+

WO2017116003A1 - Method for recommending, to user with diabetes symptoms, food personalized with consideration for amount of exercise - Google Patents

Method for recommending, to user with diabetes symptoms, food personalized with consideration for amount of exercise Download PDF

Info

Publication number
WO2017116003A1
WO2017116003A1 PCT/KR2016/013164 KR2016013164W WO2017116003A1 WO 2017116003 A1 WO2017116003 A1 WO 2017116003A1 KR 2016013164 W KR2016013164 W KR 2016013164W WO 2017116003 A1 WO2017116003 A1 WO 2017116003A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
user
blood sugar
information
type
Prior art date
Application number
PCT/KR2016/013164
Other languages
French (fr)
Korean (ko)
Inventor
최승혁
차근식
남학현
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Priority to CN201680067438.9A priority Critical patent/CN108352191A/en
Publication of WO2017116003A1 publication Critical patent/WO2017116003A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices

Definitions

  • the present invention relates to a method for providing information on recommended foods or foods to be avoided to a user with diabetic symptoms.
  • the present invention relates to recommended foods or foods to be avoided that are personalized to the user based on the amount of meals, food types, blood sugar values, and exercise amount of the user.
  • the information is determined and provided to the user, and even in a diet consisting of a plurality of foods, the food recommendation method may be provided to the user to provide information about personalized recommended foods or foods to be avoided.
  • Diabetes is an absolute or relative lack of insulin produced by the pancreas due to various causes, such as obesity, stress, poor eating habits, and hereditary inheritance, resulting in increased glucose levels in the blood and the detection of glucose in the urine, thereby causing acute and chronic It is a chronic degenerative disease that causes complications. Diabetes is rapidly increasing worldwide, and Korea is no exception, according to a 2013 report by the Korean Diabetes Association. It is estimated that 12.4% of the population over 30 years of age is diabetic and has about 4 million patients.
  • Diabetes is not a problem but a complication caused by it. Therefore, the goal of diabetes treatment is to control blood glucose as close to normal as possible to relieve symptoms caused by hyperglycemia and ultimately to prevent diabetic chronic complications and to delay the exacerbation.
  • the goal of diabetes treatment is to control blood glucose as close to normal as possible to relieve symptoms caused by hyperglycemia and ultimately to prevent diabetic chronic complications and to delay the exacerbation.
  • the food exchange table categorizes the foods generally consumed into six food groups: cereal, fish, vegetable, fat, milk, and fruit, according to nutrients. It can be used freely in the same food group to help diabetics manage balanced nutrition and total calorie intake.
  • the food exchange table is defined mainly on food ingredients, and it is difficult to accurately consider the difference in cooking methods or the type and amount of sugar because only the total intake calories is taken into account, and it is difficult to control blood sugar according to the amount of exercise because the amount of exercise is not taken into account. .
  • Glucose counting method calculates only the amount of sugar in the intake of the food has the advantage of allowing a meal plan that focuses on the intake of the sugar that determines the post-prandial blood sugar rather than the overall calories.
  • this method also emphasizes only the total intake of the sugar, there is a limit that does not consider the absorption rate according to the type of sugar, this method also has a problem that it is difficult to control the blood sugar according to the exercise amount in consideration of the exercise amount.
  • the present invention is to solve the problem of the method of recommending the type of food to the user with a conventional diabetic symptoms, the object of the present invention to be personalized to the user considering the amount of exercise of the user recommended food or food to avoid It is to provide a way to provide information about.
  • Another object of the present invention is to provide a method for providing a user with a personalized recommended food or information on foods to be avoided based on foods that meet or exceed a target blood sugar value based on the target blood sugar value.
  • Another object of the present invention is to provide a method for determining a recommended or avoided food and providing information about a personalized recommended food type or a food to be avoided to the user even in a diet consisting of a plurality of foods.
  • the personalized food recommendation method comprises the steps of registering the user's blood sugar value, the user's food intake and food type, the amount of exercise mapping each other, the user's blood sugar value and target Comparing the blood sugar value and determining whether the blood sugar state is normal blood sugar state or abnormal blood sugar state based on whether the user's blood sugar value exceeds the target blood sugar value, and classifies the determined blood sugar state based on the amount of meal or exercise Generating information about the recommended food type or food type to be avoided, and providing the user with information about the personalized recommended food type or food type to be avoided.
  • the blood sugar value of the user may be a difference between the pre-preparation blood sugar value and the post-prandial blood sugar value, or the blood sugar value measured by the user after meals.
  • the information on the amount of meal or information on the amount of exercise is divided into a meal amount level or exercise amount level is registered and stored, the meal amount level is characterized in that the user selects based on the subjective meal amount that the individual feels different for each user.
  • the generating of the information on the recommended food type personalized to the user may include generating, as the information on the food type to be recommended to the user, a food type in which the meal amount is at a high level based on the meal amount and classified into a normal blood sugar state. It is done.
  • the step of generating information about the recommended food type personalized to the user may include the food type divided by the normal blood sugar state and the meal amount and the exercise information of the corresponding food type divided by the normal blood sugar state. Characterized by generating information on the type of food.
  • the step of generating information on the recommended type of food personalized to the user may be divided into normal blood glucose states from information on the blood sugar value of the user, the amount of meals of the user, the type of food, and the amount of exercise received for at least one unit period. Determining the highest exercise level from the meal level of the food type, and generating information about the food type to recommend to the user of the meal level and the highest exercise level from the meal level. It is done.
  • the generating of the information on the recommended food type personalized to the user may include the amount of meals among the same food types from information on the blood sugar value of the user, the amount of meals of the user, the type of food, and the amount of exercise received for at least one unit period.
  • the first step of judging the food types that are different from each other by the normal and abnormal blood glucose state, and the lowest level of the meal amount and exercise level of the meal type divided by the normal blood sugar state among the different food types Determining the meal amount level and the highest exercise level, and generating different types of food as information on the food types to be recommended to the user at the lowest meal level and the highest exercise level. do.
  • Personalized food like process further comprises a step of calculating a food like value (R i),
  • the food recommendation value Ri is calculated by the following Equation (1),
  • n is the total number of unit times of food (i)
  • a p is a weight assigned to the meal level of food (i) per unit time on the basis of the normal or abnormal blood sugar state
  • b p is It is characterized in that the weight is assigned to the exercise level for each unit time ingesting the food (i) on the basis of the normal blood sugar state or abnormal blood sugar state.
  • the searched food type is normal blood sugar state or abnormal blood sugar among at least one or more unit timed food types stored in the database unit. Determining whether there is a unit time divided by the state, and information about the user's meal level or exercise level for the searched food type and the blood sugar level at the unit time where the searched food type is divided into a normal blood sugar state or an abnormal blood sugar state. And extracting the status information and generating recommendation information of the searched food type based on the meal amount information or the exercise amount information in unit time divided into a normal blood sugar state or an abnormal blood sugar state.
  • the step of generating information on the types of foods to be avoided personalized to the user includes foods that are classified as abnormal blood sugar states and foods to be avoided by the user, including meal amounts and exercise information of the corresponding food types classified as abnormal blood sugar states. It is characterized by generating information about the kind.
  • a personalized food recommendation method for a user with diabetes symptoms has the following effects.
  • the personalized food recommendation method provides information on foods to be recommended or foods to be avoided to the user based on food information directly ingested by the user, exercise type and amount of exercise performed by the user, and blood glucose state information.
  • a user with diabetes symptoms may be provided with personalized food information and exercise information.
  • the personalized food recommendation method may avoid or recommend personalized foods to the user based on food type, exercise amount, exercise type, and exercise amount satisfying or exceeding the target blood glucose value based on the target blood glucose value.
  • the user with diabetes symptoms may be provided with food information and exercise information satisfying the set target blood glucose value.
  • the personalized food recommendation method determines a common food that damages or assists the user's blood sugar management in a food combination consisting of a plurality of foods, thereby avoiding the recommended food or avoiding the user from the diet actually ingested by the user. Provide information about food.
  • FIG. 1 is a functional block diagram illustrating a device for recommending food to a user with diabetes symptoms according to the present invention.
  • FIG. 2 is a flow chart illustrating a method of personalized food recommendation to a user with diabetes symptoms in accordance with the present invention.
  • FIG. 3 is a diagram for explaining an example of registering and storing blood sugar related information in a database unit when blood sugar related information such as food type, meal amount, blood sugar value, and exercise amount ingested by a user is received from a user terminal.
  • FIG. 4 is a diagram for explaining an example in which blood glucose related information associated with each other is mapped and stored in a database unit.
  • FIG. 5 is a diagram illustrating an example of an interface of a user terminal for inputting a type of food or a meal ingested from blood sugar related information.
  • FIG. 6 is a flowchart illustrating an embodiment of a method of generating information on a type of food recommended for a user according to the present invention.
  • FIG. 7 is a flowchart illustrating a method of generating information on a type of food to be recommended to a user when the same type of food is differently classified into an abnormal blood sugar state and a normal blood sugar state.
  • FIG. 8 is a view for explaining an example of the blood sugar state for each unit time according to the type of food and the amount of meal.
  • FIG. 9 is a flowchart illustrating a step of generating food recommendation information whether a particular food type is recommended food to a user or food to be avoided by the user.
  • FIG. 10 is a flowchart illustrating an example of generating recommendation information of a searched food type based on meal amount information in a unit time divided into a normal blood sugar state or an abnormal blood sugar state.
  • FIG. 1 is a functional block diagram illustrating a device for recommending food to a user with diabetes symptoms according to the present invention.
  • the transceiver 110 receives blood sugar related information such as blood sugar information of the user, amount of food ingested by the user, food type, exercise amount, exercise type, and the like.
  • the blood sugar related information may be input through a user terminal possessed by the user, for example, a smartphone, and the input blood sugar related information may be received from the user terminal.
  • the user possesses a measuring device for measuring the exercise amount of the user, the information on the exercise amount of the user may be received directly from the measuring device or the exercise amount information measured by the measuring device may be received via a smartphone.
  • the food recommendation apparatus is described as a server for receiving blood sugar related information from a user terminal and recommending personalized food to a user, but the food recommendation apparatus according to the present invention is registered in a user terminal according to the field to which the present invention is applied. It is possible to recommend a personalized food to the user in the user terminal itself through a program that is within the scope of the present invention.
  • the blood sugar information may be a target blood sugar value or a user's blood sugar value.
  • the blood sugar value of the user may be a blood sugar value measured after a meal by a user, or a difference value between a blood sugar value measured by a user before a meal and a blood sugar value measured after a meal.
  • the target blood sugar value defines a blood sugar value suitable for a user, and generally uses a single target blood sugar value, but may be set to have a plurality of target blood sugar values or a predetermined range.
  • the target blood glucose value may be set by the user by directly inputting or modifying the user terminal.
  • the target blood sugar value may be preset according to the user's physical state. Corresponds to the present invention.
  • the registration manager 130 may input the blood sugar information, the ingested food amount, the exercise amount, based on the blood sugar value, the ingested food amount, the food type, the target blood sugar value, the exercise amount, the exercise type, and the like.
  • the information on the type of exercise is mapped to the user, and the blood glucose is measured and stored in the database unit 150 by mapping the date and time.
  • the intake of the meal amount can be registered and stored in a simple level such as the upper, middle, lower level according to the amount of meal or the user's exercise amount can be registered and stored in a simple level such as the upper, middle, lower level, etc. .
  • the simple level classification for the meal amount may be input by the user through a user interface, or the amount of meals mapped to the intake calories converted from the information on the amount of meals input by the registration management unit 130 into quantified intake calories.
  • Registration can be saved as a level. For example, when a user ingests 1 air of rice, the user may personalize the amount of meal subjectively felt by the user according to the user's eating habits or physical condition through the user interface and input the level into one of the upper, middle, and lower levels. have.
  • the quantitative calories for the rice cooked in the registration management unit 130 and the amount of meals are mapped in advance and are registered in advance.
  • the calorized calories for the rice cooked air for example, , 100 kcal
  • the amount of meal level 'middle' mapped thereto may be registered and stored.
  • the simple level classification for the amount of exercise may be input by the user to select through the user interface, or change the information on the amount of exercise input from the registration management unit 130 into the quantified consumption calories and the amount of exercise mapped to the converted calories Registration can be saved as a level. For example, if the exercise type is walking, 20 minutes or less, 20 minutes or more, 40 minutes or less, 40 minutes or more are divided into 20 minutes or less, the exercise level is mapped to the lower level, 20 minutes or more, 40 minutes or less if the exercise level is medium The level is mapped to the level, and if it is 40 minutes or more, the exercise level is mapped to the upper level.
  • the user may directly input the exercise amount information into upper, middle, and lower levels of the user through the user interface according to the user's physical condition.
  • the quantitative consumption calories for 60 minutes of walking exercise and the amount of exercise level are mapped in advance and registered in the registration management unit 130.
  • the user quantifies 60 minutes of walking exercise.
  • the information on the amount of exercise of the user may be registered and stored at the consumed calories (for example, 100 kcal) and the amount of exercise mapped thereto.
  • the user may input the personalized exercise information that the user feels subjectively according to his / her physical condition to any one of the upper, middle, and lower levels.
  • the user directly inputs the user's meal level or exercise level, which is different for each user according to the user's physical condition, eating habits, and the like, and determines recommended foods or foods to avoid based on the input meal level or exercise level, thereby personalizing the user.
  • Information about recommended foods or foods to be avoided can be easily and accurately generated.
  • the blood sugar-related information may be input together with a bundle of related information such as blood sugar value, meal amount, food type, exercise amount, exercise type, etc.
  • a bundle of related information such as blood sugar value, meal amount, food type, exercise amount, exercise type, etc.
  • the time of eating food or the time of measuring blood sugar value, exercise may be divided and input together with date and time information.
  • the registration manager 130 automatically maps and stores related information according to the date and time.
  • the registration manager 130 compares the target blood sugar value registered with the received blood sugar value to determine the user's blood sugar state as either a normal blood sugar state or an abnormal blood sugar state.
  • the information on the blood sugar state is mapped to the meal amount, the food type, and the exercise amount information and stored in the database unit 150.
  • the food information providing unit 170 When receiving a food recommendation request personalized to the user from the user terminal through the transceiver 110, the food information providing unit 170 registered and stored in the database unit 150, based on the amount of meal or exercise amount mapped blood sugar Based on the information about the status, information about the recommended food or food to be avoided personalized to the user is generated. In addition, when the food information providing unit 170 receives a request for inquiring whether a specific food type is a recommended food or a food to be avoided from the user terminal, the food information providing unit 170 generates the recommendation information for the specific food type as information on a personalized recommended food or food to be avoided. do.
  • the personalized recommendation food or information about the food to be avoided generated by the food information providing unit 170 is transmitted to the user terminal through the transceiver 110, the user personalized recommendation through the output unit provided in the user terminal Information about foods or foods to avoid can be queried.
  • FIG. 2 is a flow chart illustrating a method of personalized food recommendation to a user with diabetes symptoms in accordance with the present invention.
  • the received blood sugar related information is registered and stored in the database unit (S100) ).
  • FIG. 3 illustrates an example of registering and storing blood sugar related information in a database unit when blood sugar related information such as food type, meal amount, blood sugar value, and exercise amount which a user ingests is received from the user terminal is illustrated in FIG.
  • the registration management unit receives blood sugar related information such as the type of food ingested at meal, the amount of meal, the blood sugar value measured after the meal, and the amount of exercise performed by the user after eating, when the user terminal receives the blood sugar related information by dividing by the received time or date.
  • Information can be registered and stored in the database.
  • the blood sugar related information may be received from the user terminal at different times for each type. For example, information on the type or amount of food ingested by the user may be input immediately after a meal, and information on blood sugar values or exercise amount may be received after a meal. Two hours may be input at the time when blood glucose values are measured or when the exercise is completed, and the registration storage unit automatically maps the related blood sugar related information to each other and registers and stores them in the database unit. As shown in FIG. 4 (a), the information on blood glucose values and the amount of exercise received at 9:10 am on October 25, 2015 is the closest to the food type of the previously received 7:05 am breakfast. It is mapped and stored in the amount of meals and stored.
  • a difference value between a pre-preparation blood sugar value and a post-prandial blood sugar value may be used as a blood sugar value.
  • the registration management unit may directly receive a difference value between the pre-meal blood sugar value and the post-prandial blood sugar value from the user terminal.
  • Figure 4 (b) is an example of blood sugar-related information stored in the database when the difference between the pre-preparation blood sugar value and post-prandial blood sugar value is used as the blood sugar value, the threshold time before and after the meal time, for example before meal time
  • the measured blood glucose value received within 30 minutes and the measured blood sugar value received within 3 hours after mealtime are mapped to the pre-meal blood glucose value and the post-meal blood glucose value, respectively, to automatically calculate the difference between the pre-meal blood glucose value and the post-meal blood glucose value. Calculation is registered and stored.
  • FIG. 5A an example of an interface of a user terminal for inputting a food type or a meal amount of blood sugar related information is illustrated in FIG. 5A.
  • the user may input all the combinations of food types eaten at a time.
  • information about a recommended food type or a type of food to be avoided is generated from the information on the amount of registered meal, the amount of exercise, and the information on the blood sugar value of the user (S200).
  • the user may consider both the amount of meal and the amount of exercise of the type of food ingested by the user, Create information about or create information about foods to avoid personalized to the user.
  • the information on foods recommended, food levels of recommended foods, and foods of each recommended food should be performed.
  • the user may be provided with accurate and specific information about the amount of meal and the exercise amount according to the recommended food type.
  • the food recommendation method personalized to the user since the food recommendation method personalized to the user according to the present invention generates information about recommended food or food to be avoided to the user based on the type of food directly ingested by the user or the amount of meal or exercise actually felt by the user, Information about recommended foods or foods to avoid, based on the amount of exercise and the amount of meals that the user mainly consumes, depending on the user's preferences, the amount of the user's meals, or the user's personal physical condition, or the exercise actually performed by the user. Can be obtained.
  • the amount of food is lower level and divided into abnormal blood sugar state is generated as food information to be avoided by the user irrespective of the amount of exercise.
  • the amount of food is a high level and divided into normal blood sugar state is generated as food information to be recommended to the user regardless of the amount of exercise.
  • the number of food types set in order of higher food recommendation values is generated as food type information to be recommended to the user, or the food recommendation value is low.
  • the number of food types set in order may be generated as food type information to be avoided by the user.
  • the food recommendation value Ri for the food i is calculated as in Equation 1 below.
  • n is the total number of times the food (i) is ingested
  • a p is the weight assigned to the meal level when the food (i) is ingested based on the normal or abnormal blood glucose level
  • b p is the normal blood sugar level Or a weight assigned to an exercise amount level when the food (i) is ingested based on the abnormal blood glucose state.
  • the blood sugar related information may be stored by dividing the blood sugar related information described in FIG. 4 again by unit time (for example, 1 day, 1 week, 1 month, etc.), and FIG. An example of related information is shown.
  • the alphabet means food type.
  • FIG. 6 is a flowchart illustrating an embodiment of a method of generating information on a type of food recommended for a user according to the present invention.
  • blood glucose related information such as a user's meal amount, food type, blood sugar value, blood sugar state, and exercise amount is mapped and stored in the database unit, and blood sugar is stored among blood sugar related information stored in the database unit.
  • the food type associated with the normal blood sugar state is determined (S211).
  • a food type having a higher meal level is determined based on a meal amount among food types mapped to a normal blood sugar state (S213).
  • the highest amount of exercise level is determined at each meal level of the food type, rather than the upper level, based on the amount of meal among the food types mapped to the normal blood sugar state (S215).
  • Food types with higher levels of food among the food types that are mapped to the normal blood glucose level are recommended for foods that are not related to exercise volume, and food types with medium or lower meals have the highest exercise level for each meal level.
  • Generate information about (S217) That is, the information on the generated recommended food is provided to the user terminal and displayed.
  • the food type mapped to normal blood sugar state recommends a food type having a higher level regardless of the exercise amount, or the food type mapped to normal blood sugar state.
  • Food types with medium or low meals are recommended as the highest exercise level at each meal level.
  • the same food type may be determined to be a normal blood sugar state at some unit time in some unit time or to an abnormal blood sugar state at another unit time.
  • the same food type is differently divided into an abnormal blood sugar state and a normal blood sugar state. If there is a flow chart for explaining how to generate information on the type of food to be recommended to the user.
  • the type of food that is different from each other is determined (S231).
  • the food type H is divided into normal blood glucose states at unit times 2 and 3, but is classified as abnormal blood glucose states at unit times 1 and 4.
  • the lowest meal amount level and the highest exercise level are determined in the meal amount level and the exercise level of the food type divided into the normal blood sugar state among the food types having different blood sugar states (S233).
  • the foods are generated as information on the types of foods to be recommended to the user at the lowest meal amount and the highest exercise level of the food types classified as normal blood sugar states (S235).
  • FIG. 9 is a flowchart illustrating a step of generating food recommendation information whether a particular food type is recommended food to a user or food to be avoided by the user.
  • the searched food type is included in at least one or more unit time type foods stored in the database unit. It is determined whether there is a unit time divided into a normal blood sugar state or an abnormal blood sugar state (S253).
  • the user's meal level for the searched food type is determined in a unit time in which the searched food type is divided into a normal blood sugar state or an abnormal blood sugar state.
  • Information on the activity level and information on the blood glucose level are extracted (S255).
  • the recommended information of the searched food type is generated based on the meal amount information or the exercise amount information in the unit time divided into the normal blood sugar state or the abnormal blood sugar state (S257).
  • FIG. 10 is a flowchart illustrating an example of generating recommendation information of a searched food type based on meal amount information in a unit time divided into a normal blood sugar state or an abnormal blood sugar state.
  • the search food type determines whether the search food type has only a unit time divided by a normal blood sugar state (S271), and when there is only a unit time divided by a normal blood sugar state, The recommendation information is generated and provided to the user (S273).
  • the searched food type exists only in unit time divided into normal blood sugar states and is at a high level based on the amount of meals of the searched food type, the searched food type is generated as recommended food information regardless of the exercise amount.
  • the searched food type has only unit time divided into normal blood glucose states and is not a phase level based on the amount of food of the searched food type, the searched food at the meal level of the searched food type and the highest exercise level from the corresponding meal level The type is generated as food type information to be recommended to the user.
  • search food type It is determined whether the search food type exists only in the unit time divided by the abnormal blood sugar state (S274), and when the search food type exists only in the unit time divided by the abnormal blood glucose state, the search food type is the food type information to be avoided by the user. It generates (S275).
  • Unit time and unit time when the food type is classified as abnormal blood sugar state coexists Search for the lowest meal level and the highest exercise level at unit time classified as normal blood sugar state Food type to recommend to user Generate by type information (S279).
  • the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer which operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may be a magnetic storage medium (for example, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (for example, a CD-ROM, DVD, etc.) and a carrier wave (for example, the Internet). Storage medium).
  • a magnetic storage medium for example, a ROM, a floppy disk, a hard disk, etc.
  • an optical reading medium for example, a CD-ROM, DVD, etc.
  • carrier wave for example, the Internet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Marketing (AREA)
  • Nutrition Science (AREA)
  • Economics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Tourism & Hospitality (AREA)
  • Emergency Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Human Resources & Organizations (AREA)

Abstract

The present invention relates to a method for providing, to a user with diabetes symptoms, information on recommended food or food that should be avoided, and provides a food recommending method capable of: determining, on the basis of a user's food consumption amount, food type, blood sugar level, and amount of exercise, information on recommended food, or food that should be avoided, which is personalized to the user, so as to provide the same to the user; and providing information on recommended food, or food which should be avoided, which is personalized to the user, even from a menu comprising a plurality of foods.

Description

당뇨병 증상을 가진 사용자에 운동량을 고려한 개인화된 음식 추천 방법Personalized Food Recommendations Considering Exercise Level for Users with Diabetes Symptoms
본 발명은 당뇨병 증상이 있는 사용자에 추천 음식 또는 피할 음식에 대한 정보를 제공하는 방법에 관한 것으로, 사용자의 식사량, 음식 종류, 혈당값, 운동량에 기초하여 사용자에 개인화된 추천 음식 또는 피할 음식에 대한 정보를 판단하여 사용자에 제공하며, 다수의 음식으로 이루어진 식단에서도 사용자에 개인화된 추천 음식 또는 피할 음식에 대한 정보를 제공할 수 있는 음식 추천 방법을 제공하는 것이다. The present invention relates to a method for providing information on recommended foods or foods to be avoided to a user with diabetic symptoms. The present invention relates to recommended foods or foods to be avoided that are personalized to the user based on the amount of meals, food types, blood sugar values, and exercise amount of the user. The information is determined and provided to the user, and even in a diet consisting of a plurality of foods, the food recommendation method may be provided to the user to provide information about personalized recommended foods or foods to be avoided.
당뇨병은 비만, 스트레스, 잘못된 식습관, 선천적 유전 등 다양한 원인에 의해 췌장에서 만들어지는 인슐린이 절대적으로 부족하거나 상대적으로 부족하여 혈액 내에 포도당 농도가 증가되고, 소변에서 당이 검출되며, 이로 인하여 급성 및 만성 합병증이 유발되는 만성 퇴행성질환이다. 이러한 당뇨병은 전세계적으로 발생이 급속히 증가하고 있으며, 이는 한국도 예외가 아니어서 2013년 대한당뇨병학회의 보고에 따르면 30세 이상 인구의 12.4%가 당뇨병이며 약 400만 명의 환자가 있는 것으로 추정한다.Diabetes is an absolute or relative lack of insulin produced by the pancreas due to various causes, such as obesity, stress, poor eating habits, and hereditary inheritance, resulting in increased glucose levels in the blood and the detection of glucose in the urine, thereby causing acute and chronic It is a chronic degenerative disease that causes complications. Diabetes is rapidly increasing worldwide, and Korea is no exception, according to a 2013 report by the Korean Diabetes Association. It is estimated that 12.4% of the population over 30 years of age is diabetic and has about 4 million patients.
당뇨병은 그 자체보다는 이로 인해 야기되는 합병증이 문제가 된다. 따라서 당뇨병 치료의 목표는 혈당을 가능한 한 정상에 가깝게 조절함으로써 고혈당에 따른 증상 해소와 함께 궁극적으로 당뇨병성 만성 합병증을 예방하고, 그 악화를 지연하는 것이다. 성공적인 혈당조절을 위해서는 혈당조절의 목표 수치를 정확히 알고 자신의 혈당 수치가 그 목표 수치에 얼마나 근접해 있는지를 스스로 자주 확인하면서 그에 따라 적절한 식사요법, 운동 및 약물치료를 병행하는 생활관리가 필수적이다.Diabetes is not a problem but a complication caused by it. Therefore, the goal of diabetes treatment is to control blood glucose as close to normal as possible to relieve symptoms caused by hyperglycemia and ultimately to prevent diabetic chronic complications and to delay the exacerbation. For successful glycemic control, it is necessary to know exactly the target level of glycemic control and frequently check how close your blood sugar level is to the target level, and accordingly, manage your lifestyle with proper diet, exercise and medication.
현재 많은 의료기기 제조업체에서는 가정에서도 혈당을 측정할 수 있도록 다양한 종류의 휴대용 혈당 측정기를 제공하고 있으며, 휴대용 혈당 측정기를 통해 당뇨병 환자는 스스로 자신의 혈당을 용이하게 수시로 측정할 수 있게 되었다. 한편 혈당관리를 위한 식사요법 및 운동요법 등 생활관리는 주로 병원의 당뇨병교실 등 의료기관의 교육 프로그램을 통하여 제공되고 있으며, 환자 개인의 이해도 및 숙련 정도에 따라 그 효과성의 차이가 큰 상황이다.Currently, many medical device manufacturers provide various types of portable blood glucose meters to measure blood glucose levels at home, and diabetics can easily measure their own blood sugar on their own. On the other hand, life management such as meal therapy and exercise therapy for blood sugar management are mainly provided through educational programs of medical institutions, such as diabetes classes in hospitals, and the effectiveness of the management varies greatly depending on the understanding and skill of individual patients.
특히 혈당관리에 가장 중요한 식사요법의 경우, 음식의 종류가 방대할 뿐 아니라 같은 식재료를 사용하더라도 양념의 정도와 조리방식에 따라서 혈당 상승 효과에 차이가 크므로 초기 당뇨환자가 자신에게 적합한 음식과 식사량 그리고 자신의 식사량에 따른 적절한 운동량을 익히기까지 많은 시간과 시행착오를 겪게 된다.Especially in the case of the most important dietary therapy for blood sugar management, not only the variety of foods but also the same ingredients, depending on the degree of cooking and cooking method, since the difference in the effect of increasing blood sugar has a large difference in the amount of food and meal suitable for the early diabetics In addition, they have to spend a lot of time and trial and error before learning the proper amount of exercise according to their diet.
이러한 어려움을 개선하기 위한 기존의 노력으로는 먼저 식품교환표를 사용하는 방법이 있다. 식품교환표는 일반적으로 섭취하는 음식들을 영양소에 따라 곡류군, 어육류군, 채소군, 지방군, 우유군, 과일군의 6개 식품군으로 구분하고, 각 식품군 내에서는 같은 열량 교환단위의 음식 양을 규정하여 표로 만든 것으로, 이를 활용하면 같은 식품군 내에서는 자유롭게 교환 섭취할 수 있으므로 당뇨환자가 균형 잡힌 영양섭취와 총 섭취 열량을 관리하는데 도움이 된다. Existing efforts to remedy these difficulties include using food exchange tables first. The food exchange table categorizes the foods generally consumed into six food groups: cereal, fish, vegetable, fat, milk, and fruit, according to nutrients. It can be used freely in the same food group to help diabetics manage balanced nutrition and total calorie intake.
그러나 식품교환표는 주로 식재료 위주로 정의되어 있고, 총 섭취 칼로리만을 고려하므로 조리방법의 차이나 당질의 종류 및 양을 정확하게 고려하기 어려우며, 운동량을 고려하지 않기 때문에 운동량에 따른 혈당 조절이 힘들다는 문제점을 가진다.However, the food exchange table is defined mainly on food ingredients, and it is difficult to accurately consider the difference in cooking methods or the type and amount of sugar because only the total intake calories is taken into account, and it is difficult to control blood sugar according to the amount of exercise because the amount of exercise is not taken into account. .
총 섭취 칼로리를 기준으로 하는 식품교환표의 약점을 보완할 수 있는 방법으로써 당질계산법이 있다. 당질계산법은 섭취 음식에서 당질의 양만을 계산하는 것으로 전체적인 칼로리보다는 식후 혈당을 좌우하는 당질의 섭취량에 초점을 맞춘 식사계획을 가능하게 해준다는 장점이 있다. 하지만 이 방법 역시 당질의 총 섭취량만을 강조할 뿐 당질의 종류에 따른 흡수 속도를 고려하지 못한다는 한계가 있고, 이 방식 또한 운동량을 고려하여 운동량에 따른 혈당 조절이 힘들다는 문제점을 가진다.As a way of supplementing the weak points of the food exchange table based on the total calories intake, there is a method of calculating the sugar. Glucose counting method calculates only the amount of sugar in the intake of the food has the advantage of allowing a meal plan that focuses on the intake of the sugar that determines the post-prandial blood sugar rather than the overall calories. However, this method also emphasizes only the total intake of the sugar, there is a limit that does not consider the absorption rate according to the type of sugar, this method also has a problem that it is difficult to control the blood sugar according to the exercise amount in consideration of the exercise amount.
무엇보다도 위에서 언급한 모든 방법들은 일반적인 다수의 당뇨환자에게 공통 적용되는 식이요법으로 식재료 관점에서 계산되거나 일부 대표 식단만을 제시하고 있어, 실제 개개인이 섭취하는 음식과는 차이가 있으므로 초기 당뇨병환자가 활용하기 어려울 뿐 아니라, 동일한 음식이라도 개인에 따라 혈당 수치에 상이한 영향을 미치기 때문에 사용자에 개인화하여 좋은 음식과 피할 음식 종류에 대한 정보 및 운동량을 고려한 혈당 조절 방법을 제공하지는 못한다는 문제점을 가진다.Above all, all of the above-mentioned methods are common to many diabetic patients, and they are calculated from the viewpoint of ingredients or only some of the representative diets. Not only is it difficult, but also because the same food has a different effect on the blood sugar level according to the individual, there is a problem that does not provide a blood sugar control method considering the amount of information and exercise information about the good food and food to avoid to personalize to the user.
본 발명은 종래 당뇨병 증상을 가지는 사용자에 음식 종류를 추천하는 방법이 가지는 문제점을 해결하기 위한 것으로, 본 발명이 이루고자 하는 목적은 사용자에 개인화되어 사용자의 운동량을 고려하여 사용자에 적합한 추천 음식 또는 피할 음식에 대한 정보를 제공하는 방법을 제공하는 것이다.The present invention is to solve the problem of the method of recommending the type of food to the user with a conventional diabetic symptoms, the object of the present invention to be personalized to the user considering the amount of exercise of the user recommended food or food to avoid It is to provide a way to provide information about.
본 발명이 이루고자 하는 다른 목적은 목표 혈당값에 기초하여 목표 혈당값을 만족하거나 목표 혈당값을 초과하는 음식에 기초하여 사용자에 개인화된 추천 음식 또는 피할 음식에 대한 정보를 제공하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for providing a user with a personalized recommended food or information on foods to be avoided based on foods that meet or exceed a target blood sugar value based on the target blood sugar value. .
본 발명이 이루고자 하는 또 다른 목적은 다수의 음식으로 이루어진 식단에서도 사용자에 추천 음식 또는 피할 음식을 판단하고 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 제공하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for determining a recommended or avoided food and providing information about a personalized recommended food type or a food to be avoided to the user even in a diet consisting of a plurality of foods.
본 발명의 목적을 달성하기 위하여, 본 발명에 따른 개인화된 음식 추천 방법은 사용자의 혈당값, 사용자의 음식 섭취량과 음식 종류, 운동량에 대한 정보를 서로 매핑 등록하는 단계와, 사용자의 혈당값과 목표 혈당값을 비교하고 사용자의 혈당값이 목표 혈당값을 초과하는지에 기초하여 정상 혈당 상태 또는 비정상 혈당 상태 중 어느 하나로 혈당 상태를 판단하는 단계와, 판단한 혈당 상태를 식사량 또는 운동량을 기준으로 구분하여 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 생성하는 단계와, 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 사용자에 제공하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the object of the present invention, the personalized food recommendation method according to the present invention comprises the steps of registering the user's blood sugar value, the user's food intake and food type, the amount of exercise mapping each other, the user's blood sugar value and target Comparing the blood sugar value and determining whether the blood sugar state is normal blood sugar state or abnormal blood sugar state based on whether the user's blood sugar value exceeds the target blood sugar value, and classifies the determined blood sugar state based on the amount of meal or exercise Generating information about the recommended food type or food type to be avoided, and providing the user with information about the personalized recommended food type or food type to be avoided.
여기서 사용자의 혈당값은 사용자의 식전 혈당값과 식후 혈당값 사이의 차이값이거나, 사용자가 식후 측정한 혈당값인 것을 특징으로 한다.Here, the blood sugar value of the user may be a difference between the pre-preparation blood sugar value and the post-prandial blood sugar value, or the blood sugar value measured by the user after meals.
여기서 식사량에 대한 정보 또는 운동량에 대한 정보는 식사량 레벨 또는 운동량 레벨로 구분되어 등록 저장되는데, 식사량 레벨은 사용자마다 상이한, 개인이 느끼는 주관적인 식사량에 기초하여 사용자가 선택하는 것을 특징으로 한다.The information on the amount of meal or information on the amount of exercise is divided into a meal amount level or exercise amount level is registered and stored, the meal amount level is characterized in that the user selects based on the subjective meal amount that the individual feels different for each user.
바람직하게, 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는 식사량을 기준으로 식사량이 상 레벨이고 정상 혈당 상태로 구분되는 음식 종류를 사용자에 추천할 음식 종류에 대한 정보로 생성하는 것을 특징으로 한다.Preferably, the generating of the information on the recommended food type personalized to the user may include generating, as the information on the food type to be recommended to the user, a food type in which the meal amount is at a high level based on the meal amount and classified into a normal blood sugar state. It is done.
바람직하게, 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는 정상 혈당 상태로 구분되어 있는 음식 종류, 정상 혈당 상태로 구분되어 있는 해당 음식 종류의 식사량과 운동량 정보를 포함하여 사용자에 추천할 음식 종류에 대한 정보를 생성하는 것을 특징으로 한다. Preferably, the step of generating information about the recommended food type personalized to the user may include the food type divided by the normal blood sugar state and the meal amount and the exercise information of the corresponding food type divided by the normal blood sugar state. Characterized by generating information on the type of food.
바람직하게, 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는 적어도 1개 이상의 단위기간별로 수신한, 사용자의 혈당값, 사용자의 식사량, 음식 종류 및 운동량에 대한 정보로부터 정상 혈당 상태로 구분되어 있는 음식 종류의 식사량 레벨에서 가장 높은 운동량 레벨을 판단하는 단계를 더 포함하며, 음식 종류의 식사량 레벨과 해당 식사량 레벨에서 가장 높은 운동량 레벨을 사용자에 추천할 음식 종류에 대한 정보로 생성하는 것을 특징으로 한다.Preferably, the step of generating information on the recommended type of food personalized to the user may be divided into normal blood glucose states from information on the blood sugar value of the user, the amount of meals of the user, the type of food, and the amount of exercise received for at least one unit period. Determining the highest exercise level from the meal level of the food type, and generating information about the food type to recommend to the user of the meal level and the highest exercise level from the meal level. It is done.
바람직하게, 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는 적어도 1개 이상의 단위기간별로 수신한, 사용자의 혈당값, 사용자의 식사량, 음식 종류 및 운동량에 대한 정보로부터 동일한 음식 종류 중 식사량을 기준으로 정상 혈당 상태와 비정상 혈당 상태로 서로 상이하게 구분되는 음식 종류를 1차 판단하는 단계와, 상이하게 구분되는 음식 종류 중 정상 혈당 상태로 구분되는 식사 종류의 식사량 레벨과 운동량 레벨에서 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨을 판단하는 단계와, 상이하게 구분되는 음식 종류를 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨로 사용자에 추천할 음식 종류에 대한 정보로 생성하는 단계를 더 포함하는 것을 특징으로 한다.Preferably, the generating of the information on the recommended food type personalized to the user may include the amount of meals among the same food types from information on the blood sugar value of the user, the amount of meals of the user, the type of food, and the amount of exercise received for at least one unit period. The first step of judging the food types that are different from each other by the normal and abnormal blood glucose state, and the lowest level of the meal amount and exercise level of the meal type divided by the normal blood sugar state among the different food types Determining the meal amount level and the highest exercise level, and generating different types of food as information on the food types to be recommended to the user at the lowest meal level and the highest exercise level. do.
본 발명에 따른 개인화된 음식 추천 방법은 음식 추천값(Ri)을 계산하는 단계를 더 포함하는데,Personalized food like process according to the invention further comprises a step of calculating a food like value (R i),
음식 추천값이 높은 순서로 설정된 수의 음식 종류를 사용자에 추천할 음식 종류에 대한 정보로 생성하거나, 음식 추천값이 낮은 순서로 설정된 수의 음식 종류를 사용자가 피할 음식 종류에 대한 정보로 생성하는 것을 특징으로 한다.Create a number of food types set in the order of high food recommendation value as information about the food type to recommend to the user, or generate a number of food types set in the order of the lowest food recommendation value as information about the food type to be avoided by the user. It is characterized by.
바람직하게, 음식 추천값(Ri)는 아래의 수학식(1)에 의해 계산되며,Preferably, the food recommendation value Ri is calculated by the following Equation (1),
[수학식 1][Equation 1]
Figure PCTKR2016013164-appb-I000001
Figure PCTKR2016013164-appb-I000001
여기서 n은 음식(i)을 섭취한 단위시간의 총 횟수를 의미하고, ap는 정상 혈당 상태 또는 비정상 혈당 상태를 기준으로 단위시간별 음식(i)의 식사량 레벨에 할당되는 가중치이고, bp는 정상 혈당 상태 또는 비정상 혈당 상태를 기준으로 음식(i)를 섭취한 단위시간별 운동량 레벨에 할당되는 가중치인 것을 특징으로 한다.Where n is the total number of unit times of food (i), a p is a weight assigned to the meal level of food (i) per unit time on the basis of the normal or abnormal blood sugar state, b p is It is characterized in that the weight is assigned to the exercise level for each unit time ingesting the food (i) on the basis of the normal blood sugar state or abnormal blood sugar state.
본 발명에 따른 개인화된 음식 추천 방법은 사용자가 검색하고자 하는 검색 음식 종류에 대한 정보가 수신되는 경우, 데이터베이스부에 저장된, 적어도 1개 이상의 단위 시간별 음식 종류 중 검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간이 존재하는지 판단하는 단계와, 검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서 검색 음식 종류에 대한 사용자의 식사량 레벨 또는 운동량 레벨에 대한 정보와 혈당 상태 정보를 추출하는 단계와, 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서의 식사량 정보 또는 운동량 정보에 기초하여 검색 음식 종류의 추천 정보를 생성하는 단계를 더 포함하는 것을 특징으로 한다.In the personalized food recommendation method according to the present invention, when the information on the searched food type to be searched by the user is received, the searched food type is normal blood sugar state or abnormal blood sugar among at least one or more unit timed food types stored in the database unit. Determining whether there is a unit time divided by the state, and information about the user's meal level or exercise level for the searched food type and the blood sugar level at the unit time where the searched food type is divided into a normal blood sugar state or an abnormal blood sugar state. And extracting the status information and generating recommendation information of the searched food type based on the meal amount information or the exercise amount information in unit time divided into a normal blood sugar state or an abnormal blood sugar state.
바람직하게, 사용자에 개인화된 피할 음식 종류에 대한 정보를 생성하는 단계는 비정상 혈당 상태로 구분되어 있는 음식 종류, 비정상 혈당 상태로 구분되어 있는 해당 음식 종류의 식사량과 운동량 정보를 포함하여 사용자에 피할 음식 종류에 대한 정보를 생성하는 것을 특징으로 한다. Preferably, the step of generating information on the types of foods to be avoided personalized to the user includes foods that are classified as abnormal blood sugar states and foods to be avoided by the user, including meal amounts and exercise information of the corresponding food types classified as abnormal blood sugar states. It is characterized by generating information about the kind.
본 발명에 따른, 당뇨병 증상을 가진 사용자에 개인화된 음식 추천 방법은 다음과 같은 효과를 가진다.According to the present invention, a personalized food recommendation method for a user with diabetes symptoms has the following effects.
첫째, 본 발명에 따른 개인화된 음식 추천 방법은 사용자가 직접 섭취한 음식 정보, 사용자가 직접 수행한 운동종류와 운동량, 혈당 상태 정보에 기초하여 사용자에 추천할 음식 또는 피할 음식에 대한 정보를 제공함으로써, 당뇨병 증상을 가진 사용자는 자신에 개인화된 음식 정보와 운동량에 대한 정보를 제공받을 수 있다.First, the personalized food recommendation method according to the present invention provides information on foods to be recommended or foods to be avoided to the user based on food information directly ingested by the user, exercise type and amount of exercise performed by the user, and blood glucose state information. In addition, a user with diabetes symptoms may be provided with personalized food information and exercise information.
둘째, 본 발명에 따른 개인화된 음식 추천 방법은 목표 혈당값에 기초하여 목표 혈당값을 만족하거나 목표 혈당값을 초과하는 음식 종류, 운동량, 운동 종류, 운동량에 기초하여 사용자에 개인화된 추천 음식 또는 피할 음식을 판단함으로써, 당뇨병 증상을 가진 사용자는 설정한 목표 혈당값을 만족하는 음식 정보와 운동 정보를 제공받을 수 있다.Secondly, the personalized food recommendation method according to the present invention may avoid or recommend personalized foods to the user based on food type, exercise amount, exercise type, and exercise amount satisfying or exceeding the target blood glucose value based on the target blood glucose value. By determining the food, the user with diabetes symptoms may be provided with food information and exercise information satisfying the set target blood glucose value.
셋째, 본 발명에 따른 개인화된 음식 추천 방법은 다수의 음식으로 이루어진 음식 조합에서 사용자의 혈당 관리에 피해를 주거나 도움을 주는 공통된 음식을 판단함으로써, 사용자가 실제 섭취하는 식단에서 사용자에 추천 음식 또는 피할 음식에 대한 정보를 제공한다.Third, the personalized food recommendation method according to the present invention determines a common food that damages or assists the user's blood sugar management in a food combination consisting of a plurality of foods, thereby avoiding the recommended food or avoiding the user from the diet actually ingested by the user. Provide information about food.
도 1은 본 발명에 따른 당뇨병 증상을 가진 사용자에 음식을 추천하는 장치를 설명하기 위한 기능 블록도이다.1 is a functional block diagram illustrating a device for recommending food to a user with diabetes symptoms according to the present invention.
도 2는 본 발명에 따른, 당뇨병 증상을 가진 사용자에 개인화된 음식 추천 방법을 설명하는 흐름도이다.2 is a flow chart illustrating a method of personalized food recommendation to a user with diabetes symptoms in accordance with the present invention.
도 3은 사용자 단말기로부터 사용자가 섭취한 음식 종류, 식사량, 혈당값, 운동량 등의 혈당 관련 정보가 수신되는 경우 데이터베이스부에 혈당 관련 정보를 등록 저장하는 일 예를 설명하는 도면이다.FIG. 3 is a diagram for explaining an example of registering and storing blood sugar related information in a database unit when blood sugar related information such as food type, meal amount, blood sugar value, and exercise amount ingested by a user is received from a user terminal.
도 4는 서로 연관되어 있는 혈당 관련 정보가 데이터베이스부에 서로 매핑되어 등록 저장되어 있는 일 예를 설명하는 도면이다. FIG. 4 is a diagram for explaining an example in which blood glucose related information associated with each other is mapped and stored in a database unit.
도 5는 사용자가 혈당 관련 정보 중 섭취한 음식 종류 또는 식사량을 입력하는 사용자 단말기의 인터페이스의 일 예를 설명하는 도면이다.FIG. 5 is a diagram illustrating an example of an interface of a user terminal for inputting a type of food or a meal ingested from blood sugar related information.
도 6은 본 발명에 따른 사용자에 추천 음식 종류에 대한 정보를 생성하는 방법의 일 실시예를 설명하기 위한 흐름도이다.6 is a flowchart illustrating an embodiment of a method of generating information on a type of food recommended for a user according to the present invention.
도 7은 동일한 음식 종류가 비정상 혈당 상태와 정상 혈당 상태로 상이하게 구분되는 경우 사용자에 추천할 음식 종류에 대한 정보를 생성하는 방법을 설명하기 위한 흐름도이다.7 is a flowchart illustrating a method of generating information on a type of food to be recommended to a user when the same type of food is differently classified into an abnormal blood sugar state and a normal blood sugar state.
도 8은 음식 종류와 식사량에 따라 단위 시간별 혈당 상태의 일 예를 설명하기 위한 도면이다.8 is a view for explaining an example of the blood sugar state for each unit time according to the type of food and the amount of meal.
도 9는 특정 음식 종류가 사용자에 추천 음식인지 아니면 사용자가 피할 음식인지 음식 추천 정보를 생성하는 단계를 설명하는 흐름도이다.9 is a flowchart illustrating a step of generating food recommendation information whether a particular food type is recommended food to a user or food to be avoided by the user.
도 10은 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서의 식사량 정보에 기초하여 검색 음식 종류의 추천 정보를 생성하는 단계의 일 예를 설명하는 흐름도이다.10 is a flowchart illustrating an example of generating recommendation information of a searched food type based on meal amount information in a unit time divided into a normal blood sugar state or an abnormal blood sugar state.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다.Technical terms used in the present invention are merely used to describe specific embodiments, it should be noted that it is not intended to limit the present invention. In addition, the technical terms used in the present invention should be interpreted as meanings generally understood by those skilled in the art unless the present invention has a special meaning defined in the present invention, and is excessively comprehensive. It should not be interpreted in the sense of or in the sense of being excessively reduced. In addition, when a technical term used in the present invention is an incorrect technical term that does not accurately express the spirit of the present invention, it should be replaced with a technical term that can be properly understood by those skilled in the art.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, the singular forms used in the present invention include plural forms unless the context clearly indicates otherwise. In the present invention, terms such as “consisting of” or “comprising” are not to be construed as necessarily including all of the various components or steps described in the invention, and some of the components or some of the steps are included. It should be construed that it may not be, or may further include additional components or steps.
또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
이하 첨부한 도면을 참고로 본 발명에 따른, 당뇨병 증상을 가진 사용자에 음식을 추천하는 방법에 대해 보다 구체적으로 설명한다.Hereinafter, a method of recommending food to a user with diabetes symptoms according to the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 당뇨병 증상을 가진 사용자에 음식을 추천하는 장치를 설명하기 위한 기능 블록도이다.1 is a functional block diagram illustrating a device for recommending food to a user with diabetes symptoms according to the present invention.
도 1을 참고로 보다 구체적으로 살펴보면, 송수신부(110)는 사용자의 혈당 정보, 사용자가 섭취한 음식량, 음식 종류, 운동량, 운동 종류 등과 같은 혈당 관련 정보를 수신한다. 혈당 관련 정보는 사용자가 소지하고 있는 사용자 단말기, 예를 들어 스마트폰을 통해 입력되며, 입력된 혈당 관련 정보는 사용자 단말기로부터 수신될 수 있다. 바람직하게, 사용자는 사용자의 운동량을 측정하기 위한 측정장치를 소지하는데, 사용자의 운동량에 대한 정보는 측정장치로부터 직접 수신되거나 측정장치에서 측정한 운동량 정보는 스마트폰을 통해 수신될 수 있다. 본 발명에 따른 음식 추천 장치는 사용자 단말기로부터 혈당 관련 정보를 수신하고 사용자에 개인화된 음식을 추천하는 서버로 설명하나, 본 발명이 적용되는 분야에 따라 본 발명에 따른 음식 추천 장치는 사용자 단말기에 등록되어 있는 프로그램을 통해 사용자 단말기에서 자체적으로 사용자에 개인화된 음식을 추천할 수 있으며 이는 본 발명의 범위에 속한다. Referring to FIG. 1 in more detail, the transceiver 110 receives blood sugar related information such as blood sugar information of the user, amount of food ingested by the user, food type, exercise amount, exercise type, and the like. The blood sugar related information may be input through a user terminal possessed by the user, for example, a smartphone, and the input blood sugar related information may be received from the user terminal. Preferably, the user possesses a measuring device for measuring the exercise amount of the user, the information on the exercise amount of the user may be received directly from the measuring device or the exercise amount information measured by the measuring device may be received via a smartphone. The food recommendation apparatus according to the present invention is described as a server for receiving blood sugar related information from a user terminal and recommending personalized food to a user, but the food recommendation apparatus according to the present invention is registered in a user terminal according to the field to which the present invention is applied. It is possible to recommend a personalized food to the user in the user terminal itself through a program that is within the scope of the present invention.
여기서 혈당 정보는 목표 혈당값 또는 사용자의 혈당값일 수 있는데, 사용자의 혈당값은 사용자가 식후 측정한 혈당값이거나, 사용자가 식전 측정한 혈당값과 식후 측정한 혈당값 사이의 차이값일 수 있다. 또한, 목표 혈당값은 사용자에 적합한 혈당값을 규정하는 것으로, 일반적으로 단일 목표 혈당값을 사용하지만 복수의 목표 혈당값 또는 일정 범위를 가지도록 설정될 수 있다. 본 발명에서 목표 혈당값은 사용자가 사용자 단말기를 이용하여 직접 입력 또는 수정하여 설정할 수 있는 것으로 설명하나, 본 발명이 적용되는 분야에 따라 혈당 컨설턴트를 통해 사용자의 신체 상태에 따라 기설정될 수 있으며 이는 본 발명에 해당한다.The blood sugar information may be a target blood sugar value or a user's blood sugar value. The blood sugar value of the user may be a blood sugar value measured after a meal by a user, or a difference value between a blood sugar value measured by a user before a meal and a blood sugar value measured after a meal. In addition, the target blood sugar value defines a blood sugar value suitable for a user, and generally uses a single target blood sugar value, but may be set to have a plurality of target blood sugar values or a predetermined range. In the present invention, the target blood glucose value may be set by the user by directly inputting or modifying the user terminal. However, according to the field to which the present invention is applied, the target blood sugar value may be preset according to the user's physical state. Corresponds to the present invention.
등록 관리부(130)는 송수신부(110)를 통해 입력된 혈당값, 섭취한 음식량, 음식 종류, 목표 혈당값, 운동량, 운동 종류에 대한 정보 종류에 기초하여 입력된 혈당 정보, 섭취 음식량, 운동량, 운동 종류에 대한 정보를 사용자에 매핑하여 그리고 혈당을 측정한 날짜와 시각에 매핑하여 데이터베이스부(150)에 등록 저장한다. 바람직하게, 섭취한 식사량은 식사량에 따라 상, 중, 하의 레벨 등과 같이 간단한 레벨로 구분되어 등록 저장될 수 있거나 사용자의 운동량은 상, 중, 하의 레벨 등과 같이 간단한 레벨로 구분되어 등록 저장될 수 있다. The registration manager 130 may input the blood sugar information, the ingested food amount, the exercise amount, based on the blood sugar value, the ingested food amount, the food type, the target blood sugar value, the exercise amount, the exercise type, and the like. The information on the type of exercise is mapped to the user, and the blood glucose is measured and stored in the database unit 150 by mapping the date and time. Preferably, the intake of the meal amount can be registered and stored in a simple level such as the upper, middle, lower level according to the amount of meal or the user's exercise amount can be registered and stored in a simple level such as the upper, middle, lower level, etc. .
여기서 식사량에 대한 간단한 레벨 구분은 사용자가 사용자 인터페이스를 통해 선택하여 입력할 수도 있거나, 등록 관리부(130)에서 입력된 식사량에 대한 정보를 정량화된 섭취 칼로리로 변환하고 변환한 섭취 칼로리에 매핑되어 있는 식사량 레벨로 등록 저장할 수 있다. 일 예로 사용자가 공기밥 1공기를 섭취한 경우, 사용자의 식습관 또는 신체 조건에 따라 사용자가 주관적으로 느끼는 식사량을 사용자가 직접 사용자 인터페이스를 통해 사용자에 개인화하여 상, 중, 하 레벨 중 어느 하나로 입력할 수 있다. 다른 예로 등록 관리부(130)에 공기밥에 대한 정량화된 칼로리와 이에 매핑되어 식사량 레벨이 구분되어 사전 등록되어 있으며, 사용자가 공기밥 1공기를 입력하는 경우, 공기밥 1공기에 대한 정량화된 칼로리(예를 들어, 100kcal)와 이에 매핑되어 있는 식사량 레벨 '중'으로 사용자의 식사량에 대한 정보가 등록 저장될 수 있다.Here, the simple level classification for the meal amount may be input by the user through a user interface, or the amount of meals mapped to the intake calories converted from the information on the amount of meals input by the registration management unit 130 into quantified intake calories. Registration can be saved as a level. For example, when a user ingests 1 air of rice, the user may personalize the amount of meal subjectively felt by the user according to the user's eating habits or physical condition through the user interface and input the level into one of the upper, middle, and lower levels. have. As another example, the quantitative calories for the rice cooked in the registration management unit 130 and the amount of meals are mapped in advance and are registered in advance. When the user inputs the rice cooked air, the calorized calories for the rice cooked air (for example, , 100 kcal) and the amount of meal level 'middle' mapped thereto may be registered and stored.
여기서 운동량에 대한 간단한 레벨 구분은 사용자가 사용자 인터페이스를 통해 선택하여 입력할 수도 있거나, 등록 관리부(130)에서 입력된 운동량에 대한 정보를 정량화된 소비 칼로리로 변화하고 변환한 소비 칼로리에 매핑되어 있는 운동량 레벨로 등록 저장할 수 있다. 일 예로 운동 종류가 걷기인 경우, 20분 이하, 20분 이상 40분 이하, 40분 이상으로 구분되고 20분 이하인 경우 운동량 레벨이 하 레벨로 매핑되고, 20분 이상 40분 이하인 경우 운동량 레벨이 중 레벨로 매핑되고, 40분 이상인 경우 운동량 레벨이 상 레벨로 매핑된다.Here, the simple level classification for the amount of exercise may be input by the user to select through the user interface, or change the information on the amount of exercise input from the registration management unit 130 into the quantified consumption calories and the amount of exercise mapped to the converted calories Registration can be saved as a level. For example, if the exercise type is walking, 20 minutes or less, 20 minutes or more, 40 minutes or less, 40 minutes or more are divided into 20 minutes or less, the exercise level is mapped to the lower level, 20 minutes or more, 40 minutes or less if the exercise level is medium The level is mapped to the level, and if it is 40 minutes or more, the exercise level is mapped to the upper level.
일 예로 사용자가 60분 동안 걷기 운동하는 경우, 사용자의 신체 조건에 따라 사용자가 직접 사용자 인터페이스를 통해 사용자에 상, 중, 하 레벨 중 상 레벨로 운동량 정보를 입력할 수 있다. 다른 예로 등록 관리부(130)에 걷기 운동 60분에 대한 정량화된 소비 칼로리와 이에 매핑되어 운동량 레벨이 구분되어 사전 등록되어 있으며, 사용자가 걷기 운동 60분을 입력하는 경우, 걷기 운동 60분에 대한 정량화된 소비 칼로리(예를 들어, 100kcal)와 이에 매핑되어 있는 운동량 레벨로 사용자의 운동량에 대한 정보가 등록 저장될 수 있다. 또 다른 예로 사용자는 자신의 신체 조건에 따라 사용자가 주관적으로 느끼는 개인화된 운동량 정보를 상, 중, 하 레벨 중 어느 하나로 입력할 수 있다.As an example, when the user walks for 60 minutes, the user may directly input the exercise amount information into upper, middle, and lower levels of the user through the user interface according to the user's physical condition. As another example, the quantitative consumption calories for 60 minutes of walking exercise and the amount of exercise level are mapped in advance and registered in the registration management unit 130. When the user inputs 60 minutes of walking exercise, the user quantifies 60 minutes of walking exercise. The information on the amount of exercise of the user may be registered and stored at the consumed calories (for example, 100 kcal) and the amount of exercise mapped thereto. As another example, the user may input the personalized exercise information that the user feels subjectively according to his / her physical condition to any one of the upper, middle, and lower levels.
이와 같이 사용자의 신체 조건, 식습관 등에 따라 사용자마다 상이하게 느끼는 사용자의 식사량 레벨 또는 운동량 레벨을 사용자가 직접 입력하며 입력한 식사량 레벨 또는 운동량 레벨에 따라 추천 음식 또는 피할 음식을 판단함으로써, 사용자에 개인화된 추천 음식 또는 피할 음식에 대한 정보를 용이하고 정확하게 생성할 수 있다.In this way, the user directly inputs the user's meal level or exercise level, which is different for each user according to the user's physical condition, eating habits, and the like, and determines recommended foods or foods to avoid based on the input meal level or exercise level, thereby personalizing the user. Information about recommended foods or foods to be avoided can be easily and accurately generated.
본 발명에서 혈당 관련 정보는 사용자가 혈당값, 식사량, 음식 종류, 운동량, 운동 종류 등 연관된 정보들을 묶어서 함께 입력할 수도 있으나, 바람직하게는 음식을 섭취한 시각 또는 혈당값을 측정한 시각, 운동을 수행 종료한 시각마다 각각 구분되어 날짜 및 시각 정보와 함께 입력될 수 있는데, 등록 관리부(130)에서 관련정보들을 날짜 및 시각에 따라 자동으로 맵핑 저장한다.In the present invention, the blood sugar-related information may be input together with a bundle of related information such as blood sugar value, meal amount, food type, exercise amount, exercise type, etc. Preferably, the time of eating food or the time of measuring blood sugar value, exercise Each of the times when the execution is completed may be divided and input together with date and time information. The registration manager 130 automatically maps and stores related information according to the date and time.
등록 관리부(130)는 사용자 단말기로부터 혈당값이 수신되는 경우, 등록 저장되어 있는 목표 혈당값과 수신한 혈당값을 비교하여 사용자의 혈당 상태를 정상 혈당 상태 또는 비정상 혈당 상태 중 어느 하나로 판단하며, 판단한 혈당 상태에 대한 정보를 식사량, 음식 종류, 운동량 정보에 매핑하여 데이터베이스부(150)에 등록 저장한다.When the blood sugar value is received from the user terminal, the registration manager 130 compares the target blood sugar value registered with the received blood sugar value to determine the user's blood sugar state as either a normal blood sugar state or an abnormal blood sugar state. The information on the blood sugar state is mapped to the meal amount, the food type, and the exercise amount information and stored in the database unit 150.
송수신부(110)를 통해 사용자 단말기로부터 사용자에 개인화된 음식 추천 요청을 수신하는 경우, 음식 정보 제공부(170)는 데이터베이스부(150)에 등록 저장된, 식사량 또는 운동량을 기준으로 구분되어 매핑된 혈당 상태에 대한 정보에 기초하여 사용자에 개인화된 추천 음식 또는 피할 음식에 대한 정보를 생성한다. 또한, 음식 정보 제공부(170)는 사용자 단말기로부터 특정 음식 종류가 추천 음식인지 피할 음식인지 문의 요청을 수신하는 경우, 특정 음식 종류에 대한 추천 정보를 개인화된 추천 음식 또는 피할 음식에 대한 정보로 생성한다.When receiving a food recommendation request personalized to the user from the user terminal through the transceiver 110, the food information providing unit 170 registered and stored in the database unit 150, based on the amount of meal or exercise amount mapped blood sugar Based on the information about the status, information about the recommended food or food to be avoided personalized to the user is generated. In addition, when the food information providing unit 170 receives a request for inquiring whether a specific food type is a recommended food or a food to be avoided from the user terminal, the food information providing unit 170 generates the recommendation information for the specific food type as information on a personalized recommended food or food to be avoided. do.
음식 정보 제공부(170)에서 생성한 사용자에 개인화된 추천 음식 또는 피할 음식에 대한 정보는 송수신부(110)를 통해 사용자 단말기로 송신되며, 사용자는 사용자 단말기에 구비되어 있는 출력부를 통해 개인화된 추천 음식 또는 피할 음식에 대한 정보를 조회할 수 있다.The personalized recommendation food or information about the food to be avoided generated by the food information providing unit 170 is transmitted to the user terminal through the transceiver 110, the user personalized recommendation through the output unit provided in the user terminal Information about foods or foods to avoid can be queried.
도 2는 본 발명에 따른, 당뇨병 증상을 가진 사용자에 개인화된 음식 추천 방법을 설명하는 흐름도이다.2 is a flow chart illustrating a method of personalized food recommendation to a user with diabetes symptoms in accordance with the present invention.
도 2를 참고로 보다 구체적으로 살펴보면, 사용자 단말기로부터 사용자가 섭취한 음식 종류, 식사량, 혈당값, 운동량 등과 같은 혈당 관련 정보를 수신하는 경우, 수신한 혈당 관련 정보를 데이터베이스부에 등록 저장한다(S100). Referring to Figure 2 in more detail, when receiving the blood sugar-related information such as food type, meal amount, blood sugar value, exercise amount, etc. the user ingested from the user terminal, the received blood sugar related information is registered and stored in the database unit (S100) ).
도 3은 사용자 단말기로부터 사용자가 섭취한 음식 종류, 식사량, 혈당값, 운동량 등의 혈당 관련 정보가 수신되는 경우 데이터베이스부에 혈당 관련 정보를 등록 저장하는 일 예를 설명하고 있는데, 도 3에 도시되어 있는 바와 같이 등록 관리부는 식사시 섭취한 음식 종류, 식사량, 식후 측정한 혈당값, 식후 사용자가 수행한 운동량 등과 같은 혈당 관련 정보를 사용자 단말기로부터 수신하는 경우, 수신한 시각 또는 날짜로 구분하여 혈당 관련 정보를 데이터베이스부에 등록 저장할 수 있다. FIG. 3 illustrates an example of registering and storing blood sugar related information in a database unit when blood sugar related information such as food type, meal amount, blood sugar value, and exercise amount which a user ingests is received from the user terminal is illustrated in FIG. As such, the registration management unit receives blood sugar related information such as the type of food ingested at meal, the amount of meal, the blood sugar value measured after the meal, and the amount of exercise performed by the user after eating, when the user terminal receives the blood sugar related information by dividing by the received time or date. Information can be registered and stored in the database.
혈당 관련 정보는 사용자 단말기로부터 각각 종류별로 상이한 시각에 수신될 수 있는데, 예를 들어 사용자가 섭취한 음식 종류 또는 식사량에 대한 정보는 식사 후 즉시 입력되고 혈당값에 대한 정보 또는 운동량에 대한 정보는 식후 2시간이 경과하여 혈당값을 측정한 시각 또는 운동을 수행 완료한 시각에 각각 입력될 수 있는데, 등록 저장부는 연관된 혈당 관련 정보를 서로 자동으로 매핑하여 데이터베이스부에 등록 저장한다. 도 4(a)에 도시되어 있는 바와 같이, 2015년 10월 25일 오전 9:10분에 수신된 혈당값과 운동량에 대한 정보는 가장 근접하여 이전 수신된 오전 7:05 아침식사의 음식 종류와 식사량에 매핑되어 등록 저장된다.The blood sugar related information may be received from the user terminal at different times for each type. For example, information on the type or amount of food ingested by the user may be input immediately after a meal, and information on blood sugar values or exercise amount may be received after a meal. Two hours may be input at the time when blood glucose values are measured or when the exercise is completed, and the registration storage unit automatically maps the related blood sugar related information to each other and registers and stores them in the database unit. As shown in FIG. 4 (a), the information on blood glucose values and the amount of exercise received at 9:10 am on October 25, 2015 is the closest to the food type of the previously received 7:05 am breakfast. It is mapped and stored in the amount of meals and stored.
본 발명이 적용되는 분야에서 혈당값으로 식전 혈당값과 식후 혈당값 사이의 차이값이 사용될 수 있는데, 이러한 경우 등록 관리부는 사용자 단말기로부터 식전 혈당값과 식후 혈당값 사이의 차이값을 직접 수신받을 수 있으나, 바람직하게 개별적으로 측정한 식전 혈당값과 식후 혈당값을 측정 시간정보와 함께 각각 사용자 단말기로부터 수신하고 등록 관리부가 연관된 정보를 매핑하여 저장하는 과정에서 차이값을 자동으로 계산하여 저장할 수 있다. 도 4(b)는 혈당값으로 식전 혈당값과 식후 혈당값 사이의 차이값이 사용되는 경우 데이터베이스부에 등록 저장된 혈당 관련 정보의 일 예인데, 식사 시각을 전후로 임계 시간, 예를 들어 식사 시각 전 30분 이내에 수신된 측정 혈당값과 식사 시각 후 3시간 이내에 수신된 측정 혈당값을 각각 식전 측정 혈당값과 식후 측정 혈당값으로 매핑하여 식전 측정 혈당값과 식후 측정 혈당값 사이의 차이값을 자동으로 계산하여 등록 저장된다. In the field to which the present invention is applied, a difference value between a pre-preparation blood sugar value and a post-prandial blood sugar value may be used as a blood sugar value. In this case, the registration management unit may directly receive a difference value between the pre-meal blood sugar value and the post-prandial blood sugar value from the user terminal. However, preferably, the pre-meal blood glucose value and the post-meal blood sugar value measured separately from the user terminal with measurement time information, respectively, and the registration management may automatically calculate and store the difference value in the process of mapping and storing the associated information. Figure 4 (b) is an example of blood sugar-related information stored in the database when the difference between the pre-preparation blood sugar value and post-prandial blood sugar value is used as the blood sugar value, the threshold time before and after the meal time, for example before meal time The measured blood glucose value received within 30 minutes and the measured blood sugar value received within 3 hours after mealtime are mapped to the pre-meal blood glucose value and the post-meal blood glucose value, respectively, to automatically calculate the difference between the pre-meal blood glucose value and the post-meal blood glucose value. Calculation is registered and stored.
도 5를 참고로 사용자가 혈당 관련 정보 중 섭취한 음식 종류 또는 식사량을 입력하는 사용자 단말기의 인터페이스의 일 예를 살펴보면, 도 5(a)에 도시되어 있는 바와 같이 사용자는 사용자 단말기의 인터페이스를 통해 사용자가 섭취한 음식 종류별로 각각 식사량에 대한 정보를 입력할 수 있다. 또한 도 5(b)에 도시되어 있는 바와 같이 사용자가 식사한 음식 종류 조합을 한번에 모두 입력할 수 있다. Referring to FIG. 5, an example of an interface of a user terminal for inputting a food type or a meal amount of blood sugar related information is illustrated in FIG. 5A. For each type of food ingested, you can enter information about the amount of meal. In addition, as shown in FIG. 5 (b), the user may input all the combinations of food types eaten at a time.
다시 도 2를 참고로 살펴보면, 등록 저장된 식사량에 대한 정보, 운동량에 대한 정보 및 사용자의 혈당값에 대한 정보로부터 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 생성한다(S200). 여기서 식사량에 대한 정보와 운동량에 대한 정보를 기준으로 사용자에 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 생성함으로써, 사용자가 섭취한 음식 종류의 식사량과 운동량을 모두 고려하여 사용자에 개인화된 추천 음식에 대한 정보를 생성하거나 사용자에 개인화된 피할 음식에 대한 정보를 생성한다. 또한, 단순히 추천 음식의 종류 또는 피할 음식의 종류만으로 추천 음식에 대한 정보 또는 피할 음식에 대한 정보를 생성하는 대신, 구체적으로 추천 음식 종류, 추천 음식의 식사량 레벨, 각 추천 음식의 식사량 레벨에서 수행하여야 할 운동량 레벨로 추천 음식에 대한 정보를 생성함으로써, 사용자는 추천 음식 종류에 따라 식사량과 운동량에 대한 정보를 정확하고 구체적으로 제공받을 수 있다. Referring to FIG. 2 again, information about a recommended food type or a type of food to be avoided is generated from the information on the amount of registered meal, the amount of exercise, and the information on the blood sugar value of the user (S200). Here, by generating information on the type of food recommended to the user or the type of food to be avoided based on the information on the amount of meal and the amount of exercise, the user may consider both the amount of meal and the amount of exercise of the type of food ingested by the user, Create information about or create information about foods to avoid personalized to the user. In addition, instead of simply generating information about recommended foods or information about foods to be avoided based on simply the types of foods recommended or the types of foods to be avoided, specifically, the information on foods recommended, food levels of recommended foods, and foods of each recommended food should be performed. By generating information on the recommended food at the exercise amount level to be performed, the user may be provided with accurate and specific information about the amount of meal and the exercise amount according to the recommended food type.
또한 본 발명에 따른 사용자에 개인화된 음식 추천 방법은 사용자가 직접 섭취한 음식 종류 또는 사용자가 실제 느끼는 식사량 또는 운동량에 기초하여 사용자에 추천 음식 또는 피할 음식에 대한 정보를 생성하기 때문에, 사용자는 실생활에서 사용자의 기호에 따라 또는 사용자의 식사량에 따라 또는 사용자의 개인 신체 조건에 따라 또는 사용자가 실제 수행하는 운동에 따라 사용자가 주로 섭취하는 음식 중 운동량과 식사량을 고려하여 추천 음식 또는 피할 음식에 대한 정보를 획득할 수 있다.In addition, since the food recommendation method personalized to the user according to the present invention generates information about recommended food or food to be avoided to the user based on the type of food directly ingested by the user or the amount of meal or exercise actually felt by the user, Information about recommended foods or foods to avoid, based on the amount of exercise and the amount of meals that the user mainly consumes, depending on the user's preferences, the amount of the user's meals, or the user's personal physical condition, or the exercise actually performed by the user. Can be obtained.
바람직하게, 데이터베이스부에 저장되어 있는 식사량에 대한 정보를 기준으로 식사량이 하 레벨이고 비정상 혈당 상태로 구분되는 음식 종류는 운동량에 무관하게 사용자가 피할 음식 정보로 생성한다.Preferably, based on the information on the amount of meals stored in the database unit, the amount of food is lower level and divided into abnormal blood sugar state is generated as food information to be avoided by the user irrespective of the amount of exercise.
바람직하게, 데이터베이스부에 저장되어 있는 식사량에 대한 정보를 기준으로 식사량이 상 레벨이고 정상 혈당 상태로 구분되는 음식 종류는 운동량에 무관하게 사용자에 추천할 음식 정보로 생성한다. Preferably, based on the information on the amount of the meal stored in the database unit, the amount of food is a high level and divided into normal blood sugar state is generated as food information to be recommended to the user regardless of the amount of exercise.
바람직하게, 데이터베이스부에 저장되어 있는 혈당 관련 정보로부터 계산되는 음식 추천값에 기초하여 음식 추천값이 높은 순서로 설정된 수의 음식 종류를 사용자에 추천할 음식 종류 정보로 생성하거나, 음식 추천값이 낮은 순서로 설정된 수의 음식 종류를 사용자가 피할 음식 종류 정보로 생성할 수 있다.Preferably, based on the food recommendation value calculated from the blood sugar-related information stored in the database unit, the number of food types set in order of higher food recommendation values is generated as food type information to be recommended to the user, or the food recommendation value is low. The number of food types set in order may be generated as food type information to be avoided by the user.
여기서 음식(i)에 대한 음식 추천값(Ri)는 아래의 수학식(1)과 같이 계산된다.Here, the food recommendation value Ri for the food i is calculated as in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2016013164-appb-I000002
Figure PCTKR2016013164-appb-I000002
여기서 n은 음식(i)을 섭취한 총 횟수를 의미하고, ap는 정상 혈당 상태 또는 비정상 혈당 상태를 기준으로 음식(i)을 섭취시 식사량 레벨에 할당되는 가중치이고, bp는 정상 혈당 상태 또는 비정상 혈당 상태를 기준으로 음식(i)을 섭취시 운동량 레벨에 할당되는 가중치인 것을 특징으로 한다.Where n is the total number of times the food (i) is ingested, a p is the weight assigned to the meal level when the food (i) is ingested based on the normal or abnormal blood glucose level, and b p is the normal blood sugar level Or a weight assigned to an exercise amount level when the food (i) is ingested based on the abnormal blood glucose state.
바람직하게, 혈당 관련 정보는 도 4에서 설명한 혈당 관련 정보를 다시 단위 시간(예를 들어 1일, 1주일, 1달 등)별로 구분하여 저장될 수 있는데, 도 9는 단위 시간별로 구분되어 저장된 혈당 관련 정보의 일 예를 도시하고 있다. 도 9에서 알파벳은 음식 종류를 의미한다.Preferably, the blood sugar related information may be stored by dividing the blood sugar related information described in FIG. 4 again by unit time (for example, 1 day, 1 week, 1 month, etc.), and FIG. An example of related information is shown. In FIG. 9, the alphabet means food type.
판단한 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 송수신부를 통해 사용자 단말기로 제공한다(S300). Information about the recommended food type or the food type to be avoided personalized to the determined user is provided to the user terminal through the transceiver unit (S300).
도 6은 본 발명에 따른 사용자에 추천 음식 종류에 대한 정보를 생성하는 방법의 일 실시예를 설명하기 위한 흐름도이다.6 is a flowchart illustrating an embodiment of a method of generating information on a type of food recommended for a user according to the present invention.
도 6을 참고로 보다 구체적으로 살펴보면, 데이터베이스부에는 사용자의 식사량, 음식 종류, 혈당값, 혈당 상태, 운동량 등의 혈당 관련 정보가 서로 매핑되어 등록 저장되어 있으며 데이터베이스부에 등록 저장된 혈당 관련 정보 중 혈당 상태 정보를 기준으로 정상 혈당 상태로 연관 매핑되어 있는 음식 종류를 판단한다(S211).Referring to FIG. 6, in more detail, blood glucose related information such as a user's meal amount, food type, blood sugar value, blood sugar state, and exercise amount is mapped and stored in the database unit, and blood sugar is stored among blood sugar related information stored in the database unit. Based on the state information, the food type associated with the normal blood sugar state is determined (S211).
정상 혈당 상태로 연관 매핑되어 있는 음식 종류 중 식사량을 기준으로 식사량이 상 레벨인 음식 종류를 판단한다(S213).A food type having a higher meal level is determined based on a meal amount among food types mapped to a normal blood sugar state (S213).
한편, 정상 혈당 상태로 연관 매핑되어 있는 음식 종류 중 식사량을 기준으로 식사량이 상 레벨이 아닌 음식 종류의 각 식사량 레벨에서 가장 높은 운동량 레벨을 판단한다(S215). 정상 혈당 상태로 연관 매핑되어 있는 음식 종류 중 식사량이 상 레벨인 음식 종류는 운동량에 무관한 추천 음식으로 그리고, 식사량이 중 또는 하 레벨인 음식 종류는 각 식사량 레벨에서 가장 높은 운동량 레벨로 추천 음식에 대한 정보를 생성한다(S217). 즉, 생성한 추천 음식에 대한 정보는 사용자 단말기로 제공되어 표시되는데, 정상 혈당 상태로 매핑된 음식 종류 중 식사량이 상 레벨인 음식 종류를 운동량에 무관하게 추천하거나, 정상 혈당 상태로 매핑된 음식 종류 중 식사량이 하 레벨 또는 중 레벨인 음식 종류를 각 식사량 레벨에서 가장 높은 운동량 레벨로 추천한다. On the other hand, the highest amount of exercise level is determined at each meal level of the food type, rather than the upper level, based on the amount of meal among the food types mapped to the normal blood sugar state (S215). Food types with higher levels of food among the food types that are mapped to the normal blood glucose level are recommended for foods that are not related to exercise volume, and food types with medium or lower meals have the highest exercise level for each meal level. Generate information about (S217). That is, the information on the generated recommended food is provided to the user terminal and displayed. The food type mapped to normal blood sugar state recommends a food type having a higher level regardless of the exercise amount, or the food type mapped to normal blood sugar state. Food types with medium or low meals are recommended as the highest exercise level at each meal level.
다수의 단위 시간에서 동일한 음식 종류가 일부 단위시간에서는 정상 혈당 상태로 판단되기도 하고 다른 단위시간에서는 비정상 혈당 상태로 판단되기도 하는데, 도 7은 동일한 음식 종류가 비정상 혈당 상태와 정상 혈당 상태로 상이하게 구분되는 경우 사용자에 추천할 음식 종류에 대한 정보를 생성하는 방법을 설명하기 위한 흐름도이다.The same food type may be determined to be a normal blood sugar state at some unit time in some unit time or to an abnormal blood sugar state at another unit time. In FIG. 7, the same food type is differently divided into an abnormal blood sugar state and a normal blood sugar state. If there is a flow chart for explaining how to generate information on the type of food to be recommended to the user.
도 7을 참고로 살펴보면, 적어도 1개 이상의 단위기간별로 수신한, 사용자의 혈당값, 사용자의 식사량, 음식 종류, 운동량에 대한 정보로부터 동일한 음식 종류 중 식사량을 기준으로 정상 혈당 상태와 비정상 혈당 상태로 서로 상이하게 구분되는 음식 종류를 1차 판단한다(S231). 도 8에서 음식 종류(H)는 단위시간 2, 3에서는 정상 혈당 상태로 구분되어 있으나 단위시간 1, 4에서는 비정상 혈당 상태로 구분되어 있다.Referring to Figure 7, from the information on the user's blood sugar value, the user's meal amount, food type, exercise amount received for at least one unit period from the same food type to the normal blood sugar state and abnormal blood glucose state based on the amount of meal First, the type of food that is different from each other is determined (S231). In FIG. 8, the food type H is divided into normal blood glucose states at unit times 2 and 3, but is classified as abnormal blood glucose states at unit times 1 and 4.
혈당 상태가 상이하게 구분되는 음식 종류 중 정상 혈당 상태로 구분된 음식 종류의 식사량 레벨과 운동량 레벨에서 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨을 판단한다(S233). 혈당 상태가 상이하게 구분되는 음식 종류 중 정상 혈당 상태로 구분된 음식 종류의 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨로 해당 음식을 사용자에 추천할 음식 종류에 대한 정보로 생성한다(S235).The lowest meal amount level and the highest exercise level are determined in the meal amount level and the exercise level of the food type divided into the normal blood sugar state among the food types having different blood sugar states (S233). Among the types of foods in which blood sugar levels are different from each other, the foods are generated as information on the types of foods to be recommended to the user at the lowest meal amount and the highest exercise level of the food types classified as normal blood sugar states (S235).
도 9는 특정 음식 종류가 사용자에 추천 음식인지 아니면 사용자가 피할 음식인지 음식 추천 정보를 생성하는 단계를 설명하는 흐름도이다.9 is a flowchart illustrating a step of generating food recommendation information whether a particular food type is recommended food to a user or food to be avoided by the user.
도 9를 참고로 보다 구체적으로 살펴보면, 사용자가 검색하고자 하는 검색 음식 종류에 대한 정보가 사용자 단말기로부터 수신되는 경우(S251), 데이터베이스부에 저장된, 적어도 1개 이상의 단위 시간별 음식 종류 중 검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간이 존재하는지 판단한다(S253)Referring to FIG. 9 in more detail, when information about a type of search food to be searched for by the user is received from the user terminal (S251), the searched food type is included in at least one or more unit time type foods stored in the database unit. It is determined whether there is a unit time divided into a normal blood sugar state or an abnormal blood sugar state (S253).
검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간이 존재하는 경우, 검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서 검색 음식 종류에 대한 사용자의 식사량 레벨에 대한 정보, 운동량 레벨에 대한 정보와 혈당 상태 정보를 추출한다(S255).If there is a unit time in which the searched food type is divided into a normal blood sugar state or an abnormal blood glucose state, the user's meal level for the searched food type is determined in a unit time in which the searched food type is divided into a normal blood sugar state or an abnormal blood sugar state. Information on the activity level and information on the blood glucose level are extracted (S255).
정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서의 식사량 정보 또는 운동량 정보에 기초하여 검색 음식 종류의 추천 정보를 생성한다(S257).The recommended information of the searched food type is generated based on the meal amount information or the exercise amount information in the unit time divided into the normal blood sugar state or the abnormal blood sugar state (S257).
도 10은 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서의 식사량 정보에 기초하여 검색 음식 종류의 추천 정보를 생성하는 단계의 일 예를 설명하는 흐름도이다.10 is a flowchart illustrating an example of generating recommendation information of a searched food type based on meal amount information in a unit time divided into a normal blood sugar state or an abnormal blood sugar state.
도 10을 참고로 보다 구체적으로 살펴보면, 검색 음식 종류가 정상 혈당 상태로 구분되어 있는 단위 시간만 존재하는지 판단하고(S271), 정상 혈당 상태로 구분되어 있는 단위 시간만 존재하는 경우 검색 음식 종류에 대한 추천 정보를 생성하여 사용자에 제공한다(S273). 검색 음식 종류가 정상 혈당 상태로 구분되어 있는 단위 시간만 존재하고 검색 음식 종류의 식사량을 기준으로 상 레벨인 경우, 운동량에 무관하게 검색 음식 종류를 추천 음식 정보로 생성한다. 한편, 검색 음식 종류가 정상 혈당 상태로 구분되어 있는 단위 시간만 존재하고 검색 음식 종류의 식사량을 기준으로 상 레벨이 아닌 경우, 검색 음식 종류의 식사량 레벨과 해당 식사량 레벨에서 가장 높은 운동량 레벨로 검색 음식 종류를 사용자에 추천할 음식 종류 정보로 생성한다.Referring to FIG. 10, in more detail, it is determined whether the search food type has only a unit time divided by a normal blood sugar state (S271), and when there is only a unit time divided by a normal blood sugar state, The recommendation information is generated and provided to the user (S273). When the searched food type exists only in unit time divided into normal blood sugar states and is at a high level based on the amount of meals of the searched food type, the searched food type is generated as recommended food information regardless of the exercise amount. On the other hand, if the searched food type has only unit time divided into normal blood glucose states and is not a phase level based on the amount of food of the searched food type, the searched food at the meal level of the searched food type and the highest exercise level from the corresponding meal level The type is generated as food type information to be recommended to the user.
검색 음식 종류가 비정상 혈당 상태로 구분되어 있는 단위 시간만 존재하는지 판단하여(S274), 검색 음식 종류가 비정상 혈당 상태로 구분되어 있는 단위 시간만 존재하는 경우 검색 음식 종류를 사용자가 피할 음식 종류 정보로 생성한다(S275).It is determined whether the search food type exists only in the unit time divided by the abnormal blood sugar state (S274), and when the search food type exists only in the unit time divided by the abnormal blood glucose state, the search food type is the food type information to be avoided by the user. It generates (S275).
한편, 검색 음식 종류가 정상 혈당 상태로 구분되어 있는 단위 시간과 검색 음식 종류가 비정상 혈당 상태로 구분되어 있는 단위 시간이 함께 존재하는지 판단하여(S277), 검색 음식 종류가 정상 혈당 상태로 구분되어 있는 단위 시간과 검색 음식 종류가 비정상 혈당 상태로 구분되어 있는 단위 시간이 함께 존재하는 경우 정상 혈당 상태로 구분되어 있는 단위 시간에서 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨로 검색 음식 종류를 사용자에 추천할 음식 종류 정보로 생성한다(S279).On the other hand, it is determined whether there is a unit time in which the searched food type is divided into a normal blood sugar state and a unit time in which the searched food type is divided into an abnormal blood sugar state (S277). Unit time and unit time when the food type is classified as abnormal blood sugar state coexists Search for the lowest meal level and the highest exercise level at unit time classified as normal blood sugar state Food type to recommend to user Generate by type information (S279).
*한편, 상술한 본 발명의 실시 예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.Meanwhile, the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer which operates the program using a computer-readable recording medium.
상기 컴퓨터로 읽을 수 있는 기록 매체는 마그네틱 저장 매체(예를 들어, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장 매체를 포함한다.The computer-readable recording medium may be a magnetic storage medium (for example, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (for example, a CD-ROM, DVD, etc.) and a carrier wave (for example, the Internet). Storage medium).
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다. Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (12)

  1. 사용자의 혈당값, 상기 사용자의 음식 섭취량과 음식 종류, 운동량에 대한 정보를 서로 매핑 등록하는 단계;Registering mapping information about blood sugar values of the user, food intake, food type, and exercise amount of the user;
    상기 사용자의 혈당값과 목표 혈당값을 비교하고 상기 사용자의 혈당값이 목표 혈당값을 초과하는지에 기초하여 정상 혈당 상태 또는 비정상 혈당 상태 중 어느 하나로 혈당 상태를 판단하는 단계;Comparing the blood sugar value of the user with a target blood sugar value and determining whether the blood sugar state is a normal blood sugar state or an abnormal blood sugar state based on whether the blood sugar value of the user exceeds a target blood sugar value;
    판단한 혈당 상태를 상기 식사량 또는 상기 운동량을 기준으로 구분하여 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 생성하는 단계: 및Generating information about a recommended food type or a food type to be avoided personalized to the user by dividing the determined blood sugar state based on the meal amount or the exercise amount; and
    상기 사용자에 개인화된 추천 음식 종류 또는 피할 음식 종류에 대한 정보를 사용자에 제공하는 단계를 포함하는 것을 특징으로 하는 음식 추천 방법.And providing the user with information about the type of recommended food or the type of food to be avoided.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 사용자의 혈당값은 사용자의 식전 혈당값과 식후 혈당값 사이의 차이값인 것을 특징으로 하는 개인화된 음식 추천 방법.Wherein the blood sugar value of the user is a difference value between the pre-meal blood sugar value and the post-prandial blood sugar value of the user.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 사용자의 혈당값은 사용자가 식후 측정한 혈당값인 것을 특징으로 하는 개인화된 음식 추천 방법. The blood sugar value of the user is a personalized food recommendation method, characterized in that the user measured after meals.
  4. 제 2 항 또는 제 3 항에 있어서, 상기 운동량에 대한 정보는 사용자가 느끼는 주관적인 운동량 레벨로 구분되어 등록 저장되는 것을 특징으로 하는 개인화된 음식 추천 방법.The personalized food recommendation method of claim 2 or 3, wherein the information about the exercise amount is classified and stored in a subjective exercise level felt by the user.
  5. 제 4 항에 있어서, 상기 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는The method of claim 4, wherein the generating of information on the type of recommended food personalized to the user is performed.
    상기 식사량을 기준으로 식사량이 상 레벨이고 정상 혈당 상태로 구분되는 음식 종류를 상기 사용자에 추천할 음식 종류에 대한 정보로 생성하는 것을 특징으로 하는 개인화된 음식 추천 방법.Personalized food recommendation method, characterized in that for generating a food type of the food level is divided into a normal blood sugar state based on the amount of the meal as information on the type of food to be recommended to the user.
  6. 제 5 항에 있어서, 상기 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는The method of claim 5, wherein generating the personalized recommended food type information for the user
    정상 혈당 상태로 구분되어 있는 음식 종류, 정상 혈당 상태로 구분되어 있는 해당 음식 종류의 식사량과 운동량 정보를 포함하여 상기 사용자에 추천할 음식 종류에 대한 정보를 생성하는 것을 특징으로 하는 개인화된 음식 추천 방법. Personalized food recommendation method comprising generating information on the food type to be recommended to the user, including food type divided into normal blood sugar state, meal amount and exercise information of the corresponding food type divided into normal blood sugar state .
  7. 제 6 항에 있어서, 상기 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는The method of claim 6, wherein generating the personalized recommended food type information for the user
    적어도 1개 이상의 단위기간별로 수신한, 사용자의 혈당값, 상기 사용자의 식사량, 음식 종류 및 운동량에 대한 정보로부터 정상 혈당 상태로 구분되어 있는 음식 종류의 식사량 레벨에서 가장 높은 운동량 레벨을 판단하는 단계를 더 포함하며, Determining the highest exercise level at a meal level of a food type divided into normal blood glucose states from information on a user's blood sugar value, the user's meal amount, food type, and exercise amount received for at least one unit period; More,
    상기 음식 종류의 식사량 레벨과 해당 식사량 레벨에서 가장 높은 운동량 레벨로 상기 음식 종류를 상기 사용자에 추천할 음식 종류에 대한 정보로 생성하는 것을 특징으로 하는 개인화된 음식 추천 방법.Personalized food recommendation method, characterized in that for producing the food type information of the food type to recommend to the user at the meal amount level of the food type and the highest exercise amount level in the corresponding meal amount level.
  8. 제 4 항에 있어서, 상기 사용자에 개인화된 추천 음식 종류에 대한 정보를 생성하는 단계는The method of claim 4, wherein the generating of information on the type of recommended food personalized to the user is performed.
    적어도 1개 이상의 단위기간별로 수신한, 사용자의 혈당값, 상기 사용자의 식사량, 음식 종류 및 운동량에 대한 정보로부터 동일한 음식 종류 중 상기 식사량을 기준으로 정상 혈당 상태와 비정상 혈당 상태로 서로 상이하게 구분되는 음식 종류를 1차 판단하는 단계;From the information on the blood sugar value of the user, the user's meal amount, food type, and exercise amount received for at least one unit period is different from each other in the normal blood sugar state and abnormal blood glucose state based on the meal amount of the same food type First determining the type of food;
    상기 상이하게 구분되는 음식 종류 중 정상 혈당 상태로 구분되는 식사 종류의 식사량 레벨과 운동량 레벨에서 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨을 판단하는 단계; 및Determining the lowest meal amount level and the highest exercise level level from the meal amount level and the exercise level of the meal type divided into normal blood sugar states among the food types that are differently divided; And
    상기 상이하게 구분되는 음식 종류를 상기 가장 낮은 식사량 레벨과 가장 높은 운동량 레벨로 상기 사용자에 추천할 음식 종류에 대한 정보로 생성하는 단계를 더 포함하는 것을 특징으로 하는 개인화된 음식 추천 방법. Personalized food recommendation method further comprises the step of generating the information on the food type to be recommended to the user at the lowest meal amount level and the highest exercise amount level.
  9. 제 4 항에 있어서, 상기 개인화된 음식 추천 방법은The method of claim 4, wherein the personalized food recommendation method is
    음식 추천값(Ri)을 계산하는 단계를 더 포함하며,Calculating a food recommendation value R i ;
    상기 음식 추천값이 높은 순서로, 설정된 수의 음식 종류를 상기 사용자에 추천할 음식 종류에 대한 정보로 생성하거나,Create a set number of food types as information about food types to be recommended to the user, in order of the food recommendation value being high;
    상기 음식 추천값이 낮은 순서로, 설정된 수의 음식 종류를 상기 사용자가 피할 음식 종류에 대한 정보로 생성하는 것을 특징으로 하는 개인화된 음식 추천 방법.Personalized food recommendation method, characterized in that for generating the information of the type of food to be avoided by the user in the order of the food recommendation value is low.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 음식 추천값(Ri)는 아래의 수학식(1)에 의해 계산되며,The food recommendation value Ri is calculated by the following Equation (1),
    [수학식 1][Equation 1]
    Figure PCTKR2016013164-appb-I000003
    Figure PCTKR2016013164-appb-I000003
    여기서 n은 음식(i)을 섭취한 총 횟수를 의미하고, ap는 정상 혈당 상태 또는 비정상 혈당 상태를 기준으로 음식(i)을 섭취시 식사량 레벨에 할당되는 가중치이고, bp는 정상 혈당 상태 또는 비정상 혈당 상태를 기준으로 음식(i)을 섭취시 운동량 레벨에 할당되는 가중치인 것을 특징으로 하는 개인화된 음식 추천 방법. Where n is the total number of times the food (i) is ingested, a p is the weight assigned to the meal level when the food (i) is ingested based on the normal or abnormal blood glucose level, and b p is the normal blood sugar level Or a weight assigned to an exercise amount level when the food (i) is ingested based on the abnormal blood glucose state.
  11. 제 4 항에 있어서, 상기 개인화된 음식 추천 방법은The method of claim 4, wherein the personalized food recommendation method is
    사용자가 검색하고자 하는 검색 음식 종류에 대한 정보가 수신되는 경우, 데이터베이스부에 저장된, 적어도 1개 이상의 단위 시간별 음식 종류 중 상기 검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간이 존재하는지 판단하는 단계;When information about a search food type to be searched by a user is received, there is a unit time in which the search food type is divided into a normal blood sugar state or an abnormal blood sugar state among at least one or more unit time food types stored in a database unit. Judging;
    상기 검색 음식 종류가 정상 혈당 상태 또는 비정상 혈당 상태로 구분되어 있는 단위 시간에서 상기 검색 음식 종류에 대한 사용자의 식사량 레벨 또는 운동량 레벨에 대한 정보와 혈당 상태 정보를 추출하는 단계; 및Extracting information about a user's meal level or exercise level and blood sugar state information for the search food type at a unit time in which the searched food type is divided into a normal blood sugar state or an abnormal blood sugar state; And
    상기 정상 혈당 상태 또는 상기 비정상 혈당 상태로 구분되어 있는 단위 시간에서의 식사량 정보 또는 운동량 정보에 기초하여 상기 검색 음식 종류의 추천 정보를 생성하는 단계를 더 포함하는 것을 특징으로 하는 개인화된 음식 추천 방법. And generating recommendation information of the searched food type based on the amount of meal information or the amount of exercise information in unit time divided into the normal blood sugar state or the abnormal blood sugar state.
  12. 제 4 항에 있어서, The method of claim 4, wherein
    상기 사용자에 개인화된 피할 음식 종류에 대한 정보를 생성하는 단계는Generating information on the type of food to be avoided personalized to the user
    비정상 혈당 상태로 구분되어 있는 음식 종류, 비정상 혈당 상태로 구분되어 있는 해당 음식 종류의 식사량과 운동량 정보를 포함하여 상기 사용자에 피할 음식 종류에 대한 정보를 생성하는 것을 특징으로 하는 개인화된 음식 추천 방법.Personalized food recommendation method, characterized in that for generating information on the type of food to be avoided to the user, including information on the type of food is divided into abnormal blood sugar state, the amount of meals and exercise amount of the food type classified by abnormal blood sugar.
PCT/KR2016/013164 2015-12-30 2016-11-15 Method for recommending, to user with diabetes symptoms, food personalized with consideration for amount of exercise WO2017116003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680067438.9A CN108352191A (en) 2015-12-30 2016-11-15 The personalized food that amount of exercise is considered for the user with diabetes recommends method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150190305A KR101807853B1 (en) 2015-12-30 2015-12-30 Method for individualized recommanding food for glycosuria patient
KR10-2015-0190305 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017116003A1 true WO2017116003A1 (en) 2017-07-06

Family

ID=59225013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013164 WO2017116003A1 (en) 2015-12-30 2016-11-15 Method for recommending, to user with diabetes symptoms, food personalized with consideration for amount of exercise

Country Status (3)

Country Link
KR (1) KR101807853B1 (en)
CN (1) CN108352191A (en)
WO (1) WO2017116003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493156A (en) * 2018-09-17 2019-03-19 口碑(上海)信息技术有限公司 Vegetable recommended method and device based on workout data

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109509117A (en) * 2018-09-30 2019-03-22 口碑(上海)信息技术有限公司 A kind of vegetable recommended method, apparatus and system
CN111489806A (en) * 2020-04-09 2020-08-04 南通大学 A kind of intelligent diabetes calorie management method and system
WO2024172352A1 (en) * 2023-02-13 2024-08-22 주식회사 카카오헬스케어 System and method for providing blood glucose management service

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052196A (en) * 2009-11-12 2011-05-18 (의료)길의료재단 Diet prescription using u-healthcare personalization service
KR20130028415A (en) * 2011-09-09 2013-03-19 안이솔 Total care method and managing system for blood sugar
KR20130135677A (en) * 2012-06-01 2013-12-11 주식회사 오코웰 Healthecare method utilizing a self-monitoring of blood sugar date and system thereof
JP2014164348A (en) * 2013-02-21 2014-09-08 Terumo Corp Blood sugar management system and blood sugar management method
KR20150034416A (en) * 2013-09-26 2015-04-03 주식회사 인포피아 Method for providing application for managing disease and system implementing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343929A (en) * 2000-09-19 2002-04-10 王志刚 Nutritive menu system for diabetics
JP2009042839A (en) * 2007-08-06 2009-02-26 Chugoku Electric Power Co Inc:The Health management support server device and health management support system
US8812244B2 (en) * 2009-01-26 2014-08-19 EOS Health, Inc. Personalized wireless-based interactive diabetes treatment
CN102053158B (en) * 2009-11-09 2013-11-27 财团法人资讯工业策进会 Blood glucose analysis system and device
CN105022908A (en) * 2014-04-29 2015-11-04 Tcl集团股份有限公司 Dietary recommendation method and system
JP2014207027A (en) * 2014-08-08 2014-10-30 セイコーエプソン株式会社 Blood glucose level forecasting device
CN104866954A (en) * 2015-04-27 2015-08-26 天津师范大学 Resident diet balance quantification analysis method based on intelligent information processing terminal, and system thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052196A (en) * 2009-11-12 2011-05-18 (의료)길의료재단 Diet prescription using u-healthcare personalization service
KR20130028415A (en) * 2011-09-09 2013-03-19 안이솔 Total care method and managing system for blood sugar
KR20130135677A (en) * 2012-06-01 2013-12-11 주식회사 오코웰 Healthecare method utilizing a self-monitoring of blood sugar date and system thereof
JP2014164348A (en) * 2013-02-21 2014-09-08 Terumo Corp Blood sugar management system and blood sugar management method
KR20150034416A (en) * 2013-09-26 2015-04-03 주식회사 인포피아 Method for providing application for managing disease and system implementing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493156A (en) * 2018-09-17 2019-03-19 口碑(上海)信息技术有限公司 Vegetable recommended method and device based on workout data

Also Published As

Publication number Publication date
KR20170080867A (en) 2017-07-11
CN108352191A (en) 2018-07-31
KR101807853B1 (en) 2017-12-12

Similar Documents

Publication Publication Date Title
US20250087349A1 (en) Methods and systems for generating an alimentary instruction set
Saint-Maurice et al. Association of daily step count and step intensity with mortality among US adults
WO2017104979A1 (en) Method for recommending food personalized to user with diabetes symptoms
Mortazavi et al. A review of digital innovations for diet monitoring and precision nutrition
Hsu et al. Physical activity, sedentary behavior, and the metabolic syndrome in minority youth
US11322255B2 (en) Methods and systems for self-fulfillment of an alimentary instruction set based on vibrant constitutional guidance
Yost et al. Using multiple anchor‐and distribution‐based estimates to evaluate clinically meaningful change on the Functional Assessment of Cancer Therapy‐Biologic Response Modifiers (FACT‐BRM) instrument
US20090288887A1 (en) Electronic scale
WO2017116003A1 (en) Method for recommending, to user with diabetes symptoms, food personalized with consideration for amount of exercise
US20220309403A1 (en) Systems and methods for implementing generated alimentary instruction sets based on vibrant constitutional guidance
US11205140B2 (en) Methods and systems for self-fulfillment of an alimentary instruction set based on vibrant constitutional guidance
EP3502917A1 (en) Medical checkup result output apparatus and operation method and operation program thereof
Martínez et al. Association between body mass index and salivary uric acid among Mexican‐origin infants, youth and adults: Gender and developmental differences
CN118645201A (en) Health management methods
US20210004713A1 (en) Methods and systems for generating a supplement instruction set using artificial intelligence
US20200321113A1 (en) Systems and methods for generating alimentary instruction sets based on vibrant constitutional guidance
EP3948703A1 (en) Systems and methods for generating alimentary instruction sets based on vibrant constitutional guidance
CN102053158B (en) Blood glucose analysis system and device
US11367531B2 (en) Medical checkup result output apparatus, operation method thereof, and non-transitory computer readable medium
CN118398167B (en) Personalized intelligent meal management method and system meeting blood glucose management requirements
CN110634543A (en) Fat-reducing management platform and implementation method thereof
Luo et al. Health literacy, self-management activities, and glycemic control among adults with type 2 diabetes: a path analysis
US20110082709A1 (en) System and device and method for blood sugar level analysis and computer readable recording medium storing computer program performing the method
JP2004302498A (en) Dietary habit modification support device
Roy et al. OBESEYE: Interpretable Diet Recommender for Obesity Management using Machine Learning and Explainable AI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881956

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载