°以上傾斜した半極性面もしくは非極性面を結晶成長の主面とする窒化物半導体基板上に結晶成長を行った場合、基板のミスフィット転位を起点とするピットが発生し、ピットに起因する電流リークや非発光が生じていた。従って、ピットに起因する電流リークや非発光の発生を抑制することの可能な窒化物半導体素子、窒化物半導体基板、窒化物半導体素子の製造方法、および窒化物半導体基板の製造方法を提供することが望ましい。 However, when crystal growth is performed on a nitride semiconductor substrate having a semipolar plane or nonpolar plane inclined by 20 ° or more in the a-axis direction from the c-plane as a main plane of crystal growth, misfit dislocations of the substrate are the starting points. Pits occurred, causing current leakage and non-light emission due to the pits. Accordingly, it is possible to provide a nitride semiconductor device, a nitride semiconductor substrate, a method for manufacturing a nitride semiconductor device, and a method for manufacturing a nitride semiconductor substrate capable of suppressing the occurrence of current leakage and non-luminescence due to pits. Is desirable.

 本開示の一実施形態に係る第1の窒化物半導体素子は、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板と、主面を結晶成長面として形成された超格子層とを備えている。超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものである。Alx1Iny1Gaz1N層およびAlx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす。 A first nitride semiconductor device according to an embodiment of the present disclosure includes a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane, and the main surface And a superlattice layer formed as a crystal growth surface. The superlattice layers are Al x1 In y1 Gaz1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and Al x2 In y2 Gaz2 N layer (0 ≦ x2 ≦). 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked. The composition ratio of the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2.

 本開示の一実施形態に係る窒化物半導体基板は、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材と、主面を結晶成長面として形成された超格子層とを備えている。超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものである。Alx1Iny1Gaz1N層およびAlx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす。 A nitride semiconductor substrate according to an embodiment of the present disclosure includes a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane, and the principal surface is crystallized. And a superlattice layer formed as a growth surface. The superlattice layers are Al x1 In y1 Gaz1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and Al x2 In y2 Gaz2 N layer (0 ≦ x2 ≦). 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked. The composition ratio of the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2.

 本開示の一実施形態に係る第1の窒化物半導体素子および窒化物半導体基板では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材の主面に対して、上記超格子層が形成されている。これにより、ピットの発生を抑制することができる。 In the first nitride semiconductor device and nitride semiconductor substrate according to an embodiment of the present disclosure, a nitride semiconductor having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane The superlattice layer is formed on the main surface of the substrate. Thereby, generation | occurrence | production of a pit can be suppressed.

 本開示の一実施形態に係る第1の窒化物半導体基板の製造方法は、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材に対して、前記主面を結晶成長面として超格子層を形成するステップを含んでいる。超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものである。Alx1Iny1Gaz1N層およびAlx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす。 A first nitride semiconductor substrate manufacturing method according to an embodiment of the present disclosure includes a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. On the other hand, the method includes a step of forming a superlattice layer using the main surface as a crystal growth surface. The superlattice layers are Al x1 In y1 Gaz1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and Al x2 In y2 Gaz2 N layer (0 ≦ x2 ≦). 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked. The composition ratio of the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2.

 本開示の一実施形態に係る第1の窒化物半導体基板の製造方法では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材の主面に対して、上記超格子層が形成される。これにより、基板のミスフィット転位を起点とするピットの発生を抑制することができる。 In the first method for manufacturing a nitride semiconductor substrate according to an embodiment of the present disclosure, a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane The superlattice layer is formed on the main surface. Thereby, generation | occurrence | production of the pit which starts from the misfit dislocation of a board | substrate can be suppressed.

 本開示の一実施形態に係る第2の窒化物半導体素子は、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層と、上記主面を結晶成長面として形成された接合構造層とを備えている。接合構造層は、下部クラッド層、活性層および上部クラッド層を窒化物半導体層側からこの順に含んで構成されている。 A second nitride semiconductor device according to an embodiment of the present disclosure includes a nitride semiconductor layer having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane, and the main And a junction structure layer formed with the surface as a crystal growth surface. The junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor layer side.

 本開示の一実施形態に係る第2の窒化物半導体素子では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層の主面に対して、上記接合構造層が形成されている。これにより、ピットの発生を抑制することができる。 In the second nitride semiconductor device according to the embodiment of the present disclosure, the main surface of the nitride semiconductor layer having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. On the other hand, the junction structure layer is formed. Thereby, generation | occurrence | production of a pit can be suppressed.

 本開示の一実施形態に係る第1の窒化物半導体素子の製造方法は、以下の4つのステップを含む。
(A1)c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材に対して、上記主面を結晶成長面として超格子層を形成するステップ
(A2)超格子層の表面を結晶成長面としてバルク層を形成するステップ
(A3)バルク層の表面を結晶成長面として接合構造層を形成するステップ
(A4)窒化物半導体基材および超格子層を除去するステップ
ここで、超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものである。また、Alx1Iny1Gaz1N層およびAlx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たしている。さらに、接合構造層は、下部クラッド層、活性層および上部クラッド層を窒化物半導体基材側からこの順に含んで構成されている。
A method for manufacturing a first nitride semiconductor device according to an embodiment of the present disclosure includes the following four steps.
(A1) A superlattice layer is formed on a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the principal surface as a crystal growth surface. (A2) forming a bulk layer using the surface of the superlattice layer as a crystal growth surface (A3) forming a junction structure layer using the surface of the bulk layer as a crystal growth surface (A4) nitride semiconductor substrate and super Step of removing lattice layer Here, the superlattice layer is composed of Al x1 In y1 Gaz1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and Al x2 In y2 Ga z2 N layers (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked. The composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2. Furthermore, the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side.

 本開示の一実施形態に係る第1の窒化物半導体素子の製造方法では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層の主面に対して、上記超格子層が形成され、上記超格子層上に、バルク層を介して上記接合構造層が形成される。これにより、基板のミスフィット転位を起点とするピットの発生を抑制することができる。 In the first method for manufacturing a nitride semiconductor device according to an embodiment of the present disclosure, a nitride semiconductor layer having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane is provided. The superlattice layer is formed on the main surface, and the junction structure layer is formed on the superlattice layer via a bulk layer. Thereby, generation | occurrence | production of the pit which starts from the misfit dislocation of a board | substrate can be suppressed.

 本開示の一実施形態に係る第2の窒化物半導体素子の製造方法は、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板に対して、上記主面を結晶成長面として接合構造層を形成するステップを含む。ここで、接合構造層は、下部クラッド層、活性層および上部クラッド層を窒化物半導体基板側からこの順に含んで構成されている。 A second method for manufacturing a nitride semiconductor device according to an embodiment of the present disclosure is provided on a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. On the other hand, the method includes a step of forming a junction structure layer using the main surface as a crystal growth surface. Here, the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side.

 本開示の一実施形態に係る第2の窒化物半導体素子の製造方法では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板の主面に対して、上記接合構造層が形成される。これにより、基板のミスフィット転位を起点とするピットの発生を抑制することができる。 In the second method for manufacturing a nitride semiconductor device according to an embodiment of the present disclosure, a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane is provided. The junction structure layer is formed on the main surface. Thereby, generation | occurrence | production of the pit which starts from the misfit dislocation of a board | substrate can be suppressed.

 本開示の一実施形態に係る第1の窒化物半導体素子、窒化物半導体基板、および第1の窒化物半導体基板の製造方法によれば、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材の主面に対して、上記超格子層を形成するようにしたので、ピットに起因する電流リークや非発光の発生を抑制することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 According to the first nitride semiconductor device, the nitride semiconductor substrate, and the first nitride semiconductor substrate manufacturing method according to an embodiment of the present disclosure, θ ° or more (20 ° ≦ 20 ° in the a-axis direction from the c-plane. (θ ≦ 90 °) Since the superlattice layer is formed on the main surface of the nitride semiconductor substrate having the inclined main surface, current leakage and non-light emission caused by pits can be suppressed. Can do. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.

 本開示の一実施形態に係る第2の窒化物半導体素子によれば、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層の主面に対して、上記接合構造層を形成するようにしたので、ピットに起因する電流リークや非発光の発生を抑制することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 According to the second nitride semiconductor device according to an embodiment of the present disclosure, the main component of the nitride semiconductor layer having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. Since the bonding structure layer is formed on the surface, it is possible to suppress the occurrence of current leakage and non-luminescence due to the pits. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.

 本開示の一実施形態に係る第1の窒化物半導体素子の製造方法によれば、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層の主面に対して、上記超格子層を形成し、上記超格子層上に、バルク層を介して上記接合構造層を形成するようにしたので、ピットに起因する電流リークや非発光の発生を抑制することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 According to the first method for manufacturing a nitride semiconductor device according to an embodiment of the present disclosure, a nitride semiconductor having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. The superlattice layer is formed on the main surface of the layer, and the junction structure layer is formed on the superlattice layer via a bulk layer. Occurrence can be suppressed. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.

 本開示の一実施形態に係る第2の窒化物半導体素子の製造方法によれば、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板の主面に対して、上記接合構造層を形成するようにしたので、ピットに起因する電流リークや非発光の発生を抑制することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 According to the second method for manufacturing a nitride semiconductor device according to an embodiment of the present disclosure, a nitride semiconductor having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane Since the junction structure layer is formed on the main surface of the substrate, it is possible to suppress the occurrence of current leakage and non-luminescence due to pits. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.

本開示の第1の実施の形態に係る半導体発光素子の断面構成例を表す図である。It is a figure showing the example of a section composition of the semiconductor light emitting element concerning a 1st embodiment of this indication. 図1の超格子層の断面構成例を表す図である。It is a figure showing the cross-sectional structural example of the superlattice layer of FIG. 図1の半導体発光素子の製造過程の一例を表す図である。It is a figure showing an example of the manufacture process of the semiconductor light-emitting device of FIG. 図3Aに続く製造過程の一例を表す図である。It is a figure showing an example of the manufacture process following Drawing 3A. 本開示の第2の実施の形態に係る半導体発光素子の断面構成例を表す図である。It is a figure showing the example of a section composition of the semiconductor light emitting element concerning a 2nd embodiment of this indication. 本開示の第3の実施の形態に係る半導体基板の断面構成例を表す図である。It is a figure showing the cross-sectional structural example of the semiconductor substrate which concerns on 3rd Embodiment of this indication. 図5の半導体基板の製造過程の一例を表す図である。It is a figure showing an example of the manufacturing process of the semiconductor substrate of FIG. 図6Aに続く製造過程の一例を表す図である。It is a figure showing an example of the manufacture process following Drawing 6A. 変形例に係る半導体発光素子の断面構成例を表す図である。It is a figure showing the cross-sectional structural example of the semiconductor light-emitting device which concerns on a modification. 変形例に係る半導体発光素子の断面構成例を表す図である。It is a figure showing the cross-sectional structural example of the semiconductor light-emitting device which concerns on a modification. 図8の半導体基板の断面構成例を表す図である。It is a figure showing the cross-sectional structural example of the semiconductor substrate of FIG. 図8の半導体発光素子の製造過程の一例を表す図である。It is a figure showing an example of the manufacturing process of the semiconductor light-emitting device of FIG. 図8の半導体発光素子の製造過程の一例を表す図である。It is a figure showing an example of the manufacturing process of the semiconductor light-emitting device of FIG.

 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。なお、説明は、以下の順序で行う。

  1.第1の実施の形態(半導体発光素子)
  2.第2の実施の形態(半導体発光素子)
  3.第3の実施の形態の変形例(半導体基板)
Hereinafter, modes for carrying out the present disclosure will be described in detail with reference to the drawings. The following description is one specific example of the present disclosure, and the present disclosure is not limited to the following aspects. In addition, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, and the like of each component illustrated in each drawing. The description will be given in the following order.

1. First Embodiment (Semiconductor Light Emitting Element)
2. Second embodiment (semiconductor light emitting device)
3. Modified example of the third embodiment (semiconductor substrate)

<1.第1の実施の形態>
[構成]
 本開示の第1の実施の形態に係る半導体発光素子1の構成について説明する。図1は、本実施の形態に係る半導体発光素子1の断面構成例を表したものである。
<1. First Embodiment>
[Constitution]
A configuration of the semiconductor light emitting element 1 according to the first embodiment of the present disclosure will be described. FIG. 1 illustrates a cross-sectional configuration example of a semiconductor light emitting element 1 according to the present embodiment.

 半導体発光素子1は、青色~緑色の光源として好適に適用可能なものである。半導体発光素子1は、例えば、基板10、超格子層20および接合構造層30を備えている。超格子層20は、基板10の主面を結晶成長面として形成されたものである。接合構造層30は、超格子層20の表面を結晶成長面として形成されたものである。超格子層20および接合構造層30は、例えばMOCVD(Metal Organic Chemical Vapor Deposition :有機金属気相成長)法などのエピタキシャル結晶成長法により形成されたものである。 The semiconductor light emitting device 1 can be suitably applied as a blue to green light source. The semiconductor light emitting element 1 includes, for example, a substrate 10, a superlattice layer 20, and a junction structure layer 30. The superlattice layer 20 is formed using the main surface of the substrate 10 as a crystal growth surface. The junction structure layer 30 is formed by using the surface of the superlattice layer 20 as a crystal growth surface. The superlattice layer 20 and the junction structure layer 30 are formed by an epitaxial crystal growth method such as MOCVD (Metal Organic Chemical Vapor Deposition).

 基板10は、窒化物半導体基板であり、例えば、n型GaNにより構成されている。基板10に用いられる窒化物半導体基板は、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有している。この主面の結晶面は、例えば、(11-20)面、(11-22)面または(11-24)面である。基板10には、例えばケイ素(Si)などのn型不純物がドープされている。なお、本明細書において、「基板10の主面」とは、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した結晶面を指すものとする。 The substrate 10 is a nitride semiconductor substrate and is made of, for example, n-type GaN. The nitride semiconductor substrate used for the substrate 10 has a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. The crystal plane of the main surface is, for example, the (11-20) plane, the (11-22) plane, or the (11-24) plane. The substrate 10 is doped with an n-type impurity such as silicon (Si). In the present specification, the “main surface of the substrate 10” refers to a crystal plane inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane.

 接合構造層30は、例えば、ダブルヘテロ接合構造を有している。ダブルヘテロ接合構造とは、同一材料のpn半導体(後述の下部クラッド層32および上部クラッド層36)の間に、バンドギャップの狭い異種の半導体(後述の活性層34)を挟んだ構造を指している。接合構造層30は、例えば、下地層31、下部クラッド層32、下部ガイド層33、活性層34、上部ガイド層35、上部クラッド層36およびコンタクト層37を備えている。接合構造層30は、下地層31、下部クラッド層32、下部ガイド層33、活性層34、上部ガイド層35、上部クラッド層36およびコンタクト層37を、超格子層20側からこの順に含んで構成されている。 The junction structure layer 30 has, for example, a double hetero junction structure. The double heterojunction structure refers to a structure in which a heterogeneous semiconductor (an active layer 34 described later) with a narrow band gap is sandwiched between pn semiconductors (a lower cladding layer 32 and an upper cladding layer 36 described later) of the same material. Yes. The junction structure layer 30 includes, for example, a base layer 31, a lower cladding layer 32, a lower guide layer 33, an active layer 34, an upper guide layer 35, an upper cladding layer 36, and a contact layer 37. The junction structure layer 30 includes a base layer 31, a lower clad layer 32, a lower guide layer 33, an active layer 34, an upper guide layer 35, an upper clad layer 36, and a contact layer 37 in this order from the superlattice layer 20 side. Has been.

 下地層31は、例えば、n型GaNにより構成されている。下部クラッド層32は、例えば、n型AlGaNにより構成されている。下部ガイド層33、例えば、n型InGaNにより構成されている。下地層31、下部クラッド層32および下部ガイド層33には、例えばケイ素(Si)などのn型不純物がドープされている。活性層34は、例えば、InGaNからなる井戸層とAlGaNからなる障壁層とを交互に繰り返し積層して構成された多重量子井戸(MQW:Multiple-Quantum Well)構造を有している。活性層34は、単層で構成されていてもよい。上部ガイド層35は、例えば、アンドープのInGaNにより構成されている。上部クラッド層36は、例えば、p型AlGaNにより構成されている。コンタクト層37は、例えば、p型GaNにより構成されている。上部クラッド層36およびコンタクト層37には、例えば、マグネシウム(Mg)などのp型不純物がドープされている。 The underlayer 31 is made of n-type GaN, for example. The lower cladding layer 32 is made of, for example, n-type AlGaN. The lower guide layer 33 is made of, for example, n-type InGaN. The underlayer 31, the lower cladding layer 32, and the lower guide layer 33 are doped with an n-type impurity such as silicon (Si). The active layer 34 has, for example, a multiple quantum well (MQW) structure in which well layers made of InGaN and barrier layers made of AlGaN are alternately and repeatedly stacked. The active layer 34 may be composed of a single layer. The upper guide layer 35 is made of, for example, undoped InGaN. The upper cladding layer 36 is made of, for example, p-type AlGaN. The contact layer 37 is made of, for example, p-type GaN. The upper cladding layer 36 and the contact layer 37 are doped with a p-type impurity such as magnesium (Mg).

 半導体発光素子1は、さらに、基板10または下部クラッド層32と接しており、かつ、下部クラッド層32と電気的に接続された下部電極を備えていてもよい。半導体発光素子1は、さらに、コンタクト層37と接しており、かつ上部クラッド層36と電気的に接続された上部電極を備えていてもよい。接合構造層30は、上記以外の層を有していてもよい。また、接合構造層30において、下部ガイド層33および上部ガイド層35が省略されていてもよく、また、下地層31が省略されていてもよい。また、接合構造層30に対して、ストライプ状のリッジ部、または、柱状のメサ部が設けられていてもよい。 The semiconductor light emitting device 1 may further include a lower electrode that is in contact with the substrate 10 or the lower cladding layer 32 and is electrically connected to the lower cladding layer 32. The semiconductor light emitting device 1 may further include an upper electrode that is in contact with the contact layer 37 and is electrically connected to the upper cladding layer 36. The bonding structure layer 30 may have a layer other than the above. In the bonding structure layer 30, the lower guide layer 33 and the upper guide layer 35 may be omitted, and the base layer 31 may be omitted. Further, a stripe-shaped ridge portion or a columnar mesa portion may be provided for the bonding structure layer 30.

 次に、超格子層20について説明する。図2は、超格子層20の断面構成例を表したものである。超格子層20は、上述したように、基板10の主面を結晶成長面として形成されたものである。従って、基板10の主面と、超格子層20との間には、下地層などの何らかの層が設けられていない。超格子層20は、例えば、図2に示したように、Alx1Iny1Gaz1N層20A(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層20B(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものである。Alx1Iny1Gaz1N層20AおよびAlx2Iny2Gaz2N層20Bの組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たしている。 Next, the superlattice layer 20 will be described. FIG. 2 illustrates a cross-sectional configuration example of the superlattice layer 20. As described above, the superlattice layer 20 is formed by using the main surface of the substrate 10 as a crystal growth surface. Therefore, no layer such as an underlayer is provided between the main surface of the substrate 10 and the superlattice layer 20. For example, as shown in FIG. 2, the superlattice layer 20 includes an Al x1 In y1 Gaz1 N layer 20A (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and Al. x2 In y2 Ga z2 N layers 20B (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked. The composition ratio of the Al x1 In y1 Gaz1 N layer 20A and the Al x2 In y2 Gaz2 N layer 20B satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2.

 Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとの格子不整合度は、0.00048以上となっている。例えば、Alx1Iny1Gaz1N層20Aを、膜厚2.0nmのAl0.08Ga0.02Nで構成するとともに、Alx2Iny2Gaz2N層20Bを、膜厚2.0nmのGaNで構成することにより、上述した範囲内の格子不整合度を実現することができる。 The degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is 0.00048 or more. For example, the Al x1 In y1 Ga z1 N layer 20A is composed of Al 0.08 Ga 0.02 N with a thickness of 2.0 nm, and the Al x2 In y2 Ga z2 N layer 20B is composed of GaN with a thickness of 2.0 nm. As a result, the degree of lattice mismatch within the above-described range can be realized.

 また、上述した範囲内の格子不整合度とするためには、Alx1Iny1Gaz1N層20AおよびAlx2Iny2Gaz2N層20Bの膜厚は、それぞれ、1nm以上、10nm以下となっていることが好ましい。また、上述した範囲内の格子不整合度とするためには、超格子層20における積層数は、10ペア以上となっていることが好ましく、100ペア以上となっていることがより好ましい。 In order to obtain the lattice mismatch within the above-described range, the film thicknesses of the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B are 1 nm or more and 10 nm or less, respectively. It is preferable. In order to obtain the lattice mismatch degree within the above-described range, the number of stacked layers in the superlattice layer 20 is preferably 10 pairs or more, and more preferably 100 pairs or more.

[製造方法]
 次に、本実施の形態に係る半導体発光素子1の製造方法について説明する。図3Aは、半導体発光素子1の製造過程の一例を表したものである。図3Bは、図3Aに続く製造過程の一例を表したものである。
[Production method]
Next, a method for manufacturing the semiconductor light emitting device 1 according to this embodiment will be described. FIG. 3A shows an example of the manufacturing process of the semiconductor light emitting device 1. FIG. 3B shows an example of the manufacturing process following FIG. 3A.

 半導体発光素子1を製造するためには、例えばGaNからなる基板10上に、窒化物半導体を、例えばMOCVD法などのエピタキシャル結晶成長法により一括に形成する。この際、化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMAl)、トリメチルガリウム(TMGa)、トリメチルインジウム(TMIn)、アンモニア(NH3)などを用い、ドナー不純物の原料としては、例えばモノシラン(SiH4)を用い、アクセプタ不純物の原料としては、例えばビスシクロペンタジエニルマグネシウム(Cp2
Mg)を用いる。
In order to manufacture the semiconductor light emitting device 1, nitride semiconductors are collectively formed on a substrate 10 made of, for example, GaN by an epitaxial crystal growth method such as an MOCVD method. At this time, for example, trimethylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn), ammonia (NH 3 ) or the like is used as a compound semiconductor material, and monosilane (SiH) is used as a source material for donor impurities. 4 ) and the acceptor impurity material is, for example, biscyclopentadienylmagnesium (Cp 2
Mg) is used.

 まず、例えば、図3Aに示したように、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する基板10を用意する。次に、例えば、図3Bに示したように、基板10上に、基板10の主面を結晶成長面として、超格子層20を形成する。次に、超格子層20の表面を結晶成長面として、接合構造層30を形成する。その後、必要に応じて、上部電極や下部電極を形成する。このようにして、半導体発光素子1が製造される。 First, for example, as shown in FIG. 3A, a substrate 10 having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane is prepared. Next, for example, as illustrated in FIG. 3B, the superlattice layer 20 is formed on the substrate 10 with the main surface of the substrate 10 as a crystal growth surface. Next, the junction structure layer 30 is formed using the surface of the superlattice layer 20 as a crystal growth surface. Thereafter, an upper electrode and a lower electrode are formed as necessary. In this way, the semiconductor light emitting element 1 is manufactured.

[動作]
 このような構成の半導体発光素子1では、上部電極と下部電極との間に所定の電圧が印加されると、活性層34に電流が注入され、これにより電子と正孔の再結合による発光が生じる。例えば、接合構造層30に対してストライプ状のリッジ部が形成され、リッジ部の延在方向の両端面に共振器ミラー(多層膜)が設けられている場合には、活性層34で生じた光は、一対の共振器ミラーにより反射され、所定の発振波長λでレーザ発振が生じる。そして、反射率の相対的に低い方の端面から発振波長λのレーザ光が外部に出射される。また、例えば、接合構造層30に対して柱状のメサ部が形成され、下部クラッド層32および上部クラッド層36がDBRで構成されている場合には、活性層34で生じた光は、下部クラッド層32および上部クラッド層36により反射され、所定の発振波長λでレーザ発振が生じる。そして、接合構造層30の上面から発振波長λのレーザ光が外部に出射される。また、例えば、接合構造層30が共振器構造を有しておらず、自然放出光を出力する場合には、活性層34で生じた発光波長λの光は、接合構造層30の上面から外部に出射される。
[Operation]
In the semiconductor light emitting device 1 having such a configuration, when a predetermined voltage is applied between the upper electrode and the lower electrode, a current is injected into the active layer 34, thereby emitting light by recombination of electrons and holes. Arise. For example, when a stripe-shaped ridge portion is formed with respect to the junction structure layer 30 and a resonator mirror (multilayer film) is provided on both end faces in the extending direction of the ridge portion, the occurrence occurs in the active layer 34. The light is reflected by the pair of resonator mirrors, and laser oscillation occurs at a predetermined oscillation wavelength λ. Then, the laser beam having the oscillation wavelength λ is emitted to the outside from the end surface having a relatively low reflectance. Further, for example, when a columnar mesa portion is formed with respect to the bonding structure layer 30 and the lower cladding layer 32 and the upper cladding layer 36 are composed of DBR, the light generated in the active layer 34 Reflected by the layer 32 and the upper cladding layer 36, laser oscillation occurs at a predetermined oscillation wavelength λ. Then, laser light having an oscillation wavelength λ is emitted from the upper surface of the bonding structure layer 30 to the outside. Further, for example, when the junction structure layer 30 does not have a resonator structure and spontaneous emission light is output, light having an emission wavelength λ generated in the active layer 34 is externally transmitted from the upper surface of the junction structure layer 30. Is emitted.

[効果] 
 次に、本実施の形態に係る半導体発光素子1の効果について説明する。
[effect]
Next, the effect of the semiconductor light emitting device 1 according to the present embodiment will be described.

 近年、光源用途として、窒化物半導体を用いた青色~緑色の発光ダイオードやレーザダイオードの開発が盛んになっている。その中でも、半極性もしくは非極性の窒化物半導体は、ピエゾ電界の影響を小さくできるため、発光波長を長波長化するための手段として効果的な材料である。しかしながら、c面からa軸方向に20°以上傾斜した半極性面もしくは非極性面を結晶成長の主面とする窒化物半導体基板上に結晶成長を行った場合、基板のミスフィット転位を起点とするピットが発生し、ピットに起因する電流リークや非発光が生じていた。 In recent years, blue-green light-emitting diodes and laser diodes using nitride semiconductors have been actively developed as light source applications. Among these, semipolar or nonpolar nitride semiconductors are effective materials as means for increasing the emission wavelength because the influence of the piezoelectric field can be reduced. However, when crystal growth is performed on a nitride semiconductor substrate having a semipolar plane or nonpolar plane inclined by 20 ° or more in the a-axis direction from the c-plane as a main plane of crystal growth, misfit dislocations of the substrate are the starting points. Pits occurred, causing current leakage and non-light emission due to the pits.

 一方、本実施の形態では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する基板10の主面に対して、超格子層20が形成されている。これにより、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとによって歪み応力が発生するので、この歪み応力によって、超格子層20に、基板のミスフィット転位を起点とするピットが発生するのを抑制することができる。その結果、超格子層20上に形成される接合構造層30に対しても、ピットが発生するのを抑制することができる。従って、ピットに起因する電流リークや非発光の発生を抑制することができる。 On the other hand, in the present embodiment, superlattice layer 20 is formed on the main surface of substrate 10 having the main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from c-plane. Yes. As a result, strain stress is generated by the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B. This strain stress causes misfit dislocations of the substrate to the superlattice layer 20 as a starting point. It is possible to suppress the occurrence of pits. As a result, it is possible to suppress the generation of pits even in the bonding structure layer 30 formed on the superlattice layer 20. Therefore, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits.

 本実施の形態では、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとの格子不整合度は、0.00048以上となっている。これにより、製造過程において、基板10の主面上に超格子層20を形成したときに、超格子層20で生じた歪み応力によって、超格子層20にピットが発生するのを効果的に抑制することができる。その結果、超格子層20上に形成される接合構造層30に対しても、ピットが発生するのを抑制することができる。従って、ピットに起因する電流リークや非発光の発生を抑制することができる。なお、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとの格子不整合度が0.00048未満となっている場合には、超格子層20に生じる歪み応力が小さく、基板10の主面と超格子層20との間にピットの起点が発生するのを抑制することが困難であるので、超格子層20を成長させている間にピットが形成されてしまう可能性が高い。 In this embodiment, the lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B has a 0.00048 or more. Thus, in the manufacturing process, when the superlattice layer 20 is formed on the main surface of the substrate 10, the generation of pits in the superlattice layer 20 due to the strain stress generated in the superlattice layer 20 is effectively suppressed. can do. As a result, it is possible to suppress the generation of pits even in the bonding structure layer 30 formed on the superlattice layer 20. Therefore, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits. When the degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is less than 0.00048, the strain stress generated in the superlattice layer 20 is small. Since it is difficult to suppress generation of pit starting points between the main surface of the substrate 10 and the superlattice layer 20, pits may be formed while the superlattice layer 20 is grown. High nature.

 ところで、(11-20)面、(11-22)面または(11-24)面を結晶成長面として接合構造層30を形成した場合には、劈開面にm面(1-100)を用いることができるなどのメリットがある。しかし、基板10の(11-20)面、(11-22)面または(11-24)面に、直接、接合構造層30を形成した場合には、接合構造層30にピットが発生しやすい。一方、本実施の形成において、基板10の(11-20)面、(11-22)面または(11-24)面に超格子層20を形成した上で、接合構造層30を形成した場合には、接合構造層30にピットが発生するのを抑制することができる。その結果、例えば、m面(1-100)を劈開面とする発光素子を実用化することができる。 By the way, when the junction structure layer 30 is formed with the (11-20) plane, the (11-22) plane, or the (11-24) plane as the crystal growth plane, the m plane (1-100) is used as the cleavage plane. There are advantages such as being able to. However, when the bonding structure layer 30 is formed directly on the (11-20) plane, the (11-22) plane, or the (11-24) plane of the substrate 10, pits are likely to be generated in the bonding structure layer 30. . On the other hand, in the present embodiment, when the superlattice layer 20 is formed on the (11-20) plane, the (11-22) plane, or the (11-24) plane of the substrate 10 and then the junction structure layer 30 is formed. Therefore, the occurrence of pits in the bonding structure layer 30 can be suppressed. As a result, for example, a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.

 本実施の形態では、下部クラッド層32、活性層34および上部クラッド層36をこの順に含んで構成された接合構造層30が、超格子層20を介して基板10の主面上に形成されている。その結果、例えば、m面(1-100)を劈開面とする発光素子を実用化することができる。 In the present embodiment, the junction structure layer 30 including the lower cladding layer 32, the active layer 34, and the upper cladding layer 36 in this order is formed on the main surface of the substrate 10 via the superlattice layer 20. Yes. As a result, for example, a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.

<2.第2の実施の形態>
[構成]
 次に、本開示の第2の実施の形態に係る半導体発光素子2の構成について説明する。図4は、本実施の形態に係る半導体発光素子2の断面構成例を表したものである。
<2. Second Embodiment>
[Constitution]
Next, the configuration of the semiconductor light emitting element 2 according to the second embodiment of the present disclosure will be described. FIG. 4 illustrates a cross-sectional configuration example of the semiconductor light emitting element 2 according to the present embodiment.

 半導体発光素子2は、青色~緑色の光源として好適に適用可能なものである。半導体発光素子2は、例えば、基板10、超格子層20および接合構造層40を備えている。超格子層20は、基板10の主面を結晶成長面として形成されたものである。接合構造層40は、超格子層20の表面を結晶成長面として形成されたものである。超格子層20および接合構造層40は、例えばMOCVD法などのエピタキシャル結晶成長法により形成されたものである。 The semiconductor light emitting element 2 can be suitably applied as a blue to green light source. The semiconductor light emitting element 2 includes, for example, a substrate 10, a superlattice layer 20, and a junction structure layer 40. The superlattice layer 20 is formed using the main surface of the substrate 10 as a crystal growth surface. The junction structure layer 40 is formed using the surface of the superlattice layer 20 as a crystal growth surface. The superlattice layer 20 and the junction structure layer 40 are formed by an epitaxial crystal growth method such as an MOCVD method, for example.

 接合構造層40は、例えば、ダブルヘテロ接合における一方のヘテロ接合構造を有している。接合構造層40は、上記実施の形態の接合構造層30において、下地層31および下部クラッド層32が省略された構成となっている。超格子層20は、上記実施の形態の下部クラッド層32を兼ねている。従って、超格子層20および接合構造層40によって、ダブルヘテロ接合が構成されている。本実施の形態において、超格子層20は、上記第1の実施の形態に記載の方法と同様の方法で形成されている。 The junction structure layer 40 has, for example, one heterojunction structure in a double heterojunction. The bonding structure layer 40 has a configuration in which the base layer 31 and the lower cladding layer 32 are omitted from the bonding structure layer 30 of the above embodiment. The superlattice layer 20 also serves as the lower cladding layer 32 of the above embodiment. Accordingly, the superlattice layer 20 and the junction structure layer 40 constitute a double heterojunction. In the present embodiment, the superlattice layer 20 is formed by a method similar to the method described in the first embodiment.

[効果] 
 次に、本実施の形態に係る半導体発光素子2の効果について説明する。
[effect]
Next, the effect of the semiconductor light emitting element 2 according to the present embodiment will be described.

 本実施の形態では、上記実施の形態と同様、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する基板10の主面に対して、超格子層20が形成されている。これにより、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとによって歪み応力が発生するので、この歪み応力によって、超格子層20に、基板のミスフィット転位を起点とするピットが発生するのを抑制することができる。その結果、超格子層20上に形成される接合構造層40に対しても、ピットが発生するのを抑制することができる。従って、ピットに起因する電流リークや非発光の発生を抑制することができる。 In the present embodiment, as in the above-described embodiment, the superlattice layer with respect to the main surface of the substrate 10 having the main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. 20 is formed. As a result, strain stress is generated by the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B. This strain stress causes misfit dislocations of the substrate to the superlattice layer 20 as a starting point. It is possible to suppress the occurrence of pits. As a result, the generation of pits can be suppressed even in the bonding structure layer 40 formed on the superlattice layer 20. Therefore, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits.

 本実施の形態では、上記実施の形態と同様、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとの格子不整合度は、0.00048以上となっている。これにより、製造過程において、基板10の主面上に超格子層20を形成したときに、超格子層20で生じた歪み応力によって、超格子層20にピットが発生するのを効果的に抑制することができる。その結果、超格子層20上に形成される接合構造層40に対しても、ピットが発生するのを抑制することができる。従って、ピットに起因する電流リークや非発光の発生を抑制することができる。 In the present embodiment, the lattice mismatch degree between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is 0.00048 or more, as in the above embodiment. Thus, in the manufacturing process, when the superlattice layer 20 is formed on the main surface of the substrate 10, the generation of pits in the superlattice layer 20 due to the strain stress generated in the superlattice layer 20 is effectively suppressed. can do. As a result, the generation of pits can be suppressed even in the bonding structure layer 40 formed on the superlattice layer 20. Therefore, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits.

 ところで、(11-20)面、(11-22)面または(11-24)面を結晶成長面として、上記実施の形態の接合構造層30を形成した場合には、劈開面にm面(1-100)を用いることができるなどのメリットがある。しかし、(11-20)面、(11-22)面または(11-24)面に、直接、接合構造層30を形成した場合には、接合構造層30にピットが発生しやすい。一方、本実施の形成において、(11-20)面、(11-22)面または(11-24)面に超格子層20を形成した上で、接合構造層40を形成し、かつ超格子層20に、上記実施の形態の下部クラッド層32を兼ねさせた場合には、超格子層20および接合構造層40にピットが発生するのを抑制することができる。その結果、例えば、m面(1-100)を劈開面とする発光素子を実用化することができる。 By the way, when the junction structure layer 30 of the above embodiment is formed using the (11-20) plane, the (11-22) plane, or the (11-24) plane as the crystal growth plane, the m plane ( 1-100) can be used. However, when the junction structure layer 30 is formed directly on the (11-20) plane, the (11-22) plane, or the (11-24) plane, pits are easily generated in the junction structure layer 30. On the other hand, in the present embodiment, the superlattice layer 20 is formed on the (11-20) plane, the (11-22) plane, or the (11-24) plane, the junction structure layer 40 is formed, and the superlattice layer is formed. When the layer 20 is also used as the lower clad layer 32 of the above embodiment, it is possible to suppress the generation of pits in the superlattice layer 20 and the junction structure layer 40. As a result, for example, a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.

<3.第3の実施の形態>
[構成]
 次に、本開示の第3の実施の形態に係る半導体基板3の構成について説明する。図5は、本実施の形態に係る半導体基板3の断面構成例を表したものである。
<3. Third Embodiment>
[Constitution]
Next, the configuration of the semiconductor substrate 3 according to the third embodiment of the present disclosure will be described. FIG. 5 illustrates a cross-sectional configuration example of the semiconductor substrate 3 according to the present embodiment.

 半導体基板3は、青色~緑色の光源として機能し得る接合構造層30などを結晶成長させる基板(いわゆる種基板)として好適に適用可能なものである。半導体基板3は、例えば、基材38、超格子層20およびバルク層39を備えている。超格子層20は、基材38の主面を結晶成長面として形成されたものである。バルク層39は、超格子層20の表面を結晶成長面として形成されたものである。 The semiconductor substrate 3 can be suitably applied as a substrate (so-called seed substrate) for crystal growth of the bonding structure layer 30 or the like that can function as a blue to green light source. The semiconductor substrate 3 includes, for example, a base material 38, a superlattice layer 20, and a bulk layer 39. The superlattice layer 20 is formed by using the main surface of the substrate 38 as a crystal growth surface. The bulk layer 39 is formed using the surface of the superlattice layer 20 as a crystal growth surface.

 基材38は、窒化物半導体ウェハであり、例えば、n型GaNにより構成されている。基材38に用いられる窒化物半導体ウェハは、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有している。この主面の結晶面は、例えば、(11-20)面、(11-22)面または(11-24)面である。基材38には、例えばケイ素(Si)などのn型不純物がドープされている。なお、本明細書において、「基材38の主面」とは、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した結晶面を指すものとする。 The base material 38 is a nitride semiconductor wafer and is made of, for example, n-type GaN. The nitride semiconductor wafer used for the base material 38 has a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. The crystal plane of the main surface is, for example, the (11-20) plane, the (11-22) plane, or the (11-24) plane. The base material 38 is doped with an n-type impurity such as silicon (Si). In the present specification, the “main surface of the substrate 38” refers to a crystal plane inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane.

 バルク層39は、窒化物半導体層であり、例えば、n型GaNにより構成されている。バルク層39は、例えば、ミリオーダーの厚さを有している。バルク層39は、基材38と同様、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有している。バルク層39は、例えば、MOCVD法、HVPE(Hydride Vapor Phase Epitaxy)法などのエピタキシャル結晶成長法により形成されたものである。バルク層39には、例えばケイ素(Si)などのn型不純物がドープされている。 The bulk layer 39 is a nitride semiconductor layer and is made of, for example, n-type GaN. The bulk layer 39 has a thickness of, for example, millimeter order. The bulk layer 39 has a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane, like the base material 38. The bulk layer 39 is formed by an epitaxial crystal growth method such as MOCVD method or HVPE (HydrideydVapor Phase Epitaxy) method. The bulk layer 39 is doped with an n-type impurity such as silicon (Si).

[製造方法]
 次に、本実施の形態に係る半導体基板3の製造方法について説明する。図6Aは、半導体基板3の製造過程の一例を表したものである。図6Bは、図6Aに続く製造過程の一例を表したものである。
[Production method]
Next, a method for manufacturing the semiconductor substrate 3 according to the present embodiment will be described. FIG. 6A shows an example of the manufacturing process of the semiconductor substrate 3. FIG. 6B shows an example of the manufacturing process following FIG. 6A.

 半導体基板3を製造するためには、例えばGaNからなる基材38上に、窒化物半導体を、例えば、MOCVD法、HVPE法などのエピタキシャル結晶成長法により一括に形成する。この際、化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMAl)、トリメチルガリウム(TMGa)、トリメチルインジウム(TMIn)、アンモニア(NH3)などを用い、ドナー不純物の原料としては、例えばモノシラン(SiH4)を用い、アクセプタ不純物の原料としては、例えばビスシクロペンタジエニルマグネシウム(Cp2Mg)を用いる。 In order to manufacture the semiconductor substrate 3, nitride semiconductors are collectively formed on the base material 38 made of, for example, GaN by an epitaxial crystal growth method such as MOCVD method or HVPE method. At this time, for example, trimethylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn), ammonia (NH 3 ), or the like is used as a compound semiconductor material, and monosilane (SiH) is used as a source material for donor impurities. 4 ) and as the acceptor impurity material, for example, biscyclopentadienylmagnesium (Cp 2 Mg) is used.

 まず、例えば、図6Aに示したように、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する基材38を用意する。次に、例えば、図6Bに示したように、基材38上に、基材38の主面を結晶成長面として、超格子層20を形成する。次に、超格子層20の表面を結晶成長面として、バルク層39を形成する。このようにして、半導体基板3が製造される。 First, for example, as shown in FIG. 6A, a base material 38 having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane is prepared. Next, for example, as illustrated in FIG. 6B, the superlattice layer 20 is formed on the substrate 38 with the main surface of the substrate 38 as a crystal growth surface. Next, the bulk layer 39 is formed using the surface of the superlattice layer 20 as a crystal growth surface. In this way, the semiconductor substrate 3 is manufactured.

[効果]
 次に、本実施の形態に係る半導体基板3の効果について説明する。
[effect]
Next, the effect of the semiconductor substrate 3 according to the present embodiment will be described.

 本実施の形態では、c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する基材38の主面に対して、超格子層20が形成されている。これにより、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとによって歪み応力が発生するので、この歪み応力によって、超格子層20に、基板のミスフィット転位を起点とするピットが発生するのを抑制することができる。その結果、超格子層20上に形成されるバルク層39に対しても、ピットが発生するのを抑制することができる。従って、例えば、図7に示したように、半導体基板3(バルク層39)上に接合構造層30を形成した際に、接合構造層30において、ピットに起因する電流リークや非発光の発生を抑制することができる。ここで、接合構造層30は、バルク層39の主面(c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した結晶面)を結晶成長面として形成されたものである。 In the present embodiment, the superlattice layer 20 is formed on the main surface of the base material 38 having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. . As a result, strain stress is generated by the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B. This strain stress causes misfit dislocations of the substrate to the superlattice layer 20 as a starting point. It is possible to suppress the occurrence of pits. As a result, generation of pits can be suppressed also for the bulk layer 39 formed on the superlattice layer 20. Therefore, for example, as shown in FIG. 7, when the junction structure layer 30 is formed on the semiconductor substrate 3 (bulk layer 39), current leakage or non-light emission caused by pits occurs in the junction structure layer 30. Can be suppressed. Here, the junction structure layer 30 is formed by using the main surface of the bulk layer 39 (a crystal plane inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane) as a crystal growth surface. is there.

 本実施の形態では、上記第1の実施の形態と同様、Alx1Iny1Gaz1N層20AとAlx2Iny2Gaz2N層20Bとの格子不整合度は、0.00048以上となっている。これにより、製造過程において、基材38の主面上に超格子層20を形成したときに、超格子層20で生じた歪み応力によって、超格子層20にピットが発生するのを効果的に抑制することができる。その結果、超格子層20上に形成されるバルク層39に対しても、ピットが発生するのを抑制することができる。従って、例えば、図7に示したように、半導体基板3(バルク層39)上に接合構造層30を形成した際に、接合構造層30において、ピットに起因する電流リークや非発光の発生を抑制することができる。 In the present embodiment, as in the first embodiment, the degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer 20A and the Al x2 In y2 Ga z2 N layer 20B is 0.00048 or more. Yes. Thereby, when the superlattice layer 20 is formed on the main surface of the base material 38 in the manufacturing process, it is possible to effectively generate pits in the superlattice layer 20 due to the strain stress generated in the superlattice layer 20. Can be suppressed. As a result, generation of pits can be suppressed also for the bulk layer 39 formed on the superlattice layer 20. Therefore, for example, as shown in FIG. 7, when the junction structure layer 30 is formed on the semiconductor substrate 3 (bulk layer 39), current leakage or non-light emission caused by pits occurs in the junction structure layer 30. Can be suppressed.

 ところで、(11-20)面、(11-22)面または(11-24)面を結晶成長面として、上記実施の形態の接合構造層30を形成した場合には、劈開面にm面(1-100)を用いることができるなどのメリットがある。しかし、基材38の(11-20)面、(11-22)面または(11-24)面に、直接、接合構造層30を形成した場合には、接合構造層30にピットが発生しやすい。一方、例えば、図7に示したように、半導体基板3(バルク層39)上に接合構造層30を形成した場合には、接合構造層30にピットが発生するのを抑制することができる。その結果、例えば、m面(1-100)を劈開面とする発光素子を実用化することができる。 By the way, when the junction structure layer 30 of the above embodiment is formed using the (11-20) plane, the (11-22) plane, or the (11-24) plane as the crystal growth plane, the m plane ( 1-100) can be used. However, when the bonding structure layer 30 is formed directly on the (11-20) surface, the (11-22) surface, or the (11-24) surface of the substrate 38, pits are generated in the bonding structure layer 30. Cheap. On the other hand, for example, as shown in FIG. 7, when the bonding structure layer 30 is formed on the semiconductor substrate 3 (bulk layer 39), the generation of pits in the bonding structure layer 30 can be suppressed. As a result, for example, a light-emitting element having an m-plane (1-100) as a cleavage plane can be put into practical use.

 ところで、図7に記載の半導体発光素子1において、半導体基板3の代わりに、例えば、図8、図9に示したように、バルク層39からなる半導体基板4が用いられていてもよい。半導体基板4は、例えば、半導体基板3から基材38および超格子層20を除去することにより残ったバルク層39からなる。 Incidentally, in the semiconductor light emitting device 1 shown in FIG. 7, instead of the semiconductor substrate 3, for example, as shown in FIGS. 8 and 9, a semiconductor substrate 4 made of a bulk layer 39 may be used. The semiconductor substrate 4 is composed of, for example, a bulk layer 39 left by removing the base material 38 and the superlattice layer 20 from the semiconductor substrate 3.

 図8に記載の半導体発光素子1は、バルク層39からなる半導体基板4と、バルク層39の主面(c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した結晶面)を結晶成長面として形成された接合構造層30とを備えている。接合構造層30は、下部クラッド層32、下部ガイド層33、活性層34、上部ガイド層35、上部クラッド層36およびコンタクト層37を半導体基板4側からこの順に含んで構成されている。図7に記載の半導体発光素子1は、例えば、図10に示したように、半導体基板3上に接合構造層30を形成した後、半導体基板3の底面を研磨して、基材38および超格子層20を除去することにより形成されている。なお、図7に記載の半導体発光素子1は、例えば、図11に示したように、半導体基板4に対して、半導体基板4の主面を結晶成長面として接合構造層30を形成することにより形成されたものであってもよい。いずれの方法で接合構造層30を形成した場合であっても、上記実施の形態と同様、接合構造層30において、ピットに起因する電流リークや非発光の発生を抑制することができる。 The semiconductor light-emitting device 1 shown in FIG. 8 includes a semiconductor substrate 4 composed of a bulk layer 39 and a crystal tilted by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane. And a bonding structure layer 30 formed with the crystal plane as a crystal growth plane. The junction structure layer 30 includes a lower clad layer 32, a lower guide layer 33, an active layer 34, an upper guide layer 35, an upper clad layer 36, and a contact layer 37 in this order from the semiconductor substrate 4 side. 7, for example, as shown in FIG. 10, after forming the bonding structure layer 30 on the semiconductor substrate 3, the bottom surface of the semiconductor substrate 3 is polished so that the base material 38 and the superstructure It is formed by removing the lattice layer 20. 7, for example, as shown in FIG. 11, the bonding structure layer 30 is formed on the semiconductor substrate 4 with the main surface of the semiconductor substrate 4 as the crystal growth surface. It may be formed. Even when the bonding structure layer 30 is formed by any method, in the bonding structure layer 30, it is possible to suppress the occurrence of current leakage and non-light emission due to the pits as in the above embodiment.

 以上、複数の実施の形態を挙げて本開示を説明したが、本開示は上記各実施の形態に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。 Although the present disclosure has been described with reference to a plurality of embodiments, the present disclosure is not limited to the above-described embodiments, and various modifications can be made. In addition, the effect described in this specification is an illustration to the last. The effects of the present disclosure are not limited to the effects described in this specification. The present disclosure may have effects other than those described in this specification.

 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板と、
 前記主面を結晶成長面として形成された超格子層と
を備え、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす
 窒化物半導体素子。
(2)
 前記Alx1Iny1Gaz1N層と前記Alx2Iny2Gaz2N層との格子不整合度は、0.00048以上となっている
 (1)に記載の窒化物半導体素子。
(3)
 前記主面は、(11-20)面、(11-22)面または(11-24)面である
 (1)または(2)に記載の窒化物半導体素子。
(4)
 前記超格子層の表面を結晶成長面として形成された接合構造層をさらに備え、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記超格子層側からこの順に含んで構成されている
 (1)ないし(3)のいずれか1つに記載の窒化物半導体素子。
(5)
 前記超格子層の表面を結晶成長面として形成された接合構造層をさらに備え、
 前記接合構造層は、活性層および上部クラッド層を前記超格子層側からこの順に含んで構成されており、
 前記超格子層は、下部クラッド層を兼ねている
 (1)ないし(3)のいずれか1つに記載の窒化物半導体素子。
(6)
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材と、
 前記主面を結晶成長面として形成された超格子層と
を備え、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす
 窒化物半導体基板。
(7)
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材に対して、前記主面を結晶成長面として超格子層を形成するステップを
 含み、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす
 窒化物半導体基板の製造方法。
(8)
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層と、
 前記主面を結晶成長面として形成された接合構造層と
 を備え、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記窒化物半導体層側からこの順に含んで構成されている
 窒化物半導体素子。
(9)
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材に対して、前記主面を結晶成長面として超格子層を形成するステップと、
 前記超格子層の表面を結晶成長面としてバルク層を形成するステップと、
 前記バルク層の表面を結晶成長面として接合構造層を形成するステップと、
 前記窒化物半導体基材および前記超格子層を除去するステップと
を含み、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たし、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記窒化物半導体基材側からこの順に含んで構成されている
 窒化物半導体素子の製造方法。
(10)
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板に対して、前記主面を結晶成長面として接合構造層を形成するステップを含み、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記窒化物半導体基板側からこの順に含んで構成されている
 窒化物半導体素子の製造方法。
For example, this indication can take the following composition.
(1)
a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane;
A superlattice layer formed using the main surface as a crystal growth surface,
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
A nitride semiconductor device in which a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ≠ x2 and y1 ≠ y2.
(2)
The degree of lattice mismatch between the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer is 0.00048 or more.
(3)
The nitride semiconductor device according to (1) or (2), wherein the main surface is a (11-20) plane, a (11-22) plane, or a (11-24) plane.
(4)
A bonding structure layer formed using the surface of the superlattice layer as a crystal growth surface;
The nitride semiconductor device according to any one of (1) to (3), wherein the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the superlattice layer side. .
(5)
A bonding structure layer formed using the surface of the superlattice layer as a crystal growth surface;
The junction structure layer includes an active layer and an upper clad layer in this order from the superlattice layer side,
The superlattice layer also serves as a lower cladding layer. The nitride semiconductor device according to any one of (1) to (3).
(6)
a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane;
A superlattice layer formed using the main surface as a crystal growth surface,
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
A nitride semiconductor substrate in which a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ≠ x2 and y1 ≠ y2.
(7)
forming a superlattice layer with respect to a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the main surface as a crystal growth surface; Including
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
A method for manufacturing a nitride semiconductor substrate, wherein a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ≠ x2 and y1 ≠ y2.
(8)
a nitride semiconductor layer having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane;
A junction structure layer formed using the main surface as a crystal growth surface,
The junction structure layer includes a lower clad layer, an active layer, and an upper clad layer in this order from the nitride semiconductor layer side.
(9)
forming a superlattice layer on a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the principal surface as a crystal growth surface; ,
Forming a bulk layer using the surface of the superlattice layer as a crystal growth surface;
Forming a junction structure layer using the surface of the bulk layer as a crystal growth surface;
Removing the nitride semiconductor substrate and the superlattice layer,
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
The composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2.
The junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side. A method for manufacturing a nitride semiconductor device.
(10)
forming a junction structure layer with respect to a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the main surface as a crystal growth surface. ,
The junction structure layer includes a lower clad layer, an active layer, and an upper clad layer in this order from the nitride semiconductor substrate side. A method for manufacturing a nitride semiconductor device.

 本出願は、日本国特許庁において2016年6月20日に出願された日本特許出願番号第2016-121525号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-121525 filed on June 20, 2016 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.

 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (10)

 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板と、
 前記主面を結晶成長面として形成された超格子層と
を備え、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす
 窒化物半導体素子。
a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane;
A superlattice layer formed using the main surface as a crystal growth surface,
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
A nitride semiconductor device in which a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ≠ x2 and y1 ≠ y2.
 前記Alx1Iny1Gaz1N層と前記Alx2Iny2Gaz2N層との格子不整合度は、0.00048以上となっている
 請求項1に記載の窒化物半導体素子。
The nitride semiconductor device according to claim 1, wherein a lattice mismatch degree between the Al x1 In y1 Ga z1 N layer and the Al x2 In y2 Ga z2 N layer is 0.00048 or more.
 前記主面は、(11-20)面、(11-22)面または(11-24)面である
 請求項1に記載の窒化物半導体素子。
The nitride semiconductor device according to claim 1, wherein the main surface is a (11-20) plane, a (11-22) plane, or a (11-24) plane.
 前記超格子層の表面を結晶成長面として形成された接合構造層をさらに備え、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記超格子層側からこの順に含んで構成されている
 請求項1に記載の窒化物半導体素子。
A bonding structure layer formed using the surface of the superlattice layer as a crystal growth surface;
The nitride semiconductor device according to claim 1, wherein the junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the superlattice layer side.
 前記超格子層の表面を結晶成長面として形成された接合構造層をさらに備え、
 前記接合構造層は、活性層および上部クラッド層を前記超格子層側からこの順に含んで構成されており、
 前記超格子層は、下部クラッド層を兼ねている
 請求項1に記載の窒化物半導体素子。
A bonding structure layer formed using the surface of the superlattice layer as a crystal growth surface;
The junction structure layer includes an active layer and an upper clad layer in this order from the superlattice layer side,
The nitride semiconductor device according to claim 1, wherein the superlattice layer also serves as a lower cladding layer.
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材と、
 前記主面を結晶成長面として形成された超格子層と
を備え、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす
 窒化物半導体基板。
a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane;
A superlattice layer formed using the main surface as a crystal growth surface,
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
A nitride semiconductor substrate in which a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ≠ x2 and y1 ≠ y2.
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材に対して、前記主面を結晶成長面として超格子層を形成するステップを
 含み、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たす
 窒化物半導体基板の製造方法。
forming a superlattice layer with respect to a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the main surface as a crystal growth surface; Including
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
A method for manufacturing a nitride semiconductor substrate, wherein a composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of x1 ≠ x2 and y1 ≠ y2.
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体層と、
 前記主面を結晶成長面として形成された接合構造層と
 を備え、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記窒化物半導体層側からこの順に含んで構成されている
 窒化物半導体素子。
a nitride semiconductor layer having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane;
A junction structure layer formed using the main surface as a crystal growth surface,
The junction structure layer includes a lower clad layer, an active layer, and an upper clad layer in this order from the nitride semiconductor layer side.
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基材に対して、前記主面を結晶成長面として超格子層を形成するステップと、
 前記超格子層の表面を結晶成長面としてバルク層を形成するステップと、
 前記バルク層の表面を結晶成長面として接合構造層を形成するステップと、
 前記窒化物半導体基材および前記超格子層を除去するステップと
を含み、
 前記超格子層は、Alx1Iny1Gaz1N層(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)およびAlx2Iny2Gaz2N層(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)が交互に積層して構成されたものであり、
 前記Alx1Iny1Gaz1N層および前記Alx2Iny2Gaz2N層の組成比は、x1≠x2およびy1≠y2の少なくとも一方の式を満たし、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記窒化物半導体基材側からこの順に含んで構成されている
 窒化物半導体素子の製造方法。
forming a superlattice layer on a nitride semiconductor substrate having a principal surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the principal surface as a crystal growth surface; ,
Forming a bulk layer using the surface of the superlattice layer as a crystal growth surface;
Forming a junction structure layer using the surface of the bulk layer as a crystal growth surface;
Removing the nitride semiconductor substrate and the superlattice layer,
The superlattice layer includes an Al x1 In y1 Ga z1 N layer (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 ≦ 1, x1 + y1 + z1 = 1) and an Al x2 In y2 Ga z2 N layer (0 ≦ x2). ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 1, x2 + y2 + z2 = 1) are alternately stacked,
The composition ratio of the Al x1 In y1 Gaz1 N layer and the Al x2 In y2 Gaz2 N layer satisfies at least one of the expressions x1 ≠ x2 and y1 ≠ y2.
The junction structure layer includes a lower cladding layer, an active layer, and an upper cladding layer in this order from the nitride semiconductor substrate side. A method for manufacturing a nitride semiconductor device.
 c面からa軸方向にθ°以上(20°≦θ≦90°)傾斜した主面を有する窒化物半導体基板に対して、前記主面を結晶成長面として接合構造層を形成するステップを含み、
 前記接合構造層は、下部クラッド層、活性層および上部クラッド層を前記窒化物半導体基板側からこの順に含んで構成されている
 窒化物半導体素子の製造方法。
forming a junction structure layer with respect to a nitride semiconductor substrate having a main surface inclined by θ ° or more (20 ° ≦ θ ≦ 90 °) in the a-axis direction from the c-plane with the main surface as a crystal growth surface. ,
The junction structure layer includes a lower clad layer, an active layer, and an upper clad layer in this order from the nitride semiconductor substrate side. A method for manufacturing a nitride semiconductor device.
PCT/JP2017/014762 2016-06-20 2017-04-11 Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate WO2017221519A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017003057.9T DE112017003057T5 (en) 2016-06-20 2017-04-11 NITRIDE-SEMICONDUCTOR ELEMENT, NITRIDE-SUBSTRATE SUBSTRATE, PRODUCTION METHOD FOR A NITRIDE-SEMICONDUCTOR ELEMENT AND PRODUCTION PROCESS FOR A NITRIDE-SUBSTRATE SUBSTRATE
JP2018523352A JPWO2017221519A1 (en) 2016-06-20 2017-04-11 Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121525 2016-06-20
JP2016121525 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017221519A1 true WO2017221519A1 (en) 2017-12-28

Family

ID=60784544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014762 WO2017221519A1 (en) 2016-06-20 2017-04-11 Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate

Country Status (3)

Country Link
JP (1) JPWO2017221519A1 (en)
DE (1) DE112017003057T5 (en)
WO (1) WO2017221519A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384631A1 (en) * 2021-05-25 2022-12-01 Kabushiki Kaisha Toshiba Semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165498A (en) * 1993-10-08 1995-06-27 Mitsubishi Cable Ind Ltd Gan single crystal and its production
JPH0870139A (en) * 1994-06-24 1996-03-12 Nichia Chem Ind Ltd Method for crystal growth of n-type gallium nitride compound semiconductor
JPH08116090A (en) * 1994-08-22 1996-05-07 Rohm Co Ltd Manufacturing method of semiconductor light emitting device
JPH1168158A (en) * 1997-08-20 1999-03-09 Sanyo Electric Co Ltd Gallium nitride based compound semiconductor device
JP2008108779A (en) * 2006-10-23 2008-05-08 Rohm Co Ltd Semiconductor light emitting element
JP2011003661A (en) * 2009-06-17 2011-01-06 Rohm Co Ltd Semiconductor laser element
WO2013049817A1 (en) * 2011-09-30 2013-04-04 The Regents Of The University Of California Opto-electrical devices with reduced efficiency droop and forward voltage
JP2014508416A (en) * 2011-02-28 2014-04-03 コーニング インコーポレイテッド Semiconductor laser with indium-containing cladding layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864912A (en) * 1994-08-26 1996-03-08 Rohm Co Ltd Semiconductor light emitting element and its manufacture
JP2000244070A (en) * 1999-02-19 2000-09-08 Sony Corp Semiconductor device and semiconductor light-emitting element
EP1183761A2 (en) * 1999-03-26 2002-03-06 Matsushita Electronics Corporation Semiconductor structures having a strain compensated layer and method of fabrication
US8761218B2 (en) * 2010-04-05 2014-06-24 The Regents Of The University Of California Aluminum gallium nitride barriers and separate confinement heterostructure (SCH) layers for semipolar plane III-nitride semiconductor-based light emitting diodes and laser diodes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165498A (en) * 1993-10-08 1995-06-27 Mitsubishi Cable Ind Ltd Gan single crystal and its production
JPH0870139A (en) * 1994-06-24 1996-03-12 Nichia Chem Ind Ltd Method for crystal growth of n-type gallium nitride compound semiconductor
JPH08116090A (en) * 1994-08-22 1996-05-07 Rohm Co Ltd Manufacturing method of semiconductor light emitting device
JPH1168158A (en) * 1997-08-20 1999-03-09 Sanyo Electric Co Ltd Gallium nitride based compound semiconductor device
JP2008108779A (en) * 2006-10-23 2008-05-08 Rohm Co Ltd Semiconductor light emitting element
JP2011003661A (en) * 2009-06-17 2011-01-06 Rohm Co Ltd Semiconductor laser element
JP2014508416A (en) * 2011-02-28 2014-04-03 コーニング インコーポレイテッド Semiconductor laser with indium-containing cladding layer
WO2013049817A1 (en) * 2011-09-30 2013-04-04 The Regents Of The University Of California Opto-electrical devices with reduced efficiency droop and forward voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384631A1 (en) * 2021-05-25 2022-12-01 Kabushiki Kaisha Toshiba Semiconductor device
US12080788B2 (en) * 2021-05-25 2024-09-03 Kabushiki Kaisha Toshiba Semiconductor device
JP7558888B2 (en) 2021-05-25 2024-10-01 株式会社東芝 Semiconductor Device

Also Published As

Publication number Publication date
JPWO2017221519A1 (en) 2019-04-11
DE112017003057T5 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP4924185B2 (en) Nitride semiconductor light emitting device
US7949026B2 (en) Group III nitride semiconductor laser
US6541798B2 (en) Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
KR101361016B1 (en) Semiconductor laser, method of manufacturing semiconductor device, optical pickup, and optical disk apparatus
US20070008998A1 (en) Semiconductor light emitting device
US9847449B2 (en) Nitride semiconductor light-emitting device with periodic gain active layers
US8748868B2 (en) Nitride semiconductor light emitting device and epitaxial substrate
KR20060114683A (en) Baan-based III-VIII compound semiconductor light emitting device and method of manufacturing the same
US8483251B2 (en) Group III nitride semiconductor laser diode, and method for producing group III nitride semiconductor laser diode
JP2011151074A (en) Method for manufacturing nitride semiconductor device
JPH10229217A (en) Semiconductor light emitting element
US6631149B1 (en) Laser diode using group III nitride group compound semiconductor
JP2000332362A (en) Semiconductor device and semiconductor light emitting element
JP5310382B2 (en) Group III nitride semiconductor optical device and method for fabricating group III nitride semiconductor optical device
JP2010272593A (en) Nitride semiconductor light emitting element and manufacturing method of the same
JP4261592B2 (en) Nitride semiconductor light emitting device
WO2018163824A1 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
WO2017221519A1 (en) Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate
JP2009027022A (en) Nitride semiconductor light-emitting element
JP5332955B2 (en) Group III nitride semiconductor laser
TW201310827A (en) Iii nitride semiconductor laser element
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JP4363415B2 (en) Crystal film, crystal substrate and semiconductor device
JP2009224602A (en) Nitride semiconductor laser, method of manufacturing nitride semiconductor laser, and epitaxial wafer for nitride semiconductor laser
US12009637B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523352

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814990

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17814990

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载