WO2017208100A1 - 3d-printed myoelectric hand prosthesis with improved thumb movement - Google Patents
3d-printed myoelectric hand prosthesis with improved thumb movement Download PDFInfo
- Publication number
- WO2017208100A1 WO2017208100A1 PCT/IB2017/052890 IB2017052890W WO2017208100A1 WO 2017208100 A1 WO2017208100 A1 WO 2017208100A1 IB 2017052890 W IB2017052890 W IB 2017052890W WO 2017208100 A1 WO2017208100 A1 WO 2017208100A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prosthesis
- pinion
- fingers
- myoelectric
- mechanisms
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/54—Artificial arms or hands or parts thereof
Definitions
- the present invention relates to robotic prostheses for limb replacements, in particular with a myoelectric hand prosthesis manufactured by three-dimensional printing.
- robotic prostheses for limb replacement which work with both electric power (for example myoelectric prostheses) and include mechanical devices, these are generally very expensive and have difficulty adjusting to any size.
- the adjustment to the dimensions of the limbs of children is particularly difficult, since any modification in the dimensions of the prosthesis requires the change of the manufacturing mold. This limits access to a large number of patients to prosthetic aids that reduce the discomforts of amputations or congenital defects.
- the present invention solves the problems of the state of the art by providing a hand-held myoelectric prosthesis obtained by 3D printing, which comprises a plurality of mechanisms that provide independent movement to each finger and allow to adjust to any size of prosthesis, maintaining the strength and speed of the movements. Additionally, advantageously, the prosthesis of the present invention allows both the opposition of the thumb to the other fingers and the subterminolateral opposition thereof (key grip), and therefore provides a functionality closer to that of a human hand.
- Figure 1 shows a front view of the myoelectric prosthesis of the present invention.
- Figure 2 corresponds to a rear view of the myoelectric prosthesis of the present invention.
- Figure 3 illustrates the detail of the engine operation and the pinion arrangement that allows the movement of each of the fingers.
- Figure 4 shows the preferred way of closing the fingers in the myoelectric prosthesis of the invention, taking the index finger as a model.
- Figure 5 shows the preferred way in which hand opening occurs in the myoelectric prosthesis of the present invention, illustrated with the index finger.
- Figures 6A and 6B illustrate the mechanism for performing thumb opposition in the myoelectric prosthesis of the invention.
- Figures 7A and 7B show the preferred way of performing the thumb-to-bottom (key grip) opposition of the prosthesis of the present invention.
- Figure 8 shows the preferred way of adjusting the motor and pinions to resize the prosthesis of the invention.
- FIGS 9A and 9B illustrate the preferred way of performing the size reduction of the prosthesis of the invention.
- hand prostheses are required that can be made to the exact measure of the user's needs, maintaining the strength and speed of movements in any size and that provide finger movements more similar to one hand human
- the present invention solves the problems of the state of the art by providing a hand-held myoelectric prosthesis obtained by 3D printing, which allows a millimeter adjustment to the user's needs, has constant force and speed of movements regardless of the size of the prosthesis, and allows improved finger movements.
- the present invention relates to a hand-held myoelectric prosthesis obtained by 3D printing that comprises a plurality of mechanisms for moving the fingers, which allows to adjust to any size of prosthesis.
- Said plurality of mechanisms provides independent movement of each finger and allows both the opposition of the thumb to the other fingers and their subterminolateral opposition (key grip), similar to how it is done in a human hand.
- the prosthesis of the invention has myoelectric sensors that are located in contact with the user's skin, and capture the signals produced by the muscles to convert them into a binary signal. Said binary signal is conducted to a microcontroller, which interprets it, sends a transformed signal to the controller circuit of the plurality of mechanisms for moving the fingers, and thanks to software translates this signal into movement of the prosthesis.
- the myoelectric prosthesis of the invention employs two myoelectric sensors located in the user's forearm that transmit the signals for the opening, closing and the different hand grips.
- Figures 1 and 2 show a preferred embodiment of the prosthesis of the invention
- each of the fingers moves independently thanks to a plurality of mechanisms that respectively operate the index, middle, ring and little fingers (1), (2 ), (3) and (4).
- the thumb (9) has two mechanisms for its movement, a mechanism for flexion or extension (5) that achieves the opposition of the thumb to the other fingers and a mechanism for independent movement (6), that is, to obtain the subterminolateral opposition of the thumb.
- Each of the fingers comprises a lower phalanx (7) and an upper phalanx (8).
- the clamping parts (10) and (1 1) house the mechanisms for the movement of the fingers, which are fixed by means of screws (13) to the outer housing (12 ) which also houses the electronic part, forms the back of the hand and wrist and joins the contact cavity with the user.
- the plurality of mechanisms for the movement of the fingers of each of the fingers (1), (2), (3) and (4) comprises a motor (14), and an arrangement of pinions .
- the pinion arrangement of the plurality of mechanisms for moving the fingers of the myoelectric prosthesis of the invention It comprises a metal sprocket reduction mechanism (15) in which the motor (14) is embedded, and a first straight sprocket (16) which, when rotated, transmits the movement to one or more sprockets.
- the metal pinion reduction mechanism converts the engine rotation speed, with low torque, into a movement with lower speed but greater torque. From this metal pinion reduction mechanism (15) there is an axis parallel to the motor shaft (14) where the first straight pinion (16) is connected.
- the first straight pinion (16) is connected to a reducing pinion (17), which in turn moves a second straight pinion (18), attached to a cylinder (21).
- the Cylinder (21) holds a semi-rigid belt (19) of a pulley (20). The transmission of the movement to the upper phalanges (8) is obtained by means of the semi-rigid belt (19).
- the motor (14) is a direct current motor, more preferably a direct current metallic micro geared motor.
- the motor (14) has a torque between 0.01 and 3 Kg / cm, more preferably between 0.05 and 2.5 Kg / cm.
- Figure 4 shows the preferred way of closing each of the fingers of the myoelectric prosthesis of the invention, taking as an example the index finger.
- the rotation of the motor (14) is transmitted by the reduction mechanism (15) to the first straight pinion (16), the reducing pinion (17), and the second straight pinion (18), and the semi-rigid belt (19 ) makes traction in the upper phalanx (8), which transmits the movement to the lower phalanx (7) to the point where the tip of the finger touches the palm of the hand, where the motor (14) stops.
- the myoelectric prosthesis of the invention generates the opening movement, by reversing the direction of rotation of the motor (14), which causes the semi-rigid belt (19) to perform traction on the upper phalanx (8) in the opposite direction, that is, upwards.
- the movement is transmitted to the lower phalanx (7) and continues until the finger is fully extended.
- the myoelectric prosthesis of the present invention advantageously provides two independent movements of the thumb, controlled by two different mechanisms: a mechanism for flexion or extension (5) and a mechanism for independent movement (6), that is to say to obtain the subterminolateral opposition of the thumb. This advantageously makes the myoelectric prosthesis of the present invention provide movements closer to those possessed by a human hand.
- the opposition of the thumb to the other fingers is controlled by the flexion or extension mechanism (5) as evidenced in Figures 6A and 6B.
- said mechanism for flexion or extension (5) the output of the motor (14) with a metal pinion reduction mechanism (15) a first straight pinion (16) is connected, which in turn is connected to a reduction pinion ( 17).
- this reducer pinion (17) is connected to an additional reducer pinion (22), which is connected to the second straight pinion (18).
- Said second straight pinion (18) is attached to a support (23) that is responsible for supporting the entire mechanism for independent movement (6), and the thumb (9).
- the second straight pinion (18) moves, traction is made on the thumb (9) until it is in front of the other fingers.
- the inversion of the rotation allows the movement of the thumb (9) in the opposite direction, returning it to its open palm position.
- the myoelectric prosthesis of the present invention also allows for the sub-lateral opposition of the thumb, the "key grip", as shown in Figures 7A and 7B.
- the mechanism for independent movement (6) preferably comprises a motor (14), embedded in a metal pinion reduction mechanism (15), where the output of this motor is connected to a first straight pinion (16) , which is connected to a reduction pinion (17), which in turn is connected to a second straight pinion (18).
- This second straight pinion (18) is attached to a cylinder (21) that holds a semi-rigid belt (24), which is connected to the thumb (9).
- the mechanism for independent movement (6) moves the thumb (9) by the traction made by the semi-rigid belt (24).
- the myoelectric prosthesis that is the object of the present invention advantageously provides movements closer to those of a human hand, such as the thumb's sub-lateral opposition, with high precision, force and speed, regardless of the prosthesis size
- said force and speed of finger movements is adjusted by changing the torque value of the motor (14), and decreasing the diameters and number of teeth of the arrangement of pinions, for example of the first straight pinion (16), the reducing pinion (17) and the second straight pinion (18).
- the strength and speed of finger movements are kept constant.
- the variation of the size of the myoelectric prosthesis of the invention is carried out by 3D printing of the clamping pieces (10) and (1 1) and the outer shell (12) in the desired dimensions, and the adjustment of the movement mechanisms of the fingers (1), (2), (3), (4), (5) and (6), varying the diameters of the first straight pinion (16), the reducing pinion (17) and the second straight pinion (18).
- the torque required to move the fingers is 0.49 Kg / cm.
- a motor (14) with an output torque of 0.30 kg / cm is used and this is connected to the first straight pinion (16). Being directly on the motor shaft, the first straight pinion (16) retains the torque.
- said first straight pinion (16) has a diameter of 9.5mm and 24 teeth, when calculating the necessary output torque, it is obtained that it is possible to dispense with the reducing pinion (17) and connect the first straight pinion (16 ) to the second straight pinion (18), if the latter has a diameter of 17mm and 32 teeth.
- eliminating the gear pinion (17) results in a significant reduction in the length of the finger, and due to the torque ratio of the motor (14) and the diameters of the pinion arrangement connected to it, the torque to move the finger remains constant (0.49 Kg / cm).
- a motor (14) with a different torque it is possible to vary the diameter of the pinion arrangement to fit any size, maintaining the final torque needed to move the fingers.
Landscapes
- Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
The present invention relates to a 3D-printed myoelectric hand prosthesis with improved thumb movement, which comprises a plurality of mechanisms that provide independent movement to each finger and allow same to be fitted to any size of prosthesis, maintaining the strength and speed of the movements. Advantageously, the prosthesis of the present invention also allows the opposition of the thumb to the other fingers and the subterminolateral (key grip) opposition of the thumb, thereby providing a functionality closer to that of a human hand.
Description
PRÓTESIS ISOELÉCTRICA DE MANO OBTENIDA POR IMPRESIÓN 3D CON MOVIMIENTO MEJORADO DEL PULGAR ISOELECTRIC PROSTHETICS OF HAND OBTAINED BY 3D PRINTING WITH IMPROVED MOVEMENT OF THE THUMB
Campo técnico de la invención Technical Field of the Invention
La presente invención se relaciona con prótesis robóticas para reemplazos de extremidades, en particular con una prótesis mioeléctrica para mano fabricada mediante impresión en tres dimensiones. The present invention relates to robotic prostheses for limb replacements, in particular with a myoelectric hand prosthesis manufactured by three-dimensional printing.
Antecedentes de la invención Background of the invention
Un gran número de personas en el mundo carece de al menos una de sus manos por condiciones congénitas o por traumatismos. Si bien existen en la actualidad prótesis robóticas para reemplazo de extremidades, que funcionan tanto con energía eléctrica (por ejemplo prótesis mioeléctricas) como que incluyen dispositivo mecánicos, estas son en general de muy alto costo y poseen dificultades para ajustarse a cualquier tamaño. Por ejemplo el ajuste a las dimensiones de las extremidades de los niños es particularmente difícil, ya que cualquier modificación en las dimensiones de la prótesis requiere el cambio del molde de fabricación. Esto limita el acceso a un amplio número de pacientes a ayudas prostéticas que aminoran las incomodidades de las amputaciones o defectos congénitos. A large number of people in the world lack at least one of their hands due to congenital conditions or trauma. Although there are currently robotic prostheses for limb replacement, which work with both electric power (for example myoelectric prostheses) and include mechanical devices, these are generally very expensive and have difficulty adjusting to any size. For example, the adjustment to the dimensions of the limbs of children is particularly difficult, since any modification in the dimensions of the prosthesis requires the change of the manufacturing mold. This limits access to a large number of patients to prosthetic aids that reduce the discomforts of amputations or congenital defects.
En los últimos años se han empezado a desarrollar alternativas más económicas para suplir la demanda de prótesis de diferentes tamaños, empleando la tecnología de impresión en tres dimensiones (impresión 3D). Gracias a este tipo de impresión recientemente se han obtenido prótesis hechas a medida de costo menor al de las prótesis tradicionales. Así mismo, este sistema de impresión permite una fabricación de la prótesis mucho más rápida, permitiendo su diseño y producción en pocos días. In recent years they have begun to develop cheaper alternatives to meet the demand for prostheses of different sizes, using three-dimensional printing technology (3D printing). Thanks to this type of printing, we have recently obtained prostheses tailored to cost less than traditional prostheses. Likewise, this printing system allows a much faster manufacturing of the prosthesis, allowing its design and production in a few days.
Sin embargo, muchas veces el cambio de tamaño en la prótesis no es totalmente eficiente debido a que en general las prótesis impresas en 3D emplean servo motores que son producidos en tamaños estándar y por lo tanto However, many times the size change in the prosthesis is not totally efficient because in general 3D printed prostheses use servo motors that are produced in standard sizes and therefore
i
limitan las posibles dimensiones de las prótesis. Así mismo la reducción del tamaño conlleva una disminución en la fuerza y velocidad de los movimientos. i limit the possible dimensions of the prostheses. Likewise the reduction of the size entails a decrease in the strength and speed of the movements.
Sumado a lo anterior, las prótesis fabricadas por impresión 3D aún no imitan completamente todos los posibles movimientos de los dedos de la mano humana. In addition to the above, prostheses made by 3D printing still do not completely mimic all possible movements of the fingers of the human hand.
Existe por lo tanto una necesidad en el estado de la técnica de una prótesis mejorada que sea de bajo costo de producción, pueda hacerse a medida sin reducir las propiedades de fuerza y velocidad de los movimientos de los dedos y que brinde un mayor número de posibles movimientos de los dedos que se acerquen más a las posibilidades de una mano humana. There is therefore a need in the state of the art for an improved prosthesis that is of low production cost, can be tailored without reducing the strength and speed properties of finger movements and that provides a greater number of possible finger movements that are closer to the possibilities of a human hand.
Breve descripción de la invención Brief Description of the Invention
De manera ventajosa la presente invención soluciona los problemas del estado de la técnica al proporcionar una prótesis mioeléctrica de mano obtenida por impresión 3D, la cual comprende una pluralidad de mecanismos que brindan un movimiento independiente a cada dedo y permiten ajustarse a cualquier tamaño de prótesis, manteniendo la fuerza y velocidad de los movimientos. Adicionalmente, de forma ventajosa la prótesis de la presente invención permite tanto la oposición del pulgar a los demás dedos como la oposición subterminolateral del mismo (agarre de llave), y por lo tanto brinda una funcionalidad más cercana a la de una mano humana. Advantageously, the present invention solves the problems of the state of the art by providing a hand-held myoelectric prosthesis obtained by 3D printing, which comprises a plurality of mechanisms that provide independent movement to each finger and allow to adjust to any size of prosthesis, maintaining the strength and speed of the movements. Additionally, advantageously, the prosthesis of the present invention allows both the opposition of the thumb to the other fingers and the subterminolateral opposition thereof (key grip), and therefore provides a functionality closer to that of a human hand.
Breve descripción de las figuras Brief description of the figures
La Figura 1 muestra una vista frontal de la prótesis mioeléctrica de la presente invención. Figure 1 shows a front view of the myoelectric prosthesis of the present invention.
La Figura 2 corresponde a una vista posterior de la prótesis mioeléctrica de la presente invención. Figure 2 corresponds to a rear view of the myoelectric prosthesis of the present invention.
La Figura 3 ilustra el detalle del funcionamiento del motor y el arreglo de piñones que permite el movimiento de cada uno de los dedos.
La Figura 4 muestra la forma preferida de realizar el cerrado de los dedos en la prótesis mioeléctrica de la invención, tomando el dedo índice como modelo. Figure 3 illustrates the detail of the engine operation and the pinion arrangement that allows the movement of each of the fingers. Figure 4 shows the preferred way of closing the fingers in the myoelectric prosthesis of the invention, taking the index finger as a model.
La Figura 5 enseña la forma preferida en la cual ocurre la apertura de la mano en la prótesis mioeléctrica de la presente invención, ilustrado con el dedo índice. Figure 5 shows the preferred way in which hand opening occurs in the myoelectric prosthesis of the present invention, illustrated with the index finger.
Las Figuras 6A y 6B ilustran el mecanismo para realizar la oposición del pulgar en la prótesis mioeléctrica de la invención. Figures 6A and 6B illustrate the mechanism for performing thumb opposition in the myoelectric prosthesis of the invention.
Las Figuras 7A y 7B enseñan la manera preferida de realizar la oposición subterminolateral del pulgar (agarre de llave) de la prótesis de la presente invención. Figures 7A and 7B show the preferred way of performing the thumb-to-bottom (key grip) opposition of the prosthesis of the present invention.
La Figura 8 muestra la forma preferida de ajuste del motor y los piñones al cambio de tamaño de la prótesis de la invención. Figure 8 shows the preferred way of adjusting the motor and pinions to resize the prosthesis of the invention.
Las Figuras 9A y 9B ilustran la manera preferida de realizar la disminución de tamaño de la prótesis de la invención. Figures 9A and 9B illustrate the preferred way of performing the size reduction of the prosthesis of the invention.
Descripción detallada de la invención Detailed description of the invention
Dentro del estado de la técnica se requieren prótesis de mano que puedan ser hechas a la medida exacta de las necesidades del usuario, manteniendo la fuerza y velocidad de los movimientos en cualquier tamaño y que brinden movimientos de los dedos de forma más similar a una mano humana. Within the state of the art, hand prostheses are required that can be made to the exact measure of the user's needs, maintaining the strength and speed of movements in any size and that provide finger movements more similar to one hand human
En este sentido la presente invención soluciona los problemas del estado de la técnica al proporcionar una prótesis mioeléctrica de mano obtenida por impresión 3D, la cual permite un ajuste milimétrico a las necesidades del usuario, posee fuerza y velocidad de movimientos constantes sin importar el tamaño de la prótesis, y permite movimientos mejorados de los dedos. In this sense, the present invention solves the problems of the state of the art by providing a hand-held myoelectric prosthesis obtained by 3D printing, which allows a millimeter adjustment to the user's needs, has constant force and speed of movements regardless of the size of the prosthesis, and allows improved finger movements.
De esta forma, la presente invención se refiere a una prótesis mioeléctrica de mano obtenida por impresión 3D que comprende una pluralidad de mecanismos para mover los dedos, que permite ajustarse a cualquier tamaño de prótesis. Dicha pluralidad de mecanismos brinda movimiento independiente de cada dedo y permite tanto la oposición del pulgar a los demás dedos como
su oposición subterminolateral (agarre de llave), de forma similar a como se realiza en una mano humana. In this way, the present invention relates to a hand-held myoelectric prosthesis obtained by 3D printing that comprises a plurality of mechanisms for moving the fingers, which allows to adjust to any size of prosthesis. Said plurality of mechanisms provides independent movement of each finger and allows both the opposition of the thumb to the other fingers and their subterminolateral opposition (key grip), similar to how it is done in a human hand.
De manera preferida, la prótesis de la invención cuenta con sensores mioeléctricos que se localizan en contacto con la piel del usuario, y capturan las señales producidas por los músculos para convertirlos en una señal binaria. Dicha señal binaria se conduce a un microcontrolador, el cual la interpreta, envía una señal transformada al circuito controlador de la pluralidad de mecanismos para mover los dedos, y gracias a un software traduce esta señal en movimiento de la prótesis. Preferably, the prosthesis of the invention has myoelectric sensors that are located in contact with the user's skin, and capture the signals produced by the muscles to convert them into a binary signal. Said binary signal is conducted to a microcontroller, which interprets it, sends a transformed signal to the controller circuit of the plurality of mechanisms for moving the fingers, and thanks to software translates this signal into movement of the prosthesis.
De manera preferida, la prótesis mioeléctrica de la invención emplea dos sensores mioeléctricos localizados en el antebrazo del usuario que transmiten las señales para la apertura, cierre y los diferentes agarres de la mano. Preferably, the myoelectric prosthesis of the invention employs two myoelectric sensors located in the user's forearm that transmit the signals for the opening, closing and the different hand grips.
Las Figuras 1 y 2 muestran una realización preferida de la prótesis de la invención, cada uno de los dedos se mueve de manera independiente gracias a una pluralidad de mecanismos que accionan respectivamente los dedos índice, medio, anular y meñique (1 ), (2), (3) y (4). Por su parte, de forma preferida el pulgar (9) cuenta con dos mecanismos para su movimiento, un mecanismo para flexión o extensión (5) que logra la oposición del pulgar a los demás dedos y un mecanismo para el movimiento independiente (6), es decir para obtener la oposición subterminolateral del pulgar. Cada uno de los dedos comprende una falange inferior (7) y una falange superior (8). Figures 1 and 2 show a preferred embodiment of the prosthesis of the invention, each of the fingers moves independently thanks to a plurality of mechanisms that respectively operate the index, middle, ring and little fingers (1), (2 ), (3) and (4). On the other hand, preferably the thumb (9) has two mechanisms for its movement, a mechanism for flexion or extension (5) that achieves the opposition of the thumb to the other fingers and a mechanism for independent movement (6), that is, to obtain the subterminolateral opposition of the thumb. Each of the fingers comprises a lower phalanx (7) and an upper phalanx (8).
Tal como se muestra en dichas Figuras 1 y 2, las piezas de sujeción (10) y (1 1 ) alojan los mecanismos para el movimiento de los dedos, los cuales se fijan por medio de tornillos (13) a la carcasa exterior (12) que aloja además la parte electrónica, forma la parte posterior de la mano y la muñeca y se une a la cavidad de contacto con el usuario. As shown in said Figures 1 and 2, the clamping parts (10) and (1 1) house the mechanisms for the movement of the fingers, which are fixed by means of screws (13) to the outer housing (12 ) which also houses the electronic part, forms the back of the hand and wrist and joins the contact cavity with the user.
Como lo enseña la Figura 3, la pluralidad de mecanismos para el movimiento de los dedos de cada uno de los dedos (1 ), (2), (3) y (4) comprende un motor (14), y un arreglo de piñones. As Figure 3 teaches, the plurality of mechanisms for the movement of the fingers of each of the fingers (1), (2), (3) and (4) comprises a motor (14), and an arrangement of pinions .
En una realización preferida el arreglo de piñones de la pluralidad de mecanismos para mover los dedos de la prótesis mioeléctrica de la invención
comprende un mecanismo reductor de piñones metálicos (15) en el cual se incrusta el motor (14), y un primer piñón recto (16) que al girar transmite el movimiento a uno o más piñones. In a preferred embodiment the pinion arrangement of the plurality of mechanisms for moving the fingers of the myoelectric prosthesis of the invention It comprises a metal sprocket reduction mechanism (15) in which the motor (14) is embedded, and a first straight sprocket (16) which, when rotated, transmits the movement to one or more sprockets.
En esta realización, el mecanismo reductor de piñones metálicos (15) convierte la velocidad de rotación del motor, con bajo torque, en un movimiento con menor velocidad pero mayor torque. De este mecanismo reductor de piñones metálicos (15) sale un eje paralelo al eje de motor (14) donde se conecta el primer piñón recto (16). In this embodiment, the metal pinion reduction mechanism (15) converts the engine rotation speed, with low torque, into a movement with lower speed but greater torque. From this metal pinion reduction mechanism (15) there is an axis parallel to the motor shaft (14) where the first straight pinion (16) is connected.
En una realización preferida, el primer piñón recto (16) se conecta a un piñón reductor (17), el cual a su vez mueve un segundo piñón recto (18), unido a un cilindro (21 ). El Cilindro (21 ) sostiene una correa semirrígida (19) de una polea (20). La transmisión del movimiento a las falanges superiores (8) se obtiene por medio de la correa semirrígida (19). In a preferred embodiment, the first straight pinion (16) is connected to a reducing pinion (17), which in turn moves a second straight pinion (18), attached to a cylinder (21). The Cylinder (21) holds a semi-rigid belt (19) of a pulley (20). The transmission of the movement to the upper phalanges (8) is obtained by means of the semi-rigid belt (19).
En una realización preferida de la invención el motor (14) es un motor de corriente directa, más preferiblemente un micro motorreductor metálico de corriente directa. De manera preferida el motor (14) tiene un torque entre 0,01 y 3 Kg/cm, más preferiblemente entre 0,05 y 2,5 Kg/cm. In a preferred embodiment of the invention the motor (14) is a direct current motor, more preferably a direct current metallic micro geared motor. Preferably, the motor (14) has a torque between 0.01 and 3 Kg / cm, more preferably between 0.05 and 2.5 Kg / cm.
La Figura 4 enseña la forma preferida de realizar el cerrado de cada uno de los dedos de la prótesis mioeléctrica de la invención, tomando como ejemplo el dedo índice. En este movimiento, la rotación del motor (14) es transmitida por el mecanismo reductor (15) al primer piñón recto (16), el piñón reductor (17), y el segundo piñón recto (18), y la correa semirrígida (19) hace tracción en la falange superior (8), la cual transmite el movimiento a la falange inferior (7) hasta el punto en el cual la punta del dedo toca la palma de la mano, donde el motor (14) se detiene. Figure 4 shows the preferred way of closing each of the fingers of the myoelectric prosthesis of the invention, taking as an example the index finger. In this movement, the rotation of the motor (14) is transmitted by the reduction mechanism (15) to the first straight pinion (16), the reducing pinion (17), and the second straight pinion (18), and the semi-rigid belt (19 ) makes traction in the upper phalanx (8), which transmits the movement to the lower phalanx (7) to the point where the tip of the finger touches the palm of the hand, where the motor (14) stops.
Por otro lado, tal como lo muestra la Figura 5, de manera preferida la prótesis mioeléctrica de la invención genera el movimiento de apertura, por la inversión del sentido del giro del motor (14), que hace que la correa semirrígida (19) realice tracción sobre la falange superior (8) en sentido contrario, es decir, hacia arriba. El movimiento se transmite a la falange inferior (7) y continúa hasta que el dedo queda completamente extendido.
Como se expuso anteriormente, de manera ventajosa la prótesis mioeléctrica de la presente invención brinda dos movimientos independientes del pulgar, controlados por dos mecanismos diferentes: un mecanismo para flexión o extensión (5) y un mecanismo para el movimiento independiente (6), es decir para obtener la oposición subterminolateral del pulgar. Esto hace que de manera ventajosa la prótesis mioeléctrica de la presente invención brinde movimientos más cercanos a los que posee una mano humana. On the other hand, as shown in Figure 5, preferably the myoelectric prosthesis of the invention generates the opening movement, by reversing the direction of rotation of the motor (14), which causes the semi-rigid belt (19) to perform traction on the upper phalanx (8) in the opposite direction, that is, upwards. The movement is transmitted to the lower phalanx (7) and continues until the finger is fully extended. As stated above, the myoelectric prosthesis of the present invention advantageously provides two independent movements of the thumb, controlled by two different mechanisms: a mechanism for flexion or extension (5) and a mechanism for independent movement (6), that is to say to obtain the subterminolateral opposition of the thumb. This advantageously makes the myoelectric prosthesis of the present invention provide movements closer to those possessed by a human hand.
De esta forma, preferiblemente la oposición del pulgar a los demás dedos es controlada por el mecanismo para flexión o extensión (5) tal como se evidencia de las Figuras 6A y 6B. En dicho mecanismo para flexión o extensión (5) la salida el del motor (14) con un mecanismo reductor de piñones metálicos (15) se conecta un primer piñón recto (16), el cual a su vez se conecta a un piñón reductor (17). Por otro lado, este piñón reductor (17) se conecta a un piñón reductor adicional (22), el cual se conecta al segundo piñón recto (18). Dicho segundo piñón recto (18) está unido a un soporte (23) que se encarga de sostener todo el mecanismo para el movimiento independiente (6), y el dedo pulgar (9). Al moverse el segundo piñón recto (18) se hace tracción sobre el dedo pulgar (9) hasta que se encuentre frente a los demás dedos. De igual forma, la inversión de la rotación permite el movimiento del pulgar (9) en sentido contrario, devolviéndolo a su posición de palma abierta. Thus, preferably the opposition of the thumb to the other fingers is controlled by the flexion or extension mechanism (5) as evidenced in Figures 6A and 6B. In said mechanism for flexion or extension (5) the output of the motor (14) with a metal pinion reduction mechanism (15) a first straight pinion (16) is connected, which in turn is connected to a reduction pinion ( 17). On the other hand, this reducer pinion (17) is connected to an additional reducer pinion (22), which is connected to the second straight pinion (18). Said second straight pinion (18) is attached to a support (23) that is responsible for supporting the entire mechanism for independent movement (6), and the thumb (9). When the second straight pinion (18) moves, traction is made on the thumb (9) until it is in front of the other fingers. Similarly, the inversion of the rotation allows the movement of the thumb (9) in the opposite direction, returning it to its open palm position.
Por otro lado, de manera ventajosa la prótesis mioeléctrica de la presente invención permite también la oposición subterminolateral del pulgar, el "agarre de llave", tal como se muestra en las Figuras 7A y 7B. Para esto, de manera preferida el mecanismo para el movimiento independiente (6) comprende un motor (14), incrustado en un mecanismo reductor de piñones metálicos (15), donde la salida de este motor está conectada a un primer piñón recto (16), el cual se conecta a un piñón reductor (17), que a su vez se conecta a un segundo piñón recto (18). Este segundo piñón recto (18) está unido a un cilindro (21 ) que sostiene una correa semirrígida (24), la cual se conecta al pulgar (9). Como en el caso de apertura y cierre de los demás dedos, el mecanismo para el movimiento independiente (6) mueve el pulgar (9) por la tracción hecha por la correa semirrígida (24).
Como consecuencia de lo anterior, de forma ventajosa la prótesis mioeléctrica que es objeto de la presente invención brinda movimientos más cercanos a los que posee una mano humana, como es la oposición subterminolateral del pulgar, con alta precisión, fuerza y velocidad, con independencia del tamaño de la prótesis. On the other hand, advantageously, the myoelectric prosthesis of the present invention also allows for the sub-lateral opposition of the thumb, the "key grip", as shown in Figures 7A and 7B. For this, the mechanism for independent movement (6) preferably comprises a motor (14), embedded in a metal pinion reduction mechanism (15), where the output of this motor is connected to a first straight pinion (16) , which is connected to a reduction pinion (17), which in turn is connected to a second straight pinion (18). This second straight pinion (18) is attached to a cylinder (21) that holds a semi-rigid belt (24), which is connected to the thumb (9). As in the case of opening and closing the other fingers, the mechanism for independent movement (6) moves the thumb (9) by the traction made by the semi-rigid belt (24). As a result of the foregoing, the myoelectric prosthesis that is the object of the present invention advantageously provides movements closer to those of a human hand, such as the thumb's sub-lateral opposition, with high precision, force and speed, regardless of the prosthesis size
De forma preferida, en la prótesis mioeléctrica de la presente invención, dicha fuerza y velocidad de los movimientos de los dedos se ajusta mediante el cambio de valor de torque del motor (14), y la disminución de los diámetros y número de dientes del arreglo de piñones, por ejemplo del primer piñón recto (16), el piñón reductor (17) y el segundo piñón recto (18). De esta forma, sin importar el tamaño de la prótesis se mantienen constantes la fuerza y la velocidad de los movimientos de los dedos. Preferably, in the myoelectric prosthesis of the present invention, said force and speed of finger movements is adjusted by changing the torque value of the motor (14), and decreasing the diameters and number of teeth of the arrangement of pinions, for example of the first straight pinion (16), the reducing pinion (17) and the second straight pinion (18). In this way, regardless of the size of the prosthesis, the strength and speed of finger movements are kept constant.
Consecuentemente, de forma preferida la variación del tamaño de la prótesis mioeléctrica de la invención se realiza mediante la impresión 3D de las piezas de sujeción (10) y (1 1 ) y la carcasa exterior (12) en las dimensiones deseadas, y el ajuste de los mecanismos de movimiento de los dedos (1 ), (2), (3), (4), (5) y (6), variando los diámetros del primer piñón recto (16), el piñón reductor (17) y el segundo piñón recto (18). Consequently, preferably the variation of the size of the myoelectric prosthesis of the invention is carried out by 3D printing of the clamping pieces (10) and (1 1) and the outer shell (12) in the desired dimensions, and the adjustment of the movement mechanisms of the fingers (1), (2), (3), (4), (5) and (6), varying the diameters of the first straight pinion (16), the reducing pinion (17) and the second straight pinion (18).
Ejemplo Example
Reducción del tamaño de la prótesis. Reduction of the size of the prosthesis.
En una realización de la invención el torque requerido para mover los dedos es de 0.49 Kg/cm. In one embodiment of the invention the torque required to move the fingers is 0.49 Kg / cm.
Se emplea un motor (14) con un torque de salida de 0.30 Kg/cm y este se conecta al primer piñón recto (16). Al estar directamente sobre el eje del motor, el primer piñón recto (16) conserva el torque. A motor (14) with an output torque of 0.30 kg / cm is used and this is connected to the first straight pinion (16). Being directly on the motor shaft, the first straight pinion (16) retains the torque.
Si dicho primer piñón recto (16) tiene un diámetro de 9,5mm y 24 dientes, al realizar el cálculo correspondiente al torque de salida necesario, se obtiene que es posible prescindir del piñón reductor (17) y conectar el primer piñón recto (16) al segundo piñón recto (18), si este último posee un diámetro de 17mm y 32 dientes.
Como se ilustra en la figura 8, al eliminar el piñón reductor (17) se obtiene una reducción significativa de la longitud del dedo, y debido a la relación de torque del motor (14) y los diámetros del arreglo de piñones conectado a este, el torque para mover el dedo se mantiene constante (0.49 Kg/cm). De manera similar al emplear un motor (14) con un torque distinto es posible variar el diámetro del arreglo de piñones para ajustarse a cualquier tamaño, manteniendo el torque final necesario para mover los dedos. If said first straight pinion (16) has a diameter of 9.5mm and 24 teeth, when calculating the necessary output torque, it is obtained that it is possible to dispense with the reducing pinion (17) and connect the first straight pinion (16 ) to the second straight pinion (18), if the latter has a diameter of 17mm and 32 teeth. As illustrated in Figure 8, eliminating the gear pinion (17) results in a significant reduction in the length of the finger, and due to the torque ratio of the motor (14) and the diameters of the pinion arrangement connected to it, the torque to move the finger remains constant (0.49 Kg / cm). Similarly, when using a motor (14) with a different torque, it is possible to vary the diameter of the pinion arrangement to fit any size, maintaining the final torque needed to move the fingers.
Como se enseña en las Figuras 9A y 9B, la variación del tamaño de las piezas de sujeción (10) y (1 1 ) y de la carcasa exterior (1 2), permiten reducir o aumentar el tamaño de la prótesis mioeléctrica de la invención a conveniencia. As shown in Figures 9A and 9B, the variation of the size of the clamping pieces (10) and (1 1) and of the outer shell (1 2), allow to reduce or increase the size of the myoelectric prosthesis of the invention at convenience
Consecuentemente, al variar los diámetros y número de dientes del arreglo de piñones, es decir, del primer piñón recto (16), el piñón reductor (17) y el segundo piñón recto (18), y al modificar los tamaños de las piezas de sujeción (10) y (1 1 ) y de la carcasa exterior (12), se pueden obtener prótesis de distintos tamaños, con una precisión milimétrica y, al ser las piezas obtenidas por impresión 3D, el proceso es rápido y con bajo costo. Consequently, by varying the diameters and number of teeth of the pinion arrangement, that is, the first straight pinion (16), the reducing pinion (17) and the second straight pinion (18), and when changing the sizes of the pieces of clamping (10) and (1 1) and of the outer casing (12), prostheses of different sizes can be obtained, with pinpoint accuracy and, being the pieces obtained by 3D printing, the process is fast and inexpensive.
Se entiende que las realizaciones preferidas de la invención aquí reveladas son únicamente ilustrativas y no limitan el alcance de la invención únicamente a estas. Las variaciones evidentes para la persona versada en la materia están también incluidas dentro del alcance de la invención.
It is understood that the preferred embodiments of the invention disclosed herein are illustrative only and do not limit the scope of the invention only to these. The obvious variations for the person versed in the subject are also included within the scope of the invention.
Claims
1. Una prótesis mioeléctrica de mano obtenida por impresión 3D caracterizada porque comprende una pluralidad de mecanismos para mover los dedos, donde dicha pluralidad de mecanismos brinda movimiento independiente a cada dedo, permite ajustarse a cualquier tamaño de prótesis y produce tanto la oposición del pulgar a los demás dedos como la oposición subterminolateral del mismo. 1. A myoelectric hand prosthesis obtained by 3D printing characterized in that it comprises a plurality of mechanisms to move the fingers, where said plurality of mechanisms provides independent movement to each finger, allows adjustment to any size of prosthesis and produces both the opposition of the thumb to the other fingers as the subterminolateral opposition of the same.
2. La prótesis mioeléctrica de acuerdo con la reivindicación 1 caracterizada además porque la oposición del pulgar a los demás dedos y la oposición subterminolateral del pulgar se producen por dos mecanismos distintos. 2. The myoelectric prosthesis according to claim 1 further characterized in that the opposition of the thumb to the other fingers and the subterminolateral opposition of the thumb are produced by two different mechanisms.
3. La prótesis mioeléctrica de cualquiera de las reivindicaciones anteriores en donde pluralidad de mecanismos para mover los dedos permite mantener constante el torque necesario para mover los dedos independiente del tamaño de la prótesis. 3. The myoelectric prosthesis of any of the previous claims wherein a plurality of mechanisms for moving the fingers allows the torque necessary to move the fingers to be kept constant regardless of the size of the prosthesis.
4. La prótesis mioeléctrica de cualquiera de las reivindicaciones anteriores en la que pluralidad de mecanismos para mover los dedos (1 ), (2), (3), (4), (5) y (6), comprenden un motor (14) y un arreglo de piñones. 4. The myoelectric prosthesis of any of the preceding claims wherein a plurality of mechanisms for moving the fingers (1), (2), (3), (4), (5) and (6) comprise a motor (14). ) and an arrangement of pine nuts.
5. La prótesis mioeléctrica de la reivindicación 4, en donde el arreglo de piñones de la pluralidad de mecanismos para mover los dedos (1 ), (2), (3), (4), (5) y (6) comprende un mecanismo reductor de piñones metálicos (15) en el cual se incrusta el motor (14), y un primer piñón recto (16) que transmite el movimiento a uno o más piñones.
5. The myoelectric prosthesis of claim 4, wherein the pinion arrangement of the plurality of mechanisms for moving the fingers (1), (2), (3), (4), (5) and (6) comprises a reduction mechanism of metal pinions (15) in which the motor (14) is embedded, and a first straight pinion (16) that transmits the movement to one or more pinions.
6. La prótesis mioeléctrica de la reivindicación 5, en donde el primer piñón recto (16) se conecta a un piñón reductor (17) el cual a su vez mueve un segundo piñón recto (18), unido a un cilindro (21 ) que sostiene una correa semirrígida (19) de una polea (20). 6. The myoelectric prosthesis of claim 5, wherein the first spur gear (16) is connected to a reduction pinion (17) which in turn moves a second spur gear (18), attached to a cylinder (21) that It holds a semi-rigid belt (19) from a pulley (20).
7. La prótesis mioeléctrica de la reivindicación 5, en donde el primer piñón recto (16) se conecta a un piñón reductor (17) el cual a su vez mueve un segundo piñón recto (18), y en donde el segundo piñón recto (18) está unido a un cilindro (21 ) que sostiene una correa semirrígida (24). 7. The myoelectric prosthesis of claim 5, wherein the first spur gear (16) connects to a reduction pinion (17) which in turn moves a second spur gear (18), and wherein the second spur gear ( 18) is attached to a cylinder (21) that supports a semi-rigid belt (24).
8. La prótesis mioeléctrica de la reivindicación 5, en donde el primer piñón recto (16) se conecta a un piñón reductor (17) que se conecta a un piñón reductor adicional (22), el cual se conecta al segundo piñón recto (18) unido a un soporte (23). 8. The myoelectric prosthesis of claim 5, wherein the first straight pinion (16) is connected to a reduction pinion (17) which is connected to an additional reduction pinion (22), which is connected to the second straight pinion (18). ) attached to a support (23).
9. La prótesis mioeléctrica de cualquiera de las reivindicaciones anteriores en donde el tamaño de la prótesis puede variarse cambiando las dimensiones de las piezas de sujeción (10) y (1 1 ) y la carcasa exterior (12), y ajustando la pluralidad de mecanismos de movimiento de los dedos (1 ), (2), (3), (4), (5) y (6), por medio de la variación del diámetro del arreglo de piñones. 9. The myoelectric prosthesis of any of the preceding claims wherein the size of the prosthesis can be varied by changing the dimensions of the fastening parts (10) and (1 1) and the outer casing (12), and adjusting the plurality of mechanisms of movement of the fingers (1), (2), (3), (4), (5) and (6), by varying the diameter of the pinion arrangement.
10. La prótesis mioeléctrica de acuerdo con cualquier de las reivindicaciones anteriores, en las que el motor (14) es un micro motorreductor metálico de corriente directa.
10. The myoelectric prosthesis according to any of the preceding claims, wherein the motor (14) is a direct current metallic micro-reduction motor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CO16142424 | 2016-05-31 | ||
CO16142424 | 2016-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017208100A1 true WO2017208100A1 (en) | 2017-12-07 |
Family
ID=60479189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2017/052890 WO2017208100A1 (en) | 2016-05-31 | 2017-05-17 | 3d-printed myoelectric hand prosthesis with improved thumb movement |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017208100A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116079690A (en) * | 2023-02-10 | 2023-05-09 | 哈尔滨工业大学 | A thumb-mounted device and a dexterous hand with built-in driver |
US11660821B2 (en) | 2020-07-28 | 2023-05-30 | International Business Machines Corporation | Collaboration of three dimensional printing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3509583A (en) * | 1965-09-09 | 1970-05-05 | Bendix Corp | Electro-mechanical hand having tactile sensing means |
WO2003017878A1 (en) * | 2001-08-27 | 2003-03-06 | Bergomed Ab | Mechanical hand with the gripping ability of the human hand |
CO5290261A1 (en) * | 2002-11-06 | 2003-06-27 | Paez Fabio Barbosa | ARTICULATED ELECTRIC PROTESIS OF MUNECA AND ANTEBRAZO HAND |
EP2653137A1 (en) * | 2012-04-20 | 2013-10-23 | Prensilia S.r.l. | Self-contained multifunctional hand prosthesis |
WO2016005871A1 (en) * | 2014-07-07 | 2016-01-14 | University Of Cape Town | Underactuated prosthetic hand |
US20160073584A1 (en) * | 2014-09-12 | 2016-03-17 | Washington State University | Robotic systems, methods, and end-effectors for harvesting produce |
-
2017
- 2017-05-17 WO PCT/IB2017/052890 patent/WO2017208100A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3509583A (en) * | 1965-09-09 | 1970-05-05 | Bendix Corp | Electro-mechanical hand having tactile sensing means |
WO2003017878A1 (en) * | 2001-08-27 | 2003-03-06 | Bergomed Ab | Mechanical hand with the gripping ability of the human hand |
CO5290261A1 (en) * | 2002-11-06 | 2003-06-27 | Paez Fabio Barbosa | ARTICULATED ELECTRIC PROTESIS OF MUNECA AND ANTEBRAZO HAND |
EP2653137A1 (en) * | 2012-04-20 | 2013-10-23 | Prensilia S.r.l. | Self-contained multifunctional hand prosthesis |
WO2016005871A1 (en) * | 2014-07-07 | 2016-01-14 | University Of Cape Town | Underactuated prosthetic hand |
US20160073584A1 (en) * | 2014-09-12 | 2016-03-17 | Washington State University | Robotic systems, methods, and end-effectors for harvesting produce |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11660821B2 (en) | 2020-07-28 | 2023-05-30 | International Business Machines Corporation | Collaboration of three dimensional printing |
CN116079690A (en) * | 2023-02-10 | 2023-05-09 | 哈尔滨工业大学 | A thumb-mounted device and a dexterous hand with built-in driver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4841633B2 (en) | Prosthesis with mechanically actuable finger | |
CN107041825B (en) | Postoperative elbow knee joint rehabilitation device | |
CN108743243B (en) | A wrist rehabilitation device | |
CN106618813A (en) | Prosthetic hand | |
ITPI20120049A1 (en) | SELF-CONTENT MULTIFUNCTIONAL HAND PROSTHESIS | |
CN103099719B (en) | Knee joint flexibility auxiliary recovery device | |
CN104799982B (en) | Single motor underactuated prosthetic hand based on continuum differential mechanism | |
CN109172063A (en) | A kind of Coupled Rigid-flexible artifucial limb hand with complaisant grasping characteristic | |
WO2017208100A1 (en) | 3d-printed myoelectric hand prosthesis with improved thumb movement | |
US20210068988A1 (en) | Driving Assembly for Moving Body Part | |
CN104688392A (en) | Complete body-powered bionic manipulator | |
CN113101020B (en) | Rigid-flexible coupling dexterous prosthetic hand | |
CN106491250B (en) | The imitative coupling thumb of electric motor built-in height done evil through another person for disabled person | |
CN111110408B (en) | Finger knuckle, finger and palm structure of human imitation | |
CN110538015B (en) | Mechanical artificial limb arm | |
WO2019083349A1 (en) | Modular prosthetic arm system | |
CN104875215A (en) | Two-degree-of-freedom wrist simulating device | |
RU2727893C1 (en) | Prosthesis finger with spiroid reducer and modular prosthesis structure of upper limb | |
JP2021509828A (en) | Gripping device | |
CN104434349B (en) | Sort merge is light-duty does evil through another person | |
CN207545429U (en) | A kind of adjustable elbow joint recovering instrument | |
CN204800661U (en) | People's wrist device is imitated to two degrees of freedom | |
CN204800660U (en) | People's wrist device is imitated to three degrees of freedom | |
CN209933081U (en) | Wheel train type under-actuated bionic artificial finger | |
RU2719658C1 (en) | Gripping mechanism of pedicle single-seam bioelectric prosthesis of upper limb |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17805957 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17805957 Country of ref document: EP Kind code of ref document: A1 |