+

WO2017109979A1 - Distance estimation device, distance estimation method, and program - Google Patents

Distance estimation device, distance estimation method, and program Download PDF

Info

Publication number
WO2017109979A1
WO2017109979A1 PCT/JP2015/086350 JP2015086350W WO2017109979A1 WO 2017109979 A1 WO2017109979 A1 WO 2017109979A1 JP 2015086350 W JP2015086350 W JP 2015086350W WO 2017109979 A1 WO2017109979 A1 WO 2017109979A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
time
feature
moving
moving body
Prior art date
Application number
PCT/JP2015/086350
Other languages
French (fr)
Japanese (ja)
Inventor
諒子 新原
加藤 正浩
一嗣 金子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/086350 priority Critical patent/WO2017109979A1/en
Publication of WO2017109979A1 publication Critical patent/WO2017109979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers

Definitions

  • the present invention relates to a technique for estimating a moving distance of a moving object.
  • Patent Document 1 discloses a method of correcting a vehicle speed sensor mounted on a moving body by estimating a moving distance of the moving body in a predetermined period.
  • the correction device detects the number of output pulses of the vehicle speed sensor from the recognition of the feature A by the image recognition means to the recognition of the feature B, and the feature A and the feature B from the map information. To obtain the distance D. Then, the correction device corrects an arithmetic expression for obtaining the travel distance or travel speed of the vehicle from the output pulse number based on the relationship between the output pulse number and the distance D.
  • An object of this invention is to estimate the moving distance of a moving body using arbitrary features.
  • Invention of Claim 1 is a distance estimation apparatus, Comprising: The 1st acquisition part which each acquires the distance from the moving body to the feature in each of 1st time and 2nd time, and the said path
  • Invention of Claim 7 is the distance estimation method performed by the distance estimation apparatus, Comprising: The 1st acquisition process which each acquires the distance from the moving body in each of 1st time and 2nd time, and the feature, Based on the second acquisition step of acquiring the distance from the path of the moving body to the feature, and the acquisition results of the first acquisition step and the second acquisition step, the first time to the second time. And a calculating step of calculating a moving distance of the moving body.
  • the invention according to claim 8 is a program executed by a distance estimation device including a computer, and a first acquisition unit that acquires a distance from a moving object to a feature at each of a first time and a second time, The movement from the first time to the second time based on the acquisition results of the second acquisition unit, the first acquisition unit, and the second acquisition unit that acquire the distance from the route of the moving body to the feature
  • the computer is caused to function as a calculation unit that calculates a movement distance of the body.
  • An example of the positional relationship between one feature and a moving vehicle is shown.
  • the other example of the positional relationship of one feature and a moving vehicle is shown.
  • a perpendicular line from the feature position to the road is shown.
  • the relationship between the lane center of the road data and the actual travel position is shown.
  • It is a flowchart of the distance coefficient update process by an Example The relationship between travel speed and the number of pulses per unit time, and the relationship between travel speed and pulse width are shown.
  • the distance estimation apparatus includes a first acquisition unit that acquires the distance from the moving object to the feature at each of the first time and the second time, and the feature from the path of the moving object.
  • a second acquisition unit that acquires the distance to the calculation unit, and a calculation that calculates the moving distance of the moving body from the first time to the second time based on the acquisition results of the first acquisition unit and the second acquisition unit A section.
  • the distance estimation apparatus acquires the distance from the moving object to the feature at each of the first time and the second time, and acquires the distance from the path of the moving object to the feature. And based on those acquisition results, the moving distance of the moving body from the first time to the second time is calculated. Thereby, the movement distance of a moving body is computable using the arbitrary features which can be measured from a moving body.
  • the calculation unit includes a first distance that is a distance in a traveling direction of the moving body between the moving body and the feature at the first time, and the second time.
  • the moving distance is calculated on the basis of a second distance that is a distance in the traveling direction of the moving body between the moving body and the feature.
  • the calculation unit may calculate 1 of the vehicle speed pulse signal based on a moving distance from the first time to the second time and an average pulse width of the vehicle speed pulse signal. Calculate the travel distance per pulse. As a result, the vehicle speed pulse signal can be calibrated based on the calculated moving distance.
  • the calculation unit calculates the movement distance when an angular velocity or a steering angle in a yaw direction of the moving body is less than a predetermined threshold. Thereby, the calculation accuracy of the movement distance can be improved.
  • the calculation unit changes a time interval from the first time to the second time according to a traveling speed of the moving body.
  • the calculation accuracy of the movement distance can be improved.
  • the calculation unit shortens the time interval as the traveling speed of the moving body increases.
  • the distance estimation method executed by the distance estimation device includes a first acquisition step of acquiring the distance from the moving object to the feature at each of the first time and the second time, Based on the second acquisition step of acquiring the distance from the path of the moving body to the feature, and the acquisition results of the first acquisition step and the second acquisition step, the first time to the second time. And a calculating step for calculating a moving distance of the moving body.
  • a program executed by a distance estimation device including a computer acquires a distance from a moving object to a feature at each of a first time and a second time, The movement from the first time to the second time based on the acquisition results of the second acquisition unit, the first acquisition unit, and the second acquisition unit that acquire the distance from the route of the moving body to the feature
  • the computer is caused to function as a calculation unit that calculates a movement distance of the body.
  • the movement distance of a moving body is computable using the arbitrary features which can be measured from a moving body.
  • the above program can be stored in a storage medium and used.
  • the vehicle speed is detected using a vehicle speed sensor, and the traveling state is detected using an angular velocity sensor or a steering angle sensor, thereby measuring the movement state of the vehicle. Then, the current position is estimated by integrating these with information measured by the GPS or the external sensor. Therefore, in order to improve the self-position estimation accuracy, it is required to detect the vehicle speed with high accuracy.
  • the vehicle speed sensor outputs a vehicle speed pulse signal at a time interval proportional to the output shaft of the transmission or the rotational speed of the wheels, for example. Then, as shown in the following formula (1), the distance coefficient alpha d can be calculated vehicle speed v by dividing a pulse width t p. This distance coefficient ⁇ d is the moving distance per pulse of the vehicle speed pulse signal.
  • the moving distance per pulse varies depending on the vehicle type. Further, when the outer diameter of the tire changes due to a change in tire air pressure or tire replacement, the moving distance per pulse also changes. Furthermore, the moving distance per pulse varies depending on the traveling speed. Usually, the running resistance causes a difference between the wheel speed obtained from the vehicle speed pulse and the actual vehicle speed. Since the running resistance is higher during high speed running than during low speed running, the speed difference between the wheel speed and the vehicle body speed is also greater during high speed running than during low speed running. Therefore, the moving distance per pulse differs between high speed traveling and low speed traveling. As described above, in order to obtain the vehicle speed with high accuracy, the distance coefficient needs to be appropriately calibrated and updated.
  • the GPS information itself which is a reference, may include a large error.
  • the conditions should be strict, but the more strict the conditions, the less the number of times reference information is acquired, and the conflicting problem that the progress of calibration becomes slow. Comes out.
  • the distance coefficient updating apparatus does not use GPS information as a reference, but based on the measurement of a feature by an external sensor, the moving distance of the vehicle Is used as a reference for calibration of the vehicle speed pulse signal.
  • an external sensor a camera, LiDAR (Light Detection And Ranging), a millimeter wave radar, or the like can be used.
  • FIG. 1 is a flowchart illustrating distance coefficient update processing according to the embodiment.
  • the update device at time T 1, to measure one feature using external sensors.
  • step P2 updating device, at time T 2, which has passed ⁇ T seconds from the time T 1, to measure the same feature as that measured at time T 1.
  • the update device acquires the length L of the perpendicular line from the feature position to the road on which the vehicle is traveling (hereinafter referred to as “traveling road”) using the map data. Then, in step P4, the update device was acquired at time T 1 and time T 2, the distance from the vehicle center position to feature at each time, and the length of a perpendicular to the vehicle travel road from the feature position Using this, the travel distance ⁇ D of the vehicle from time T 1 to time T 2 is calculated.
  • step P5 the update device, an average pulse width t p of the vehicle speed pulse signal from the time T 1 of the time T 2, the elapsed time ⁇ T from the time T 1 to time T 2, determined in step P4
  • the moving distance d p per pulse is calculated using the moving distance ⁇ D of the vehicle from time T 1 to time T 2 .
  • step P6 the updating device updates the distance coefficient ⁇ d using the movement distance d p per pulse obtained in step P5.
  • FIG. 2 shows an example of the positional relationship between one feature and a moving vehicle. Vehicle during the period from the time T 1 time T 2, is to have moved as shown in FIG. First, the update device detects the feature at time T 1, to obtain the distance L 1 from the vehicle to the feature (step P1).
  • the update device detects the feature at time T 2 as well as time T 1 and acquires the distance L 2 from the vehicle to the feature (step P2).
  • the update device by using the map data, and acquires the length L m of a perpendicular to the vehicle travel road from the feature position. This will be described in detail later.
  • the update device uses the distance L 1 acquired at time T 1 , the distance L 2 acquired at time T 2 , and the length L m of the perpendicular from the feature position to the traveling road to calculates a moving distance ⁇ D the vehicle from 1 to time T 2.
  • the distance between the vehicle position and the feature position at the time T 1 in the traveling direction of the vehicle is D 1
  • the vehicle position and the feature at the time T 2 is obtained as follows.
  • FIG. 3 shows a calculation method of the moving distance ⁇ D of the vehicle when the three-dimensional position of the feature can be acquired using an external sensor capable of three-dimensional measurement.
  • the moving distance ⁇ D of the vehicle can be calculated by the equations (3) to (5).
  • Figure 4 is a diagram for explaining the average pulse width t p.
  • Average pulse width t p is the pulse width measured between the time T 1 of the time T 2, leave buffers can be calculated by taking the average as the following equation (7).
  • the average pulse width can also be obtained by sequential calculation using Equation (8).
  • the average pulse width is obtained by sequential calculation, it is not necessary to buffer the measured pulse width, so that the amount of memory used in the apparatus can be reduced.
  • FIG. 5 is a flowchart of processing for obtaining the average pulse width by sequential calculation.
  • the update unit resets the coefficient k indicating the number of detected pulses to "0" (step S51), and acquires the current time T (step S52).
  • the update unit determines whether the present time T reaches time T 2 (step S53).
  • the update device by the equation (7), obtained by dividing the difference between the average pulse width t p and the current pulse width t k at the time by a factor k value (t k -t p) / k , that is, to update the current pulse width t k average pulse t p the variation of adding the average pulse width t p of the time average pulse width t p by, step S52 Return to.
  • step S53 if the current time T reaches time T 2 (step S53: YES), the process ends.
  • the update device updates the distance coefficient ⁇ d using the movement distance d p obtained in step P5. Specifically, the obtained moving distance d p is set as a new distance coefficient ⁇ d .
  • the updated distance coefficient ⁇ d obtained in this way is used for calculation of the vehicle speed v by the equation (1).
  • FIG. 6 shows the positional relationship between the feature position and road data indicating the road on which the vehicle is traveling.
  • the feature position on the map be a point P (x 1 , y 1 ).
  • the straight line Rd can be calculated from the position coordinates of the nodes before and after the road data.
  • the intersection of the perpendicular line drawn from the point P indicating the feature position to the straight line Rd and the straight line Rd is defined as a point H (x 2 , y 2 ).
  • the length of the perpendicular PH can be calculated as follows.
  • the length L m of the perpendicular line PH is from the three square theorem
  • the length of the perpendicular PH L m is as follows.
  • FIG. 7 shows the positional relationship between the actual traveling position of the vehicle and the road data on the map. It is assumed that the road data in the map includes position information of the center line of the lane. The vehicle does not always travel in the center of the lane, and in many cases, the vehicle actually travels at a position deviated from the center of the lane. If the travel distance of the vehicle is calculated using the road data in the map and the measurement results from the external sensors, the difference between the road data in the map and the actual vehicle travel position will affect the error, and the accuracy will deteriorate. Conceivable.
  • ⁇ L m the length L m in the calculation of the movement distance ⁇ D in the process P4
  • the deviation amount [Delta] L m for example using a camera or LiDAR detects white lines on both sides of the vehicle, the vehicle can be determined by recognizing whether running anywhere in the lane by using the detection result .
  • FIG. 8 is a block diagram illustrating the configuration of the update device 1 according to the embodiment.
  • the updating device 1 obtains the movement distance ⁇ D based on the measurement result of one feature by the external sensor and the length L m of the perpendicular drawn from the feature position to the traveling road.
  • the updating device 1 includes a gyro sensor 10, a vehicle speed sensor 11, a GPS receiver 12, an external sensor 13, a map database (hereinafter referred to as "map DB") 14, and an average pulse width acquisition.
  • Unit 15 distance coefficient calibration unit 16, own vehicle position acquisition unit 17, road information acquisition unit 18, feature-road distance calculation unit 19, movement distance calculation unit 20, feature information acquisition unit 21, And a feature measurement unit 22.
  • the average pulse width acquisition unit 15, the distance coefficient calibration unit 16, the own vehicle position acquisition unit 17, the road information acquisition unit 18, the feature-road distance calculation unit 19, the movement distance calculation unit 20, the feature information acquisition unit 21, And the feature measurement part 22 is realizable when computers, such as CPU, run the program prepared beforehand.
  • Average pulse width obtaining unit 15 obtains the average pulse width t p on the basis of the vehicle speed pulse signal a vehicle speed sensor 11 outputs, and outputs to the distance factor correcting unit 16.
  • the vehicle position acquisition unit 17 acquires the vehicle position of the vehicle based on the outputs of the gyro sensor 10, the vehicle speed sensor 11, and the GPS receiver 12, and outputs the vehicle position to the road information acquisition unit 18 and the feature information acquisition unit 21.
  • the external sensor 13 detects the feature and sends the detection result to the feature measuring unit 22.
  • the feature measurement unit 22 measures the distance L from the vehicle to the feature and outputs the distance L to the movement distance calculation unit 20 and the feature information acquisition unit 21.
  • the feature information acquisition unit 21 refers to the map DB 14 and based on the own vehicle position input from the own vehicle position acquisition unit 17 and the distance L to the feature input from the feature measurement unit 22.
  • the object position (x 1 , y 1 ) is acquired and output to the feature-road distance calculation unit 19.
  • Feature - the road distance calculating unit 19 based on the straight line Rd indicating the road that is input from the road information acquisition unit 18, the feature position input from the feature information acquiring unit 21 and the (x 1, y 1) Then, the length L m of the perpendicular line drawn from the feature position to the traveling road is calculated and output to the movement distance calculation unit 20.
  • the movement distance calculation unit 20 includes a distance L (L 1 , L 2 ) to the feature input from the feature measurement unit 22 and a perpendicular length L m input from the feature-road distance calculation unit 19. Based on the above, the movement distance ⁇ D is calculated by the equations (3) to (5) and output to the distance coefficient calibration unit 16.
  • the moving distance per pulse d p ( That is, the distance coefficient ⁇ d ) is calculated.
  • the vehicle body speed may be calculated from the obtained movement distance per pulse.
  • FIG. 9 is a flowchart of the distance coefficient update process according to the embodiment.
  • the updating device 1 measures a feature using the external sensor 13 and acquires a distance L from the vehicle to the feature (step S11).
  • the update device 1 determines whether or not the vehicle is traveling straight on the basis of the vehicle position output by the vehicle position acquisition unit 17 (step S11). This is because the accuracy of the movement distance ⁇ D output by the movement distance calculation unit 20 decreases when the vehicle is not traveling straight ahead.
  • the gyro sensor 10 can detect the angular velocity ⁇ in the yaw direction of the vehicle, it may be determined that the vehicle is traveling straight when
  • the steering angle ⁇ of the vehicle it may be determined that the vehicle is traveling straight when
  • step S13: NO the updating device 1 acquires the road information that is being traveled by the road information acquisition unit 18 (step S16), and acquires the feature information by the feature information acquisition unit 21. (Step S17).
  • the updating device 1 calculates the length Lm of the perpendicular from the feature to the traveling road by the feature-road distance calculation unit 19 (step S18), and calculates the movement distance ⁇ D by the movement distance calculation unit 20 (Step S19).
  • the updating apparatus 1 uses the moving distance ⁇ D calculates the moving distance d p per pulse (step S20), and updates the distance coefficient alpha d (step S21). Then, the process ends.
  • the movement distance d p per pulse obtained in the above-described distance coefficient update process is an average value of the movement distance per pulse during the time interval ⁇ T from time T 1 to time T 2 . Therefore, the large variation of the pulse width of the time interval [Delta] T, the accuracy of the moving distance d p which is calculated is deteriorated. Therefore, it is desirable that the number of pulses during the time interval ⁇ T is as small as possible.
  • the number of pulses per unit time varies depending on the running speed of the vehicle. For example, consider the number of pulses per second as shown in FIG. In a vehicle type that outputs two pulses per tire rotation, the number of pulses per second is 3 pulses at 10 km / h, 17 pulses at 50 km / h, and 35 pulses at 100 km / h, and there is a large difference depending on the running speed.
  • FIG. 9B shows the relationship between the traveling speed and the pulse width.
  • ⁇ T 300 ms when the traveling speed is less than 20 km / h
  • ⁇ T 200 ms when the speed is 20 km / h or more and less than 30 km / h.
  • the number of pulses that can be measured during the time interval ⁇ T is about 1 pulse or 2 pulses, and the moving distance is high.
  • d p can be calculated.
  • the distance coefficient is basically updated when the vehicle is traveling straight ahead.
  • the movement distance ⁇ D obtained in the process P4 is not an actual movement distance but an approximate value.
  • the time interval ⁇ T is too large, the difference between the actual moving distance and the moving distance calculated in the process P4 becomes large. From this point of view, it is desirable to make the time interval ⁇ T from time T 1 to time T 2 as small as possible.
  • Modification 3 If the external sensor is attached to a low position of the vehicle, it is considered that the occlusion increases by surrounding vehicles, and the frequency with which a suitable feature for updating the distance coefficient can be detected decreases. Therefore, it is preferable to install the external sensor so that the upper side can be measured above the height of the surrounding vehicle. Thereby, since the detection frequency of the feature increases and the number of updates of the distance coefficient increases, the accuracy of the distance coefficient can be improved.
  • the present invention can be used for an apparatus mounted on a moving body.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

This distance estimation device acquires the distance to a physical object from a moving object at a first time and a second time, and acquires the distance to the physical object from the path of the moving object. On the basis of the acquisition results, the device calculates the distance which the moving object moves from a first time until a second time.

Description

距離推定装置、距離推定方法及びプログラムDistance estimation device, distance estimation method and program
 本発明は、移動体の移動距離を推定する技術に関する。 The present invention relates to a technique for estimating a moving distance of a moving object.
 移動体の所定期間における移動距離を推定することにより、移動体に搭載された車速センサを補正する手法が例えば特許文献1に記載されている。特許文献1では、補正装置は、画像認識手段により地物Aを認識してから地物Bを認識するまでの車速センサの出力パルス数を検出するとともに、地図情報から地物Aと地物Bとの距離Dを取得する。そして、補正装置は、出力パルス数と距離Dとの関係に基づいて、出力パルス数から車両の走行距離又は走行速度を求める演算式を補正する。 For example, Patent Document 1 discloses a method of correcting a vehicle speed sensor mounted on a moving body by estimating a moving distance of the moving body in a predetermined period. In Patent Document 1, the correction device detects the number of output pulses of the vehicle speed sensor from the recognition of the feature A by the image recognition means to the recognition of the feature B, and the feature A and the feature B from the map information. To obtain the distance D. Then, the correction device corrects an arithmetic expression for obtaining the travel distance or travel speed of the vehicle from the output pulse number based on the relationship between the output pulse number and the distance D.
特開2008-8783号公報JP 2008-8783 A
 しかし、特許文献1の方法では、画像認識手段により一度に1つの地物しか認識できず、道路に描かれた標識のように、車両が走行している道路上の地物しか利用することができない。 However, in the method of Patent Document 1, only one feature can be recognized at a time by the image recognition means, and only the feature on the road on which the vehicle is traveling, such as a sign drawn on the road, can be used. Can not.
 本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、任意の地物を利用して移動体の移動距離を推定することを目的とする。 The above are examples of problems to be solved by the present invention. An object of this invention is to estimate the moving distance of a moving body using arbitrary features.
 請求項1に記載の発明は、距離推定装置であって、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得部と、前記移動体の経路から前記地物までの距離を取得する第2取得部と、前記第1取得部及び前記第2取得部の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出部と、を備えることを特徴とする。 Invention of Claim 1 is a distance estimation apparatus, Comprising: The 1st acquisition part which each acquires the distance from the moving body to the feature in each of 1st time and 2nd time, and the said path | route from the said moving body Based on the second acquisition unit that acquires the distance to the feature, and the acquisition results of the first acquisition unit and the second acquisition unit, the moving distance of the moving body from the first time to the second time is calculated. And a calculating unit.
 請求項7に記載の発明は、距離推定装置により実行される距離推定方法であって、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得工程と、前記移動体の経路から前記地物までの距離を取得する第2取得工程と、前記第1取得工程及び前記第2取得工程の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出工程と、を備えることを特徴とする。 Invention of Claim 7 is the distance estimation method performed by the distance estimation apparatus, Comprising: The 1st acquisition process which each acquires the distance from the moving body in each of 1st time and 2nd time, and the feature, Based on the second acquisition step of acquiring the distance from the path of the moving body to the feature, and the acquisition results of the first acquisition step and the second acquisition step, the first time to the second time. And a calculating step of calculating a moving distance of the moving body.
 請求項8に記載の発明は、コンピュータを備える距離推定装置によって実行されるプログラムであって、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得部、前記移動体の経路から前記地物までの距離を取得する第2取得部、前記第1取得部及び前記第2取得部の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出部、として前記コンピュータを機能させることを特徴とする。 The invention according to claim 8 is a program executed by a distance estimation device including a computer, and a first acquisition unit that acquires a distance from a moving object to a feature at each of a first time and a second time, The movement from the first time to the second time based on the acquisition results of the second acquisition unit, the first acquisition unit, and the second acquisition unit that acquire the distance from the route of the moving body to the feature The computer is caused to function as a calculation unit that calculates a movement distance of the body.
実施例に係る距離係数更新処理を示すフローチャートである。It is a flowchart which shows the distance coefficient update process which concerns on an Example. 1つの地物と移動車両との位置関係の例を示す。An example of the positional relationship between one feature and a moving vehicle is shown. 1つの地物と移動車両との位置関係の他の例を示す。The other example of the positional relationship of one feature and a moving vehicle is shown. 平均パルス幅を説明する図である。It is a figure explaining average pulse width. 逐次計算により平均パルス幅を求める処理のフローチャートである。It is a flowchart of the process which calculates | requires an average pulse width by sequential calculation. 地物位置から走行道路への垂線を示す。A perpendicular line from the feature position to the road is shown. 道路データの車線中心と実際の走行位置との関係を示す。The relationship between the lane center of the road data and the actual travel position is shown. 実施例に係る距離係数更新装置の構成を示すブロック図である。It is a block diagram which shows the structure of the distance coefficient update apparatus which concerns on an Example. 実施例による距離係数更新処理のフローチャートである。It is a flowchart of the distance coefficient update process by an Example. 走行速度と単位時間のパルス数との関係、及び、走行速度とパルス幅との関係を示す。The relationship between travel speed and the number of pulses per unit time, and the relationship between travel speed and pulse width are shown.
 本発明の好適な実施形態では、距離推定装置は、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得部と、前記移動体の経路から前記地物までの距離を取得する第2取得部と、前記第1取得部及び前記第2取得部の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出部と、を備える。 In a preferred embodiment of the present invention, the distance estimation apparatus includes a first acquisition unit that acquires the distance from the moving object to the feature at each of the first time and the second time, and the feature from the path of the moving object. A second acquisition unit that acquires the distance to the calculation unit, and a calculation that calculates the moving distance of the moving body from the first time to the second time based on the acquisition results of the first acquisition unit and the second acquisition unit A section.
 上記の距離推定装置は、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得するとともに、移動体の経路から地物までの距離を取得する。そして、それらの取得結果に基づき、第1時刻から第2時刻までの前記移動体の移動距離を算出する。これにより、移動体から計測できる任意の地物を利用して、移動体の移動距離を算出することができる。 The distance estimation apparatus acquires the distance from the moving object to the feature at each of the first time and the second time, and acquires the distance from the path of the moving object to the feature. And based on those acquisition results, the moving distance of the moving body from the first time to the second time is calculated. Thereby, the movement distance of a moving body is computable using the arbitrary features which can be measured from a moving body.
 上記の距離推定装置の一態様では、前記算出部は、前記第1時刻における前記移動体と前記地物との間の前記移動体の進行方向における距離である第1距離と、前記第2時刻における前記移動体と前記地物との間の前記移動体の進行方向における距離である第2距離と、に基づいて、前記移動距離を算出する。 In one aspect of the distance estimation apparatus, the calculation unit includes a first distance that is a distance in a traveling direction of the moving body between the moving body and the feature at the first time, and the second time. The moving distance is calculated on the basis of a second distance that is a distance in the traveling direction of the moving body between the moving body and the feature.
 上記の距離推定装置の他の一態様では、前記算出部は、前記第1時刻から前記第2時刻までの移動距離と、車速パルス信号の平均パルス幅とに基づいて、前記車速パルス信号の1パルスあたりの移動距離を算出する。これにより、算出した移動距離に基づいて、車速パルス信号のキャリブレーションなどを行うことができる。 In another aspect of the distance estimation apparatus, the calculation unit may calculate 1 of the vehicle speed pulse signal based on a moving distance from the first time to the second time and an average pulse width of the vehicle speed pulse signal. Calculate the travel distance per pulse. As a result, the vehicle speed pulse signal can be calibrated based on the calculated moving distance.
 上記の距離推定装置の他の一態様では、前記算出部は、前記移動体のヨー方向の角速度又は操舵角が所定の閾値未満であるときに前記移動距離を算出する。これにより、移動距離の算出精度を向上させることができる。 In another aspect of the distance estimation apparatus, the calculation unit calculates the movement distance when an angular velocity or a steering angle in a yaw direction of the moving body is less than a predetermined threshold. Thereby, the calculation accuracy of the movement distance can be improved.
 上記の距離推定装置の他の一態様では、前記算出部は、前記移動体の走行速度に応じて、前記第1時刻から前記第2時刻までの時間間隔を変化させる。これにより、移動距離の算出精度を向上させることができる。好適には、前記算出部は、前記移動体の走行速度が速いほど前記時間間隔を短くする。 In another aspect of the distance estimation apparatus, the calculation unit changes a time interval from the first time to the second time according to a traveling speed of the moving body. Thereby, the calculation accuracy of the movement distance can be improved. Preferably, the calculation unit shortens the time interval as the traveling speed of the moving body increases.
 本発明の他の好適な実施形態では、距離推定装置により実行される距離推定方法は、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得工程と、前記移動体の経路から前記地物までの距離を取得する第2取得工程と、前記第1取得工程及び前記第2取得工程の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出工程と、を備える。これにより、移動体から計測できる任意の地物を利用して、移動体の移動距離を算出することができる。 In another preferred embodiment of the present invention, the distance estimation method executed by the distance estimation device includes a first acquisition step of acquiring the distance from the moving object to the feature at each of the first time and the second time, Based on the second acquisition step of acquiring the distance from the path of the moving body to the feature, and the acquisition results of the first acquisition step and the second acquisition step, the first time to the second time. And a calculating step for calculating a moving distance of the moving body. Thereby, the movement distance of a moving body is computable using the arbitrary features which can be measured from a moving body.
 本発明の他の好適な実施形態では、コンピュータを備える距離推定装置によって実行されるプログラムは、第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得部、前記移動体の経路から前記地物までの距離を取得する第2取得部、前記第1取得部及び前記第2取得部の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出部、として前記コンピュータを機能させる。これにより、移動体から計測できる任意の地物を利用して、移動体の移動距離を算出することができる。上記のプログラムは、記憶媒体に記憶して利用することができる。 In another preferred embodiment of the present invention, a program executed by a distance estimation device including a computer acquires a distance from a moving object to a feature at each of a first time and a second time, The movement from the first time to the second time based on the acquisition results of the second acquisition unit, the first acquisition unit, and the second acquisition unit that acquire the distance from the route of the moving body to the feature The computer is caused to function as a calculation unit that calculates a movement distance of the body. Thereby, the movement distance of a moving body is computable using the arbitrary features which can be measured from a moving body. The above program can be stored in a storage medium and used.
 以下、図面を参照して本発明の好適な実施例について説明する。以下では、本発明の距離推定手法により得られた移動体の移動距離を、車両の車速パルスのキャリブレーションに使用する実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Below, the Example which uses the moving distance of the moving body obtained by the distance estimation method of this invention for the calibration of the vehicle speed pulse of a vehicle is described.
 [背景]
 現在のカーナビゲーション装置などに搭載されている自己位置推定システムでは、車速センサを用いて車速を検出し、角速度センサあるいは操舵角センサを用いて進行方向を検出することで、車両の移動状況を計測し、これらをGPSや外界センサで計測した情報と統合することで現在位置を推定している。よって、自己位置推定精度を向上させるために、車速を高精度に検出することが求められている。
[background]
In the self-position estimation system installed in current car navigation systems, the vehicle speed is detected using a vehicle speed sensor, and the traveling state is detected using an angular velocity sensor or a steering angle sensor, thereby measuring the movement state of the vehicle. Then, the current position is estimated by integrating these with information measured by the GPS or the external sensor. Therefore, in order to improve the self-position estimation accuracy, it is required to detect the vehicle speed with high accuracy.
 車速センサは、例えば、トランスミッションの出力軸または車輪の回転速度に比例した時間間隔で車速パルス信号を出力する。そして、下記の式(1)に示すように、距離係数αをパルス幅tで除することで車速vを計算できる。この距離係数αは車速パルス信号の1パルスあたりの移動距離である。 The vehicle speed sensor outputs a vehicle speed pulse signal at a time interval proportional to the output shaft of the transmission or the rotational speed of the wheels, for example. Then, as shown in the following formula (1), the distance coefficient alpha d can be calculated vehicle speed v by dividing a pulse width t p. This distance coefficient α d is the moving distance per pulse of the vehicle speed pulse signal.
Figure JPOXMLDOC01-appb-M000001
 1パルスあたりの移動距離は、車種によって異なる。また、タイヤの空気圧の変化やタイヤの交換などによりタイヤの外径が変化すると、1パルスあたりの移動距離も変化する。さらに、1パルスあたりの移動距離は走行速度によっても変化する。通常、走行抵抗により、車速パルスから求まる車輪速度と実際の車体速度に差が生じる。高速走行時は低速走行時に比べて走行抵抗が大きくなるため、車輪速度と車体速度の速度差も、低速走行時に比べて高速走行時の方が大きくなる。従って、高速走行時と低速走行時では1パルスあたりの移動距離が異なる。以上より、車速を高精度に求めるためには距離係数は適宜キャリブレーションし、更新する必要がある。
Figure JPOXMLDOC01-appb-M000001
The moving distance per pulse varies depending on the vehicle type. Further, when the outer diameter of the tire changes due to a change in tire air pressure or tire replacement, the moving distance per pulse also changes. Furthermore, the moving distance per pulse varies depending on the traveling speed. Usually, the running resistance causes a difference between the wheel speed obtained from the vehicle speed pulse and the actual vehicle speed. Since the running resistance is higher during high speed running than during low speed running, the speed difference between the wheel speed and the vehicle body speed is also greater during high speed running than during low speed running. Therefore, the moving distance per pulse differs between high speed traveling and low speed traveling. As described above, in order to obtain the vehicle speed with high accuracy, the distance coefficient needs to be appropriately calibrated and updated.
 従来は、距離係数のキャリブレーションを行う際に、リファレンスとしてGPSから得られる情報を利用してきた。例えば、GPSから得られるGPS位置によって求まる車両の移動距離ΔDと車速パルス数nを用いて、下記の式(2)により1パルスあたりの移動距離dを算出し、常時、平均化処理を施すことにより補正を行うという方法がある。 Conventionally, information obtained from GPS has been used as a reference when calibrating a distance coefficient. For example, using a moving distance ΔD the vehicle speed pulse number n of the vehicle obtained by the GPS position obtained from GPS, by the following equation (2) calculates the moving distance d p per pulse, constantly subjected to averaging processing There is a method in which correction is performed.
Figure JPOXMLDOC01-appb-M000002
 しかし、条件によってはリファレンスであるGPS情報自身に大きな誤差を含む場合があり、大きな誤差を含むGPS情報をリファレンスとしてキャリブレーション計算を行うと、真値からずれた距離係数となってしまうという問題がある。リファレンスとなるGPS情報をより正確に得るには条件を厳しくすれば良いのだが、条件を厳しくすればする程、リファレンス情報を得る回数が減るので、キャリブレーションの進みが遅くなる、という相反する問題が出てくる。
Figure JPOXMLDOC01-appb-M000002
However, depending on the conditions, the GPS information itself, which is a reference, may include a large error. When calibration calculation is performed using GPS information including a large error as a reference, there is a problem that the distance coefficient is deviated from the true value. is there. To obtain GPS information as a reference more accurately, the conditions should be strict, but the more strict the conditions, the less the number of times reference information is acquired, and the conflicting problem that the progress of calibration becomes slow. Comes out.
 [距離係数更新処理]
 以上の観点より、本実施例に係る距離係数更新装置(以下、単に「更新装置」とも呼ぶ。)は、GPS情報をリファレンスとせずに、外界センサによる地物の計測に基づいて車両の移動距離を計算し、車速パルス信号のキャリブレーションのリファレンスとして使用する。外界センサとしては、カメラやLiDAR(Light Detection And Ranging)、ミリ波レーダーなどを用いることができる。
[Distance coefficient update processing]
From the above viewpoint, the distance coefficient updating apparatus according to the present embodiment (hereinafter also simply referred to as “updating apparatus”) does not use GPS information as a reference, but based on the measurement of a feature by an external sensor, the moving distance of the vehicle Is used as a reference for calibration of the vehicle speed pulse signal. As the external sensor, a camera, LiDAR (Light Detection And Ranging), a millimeter wave radar, or the like can be used.
 図1は、実施例に係る距離係数更新処理を示すフローチャートである。まず、工程P1では、更新装置は、時刻Tにおいて、外界センサを用いて1つの地物を計測する。次に、工程P2では、更新装置は、時刻TからΔT秒経過した時刻Tにおいて、時刻Tで計測したものと同じ地物を計測する。 FIG. 1 is a flowchart illustrating distance coefficient update processing according to the embodiment. First, in step P1, the update device, at time T 1, to measure one feature using external sensors. Next, in step P2, updating device, at time T 2, which has passed ΔT seconds from the time T 1, to measure the same feature as that measured at time T 1.
 次に、工程P3では、更新装置は、地図データを用いて、地物位置から車両が走行している道路(以下、「走行道路」と呼ぶ。)への垂線の長さLを取得する。そして、工程P4では、更新装置は、時刻T及び時刻Tで取得した、各時刻における車両中心位置から地物までの距離と、地物位置から車両の走行道路への垂線の長さとを用いて、時刻Tから時刻Tまでの車両の移動距離ΔDを算出する。 Next, in the process P3, the update device acquires the length L of the perpendicular line from the feature position to the road on which the vehicle is traveling (hereinafter referred to as “traveling road”) using the map data. Then, in step P4, the update device was acquired at time T 1 and time T 2, the distance from the vehicle center position to feature at each time, and the length of a perpendicular to the vehicle travel road from the feature position Using this, the travel distance ΔD of the vehicle from time T 1 to time T 2 is calculated.
 次に、工程P5では、更新装置は、時刻Tから時刻Tの間の車速パルス信号の平均パルス幅tと、時刻Tから時刻Tまでの経過時間ΔTと、工程P4で求めた時刻Tから時刻Tまでの車両の移動距離ΔDとを用いて、1パルスあたりの移動距離dを算出する。そして、工程P6では、更新装置は、工程P5で求めた1パルスあたりの移動距離dを用いて、距離係数αを更新する。 Next, in step P5, the update device, an average pulse width t p of the vehicle speed pulse signal from the time T 1 of the time T 2, the elapsed time ΔT from the time T 1 to time T 2, determined in step P4 The moving distance d p per pulse is calculated using the moving distance ΔD of the vehicle from time T 1 to time T 2 . In step P6, the updating device updates the distance coefficient α d using the movement distance d p per pulse obtained in step P5.
 次に、上記の距離係数更新処理の各工程について詳しく説明する。 Next, each step of the distance coefficient update process will be described in detail.
 (1)地物の計測(工程P1~P2)
 図2は、1つの地物と移動中の車両との位置関係の一例を示す。時刻Tから時刻Tの間に車両が図2に示すように移動したとする。まず、更新装置は、時刻Tにおいて地物を検出し、車両から地物までの距離Lを取得する(工程P1)。
(1) Feature measurement (process P1-P2)
FIG. 2 shows an example of the positional relationship between one feature and a moving vehicle. Vehicle during the period from the time T 1 time T 2, is to have moved as shown in FIG. First, the update device detects the feature at time T 1, to obtain the distance L 1 from the vehicle to the feature (step P1).
 次に、更新装置は、時刻Tにおいても時刻Tと同様に地物を検出し、車両から地物までの距離Lを取得する(工程P2)。 Next, the update device detects the feature at time T 2 as well as time T 1 and acquires the distance L 2 from the vehicle to the feature (step P2).
 (2)走行道路への垂線の長さの取得
 次に、更新装置は、地図データを用いて、地物位置から車両の走行道路への垂線の長さLを取得する。これについては、後に詳しく説明する。
(2) obtaining the length of the normal to the traveling road Next, the update device, by using the map data, and acquires the length L m of a perpendicular to the vehicle travel road from the feature position. This will be described in detail later.
 (3)移動距離ΔDの算出(工程P4)
 次に、更新装置は、時刻Tで取得した距離Lと、時刻Tで取得した距離Lと、地物位置から走行道路への垂線の長さLとを用いて、時刻Tから時刻Tまでの車両の移動距離ΔDを算出する。具体的に、図2において、時刻Tにおける車両位置と地物位置との車両の進行方向における距離(即ち、走行道路に沿った距離)をDとし、時刻Tにおける車両位置と地物位置との車両の進行方向における距離をDとすると、車両の移動距離ΔDは以下のように得られる。
(3) Calculation of movement distance ΔD (process P4)
Next, the update device uses the distance L 1 acquired at time T 1 , the distance L 2 acquired at time T 2 , and the length L m of the perpendicular from the feature position to the traveling road to calculates a moving distance ΔD the vehicle from 1 to time T 2. Specifically, in FIG. 2, the distance between the vehicle position and the feature position at the time T 1 in the traveling direction of the vehicle (that is, the distance along the traveling road) is D 1, and the vehicle position and the feature at the time T 2 When the distance in the traveling direction of the vehicle and the position and D 2, the moving distance ΔD the vehicle is obtained as follows.
Figure JPOXMLDOC01-appb-M000003
 図3は、3次元計測が可能な外界センサを用いて地物の3次元位置を取得できる場合の車両の移動距離ΔDの計算方法を示す。この場合も同様に、式(3)~(5)により、車両の移動距離ΔDを算出することができる。
Figure JPOXMLDOC01-appb-M000003
FIG. 3 shows a calculation method of the moving distance ΔD of the vehicle when the three-dimensional position of the feature can be acquired using an external sensor capable of three-dimensional measurement. In this case as well, the moving distance ΔD of the vehicle can be calculated by the equations (3) to (5).
 (4)1パルスあたりの移動距離dの計算(工程P5)
 次に、更新装置は、時刻Tから時刻TまでのΔT秒間における車両の移動距離ΔDと、車速パルス信号の平均パルス幅tとを用いて、以下のように、1パルスあたりの移動距離dを算出する。
(4) Calculation of moving distance d p per pulse (process P5)
Next, the update device, by using the moving distance ΔD the vehicle in ΔT seconds from the time T 1 to time T 2, the average pulse width t p of the vehicle speed pulse signal, as described below, the movement per pulse The distance d p is calculated.
Figure JPOXMLDOC01-appb-M000004
 図4は、平均パルス幅tを説明する図である。平均パルス幅tは、時刻Tから時刻Tの間に計測したパルス幅をバッファリングしておき、下記の式(7)のように平均をとることにより計算できる。
Figure JPOXMLDOC01-appb-M000004
Figure 4 is a diagram for explaining the average pulse width t p. Average pulse width t p is the pulse width measured between the time T 1 of the time T 2, leave buffers can be calculated by taking the average as the following equation (7).
Figure JPOXMLDOC01-appb-M000005
 その代わりに、平均パルス幅は、式(8)を用いた逐次計算によっても求めることができる。逐次計算により平均パルス幅を求める場合には、計測したパルス幅をバッファリングする必要がないので、装置内のメモリ使用量を削減することができる。
Figure JPOXMLDOC01-appb-M000005
Instead, the average pulse width can also be obtained by sequential calculation using Equation (8). When the average pulse width is obtained by sequential calculation, it is not necessary to buffer the measured pulse width, so that the amount of memory used in the apparatus can be reduced.
Figure JPOXMLDOC01-appb-M000006
 図5は、逐次計算により平均パルス幅を求める処理のフローチャートである。まず、時刻T=Tにおいて、更新装置は、検出されたパルス数を示す係数kを「0」にリセットし(ステップS51)、現在時刻Tを取得する(ステップS52)。次に、更新装置は、現在時刻Tが時刻Tになったか否かを判定する(ステップS53)。
Figure JPOXMLDOC01-appb-M000006
FIG. 5 is a flowchart of processing for obtaining the average pulse width by sequential calculation. At time T = T 1, the update unit resets the coefficient k indicating the number of detected pulses to "0" (step S51), and acquires the current time T (step S52). Next, the update unit determines whether the present time T reaches time T 2 (step S53).
 現在時刻Tが時刻Tになっていない場合(ステップS53:NO)、更新装置は車速パルス信号を検出し、そのパルス幅tを取得する(ステップS54)。次に、更新装置は、係数kを1増加させ(ステップS55)、係数k=1であるか否かを判定する(ステップS56)。 If the current time T is not in time T 2 (step S53: NO), the update unit detects the vehicle speed pulse signal, and obtains the pulse width t k (step S54). Next, the update device increments the coefficient k by 1 (step S55), and determines whether or not the coefficient k = 1 (step S56).
 係数k=1である場合(ステップS56:YES)、そのパルス幅tを平均パルス幅tpに代入し(ステップS58)、ステップS52へ戻る。一方、係数k=1でない場合(ステップS56:NO)、更新装置は、式(7)により、その時点における平均パルス幅tと今回のパルス幅tとの差分を係数kで除した値(t-t)/k、即ち、今回のパルス幅tによる平均パルスtの変動分をその時点の平均パルス幅tに加算して平均パルス幅tを更新し、ステップS52へ戻る。そして、ステップS53において、現在時刻Tが時刻Tになった場合(ステップS53:YES)、処理は終了する。 If the coefficient k = 1 (step S56: YES), and assigns the pulse width t k to the average pulse width tp (step S58), the flow returns to step S52. On the other hand, if not the coefficient k = 1 (step S56: NO), the update device, by the equation (7), obtained by dividing the difference between the average pulse width t p and the current pulse width t k at the time by a factor k value (t k -t p) / k , that is, to update the current pulse width t k average pulse t p the variation of adding the average pulse width t p of the time average pulse width t p by, step S52 Return to. Then, in step S53, if the current time T reaches time T 2 (step S53: YES), the process ends.
 (5)距離係数αの更新(工程P6)
 次に、更新装置は、工程P5で得られた移動距離dを用いて、距離係数αを更新する。具体的には、得られた移動距離dを新たな距離係数αとする。なお、こうして得られた更新後の距離係数αは、式(1)による車速vの算出などに使用される。
(5) Updating the distance coefficient α d (process P6)
Next, the update device updates the distance coefficient α d using the movement distance d p obtained in step P5. Specifically, the obtained moving distance d p is set as a new distance coefficient α d . The updated distance coefficient α d obtained in this way is used for calculation of the vehicle speed v by the equation (1).
 (6)地物位置から走行道路への垂線の長さLの計算方法
 地物位置から走行道路への垂線の長さLを求めるためには、(A)車両がどの道路を走行しているか、(B)車両が車線のどこを走行しているか(特に車線の幅方向の位置)、の情報が必要となる。このうち、(A)は、カーナビゲーション機器に実装されているような、既存の自己位置推定技術により取得することができる。一方、(B)の精度が算出される移動距離ΔDの精度に影響する。(B)が正確にわからない場合でも、車両が車線の中央を走行していると仮定することで垂線の長さLを計算することができるが、移動距離ΔDの誤差が大きくなる可能性がある。これに関しては、長さLの補正方法について後述する。
(6) from the calculation method feature position of length L m of a perpendicular line from the feature position to the traveling road to determine the length L m of a perpendicular to the traveling road, travels which road (A) vehicle Or (B) where the vehicle is traveling in the lane (particularly the position in the width direction of the lane). Among these, (A) can be acquired by an existing self-position estimation technique as implemented in a car navigation device. On the other hand, the accuracy of (B) affects the accuracy of the calculated movement distance ΔD. Even if the (B) is not known exactly, but the vehicle can calculate the length L m of a perpendicular line by assuming that the vehicle is running the central lane, error could be large travel distance ΔD is is there. In this regard, it described later method for correcting the length L m.
 図6は、地物位置と、車両の走行道路を示す道路データとの位置関係を示す。いま、地図上の地物位置を点P(x、y)とする。地図上に、道路データが直線Rd:ax+by+c=0として定義されているとする。なお、直線Rdは、道路データの前後のノードの位置座標から算出することができる。 FIG. 6 shows the positional relationship between the feature position and road data indicating the road on which the vehicle is traveling. Now, let the feature position on the map be a point P (x 1 , y 1 ). It is assumed that road data is defined as a straight line Rd: ax + by + c = 0 on the map. The straight line Rd can be calculated from the position coordinates of the nodes before and after the road data.
 図6において、地物位置を示す点Pから直線Rdへ下ろした垂線と、直線Rdとの交点を点H(x、y)とする。このとき、垂線PHの長さは以下のように計算することができる。 In FIG. 6, the intersection of the perpendicular line drawn from the point P indicating the feature position to the straight line Rd and the straight line Rd is defined as a point H (x 2 , y 2 ). At this time, the length of the perpendicular PH can be calculated as follows.
 まず、直線Rdと垂線PHは直交するので、 First, since the straight line Rd and the perpendicular line PH are orthogonal,
Figure JPOXMLDOC01-appb-M000007
となる。ここで、
Figure JPOXMLDOC01-appb-M000007
It becomes. here,
Figure JPOXMLDOC01-appb-M000008
 とおくと、
Figure JPOXMLDOC01-appb-M000008
After all,
Figure JPOXMLDOC01-appb-M000009
となる。
Figure JPOXMLDOC01-appb-M000009
It becomes.
 点Hは直線Rd上の点なので、 Since point H is a point on the straight line Rd,
Figure JPOXMLDOC01-appb-M000010
が得られる。式(13)に式(11)、(12)を代入すると、
Figure JPOXMLDOC01-appb-M000010
Is obtained. Substituting equations (11) and (12) into equation (13),
Figure JPOXMLDOC01-appb-M000011
が得られる。これをkについて解くと、
Figure JPOXMLDOC01-appb-M000011
Is obtained. Solving for k,
Figure JPOXMLDOC01-appb-M000012
が得られる。垂線PHの長さLは、三平方の定理より、
Figure JPOXMLDOC01-appb-M000012
Is obtained. The length L m of the perpendicular line PH is from the three square theorem,
Figure JPOXMLDOC01-appb-M000013
となる。式(16)に式(15)を代入すると、
Figure JPOXMLDOC01-appb-M000013
It becomes. Substituting equation (15) into equation (16),
Figure JPOXMLDOC01-appb-M000014
が得られる。よって、垂線PHの長さLは、
Figure JPOXMLDOC01-appb-M000014
Is obtained. Therefore, the length L m of the perpendicular PH is
Figure JPOXMLDOC01-appb-M000015
となる。このように、地図に含まれる地物位置(x、y)と道路情報(a、b、c)を用いて、垂線の長さLを計算することができる。
Figure JPOXMLDOC01-appb-M000015
It becomes. Thus, it is possible to use feature position included in the map with the (x 1, y 1) Road information (a, b, c) and calculates the length L m of a perpendicular line.
 また、図3を参照して説明したように、地物の3次元位置を取得できる場合、地物位置がP(x、y、z)で与えられるとすると、垂線PHの長さLは以下のようになる。 Further, as described with reference to FIG. 3, when the three-dimensional position of the feature can be acquired, if the feature position is given by P (x 1 , y 1 , z 1 ), the length of the perpendicular PH L m is as follows.
Figure JPOXMLDOC01-appb-M000016
 次に、図7を参照して、垂線の長さLの補正について説明する。図7は、車両の実際の走行位置と地図中の道路データとの位置関係を示す。地図中の道路データには、車線の中心線の位置情報が含まれているものとする。車両は車線の中心を走行しているとは限らず、多くの場合、実際には車線の中心からずれた位置を走行している。地図中の道路データと外界センサによる計測結果を用いて車両の移動距離を計算してしまうと、地図中の道路データと実際の車両の走行位置とのずれが誤差として影響し、精度が悪化すると考えられる。よって、地図データを用いて上記のように算出したLから、図7に示すような車線中心と実際の走行位置とのずれ量ΔLを引いたL’(L’=L-ΔL)を、工程P4の移動距離ΔDの計算における長さLの代わりに用いることにより、精度の悪化を抑制できると考えられる。なお、ずれ量ΔLは、例えばカメラやLiDARなどを用いて車両の両側の白線を検出し、その検出結果を用いて車両が車線内のどこを走行しているか認識することにより求めることができる。
Figure JPOXMLDOC01-appb-M000016
Next, with reference to FIG. 7, a description will be given of a correction of the length L m of a perpendicular line. FIG. 7 shows the positional relationship between the actual traveling position of the vehicle and the road data on the map. It is assumed that the road data in the map includes position information of the center line of the lane. The vehicle does not always travel in the center of the lane, and in many cases, the vehicle actually travels at a position deviated from the center of the lane. If the travel distance of the vehicle is calculated using the road data in the map and the measurement results from the external sensors, the difference between the road data in the map and the actual vehicle travel position will affect the error, and the accuracy will deteriorate. Conceivable. Therefore, L m ′ (L m ′ = L m −) obtained by subtracting the deviation amount ΔL m between the lane center and the actual travel position as shown in FIG. 7 from L m calculated as described above using the map data. By using ΔL m ) instead of the length L m in the calculation of the movement distance ΔD in the process P4, it is considered that deterioration in accuracy can be suppressed. Incidentally, the deviation amount [Delta] L m, for example using a camera or LiDAR detects white lines on both sides of the vehicle, the vehicle can be determined by recognizing whether running anywhere in the lane by using the detection result .
 [実施例]
 次に、上記の更新装置の実施例について説明する。図8は、実施例に係る更新装置1の構成を示すブロック図である。この実施例では、更新装置1は、外界センサによる1つの地物の計測結果と、地物位置から走行道路に下ろした垂線の長さLとに基づいて、移動距離ΔDを求める。
[Example]
Next, an embodiment of the above update device will be described. FIG. 8 is a block diagram illustrating the configuration of the update device 1 according to the embodiment. In this embodiment, the updating device 1 obtains the movement distance ΔD based on the measurement result of one feature by the external sensor and the length L m of the perpendicular drawn from the feature position to the traveling road.
 図示のように、更新装置1は、ジャイロセンサ10と、車速センサ11と、GPS受信機12と、外界センサ13と、地図データベース(以下、「地図DB」と記す)14と、平均パルス幅取得部15と、距離係数校正部16と、自車位置取得部17と、道路情報取得部18と、地物-道路距離計算部19と、移動距離計算部20と、地物情報取得部21と、地物計測部22とを備える。なお、平均パルス幅取得部15、距離係数校正部16、自車位置取得部17、道路情報取得部18、地物-道路距離計算部19、移動距離計算部20、地物情報取得部21、及び、地物計測部22は、CPUなどのコンピュータが予め用意されたプログラムを実行することにより実現することができる。 As shown in the figure, the updating device 1 includes a gyro sensor 10, a vehicle speed sensor 11, a GPS receiver 12, an external sensor 13, a map database (hereinafter referred to as "map DB") 14, and an average pulse width acquisition. Unit 15, distance coefficient calibration unit 16, own vehicle position acquisition unit 17, road information acquisition unit 18, feature-road distance calculation unit 19, movement distance calculation unit 20, feature information acquisition unit 21, And a feature measurement unit 22. The average pulse width acquisition unit 15, the distance coefficient calibration unit 16, the own vehicle position acquisition unit 17, the road information acquisition unit 18, the feature-road distance calculation unit 19, the movement distance calculation unit 20, the feature information acquisition unit 21, And the feature measurement part 22 is realizable when computers, such as CPU, run the program prepared beforehand.
 平均パルス幅取得部15は、車速センサ11が出力する車速パルス信号に基づいて平均パルス幅tを取得し、距離係数校正部16へ出力する。 Average pulse width obtaining unit 15 obtains the average pulse width t p on the basis of the vehicle speed pulse signal a vehicle speed sensor 11 outputs, and outputs to the distance factor correcting unit 16.
 自車位置取得部17は、ジャイロセンサ10、車速センサ11及びGPS受信機12の出力に基づいて車両の自車位置を取得し、道路情報取得部18及び地物情報取得部21へ出力する。道路情報取得部18は、自車位置取得部17から入力された自車位置に基づいて地図DB14を参照し、走行道路の道路情報を取得する。具体的には、道路情報取得部18は、走行道路に相当するリンクの端点の位置を地図DB14から取得し、その道路を示す直線Rd:ax+by+c=0を求めて地物-道路間距離計算部19へ供給する。 The vehicle position acquisition unit 17 acquires the vehicle position of the vehicle based on the outputs of the gyro sensor 10, the vehicle speed sensor 11, and the GPS receiver 12, and outputs the vehicle position to the road information acquisition unit 18 and the feature information acquisition unit 21. The road information acquisition unit 18 refers to the map DB 14 based on the own vehicle position input from the own vehicle position acquisition unit 17 and acquires road information of the traveling road. Specifically, the road information acquisition unit 18 acquires the position of the end point of the link corresponding to the traveling road from the map DB 14, obtains a straight line Rd: ax + by + c = 0 indicating the road, and calculates a feature-road distance calculation unit. 19 is supplied.
 外界センサ13は地物を検出し、検出結果を地物計測部22へ送る。地物計測部22は、車両から地物までの距離Lを計測し、移動距離計算部20及び地物情報取得部21へ出力する。地物情報取得部21は、地図DB14を参照し、自車位置取得部17から入力された自車位置と、地物計測部22から入力された地物までの距離Lとに基づいて、地物位置(x、y)を取得して地物-道路間距離計算部19へ出力する。 The external sensor 13 detects the feature and sends the detection result to the feature measuring unit 22. The feature measurement unit 22 measures the distance L from the vehicle to the feature and outputs the distance L to the movement distance calculation unit 20 and the feature information acquisition unit 21. The feature information acquisition unit 21 refers to the map DB 14 and based on the own vehicle position input from the own vehicle position acquisition unit 17 and the distance L to the feature input from the feature measurement unit 22. The object position (x 1 , y 1 ) is acquired and output to the feature-road distance calculation unit 19.
 地物-道路距離計算部19は、道路情報取得部18から入力された道路を示す直線Rdと、地物情報取得部21から入力された地物位置(x、y)とに基づいて、地物位置から走行道路へ下ろした垂線の長さLを計算し、移動距離計算部20へ出力する。 Feature - the road distance calculating unit 19, based on the straight line Rd indicating the road that is input from the road information acquisition unit 18, the feature position input from the feature information acquiring unit 21 and the (x 1, y 1) Then, the length L m of the perpendicular line drawn from the feature position to the traveling road is calculated and output to the movement distance calculation unit 20.
 移動距離計算部20は、地物計測部22から入力された地物までの距離L(L、L)と、地物-道路距離計算部19から入力された垂線の長さLとに基づいて、式(3)~(5)により移動距離ΔDを計算し、距離係数校正部16へ出力する。 The movement distance calculation unit 20 includes a distance L (L 1 , L 2 ) to the feature input from the feature measurement unit 22 and a perpendicular length L m input from the feature-road distance calculation unit 19. Based on the above, the movement distance ΔD is calculated by the equations (3) to (5) and output to the distance coefficient calibration unit 16.
 距離係数校正部16は、平均パルス幅取得部15から入力された平均パルス幅tと、移動距離計算部20から入力された移動距離ΔDとに基づいて、1パルスあたりの移動距離d(即ち、距離係数α)を算出する。求めた1パルスあたりの移動距離から、車体速度を算出してもよい。 Distance coefficient calibration unit 16, and the average pulse width t p input from the average pulse width obtaining unit 15, based on the moving distance ΔD input from the travel distance calculating section 20, the moving distance per pulse d p ( That is, the distance coefficient α d ) is calculated. The vehicle body speed may be calculated from the obtained movement distance per pulse.
 次に、実施例による距離係数更新処理について説明する。図9は、実施例による距離係数更新処理のフローチャートである。 Next, distance coefficient update processing according to the embodiment will be described. FIG. 9 is a flowchart of the distance coefficient update process according to the embodiment.
 まず、更新装置1は、外界センサ13を用いて地物を計測し、車両からその地物までの距離Lを取得する(ステップS11)。次に、更新装置1は、自車位置取得部17が出力する自車位置などに基づいて、車両が直進走行しているが否かを判定する(ステップS11)。これは、車両が直進走行していない場合は、移動距離計算部20が出力する移動距離ΔDの精度が低下するからである。具体的に、ジャイロセンサ10が車両のヨー方向の角速度ωを検出できる場合には、|ω|<Δω(Δω:所定の閾値)の場合に車両が直進走行していると判定してもよい。また、車両の操舵角δを検出できる場合には、|δ|<Δδ(Δδ:所定の閾値)の場合に車両が直進走行していると判定してもよい。 First, the updating device 1 measures a feature using the external sensor 13 and acquires a distance L from the vehicle to the feature (step S11). Next, the update device 1 determines whether or not the vehicle is traveling straight on the basis of the vehicle position output by the vehicle position acquisition unit 17 (step S11). This is because the accuracy of the movement distance ΔD output by the movement distance calculation unit 20 decreases when the vehicle is not traveling straight ahead. Specifically, when the gyro sensor 10 can detect the angular velocity ω in the yaw direction of the vehicle, it may be determined that the vehicle is traveling straight when | ω | <Δω (Δω: a predetermined threshold). . When the steering angle δ of the vehicle can be detected, it may be determined that the vehicle is traveling straight when | δ | <Δδ (Δδ: a predetermined threshold).
 車両が直進走行していない場合(ステップS12:NO)、処理は終了する。一方、車両が直進走行している場合(ステップS12:YES)、更新装置1は、flag=0であるか否かを判定する(ステップS13)。なお、「flag」は、処理の開始時に「0」にリセットされている。flag=0である場合(ステップS13:YES)、更新装置1はflagに「1」をセットし(ステップS14)、平均パルス幅tの計算を開始して(ステップS15)、ステップS11へ戻る。 If the vehicle is not traveling straight (step S12: NO), the process ends. On the other hand, when the vehicle is traveling straight (step S12: YES), the update device 1 determines whether flag = 0 (step S13). Note that “flag” is reset to “0” at the start of processing. If a flag = 0 (step S13: YES), updating apparatus 1 is set to "1" to the flag (step S14), and starts the calculation of the average pulse width t p (step S15), and returns to step S11 .
 一方、flag=0でない場合(ステップS13:NO)、更新装置1は、道路情報取得部18により走行中の道路情報を取得し(ステップS16)、地物情報取得部21により地物情報を取得する(ステップS17)。次に、更新装置1は、地物-道路間距離計算部19により地物から走行中道路への垂線の長さLmを計算し(ステップS18)、移動距離計算部20により移動距離ΔDを算出する(ステップS19)。そして、更新装置1は、移動距離ΔDを用いて1パルスあたりの移動距離dを算出し(ステップS20)、距離係数αを更新する(ステップS21)。そして、処理を終了する。 On the other hand, when flag = 0 is not satisfied (step S13: NO), the updating device 1 acquires the road information that is being traveled by the road information acquisition unit 18 (step S16), and acquires the feature information by the feature information acquisition unit 21. (Step S17). Next, the updating device 1 calculates the length Lm of the perpendicular from the feature to the traveling road by the feature-road distance calculation unit 19 (step S18), and calculates the movement distance ΔD by the movement distance calculation unit 20 (Step S19). The updating apparatus 1 uses the moving distance ΔD calculates the moving distance d p per pulse (step S20), and updates the distance coefficient alpha d (step S21). Then, the process ends.
 [地物計測周期]
 上記の距離係数更新処理において求められる1パルスあたりの移動距離dは、時刻Tから時刻Tまでの時間間隔ΔTの間の1パルスあたりの移動距離の平均値である。そのため、時間間隔ΔTの間のパルス幅の変動が大きいと、算出される移動距離dの精度が悪化する。従って、時間間隔ΔTの間のパルス数はできるだけ少ないことが望ましい。
[Feature measurement cycle]
The movement distance d p per pulse obtained in the above-described distance coefficient update process is an average value of the movement distance per pulse during the time interval ΔT from time T 1 to time T 2 . Therefore, the large variation of the pulse width of the time interval [Delta] T, the accuracy of the moving distance d p which is calculated is deteriorated. Therefore, it is desirable that the number of pulses during the time interval ΔT is as small as possible.
 単位時間あたりのパルス数は車両の走行速度によって異なる。例えば、図9(A)に示すように、1秒間あたりのパルス数を考える。タイヤ1回転あたり2パルス出力される車種では、1秒間あたりのパルス数は、時速10kmでは3パルス、時速50kmでは17パルス、時速100kmでは35パルスであり、走行速度によって大きく差がある。 The number of pulses per unit time varies depending on the running speed of the vehicle. For example, consider the number of pulses per second as shown in FIG. In a vehicle type that outputs two pulses per tire rotation, the number of pulses per second is 3 pulses at 10 km / h, 17 pulses at 50 km / h, and 35 pulses at 100 km / h, and there is a large difference depending on the running speed.
 そこで、外界センサの計測周期や車種を鑑みて、走行速度に応じて時間間隔ΔTを変化させれば、パルス幅の変動による移動距離dの精度の悪化を抑制できる。図9(B)は走行速度とパルス幅との関係を示す。例えば、外界センサの計測周期が50ms(20Hz)で1回転あたり2パルス出力される車種の場合、走行速度が時速20km未満のときはΔT=300ms、時速20km以上時速30km未満のときはΔT=200ms、時速30km以上時速60km未満のときはΔT=100ms、時速60km以上のときはΔT=50msとすると、時間間隔ΔTの間に計測できるパルス数が1パルスもしくは2パルス程度となり、高精度に移動距離dを計算することができる。 Therefore, in view of the measurement cycle of the external sensor and the vehicle type, if the time interval ΔT is changed according to the traveling speed, it is possible to suppress the deterioration of the accuracy of the moving distance d p due to the fluctuation of the pulse width. FIG. 9B shows the relationship between the traveling speed and the pulse width. For example, in the case of a vehicle type in which the measurement cycle of the external sensor is 50 ms (20 Hz) and two pulses are output per revolution, ΔT = 300 ms when the traveling speed is less than 20 km / h, and ΔT = 200 ms when the speed is 20 km / h or more and less than 30 km / h. When ΔT = 100 ms when the speed is 30 km / h or more and less than 60 km / h, and ΔT = 50 ms when the speed is 60 km / h or more, the number of pulses that can be measured during the time interval ΔT is about 1 pulse or 2 pulses, and the moving distance is high. d p can be calculated.
 [変形例]
 (変形例1)
 上記の工程P3では、走行道路の直線の方程式及び地物の位置に基づいて、地物から走行道路への垂線の長さLを計算しているが、地物から走行道路までの最短距離が地図データに含まれている場合には、その値を利用してもよい。
[Modification]
(Modification 1)
In the above step P3, based on the equation and the position of the feature of the straight traveling road, but to calculate the length L m of a perpendicular to the traveling road from the feature, the shortest distance to travel the road from the feature If is included in the map data, the value may be used.
 (変形例2)
 図9のステップS11に示されるように、実施例の距離係数更新処理では、基本的に車両が直進走行しているときに距離係数の更新を行う。但し、現実には車両は直進走行しているように見えても、厳密には直進しておらず、微少なふらつきがある。よって、工程P4で求められる移動距離ΔDは、実際の移動距離ではなく近似値となる。このため、時間間隔ΔTが大きすぎると、実際の移動距離と工程P4で計算される移動距離との差が大きくなってしまう。この観点から、時刻Tから時刻Tまでの時間間隔ΔTをできる限り小さくすることが望ましい。
(Modification 2)
As shown in step S11 of FIG. 9, in the distance coefficient updating process of the embodiment, the distance coefficient is basically updated when the vehicle is traveling straight ahead. However, in reality, even if the vehicle appears to be traveling straight ahead, it is not strictly going straight and there is a slight fluctuation. Therefore, the movement distance ΔD obtained in the process P4 is not an actual movement distance but an approximate value. For this reason, if the time interval ΔT is too large, the difference between the actual moving distance and the moving distance calculated in the process P4 becomes large. From this point of view, it is desirable to make the time interval ΔT from time T 1 to time T 2 as small as possible.
 (変形例3)
 外界センサを車両の低い位置に取り付けると、周囲の車両によりオクルージョンが増え、距離係数の更新に好適な地物を検出できる頻度が減ってしまうと考えられる。よって、外界センサを、周囲の車両の高さよりも上方を計測できるように設置することが好ましい。これにより、地物の検出頻度が増加し、距離係数の更新回数が増加するため、距離係数の精度を向上させることができる。
(Modification 3)
If the external sensor is attached to a low position of the vehicle, it is considered that the occlusion increases by surrounding vehicles, and the frequency with which a suitable feature for updating the distance coefficient can be detected decreases. Therefore, it is preferable to install the external sensor so that the upper side can be measured above the height of the surrounding vehicle. Thereby, since the detection frequency of the feature increases and the number of updates of the distance coefficient increases, the accuracy of the distance coefficient can be improved.
 本発明は、移動体に搭載する装置に利用することができる。 The present invention can be used for an apparatus mounted on a moving body.
 10 ジャイロセンサ
 11 車速センサ
 12 外界センサ
 13 進行方向取得部
 14 車速パルス計測部
 15 地物計測部
 17 距離係数構成部
 18 移動距離計算部
 19 地図データベース
DESCRIPTION OF SYMBOLS 10 Gyro sensor 11 Vehicle speed sensor 12 External sensor 13 Travel direction acquisition part 14 Vehicle speed pulse measurement part 15 Feature measurement part 17 Distance coefficient structure part 18 Travel distance calculation part 19 Map database

Claims (9)

  1.  第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得部と、
     前記移動体の経路から前記地物までの距離を取得する第2取得部と、
     前記第1取得部及び前記第2取得部の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出部と、
     を備えることを特徴とする距離推定装置。
    A first acquisition unit for acquiring the distance from the moving object to the feature at each of the first time and the second time;
    A second acquisition unit that acquires a distance from the path of the moving object to the feature;
    Based on the acquisition results of the first acquisition unit and the second acquisition unit, a calculation unit that calculates the moving distance of the moving body from the first time to the second time;
    A distance estimation apparatus comprising:
  2.  前記算出部は、前記第1時刻における前記移動体と前記地物との前記移動体の進行方向における距離である第1距離と、前記第2時刻における前記移動体と前記地物との前記移動体の進行方向における距離である第2距離とに基づいて、前記移動距離を算出することを特徴とする請求項1に記載の距離推定装置。 The calculation unit includes a first distance that is a distance in a traveling direction of the moving body between the moving body and the feature at the first time, and the movement between the moving body and the feature at the second time. The distance estimation apparatus according to claim 1, wherein the moving distance is calculated based on a second distance that is a distance in a traveling direction of the body.
  3.  前記算出部は、前記第1時刻から前記第2時刻までの移動距離と、車速パルス信号の平均パルス幅とに基づいて、前記車速パルス信号の1パルスあたりの移動距離を算出することを特徴とする請求項1又は2に記載の距離推定装置。 The calculation unit calculates a movement distance per pulse of the vehicle speed pulse signal based on a movement distance from the first time to the second time and an average pulse width of the vehicle speed pulse signal. The distance estimation apparatus according to claim 1 or 2.
  4.  前記算出部は、前記移動体のヨー方向の角速度又は操舵角が所定の閾値未満であるときに前記移動距離を算出することを特徴とする請求項1乃至3のいずれか一項に記載の距離推定装置。 The distance according to any one of claims 1 to 3, wherein the calculation unit calculates the movement distance when an angular velocity or a steering angle in a yaw direction of the moving body is less than a predetermined threshold. Estimating device.
  5.  前記算出部は、前記移動体の走行速度に応じて、前記第1時刻から前記第2時刻までの時間間隔を変化させることを特徴とする請求項1乃至4のいずれか一項に記載の距離推定装置。 The distance according to claim 1, wherein the calculation unit changes a time interval from the first time to the second time according to a traveling speed of the moving body. Estimating device.
  6.  前記算出部は、前記移動体の走行速度が速いほど前記時間間隔を短くすることを特徴とする請求項5に記載の距離推定装置。 6. The distance estimating apparatus according to claim 5, wherein the calculating unit shortens the time interval as the traveling speed of the moving body increases.
  7.  距離推定装置により実行される距離推定方法であって、
     第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得工程と、
     前記移動体の経路から前記地物までの距離を取得する第2取得工程と、
     前記第1取得工程及び前記第2取得工程の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出工程と、
     を備えることを特徴とする距離推定方法。
    A distance estimation method executed by a distance estimation device,
    A first acquisition step of acquiring the distance from the moving object to the feature at each of the first time and the second time;
    A second acquisition step of acquiring a distance from the path of the moving body to the feature;
    A calculation step of calculating a moving distance of the moving body from the first time to the second time based on the acquisition results of the first acquisition step and the second acquisition step;
    A distance estimation method comprising:
  8.  コンピュータを備える距離推定装置によって実行されるプログラムであって、
     第1時刻及び第2時刻それぞれにおける移動体から地物までの距離をそれぞれ取得する第1取得部、
     前記移動体の経路から前記地物までの距離を取得する第2取得部、
     前記第1取得部及び前記第2取得部の取得結果に基づき、前記第1時刻から前記第2時刻までの前記移動体の移動距離を算出する算出部、
     として前記コンピュータを機能させることを特徴とするプログラム。
    A program executed by a distance estimation device including a computer,
    A first acquisition unit for acquiring the distance from the moving object to the feature at each of the first time and the second time;
    A second acquisition unit for acquiring a distance from the path of the moving body to the feature;
    A calculation unit for calculating a moving distance of the moving body from the first time to the second time based on the acquisition results of the first acquisition unit and the second acquisition unit;
    A program for causing the computer to function as:
  9.  請求項8に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 8.
PCT/JP2015/086350 2015-12-25 2015-12-25 Distance estimation device, distance estimation method, and program WO2017109979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086350 WO2017109979A1 (en) 2015-12-25 2015-12-25 Distance estimation device, distance estimation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086350 WO2017109979A1 (en) 2015-12-25 2015-12-25 Distance estimation device, distance estimation method, and program

Publications (1)

Publication Number Publication Date
WO2017109979A1 true WO2017109979A1 (en) 2017-06-29

Family

ID=59089859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086350 WO2017109979A1 (en) 2015-12-25 2015-12-25 Distance estimation device, distance estimation method, and program

Country Status (1)

Country Link
WO (1) WO2017109979A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006081A (en) * 2003-06-12 2005-01-06 Denso Corp Image server, image collection device, and image display terminal
JP2008008783A (en) * 2006-06-29 2008-01-17 Toyota Motor Corp Wheel speed pulse correction device
JP2012073810A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Road surface condition estimating device and road surface condition estimating method
JP2012189467A (en) * 2011-03-11 2012-10-04 Casio Comput Co Ltd Positioning device, pace per step data correction method and program
JP2014232411A (en) * 2013-05-29 2014-12-11 富士通テン株式会社 Portable terminal, and danger notification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006081A (en) * 2003-06-12 2005-01-06 Denso Corp Image server, image collection device, and image display terminal
JP2008008783A (en) * 2006-06-29 2008-01-17 Toyota Motor Corp Wheel speed pulse correction device
JP2012073810A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Road surface condition estimating device and road surface condition estimating method
JP2012189467A (en) * 2011-03-11 2012-10-04 Casio Comput Co Ltd Positioning device, pace per step data correction method and program
JP2014232411A (en) * 2013-05-29 2014-12-11 富士通テン株式会社 Portable terminal, and danger notification system

Similar Documents

Publication Publication Date Title
US9126595B2 (en) Apparatus and method for calculating inter-vehicle distance
CN109564098B (en) Self-position estimation method and self-position estimation device
TWI625260B (en) Method and system for detecting lane curvature by using body signal
CN111845740A (en) Method and device for estimating dynamic yaw rate deviation
JP7253065B2 (en) Vehicle control device, vehicle control method, vehicle motion control system, and lane estimation device
US11061129B2 (en) Distance estimation device, distance estimation method and program
JP7344895B2 (en) How to calibrate a gyrometer installed in a vehicle
JP6503477B2 (en) Distance estimation device, distance estimation method and program
US11318950B2 (en) Calculation apparatus, control method, program and storage medium
CN113306559A (en) Compensation for vertical road camber in road shape estimation
WO2018163750A1 (en) Distance estimation device, distance estimation method, and program
WO2017109976A1 (en) Distance estimation device, distance estimation method, and program
WO2017109979A1 (en) Distance estimation device, distance estimation method, and program
KR101676145B1 (en) Curvature calculation device and curvature correction method
WO2017168588A1 (en) Measurement device, measurement method, and program
JP2017122741A (en) Determination device, determination method, determination program, and recording medium
JP2024107064A (en) Distance Estimation Device
JP2013250167A (en) Distance measuring device, distance correction method, distance correction program, and recording medium
JP2016122022A (en) Determination device, determination method, determination program, and recording medium
JP2017181195A (en) Measurement device, measurement method, and program
JP2019124698A (en) Distance measuring device
US20240035846A1 (en) Method and device for determining the reliability of a low-definition map
JP2017177940A (en) Calculation device, control method, program and storage medium
JP2021178636A (en) Calculation device, control method, program and storage medium
JP2019049576A (en) Determination device, determination method, determination program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载