WO2017192350A1 - Process for reducing cpi in a dinitrile stream - Google Patents
Process for reducing cpi in a dinitrile stream Download PDFInfo
- Publication number
- WO2017192350A1 WO2017192350A1 PCT/US2017/029810 US2017029810W WO2017192350A1 WO 2017192350 A1 WO2017192350 A1 WO 2017192350A1 US 2017029810 W US2017029810 W US 2017029810W WO 2017192350 A1 WO2017192350 A1 WO 2017192350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cpi
- dinitrile
- amine
- reaction
- acid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000008569 process Effects 0.000 title claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 80
- 229910001868 water Inorganic materials 0.000 claims abstract description 62
- 238000006243 chemical reaction Methods 0.000 claims abstract description 53
- 150000001412 amines Chemical class 0.000 claims abstract description 37
- 239000003054 catalyst Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 17
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical group NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 101
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical group N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 claims description 20
- 238000004821 distillation Methods 0.000 claims description 13
- 239000003377 acid catalyst Substances 0.000 claims description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 10
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 10
- 150000004985 diamines Chemical class 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- FPPLREPCQJZDAQ-UHFFFAOYSA-N 2-methylpentanedinitrile Chemical compound N#CC(C)CCC#N FPPLREPCQJZDAQ-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 239000005711 Benzoic acid Substances 0.000 claims description 5
- 235000011037 adipic acid Nutrition 0.000 claims description 5
- 239000001361 adipic acid Substances 0.000 claims description 5
- 235000010233 benzoic acid Nutrition 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- 229910003556 H2 SO4 Inorganic materials 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical class S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 150000007522 mineralic acids Chemical class 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- YZYDPPZYDIRSJT-UHFFFAOYSA-K boron phosphate Chemical compound [B+3].[O-]P([O-])([O-])=O YZYDPPZYDIRSJT-UHFFFAOYSA-K 0.000 claims description 3
- 229910000149 boron phosphate Inorganic materials 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims 2
- 150000004982 aromatic amines Chemical class 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 60
- 239000000243 solution Substances 0.000 description 44
- 238000004817 gas chromatography Methods 0.000 description 36
- 239000011541 reaction mixture Substances 0.000 description 31
- 229910052757 nitrogen Inorganic materials 0.000 description 30
- 239000000376 reactant Substances 0.000 description 30
- 238000003756 stirring Methods 0.000 description 30
- 238000010926 purge Methods 0.000 description 26
- 239000012299 nitrogen atmosphere Substances 0.000 description 23
- 230000003197 catalytic effect Effects 0.000 description 19
- 239000008367 deionised water Substances 0.000 description 18
- 229910021641 deionized water Inorganic materials 0.000 description 18
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 229920001429 chelating resin Polymers 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- BTNXBLUGMAMSSH-UHFFFAOYSA-N octanedinitrile Chemical compound N#CCCCCCCC#N BTNXBLUGMAMSSH-UHFFFAOYSA-N 0.000 description 4
- -1 paraformaldehyde Chemical class 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000011973 solid acid Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 3
- 229910052680 mordenite Inorganic materials 0.000 description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 3
- GDCJAPJJFZWILF-UHFFFAOYSA-N 2-ethylbutanedinitrile Chemical compound CCC(C#N)CC#N GDCJAPJJFZWILF-UHFFFAOYSA-N 0.000 description 2
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 229920006309 Invista Polymers 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 238000007700 distillative separation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000003141 primary amines Chemical group 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- DHGUMNJVFYRSIG-UHFFFAOYSA-N 2,3,4,5-tetrahydropyridin-6-amine Chemical compound NC1=NCCCC1 DHGUMNJVFYRSIG-UHFFFAOYSA-N 0.000 description 1
- XEVXVMMEBUNUAF-UHFFFAOYSA-N 2,4-dimethylphenol Chemical compound CC1=CC=C(O)C(C)=C1.CC1=CC=C(O)C(C)=C1 XEVXVMMEBUNUAF-UHFFFAOYSA-N 0.000 description 1
- FRMJZJUVLPFLAB-UHFFFAOYSA-N 2-iminocyclopentane-1-carbonitrile Chemical compound N=C1CCCC1C#N FRMJZJUVLPFLAB-UHFFFAOYSA-N 0.000 description 1
- AQYCMVICBNBXNA-UHFFFAOYSA-N 2-methylglutaric acid Chemical class OC(=O)C(C)CCC(O)=O AQYCMVICBNBXNA-UHFFFAOYSA-N 0.000 description 1
- IPMQSLPLJDKUPI-UHFFFAOYSA-N 2-oxocyclopentane-1-carbonitrile Chemical compound O=C1CCCC1C#N IPMQSLPLJDKUPI-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical class [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical class [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 238000001030 gas--liquid chromatography Methods 0.000 description 1
- 238000005669 hydrocyanation reaction Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- ZHDTXTDHBRADLM-UHFFFAOYSA-N hydron;2,3,4,5-tetrahydropyridin-6-amine;chloride Chemical compound Cl.NC1=NCCCC1 ZHDTXTDHBRADLM-UHFFFAOYSA-N 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229940099990 ogen Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- WTSXICLFTPPDTL-UHFFFAOYSA-N pentane-1,3-diamine Chemical compound CCC(N)CCN WTSXICLFTPPDTL-UHFFFAOYSA-N 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000066 reactive distillation Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/32—Separation; Purification; Stabilisation; Use of additives
- C07C253/34—Separation; Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/009—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
Definitions
- the present disclosure relates to the removal/reduction of 2-cyanocyclopentylideneimine (CPI) from dinitrile streams by reactions with organic amines.
- the reactions may take place in the presence of water, and optionally, a catalyst.
- CPI is converted into high boiling impurities that can be separated from dinitrile streams by distillation.
- Dinitriles including adiponitrile (ADN) and 2-methylglutaronitrile (MGN), are common nylon intermediates. These intermediates are usually produced by hydrocyanation reactions and contain impurities that have close boiling points to those of the dinitriles (ADN and/or MGN). CPI is an example of such an impurity that cannot be removed efficiently in industrial scale distillation columns.
- ADN adiponitrile
- MGN 2-methylglutaronitrile
- CPI is an example of such an impurity that cannot be removed efficiently in industrial scale distillation columns.
- ADN hexamethylenediamine
- MGN 2- methylpentamethyienediamine
- AMC aminomethylcyclopenylamine
- the presence of AMC in diamines causes quality issues when the diamines are converted into polymers.
- CPI can be hydrolyzed to 2-cyanocyclopentanone (CCPK), which is then separated from dinitrile streams.
- CCPK 2-cyanocyclopentanone
- U.S. patent 3,819,491 discloses the hydrolysis of CPI by heating crude ADN with water to a temperature of 140 to 280 °C without the addition of inorganic additives.
- the acid catalyzed hydrolysis of CPI has been disclosed.
- U.S. patent 3,775,258 and Canadian patent CA912,036 describe the hydrolysis of CPI between 140 to 210 °C with solid acid catalysts, including silica-alumina, crystalline aluminosilicates, boron phosphate, and titania-alumina.
- CPI reacts with organic amines to form N-substituted imine derivatives.
- organic amines For example, the direct reaction of CPI with aniline under reflux conditions ( ⁇ 150 °C) to form N-phenylimino-2- cyanocyclopentane was reported in Compt. Rend. 1954, 238, 1591-1593.
- HMD 1,2-diamino-cyclohexane
- MPMD MPMD
- the present disclosure relates to a process for removing and/or reducing at least a portion of the amount of 2-cyanocyclopentylideneimine (CPI) from a mixture containing CPI and at least one dinitrile.
- the process comprises reacting CPI in the mixture with an amine.
- the reaction may take place in the presence of water, and optionally, a catalyst.
- One aspect of the present disclosure is a process for removing CPI from a mixture containing at least one dinitrile comprising reacting the CPI with an amine in the presence of water.
- the reaction occurs at a temperature between ⁇ 150 and ⁇ 290 °C.
- the molar ratio of amine groups to CPI is ⁇ 1.0.
- the mole ratio of water to CPI is ⁇ 5.0.
- the molar ratio of CPI to dinitrile in the mixture is reduced by at least 25%.
- One aspect of the disclosed process further comprises separating the low volatility reaction products from the dinitrile by distillation.
- Another aspect of the present disclosure is a method for removing CPI from dinitrile, the method comprising; a) reacting the CPI with an amine in the presence of dinitrile, water and a catalyst to form a separable component; and b) separating at least a portion of the separable component from the dinitrile.
- amine is used in its usual sense, that is, an organic compound that can be derived from replacing one hydrogen in an ammonia molecule with a carbon-containing substituent R group.
- the amine contains at least one primary amine group (-NH 2 ).
- the R group in the amine can itself contain a substituted ammonia group, as in the case of a diamine.
- the R group can comprise any suitable carbon structure, including an alkyl group (linear or branched), a cycloalkyl group, or an aryl group, which can include unsaturated bonds.
- the CPI is converted to a product or products with a low volatility compared to the at least one dinitrate.
- Volatility is used in its usual sense, that is, the tendency of a material to pass into the vapor state under a given combination of temperature and pressure.
- the amine is an aliphatic mono- or diamine. In another embodiment of the present disclosure, the amine is an aromatic mono- or diamine.
- the amine comprises a molecule of the structure H 2 N-R 1 .
- This structure represents a mono, primary amine.
- R 1 can be selected from the group consisting of C 1-18 alkyl, C 6-18 aryl, and C 3-18 cycloalkyl radicals.
- primary monoamines include but not limited to methylamine, ethylamine, cyclohexylamine, aniline, and substituted anilines, in which one or more substitutions takes place on the aromatic ring.
- the amine may have the structure H 2 N-R 2 -N H 2 .
- R 2 may be selected from the group consisting of C 2-18 alkeneyl, C 6-18 areneyl, and C3-18 cycloalkeneyl radicals; for example C 2-18 radicals, for example C 4-10 radicals, for example C 5-8 radicals.
- Examples of amines of the structure H 2 N-R2-NH 2 include ethylenediamine, 1,3-diaminopropane, hexamethylenediamine, 2-methylpentamethylenediamine, 1,2-diamino-cyclohexane, o- phenylenediamine, m-phenylenediamine, p-phenylenediamine, ⁇ , ⁇ -dimethyiethylenediamine, and
- Certain amines with the structure H 2 N-R 2 -NH 2 are commercially available under tradename Dytek® amines from INVISTA S.a r.l. These commercially available amines include
- HMD hexamethylenediamine
- MPMD 2-methylpentamethylenediamine
- AMC aminomethylcyclopenylamine
- DCH 1,3-diaminopentane
- the radicals Ri and R2 may contain substituents, heteroatoms or linkage groups.
- Examples of amines with a linkage group which contains a heteroatom include NH 2 -CH 2 -CH 2 -O-CH 2 -CH 2 -NH 2 , or ⁇ H 2 - CH 2 -CH 2 -NH-CH 2 -CH 2 -NH 2 .
- the dinitrile can be a straight chain, branched or cyclic dinitrile or mixtures thereof.
- straight-chain dinitriles include adiponitrile
- branched-chain dinitriles include
- methylglutaronitrile and 2-ethylsuccinonitrile merely to name two examples.
- Straight chain and branched dinitriles having normal boiling points between about 200°C and 350°C are suitable, for example between 250°C and 300°C.
- the process can be carried out at a temperature between ⁇ 150 and ⁇ 290 °C. This has been shown to be advantageous, because then the reaction of the CPI occurs usually with a sufficient kinetic speed while degradation of the dinitrile can be avoided or at least greatly reduced.
- the process is carried out at ⁇ 170 °C to ⁇ 270 °C; ⁇ 180°C to ⁇ 220°C; and ⁇ 185°C to ⁇ 195°C.
- the molar ratio of amine groups to CPI is ⁇ 1.0, for example ⁇ 2, ⁇ 5 or ⁇ 10, and is preferably ⁇ 100, ⁇ 50, ⁇ 20 and ⁇ 10.
- Diamines (by definition) contain two amine groups and count as two amine groups for determining the ratio of amine groups to CPI.
- the molar ratio of water to CPI is ⁇ 5 or ⁇ 10, and can be ⁇ 100, ⁇ 50, ⁇ 20 and ⁇ 10.
- the water can be present in the solution as processed, or can be added separately.
- the water can be liquid, vapor or a combination of the two, depending on the operating pressure.
- the molar ratio of CPI to dinitrile may be reduced.
- the molar ratio of CPI to dinitrile may be reduced by at least 25%, for example, at least 50%, for example, at least 75%, for example, at least 90%.
- a method for reducing and/or removing CPI from dinitrile comprising; a) reacting the CPI with an amine in the presence of dinitrile, water and a catalyst to form a separable component; and b) separating at least a portion of the separable component from the dinitrile.
- the catalyst is an acid catalyst.
- the acid catalyst is a solid. Suitable solid acid catalysts can be selected from the group consisting of one or more of silica-alumina, crystalline aluminosilicate, boron phosphate and titan ia-alumina.
- the acid catalyst is at least one acidic bisulfate salt of sodium, potassium, ammonium, magnesium, iron, manganese, zinc, cobalt, or nickel.
- the acid catalyst is at least one inorganic acid.
- the inorganic acid may be at least one of H 2 SO 4 , H3PO 4 , and HC1.
- the acid catalyst is at least one of organic acid.
- the organic acid may be at least one of adipic acid, benzoic acid or a mixture of the adipic acid and benzoic acid.
- liquid acids for example, HQ, H 2 SO 4 , and H 3 PO 4
- solid acids for example, the Amberlyst® resins, tungstic acid, acidic alumina, hydrogen mordenite, bentonite and others
- Ammonia and/or other gaseous products of the reaction of the CPI with the amine can be removed via a vent. It is desirable to allow the ammonia and other gaseous products to vent to the extent possible consistent with maintaining the desired reaction pressure.
- the low volatility reaction product or products can optionally be separated from the dinitrile by conventional distillation, and the dinitrile can be adiponitrile, 2-methyIglutaronitrile or both.
- the distillation can be earned out in batch or continuous mode, although continuous distillation is preferred for commercial operation.
- the number of theoretical stages required is a function of the process conditions for the distillation, including reflux ratio.
- the process of the present disclosure may be carried out in a suitable multi-phase, contacting device or series of contacting devices that are known in the chemical industry.
- contacting devices may include, but are not limited to, co-current or counter-current liquid-liquid contactors, reactive distillation, stirred tanks, tube reactors, hydraulic cyclones, lift reactors with downcomers, or combinations thereof.
- the process can be carried out in series as well as in pai'allel connections with properly sized, connecting flow lines, instrumentation and controls.
- ADN means "adiponitrile”.
- CPI means "2-cyanocyclopentylideneimine”.
- HMD means "hexamethylenediamine”.
- MGN means "2-methylglutaronitrile”.
- MPMD means "2-methyipentamethylenediamine”.
- ESN means "2-ethylsuccinonitrile”.
- AMC means "aminomethylcyclopenylamine”.
- DCH means " 1 ,2-diaminocyclohexane”.
- ppm or "ppmw” means parts per million by weight unless otherwise stated.
- dinitrile means an organic compound comprising two nitrile (-C ⁇ N) groups, for example ADN.
- diamine means an organic compound comprising two amine (-NH 2 ) groups, for example HMD.
- Psig pounds per square inch gauge pressure.
- GC Gas Chromatography
- An Agilent 7890 GC (or equivalent) equipped with an automatic liquid sampler (ALS), capillary split/splitless inlet, and flame ionization detector or equivalent is used.
- a capillary column used for the separation is Varian CP-Sil 8 CB, 25m X 0.53mm ID x 2 ⁇ Film thickness, 5% phenyl/95%
- biphenyl 99.5% Purity, CAS 92-52-4, Aldrich, [P/N 01817TA].
- toluene 99.9% Purity, CAS 108-88-3, Omnisolv, [P/N TX0737-1].
- the sample injection volume is about 2 ⁇ ,.
- the split ratio used is about 20: 1 at nominal 80 mL/min split vent flow.
- the column head pressure is about 3 psig.
- Example 3 Reaction of CPI with MPMD: with H 2 O addition.
- the water concentration of the MGN solution was 8200 ppm.
- the reaction mixture was heated to 190 °C under nitrogen for 24 hours, GC analysis showed that the CPI concentration changed from 6900 ppm to 237 ppm.
- the reaction between CPI and amine (MPMD in the examples) generates an amine-CPI adduct which boils at a higher temperature than MGN.
- the reaction products from any of Examples 2 to 6, containing primarily MGN, amine-CPI adduct and residual CPI, are charged to a continuous multistage distillative system equipped with a kettle reboiler, and overhead condenser that indirectly exchanges heat against plant cooling water with an average inlet temperature of 20°C. Adequate refluxing capability and rectifying/stripping stages are available in the distillative operation. For example, about 12 to 15 theoretical stages are provided for distillative separation,
- the feed enters the distillative system as a liquid above the kettle reboiler at the column base.
- the feed may be preheated for efficient separation.
- the feed is primarily MGN with about 1-2 wt% of amine-CPI adduct and about 300-350 ppm CPI.
- the distillative column pressures and temperatures are maintained such as to provide necessary gas-liquid hydraulics and inter-phase contacting across each theoretical stage.
- the overhead condenser temperature is about 30°C
- the column head temperature is maintained to about 194-195°C
- the column base temperature is maintained to about 205°C
- the column is operated under a steady vacuum of 100-120 mmHg (top) / 120-150 mmHg (base).
- a small reflux ratio of about 0.1-0.5 is maintained throughout the separation.
- the overhead liquid product from the condenser is refined MGN with 300-400 ppm CPI and non- detectable amine-CPI adduct.
- the column reboiler purge stream is concentrated in about 25% amine-CPI adduct and balance primarily MGN.
- an order of magnitude reduction of CPI in the starting dinitrile may be achieved.
- the low-CPI dinitrile, i.e., refined MGN in this example can be further transformed into useful intermediates, such as MPMD, methylglutaric acids or esters thereof.
- Components lighter than MGN such as water and high volatility impurities, may be stripped ahead of the distillative system using an adequately sized stripping column.
- Other optimizations such as pump- arounds, side-streams, etc, can be carried out depending on the feed quality and separation efficiency.
- Example 10 Reaction of CPI with HMD: with a catalytic amount of HCi and 3 ⁇ 40 added
- Example 12 Reaction of CPI with DCH: with a catalytic amount of HCI and H 2 O added
- Example 14 Reaction of CPI with MPMD: with a catalytic amount of HC1 and 3 ⁇ 40 added
- the C column make is a mixture of organic amines, primarily HMD and DCH
- Example 16 Reaction of CPI with "the C column make”: with a catalytic amount of HC1 and 3 ⁇ 40 added
- Example 17 Reaction of CPI with HMD: a catalytic amount of H 2 SO 4 and H 2 O added
- Example 18 Reaction of CPI with HMD: a catalytic amount of H3PO 4 and H 2 O added
- Example 21 Reaction of CPI with HMD: a catalytic amount of tungstic acid and H 2 O added
- Example 22 Reaction of CPI with HMD: a catalytic amount of theta alumina and H 2 O added
- Example 23 Reaction of CPI with HMD: a catalytic amount of acidic Silica Gel and 3 ⁇ 40
- Example 24 Reaction of CPI with HMD: a catalytic amount of hydrogen mordenite and H 2 O
- Example 25 Reaction of CPI with HMD: a catalytic amount of bentonite and H 2 O
- Example 26 Reaction of CPI with HMD: a catalytic amount of HMD'2HC1 salt and H 2 O
- Example 27 Reaction of CPI with HMD: a catalytic amount of H 2 O and 2-iminopiperidine HCl
- Example 28 Reaction of CPI with HMD: a catalytic amount of H 2 O and NH4CI
- Example 29 Reaction of CPI with HMD: a catalytic amount of H 2 O and
- Example 30 Reaction of CPI with HMD: a catalytic amount of H 2 O and Fe 2 (SO 4 )3
- Example 31 Reaction of CPI with HMD: a catalytic amount of H 2 O and NiSO 4 2H 2 O
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Disclosed is a process for removing 2-cyanocyclopentylideneimine (CPI) from a mixture containing CPI and dinitrile. The process comprises reacting CPI with an amine. The reaction may take place in the presence of water, and optionally, a catalyst. CPI is converted to products with a low volatility compared to the dinitrile.
Description
PROCESS FOR REDUCING CPI IN A DINITRILE STREAM
Field
[0001] The present disclosure relates to the removal/reduction of 2-cyanocyclopentylideneimine (CPI) from dinitrile streams by reactions with organic amines. The reactions may take place in the presence of water, and optionally, a catalyst. In this process, CPI is converted into high boiling impurities that can be separated from dinitrile streams by distillation.
Background
[0002] Dinitriles, including adiponitrile (ADN) and 2-methylglutaronitrile (MGN), are common nylon intermediates. These intermediates are usually produced by hydrocyanation reactions and contain impurities that have close boiling points to those of the dinitriles (ADN and/or MGN). CPI is an example of such an impurity that cannot be removed efficiently in industrial scale distillation columns. During the hydrogenation of dinitriles to their corresponding diamines (e.g. ADN to hexamethylenediamine (HMD), MGN to 2- methylpentamethyienediamine (MPMD)), CPI is hydrogenated to aminomethylcyclopenylamine (AMC), which is veiy difficult to separate from HMD or MPMD by distillation. The presence of AMC in diamines causes quality issues when the diamines are converted into polymers.
[0003] The removal of CPI from dinitriles, especially from ADN, has been addressed in the past. For example, U.S. patent 2,841,537 discloses the use of activated carbon to remove CPI from dinitrile streams. Canadian patent CA1043813A1 discloses the removal of CPI using weak-acid cation exchange resins. In both processes, the physical adsorption of CPI on the adsorbents might require frequent changes or regenerations of the adsorbents.
[0004] In addition, CPI can be hydrolyzed to 2-cyanocyclopentanone (CCPK), which is then separated from dinitrile streams. For example, U.S. patent 3,819,491 discloses the hydrolysis of CPI by heating crude ADN with water to a temperature of 140 to 280 °C without the addition of inorganic additives. In several other related patents, the acid catalyzed hydrolysis of CPI has been disclosed. For example, U.S. patent 3,775,258 and Canadian patent CA912,036 describe the hydrolysis of CPI between 140 to 210 °C with solid acid catalysts, including silica-alumina, crystalline aluminosilicates, boron phosphate, and titania-alumina. The use of acidic bisulfate salts of sodium, potassium, ammonium, magnesium, iron, manganese, zinc, cobalt, or nickel for the hydrolysis of CPI is disclosed in U.S. patent 3,223,724. In GB731 ,458, the hydrolysis of CPI by several acids, including H2SO4, H3PO4, HCl, adipic acid, and benzoic acid is disclosed. A common feature of these processes is the hydrolysis of CPI to form CCPK and the removal/separation of CCPK from dinitriles (mostly ADN) via distillation. It should be noted that the separation CCPK fi-om dinitriles is usually not efficient in industrial
distillation columns. For example, CCPK has a boiling point that is closer to MGN than CPI, rendering the removal of CCPK from MGN by distillation very difficult and inefficient.
[0005] Reaction-based processes for the removal/reduction of CPI from dinitriles have also been addressed in several patents. For example, CA672712 and WO2008/157218 disclose the treatment of CPI contaminated ADN with ozone, during which process, CP! is destroyed to form other byproducts that could be separated from ADN and/or HMD. U.S. patent 2,768,132 discloses the removal of CPI from ADN by contacting ADN with hydroxylamine salts of hydrochloric, nitric, sulfuric, and phosphoric acids at a temperature between 100 and 250° C followed by distillation. The treatment of CPI contaminated ADN with an aldehyde, such as paraformaldehyde, to convert CPI into water-soluble derivatives or high-boilers is disclosed in U.S. patents 3,496,212 and 3,758,545. Given the feasibility of removing CPI by these processes, other impurities (e.g. additives and/or byproducts) that are introduced into the dinitrile streams require further purification steps.
[0006] As an imine, CPI reacts with organic amines to form N-substituted imine derivatives. For example, the direct reaction of CPI with aniline under reflux conditions (~150 °C) to form N-phenylimino-2- cyanocyclopentane was reported in Compt. Rend. 1954, 238, 1591-1593. When similar reactions were conducted with other amines, including HMD, 1,2-diamino-cyclohexane (DCH), or MPMD at low
concentrations (~3% of CPI and ~ 3% of amine) in MGN, it was found that the reactions were very slow (e.g. <10% conversion in 2 hours at 190 °C), rendering such an approach (direct reaction of CPI with amines) impractical for the removal of CPI at an industrial scale.
Summary
[0007] The present disclosure relates to a process for removing and/or reducing at least a portion of the amount of 2-cyanocyclopentylideneimine (CPI) from a mixture containing CPI and at least one dinitrile. The process comprises reacting CPI in the mixture with an amine. The reaction may take place in the presence of water, and optionally, a catalyst.
[0008] One aspect of the present disclosure is a process for removing CPI from a mixture containing at least one dinitrile comprising reacting the CPI with an amine in the presence of water.
[0009] In one aspect of the disclosed process, the reaction occurs at a temperature between≥150 and ≤290 °C.
[0010] In one aspect of the disclosed process, the molar ratio of amine groups to CPI is≥1.0.
[0011] In a further aspect of the disclosed process, the mole ratio of water to CPI is≥5.0.
[0012] In another aspect of the disclosed process, the molar ratio of CPI to dinitrile in the mixture is reduced by at least 25%.
[0013] One aspect of the disclosed process further comprises separating the low volatility reaction products from the dinitrile by distillation.
[0014] Another aspect of the present disclosure is a method for removing CPI from dinitrile, the method comprising; a) reacting the CPI with an amine in the presence of dinitrile, water and a catalyst to form a separable component; and b) separating at least a portion of the separable component from the dinitrile.
Description
[0015] The term "amine" is used in its usual sense, that is, an organic compound that can be derived from replacing one hydrogen in an ammonia molecule with a carbon-containing substituent R group. The amine contains at least one primary amine group (-NH2). The R group in the amine can itself contain a substituted ammonia group, as in the case of a diamine. The R group can comprise any suitable carbon structure, including an alkyl group (linear or branched), a cycloalkyl group, or an aryl group, which can include unsaturated bonds.
[0016] By doing so it can for most applications within the present disclosure be surprisingly observed that the CPI is converted to a product or products with a low volatility compared to the at least one dinitiile. "Volatility" is used in its usual sense, that is, the tendency of a material to pass into the vapor state under a given combination of temperature and pressure. Perry, R.H. and Green, D.W. (Editors) (1997). Perry's Chemical Engineers' Handbook (7th ed.). McGraw-Hill. ISBN 0-07-049841-5.
[0017] These low volatile product(s) according to most application within the present disclosure can then easily be separated from the dinitrile-containing mixture by distillation, using conventional means.
[0018] Disclosed is a process for removing and/or reducing CPI from a mixture containing at least one dinitrile comprising reacting CPI with an amine in the presence of water, and optionally, a catalyst.
[0019] While not to limit the scope of the disclosure by a recitation of a theoretical mechanism, examples of chemical reactions of CPI with organic amines are illustrated below:
[0020] According to one embodiment of the present disclosure, the amine is an aliphatic mono- or diamine. In another embodiment of the present disclosure, the amine is an aromatic mono- or diamine.
[0021] According to another embodiment of the disclosure, the amine comprises a molecule of the structure H2N-R1. This structure represents a mono, primary amine.
[0022] For example, R1 can be selected from the group consisting of C1-18 alkyl, C6-18 aryl, and C3-18 cycloalkyl radicals. Examples of primary monoamines include but not limited to methylamine, ethylamine, cyclohexylamine, aniline, and substituted anilines, in which one or more substitutions takes place on the aromatic ring.
[0023] The amine may have the structure H2N-R2-N H2. R2 may be selected from the group consisting of C2-18 alkeneyl, C6-18 areneyl, and C3-18 cycloalkeneyl radicals; for example C2-18 radicals, for example C4-10 radicals, for example C5-8 radicals. Examples of amines of the structure H2N-R2-NH2 include ethylenediamine, 1,3-diaminopropane, hexamethylenediamine, 2-methylpentamethylenediamine, 1,2-diamino-cyclohexane, o- phenylenediamine, m-phenylenediamine, p-phenylenediamine, Ν,Ν-dimethyiethylenediamine, and
diethylenetriamine. Certain amines with the structure H2N-R2-NH2 are commercially available under tradename Dytek® amines from INVISTA S.a r.l. These commercially available amines include
hexamethylenediamine (HMD), 2-methylpentamethylenediamine (MPMD), aminomethylcyclopenylamine (AMC), 1 ,2-diaminocyclohexane (DCH), 1,3-diaminopentane.
[0024] The radicals Ri and R2 may contain substituents, heteroatoms or linkage groups. Examples of amines with a linkage group which contains a heteroatom include NH2-CH2-CH2-O-CH2-CH2-NH2, or ΝH2- CH2-CH2-NH-CH2 -CH2-NH2.
[0025] The dinitrile can be a straight chain, branched or cyclic dinitrile or mixtures thereof. Examples of straight-chain dinitriles include adiponitrile, and examples of branched-chain dinitriles include
methylglutaronitrile and 2-ethylsuccinonitrile, merely to name two examples. Straight chain and branched dinitriles having normal boiling points between about 200°C and 350°C are suitable, for example between 250°C and 300°C.
[0026] The process can be carried out at a temperature between≥150 and≤290 °C. This has been shown to be advantageous, because then the reaction of the CPI occurs usually with a sufficient kinetic speed while degradation of the dinitrile can be avoided or at least greatly reduced. For example, the process is carried out at ≥170 °C to≤270 °C;≥180°C to≤220°C; and≥185°C to≤195°C.
[0027] The molar ratio of amine groups to CPI is≥1.0, for example≥2,≥5 or≥10, and is preferably≤100, ≤50,≤20 and≤ 10. Diamines (by definition) contain two amine groups and count as two amine groups for determining the ratio of amine groups to CPI.
[0028] The molar ratio of water to CPI is≥5 or≥ 10, and can be≤100,≤50,≤20 and≤ 10. The water can be present in the solution as processed, or can be added separately. The water can be liquid, vapor or a combination of the two, depending on the operating pressure.
[0029] By removing CPI from the mixture comprising CPI and dinitrile, the molar ratio of CPI to dinitrile may be reduced. For example, the molar ratio of CPI to dinitrile may be reduced by at least 25%, for example, at least 50%, for example, at least 75%, for example, at least 90%.
[0030] A method is disclosed for reducing and/or removing CPI from dinitrile, the method comprising; a) reacting the CPI with an amine in the presence of dinitrile, water and a catalyst to form a separable component; and b) separating at least a portion of the separable component from the dinitrile.
[0031] In some embodiments, the catalyst is an acid catalyst. In other embodiments, the acid catalyst is a solid. Suitable solid acid catalysts can be selected from the group consisting of one or more of silica-alumina, crystalline aluminosilicate, boron phosphate and titan ia-alumina.
[0032] In some embodiments, the acid catalyst is at least one acidic bisulfate salt of sodium, potassium, ammonium, magnesium, iron, manganese, zinc, cobalt, or nickel. In other embodiments, the acid catalyst is at least one inorganic acid. The inorganic acid may be at least one of H2 SO4, H3PO4, and HC1. In some other embodiments, the acid catalyst is at least one of organic acid. The organic acid may be at least one of adipic acid, benzoic acid or a mixture of the adipic acid and benzoic acid.
[0033] In some embodiments, the catalyst may comprise liquid acids, for example, HQ, H2SO4, and H3PO4; solid acids, for example, the Amberlyst® resins, tungstic acid, acidic alumina, hydrogen mordenite, bentonite and others; ammonium and amine salts, for example, the NH4Cl, (NH4)2SO4, HMD-2HC1 salt, and others; acidic bisulfate salts M(HSO4)n, M = NH4, Li, Na, K, (n = 1), Mg, Ca, Fe, Mn, Co, Zn, Ni (n =2); and metal sulfates, for example, FeSO4, Fe2(SO4)3, NiSO4.
[0034] Ammonia and/or other gaseous products of the reaction of the CPI with the amine can be removed via a vent. It is desirable to allow the ammonia and other gaseous products to vent to the extent possible consistent with maintaining the desired reaction pressure.
[0035] The low volatility reaction product or products can optionally be separated from the dinitrile by conventional distillation, and the dinitrile can be adiponitrile, 2-methyIglutaronitrile or both. The distillation can be earned out in batch or continuous mode, although continuous distillation is preferred for commercial operation. The number of theoretical stages required is a function of the process conditions for the distillation, including reflux ratio.
[0036] The process of the present disclosure may be carried out in a suitable multi-phase, contacting device or series of contacting devices that are known in the chemical industry. Examples of such contacting devices may include, but are not limited to, co-current or counter-current liquid-liquid contactors, reactive distillation, stirred tanks, tube reactors, hydraulic cyclones, lift reactors with downcomers, or combinations thereof. The process can be carried out in series as well as in pai'allel connections with properly sized, connecting flow lines, instrumentation and controls. The skilled person in the field of chemical and industrial engineering knows various ways of mixing and feeding the reagents by using the mixing equipment such as static mixers, in-line mixers, stirred vessels, preheating the streams to proper temperatures by using direct or indirect heating with hot water, steam, hot oil or other available energy input systems, heat exchange by interchange for temperature control by using a variety of heat exchange surface area across the hot and cold sides, and other operational details for such processes. Such process design, engineering and operation/control combinations should be clear to the person skilled in the field of engineering.
Definitions
[0037] ADN means "adiponitrile".
[0038] CPI means "2-cyanocyclopentylideneimine".
[0039] HMD means "hexamethylenediamine".
[0040] MGN means "2-methylglutaronitrile".
[0041] MPMD means "2-methyipentamethylenediamine".
[0042] ESN means "2-ethylsuccinonitrile".
[0043] AMC means "aminomethylcyclopenylamine".
[0044] DCH means " 1 ,2-diaminocyclohexane".
[0045] The term "ppm" or "ppmw" means parts per million by weight unless otherwise stated.
[0046] The term "dinitrile" means an organic compound comprising two nitrile (-C≡N) groups, for example ADN.
[0047] The term "diamine" means an organic compound comprising two amine (-NH2) groups, for example HMD.
[0048] Psig is pounds per square inch gauge pressure. Analytical Test Method
[0049] A Gas Chromatography (GC) analytical method is used to determine the concentration of CPI in dinitrile samples. CPI is integrated and reported as one group based on the response factor derived from the linear calibration of suberonitrile. Sample components are separated by gas liquid chromatography and detected using a flame ionization detector (FID). Sec-butylbenzene is used as an internal standard.
[0050] An Agilent 7890 GC (or equivalent) equipped with an automatic liquid sampler (ALS), capillary split/splitless inlet, and flame ionization detector or equivalent is used. A capillary column used for the separation is Varian CP-Sil 8 CB, 25m X 0.53mm ID x 2μπι Film thickness, 5% phenyl/95%
dimethylpolysiloxane [Part No. or P/N CP 7631 or equivalent].
[0051] Reagents used are:
phenol, 99.9% Purity, CAS 108-95-2, Sigma Aldrich, [P/N 109843]
2,4-Xylenol (2,4-Dimethylphenol): 99.2% Purity, CAS 105-67-9, Acros, [P/N 40845].
MGN (2-methylglutaronitrile): 99.6% Purity, CAS , Sigma-Aldrich, [P/N 40845].
CPI, (2-cyclopentylideneimine) re-crystallized: 100% Purity, CAS 2321-76-8, Invista.
biphenyl: 99.5% Purity, CAS 92-52-4, Aldrich, [P/N 01817TA].
suberonitrile (1,6-dicyanohexane): 98% Purity, CAS 629-40-3, Aldrich, [P/N D78008].
BHT (2,6-Di-tert-butyl-4-methylphenoi): 99.9% Purity, CAS 128-37-0, Aldrich, [P/N D4, 740-4].
sec-butylbenzene: 99%+ Purity, CAS 135-98-8, Aldrich, [P/N B90408].
acetone:99.9% Purity, CAS 67-64-1, Omnisolv, [P/N AX0120-8].
acetonitfile: 99.9% Purity, CAS 75-05-8, Omnisolv, [P/N AX0145-1].
toluene: 99.9% Purity, CAS 108-88-3, Omnisolv, [P/N TX0737-1].
Molecular Sieve Activated, type 3A (8-12 Mesh): J.T. Baker, CAS 2708-05.
[0052] Operating Conditions used are:
Temperatures
Inlet temperature: 250 °C
Detector temperature: 330 °C
Oven temp initial: 90 °C
Oven max temperature: 305 °C
[0053] The sample injection volume is about 2 μΐ,. The split ratio used is about 20: 1 at nominal 80 mL/min split vent flow. The column head pressure is about 3 psig.
Examples
Example 1 (Comparative): Reaction of CPI with MPMD: no ¾0 added
[0054] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 560 g of a methylgiutaronitrile (MGN) solution (CPI concentration = 4300 ppm; CPI : MPMD molar ratio = 1 : 3.3). The MGN solution contained 150 ppm of water. The reaction mixture was heated to 190 °C under nitrogen for 24 hours. GC analysis showed that the CPI concentration changed from 4225 ppm to 2310 ppm.
Example 2: Reaction of CPI with MPMD: with H2O addition.
[0055] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 2,4 g of deionized water and 530 g of a MGN solution (CPI concentration = 5300 ppm; CPI : MPMD molar ratio = 1 : 2.8). The water concentration of the MGN solution was 3160 ppm. The reaction mixture was heated to 190 °C under nitrogen for 24 hours. GC analysis showed that the CPI concentration changed from 4550 ppm to 730 ppm.
[0056] Comparison of Examples 1 and 2 shows that the presence of water significantly increases the conversion of CPI.
Example 3 : Reaction of CPI with MPMD: with H2O addition.
[0057] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 3.9 g of deionized water and 520 g of a MGN solution (CPI concentration = 8800 ppm; CPI : MPMD molar ratio = 1 : 3.1). The water concentration of the MGN solution was 7810 ppm. The reaction mixture was heated to 120 °C under nitrogen for 67 hours. GC analysis showed that the CPI concentration changed from 8800 ppm to 6877 ppm.
[0058] A comparison of examples 2 and 3 shows a much higher level of conversion of CPI at the higher temperature.
Example 4.: Reaction of CPI with MPMD : with ¾0 addition.
[0059] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 5.4 g of deionized water and 510 g of a MGN solution (CPI concentration = 6900 ppm; CPI : MPMD molar ratio = 1 :
3.8) . The water concentration of the MGN solution was 8200 ppm. The reaction mixture was heated to 190 °C under nitrogen for 24 hours, GC analysis showed that the CPI concentration changed from 6900 ppm to 237 ppm.
[0060] Comparison of Examples 2 and 4 shows that the use of higher levels of ¾0 and MPMD increases the CPI conversion.
Example 5: Reaction of CPI with MPMD: with H2O addition.
[0061] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 5.4 g of deionized water and 490 g of a MGN solution (CPI concentration = 4350 ppm; CPI to MPMD molar ratio = 1 :3.4). The water concentration of the MGN solution was 4960 ppm. The reaction mixture was heated to 190 °C under a slow flow of nitrogen for 24 hours. GC analysis showed that the CPI concentration changed from 4350 to 173 ppm.
[0062] Comparison of Examples 2 and 5 shows that the use of higher levels of H2O increases the CPI conversion.
Example 6: Reaction of CPI with MPMD: with H2O addition.
[0063] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 2.6 g of deionized water and 552 g of a MGN solution (CPI concentration = 5200 ppm; CPI : MPMD molar ratio = 1 :
2.9) . The water concentration of the MGN solution was 4435 ppm. The reaction mixture was heated to 170 °C under nitrogen for 24 hours. GC analysis showed that the CPI concentration changed from 5200 ppm to 1800 ppm.
[0064] Comparison of Examples 2 and 6 shows that lower temperatures give decreased levels of CPI conversion.
Example 7: Separation of CPI Reaction Products
[0065] The reaction between CPI and amine (MPMD in the examples) generates an amine-CPI adduct which boils at a higher temperature than MGN. The reaction products from any of Examples 2 to 6, containing primarily MGN, amine-CPI adduct and residual CPI, are charged to a continuous multistage distillative system equipped with a kettle reboiler, and overhead condenser that indirectly exchanges heat against plant cooling water with an average inlet temperature of 20°C. Adequate refluxing capability and rectifying/stripping stages are available in the distillative operation. For example, about 12 to 15 theoretical stages are provided for distillative separation,
[0066] The feed enters the distillative system as a liquid above the kettle reboiler at the column base. The feed may be preheated for efficient separation. The feed is primarily MGN with about 1-2 wt% of amine-CPI adduct and about 300-350 ppm CPI. The distillative column pressures and temperatures are maintained such as to provide necessary gas-liquid hydraulics and inter-phase contacting across each theoretical stage. For example, the overhead condenser temperature is about 30°C, the column head temperature is maintained to about 194-195°C and the column base temperature is maintained to about 205°C, The column is operated under a steady vacuum of 100-120 mmHg (top) / 120-150 mmHg (base). A small reflux ratio of about 0.1-0.5 is maintained throughout the separation.
[0067] The overhead liquid product from the condenser is refined MGN with 300-400 ppm CPI and non- detectable amine-CPI adduct. The column reboiler purge stream is concentrated in about 25% amine-CPI adduct and balance primarily MGN. Thus, by reacting CPI with an amine compound as disclosed here followed by distillative separation to purge out the low volatility amine-CPI adduct, an order of magnitude reduction of CPI in the starting dinitrile may be achieved. The low-CPI dinitrile, i.e., refined MGN in this example, can be further transformed into useful intermediates, such as MPMD, methylglutaric acids or esters thereof.
[0068] Components lighter than MGN, such as water and high volatility impurities, may be stripped ahead of the distillative system using an adequately sized stripping column. Other optimizations such as pump- arounds, side-streams, etc, can be carried out depending on the feed quality and separation efficiency.
Example 8: Reaction of CPI with HMD: no H2O or catalyst added
[0069] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1:1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 2.85%.
Example 9: Reaction of CPI with HMD: with a catalytic amount of H2O added
[0070] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of deionized water and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 2.49%.
Example 10: Reaction of CPI with HMD: with a catalytic amount of HCi and ¾0 added
[0071] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of HCi solution (10 wt%, in H2O) and 3.0 g of a MGN solution (CPI concentration = 3.73 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.73% to 0.10%.
[0072] Results of examples 8-10 are summarized in the table below.
[0073] A comparison of examples 8, 9, and 10 shows that the addition of HCI (in water) results in a much higher reduction of CPI than without any additive (example 8) or with the addition of water (example 9).
Example 11 : Reaction of CPI with Diaminocyclohexane (DCH): with no H2O or catalyst added
[0074] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 3.0 g of a MGN solution (CPI concentration = 3.05 wt%; CPI : DCH molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3,05% to 2.71%.
Example 12: Reaction of CPI with DCH: with a catalytic amount of HCI and H2O added
[0075] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of HCI solution (10 wt%, in H2O) and 3.0 g of a MGN solution (CPI concentration = 3.05 wt%; CPI : DCH molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor
was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.05% to 0.19%.
Example 13: Reaction of CPI with MPMD: with no ¾0 or catalyst added
[0076] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 3.0 g of a MGN solution (CPI concentration = 2.61 wt%; CPI : MPMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 2.61% to 2.26%.
Example 14: Reaction of CPI with MPMD: with a catalytic amount of HC1 and ¾0 added
[0077] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of HC1 solution (10 wt%, in H2O) and 3.0 g of a MGN solution (CPI concentration = 2.61 wt%; CPI : MPMD molar ratio = 1: 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 2.61% to 0.08%.
Example 15: Reaction of CPI with "the C column make": with no H2O or catalyst
[0078] Note: "the C column make" is a mixture of organic amines, primarily HMD and DCH
[0079] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 3.0 g of a
MGN solution (CPI concentration = 3.20 wt%; CPI : amine molar ratio = ~1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.20% to 2.57%.
Example 16: Reaction of CPI with "the C column make": with a catalytic amount of HC1 and ¾0 added
[0080] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of HC1 solution (10 wt%, in H2O) and 3.0 g of a MGN solution (CPI concentration = 3.20 wt%; CPI : amine molar ratio = ~1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.20% to 0.37%.
[0081] Results of examples 11-16 are summarized in the table below.
[0082] A comparison of examples 1 1-16 shows that the addition of HQ (in water) into the CPI/amine mixture results in a much higher reduction of CPI than without the addition of HC1.
Example 17: Reaction of CPI with HMD: a catalytic amount of H2 SO4 and H2O added
[0083] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of H2 SO4 solution (5 wt%, in H2O) and 3.0 g of a MGN solution (CPI concentration = 3.73 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.73% to 0.39%.
Example 18: Reaction of CPI with HMD: a catalytic amount of H3PO4 and H2O added
[0084] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 17 mg of H3PO4 solution (10 wt%, in H2O) and 3.0 g of a MGN solution (CPI concentration = 3.73 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.73% to 1.96%.
[0085] Results of examples 8-10, 17, and 18 are summarized in the table below.
[0086] A comparison of examples 8-10, 17, and 18 shows that the addition of acids (HCl, H2SO4or H3PO4) results in a higher reduction of CPI than without any additive (example 8) or with the addition of water alone (example 9).
Example 19: Reaction of CPI with HMD: a catalytic amount of dry Amberlyst® 36 resin added
[0087] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 74 mg of dry Amberlyst® 36 resin and 3.0 g of a MGN solution (CPI concentration = 2.99 wt%; CPI : HMD molar ratio = 1 : 1.1). The diy Amberlyst® 36 resin is believed to contain at least some (e.g.,≤1.65%) water. The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 2.99% to 0.60%.
Example 20: Reaction of CPI with HMD: H2O and dry Amberlyst® 36 resin added
[0088] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 74 mg of diy Amberlyst® 36 resin, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 2.99 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 2.99% to 0.29%.
[0089] After GC analysis, the liquid in the reactor was decanted. 3.0 g of a MGN solution (CPI : HMD molar ratio = 1 : 1.1) was added to the same reactor. The reaction mixture was conducted similarly to the 1st run. GC analysis showed that the CPI concentration changed from 2.77% to 0.68%. A 3rd run with the catalyst recycled for the 2nd time was conducted similarly to the 2nd run. GC analysis showed that the CPI
concentration changed from 3.11% to 0.59%.
[0090] The CPI concentrations of the first, second and third runs are summarized in the following table.
[0091] The results from example 20 shows that the Amberlyst® 36 resin catalyst can be recycled for the reaction of CPI with amines.
Example 21 : Reaction of CPI with HMD: a catalytic amount of tungstic acid and H2O added
[0092] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 50 mg of tungstic acid, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 0.08%.
Example 22: Reaction of CPI with HMD: a catalytic amount of theta alumina and H2O added
[0093] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 100 mg of theta alumina, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1: 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle, GC analysis showed that the CPI concentration changed from 3.34% to 0.75%.
Example 23: Reaction of CPI with HMD: a catalytic amount of acidic Silica Gel and ¾0
[0094] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 100 mg of acidic silica gel, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nib-ogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 1.92%.
Example 24: Reaction of CPI with HMD: a catalytic amount of hydrogen mordenite and H2O
[0095] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 100 mg of hydrogen mordenite, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concenta'ation changed from 3.34% to 1.54%.
Example 25: Reaction of CPI with HMD: a catalytic amount of bentonite and H2O
[0096] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 100 mg of bentonite, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concenta'ation = 3.34 wt%; CPI : HMD molar ratio = 1 :1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 0.38%.
[0097] Results of examples 8, 9, 19, and 22-25 are summarized in the table below.
[0098] A comparison of examples 8, 9, 19, and 21-25 shows that the addition of solid acids results in a higher reduction of CPI than without any additive (example 8) or with the addition of water (example 9).
Example 26: Reaction of CPI with HMD: a catalytic amount of HMD'2HC1 salt and H2O
[0099] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 30 mg of HMD-2HC1 salt, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.80 wt%; CPI : HMD molar ratio = 1: 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.80% to 0.13%,
Example 27: Reaction of CPI with HMD: a catalytic amount of H2O and 2-iminopiperidine HCl
[00100] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 32 mg of 2- iminopiperidine-HCl salt, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.80 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.80% to 0.13%.
Example 28: Reaction of CPI with HMD: a catalytic amount of H2O and NH4CI
[00101] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 30 mg of NH4CI, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.41 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while
the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.41% to 0.65%.
[00102] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 30 mg of (NH4)2SO4 , 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1 : 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 0.13%.
[00103] Results of examples 8, 9, and 26-29 are summarized in the table below.
[00104] A comparison of examples 8, 9, and 26-29 shows that the addition of ammonium salts of amines or N¾ and water results in a higher reduction of CPI than without any additive (example 8) or with the addition of water (example 9).
Example 30: Reaction of CPI with HMD: a catalytic amount of H2O and Fe2(SO4)3
[00105] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 30 mg of Fe2(SO4)3, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1 :1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 0.13%.
Example 31 : Reaction of CPI with HMD: a catalytic amount of H2O and NiSO42H2O
[00106] The following reactants were loaded into a reactor equipped with a magnetic stir bar: 30 mg of NiSO42H2O, 17 mg of deionized water, and 3.0 g of a MGN solution (CPI concentration = 3.34 wt%; CPI : HMD molar ratio = 1: 1.1). The reaction mixture was heated to 190 °C inside of a nitrogen purge box for 2 hours
while the reactor was opened to the nitrogen atmosphere via a syringe needle. GC analysis showed that the CPI concentration changed from 3.34% to 0.93%.
[00107] Results of examples 8, 9, 30, and 31 are summarized in the table below.
[00108] A comparison of examples 8, 9, and 30-3 1 shows that the addition of the transition metal salts of chloride and sulfate results in a higher reduction of CPI than without any additive (example 8) or with the addition of water (example 9).
[00109] While the illustrative embodiments of the disclosure have been described with particularity, it will be understood that various other modifications will be apparent to and may be readily made by those skilled in the art without departing from the spirit and scope of the disclosure. Accordingly, it is not intended that the scope of the claims hereof be limited to the examples and descriptions set forth herein but rather that the claims be construed as encompassing all the features of patentable novelty which reside in the present disclosure, including all features which would be treated as equivalents thereof by those skilled in the art to which the disclosure pertains.
Claims
1. A process for removing at least a portion of the CPI from a mixture comprising CPl and at least one dinitrile, said process comprising reacting CPI in the mixture with an amine.
2. The process of claim 1 wherein the dinitrile is selected from adiponitrile, methylglutaronitrile,
ethyisuccinonitrile or mixtures thereof.
3. The process of claim 1 or 2 wherein the reaction occurs at a temperature between≥150 and≤290 °C.
4. The process of any of the claims 1 to 3 wherein the molar ratio of amine groups to CPI is≥1.0.
5. The process of any of the claims 1 to 4, further comprising separating the low volatility reaction
products from the dinitrile by distillation.
6. The process of any of the claims 1 to 5 wherein the dinitrile is adiponitrile, 2-methylglutaronitrile or both.
7. The process of any of claims 1 to 6 wherein the amine is an aliphatic or aromatic amine.
8. The process of claim 7 wherein the aliphatic amine is a diamine.
9. The process of claim 8 wherein the diamine is hexamethylenediamine.
10. The process of any of claims 1 to 9 wherein CPI is reacted with an amine in the presence of water.
11. The process of claim 10 wherein the mole ratio of water to CPI is≥5.0.
12. A method for removing CPI from dinitrile, the method comprising:
a. reacting the CPI with an amine in the presence of dinitrile, water and a catalyst to form a separable component ; and
b. separating at least a portion of the separable component from the dinitrile.
13. The method of claim 12 wherein the dinitrile comprises at least one of adiponitrile, methylglutaronitrile, ethyisuccinonitrile, or mixtures thereof.
14. The method of claim 12 wherein the catalyst is an acid catalyst.
15. The method of claim 14 wherein the acid catalyst is a solid.
16. The method of claim 15 wherein the solid is selected from the group consisting of one or more of silica- alumina, crystalline aluminosilicate, boron phosphate and titania-alumina.
17. The method of claim 14 wherein the acid catalyst is at least one acidic bisulfate salt of sodium,
potassium, ammonium, magnesium, iron, manganese, zinc, cobalt, or nickel.
18. The method of claim 14 wherein the acid catalyst is at least one inorganic acid.
19. The method of claim 18 wherein the inorganic acid is at least one of H2 SO4, H3PO4, and HCl.
20. The method of claim 14 wherein the organic acid catalyst is at least one of adipic acid, benzoic acid or a mixture of the adipic acid and benzoic acid.
21. The method of claim 12 wherein the separating step (b) further comprises distilling.
22. The method of claim 21 wherein the distilling recovers dinitrile as a more volatile component from the separable component as the less volatile component.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/095,793 US11028045B2 (en) | 2016-05-02 | 2017-04-27 | Process for reducing CPI in a dinitrile stream |
CN201780024734.5A CN109071421B (en) | 2016-05-02 | 2017-04-27 | Process for reducing CPI in dinitrile streams |
EP17722327.8A EP3452443B1 (en) | 2016-05-02 | 2017-04-27 | Process for reducing cpi in a dinitrile stream |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662330380P | 2016-05-02 | 2016-05-02 | |
US62/330,380 | 2016-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017192350A1 true WO2017192350A1 (en) | 2017-11-09 |
Family
ID=58672796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/029810 WO2017192350A1 (en) | 2016-05-02 | 2017-04-27 | Process for reducing cpi in a dinitrile stream |
Country Status (4)
Country | Link |
---|---|
US (1) | US11028045B2 (en) |
EP (1) | EP3452443B1 (en) |
CN (1) | CN109071421B (en) |
WO (1) | WO2017192350A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11028045B2 (en) | 2016-05-02 | 2021-06-08 | Inv Nylon Chemicals Americas, Llc | Process for reducing CPI in a dinitrile stream |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2768132A (en) * | 1954-09-13 | 1956-10-23 | Du Pont | Process for purification of an adiponitrile |
GB1094908A (en) * | 1964-05-27 | 1967-12-13 | Ici Ltd | Isolation of pure adiponitrile from fore-run fraction |
US3839408A (en) * | 1971-10-05 | 1974-10-01 | Basf Ag | Continuous purification of adiponitrile |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA672712A (en) | 1963-10-22 | Du Pont Of Canada Limited | Purification with ozone | |
CA796343A (en) * | 1968-10-08 | Du Pont Of Canada Limited | Purification of dinitriles | |
DE591269C (en) * | 1932-08-16 | 1934-01-19 | Schering Kahlbaum Ag | Process for the preparation of cyclic ª ‡ -Cyanketimides and cyclic ª ‡ -Cyanketones |
US2318730A (en) | 1941-05-24 | 1943-05-11 | Carbide & Carbon Chem Corp | Process of making alkylene polyamines |
GB731458A (en) * | 1951-12-06 | 1955-06-08 | Basf Ag | Improvements in the production of pure adipic acid dinitrile |
DE927089C (en) * | 1952-10-24 | 1955-04-28 | Basf Ag | Process for purifying adipic dinitrile |
US2748065A (en) * | 1954-04-27 | 1956-05-29 | Basf Ag | Purification of adiponitrile |
GB772979A (en) * | 1954-09-13 | 1957-04-17 | Du Pont | Preparation of pure adiponitrile |
US2841537A (en) | 1956-06-30 | 1958-07-01 | Lonza Electric & Chem Works | Purification of dinitriles |
NL257583A (en) | 1959-11-07 | |||
DE1199988B (en) * | 1960-06-30 | 1965-09-02 | Rohm & Haas | Process for stabilizing polycondensates from epihalohydrins and polyvalent amines |
GB1051634A (en) * | 1963-07-15 | |||
GB1174601A (en) | 1966-07-01 | 1969-12-17 | Ici Ltd | Process for the Purification of Adiponitrile |
CA907050A (en) | 1970-10-15 | 1972-08-08 | Du Pont Of Canada Limited | Purification of adiponitrile |
CA912036A (en) | 1971-05-21 | 1972-10-10 | Du Pont Of Canada Limited | Purification of adiponitrile |
US3819491A (en) | 1971-07-23 | 1974-06-25 | Ici Ltd | Separating adiponitrile from mixtures |
US3775258A (en) * | 1972-04-27 | 1973-11-27 | Du Pont Canada | Purification of adiponitrile |
CA1043813A (en) | 1975-08-26 | 1978-12-05 | Bernard J. Kershaw | Treatment of adiponitrile with weak-acid cation exchange resins |
US4235767A (en) * | 1979-07-12 | 1980-11-25 | Blount David H | Process for the production of halohydrin-amine-silicate resinous products |
US4320091A (en) | 1979-09-12 | 1982-03-16 | Phillips Petroleum Company | Apparatus for two stage catalytic hydrogenation of olefinically unsaturated dinitriles |
US5554778A (en) | 1995-01-31 | 1996-09-10 | E. I. Du Pont De Nemours And Company | Ruthenium hydrogenation catalysts |
BR9711732A (en) | 1996-09-10 | 1999-08-24 | Basf Ag | Process for the preparation of aliphatic alpha-omega-amino-nitriles |
US5900511A (en) | 1997-03-28 | 1999-05-04 | E. I. De Pont De Nemours And Company | Process for continuous hydrogenation of adiponitrile |
US6084121A (en) | 1999-09-09 | 2000-07-04 | E. I. Du Pont De Nemours And Company | Nitrile process |
US6331651B1 (en) | 2000-09-18 | 2001-12-18 | E. I. Du Pont De Nemours And Company | Process for making hexamethylene diamine using ozone-treated adiponitrile that contains phosphorous compounds |
DE10049265A1 (en) | 2000-09-28 | 2002-04-11 | Basf Ag | Process for the separation of pentenenitrile isomers |
FR2834984B1 (en) | 2002-01-21 | 2005-08-19 | Rhodia Polyamide Intermediates | CONTINUOUS PROCESS FOR THE HYDROGENATION OF NITRILES OR NITROGEN COMPOUNDS IN AMINES |
US6599398B1 (en) * | 2002-07-17 | 2003-07-29 | E. I. Du Pont De Nemours And Company | Recovery of adiponitrile from a mixture of adiponitrile, aminocapronitrile and hexamethylenediamine |
FR2850966B1 (en) | 2003-02-10 | 2005-03-18 | Rhodia Polyamide Intermediates | PROCESS FOR PRODUCING DINITRIL COMPOUNDS |
FR2857965B1 (en) | 2003-07-25 | 2005-08-26 | Rhodia Polyamide Intermediates | PROCESS FOR MANUFACTURING AND SEPARATING DINITRIL COMPOUNDS |
DE102004004683A1 (en) | 2004-01-29 | 2005-08-18 | Basf Ag | Process for the preparation of dinitriles |
BRPI0507197B1 (en) | 2004-01-29 | 2014-12-30 | Basf Ag | PROCESS FOR PREPARING 3-PENTEN-NITRIL |
TW200535122A (en) | 2004-01-29 | 2005-11-01 | Basf Ag | Removal of nickel(0) complexes and phosphorus ligands from nitrile mixtures |
DE102004004724A1 (en) | 2004-01-29 | 2005-08-18 | Basf Ag | Preparation of 3-pentenenitrile from 1,3-butadiene |
DE102004004685A1 (en) | 2004-01-29 | 2005-08-18 | Basf Ag | Separation of nickel(0) complexes and phosphorus-containing ligands from a reaction discharge of a hydrocyanation of unsaturated mononitriles to dinitriles, by means of a hydrocarbon |
DE102004004717A1 (en) | 2004-01-29 | 2005-08-18 | Basf Ag | Homogeneous isomerization of cis-2-pentenenitrile to 3-pentenenitrile |
KR20070038559A (en) | 2004-07-22 | 2007-04-10 | 이네오스 유에스에이 엘엘씨 | Improved process for recovering and regenerating ammonia from the steam stream |
DE102004049339A1 (en) | 2004-10-08 | 2006-04-13 | Basf Ag | Process for the purification of phosphorus-containing chelate ligands |
DE102004050935A1 (en) | 2004-10-18 | 2006-04-20 | Basf Ag | Extraction of nickel (0) complexes from nitrile mixtures with reduced leaching |
CN101460229A (en) | 2006-04-07 | 2009-06-17 | 巴斯夫欧洲公司 | Method for the separation of nickel(0) complexes and phosphorous-containing ligands from nitrile mixtures |
FR2902095B1 (en) | 2006-06-09 | 2008-12-05 | Rhodia Recherches & Tech | PROCESS FOR THE TRANSFORMATION OF NITRILIC COMPOUNDS OF CARBOXYLIC ACIDS AND CORRESPONDING ESTERS |
CN101952004B (en) | 2007-06-13 | 2015-08-12 | 因温斯特技术公司 | Improve the method for adiponitrile quality |
EP2346810B1 (en) | 2008-10-06 | 2015-08-19 | Dow Global Technologies LLC | Methods for making ethanolamine(s) and ethyleneamine(s) from ethylene oxide and ammonia, and related methods |
CN102666470B (en) | 2009-10-20 | 2014-08-20 | 陶氏环球技术有限责任公司 | Process for downstream recovery of nitroalkane using dividing wall column |
CN109071421B (en) | 2016-05-02 | 2022-02-25 | 英威达纺织(英国)有限公司 | Process for reducing CPI in dinitrile streams |
-
2017
- 2017-04-27 CN CN201780024734.5A patent/CN109071421B/en active Active
- 2017-04-27 US US16/095,793 patent/US11028045B2/en active Active
- 2017-04-27 EP EP17722327.8A patent/EP3452443B1/en active Active
- 2017-04-27 WO PCT/US2017/029810 patent/WO2017192350A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2768132A (en) * | 1954-09-13 | 1956-10-23 | Du Pont | Process for purification of an adiponitrile |
GB1094908A (en) * | 1964-05-27 | 1967-12-13 | Ici Ltd | Isolation of pure adiponitrile from fore-run fraction |
US3839408A (en) * | 1971-10-05 | 1974-10-01 | Basf Ag | Continuous purification of adiponitrile |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11028045B2 (en) | 2016-05-02 | 2021-06-08 | Inv Nylon Chemicals Americas, Llc | Process for reducing CPI in a dinitrile stream |
Also Published As
Publication number | Publication date |
---|---|
EP3452443A1 (en) | 2019-03-13 |
US20190135736A1 (en) | 2019-05-09 |
CN109071421B (en) | 2022-02-25 |
CN109071421A (en) | 2018-12-21 |
US11028045B2 (en) | 2021-06-08 |
EP3452443B1 (en) | 2020-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102272091B (en) | Process for preparing cyclic diamines | |
JP6169151B2 (en) | Process for distilling a mixture containing ethylenediamine, N-methylethylenediamine and water, and the resulting mixture of ethylenediamine and N-methylethylenediamine having a slight N-methylethylenediamine content | |
TW200804234A (en) | Process for preparing aniline | |
US9822067B2 (en) | Method for purifying adipodinitrile (ADN) | |
CN108137487B (en) | Inhibiting CPI formation from adiponitrile | |
US7462263B2 (en) | Method for purifying hydrocyanic acid | |
US11028045B2 (en) | Process for reducing CPI in a dinitrile stream | |
JP2023509749A (en) | Method and apparatus for producing adiponitrile | |
JP5466942B2 (en) | Method for producing primary diamine | |
JP4556466B2 (en) | Method for distillation of 1,3-bis (aminomethyl) cyclohexane | |
CN105473502A (en) | Hydrogen cyanide manufacturing process with second waste heat boiler | |
JP5565799B2 (en) | Method for producing hydrides of organic nitrile compounds in supercritical carbon dioxide | |
KR20080083108A (en) | Method for preparing hexamethylene diamine and aminocapronitrile | |
EP3416940A1 (en) | Promoter for selective nitrile hydrogenation | |
JP5863847B2 (en) | Method for purifying hexamethylenediamine | |
KR20080049846A (en) | How to prepare xylylenediamine | |
RU2005120625A (en) | METHOD FOR INHIBITING POLYMERIZATION DURING ISOLATION AND CLEANING OF UNSATURATED MONONITRILS | |
TW201504200A (en) | Method for making 2-methylpentamethylenediamine and adiponitrile with hot ammonia sweep | |
EP2862851A1 (en) | Method for separating N,N,N'-trimethylbisaminoethylether and/or N,N-dimethylbisaminoethylether from a mixture | |
WO2014210191A1 (en) | Improved process for refining nitriles | |
JP2015017050A (en) | High-yield method for recovering xylylenediamine | |
WO2009116537A1 (en) | Manufacturing method for laurolactam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17722327 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017722327 Country of ref document: EP Effective date: 20181203 |