WO2017191345A1 - Biodegradable scaffold comprising messenger rna - Google Patents
Biodegradable scaffold comprising messenger rna Download PDFInfo
- Publication number
- WO2017191345A1 WO2017191345A1 PCT/ES2017/070262 ES2017070262W WO2017191345A1 WO 2017191345 A1 WO2017191345 A1 WO 2017191345A1 ES 2017070262 W ES2017070262 W ES 2017070262W WO 2017191345 A1 WO2017191345 A1 WO 2017191345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mrna
- scaffolds
- scaffolding
- cells
- activated
- Prior art date
Links
- 108020004999 messenger RNA Proteins 0.000 title claims abstract description 19
- 238000001890 transfection Methods 0.000 claims abstract description 57
- 108091023040 Transcription factor Proteins 0.000 claims abstract description 42
- 102000040945 Transcription factor Human genes 0.000 claims abstract description 41
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 38
- 229920002988 biodegradable polymer Polymers 0.000 claims abstract description 13
- 239000004621 biodegradable polymer Substances 0.000 claims abstract description 13
- 210000004027 cell Anatomy 0.000 claims description 97
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical group CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 claims description 57
- 102100034204 Transcription factor SOX-9 Human genes 0.000 claims description 34
- 101000711846 Homo sapiens Transcription factor SOX-9 Proteins 0.000 claims description 33
- 102000009123 Fibrin Human genes 0.000 claims description 32
- 108010073385 Fibrin Proteins 0.000 claims description 32
- 229950003499 fibrin Drugs 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 19
- 230000002648 chondrogenic effect Effects 0.000 claims description 17
- 101001023030 Toxoplasma gondii Myosin-D Proteins 0.000 claims description 16
- 238000013518 transcription Methods 0.000 claims description 15
- 230000035897 transcription Effects 0.000 claims description 15
- 239000000017 hydrogel Substances 0.000 claims description 14
- 210000001519 tissue Anatomy 0.000 claims description 12
- -1 NeuroDl Proteins 0.000 claims description 11
- 230000004069 differentiation Effects 0.000 claims description 11
- 238000000338 in vitro Methods 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 230000015271 coagulation Effects 0.000 claims description 9
- 238000005345 coagulation Methods 0.000 claims description 9
- 239000003814 drug Substances 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 8
- 229940072056 alginate Drugs 0.000 claims description 7
- 229920000615 alginic acid Polymers 0.000 claims description 7
- 235000010443 alginic acid Nutrition 0.000 claims description 7
- 210000000845 cartilage Anatomy 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 210000000944 nerve tissue Anatomy 0.000 claims description 6
- 239000002537 cosmetic Substances 0.000 claims description 5
- 229920000724 poly(L-arginine) polymer Polymers 0.000 claims description 5
- 108010011110 polyarginine Proteins 0.000 claims description 5
- 238000002560 therapeutic procedure Methods 0.000 claims description 5
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 claims description 4
- 108700021430 Kruppel-Like Factor 4 Proteins 0.000 claims description 4
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 4
- 101710135898 Myc proto-oncogene protein Proteins 0.000 claims description 4
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 claims description 4
- 102100024270 Transcription factor SOX-2 Human genes 0.000 claims description 4
- 101710150448 Transcriptional regulator Myc Proteins 0.000 claims description 4
- 210000004504 adult stem cell Anatomy 0.000 claims description 4
- 229920006317 cationic polymer Polymers 0.000 claims description 4
- 230000007547 defect Effects 0.000 claims description 4
- 210000000056 organ Anatomy 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 208000029549 Muscle injury Diseases 0.000 claims description 3
- 210000002950 fibroblast Anatomy 0.000 claims description 3
- 210000004263 induced pluripotent stem cell Anatomy 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 210000003205 muscle Anatomy 0.000 claims description 3
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 231100000827 tissue damage Toxicity 0.000 claims description 3
- 230000000451 tissue damage Effects 0.000 claims description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 3
- 102100026459 POU domain, class 3, transcription factor 2 Human genes 0.000 claims description 2
- 108010016731 PPAR gamma Proteins 0.000 claims description 2
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 claims description 2
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 210000001612 chondrocyte Anatomy 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims description 2
- 229940102223 injectable solution Drugs 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 101150027852 pou3f2 gene Proteins 0.000 claims description 2
- 229960005486 vaccine Drugs 0.000 claims description 2
- 230000032459 dedifferentiation Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000014509 gene expression Effects 0.000 description 81
- 108090000623 proteins and genes Proteins 0.000 description 37
- 238000002474 experimental method Methods 0.000 description 27
- 239000002609 medium Substances 0.000 description 23
- 239000013612 plasmid Substances 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 18
- 239000012124 Opti-MEM Substances 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 16
- 102000016284 Aggrecans Human genes 0.000 description 15
- 108010067219 Aggrecans Proteins 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000000499 gel Substances 0.000 description 13
- 108090000190 Thrombin Proteins 0.000 description 12
- 229960004072 thrombin Drugs 0.000 description 12
- 239000001963 growth medium Substances 0.000 description 11
- 238000011529 RT qPCR Methods 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 150000002632 lipids Chemical class 0.000 description 9
- 230000001114 myogenic effect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 108010049003 Fibrinogen Proteins 0.000 description 8
- 102000008946 Fibrinogen Human genes 0.000 description 8
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 8
- 229940012952 fibrinogen Drugs 0.000 description 8
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 101150106167 SOX9 gene Proteins 0.000 description 7
- 238000005538 encapsulation Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 101710083262 Ectin Proteins 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 108010085238 Actins Proteins 0.000 description 5
- 108091023045 Untranslated Region Proteins 0.000 description 5
- 229920006237 degradable polymer Polymers 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- 102000007469 Actins Human genes 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 4
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 4
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 4
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 4
- 101150094019 MYOG gene Proteins 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 229960005322 streptomycin Drugs 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 231100000002 MTT assay Toxicity 0.000 description 3
- 238000000134 MTT assay Methods 0.000 description 3
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 3
- 102000007327 Protamines Human genes 0.000 description 3
- 108010007568 Protamines Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000009816 chondrogenic differentiation Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 230000004070 myogenic differentiation Effects 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229940048914 protamine Drugs 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- GJTBSTBJLVYKAU-XVFCMESISA-N 2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C=C1 GJTBSTBJLVYKAU-XVFCMESISA-N 0.000 description 2
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 description 2
- ZXIATBNUWJBBGT-JXOAFFINSA-N 5-methoxyuridine Chemical compound O=C1NC(=O)C(OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXIATBNUWJBBGT-JXOAFFINSA-N 0.000 description 2
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100024153 Cadherin-15 Human genes 0.000 description 2
- 102000000503 Collagen Type II Human genes 0.000 description 2
- 108010041390 Collagen Type II Proteins 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 238000013382 DNA quantification Methods 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 101000762242 Homo sapiens Cadherin-15 Proteins 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 239000012097 Lipofectamine 2000 Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229930185560 Pseudouridine Natural products 0.000 description 2
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 231100000956 nontoxicity Toxicity 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000002407 tissue scaffold Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 108010022355 Fibroins Proteins 0.000 description 1
- 101000678026 Homo sapiens Alpha-1-antichymotrypsin Proteins 0.000 description 1
- 101001023043 Homo sapiens Myoblast determination protein 1 Proteins 0.000 description 1
- 101000589002 Homo sapiens Myogenin Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- MIJPAVRNWPDMOR-ZAFYKAAXSA-N L-ascorbic acid 2-phosphate Chemical compound OC[C@H](O)[C@H]1OC(=O)C(OP(O)(O)=O)=C1O MIJPAVRNWPDMOR-ZAFYKAAXSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 102100035077 Myoblast determination protein 1 Human genes 0.000 description 1
- 102100032970 Myogenin Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 101710198026 Transcription factor SOX-9 Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003848 cartilage regeneration Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007348 cell dedifferentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005100 correlation spectroscopy Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000008073 immune recognition Effects 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000029225 intracellular protein transport Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000007908 nanoemulsion Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000033667 organ regeneration Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- 238000013379 physicochemical characterization Methods 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920001279 poly(ester amides) Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001299 polypropylene fumarate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
Definitions
- This invention relates to a biodegradable scaffold comprising messenger RNA. More particularly, it refers to scaffolding, the method of preparation and use thereof.
- TFs Transcription factors
- TFs Transcription factors
- pDNA plasmid DNA
- RNA messenger RNA
- Lu ⁇ et al. they used mRNA for the coding of the VEGF growth factor for tissue vascularization, and implanted this therapy together with the cells in a commercial tumor protein scaffold (Matrigei *) (Lu ⁇ , 2013, Cell Research 23, 1172-1186).
- this technology cannot be applied in therapy since Matrigel is based on tumor proteins.
- Balmayor et al. they have yielded an mRNA that codes for growth factors to a femur defect in a rat model with good results (Balmayor, 2016, Biomaterials 87, 131-146).
- mRNAs and more specifically mRNAs encoding transcription factors that are strictly regulated intracellular proteins, with a very short half-life.
- the mRNAs must continue to be effective after cession, and achieve transfection in the three-dimensional environment, which generally shows lower efficiency than in 2D.
- These devices must be able to produce a clear biological effect induced by overexpression of the transcription factor. This effect could be measured by an overexpression of the transcription factor itself, but even more importantly, of other target genes regulated by said growth factor.
- the 3D structure of the scaffold must be able to house adhered cells and, if necessary, allow proliferation.
- biodegradable scaffold that is activated with mRNA sequences encoding transcription factors.
- This biodegradable scaffolding can lead to the pronounced forced expression of the transcription factor, greater than that achieved with plasmid DNA.
- this forced expression of a transcription factor induces changes in the expression levels of other genes, indicating a clear biological effect.
- this scaffolding has the advantage of avoiding security problems, in particular it avoids viral vectors.
- one aspect of the invention relates to a biodegradable scaffold comprising a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent.
- biodegradable scaffold of the invention for use as a medicament.
- the biodegradable scaffold of the invention is for use in tissues or organs of regenerative therapy, preferably the tissue is cartilage, muscle or nerve tissue.
- the scaffolding Biodegradable of the invention is for use in the treatment of a cartilage defect, muscle damage or nerve tissue damage.
- the invention relates to the use of the biodegradable scaffold of the invention to prepare a medicament.
- the invention relates to the use of the biodegradable scaffold of the invention to prepare a medicament for use in tissues or organs in regenerative therapy, preferably the tissue is cartilage, muscle or nerve tissue.
- the invention relates to the use of the biodegradable scaffold of the invention to prepare a medicament for use in the treatment of a cartilage defect, muscle damage or nerve tissue damage.
- Another aspect of the invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising the biodegradable scaffold of the invention described previously.
- a further aspect of the invention relates to a cosmetic composition comprising the biodegradable scaffold of the invention described previously.
- a further aspect of the invention relates to a method for preparing the biodegradable scaffold described above, which comprises
- Figure 1 (A) Structure of the plasmid vector used for in vitro transcription of the mRNA encoding the YFP fluorescent protein. (B) Fluorescence image of U87MG cells, 24 h after transfection with YFP coding mRNA using Lipofectamine 2000 (right image). The experiment was performed on a 24-well plate. A transmitted light image of the same cells is shown as a reference (left image).
- Figure 2 A diagram illustrating scaffolds, cells and mRNA with a transfection agent is shown in Figure 2A.
- B Optical microscopy images of human mesenchymal stem cells cultured in complex-activated scaffolds of 3DFectIN / mRNA. Scaffolds were prepared at two concentrations of fibrin (2 and 4 mg / mL).
- C Fluorescence image of plasmid activated scaffolds, in 3DFectIN / pDNA complexes. Three proportions 3 DF ectIN / pDN A were tested: 2: 1, 3: 1 and 4: 1. The pDNA was labeled with SYBERGold for observation by fluorescence microscopy.
- Figure 3 Scanning electron microscopy images of fibrin scaffolds (2 mg / mL), both without cells (Control) or with cells (Sown) and at different magnifications. The scale bars are integrated into each image.
- Figure 4 Scanning electron microscopy images of fibrin scaffolds (4 mg / mL), both without cells (Control) or with cells (Sown) and at different magnifications. The scale bars are integrated into each image.
- FIG. 5 Biodegradable scaffolds prepared from alginate and polyarginine. On the left, the macroscopic image of the gels formed in the conical lower part of Eppendorf tubes, keeping in position after the inversion of the tube. On the right, the optical microscopy images of two representative examples of these scaffolds seeded with U87MG cells.
- Figure 6 Evaluation of 3DFectIN: mRNA / pDNA ratios with the YFP reporter sequence and the U87MG cell line in 4 mg / mL fibrin gels. Representative fluorescence and visible micrographs corresponding to transfection experiments carried out with 1 ⁇ g mRNA (left) and pDNA (right) complexed with 3DFectIN using the 3DFectIN: mRNA / pDNA ratios of 2: 1 (above), 3: 1 ( medium), 4: 1 (below).
- Figure 7 Evaluation of the mRNA dose by scaffolding carried out on 4 mg / mL fibrin gels seeded with U87MG cells. Representative fluorescence and visible micrographs corresponding to transfection experiments carried out with 1 and 2 ⁇ g of mRNA complexed with 3DFectIN in proportions 3DFectIN: mRNA 3: 1 (left) and 4: 1 (right).
- Figure 8 Protein expression kinetics of the YFP reporter sequence in scaffolds activated with mRNA and pDNA. Representative fluorescence and visible micrographs corresponding to transfection experiments carried out with 1 ⁇ g of mRNA / pDNA and the 3 DF ectIN: mRN A / pDN A 3: 1 ratio ( ⁇ .: ⁇ £). Cell transfection was evaluated at 24 h, 48 h, 72 h and at 5 days.
- Figure 9 Cytotoxicity study with U87MG cells cultured in fibrin scaffolds (4 mg / mL fibrin) activated with 3DFectIN / mRNA or pDNA complexes in 2: 1 and 3: 1 ratios were tested to mark the expression of the SOX9 gene (A ).
- Non-activated scaffolds were used as control (labeled "C” in the figure).
- the best 3: 1 condition was selected to compare the transfection of mRNA and pDNA (B).
- the expression of SOX9 was quantified by qRT-PCR analysis of the transfected cells relative to the expression of GAPDH and ⁇ -actin.
- the cytotoxicity of scaffolds was measured by a MTT assay at 24 h and 48 h (C) and the ability of 3DFectin / mRNA activated fibrin scaffolds to support cell proliferation was confirmed by quantifying the amount of DNA in the culture at 0, 3 and 7, measured by a PicoGreen test.
- FIG. 10 (A) Transfection of human mesenchymal stem cells (hMSCs) in fibrin scaffolds activated with mRNA complexes at 24 h (1 ⁇ g of mRNA, 3DFectIN / mRNA 3: 1 ratio). YFP coding mRNA was used. Cell transfection was evaluated in scaffolds prepared from fibrin solutions of 2 and 4 mg / mL. Each panel shows the fluorescence image on the left, and as a reference, the transmitted light image of the same area on the right. (B) Study of the cytotoxicity of hMSC cultured in fibrin scaffolds (2 or 4 mg / mi fibrin) activated with mRNA (3DFectIN / mRNA 3: 1 ratio).
- FIG. 11 (A) Structure of the plasmid vector used for in vitro transcription of mRNA encoding the transcription factor SOX9. (B) After transfection of FIEK293 cells with this mRNA and with Lipofectamine, the expression of SOX9 was evaluated by extracting the proteins at 12 and 24 h and performing a western blot. Untransfected cells were used as a negative control (C-). Transfected cells with pDNA encoding SOX9 were used as a positive control (C +). The tubulin protein was used as a reference in the western blot.
- Figure 12 Effect of fibrinogen concentration and type of genetic material on the kinetics of SOX9 expression in human mesenchymal cells (hMSCs) encapsulated in fibrin scaffolds.
- A SOX9 expression 24 h after encapsulation of hMSCs in 2 and 4 mg / mL fibrin gels activated with SOX9.
- B 48 h proliferation curves for 2 and 4 mg / mL fibrin gels.
- C SOX9 expression kinetics in hMSCs encapsulated in fibrin gels with 2 mg / mL and
- D 4 mg / mL activated with mRNA and pDNA. Gene expression levels were measured by qRT-PCR and normalized to ⁇ -actin expression.
- Figure 14 Relative gene expression of chondrogenic differentiation markers in hMSC transfected into fibrin scaffolds (2 mg / mL and 4 mg / mL) activated with mRNA, pDNA or not activated ("C").
- the scaffolds were grown for 28 days in incomplete chondrogenic medium (ICM) or complete chondrogenic medium (CCM).
- ICM incomplete chondrogenic medium
- CCM complete chondrogenic medium
- the relative gene expression of the markers (A) Sox9 (A) and (B) aggrecan (ACAN) was measured under these conditions after 28 days of culture.
- Figure 15 Chondrogenic marker expression of hMSCs encapsulated in fibrin 2 and 4 mg / mL hydrogels activated with mRNA and pDNA cultured for 7 and 21 days in complete chondrogenic medium. Expression of (A) SOX9, (B) aggrecan, (C) type II collagen, at 7 and 21 days. Gene expression levels were measured by qRT-PCR, normalized to GAPDH expression and compared to levels in hMSCs before encapsulation. Data are shown as mean and standard deviation of two replicates in one experiment. A standard pellet culture is shown as comparative. Figure 16.
- FIG. 17 Expression of myogenic markers of hMSCs encapsulated in fibrin hydrogels 2 and 4 mg / mL activated with MyoD mRNA.
- the cells were cultured for 14 days in reduced serum medium and the expressions of MYOD (A) and MYOG (B) were measured by qRT-PCR.
- Gene expression levels were normalized to ⁇ -actin expression and compared to levels in hMSCs before encapsulation. Data are shown as mean and standard deviation of three replicates in one experiment.
- the invention relates to a biodegradable scaffold comprising a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent.
- the scaffolds of the invention have the advantage that they are biocompatible and do not exert significant toxicity to resident cells (example 4 and Figure 9C, 10C and 10D).
- the scaffolds of the invention can support cell proliferation (example 4) and can lead to high levels of forced expression of transcription factors by cells (example 6, Figure 9A and 9B); even transfection was effective in human mesenchymal cells (examples 6 and 7 and figure 12A).
- the scaffolds of the invention activated with mRNA encoding SOX9 are capable of achieving transfection in a three-dimensional environment, and achieving significant expression of SOX9 in U87MG and also in human mesenchymal cells (hMSCs). This expression is much higher than that obtained when a plasmid DNA (pDNA) was used (example 6, Figures 9 A, 9B and 12A).
- pDNA plasmid DNA
- mRNA-activated scaffolds of the invention can modify the gene expression profile of resident cells, leading per the differentiation of hMSCs into a chondrogenic lineage (examples 8, 9 and 10; figures 13, 14 and 15) and myogenic lineages (examples 11 and 12; figures 16 and 17).
- Staffolding means a temporary structure used to support cells in three dimensions, while reconstructing a tissue or organ or performing other biological functions.
- Tissue scaffolds are widely described in the literature, and can have two possible structures, or intermediate structures between ends: (i) a solid matrix-shaped structure that has interconnected pores large enough (> 50 ⁇ ) to allow cell penetration and lodging or (ii) a hydrogel structure where cells can be encapsulated.
- the scaffolds of the invention are biodegradable and thus suitable to be replaced by natural tissue.
- biocompatibility is understood to refer to the ability of a material to perform with an appropriate response in its host in a specific situation. To be considered biocompatible, a device should comply with ISO 10993 or a similar standard, and be tested in animals and in clinical trials.
- inorganic materials Materials that are susceptible to the preparation of the scaffolds of the invention, which are biocompatible and biodegradable and are well described in the literature, can be classified into inorganic materials, enzymatically degradable polymers and hydrolytically degradable polymers.
- biodegradable inorganic materials are, but are not limited to, ceramic materials such as apatites, for example hydroxyapatite, and porous silicon.
- the material used should be free of residues of pathogens of animal or human origin.
- Biodegradable in relation to the present invention means that the material is completely reabsorbed when it is in the environment of an organism after 24 hours.
- Biodegradable polymer means a polymer that is completely reabsorbed after implantation after 24 hours, and which is suitable for accommodating or for cell growth. Preferably, the biodegradable polymer is free of pathogenic materials and / or not derived from pathogenic samples.
- the biodegradable polymers in this invention can be enzymatically degradable polymers and hydrolytically degradable polymers. Enzymatically degradable polymers as understood in the present invention are, for example, collagen, elastin, elastin-like peptides, albumin, fibrin, silk fibroin, chitosan, alginate, hyaluronic acid and chondroitin sulfate.
- Polymers Hydrophilically degradable as understood in the present invention are, for example, polyesters, polyurethanes, poly (ester amides), poly (ortho esters), polyanhydrides, poly (anhydrous-imide), crosslinked polyanhydrides, poly (propylene fumarate), poly (pseudoamino acids), poly (alkyl cyanoacrylates), polyphosphazenes, polyphosphoesters.
- useful polyesters include, but are not limited to, polyglycolic, polylactic, poly (lactic-co-glycolic), polydioxanone, polycaprolactone and poly (trimethylene carbonate).
- the biodegradable polymer is selected from fibrin, alginate and mixtures thereof.
- isolated mRNA is understood as a polymeric molecule made of nucleic acids capable of being translated in ribosomes to a specific amino acid sequence, and therefore, to express one or more proteins, which has been isolated by technical means procedures. biological or has been synthesized above to be used in the scaffolding of the present invention. This term also includes mRNA that can be chemically modified. Some examples of chemical modifications of mRNA nucleic acids, but not limited, are: 5-methyl-cytidine, 2-thio-uridine, 5- methoxyuridine, ⁇ -1-methylpseudo-uridine and pseudo-uridine.
- mRNA messenger RNA
- mRNA messenger RNA
- TF transcription factor
- the mR A used in this invention is optimized for translation in eu karyotic cells
- the mRNA used in this invention is synthesized for a purpose specific and with specific sequences.Therefore, sets of mRNA extracted from natural, non-manipulated living organisms or parts thereof are not preferred for the present invention.
- the mRNA of the invention is preferably synthesized by in vitro transcription reactions, from a plasmid template, or alternatively, by solid phase chemical synthesis.
- mRNA sequences with high stability and translatability.
- the structural characteristics of mRNA such as a 5 'Cap, a 3' polyadenine tail are some of the most important to ensure proper stability and thus allow High translation capacity
- This polyadenine tail can be synthesized by polymerization of poly (A) after in vitro transcription or during the elongation step of the transcription itself in vitro.
- poly (A) after in vitro transcription or during the elongation step of the transcription itself in vitro.
- the inclusion of a 3 'stretch of oligothimidine in the template plasmid is preferred. This option is potentially useful to avoid the synthesis of polyadenine tails of different lengths that can cause reproducibility problems.
- a preferred option is the use of 5'-Cap, in particular the use of an anti-reverse analogue Cap (ARCA) is preferred, which allows synthesizing exclusively weathered RNAs in the correct orientation (Stepinski, 2001, RNA 7 (10)): 1486-95 and Peng, 2002, Org Lett 4 (2): 161-4) and improve the performance of in vitro transcription reactions.
- ARCA anti-reverse analogue Cap
- the translation it is preferred to include a strong signal of initiation of the Kozak translation before the open reading frame (ORF) of the gene of interest, and weakening this sequence with non-translatable regions (UTRs) of high translation genes in the 3'and 5 'ends. .
- Some high-translation gene UTRs include, but are not limited to those encoding the ⁇ and ⁇ -globin proteins.
- a particular embodiment of the invention is directed to an mRNA having a 5'-Cap, more preferably a 5'-ARK.
- Another particular embodiment relates to an mRNA having a polyadenine tail.
- Another particular embodiment of the invention is directed to an mRNA having a 5 'untranslated region, preferably an untranslated region of a highly translated gene, such as, for example, ⁇ and ⁇ -globin.
- another particular embodiment relates to an mRNA having a 3 'untranslated region, preferably an untranslated region of a highly translated gene such as ⁇ and ⁇ -globin.
- the mRNA sequences can generate cellular immunity, thus, for the present invention it is preferred that some of the nucleic acids be chemically modified to reduce their immune recognition.
- a particular embodiment of the invention is directed to an mRNA having chemically modified nucleic acids selected from the list consisting of 5-methyl-cytidine, 2-thio-uridine, 5-methoxyuridine, N-methylpseudo-uridine and pseudo-uridine.
- TF transcription factor
- the term "transcription factor”("TF") means a protein that binds to specific DNA sequences, thereby controlling the information transcription rate. DNA genetics to mRNA. Sometimes TFs are also called “trans-activators" in bibliography, both terms being synonyms.
- the TFs for the present invention preferably have one or more DNA binding domains. TFs have been classified by their superclass into: (1) basic domains, (2) zinc-coordinated DNA binding domains, (3) helix-spin-helix, (4) beta structure factors and minor cleft contacts , (5) other transcription factors. Several reviews of the function and structure of TF are available in the literature (Latchman, 1997, Int J Biochem Cell Biol 29, 1305-1312).
- the Medical Subject Headings (MeSH) descriptor database identifies TFs through the three numbers D12.776.930.
- TF databases available for searching sequences and functions of TFs, for example, JASPAR (http: // j aspar. Enereg.net).
- JASPAR http: // j aspar. Enereg.net.
- the mRNA encodes a chondrogenic transcription factor.
- the encoded TFs activate genetic programs responsible for cell differentiation or dedifferentiation.
- mRN A codes for a transcription factor selected from the group consisting of SOX9, MyoD, NeuroDl, c-Myc, Klf4, Nanog, Oct4, SOX2, C / ⁇ - ⁇ , PPAR- ⁇ , Brn2, Lmxla, Nurrl, Mashl, Mytll and NeuroG2.
- the mRNA encodes for the transcription factors selected from SOX9, MyoD, NeuroDl, SOX2, Oct4, Klf4 and c-Myc.
- the TF is SOX9.
- transfection agent is understood as a compound capable of improving the cession of the messenger RNA sequence (mRNA) to the cytoplasm. Thus, the presence of a transfection agent is evidenced by a marked increase in the expression of the target gene.
- the transfection agent also called the gene transfer system, gene transfer vehicle, or gene activated matrices, has been described in many publications (Borrajo, 2015, In: Polymers in Regenerative Medicine, 285-336).
- Transfection agents may be made of inorganic materials, lipid materials and polymeric materials. Although not limited to these, a possible list of inorganic transfection agents are calcium phosphate salts and cationic silicon nanoparticles. Lipid transfection agents can be classified as condensing and non-condensing lipids, the condensers being often referred to as lipoplexes. Non-condensing lipids are emulsions, nanoemulsions and liposomes that can encapsulate the genetic material. Lipoplejos are formed by lipids with an aliphatic chain and one or more cationic groups.
- these cationic groups are often primary, secondary or tertiary amines, or structures with a mixture of these.
- the net lipid charge in lipoplexes should be positive at physiological pH, as a measure of du zeta potential, and should be able to bind to genetic material by electrostatic forces.
- Polymeric transfection agents can also be classified as condensing and non-condensing.
- Non-condensing generally binds to genetic material through some encapsulation technique or through weak forces.
- the condensing polymeric vehicles are formed by polymers that show a positive net charge at physiological pH, as a measure of zeta potential, and that can be attached to the genetic material, by electrostatic forces.
- the transfection agent is selected from cationic lipids, cationic polymers, and a calcium phosphate salt.
- the transfection agent In a preferred embodiment of the invention, the transfection agent. In a preferred embodiment of the invention, the transfection agent is a lipid condensing agent. In a more preferred embodiment of the invention, the lipid condensing agent is Lipofectamine or 3DFectIN.
- the transfection agent is a polymeric condensing agent.
- the condensing polymeric agent is polyarginine.
- the condensing polymeric agent is poloxamine.
- condensing polymeric agent is a cationic polyphosphazene.
- the biodegradable anadamium further comprises cells.
- cells Although a variety of cells could benefit from the ability of this invention to exert control over their functions, primary cells are of first interest. Among them, progenitor cells with high plasticity such as adult stem cells and induced pluripotent stem cells could be the best candidates to be included in this invention. These cells have the ability to proliferate and can recapitulate different ways of differentiation.
- the cells incorporated into the scaffolding of the invention can proliferate and form biological structures in 3D form including tissues in these scaffolds.
- the cells are selected from the group consisting of primary cells and immortalized cell lines. In a particular embodiment, the cells are not embryonic stem cells.
- the scaffold of the invention is clinically useful since it is biodegradable and biocompatible.
- the primary cells are progenitor cells. In a more preferred embodiment of the invention, the primary cells are adult stem cells or induced pluripotent stem cells. In a preferred embodiment of the invention, adult stem cells are mesenchymal stem cells.
- the primary cells are fibroblasts or chondrocytes.
- the invention is directed to a pharmaceutical composition comprising a scaffold as described above.
- the pharmaceutical composition further comprises pharmaceutically acceptable carriers.
- the pharmaceutical composition further comprises at least one additional active pharmaceutical ingredient.
- additional active ingredient is selected from drugs, such as antibiotics, immunosuppressants, anti-inflammatories, biologics such as growth factors, cytokines, morphogens, proteins, extracellular matrix polysaccharides; of compounds for modifying the mechanical and gelling properties of scaffolds such as additional crosslinking agents.
- the pharmaceutical composition is an injectable solution, suspension, hydrogel or a solid porous matrix.
- the pharmaceutical composition is for use as a vaccine.
- the invention relates to a method for preparing the scaffolding of the invention as described above, comprising: (i) Mixing a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent, and optionally selected cells from the group consisting of primary cells and immortalized cell lines,
- the invention relates to an alternative method for preparing the scaffold of the invention as described above, comprising:
- the biodegradable polymer is selected from fibrin, alginate and mixtures thereof.
- the fibrin concentration is between 1 mg / mL and 5 mg / mL. In a more preferred embodiment, the fibrin concentration is between 2 mg / mL and 4 mg / mL.
- the coagulation of step (iii) is carried out by the addition of a coagulation agent.
- the coagulation agent is selected from thrombin, calcium salt and polyphosphate salt.
- the thrombin range used is between 0.2 U and 1.2 U per mg of the fibrinogen used.
- the interaction of the scaffold and the mRNA / transfection agent in step (iii) can be reinforced by drying or lyophilization of the system.
- the invention relates to a biodegradable scaffold obtained by the method described above.
- the invention relates to the use of a scaffold of the invention, as an in vitro differentiation reagent or as a cosmetic implant.
- Another aspect of the invention relates to the use of a biodegradable scaffold as described above as a device for tissue and organ regeneration.
- the biodegradable scaffold is used as a device for cartilage regeneration.
- Another aspect of the invention relates to the use of a biodegradable scaffold defined above for cosmetic purposes.
- a final aspect of the invention relates to the use of a biodegradable scaffold as defined above as a drug for preventing, alleviating or curing diseases.
- YR fluorescent protein encoding mRNA A plasmid for in vitro transcription of mRNA was designed based on plasmid pBluescript KS (pBSK KS, Stratagene, USA), with a T7 transcription promoter. In this plasmid, the YFP sequence and a polyadenylation signal was cloned from a YFP pIRES plasmid (Clontech, Germany), using the Smal and Xhol restriction sites. The correct design was verified through its cleavage at restriction sites, and analysis by gel migration and sequencing assays. The structure of the plasmid used is depicted in Figure 1A.
- the mRNA was synthesized with an anti-reverse analogue Cap (ARCA) through the ultra mMACHINE T7 kit (Ambio), following the manufacturer's instructions.
- the mRNA can be isolated by a standard phenol-chloroform extraction method. However, better reproducibility between batches of mRNA is achieved if the extraction is performed with a Phase Lock Gel Light tube (5Prime, Germany), following the manufacturer's instructions.
- U87MG cells were transfected with Lipofectamine 2000 (Invitrogen) according to the manufacturer's recommendations, U87MG cells were seeded in 96-well plates at a density of 78125 cells / cm 2 the day before transfection. 4 h before transfection, the culture medium was removed and replaced with 50 ⁇ of OptiMEM (Gibco). The lipoplexes were prepared next in 50 ⁇ of OptiMEM (Gibco), with 0.5 ⁇ g of mRNA and with a ratio of mRNA: lipid of 2: 1; The prepared complexes were added to the cells. After 6 h of incubation, the medium with lipoplexes was removed and replaced with fresh culture medium. The presence of fluorescent cells was verified by a fluorescence microscope (Olympus) 24 h after transfection. The results confirmed that a high fraction of the cells that can be observed with transmitted light were successfully transfected (fig. IB).
- U87MG cells were routinely cultured in complete medium, consisting of Dulbecco's Modified Eagle's Medium with high glucose (D5671 Sigma) supplemented with 10% fetal bovine serum, 2 mM glutamine and 100 mg / L penicillin-streptomycin (Sigma-Aldrich ). The culture was maintained at 37 ° C and under an atmosphere of 5% C0 2 .
- a scheme of scaffolding, cells, mRNAs and the transfection agent is depicted in Figure 2A; The illustration depicts a biodegradable scaffold activated with mRNA that codes for transcription factors and complexed this to a transfection agent.
- the inclusion of the cells in the scaffolding could be an interesting option for some applications, but it is considered as optional in the present invention.
- Preparation of fibrin scaffolds activated with 1 or 2 ⁇ g of mRNA and 3DFectIN as a transfection agent First, 1 ⁇ g or 2 ⁇ g of mRNA were diluted up to 25 ⁇ in OptiMEM (for scaffolds activated with 1 or 2 ⁇ g of mRNA , respectively). Next, this mRNA solution was mixed with another 25 ⁇ phase of 3DFectin (OZ Biosci enees, France) in OptiMEM. For scaffolds with 1 ⁇ g of mRNA, this second phase had 2, 3 or 4 ⁇ of 3DFectIN (corresponding to the 2: 1, 3: 1 or 4: 1 ratios, respectively) diluted up to 25 ⁇ in OptiMEM.
- 3DFectin OZ Biosci enees, France
- this second phase had 4, 6 or 8 ⁇ of 3DFectIN (corresponding to the 2: 1, 3: 1 or 4: 1 ratios, respectively) and diluted up to 25 ⁇ in OptiMEM.
- the mRNA and 3DFectIN phases were mixed and allowed to interact for 20 minutes. This reaction gives rise to 50 ⁇ , phase 3DFectIN / mRNA.
- a fibrinogen solution of 20 ⁇ at 10 or 20 mg / mL was prepared to generate scaffolds of 2 or 4 mg / mL of final concentration.
- a thrombin solution of 20 ⁇ at 12.5 U / mL was also prepared as a fibrinogen crosslinker.
- the fibrinogen solution is then pipetted into a culture well or where it is intended to generate the scaffolding.
- the 3DFectIN / mRNA complexes are then mixed with 10 ⁇ ⁇ OptiMEM and the resulting suspension is mixed with the fibrinogen by pipetting. This phase is then mixed with a thrombin solution for gelation. After 1 h of incubation at 37 ° C with thrombin, all these possible combinations of systems have formed a hydrogel.
- the cells can be integrated into this composition, changing the 10 ⁇ ⁇ of OptiMEM added to the 3DFectIN / mRNA complexes by the same volume of cell suspension in OptiMEM. A number of 1, 5 x 10 5 cells can be easily incorporated into this volume.
- complete cell media can be added to the scaffolds after their formation, that is, after 1 h of incubation of the fibrinogen and thrombin at 37 ° C.
- hMSC Human mesenchymal stem cells
- Plasmid DNA activated scaffolds (pDNA): as a reference, fibrin scaffolds activated with YFP-encoding pDNA were also prepared.
- the plasmid used for these experiments was the same as the one we used for in vitro transcription of mRNA ( Figure 1), since plasmid pBSK KS also has a eukaryotic transcription promoter.
- These scaffolds can be prepared in exactly the same way as those activated with mRNA, but by changing mRNA for the same amount of pDNA.
- the scaffolds activated with pDNA showed exactly the same morphological and mechanical properties. We expect that 3Dfectin / pDNA complexes will have a similar distribution in scaffolds to 3Dfectin / mRNA complexes.
- Table 1 Physicochemical characterization of transfectant complexes based on pDNA and mRNA. Polydispersion size and index (PDI) obtained by photonic correlation microscopy.
- Fibrin scaffolds (2 mg / mL and 4 mg / mL) were prepared as described above, and loaded with 1.5 x 10 5 U87MG cells.
- Fibrin scaffolds activated with mRNA were seeded with hMSC cells, and cultured for one week at 37 ° C with complete medium (90% humidity, 5% C0 2 ). After one week, the scaffolds were lyophilized, metallized with vacuum palladium, and studied by scanning electron microscopy (SEM, LEO 435VP-SEM, SEMTECH Solutions, United Kingdom). SEM images confirmed that fibrin hydrogels form a highly porous structure ( Figure 3 and 4). Contrary to our expectations, the pore size was larger in fibrin hydrogels of 4 mg / mL than in those of 2 mg / mL. Micrographs suggest a different structure for scaffolds seeded with cells compared to control scaffolds. This could be related to the mechanical contraction of the scaffold induced by cell adhesion and by the deposition of extracellular matrix by said cells.
- Example 2 This example describes the synthesis of alginate scaffolds activated with mRNA and two cationic polymers, polyarginine and protamine.
- mRNA encoding YFP was used, prepared as described in example 1.
- 1 or 2 ⁇ g of mRNA was mixed with a solution of 10 ⁇ of polyarginine or protamine (1 or 2 mg ). The solution was allowed to interact for 5 minutes at room temperature. Then, 50 ⁇ of alginate (8 or 16 mg) was added to this suspension and mixed. Then, a 10 ⁇ suspension was added to the solution with 1.5 x 10 5 U87MG cells.
- the system formed a hydrogel-like structure after the addition of 70 ⁇ of the first mixture over 30 ⁇ of a solution of CaCl 2 (243 or 486 mM).
- the hydrogels are stabilized by incubation at 37 ° C, 5% C0 2 and with 95% humidity for 5 minutes. After this point, complete cell culture medium can be added on the scaffolds.
- Fibrin scaffolds (4 mg / mL) activated with 3DFectIN / mRNA (1 or 2 ⁇ g of mRNA, ratios 2: 1, 3: 1 and 4: 1) were prepared, using a YFP coding mRNA according to the method described in the Example 1, but before the addition of thrombin, instead of 10 ⁇ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 U87MG cells was added.
- a fibrin scaffold (4 mg / mL) activated with 3DFectin / pDNA (1 ⁇ g of pDNA, 3: 1 ratio) and with the same concentration of U87MG cells was prepared. After hydrogel formation, complete culture medium was added and the cells were cultured for 5 days (37 ° C, 5% C0 2 ), with changes in the medium every two days.
- Fibrin scaffolds (4 mg / mL) activated with 3DFectIN / mRNA (1 ⁇ g of mRNA, ratios 2: 1 and 3: 1) were prepared encoding YFP as described in example 1, but before adding thrombin, in Instead of 10 ⁇ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 U87MG cells was added.
- a negative control a non-activated scaffold was prepared using the same procedure, but adding only OptiMEM instead of the 50 ⁇ 3DFectIN / mRNA suspension in OptiMEM. After hydrogel formation, complete culture medium was added and the cells were cultured for 24, 48 h, 3 days and 7 days (37 ° C, 5% C0 2 ).
- Cell viability at 24 and 48 h was measured by an MTT assay following the manufacturer's instructions.
- the ability of scaffolds to sustain cell proliferation was evaluated by measuring the DNA content in the cultures at the beginning (day 0), after 3 days and after 7 days. Scaffolds with a 3: 1 ratio were the prototypes selected for this proliferation test.
- the DNA content in the scaffolds was measured, after DNA extraction, by a PicoGreen assay (Thermo Fisher Scientific, Inc.), following the manufacturer's instructions.
- DNA extraction for quantification was performed by incubating the scaffolds with a solution of 100 ⁇ , trypsin (2.5%) for 30 minutes, and then, by incubating the resulting suspension for 20 minutes in SDS 0, 1% and 10 minutes in Triton X-100 1% (both solutions in PBS) under intense agitation.
- Fibrin scaffolds (2 and 4 mg / mL) activated with mRNA (1 ⁇ g of mRNA, 3: 1 ratio) encoding YFP were prepared as described in example 1, but before adding thrombin, instead of 10 ⁇ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 hMSCs was added.
- a negative control (C) a non-activated scaffolding was prepared for the same procedure, but using only OptiMEM instead of 50 ⁇ of the 3DFectIN / mRNA suspension. After hydrogel formation, complete culture medium was added and the cells were cultured for 24 and 48 h (37 ° C, 5% C0 2 ). Transfection of hMSCs was evaluated at 24 h as described in example 3.
- Scaffolding toxicity was evaluated at 24 and 48 h by an MTT assay as described in example 4.
- Scaffolding capacity for supporting cell proliferation at short times (0, 12, 24 and 48 h) and long term (0, 3, 7 and 10 days) was evaluated by a DNA quantification assay as described in example 4.
- a plasmid was designed for in vitro transcription of mRNA based on a plasmid pCMVTnT ® , into which the SOX9 gene was introduced along with a Kozak consensus sequence to initiate translation, and an untranslated region 3 'of ⁇ -globin. 5 'UTR of ⁇ -globin was already present in the vector.
- a polyimidine tail or a late polyadenylation signal of SV40 in 3 ' was added either for the synthesis of mRNA with a polyadenine tail.
- the designed plasmid also had a eukaryotic transcription site, since it was used as a control in the activated scaffolds pDNA encoding SOX9.
- the structure of the plasmid used is shown in Figure 11.
- the synthesis and isolation of mRNA from the plasmid was performed by the method described in example 1.
- HEK293 cells were cultured in a 6-well culture plate and were transfected with 4 ⁇ g of this mRNA.
- the expression of SOX9 in cultured cells 12 and 24 h after transfection was validated by western blotting after protein extraction (anti-SOX9 antibodies, Santa Cruz Biotech, USA). Untransfected cells were used as a negative control (C-) and cells transfected with the plasmid were used as a positive control (C +).
- the western blot results confirmed the bioactivity of the synthesized mRNA.
- Fibrin scaffolds (4 mg / mL) activated with 3DFectIN / mRNA or 3DFectIN / pDNA (1 ⁇ g of mRNA / pDNA, ratios 2: 1 and 3: 1) encoding SOX9 were prepared as described in example 1, but before if thrombin was added, instead of 10 ⁇ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 U87MG cells was added.
- a negative control (C-) a scaffold without mRNA / pDNA or 3DFectIN was prepared by the same procedure, but using only OptiMEM instead of the 50 ⁇ 3DFectIN / mRNA suspension. After hydrogel formation, complete culture medium was added, and the cells were cultured for 24 h (37 ° C, 5% C0 2 ).
- the ability of mRNA or pDNA activated scaffolds to induce forced expression of SOX9 was measured by a quantitative real-time polymerase chain reaction (qRT-PCR, C1000 thermal cycler, Bio-Rad Laboratories, Inc., USA). ), using probes for the SOX9, GAPDH and ⁇ -actin genes (Taqman, Thermo Fisher Scientific, Inc.). Relative expression was evaluated using method 2 AACt was used to evaluate relative expression, using GAPDH and ⁇ -actin (ACTB) as the reference genes.
- the relative expression of the control (C) is 1 in all the graphs, but it is not visible in the graphs due to the scale required to represent the rest of the data.
- the experiment demonstrated the ability to generate extreme positive regulation of SOX9 expression with scaffolds activated with mRNA.
- the expression with the mRNA activated scaffolding with a 2: 1 ratio was about 5000 times that of the control, while the 3: 1 ratio reached 20,000 times the control.
- the positive regulation generated with scaffolds activated with pDNA were orders of magnitude smaller than that obtained with mRNA, although significantly higher than the negative control ( Figure 9A).
- the same experiment was repeated, with a greater number of replicates, but only for scaffolds activated with mRNA or pDNA in the 3: 1 ratio ( Figure 9B).
- scaffolds with 2 and 4 mg / mL of fibrin and activated with 1 ⁇ g of mRNA or pDNA were prepared with hMSCs following the procedure described in example 1, but using mRNA encoding Sox9 (see synthesis in example 7).
- the scaffolds were grown for 48 h in complete medium, at 37 ° C, with 90% relative humidity and 5% C0 2 .
- Fibrin scaffolds (4 mg / mL) were activated with mRNA encoding SOX9 (3: 1 ratio) and seeded with hMSCs, following the procedure described in example 6.
- hMSCs As a reference, scaffolding seeded with hMSCs was used and activated with pDNA (also 3: 1 ratio). Scaffolds seeded with hMSCS and not activated were used as control.
- cell culture medium was added to the culture plates where the scaffolds were placed.
- the experiment was carried out by culturing the cells in the scaffolds in two different media: (i) incomplete chondrogenic medium (ICM) and (ii) complete chondrogenic medium (MCC).
- the ICM contained DMEM with high glucose (Sigma), 100 nM dexamethasone, 50 ⁇ g / mL ascorbic acid 2-phosphate, 40 ⁇ g / mL L-proline, 1% Premix ITS supplement (Becton Dickinson), 1 mM pyruvate sodium (Sigma) and 1% penicillin / streptomycin (Sigma).
- the CCM contained ICM and 10 ng / mL of TGF-P3 (Peprotech, UK).
- the scaffolds were grown for 21 days, with 3 changes of medium per week, at 37 ° C, with 90% humidity and 5% C0 2 . After 21 days, the expression of chondrogenic differentiation marker genes Sox9, aggrecan (ACAN) and type II collagen (Col2al) was evaluated.
- scaffolds both activated with mRNA and pDNA, produce much larger quantities than the controls of the master chondrogenic regulator SOX9 after 21 days, regardless of the culture medium (ICM or CCM).
- the mRNA activated scaffolds were also able to induce ACAN expression compared to the controls in ICM, although their effect appeared to be negative for this gene in the scaffolds grown in CCM ( Figure 13).
- Col2al The expression of Col2al was also measured. However, we because the gene was not detected on Scaffolds control were not able to use the calculation method 2 AACT. Instead, Table 2 presents the Ct of Col2al and the reference genes (GAPDH, ActB) for each sample. It is noteworthy that mRNA activated scaffolds were the only type of sample where Col2al was consistently expressed, and that this result was independent of the culture medium used (ICM or MCP).
- the expression of SOX9 did not change when compared to the expression found at 7 days, except for scaffolds activated with 0.25 ⁇ g of DNA, which reached the same levels of expression as scaffolds of 1 ⁇ g DNA . Differences between 2 and 4 mg / mL scaffolds of fibrin appeared at this point: 2 mg / mL scaffolds induced ACAN and Col2Al expression higher than 4 mg / mL for almost all conditions evaluated. In fact, the 4 mg / mL scaffolds did not induce detectable levels of Col2Al for most conditions.
- the RNA / DNA doses did not have a significant impact on the induction of ACAN, achieving the same levels of ACAN with both doses. In contrast, scaffolds activated with 1 ⁇ g of RNA and 0.25 ⁇ g of DNA were seeded to promote greater expression of Col21Al ( Figure 15, right).
- This example constitutes an experiment analogous to that presented in Example 7. This time, we tried to determine the kinetics of MyoD expression on the transfection of hMSCs within a scaffold activated with MyoD-mRNA. Scaffolds with 2 and 4 mg / mL of fibrin were activated with 0.5 ⁇ g of MyoD mRNA (3: 1 3DFectIN / mRNA) following the procedure described in example 1, but using mRNA encoding MyoD (Miltenvi Biotec, Germany). This is a chemically modified commercial mRNA, resistant to degradation by RNAsas, that induces myogenic differentiation to fibroblasts and hMSCs after transfection.
- the scaffolds were grown for 48 hours in a complete medium, at 37 ° C, with 90% humidity and 5% C02.
- the forced expression of MyoD in hMSCs were followed by quantitative real-time PCR at 12, 24 and 48 h.
- MyoG and CDH15 genes that positively regulate once myogenic cascade differentiation has begun.
- Figure 16 shows a very high positive regulation of the transfected transcription factor, MyoD, and the MyoG myogenic transcription factor, in the hMSCs encapsulated in the scaffolds of the invention. This positive regulation is observed at 12 h post-transfection.
- This experiment is related to the myogenic differentiation of hMSCs encapsulated in fibrin gels activated with MyoD mRNA.
- 2 and 4 mg / mL fibrin gels (200 ⁇ ) were activated with 0.5 ⁇ g of MyoD mRNA and hMSCs were encapsulated within them.
- the gels were prepared as in example 1 but the amount of all components was increased 2 times and the gel was prepared at twice the volume (200 instead of 100 ⁇ ).
- Complete growth medium (a-MEM + 10% Fetal Bovine Serum, 1% Penicillin-streptomycin and 10 ng / mL FGF-2) was added on the gels during the first 24 h to promote transfection.
- DMEM serum DMEM high glucose + 1% Horse Serum and 1% Penicillin-streptomycin
- the cells were cultured for 14 days, changing the medium every 3 days, and removed at the end of the experiment to allow quantification of myogenic marker expression by quantitative real-time PCR.
- the expression of MyoD and MyoG was positively regulated in hMSCs encapsulated within fibrin scaffolds activated with MyoD.
- MyoG expression was higher in scaffolds of 4 mg / mL compared to 2 mg / mL.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention relates to a biodegradable scaffold comprising messenger RNA. More specifically, the invention relates to the scaffold, the production method thereof and the use of same. A biodegradable scaffold comprising a biodegradable polymer, an isolated mRNA encoding a transcription factor and transfection agents.
Description
Andamio biodegradable que comprende ARN mensajero Campo de la invención Biodegradable scaffolding comprising messenger RNA Field of the invention
Esta invención se refiere a un andamio biodegradable que comprende ARN mensajero. Más particularmente, se refiere al andamio, el método de preparación y uso de los mismos. This invention relates to a biodegradable scaffold comprising messenger RNA. More particularly, it refers to scaffolding, the method of preparation and use thereof.
Antecedentes de la invención Background of the invention
Los factores de transcripción (TFs) son proteínas capaces de inducir grandes cambios en la expresión génica (Graf, 2009, Nature 462, 587-594). Dado que el transporte intracelular de proteínas es un gran desafío, una de las principales preocupaciones es cómo ceder estos TFs a su lugar de acción en el interior del núcleo y la forma de integrar estas tecnologías de cesión en sistemas de ingeniería de tejidos o dispositivos implantables. Para estas aplicaciones, por lo general la cesión se realiza a través de la terapia génica, usando andamies activados con vectores virales. Sin embargo, usar un vector viral puede causar problemas de seguridad, incluyendo reacciones inmunes peligrosas y la supresión inmune de los vectores virales. La activación de andamies con ADN plasmídico (pDNA) también es posible (Fang, 1996, PNAS 93, 5753-5758), pero la eficacia de transfección es baja. Los andamies también han sido activados con otros oligonucleótidos tales como microRNA y siRNA, pero estas moléculas sólo pueden producir la inhibición de la expresión génica, y no la expresión forzada de la proteína (Andersen et al., 2010, Mol Ther 18, 2018-2027). Además, estas estrategias tienen todavía dificultades, especialmente en el caso de la transfección in vivo realizada en andamies de tejido. Transcription factors (TFs) are proteins capable of inducing large changes in gene expression (Graf, 2009, Nature 462, 587-594). Since intracellular protein transport is a major challenge, one of the main concerns is how to transfer these TFs to their place of action inside the nucleus and how to integrate these transfer technologies into tissue engineering systems or implantable devices. . For these applications, the assignment is usually carried out through gene therapy, using scaffolds activated with viral vectors. However, using a viral vector can cause safety problems, including dangerous immune reactions and immune suppression of viral vectors. The activation of scaffolds with plasmid DNA (pDNA) is also possible (Fang, 1996, PNAS 93, 5753-5758), but the transfection efficiency is low. Scaffolds have also been activated with other oligonucleotides such as microRNA and siRNA, but these molecules can only produce gene expression inhibition, and not forced protein expression (Andersen et al., 2010, Mol Ther 18, 2018- 2027). In addition, these strategies still have difficulties, especially in the case of in vivo transfection performed on tissue scaffolds.
Publicaciones recientes han demostrado que el ARN mensajero (niRNA) puede inducir la expresión forzada de la proteína, y se han aplicado para la codificación de ios factores de crecimiento. Así, Luí et al. usaron mRNA para la codificación del factor de crecimiento VEGF para la vascularización de tejido, e implantaron esta terapia junto con las células en un andamio de proteína tumoral comercial (Matrigei*) (Luí, 2013, Cell Research 23, 1172- 1186). Sin embargo, esta tecnología no se puede aplicar en terapia ya que Matrigel se basa en las proteínas tumorales.
Por otro lado, Balmayor et al. han cedido un mRNA que codifica para factores de crecimiento a un defecto de fémur en un modelo de rata con buenos resultados (Balmayor, 2016, Biomaterials 87, 131-146). Recent publications have shown that messenger RNA (niRNA) can induce forced protein expression, and have been applied to the coding of growth factors. Thus, Luí et al. they used mRNA for the coding of the VEGF growth factor for tissue vascularization, and implanted this therapy together with the cells in a commercial tumor protein scaffold (Matrigei *) (Luí, 2013, Cell Research 23, 1172-1186). However, this technology cannot be applied in therapy since Matrigel is based on tumor proteins. On the other hand, Balmayor et al. they have yielded an mRNA that codes for growth factors to a femur defect in a rat model with good results (Balmayor, 2016, Biomaterials 87, 131-146).
Sin embargo, todavía hay una necesidad de proporcionar tecnologías para la cesión de mRNAs, y más específicamente mRNAs que codifican para factores de transcripción que son proteínas intracelulares estrictamente reguladas, con una vida media muy corta. Los mRNAs deben de seguir siendo eficaces tras su cesión, y conseguir una transfección en el entorno tridimensional, que por lo general muestra una eficiencia más baja que en 2D. Estos dispositivos deben ser capaces de producir un efecto biológico claro inducido por la sobreexpresión del factor de transcripción. Este efecto podría ser medido por una sobreexpresión del propio factor de transcripción, pero incluso más importante, de oíros genes objetivo regulados por dicho factor de crecimiento. Además, la estructura 3D del andamio debe ser capaz de albergar células adheridas y, si es necesario, permitir su proliferación. However, there is still a need to provide technologies for the transfer of mRNAs, and more specifically mRNAs encoding transcription factors that are strictly regulated intracellular proteins, with a very short half-life. The mRNAs must continue to be effective after cession, and achieve transfection in the three-dimensional environment, which generally shows lower efficiency than in 2D. These devices must be able to produce a clear biological effect induced by overexpression of the transcription factor. This effect could be measured by an overexpression of the transcription factor itself, but even more importantly, of other target genes regulated by said growth factor. In addition, the 3D structure of the scaffold must be able to house adhered cells and, if necessary, allow proliferation.
Breve descripción de la invención Brief Description of the Invention
Los autores de la presente invención han desarrollado un andamio biodegradable que está activado con secuencias de mRNA que codifican para factores de transcripción. Este andamio biodegradable puede conducir a la expresión forzada pronunciada del factor de transcripción, mayor que la conseguida con ADN plasmídico. También hemos confirmado que esta expresión forzada de un factor de transcripción induce cambios en los niveles de expresión de otros genes, indicando un claro efecto biológico. Además, este andamio tiene la ventaja de evitar problemas de seguridad, en particular evita vectores virales. The authors of the present invention have developed a biodegradable scaffold that is activated with mRNA sequences encoding transcription factors. This biodegradable scaffolding can lead to the pronounced forced expression of the transcription factor, greater than that achieved with plasmid DNA. We have also confirmed that this forced expression of a transcription factor induces changes in the expression levels of other genes, indicating a clear biological effect. In addition, this scaffolding has the advantage of avoiding security problems, in particular it avoids viral vectors.
Así, un aspecto de la invención se refiere a un andamio biodegradable que comprende un polímero biodegradable, un mRNA aislado que codifica para un factor de transcripción y un agente de transfección. Thus, one aspect of the invention relates to a biodegradable scaffold comprising a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent.
Otro aspecto de la invención se refiere a un andamio biodegradable de la invención para uso como medicamento. En una realización particular, el andamio biodegradable de la invención es para uso en tejidos u órganos de terapia regenerativa, preferiblemente el tejido es cartílago, músculo o tejido nervioso. En otra realización particular, el andamio
biodegradable de la invención es para uso en el tratamiento de un defecto de cartílago, daño muscular o daño en el tejido nervioso. Another aspect of the invention relates to a biodegradable scaffold of the invention for use as a medicament. In a particular embodiment, the biodegradable scaffold of the invention is for use in tissues or organs of regenerative therapy, preferably the tissue is cartilage, muscle or nerve tissue. In another particular embodiment, the scaffolding Biodegradable of the invention is for use in the treatment of a cartilage defect, muscle damage or nerve tissue damage.
En otra realización particular, la invención se refiere al uso del andamio biodegradable de la invención para preparar un medicamento. En otra realización particular, la invención se refiere al uso del andamio biodegradable de la invención para preparar un medicamento para uso en tejidos u órganos en terapia regenerativa, preferiblemente el tejido es cartílago, músculo o tejido nervioso. En otra realización particular, la invención se refiere al uso de del andamio biodegradable de la invención para preparar un medicamento para el uso en el tratamiento de un defecto de cartílago, daño muscular o daño del tejido nervioso. In another particular embodiment, the invention relates to the use of the biodegradable scaffold of the invention to prepare a medicament. In another particular embodiment, the invention relates to the use of the biodegradable scaffold of the invention to prepare a medicament for use in tissues or organs in regenerative therapy, preferably the tissue is cartilage, muscle or nerve tissue. In another particular embodiment, the invention relates to the use of the biodegradable scaffold of the invention to prepare a medicament for use in the treatment of a cartilage defect, muscle damage or nerve tissue damage.
Otro aspecto de la invención se refiere a una composición farmacéutica que comprende el andamio biodegradable de la invención descrito previamente. Another aspect of the invention relates to a pharmaceutical composition comprising the biodegradable scaffold of the invention described previously.
Un aspecto adicional de la invención se refiere a una composición cosmética que comprende el andamio biodegradable de la invención descrito previamente. A further aspect of the invention relates to a cosmetic composition comprising the biodegradable scaffold of the invention described previously.
Un aspecto más de la invención se refiere a un método para preparar el andamio biodegradable descrito antes, que comprende A further aspect of the invention relates to a method for preparing the biodegradable scaffold described above, which comprises
(i) mezclar un polímero biodegradable, un mRNA aislado que codifica un factor de transcripción y un agente de transfección, opcionalmente adicionar células seleccionadas del grupo que consiste en células primarias y líneas de células inmortalizadas, (i) mixing a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent, optionally adding cells selected from the group consisting of primary cells and immortalized cell lines,
(ii) incubar la mezcla preparada en (i), (ii) incubate the prepared mixture in (i),
(iii) inducir la coagulación de la mezcla preparada en (ii). (iii) induce coagulation of the mixture prepared in (ii).
Descripción detallada de las figuras Detailed description of the figures
Figura 1 : (A) Estructura del vector plásmidico usado para la transcripción in vitro del mRNA que codifica para la proteína fluorescente YFP. (B) Imagen de fluorescencia de las células U87MG, 24 h después de la transfección con mRNA codificante de YFP usando Lipofectamina 2000 (imagen de la derecha). El experimento se realizó en una placa de 24 pocilios. Como referencia se muestra una imagen de luz transmitida de las mismas células (imagen izquierda). Figure 1: (A) Structure of the plasmid vector used for in vitro transcription of the mRNA encoding the YFP fluorescent protein. (B) Fluorescence image of U87MG cells, 24 h after transfection with YFP coding mRNA using Lipofectamine 2000 (right image). The experiment was performed on a 24-well plate. A transmitted light image of the same cells is shown as a reference (left image).
Figura 2: (A) Un diagrama ilustrando los andamiajes, las células y el mRNA con un agente de transfección se muestra en la Figura 2A. (B) Las imágenes de microscopía óptica de las células madre mesenquimales humanas cultivadas en andamiajes activados con complejos
de 3DFectIN/mRNA. Los andamiajes se prepararon a dos concentraciones de fibrina (2 y 4 mg/mL). (C) Imagen de fluorescencia de andamiajes activados con plásmido, en complejos 3DFectIN/pDNA. Tres proporciones 3 DF ectIN/ pDN A fueron probadas: 2: 1, 3 : 1 y 4: 1. El pDNA se marcó con SYBERGold para su observación por microscopía de fluorescencia. Figure 2: (A) A diagram illustrating scaffolds, cells and mRNA with a transfection agent is shown in Figure 2A. (B) Optical microscopy images of human mesenchymal stem cells cultured in complex-activated scaffolds of 3DFectIN / mRNA. Scaffolds were prepared at two concentrations of fibrin (2 and 4 mg / mL). (C) Fluorescence image of plasmid activated scaffolds, in 3DFectIN / pDNA complexes. Three proportions 3 DF ectIN / pDN A were tested: 2: 1, 3: 1 and 4: 1. The pDNA was labeled with SYBERGold for observation by fluorescence microscopy.
Figura 3 : Imágenes de microscopía electrónica de barrido de andamiajes de fibrina (2 mg/mL), tanto sin células (Control) o con células (Sembrado) y a diferentes aumentos. Las barras de escala se integran en cada imagen. Figure 3: Scanning electron microscopy images of fibrin scaffolds (2 mg / mL), both without cells (Control) or with cells (Sown) and at different magnifications. The scale bars are integrated into each image.
Figura 4: Imágenes de microscopía electrónica de barrido de andamiajes de fibrina (4 mg/mL), tanto sin células (Control) o con células (Sembrado) y a diferentes aumentos. Las barras de escala se integran en cada imagen. Figure 4: Scanning electron microscopy images of fibrin scaffolds (4 mg / mL), both without cells (Control) or with cells (Sown) and at different magnifications. The scale bars are integrated into each image.
Figura 5: Andamiajes biodegradables preparados a partir de alginato y poliarginina. A la izquierda, la imagen macroscópica de los geles formados en la parte inferior cónica de tubos Eppendorf, manteniéndose en su posición tras la inversión del tubo. A la derecha, las imágenes de microscopía óptica de dos ejemplo representativos de estos andamiajes sembrados con células U87MG. Figure 5: Biodegradable scaffolds prepared from alginate and polyarginine. On the left, the macroscopic image of the gels formed in the conical lower part of Eppendorf tubes, keeping in position after the inversion of the tube. On the right, the optical microscopy images of two representative examples of these scaffolds seeded with U87MG cells.
Figura 6: Evaluación de ratios de 3DFectIN:mRNA/pDNA con la secuencia reportera YFP y la línea celular U87MG en geles de fibrina de 4 mg/mL. Micrografías de fluorescencia y visibles representativas correspondientes a experimentos de transfección llevados a cabo con 1 μg mRNA (izquierda) y pDNA (derecha) complejado con 3DFectIN usando las proporciones de 3DFectIN:mRNA/pDNA de 2: 1 (arriba), 3 : 1 (medio), 4: 1 (abajo). Figure 6: Evaluation of 3DFectIN: mRNA / pDNA ratios with the YFP reporter sequence and the U87MG cell line in 4 mg / mL fibrin gels. Representative fluorescence and visible micrographs corresponding to transfection experiments carried out with 1 μg mRNA (left) and pDNA (right) complexed with 3DFectIN using the 3DFectIN: mRNA / pDNA ratios of 2: 1 (above), 3: 1 ( medium), 4: 1 (below).
Figura 7: Evaluación de la dosis de mRNA por andamiaje llevada a cabo en geles de fibrina de 4 mg/mL sembrados con células U87MG. Micrografías de fluorescencia y visibles representativas correspondientes a experimentos de transfección llevados a cabo con 1 y 2 μg de mRNA complejado con 3DFectIN en proporciones 3DFectIN:mRNA 3 : 1 (izquierda) y 4: 1 (derecha). Figure 7: Evaluation of the mRNA dose by scaffolding carried out on 4 mg / mL fibrin gels seeded with U87MG cells. Representative fluorescence and visible micrographs corresponding to transfection experiments carried out with 1 and 2 μg of mRNA complexed with 3DFectIN in proportions 3DFectIN: mRNA 3: 1 (left) and 4: 1 (right).
Figura 8: Cinética de expresión proteica de la secuencia reportera YFP en andamiajes activados con mRNA y pDNA. Micrografías de fluorescencia y visibles representativas correspondientes a experimentos de transfección llevados a cabo con 1 μg de mRNA/pDNA y el ratio 3 DF ectIN : mRN A/pDN A 3 : 1 ( ύ.: μ£). La transfección de las células se evaluó a las 24 h, 48 h, 72 h y a los 5 días.
Figura 9: Estudio de citotoxicidad con células U87MG cultivadas en andamiajes de fibrina (4 mg/mL de fibrina) activados con complejos 3DFectIN/mRNA o pDNA en relaciones 2: 1 y 3 : 1 se ensayaron para marcar la expresión del gen SOX9 (A). Andamiajes no activados fueron utilizados como control (etiquetado "C" en la figura). La mejor condición 3 : 1 se seleccionó para comparar la transfección de mRNA y pDNA (B). La expresión de SOX9 se cuantificó mediante análisis qRT-PCR de las células transfectadas relativas a la expresión de GAPDH y β-actin. La citotoxicidad de los andamiajes se midió mediante un ensayo de MTT a las 24 h y 48 h (C) y la capacidad de los andamiajes de fibrina activados con 3DFectin/mRNA para soportar la proliferación celular se confirmó mediante la cuantificación de la cantidad de DNA en el cultivo a las 0, 3 y 7, medido mediante un ensayo de PicoGreen. Figure 8: Protein expression kinetics of the YFP reporter sequence in scaffolds activated with mRNA and pDNA. Representative fluorescence and visible micrographs corresponding to transfection experiments carried out with 1 μg of mRNA / pDNA and the 3 DF ectIN: mRN A / pDN A 3: 1 ratio (ύ .: μ £). Cell transfection was evaluated at 24 h, 48 h, 72 h and at 5 days. Figure 9: Cytotoxicity study with U87MG cells cultured in fibrin scaffolds (4 mg / mL fibrin) activated with 3DFectIN / mRNA or pDNA complexes in 2: 1 and 3: 1 ratios were tested to mark the expression of the SOX9 gene (A ). Non-activated scaffolds were used as control (labeled "C" in the figure). The best 3: 1 condition was selected to compare the transfection of mRNA and pDNA (B). The expression of SOX9 was quantified by qRT-PCR analysis of the transfected cells relative to the expression of GAPDH and β-actin. The cytotoxicity of scaffolds was measured by a MTT assay at 24 h and 48 h (C) and the ability of 3DFectin / mRNA activated fibrin scaffolds to support cell proliferation was confirmed by quantifying the amount of DNA in the culture at 0, 3 and 7, measured by a PicoGreen test.
Figura 10: (A) Transfección de células madre mesenquimales humanas (hMSCs) en los andamiajes de fibrina activados con complejos de mRNA a las 24 h (1 μg de mRNA, relación de 3DFectIN/mRNA 3 : 1). Se utilizó mRNA codificante de YFP. La transfección de las células se evaluó en andamiajes preparados a partir de soluciones de fibrina de 2 y 4 mg/mL. Cada panel muestra la imagen de fluorescencia a la izquierda, y como referencia, la imagen de luz trasmitida de la misma zona a la derecha. (B) Estudio de la citotoxicidad de hMSC cultivadas en andamiajes de fibrina (2 o 4 mg / mi de fibrina) activados con mRNA (relación 3DFectIN/mRNA 3 : 1). Andamiajes no activados se utilizaron como control (etiquetado "C" en la figura). La citotoxicidad de los andamiajes se midió mediante un ensayo de MTT a las 24 h y 48 h. (C) La capacidad de los andamiajes activados con mRNA (2 y 4 mg / mi de fibrina) para soportar la proliferación celular se confirmó mediante la cuantificación de la masa de ADN en el cultivo a 0, 3, 7 y 10 semanas, medido mediante un ensayo PicoGreen. En cada gráfico, la proliferación en el andamiaje activado con mRNA ("Tratamiento") se compara con los mismos andamiajes sin complejos 3DFectIN/mRNA ("Control"). Figure 10: (A) Transfection of human mesenchymal stem cells (hMSCs) in fibrin scaffolds activated with mRNA complexes at 24 h (1 μg of mRNA, 3DFectIN / mRNA 3: 1 ratio). YFP coding mRNA was used. Cell transfection was evaluated in scaffolds prepared from fibrin solutions of 2 and 4 mg / mL. Each panel shows the fluorescence image on the left, and as a reference, the transmitted light image of the same area on the right. (B) Study of the cytotoxicity of hMSC cultured in fibrin scaffolds (2 or 4 mg / mi fibrin) activated with mRNA (3DFectIN / mRNA 3: 1 ratio). Scaffolds not activated were used as control (labeled "C" in the figure). The cytotoxicity of the scaffolds was measured by an MTT test at 24 h and 48 h. (C) The ability of mRNA activated scaffolds (2 and 4 mg / ml fibrin) to support cell proliferation was confirmed by quantifying the mass of DNA in the culture at 0, 3, 7 and 10 weeks, measured through a PicoGreen trial. In each graph, proliferation in mRNA activated scaffolding ("Treatment") is compared with the same scaffolds without 3DFectIN / mRNA ("Control") complexes.
Figura 11 : (A) Estructura del vector plasmídico usado para la transcripción in vitro de mRNA codificante del factor de transcripción SOX9. (B) Después de la transfección de células FIEK293 con este mRNA y con Lipofectamina, la expresión de SOX9 fue evaluada por mediante extracción de las proteínas a las 12 y 24 h y la realización de un western blot. Células no transfectadas se utilizaron como control negativo (C-). Las células transfectadas
con pDNA codificante de SOX9 se utilizaron como control positivo (C+). La proteína a- tubulina se utilizó como referencia en el western blot. Figure 11: (A) Structure of the plasmid vector used for in vitro transcription of mRNA encoding the transcription factor SOX9. (B) After transfection of FIEK293 cells with this mRNA and with Lipofectamine, the expression of SOX9 was evaluated by extracting the proteins at 12 and 24 h and performing a western blot. Untransfected cells were used as a negative control (C-). Transfected cells with pDNA encoding SOX9 were used as a positive control (C +). The tubulin protein was used as a reference in the western blot.
Figura 12: Efecto de la concentración de fibrinógeno y el tipo de material genético sobre la cinética de expresión de SOX9 en células mesenquimales humanas (hMSCs) encapsuladas en andamiajes de fibrina. (A) Expresión de SOX9 24 h después de encapsulación de hMSCs en geles de fibrina de 2 y 4 mg/mL activados con SOX9. (B) Curvas de proliferación a las 48 h para geles de fibrina de 2 y 4 mg/mL. (C) Cinética de expresión de SOX9 en hMSCs encapsuladas en geles de fibrina con 2 mg/mL y (D) 4 mg/mL activados con mRNA y pDNA. Los niveles de expresión de genes se midieron mediante qRT-PCR y normalizado a la expresión de β-actin. Los niveles máximos de expresión se asignaron de modo arbitrario como 100% en las gráficas C y D. Los datos se muestran como media y desviación estándar de tres experimentos independientes con dos réplicas por experimento. Figura 13 : Expresión génica relativa de marcadores de diferenciación condrogénica en hMSC transfectadas en andamiajes de fibirina (4 mg/mL) activados con mRNA o pDNA, o no activados ("C"). Los andamiajes se cultivaron durante 21 días en medio condrogénico incompleto (ICM) o medio condrogénico completo (CCM). La expresión génica relativa de los marcadores (A) Sox9 (A) y (B) agrecano (ACAN) fue medida en estas condiciones tras los 21 días de cultivo. Figure 12: Effect of fibrinogen concentration and type of genetic material on the kinetics of SOX9 expression in human mesenchymal cells (hMSCs) encapsulated in fibrin scaffolds. (A) SOX9 expression 24 h after encapsulation of hMSCs in 2 and 4 mg / mL fibrin gels activated with SOX9. (B) 48 h proliferation curves for 2 and 4 mg / mL fibrin gels. (C) SOX9 expression kinetics in hMSCs encapsulated in fibrin gels with 2 mg / mL and (D) 4 mg / mL activated with mRNA and pDNA. Gene expression levels were measured by qRT-PCR and normalized to β-actin expression. Maximum expression levels were assigned arbitrarily as 100% in graphs C and D. Data are shown as mean and standard deviation of three independent experiments with two replicates per experiment. Figure 13: Relative gene expression of chondrogenic differentiation markers in hMSC transfected into fibrine scaffolds (4 mg / mL) activated with mRNA or pDNA, or not activated ("C"). The scaffolds were grown for 21 days in incomplete chondrogenic medium (ICM) or complete chondrogenic medium (CCM). The relative gene expression of the markers (A) Sox9 (A) and (B) aggrecan (ACAN) was measured under these conditions after 21 days of culture.
Figura 14: Expresión génica relativa de los marcadores de diferenciación condrogénica en hMSC transfectadas en andamiajes de fibrina (2 mg/mL y 4 mg/ mL) activados con mRNA, pDNA o no activados ("C"). Los andamiajes fueron cultivados por 28 días en medio condrogénico incompleto (ICM) o medio condrogénico completo (CCM). La expresión génica relativa de los marcadores (A) Sox9 (A) y (B) agrecano (ACAN) fue medida en estas condiciones tras los 28 días de cultivo. Figure 14: Relative gene expression of chondrogenic differentiation markers in hMSC transfected into fibrin scaffolds (2 mg / mL and 4 mg / mL) activated with mRNA, pDNA or not activated ("C"). The scaffolds were grown for 28 days in incomplete chondrogenic medium (ICM) or complete chondrogenic medium (CCM). The relative gene expression of the markers (A) Sox9 (A) and (B) aggrecan (ACAN) was measured under these conditions after 28 days of culture.
Figura 15: Expresión de marcador condrogénico de hMSCs encapsuladas en hidrogeles de fibrina 2 y 4 mg/mL activados con mRNA y pDNA cultivados durante 7 y 21 días en medio condrogénico completo. Expresión de (A) SOX9, (B) agrecano, (C) colágeno tipo II, a los 7 y 21 días. Los niveles de expresión génica fueron medidos mediante qRT-PCR, normalizado a expresión de GAPDH y comparado con los niveles en hMSCs antes de la encapsulación. Los datos se muestran como media y desviación estándar de dos réplicas en un experimento. Se muestra como comparativa un cultivo de pellet estándar.
Figura 16. Expresión de marcador miogénico después de la transfección de hMSCs en andamiajes de fibrina 2 mg/mL (izquierda) y 4 mg/mL (derecha) activados con MyoD mRNA (1 μg, 3 : 1 3DFectIN/mRNA) mantenido durante 48 h en medio de crecimiento. Los niveles de expresión de génica fueron medidos a 12, 24 y 48 h mediante qRT-PCR normalizado a expresión de GAPDH y comparados con los niveles en hMSCs antes de la encapsulación. Figure 15: Chondrogenic marker expression of hMSCs encapsulated in fibrin 2 and 4 mg / mL hydrogels activated with mRNA and pDNA cultured for 7 and 21 days in complete chondrogenic medium. Expression of (A) SOX9, (B) aggrecan, (C) type II collagen, at 7 and 21 days. Gene expression levels were measured by qRT-PCR, normalized to GAPDH expression and compared to levels in hMSCs before encapsulation. Data are shown as mean and standard deviation of two replicates in one experiment. A standard pellet culture is shown as comparative. Figure 16. Expression of myogenic marker after transfection of hMSCs in fibrin scaffolds 2 mg / mL (left) and 4 mg / mL (right) activated with MyoD mRNA (1 μg, 3: 1 3DFectIN / mRNA) maintained for 48 h in the middle of growth. Gene expression levels were measured at 12, 24 and 48 h by means of qRT-PCR normalized to GAPDH expression and compared to the levels in hMSCs before encapsulation.
Figura 17. Expresión de los marcadores miogénicos de hMSCs encapsuladas en hidrogeles de fibrina 2 y 4 mg/mL activados con MyoD mRNA. Las células se cultivaron durante 14 días en medio sérico reducido y se midieron las expresiones de MYOD (A) y MYOG (B) mediante qRT-PCR. Los niveles de expresión de génica fueron normalizados a expresión de β-actin y comparados con los niveles en hMSCs antes de la encapsulación. Los datos se muestran como media y desviación estándar de tres réplicas en un experimento. Figure 17. Expression of myogenic markers of hMSCs encapsulated in fibrin hydrogels 2 and 4 mg / mL activated with MyoD mRNA. The cells were cultured for 14 days in reduced serum medium and the expressions of MYOD (A) and MYOG (B) were measured by qRT-PCR. Gene expression levels were normalized to β-actin expression and compared to levels in hMSCs before encapsulation. Data are shown as mean and standard deviation of three replicates in one experiment.
Descripción detallada de la invención Detailed description of the invention
En un aspecto, la invención se refiere a un andamio biodegradable que comprende un polímero biodegradable, un mRNA aislado que codifica un factor de transcripción y un agente de transfección. In one aspect, the invention relates to a biodegradable scaffold comprising a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent.
Los andamios de la invención tienen la ventaja de que son biocompatibles y no ejercen importante toxicidad a células residentes (ejemplo 4 y figura 9C, 10C y 10D). Además, los andamios de la invención pueden soportar proliferación celular (ejemplo 4) y pueden conducir a elevados niveles de expresión forzada de los factores de transcripción por las células (ejemplo 6, figura 9A y 9B); incluso la transfección fue efectiva en células mesenquimales humanas (ejemplos 6 y 7 y figura 12A). The scaffolds of the invention have the advantage that they are biocompatible and do not exert significant toxicity to resident cells (example 4 and Figure 9C, 10C and 10D). In addition, the scaffolds of the invention can support cell proliferation (example 4) and can lead to high levels of forced expression of transcription factors by cells (example 6, Figure 9A and 9B); even transfection was effective in human mesenchymal cells (examples 6 and 7 and figure 12A).
Los andamios de la invención activados con mRNA codificando SOX9 son capaces de conseguir la transfección en un entorno tridimensional, y lograr una expresión significativa de SOX9 en U87MG y también en células humanas mesenquimales (hMSCs). Esta expresión es mucho más elevada que la obtenida cuando se empleó un ADN plasmídico (pDNA) (ejemplo 6, figuras 9 A, 9B y 12A). The scaffolds of the invention activated with mRNA encoding SOX9 are capable of achieving transfection in a three-dimensional environment, and achieving significant expression of SOX9 in U87MG and also in human mesenchymal cells (hMSCs). This expression is much higher than that obtained when a plasmid DNA (pDNA) was used (example 6, Figures 9 A, 9B and 12A).
Además, hemos confirmado que los andamios de la invención activados con mRNA pueden modificar el perfil de expresión génico de las células residentes, conduciendo per
se a la diferenciación de hMSCs hacia un linaje condrogénico (ejemplos 8, 9 y 10; figuras 13, 14 y 15) y linajes miogénicos (ejemplos 11 y 12; figuras 16 y 17). In addition, we have confirmed that mRNA-activated scaffolds of the invention can modify the gene expression profile of resident cells, leading per the differentiation of hMSCs into a chondrogenic lineage (examples 8, 9 and 10; figures 13, 14 and 15) and myogenic lineages (examples 11 and 12; figures 16 and 17).
"Andamio" significa una estructura temporal usada para sostener células en tres dimensiones, mientras reconstruyen un tejido u órgano o realizan otras funciones biológicas. Andamios de tejidos están ampliamente descritos en la bibliografía, y pueden tener dos posibles estructuras, o estructuras intermedias entre extremos: (i) una estructura sólida en forma de matriz que tiene poros interconectados suficientemente grandes (>50 μιη) para permitir penetración celular y hospedaje o (ii) una estructura de hidrogel donde las células pueden ser encapsuladas. Los andamios de la invención son biodegradables y así adecuados para ser reemplazados por tejido natural. "Scaffolding" means a temporary structure used to support cells in three dimensions, while reconstructing a tissue or organ or performing other biological functions. Tissue scaffolds are widely described in the literature, and can have two possible structures, or intermediate structures between ends: (i) a solid matrix-shaped structure that has interconnected pores large enough (> 50 μιη) to allow cell penetration and lodging or (ii) a hydrogel structure where cells can be encapsulated. The scaffolds of the invention are biodegradable and thus suitable to be replaced by natural tissue.
El término "biocompatibilidad" se entiende que se refiere a la capacidad de un material para llevar a cabo con una apropiada respuesta en su hospedador en una situación específica. Para que se considere biocompatible, un dispositivo debería de cumplir con ISO 10993 o un standard similar, y ser testado en animales y en ensayos clínicos. The term "biocompatibility" is understood to refer to the ability of a material to perform with an appropriate response in its host in a specific situation. To be considered biocompatible, a device should comply with ISO 10993 or a similar standard, and be tested in animals and in clinical trials.
Los materiales que son susceptibles para la preparación de los andamios de la invención, que son biocompatibles y biodegradables y están bien descritos en la bibliografía, se pueden clasificar en materiales inorgánicos, polímeros degradables enzimáticamente y polímeros degradables hidrolíticamente. Ejemplos de materiales inorgánicos biodegradables son, pero no se limitan a, materiales cerámicos tales como apatitas, por ejemplo de hidroxiapatita, y el silicio poroso. Preferiblemente, el material utilizado debe estar libre de residuos de patógenos de origen animal o humano. Materials that are susceptible to the preparation of the scaffolds of the invention, which are biocompatible and biodegradable and are well described in the literature, can be classified into inorganic materials, enzymatically degradable polymers and hydrolytically degradable polymers. Examples of biodegradable inorganic materials are, but are not limited to, ceramic materials such as apatites, for example hydroxyapatite, and porous silicon. Preferably, the material used should be free of residues of pathogens of animal or human origin.
"Biodegradable" en relación a la presente invención significa que el material es completamente reabsorbido cuando está en el entorno de un organismo después de 24 horas. "Biodegradable" in relation to the present invention means that the material is completely reabsorbed when it is in the environment of an organism after 24 hours.
"Polímero biodegradable" significa un polímero que se reabsorbe completamente tras la implantación después de 24 horas, y que es adecuado para acomodar o para el crecimiento de células. Preferiblemente, el polímero biodegradable está libre de materiales patogénicos y/o no deriva de muestras patogénicas. Los polímeros biodegradables en esta invención pueden ser polímeros degradables enzimáticamente y polímeros degradables hidrolíticamente. Polímeros degradables enzimáticamente como se entiende en la presente invención son, por ejemplo, colágeno, elastina, péptidos tipo-elastina, albúmina, fibrina, fibroína de seda, quitosano, alginato, ácido hialurónico y sulfato de condroitina. Polímeros
degradables hi droláticamente como se entiende en la presente invención son, por ejemplo poliésteres, poliuretanos, poli(éster amida), poli(orto ésteres), polianhídridos, poli(anhidro- co-imida), polianhídridos entrecruzados, poli(propilenfumarato), poli(pseudoaminoácidos), poli(alquil cianocrilatos), polifosfacenos, polifosfoésteres. Ejemplos de poliésteres útiles comprenden, pero no están limitados a, poliglicólico, poliláctico, poli(láctico-co-glicólico), polidioxanona, policaprolactona y poli(trimetilen carbonato). "Biodegradable polymer" means a polymer that is completely reabsorbed after implantation after 24 hours, and which is suitable for accommodating or for cell growth. Preferably, the biodegradable polymer is free of pathogenic materials and / or not derived from pathogenic samples. The biodegradable polymers in this invention can be enzymatically degradable polymers and hydrolytically degradable polymers. Enzymatically degradable polymers as understood in the present invention are, for example, collagen, elastin, elastin-like peptides, albumin, fibrin, silk fibroin, chitosan, alginate, hyaluronic acid and chondroitin sulfate. Polymers Hydrophilically degradable as understood in the present invention are, for example, polyesters, polyurethanes, poly (ester amides), poly (ortho esters), polyanhydrides, poly (anhydrous-imide), crosslinked polyanhydrides, poly (propylene fumarate), poly (pseudoamino acids), poly (alkyl cyanoacrylates), polyphosphazenes, polyphosphoesters. Examples of useful polyesters include, but are not limited to, polyglycolic, polylactic, poly (lactic-co-glycolic), polydioxanone, polycaprolactone and poly (trimethylene carbonate).
En una realización preferida de la invención el polímero biodegradable se selecciona de fibrina, alginato y mezclas de los mismos. In a preferred embodiment of the invention the biodegradable polymer is selected from fibrin, alginate and mixtures thereof.
"mRNA aislado" se entiende como una molécula polimérica hecha de ácidos nucleicos capaces de ser traducido en los ribosomas a una secuencia específica de aminoácidos, y por lo tanto, para expresar una o más proteínas, que ha sido aislado por procedimientos técnicos de un medio biológico o se ha sintetizado anteriormente para ser utilizado en el andamio de la presente invención. Este término también incluye mRNA que puede estar modificado químicamente. Algunos ejemplos de modificaciones químicas de ácidos nucleicos de ARNm, pero no limitado, son: 5-metil-citidina, 2-tio-uridina, 5- methoxyuridine, Ν-1-metilpseudo-uridina y pseudo-uridina. "isolated mRNA" is understood as a polymeric molecule made of nucleic acids capable of being translated in ribosomes to a specific amino acid sequence, and therefore, to express one or more proteins, which has been isolated by technical means procedures. biological or has been synthesized above to be used in the scaffolding of the present invention. This term also includes mRNA that can be chemically modified. Some examples of chemical modifications of mRNA nucleic acids, but not limited, are: 5-methyl-cytidine, 2-thio-uridine, 5- methoxyuridine, Ν-1-methylpseudo-uridine and pseudo-uridine.
El término "ARN mensajero" ("mRNA) se entiende como una molécula polimérica hecha de ácidos nucleicos capaces de ser traducido en los ribosomas a una secuencia específica de aminoácidos, y por lo tanto, para expresar una o más proteínas. En el contexto de esta invención, el mRNA está codificando al menos para un factor de transcripción (TF), Preferiblemente, eí mR A empleado en esta invención está optimizado para la traducción en células eu cariotas. Preferiblemente, el mRNA empleado en esta invención se sintetiza para un propósito específico y con secuencias específicas. Por lo tanto, conjuntos de mRNA extraídos de organismos vivos naturales, no manipulados o partes de ellos no son preferidos para la presente invención. The term "messenger RNA" ("mRNA) is understood as a polymeric molecule made of nucleic acids capable of being translated in ribosomes to a specific amino acid sequence, and therefore, to express one or more proteins. In the context of In this invention, the mRNA is encoding at least one transcription factor (TF). Preferably, the mR A used in this invention is optimized for translation in eu karyotic cells Preferably, the mRNA used in this invention is synthesized for a purpose specific and with specific sequences.Therefore, sets of mRNA extracted from natural, non-manipulated living organisms or parts thereof are not preferred for the present invention.
Aunque no se limita a estos procedimientos, el mRNA de la invención preferentemente se sintetiza mediante reacciones de transcripción in vitro, a partir de un molde de plásmido, o alternativamente, mediante síntesis química en fase sólida. Although not limited to these procedures, the mRNA of the invention is preferably synthesized by in vitro transcription reactions, from a plasmid template, or alternatively, by solid phase chemical synthesis.
Aunque no se limita a las estructuras descritas a continuación, la eficacia de la invención se beneficia de la utilización de secuencias de mRNA con alta estabilidad y traducibilidad. Las características estructurales del mRNA como un 5' Cap, una cola 3' poliadenina son algunas de las más importantes para asegurar una estabilidad apropiada y así permitir la
elevada capacidad de traducción. Esta cola de poliadenina puede sintetizarse mediante polimerización de poli(A) después de la transcripción in vitro o durante el paso de elongación de la propia transcripción in vitro. Para la segunda opción, es preferida la inclusión de un tramo 3' de oligotimidina en el plásmido molde. Esta opción es potencialmente útil para evitar la síntesis de colas de poliadenina de diferentes longitudes que pueden generar problemas de reproducibilidad. Una opción preferida es el uso de 5'- Cap, en particular se prefiere el uso de un Cap análogo anti-reverso (ARCA), que permite sintetizar exclusivamente RNAs capeados en la orientación correcta (Stepinski, 2001, RNA 7(10): 1486-95 y Peng, 2002, Org Lett 4(2): 161-4) y mejorar el rendimiento de las reacciones de transcripción in vitro. Although not limited to the structures described below, the effectiveness of the invention benefits from the use of mRNA sequences with high stability and translatability. The structural characteristics of mRNA such as a 5 'Cap, a 3' polyadenine tail are some of the most important to ensure proper stability and thus allow High translation capacity This polyadenine tail can be synthesized by polymerization of poly (A) after in vitro transcription or during the elongation step of the transcription itself in vitro. For the second option, the inclusion of a 3 'stretch of oligothimidine in the template plasmid is preferred. This option is potentially useful to avoid the synthesis of polyadenine tails of different lengths that can cause reproducibility problems. A preferred option is the use of 5'-Cap, in particular the use of an anti-reverse analogue Cap (ARCA) is preferred, which allows synthesizing exclusively weathered RNAs in the correct orientation (Stepinski, 2001, RNA 7 (10)): 1486-95 and Peng, 2002, Org Lett 4 (2): 161-4) and improve the performance of in vitro transcription reactions.
En cuanto a la traducción, se prefiere incluir una señal fuerte de iniciación de la traducción Kozak antes del marco de lectura abierto (ORF) del gen de interés, y flaquear esta secuencia con regiones no traducibles (UTRs) de genes de elevada traducción en los extremos 3'y 5'. . As for the translation, it is preferred to include a strong signal of initiation of the Kozak translation before the open reading frame (ORF) of the gene of interest, and weakening this sequence with non-translatable regions (UTRs) of high translation genes in the 3'and 5 'ends. .
Algunos UTRs de genes de elevada traducción incluyen, pero no se limitan a los que codifican las proteínas α y β-globina. Some high-translation gene UTRs include, but are not limited to those encoding the α and β-globin proteins.
Por lo tanto, una realización particular de la invención está dirigida a un mRNA que tiene un 5 '-Cap, más preferiblemente un 5 '-ARCA. Otra realización particular se refiere a un mRNA que tiene una cola poliadenina. Otra realización particular de la invención está dirigida a un mRNA que tiene una región no traducida 5', preferiblemente una región no traducida de un gen altamente traducido, como por ejemplo, α y β-globina. Y otra realización particular se refiere a un mRNA que tiene una región no traducida 3', preferiblemente una región no traducida de un gen altamente traducido como α y β- globina. Therefore, a particular embodiment of the invention is directed to an mRNA having a 5'-Cap, more preferably a 5'-ARK. Another particular embodiment relates to an mRNA having a polyadenine tail. Another particular embodiment of the invention is directed to an mRNA having a 5 'untranslated region, preferably an untranslated region of a highly translated gene, such as, for example, α and β-globin. And another particular embodiment relates to an mRNA having a 3 'untranslated region, preferably an untranslated region of a highly translated gene such as α and β-globin.
Las secuencias de mRNA pueden generar inmunidad celular, así, para la presente invención es preferido que algunos de los ácidos nucleicos estén modificados químicamente para reducir su reconocimiento inmune. Una realización particular de la invención se dirige a un mRNA que tiene ácidos nucleicos químicamente modificados seleccionados de la lista que consiste en 5-metil-citidina, 2-tio-uridina, 5-metoxiuridina, Nl-metilpseudo-uridina y pseudo-uridina. The mRNA sequences can generate cellular immunity, thus, for the present invention it is preferred that some of the nucleic acids be chemically modified to reduce their immune recognition. A particular embodiment of the invention is directed to an mRNA having chemically modified nucleic acids selected from the list consisting of 5-methyl-cytidine, 2-thio-uridine, 5-methoxyuridine, N-methylpseudo-uridine and pseudo-uridine.
El término "factor de transcripción" ("TF") significa una proteína que se une a secuencias específicas de DNA, controlando de este modo la tasa de transcripción de la información
genética del DNA al mRNA. A veces los TFs también se llaman "trans-activadores" en bibliografía, siendo ambos términos sinónimos. Los TFs para la presente invención preferiblemente tienen uno o más dominios de unión al DNA. Los TFs han sido clasificados por su superclase en: (1) dominios básicos, (2) dominios de unión al DNA zinc-coordinados, (3) hélice-giro-hélice, (4) factores con estructura beta y contactos en la hendidura menor, (5) otros factores de transcripción. Varias revisiones de la función y la estructura de TF están disponibles en la literatura (Latchman, 1997, Int J Biochem Cell Biol 29, 1305-1312). The term "transcription factor"("TF") means a protein that binds to specific DNA sequences, thereby controlling the information transcription rate. DNA genetics to mRNA. Sometimes TFs are also called "trans-activators" in bibliography, both terms being synonyms. The TFs for the present invention preferably have one or more DNA binding domains. TFs have been classified by their superclass into: (1) basic domains, (2) zinc-coordinated DNA binding domains, (3) helix-spin-helix, (4) beta structure factors and minor cleft contacts , (5) other transcription factors. Several reviews of the function and structure of TF are available in the literature (Latchman, 1997, Int J Biochem Cell Biol 29, 1305-1312).
La base de datos de descriptores Medical Subject Headings (MeSH) identifica TFs mediante los tres números D12.776.930. Hay varias bases de datos de TF disponibles para buscar secuencias y funciones de TFs, por ejemplo, JASPAR (http://j aspar. enereg.net). En una realización preferida de la invención, el mRNA codifica para un factor de transcripción condrogénico. The Medical Subject Headings (MeSH) descriptor database identifies TFs through the three numbers D12.776.930. There are several TF databases available for searching sequences and functions of TFs, for example, JASPAR (http: // j aspar. Enereg.net). In a preferred embodiment of the invention, the mRNA encodes a chondrogenic transcription factor.
En una realización preferida de la invención, los TFs codificados activan programas genéticos responsables de la diferenciación celular o desdiferenciación. En una realización preferida de la invención, eí mRN A codifica para un factor de transcripción seleccionado del grupo que consiste en SOX9, MyoD, NeuroDl, c-Myc, Klf4, Nanog, Oct4, SOX2, C/ΕΒΡ-β, PPAR-γ, Brn2, Lmxla, Nurrl, Mashl, Mytll y NeuroG2. En una realización más preferida de la invención, el mRNA codifica para los factores de transcripción seleccionado de SOX9, MyoD, NeuroDl , SOX2, Oct4, Klf4 y c-Myc. En una realización más preferida de la invención, el TF es SOX9. In a preferred embodiment of the invention, the encoded TFs activate genetic programs responsible for cell differentiation or dedifferentiation. In a preferred embodiment of the invention, mRN A codes for a transcription factor selected from the group consisting of SOX9, MyoD, NeuroDl, c-Myc, Klf4, Nanog, Oct4, SOX2, C / ΕΒΡ-β, PPAR-γ , Brn2, Lmxla, Nurrl, Mashl, Mytll and NeuroG2. In a more preferred embodiment of the invention, the mRNA encodes for the transcription factors selected from SOX9, MyoD, NeuroDl, SOX2, Oct4, Klf4 and c-Myc. In a more preferred embodiment of the invention, the TF is SOX9.
El término "agente de transfección" se entiende como un compuesto capaz de mejorar la cesión de la secuencia de ARN mensajero (mRNA) al citoplasma. Así, la presencia de un agente de transfección se evidencia por un incremento marcado de la expresión del gen objetivo. El agente de transfección, también llamado sistema de cesión de genes, vehículo de cesión de genes, o matrices activadas de genes, han sido descritos en muchas publicaciones (Borrajo, 2015, In: Polymers in Regenerative Medicine, 285-336). The term "transfection agent" is understood as a compound capable of improving the cession of the messenger RNA sequence (mRNA) to the cytoplasm. Thus, the presence of a transfection agent is evidenced by a marked increase in the expression of the target gene. The transfection agent, also called the gene transfer system, gene transfer vehicle, or gene activated matrices, has been described in many publications (Borrajo, 2015, In: Polymers in Regenerative Medicine, 285-336).
Los agentes de transfección pueden estar hechos de materiales inorgánicos, materiales lipidíeos y materiales poliméricos. Aunque no está limitado a estos, una posible lista de agentes de transfección inorgánicos son sales de fosfato cálcico y nanopartículas de silicio catiónicas.
Agentes de transfección lipidíeos se pueden clasificar en lípidos condensantes y no condensantes, siendo los condensantes frecuentemente denominados lipoplejos. Los lípidos no condensantes son emulsiones, nanoemulsiones y liposomas que pueden encapsular el material genético. Los lipoplejos se forman mediante lípidos con una cadena alifática y uno o varios grupos catiónicos. Aunque no está necesariamente limitado a estos, a menudo estos grupos catiónicos son aminas primarias, secundarias o terciarias, o estructuras con una mezcla de estas. La carga neta de los lípidos en los lipoplexos deberían de ser positivos a pH fisiológico, como medida de du potencial zeta, y deberían de ser capaces de unirse a material genético mediante fuerzas electrostáticas. Transfection agents may be made of inorganic materials, lipid materials and polymeric materials. Although not limited to these, a possible list of inorganic transfection agents are calcium phosphate salts and cationic silicon nanoparticles. Lipid transfection agents can be classified as condensing and non-condensing lipids, the condensers being often referred to as lipoplexes. Non-condensing lipids are emulsions, nanoemulsions and liposomes that can encapsulate the genetic material. Lipoplejos are formed by lipids with an aliphatic chain and one or more cationic groups. Although not necessarily limited to these, these cationic groups are often primary, secondary or tertiary amines, or structures with a mixture of these. The net lipid charge in lipoplexes should be positive at physiological pH, as a measure of du zeta potential, and should be able to bind to genetic material by electrostatic forces.
Agentes de transfección poliméricos también se pueden clasificar como condensantes y no condensantes. Los no condensantes generalmente se unen a material genético mediante alguna técnica de encapsulación o a través de fuerzas débiles. Polymeric transfection agents can also be classified as condensing and non-condensing. Non-condensing generally binds to genetic material through some encapsulation technique or through weak forces.
Los vehículos poliméricos condensantes están formados por polímeros que muestran una carga neta positiva a pH fisiológico, como medida del potencial zeta, y que se pueden unir al material genético, mediante fuerzas electrostáticas. The condensing polymeric vehicles are formed by polymers that show a positive net charge at physiological pH, as a measure of zeta potential, and that can be attached to the genetic material, by electrostatic forces.
En una realización preferida de la invención, el agente de transfección se selecciona de entre lípidos catiónicos, polímeros catiónicos, y una sal de fosfato cálcico. In a preferred embodiment of the invention, the transfection agent is selected from cationic lipids, cationic polymers, and a calcium phosphate salt.
En una realización preferida de la invención, el agente de transfección. En una realización preferida de la invención, el agente de transfección es un agente condensante lipídico. En una realización más preferida de la invención, el agente condensante lipídico es Lipofectamina o 3DFectIN. In a preferred embodiment of the invention, the transfection agent. In a preferred embodiment of the invention, the transfection agent is a lipid condensing agent. In a more preferred embodiment of the invention, the lipid condensing agent is Lipofectamine or 3DFectIN.
En una realización preferida de la invención, el agente de transfección es un agente condensante polimérico. En una realización más preferida de esta invención, el agente polimérico condensante es poliarginina. En otra realización más preferida de la invención, el agente polimérico condenstante es poloxamina. En otra realización más preferida de la invención, agente polimérico condensante es un polifosfaceno catiónico. In a preferred embodiment of the invention, the transfection agent is a polymeric condensing agent. In a more preferred embodiment of this invention, the condensing polymeric agent is polyarginine. In another more preferred embodiment of the invention, the condensing polymeric agent is poloxamine. In another more preferred embodiment of the invention, condensing polymeric agent is a cationic polyphosphazene.
En una realización particular de la invención, el anadamio biodegradable comprende además células. Aunque una variedad de células se podría beneficiar de la capacidad de esta invención para ejercer control sobre sus funciones, las células primarias son de primer interés. Entre ellas, células progenitoras con alta plasticidad tales como células madre adultas y células madre pluripotentes inducidas podrían ser los mejores candidatos para ser incluidos a esta invención. Estas células tienen la capacidad de proliferar y pueden
recapitular diferentes vías de diferenciación. Las células incorporadas al andamiaje de la invención, pueden proliferar y formar estructuras biológicas en forma 3D incluyendo tejidos en estos andamios. In a particular embodiment of the invention, the biodegradable anadamium further comprises cells. Although a variety of cells could benefit from the ability of this invention to exert control over their functions, primary cells are of first interest. Among them, progenitor cells with high plasticity such as adult stem cells and induced pluripotent stem cells could be the best candidates to be included in this invention. These cells have the ability to proliferate and can recapitulate different ways of differentiation. The cells incorporated into the scaffolding of the invention can proliferate and form biological structures in 3D form including tissues in these scaffolds.
En una realización particular, las células se seleccionan del grupo que consiste en células primarias y líneas celulares inmortalizadas. En una realización particular, las células no son células madre embrionarias. En una realización preferida, el andamio de la invención es clínicamente útil ya que es biodegradable y biocompatible. In a particular embodiment, the cells are selected from the group consisting of primary cells and immortalized cell lines. In a particular embodiment, the cells are not embryonic stem cells. In a preferred embodiment, the scaffold of the invention is clinically useful since it is biodegradable and biocompatible.
En una realización más preferida de la invención, las células primarias son células progenitoras. En una realización más preferida de la invención, las células primarias son células madre adultas o células madre pluripotentes inducidas. En una realización preferida de la invención, las células madre adultas son células madre mesenquimales. In a more preferred embodiment of the invention, the primary cells are progenitor cells. In a more preferred embodiment of the invention, the primary cells are adult stem cells or induced pluripotent stem cells. In a preferred embodiment of the invention, adult stem cells are mesenchymal stem cells.
En otra realización preferida de la invención, las células primarias son fibroblastos o condrocitos. In another preferred embodiment of the invention, the primary cells are fibroblasts or chondrocytes.
En otra realización, la invención se dirige a una composición farmacéutica que comprende un andamio como se describe arriba. In another embodiment, the invention is directed to a pharmaceutical composition comprising a scaffold as described above.
En una realización particular, la composición farmacéutica comprende además vehículos farmacéuticamente aceptables. In a particular embodiment, the pharmaceutical composition further comprises pharmaceutically acceptable carriers.
En otra realización particular, la composición farmacéutica comprende además al menos un ingrediente farmacéutico activo adicional. Así, otros fármacos o compuestos se pueden incorporar a las composiciones para mejorar su actuación o mejorar su presentación para el uso final. En una realización preferida, el ingrediente activo adicional se selecciona de fármacos, como por ejemplo antibióticos, inmunosupresores, anti-inflamatorios, de biológicos como por ejemplo factores de crecimiento, citoquinas, morfógenos, proteínas, polisacáridos de la matriz extracelular; de compuestos para modificar las propiedades mecánicas y de gelificación de los andamios como por ejemplo agentes de entrecruzamiento adicionales. In another particular embodiment, the pharmaceutical composition further comprises at least one additional active pharmaceutical ingredient. Thus, other drugs or compounds can be incorporated into the compositions to improve their performance or improve their presentation for final use. In a preferred embodiment, the additional active ingredient is selected from drugs, such as antibiotics, immunosuppressants, anti-inflammatories, biologics such as growth factors, cytokines, morphogens, proteins, extracellular matrix polysaccharides; of compounds for modifying the mechanical and gelling properties of scaffolds such as additional crosslinking agents.
En otra realización particular, la composición farmacéutica es una solución inyectable, suspensión, hidrogel o una matriz porosa sólida. In another particular embodiment, the pharmaceutical composition is an injectable solution, suspension, hydrogel or a solid porous matrix.
En otra realización particular, la composición farmacéutica es para uso como vacuna. In another particular embodiment, the pharmaceutical composition is for use as a vaccine.
En otra realización particular, la invención se refiere a un método para preparar el andamio de la invención como se describe arriba, que comprende:
(i) Mezclar un polímero biodegradable, un mRNA aislado que codifica para un factor de transcripción y un agente de transfección, y opcionalmente células seleccionadas de entre el grupo que consiste en células primarias y líneas celulares inmortalizadas, In another particular embodiment, the invention relates to a method for preparing the scaffolding of the invention as described above, comprising: (i) Mixing a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent, and optionally selected cells from the group consisting of primary cells and immortalized cell lines,
(ii) Incubar la mezcla preparada en (i), (ii) Incubate the prepared mixture in (i),
(iii) Inducir la coagulación de la mezcla preparada en (ii). (iii) Induce coagulation of the mixture prepared in (ii).
En otra realización particular, la invención se refiere a un método alternativo para preparar el andamio de la invención como se describe arriba, que comprende: In another particular embodiment, the invention relates to an alternative method for preparing the scaffold of the invention as described above, comprising:
(i) Preparar un andamio, (i) Prepare a scaffold,
(ii) Mezclar un mRNA aislado que codifica para un agente de transcripción y un agente de transfección, (ii) Mix an isolated mRNA encoding a transcription agent and a transfection agent,
(iii) Incubar la mezcla preparada en (ii) sobre el andamio preparado en (i), y opcionalmente añadir células. (iii) Incubate the mixture prepared in (ii) on the scaffold prepared in (i), and optionally add cells.
En una realización particular, el polímero biodegradable se selecciona de fibrina, alginato y mezclas de los mismos. En una realización preferida, la concentración de fibrina es de entre 1 mg/mL y 5 mg/mL. En una realización más preferida, la concentración de fibrina es de entre 2 mg/mL y 4 mg/mL. In a particular embodiment, the biodegradable polymer is selected from fibrin, alginate and mixtures thereof. In a preferred embodiment, the fibrin concentration is between 1 mg / mL and 5 mg / mL. In a more preferred embodiment, the fibrin concentration is between 2 mg / mL and 4 mg / mL.
En una realización particular, la coagulación de la etapa (iii), se lleva a cabo mediante la adición de un agente de coagulación. En una realización preferida, el agente de coagulación se selecciona de trombina, sal cálcica y sal de polifosfato. In a particular embodiment, the coagulation of step (iii) is carried out by the addition of a coagulation agent. In a preferred embodiment, the coagulation agent is selected from thrombin, calcium salt and polyphosphate salt.
En una realización particular de la invención, cuando la trombina se usa como agente de coagulación, el rango de trombina que se usa está entre 0.2 U y 1.2 U por mg del fibrinógeno usado. In a particular embodiment of the invention, when thrombin is used as a coagulation agent, the thrombin range used is between 0.2 U and 1.2 U per mg of the fibrinogen used.
En el método alternativo, la interacción del andamio y el mRNA/agente de transfección en la etapa (iii) puede ser reforzada mediante secado o liofilización del sistema. In the alternative method, the interaction of the scaffold and the mRNA / transfection agent in step (iii) can be reinforced by drying or lyophilization of the system.
En otra realización, la invención se refiere a un andamio biodegradable obtenido por el método descrito arriba. In another embodiment, the invention relates to a biodegradable scaffold obtained by the method described above.
En otra realización, la invención se refiere al uso de un andamio de la invención, como un reactivo de diferenciación in vitro o como implante cosmético. In another embodiment, the invention relates to the use of a scaffold of the invention, as an in vitro differentiation reagent or as a cosmetic implant.
Otro aspecto de la invención se refiere al uso de un andamio biodegradable como se describe arriba como dispositivo para la regeneración de tejido y órganos. En una
realización preferida de la invención, el andamio biodegradable se usa como dispositivo para regeneración de cartílago. Another aspect of the invention relates to the use of a biodegradable scaffold as described above as a device for tissue and organ regeneration. In a Preferred embodiment of the invention, the biodegradable scaffold is used as a device for cartilage regeneration.
Otro aspecto de la invención se refiere al uso de un andamio biodegradable definido arriba para propósitos cosméticos. Another aspect of the invention relates to the use of a biodegradable scaffold defined above for cosmetic purposes.
Un último aspecto de la invención se refiere al uso de un andamio biodegradable como se define arriba como un fármaco para prevenir, paliar o curar enfermedades. A final aspect of the invention relates to the use of a biodegradable scaffold as defined above as a drug for preventing, alleviating or curing diseases.
A continuación se describen algunos ejemplos ilustrativos de la invención; sin embargo, no deben de ser consideradas como limitaciones impuestas a la misma. Some illustrative examples of the invention are described below; however, they should not be considered as limitations imposed on it.
EJEMPLOS Ejemplo 1 EXAMPLES Example 1
Síntesis de mRNA codificante de la proteína fluorescente YFP: Un plásmido para la transcripción in vitro de mRNA fue diseñado basado en el plásmido pBluescript KS (pBSK KS, Stratagene, EE.UU.), con un promotor de la transcripción de T7. En este plásmido, la secuencia de YFP y una señal de poliadenilación fue clonada a partir de un plásmido pIRES YFP (Clontech, Alemania), utilizando los sitios de restricción Smal y Xhol. El diseño correcto se verificó a través de su escisión en sitios de restricción, y análisis por ensayos de migración en gel y secuenciación. La estructura del plásmido utilizado se representa en la Figura 1A. El mRNA se sintetizó con un Cap análogo anti-reverso (ARCA) a través del kit ultra mMACHINE T7 (Ambio), siguiendo las instrucciones del fabricante. El mRNA se puede aislar por un método de extracción estándar de fenol- cloroformo. Sin embargo, se consigue una mejor reproducibilidad entre lotes de mRNA si la extracción se realiza con un tubo Phase Lock Gel Light (5Prime, Alemania), siguiendo las instrucciones del fabricante. Synthesis of YR fluorescent protein encoding mRNA: A plasmid for in vitro transcription of mRNA was designed based on plasmid pBluescript KS (pBSK KS, Stratagene, USA), with a T7 transcription promoter. In this plasmid, the YFP sequence and a polyadenylation signal was cloned from a YFP pIRES plasmid (Clontech, Germany), using the Smal and Xhol restriction sites. The correct design was verified through its cleavage at restriction sites, and analysis by gel migration and sequencing assays. The structure of the plasmid used is depicted in Figure 1A. The mRNA was synthesized with an anti-reverse analogue Cap (ARCA) through the ultra mMACHINE T7 kit (Ambio), following the manufacturer's instructions. The mRNA can be isolated by a standard phenol-chloroform extraction method. However, better reproducibility between batches of mRNA is achieved if the extraction is performed with a Phase Lock Gel Light tube (5Prime, Germany), following the manufacturer's instructions.
Para verificar la actividad del mRNA, las células U87MG fueron transfectadas con Lipofectamine 2000 (Invitrogen) según las recomendaciones del fabricante, las células U87MG se sembraron en placas de 96 pocilios a una densidad de 78125 células/cm2 el día antes de la transfección. 4 h antes de la transfección, se eliminó el medio de cultivo y se reemplazó por 50 μΕ de OptiMEM (Gibco). Los lipoplexos se prepararon a continuación
en 50 μΐ de OptiMEM (Gibco), con 0,5 μg de mRNA y con una proporción de mRNA: lípido de 2: 1; los complejos preparados se añadieron a las células. Después de 6 h de incubación, el medio con lipoplexos se eliminó y se reemplazó con medio de cultivo fresco. La presencia de células fluorescentes se verificó mediante un microscopio de fluorescencia (Olympus) 24 h después de la transfección. Los resultados confirmaron que una alta fracción de las células que pueden ser observadas con luz trasmitida fueron transfectadas con éxito (fig. IB). To verify the activity of mRNA, U87MG cells were transfected with Lipofectamine 2000 (Invitrogen) according to the manufacturer's recommendations, U87MG cells were seeded in 96-well plates at a density of 78125 cells / cm 2 the day before transfection. 4 h before transfection, the culture medium was removed and replaced with 50 μΕ of OptiMEM (Gibco). The lipoplexes were prepared next in 50 μΐ of OptiMEM (Gibco), with 0.5 μg of mRNA and with a ratio of mRNA: lipid of 2: 1; The prepared complexes were added to the cells. After 6 h of incubation, the medium with lipoplexes was removed and replaced with fresh culture medium. The presence of fluorescent cells was verified by a fluorescence microscope (Olympus) 24 h after transfection. The results confirmed that a high fraction of the cells that can be observed with transmitted light were successfully transfected (fig. IB).
Las células U87MG fueron cultivadas rutinariamente en medio completo, que consiste en Dulbecco's Modified Eagle's Médium con alta glucosa (D5671 Sigma) suplementado con 10% de suero bovino fetal, 2 mM de glutamina y 100 mg/L de penicilina-estreptomicina (Sigma-Aldrich). El cultivo se mantuvo a 37 ° C y bajo una atmósfera de 5% de C02. Un esquema del andamiaje, las células, los mRNA y el agente de transfección se representa en la Figura 2 A; la ilustración representa un andamiaje biodegradable activado con mRNA que codifica para los factores de transcripción y complejado este a un agente de transfección. La inclusión de las células en el andamiaje podría ser una opción interesante para algunas aplicaciones, pero se considera como opcional en la presente invención. U87MG cells were routinely cultured in complete medium, consisting of Dulbecco's Modified Eagle's Medium with high glucose (D5671 Sigma) supplemented with 10% fetal bovine serum, 2 mM glutamine and 100 mg / L penicillin-streptomycin (Sigma-Aldrich ). The culture was maintained at 37 ° C and under an atmosphere of 5% C0 2 . A scheme of scaffolding, cells, mRNAs and the transfection agent is depicted in Figure 2A; The illustration depicts a biodegradable scaffold activated with mRNA that codes for transcription factors and complexed this to a transfection agent. The inclusion of the cells in the scaffolding could be an interesting option for some applications, but it is considered as optional in the present invention.
Preparación de los andamiajes de fibrina activados con 1 o 2 μg de mRNA y 3DFectIN como agente de transfección: En primer lugar, 1 μg o 2 μg de mRNA fueron diluidos hasta 25 μΐ en OptiMEM (para andamiajes activados con 1 o 2 μg de mRNA, respectivamente). A continuación, esta disolución de mRNA se mezcló con otra fase de 25 μΐ de 3DFectin (OZ Biosci enees, Francia) en OptiMEM. Para andamiajes con 1 μg de mRNA, esta segunda fase tenía 2, 3 o 4 μΐ de 3DFectIN (correspondiente a las relaciones 2: 1, 3 : 1 o 4: 1, respectivamente) diluido hasta 25 μΕ en OptiMEM. Para los andamiajes con 2 μg de mRNA, esta segunda fase tenía 4, 6 o 8 μΐ de 3DFectIN (correspondiente a las relaciones 2: 1, 3 : 1 o 4: 1, respectivamente) y diluido hasta 25 μΕ en OptiMEM. El mRNA y las fases 3DFectIN se mezclaron y se dejaron interactuar durante 20 minutos. Esta reacción da lugar a 50 μΐ, de fase 3DFectIN/mRNA. Preparation of fibrin scaffolds activated with 1 or 2 μg of mRNA and 3DFectIN as a transfection agent: First, 1 μg or 2 μg of mRNA were diluted up to 25 μΐ in OptiMEM (for scaffolds activated with 1 or 2 μg of mRNA , respectively). Next, this mRNA solution was mixed with another 25 μΐ phase of 3DFectin (OZ Biosci enees, France) in OptiMEM. For scaffolds with 1 μg of mRNA, this second phase had 2, 3 or 4 μΐ of 3DFectIN (corresponding to the 2: 1, 3: 1 or 4: 1 ratios, respectively) diluted up to 25 μΕ in OptiMEM. For scaffolds with 2 μg of mRNA, this second phase had 4, 6 or 8 μΐ of 3DFectIN (corresponding to the 2: 1, 3: 1 or 4: 1 ratios, respectively) and diluted up to 25 μΕ in OptiMEM. The mRNA and 3DFectIN phases were mixed and allowed to interact for 20 minutes. This reaction gives rise to 50 μΐ, phase 3DFectIN / mRNA.
Además de esta fase 3DFectIN/mRNA, se prepararon otras dos disoluciones. Una disolución de fibrinógeno de 20 μΕ a 10 o 20 mg/mL se preparó para generar andamiajes de 2 o 4 mg/mL de concentración final. Una solución de trombina de 20 μΕ a 12,5 U/mL fue preparada también como reticulante del fibrinógeno. La disolución de fibrinógeno se pipetea después en un pocilio de cultivo o en el lugar donde se pretende generan los
andamiajes. Los complejos 3DFectIN/mRNA se mezclan después con 10 μΐ^ de OptiMEM y la suspensión resultante se mezcla con el fibrinógeno mediante pipeteo. A continuación, esta fase se mezcla con una disolución de trombina para la gelificación. Después de 1 h de incubación a 37 ° C con la trombina, todas estas posibles combinaciones de sistemas han formado un hidrogel. In addition to this 3DFectIN / mRNA phase, two other solutions were prepared. A fibrinogen solution of 20 μΕ at 10 or 20 mg / mL was prepared to generate scaffolds of 2 or 4 mg / mL of final concentration. A thrombin solution of 20 μΕ at 12.5 U / mL was also prepared as a fibrinogen crosslinker. The fibrinogen solution is then pipetted into a culture well or where it is intended to generate the scaffolding The 3DFectIN / mRNA complexes are then mixed with 10 μΐ ^ OptiMEM and the resulting suspension is mixed with the fibrinogen by pipetting. This phase is then mixed with a thrombin solution for gelation. After 1 h of incubation at 37 ° C with thrombin, all these possible combinations of systems have formed a hydrogel.
Las células se pueden integrar en esta composición, cambiando los 10 μΐ^ de OptiMEM añadidos a los complejos de 3DFectIN/mRNA por el mismo volumen de suspensión de células en OptiMEM. Un número de l,5xl05 células pueden ser fácilmente incorporados en este volumen. Cuando las células van a ser cultivadas en los andamiajes, se puede añadir medio celular completo a los andamiajes después de su formación, es decir, después de 1 h de incubación del fibrinógeno y la trombina a 37°C. The cells can be integrated into this composition, changing the 10 μΐ ^ of OptiMEM added to the 3DFectIN / mRNA complexes by the same volume of cell suspension in OptiMEM. A number of 1, 5 x 10 5 cells can be easily incorporated into this volume. When the cells are to be cultured in the scaffolds, complete cell media can be added to the scaffolds after their formation, that is, after 1 h of incubation of the fibrinogen and thrombin at 37 ° C.
las células madre mesenquimales humanas (hMSC) se incorporaron a los andamiajes de fibrina activados con mRNA codificante de YFP. La observación mediante microscopía óptica muestra que hMSCs están perfectamente integradas en estas matrices en 3D, y pueden ser cultivadas tanto en andamiajes de fibrina de 4 mg/mL como en andamiajes de 2 mg/mL (Figura 2B). Human mesenchymal stem cells (hMSC) were incorporated into fibrin scaffolds activated with YFP-encoding mRNA. Observation by optical microscopy shows that hMSCs are perfectly integrated into these 3D matrices, and can be grown both in 4 mg / mL fibrin scaffolds and in 2 mg / mL scaffolds (Figure 2B).
Andamiajes activados con ADN plasmídico (pDNA): como referencia, se prepararon también andamiajes de fibrina activados con pDNA codificante de YFP. El plásmido usado para estos experimentos era el mismo que utilizamos para la transcripción in vitro de mRNA (Figura 1), ya que el plásmido pBSK KS tiene también un promotor de la transcripción eucariótica. Estos andamiajes se pueden preparar exactamente de la misma manera que los activados con mRNA, pero cambiando mRNA por la misma cantidad de pDNA. Los andamiajes activados con pDNA mostraron exactamente las mismas propiedades morfológicas y mecánicas. Esperamos que los complejos de 3Dfectin/pADN tendrán una distribución similar en los andamiajes a los complejos de 3Dfectin/mRNA. Debido a esto, marcamos los andamiajes activados con pDNA mediante SYBRGold (Thermo Fisher Scientific, Inc.), y observamos la distribución de la fluorescencia en los andamiajes sin células (Figura 2C). La fluorescencia estuvo presente en todas las áreas del andamiaje para ambos andamiajes (2 y 4 mg/mL de fibrinógeno). Sin embargo, se observó mayor agregación para proporciones de 3DFectIN/pDNA más elevadas que eran consistentes con el mayor tamaño del complejo medido por espectroscopia de correlación
de fotón a esas proporciones (tabla 1). El menor tamaño de los complejos 3DFectin/mRNA dificulta la observación de su distribución en los andamiajes. Plasmid DNA activated scaffolds (pDNA): as a reference, fibrin scaffolds activated with YFP-encoding pDNA were also prepared. The plasmid used for these experiments was the same as the one we used for in vitro transcription of mRNA (Figure 1), since plasmid pBSK KS also has a eukaryotic transcription promoter. These scaffolds can be prepared in exactly the same way as those activated with mRNA, but by changing mRNA for the same amount of pDNA. The scaffolds activated with pDNA showed exactly the same morphological and mechanical properties. We expect that 3Dfectin / pDNA complexes will have a similar distribution in scaffolds to 3Dfectin / mRNA complexes. Because of this, we mark the scaffolds activated with pDNA by SYBRGold (Thermo Fisher Scientific, Inc.), and observe the distribution of fluorescence in scaffolds without cells (Figure 2C). Fluorescence was present in all areas of the scaffolding for both scaffolds (2 and 4 mg / mL fibrinogen). However, greater aggregation was observed for higher proportions of 3DFectIN / pDNA that were consistent with the larger complex size measured by correlation spectroscopy. of photon at these proportions (table 1). The smaller size of 3DFectin / mRNA complexes makes it difficult to observe their distribution in scaffolds.
Tabla 1 : Caracterización fisicoquímica de los complejos transfectantes a base de pDNA y mRNA. Tamaño e índice de polidispersión (PDI) obtenido mediante microscopía de correlación fotónica. Table 1: Physicochemical characterization of transfectant complexes based on pDNA and mRNA. Polydispersion size and index (PDI) obtained by photonic correlation microscopy.
Se prepararon andamiajes de fibrina (2 mg/mL y 4 mg/mL) tal como se describió anteriormente, y se cargaron con l,5xl05 células U87MG. Fibrin scaffolds (2 mg / mL and 4 mg / mL) were prepared as described above, and loaded with 1.5 x 10 5 U87MG cells.
Los andamiajes de fibrina activados con mRNA se sembraron con células hMSC, y se cultivaron durante una semana a 37 ° C con medio completo (90% de humedad, 5% de C02). Después de una semana, los andamiajes se liofilizaron, se metalizaron con oro- paladio al vacío, y se estudiaron por microscopía electrónica de barrido (SEM, LEO 435VP-SEM, Soluciones SEMTECH, Reino Unido). Las imágenes de SEM confirmaron que los hidrogeles de fibrina forman una estructura altamente porosa (Figura 3 y 4). Contrariamente a nuestras expectativas, el tamaño de poro fue mayor en los hidrogeles de fibrina de 4 mg/mL que en los de 2 mg/mL. Las micrografías sugieren una estructura diferente para los andamiajes sembrados con células en comparación con andamiajes control. Esto podría estar relacionado con la contracción mecánica del andamiaje inducida por la adhesión celular y por la deposición de matriz extracelular por parte de dichas células. Fibrin scaffolds activated with mRNA were seeded with hMSC cells, and cultured for one week at 37 ° C with complete medium (90% humidity, 5% C0 2 ). After one week, the scaffolds were lyophilized, metallized with vacuum palladium, and studied by scanning electron microscopy (SEM, LEO 435VP-SEM, SEMTECH Solutions, United Kingdom). SEM images confirmed that fibrin hydrogels form a highly porous structure (Figure 3 and 4). Contrary to our expectations, the pore size was larger in fibrin hydrogels of 4 mg / mL than in those of 2 mg / mL. Micrographs suggest a different structure for scaffolds seeded with cells compared to control scaffolds. This could be related to the mechanical contraction of the scaffold induced by cell adhesion and by the deposition of extracellular matrix by said cells.
Ejemplo 2
Este ejemplo describe la síntesis de andamiajes de alginato activados con mRNA y dos polímeros catiónicos, poliarginina y protamina. Para los ejemplos actuales, se utilizó mRNA que codifica YFP, preparado tal como se describe en el ejemplo 1. En un primer paso, 1 o 2 μg de mRNA se mezclaron con una solución de 10 μΐ de poliarginina o protamina (1 o 2 mg) . La solución se dejó a interactuar durante 5 minutos a temperatura ambiente. Después, se añadieron 50 μΐ de alginato (8 o 16 mg) a esta suspensión y se mezcló. Después, se añadió a la disolución una suspensión de 10 μΐ con tiene 1.5xl05 células U87MG. El sistema formó una estructura de tipo hidrogel después de la adición de 70 μΐ de la primera mezcla sobre 30 μΐ de una solución de CaCl2 (243 o 486 mM). Los hidrogeles se estabilizan por incubación a 37 ° C, 5% de C02 y con un 95% de humedad durante 5 minutos. Después de este punto, se puede añadir medio completo de cultivo celular sobre los andamiajes. Example 2 This example describes the synthesis of alginate scaffolds activated with mRNA and two cationic polymers, polyarginine and protamine. For the current examples, mRNA encoding YFP was used, prepared as described in example 1. In a first step, 1 or 2 μg of mRNA was mixed with a solution of 10 μΐ of polyarginine or protamine (1 or 2 mg ). The solution was allowed to interact for 5 minutes at room temperature. Then, 50 μΐ of alginate (8 or 16 mg) was added to this suspension and mixed. Then, a 10 μΐ suspension was added to the solution with 1.5 x 10 5 U87MG cells. The system formed a hydrogel-like structure after the addition of 70 μΐ of the first mixture over 30 μΐ of a solution of CaCl 2 (243 or 486 mM). The hydrogels are stabilized by incubation at 37 ° C, 5% C0 2 and with 95% humidity for 5 minutes. After this point, complete cell culture medium can be added on the scaffolds.
Todos hidrogeles formaron estructuras estables y mecánicamente competentes, como se evidencia por pruebas de inversión de tubo (Figura 5, izquierda). Las células se integraron con éxito en los andamiajes, y pudieron ser cultivadas durante al menos cuatro días en estas estructuras (Figura 5, a la derecha). All hydrogels formed stable and mechanically competent structures, as evidenced by tube inversion tests (Figure 5, left). The cells were successfully integrated into the scaffolds, and could be cultured for at least four days in these structures (Figure 5, right).
Se comprobó que el prototipo con un 0,2% de protamina y 1,6% de alginato dio lugar a la expresión forzada de YFP. Ejemplo 3 It was found that the prototype with 0.2% protamine and 1.6% alginate resulted in the forced expression of YFP. Example 3
Se prepararon andamiajes de fibrina (4 mg /mL) activados con 3DFectIN/mRNA (1 o 2 μg de mRNA, proporciones 2: 1, 3 : 1 y 4: 1), usando un mRNA codificante de YFP según el método descrito en el ejemplo 1, pero antes de la adición de la trombina, en lugar de 10 μΐ de OptiMEM, se añadió el mismo volumen de este medio conteniendo 1.5xl05 células U87MG. Como referencia, se preparó un andamiaje de fibrina (4 mg/ mL) activado con 3DFectin/pDNA (1 μg de pDNA, relación 3 : 1) y con la misma concentración de células U87MG. Después de la formación de hidrogel, se añadió medio de cultivo completo y las células se cultivaron durante 5 días (37°C, 5% de C02), con cambios en el medio cada dos días. Fibrin scaffolds (4 mg / mL) activated with 3DFectIN / mRNA (1 or 2 µg of mRNA, ratios 2: 1, 3: 1 and 4: 1) were prepared, using a YFP coding mRNA according to the method described in the Example 1, but before the addition of thrombin, instead of 10 μΐ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 U87MG cells was added. As a reference, a fibrin scaffold (4 mg / mL) activated with 3DFectin / pDNA (1 μg of pDNA, 3: 1 ratio) and with the same concentration of U87MG cells was prepared. After hydrogel formation, complete culture medium was added and the cells were cultured for 5 days (37 ° C, 5% C0 2 ), with changes in the medium every two days.
La transfección celular se evaluó a través de un microscopio de fluorescencia a 24 h, 48 h, 72 h y 5 días (5 d) después de la preparación del andamiaje. Se tomaron imágenes ópticas de la misma área como referencia. Los resultados mostraron una alta transfección celular
en todos los andamiajes activados con mRNA independientemente de la relación 3DFectin/mRNA y del punto de tiempo de observación (Figuras 6, 8). La transfección de los andamiajes activados con mRNA fue claramente mayor que la observada para los andamiajes activados con pDNA (Figura 9 A-B, figura 12A). Este resultado fue una primera indicación de que los andamiajes activados con mRNA podían lograr niveles de expresión génica forzada superiores a los obtenidos con los andamiajes activados con pDNA. Cellular transfection was evaluated through a fluorescence microscope at 24 h, 48 h, 72 h and 5 days (5 d) after scaffolding preparation. Optical images of the same area were taken as a reference. The results showed a high cellular transfection in all scaffolds activated with mRNA regardless of the 3DFectin / mRNA ratio and the observation time point (Figures 6, 8). The transfection of mRNA activated scaffolds was clearly greater than that observed for pDNA activated scaffolds (Figure 9 AB, Figure 12A). This result was a first indication that mRNA activated scaffolds could achieve levels of forced gene expression higher than those obtained with pDNA activated scaffolds.
Ejemplo 4 Example 4
Se prepararon andamiajes de fibrina (4 mg/mL) activados con 3DFectIN/mRNA (1 μg de mRNA, relaciones 2: 1 y 3 : 1) codificando YFP tal como se describe en el ejemplo 1, pero antes de añadir la trombina, en lugar de 10 μΐ de OptiMEM, se añadió el mismo volumen de este medio conteniendo 1.5xl05 células U87MG. Como control negativo (C), se preparó un andamiaje no activado utilizando el mismo procedimiento, pero añadiendo sólo OptiMEM en lugar de la suspensión de 50 μΐ 3DFectIN/mRNA en OptiMEM. Después de la formación de hidrogel, se añadió medio de cultivo completo y las células fueron cultivadas durante 24, 48 h, 3 días y 7 días (37°C, 5% C02). Fibrin scaffolds (4 mg / mL) activated with 3DFectIN / mRNA (1 µg of mRNA, ratios 2: 1 and 3: 1) were prepared encoding YFP as described in example 1, but before adding thrombin, in Instead of 10 μΐ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 U87MG cells was added. As a negative control (C), a non-activated scaffold was prepared using the same procedure, but adding only OptiMEM instead of the 50 μΐ 3DFectIN / mRNA suspension in OptiMEM. After hydrogel formation, complete culture medium was added and the cells were cultured for 24, 48 h, 3 days and 7 days (37 ° C, 5% C0 2 ).
La viabilidad celular a las 24 y 48 h se midió mediante un ensayo MTT siguiendo las instrucciones del fabricante. La capacidad de los andamiajes para sostener la proliferación celular se evaluó midiendo el contenido de DNA en los cultivos al inicio (día 0), tras 3 días y después de 7 días. Los andamiajes con relación 3 : 1 fueron los prototipos seleccionados para este ensayo de proliferación. El contenido de DNA en los andamiajes se midió, después de la extracción de ADN, mediante un ensayo PicoGreen (Thermo Fisher Scientific, Inc.), siguiendo las instrucciones del fabricante. La extracción del DNA para su cuantificación se realizó mediante la incubación de los andamiajes con una solución de 100 μΐ, tripsina (2,5%) durante 30 minutos, y a continuación, mediante la incubación de la suspensión resultante durante 20 minutos en SDS 0, 1% y 10 minuntos en Tritón X-100 1% (ambas soluciones en PBS) bajo intensa agitación. Cell viability at 24 and 48 h was measured by an MTT assay following the manufacturer's instructions. The ability of scaffolds to sustain cell proliferation was evaluated by measuring the DNA content in the cultures at the beginning (day 0), after 3 days and after 7 days. Scaffolds with a 3: 1 ratio were the prototypes selected for this proliferation test. The DNA content in the scaffolds was measured, after DNA extraction, by a PicoGreen assay (Thermo Fisher Scientific, Inc.), following the manufacturer's instructions. DNA extraction for quantification was performed by incubating the scaffolds with a solution of 100 μΐ, trypsin (2.5%) for 30 minutes, and then, by incubating the resulting suspension for 20 minutes in SDS 0, 1% and 10 minutes in Triton X-100 1% (both solutions in PBS) under intense agitation.
Los resultados del ensayo MTT demostraron que los andamiajes activados con el complejo 2: 1 no eran tóxicos bajo cualquiera de las condiciones (Figura 9C). Los andamiajes activados con la relación 3 : 1 no mostraron toxicidad a las 24 h y mostraron signos de toxicidad menores a las 48 h. El ensayo de contenido de DNA confirmó que el andamiaje
3 : 1 puede soportar la proliferación y el cultivo de células durante un período de 7 días, aunque no se observó proliferación adicional pasado el día 3. The MTT test results showed that scaffolds activated with the 2: 1 complex were not toxic under any of the conditions (Figure 9C). Scaffolds activated with the 3: 1 ratio showed no toxicity at 24 h and showed signs of toxicity less than 48 h. The DNA content test confirmed that the scaffolding 3: 1 can withstand proliferation and cell culture over a period of 7 days, although no additional proliferation was observed after day 3.
Ejemplo 5 Example 5
Se prepararon andamiajes de fibrina (2 y 4 mg/mL) activados con mRNA (1 μg de mRNA, relación 3 : 1) codificante de YFP tal como se describe en el ejemplo 1, pero antes de añadir la trombina, en lugar de 10 μΐ de OptiMEM, se añadió el mismo volumen de este medio conteniendo 1.5xl05 hMSCs. Como control negativo (C), se preparó un andamiaje no activado po5 el mismo procedimiento, pero utilizando sólo OptiMEM en lugar de los 50 μΐ de la suspensión de 3DFectIN/mRNA. Después de la formación de hidrogel, se añadió medio de cultivo completo y las células fueron cultivadas durante 24 y 48 h (37°C, 5% C02). Se evaluó la transfección de hMSCs a las 24 h tal como se describe en el ejemplo 3. Se evaluó la toxicidad del andamiaje a las 24 y 48 h mediante un ensayo de MTT tal como se describe en el ejemplo 4. La capacidad del andamiaje para apoyar la proliferación de células a tiempos breves (0, 12, 24 y 48 h) y a largo plazo (0, 3, 7 y 10 días) fue evaluada mediante un ensayo de cuantificación de DNA tal como se describe en el ejemplo 4. Fibrin scaffolds (2 and 4 mg / mL) activated with mRNA (1 µg of mRNA, 3: 1 ratio) encoding YFP were prepared as described in example 1, but before adding thrombin, instead of 10 μΐ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 hMSCs was added. As a negative control (C), a non-activated scaffolding was prepared for the same procedure, but using only OptiMEM instead of 50 μΐ of the 3DFectIN / mRNA suspension. After hydrogel formation, complete culture medium was added and the cells were cultured for 24 and 48 h (37 ° C, 5% C0 2 ). Transfection of hMSCs was evaluated at 24 h as described in example 3. Scaffolding toxicity was evaluated at 24 and 48 h by an MTT assay as described in example 4. Scaffolding capacity for supporting cell proliferation at short times (0, 12, 24 and 48 h) and long term (0, 3, 7 and 10 days) was evaluated by a DNA quantification assay as described in example 4.
El experimento mostró que los andamiajes activados con mRNA pueden generar una transfección eficaz en hMSCs, tanto para prototipos con 2 mg/mL de fibirina como los de 4 mg/mL de fibrina. Las pruebas de MTT indicaron que todos los andamiajes de fibrina mostraron una toxicidad menor a las 24 h, y ausencia de toxicidad a 48 h. La cuantificación de DNA apoya la capacidad de estos andamiajes para soportar la proliferación celular a tiempos breves y a largo plazo (Figuras 10E, F y 12B ). The experiment showed that mRNA activated scaffolds can generate an effective transfection in hMSCs, both for prototypes with 2 mg / mL of fibirin and those of 4 mg / mL of fibrin. MTT tests indicated that all fibrin scaffolds showed less toxicity at 24 h, and no toxicity at 48 h. DNA quantification supports the ability of these scaffolds to support cell proliferation at short and long-term times (Figures 10E, F and 12B).
Ejemplo 6 Example 6
Síntesis de mRNA codificante de SOX9: se diseñó un plásmido para la transcripción in vitro de mRNA basado en un plásmido pCMVTnT®, en el cual se introdujo el gen SOX9 junto con una secuencia de consenso Kozak para iniciar la traducción, y una región no traducida 3' de α-globina. UTR 5' de β-globina ya estaba presente en el vector. Se agregó bien una cola de politimidina o una señal de poliadenilación tardía de SV40 en 3' para la síntesis de mRNA con una cola de poliadenina. El plásmido diseñado tenía también un sitio de la transcripción eucariótica, ya que se usó el mismo como control en los andamiajes activados pDNA codificante de SOX9. La estructura del plásmido utilizado se
muestra en la Figura 11. La síntesis y aislamiento del mRNA a partir del plásmido se realizó mediante el método descrito en el ejemplo 1. Para validar la bioactividad de la secuencia de SOX9, se cultivaron células HEK293 en una placa de cultivo de 6 pocilios y se transfectaron con 4 μg de este mRNA. La expresión de SOX9 en las células cultivadas 12 y 24 h después de la transfección fue validada mediante western-blot tras la extracción de proteínas (anticuerpos anti-SOX9, Santa Cruz Biotech, USA). Las células no transfectadas se utilizaron como control negativo (C-) y las células transfectadas con el plásmido se utilizaron como control positivo (C+). Los resultados del western blot confirmaron la bioactividad del mRNA sintetizado. Synthesis of mRNA encoding SOX9: a plasmid was designed for in vitro transcription of mRNA based on a plasmid pCMVTnT ® , into which the SOX9 gene was introduced along with a Kozak consensus sequence to initiate translation, and an untranslated region 3 'of α-globin. 5 'UTR of β-globin was already present in the vector. A polyimidine tail or a late polyadenylation signal of SV40 in 3 'was added either for the synthesis of mRNA with a polyadenine tail. The designed plasmid also had a eukaryotic transcription site, since it was used as a control in the activated scaffolds pDNA encoding SOX9. The structure of the plasmid used is shown in Figure 11. The synthesis and isolation of mRNA from the plasmid was performed by the method described in example 1. To validate the bioactivity of the SOX9 sequence, HEK293 cells were cultured in a 6-well culture plate and were transfected with 4 μg of this mRNA. The expression of SOX9 in cultured cells 12 and 24 h after transfection was validated by western blotting after protein extraction (anti-SOX9 antibodies, Santa Cruz Biotech, USA). Untransfected cells were used as a negative control (C-) and cells transfected with the plasmid were used as a positive control (C +). The western blot results confirmed the bioactivity of the synthesized mRNA.
Los andamiajes de fibrina (4 mg/mL) activados con 3DFectIN/mRNA o 3DFectIN/ pDNA (1 μg de mRNA/pDNA, relaciones 2: 1 y 3 : 1) codificando SOX9 se prepararon como se describe en el ejemplo 1, pero antes de añadir la trombina, en lugar de 10 μΐ de OptiMEM, se añadió el mismo volumen de este medio conteniendo 1.5xl05 células U87MG. Como control negativo (C-), se preparó un andamiaje sin mRNA/pDNA ni 3DFectIN por el mismo procedimiento, pero utilizando sólo OptiMEM en lugar de la 50 μΐ de suspensión 3DFectIN/mRNA. Después de la formación del hidrogel, se añadió medio de cultivo completo, y las células se cultivaron durante 24 h (37°C, 5% C02). Fibrin scaffolds (4 mg / mL) activated with 3DFectIN / mRNA or 3DFectIN / pDNA (1 μg of mRNA / pDNA, ratios 2: 1 and 3: 1) encoding SOX9 were prepared as described in example 1, but before if thrombin was added, instead of 10 μΐ of OptiMEM, the same volume of this medium containing 1.5 x 10 5 U87MG cells was added. As a negative control (C-), a scaffold without mRNA / pDNA or 3DFectIN was prepared by the same procedure, but using only OptiMEM instead of the 50 μΐ 3DFectIN / mRNA suspension. After hydrogel formation, complete culture medium was added, and the cells were cultured for 24 h (37 ° C, 5% C0 2 ).
La capacidad de los andamiajes activados con mRNA o pDNA para inducir expresión forzada de SOX9 se midió mediante una reacción en cadena de la polimerasa en tiempo real cuantitativa (qRT-PCR, C1000 termociclador, Bio-Rad Laboratories, Inc., EE.UU.), utilizando sondas para los genes SOX9, GAPDH y β-actina (Taqman, Thermo Fisher Scientific, Inc.). La expresión relativa se evaluó utilizando el método 2AACt se utilizó para evaluar la expresión relativa, usando GAPDH y β-actina (ACTB) como los genes de referencia. La expresión relativa del control (C) es 1 en todos los gráficos, pero no es visible en los gráficos debido a la escala requerida para representar el resto de los datos.The ability of mRNA or pDNA activated scaffolds to induce forced expression of SOX9 was measured by a quantitative real-time polymerase chain reaction (qRT-PCR, C1000 thermal cycler, Bio-Rad Laboratories, Inc., USA). ), using probes for the SOX9, GAPDH and β-actin genes (Taqman, Thermo Fisher Scientific, Inc.). Relative expression was evaluated using method 2 AACt was used to evaluate relative expression, using GAPDH and β-actin (ACTB) as the reference genes. The relative expression of the control (C) is 1 in all the graphs, but it is not visible in the graphs due to the scale required to represent the rest of the data.
El experimento demostró la capacidad de generar una regulación positiva extrema de la expresión de SOX9 con los andamiajes activados con mRNA. La expresión con el andamiaje activado mRNA con una relación 2: 1 fue de alrededor de 5000 veces la del control, mientras que la proporción de 3 : 1 llegó a 20000 veces el control. La regulación positiva generada con andamiajes activados con pDNA fue órdenes de magnitud menor que la obtenida con mRNA, aunque significativamente superior al control negativo (Figura 9A).
El mismo experimento se repitió, con un mayor número de replicados, pero sólo para los andamiajes activados con mRNA o pDNA en la relación 3 : 1 (Figura 9B). Finalmente, el mismo experimento se repitió para los andamiajes activados con mRNA y pDNA en la relación 3 : 1, pero utilizando hMSCs en lugar de las células U87MG (misma densidad de sembrado). Los resultados mostraron una sobreexpresión de SOX9 en los andamiajes activados con mRNA 150000 veces superior al control, notablemente mejor que el conseguido con pDNA (Figura 12A). The experiment demonstrated the ability to generate extreme positive regulation of SOX9 expression with scaffolds activated with mRNA. The expression with the mRNA activated scaffolding with a 2: 1 ratio was about 5000 times that of the control, while the 3: 1 ratio reached 20,000 times the control. The positive regulation generated with scaffolds activated with pDNA were orders of magnitude smaller than that obtained with mRNA, although significantly higher than the negative control (Figure 9A). The same experiment was repeated, with a greater number of replicates, but only for scaffolds activated with mRNA or pDNA in the 3: 1 ratio (Figure 9B). Finally, the same experiment was repeated for scaffolds activated with mRNA and pDNA in the 3: 1 ratio, but using hMSCs instead of U87MG cells (same seeding density). The results showed an overexpression of SOX9 in scaffolds activated with mRNA 150000 times higher than the control, notably better than that achieved with pDNA (Figure 12A).
Ejemplo 7 Example 7
En este experimento se intentó establecer la cinética de expresión de SOX9 a tiempos cortos tras la transfección de hMSC en andamiajes activados con mRNA o pDNA. Para ello, andamiajes con 2 y 4 mg/mL de fibrina y activados con 1 μg de mRNA o pDNA (relación 3 : 1 de 3 DF ectIN/ mRNA o 3 DF ectIN/ pDN A) se prepararon con hMSCs siguiendo el procedimiento descrito en el ejemplo 1, pero utilizando mRNA codificante de Sox9 (ver síntesis en ejemplo 7). Los andamiajes se cultivaron durante 48 h en medio completo, a 37°C, con 90% de humedad relativa y 5% de C02. La expresión génica de SOX9 en las células se valoró por qRT-PCR tal como se describe en el ejemplo 6 a 12, 24 y 48 h. Los valores máximos de expresión del gen se ajustaron al 100% arbitrariamente para comparar las cinéticas de mRNA y pDNA a la misma escala. Los valores de expresión de SOX9 se expresaron como relativos a los niveles de las células antes de la encapsulación. Los resultados mostraron un comportamiento similar para andamiajes de 2 y 4 mg/mL de fibrina. Los niveles máximos de expresión se obtuvieron a tiempos cortos en el caso de andamiajes activados con mRNA y a tiempos más largos para andamiajes activados con pDNA (figura 12 C y D). In this experiment we tried to establish the kinetics of SOX9 expression at short times after the transfection of hMSC in scaffolds activated with mRNA or pDNA. For this, scaffolds with 2 and 4 mg / mL of fibrin and activated with 1 µg of mRNA or pDNA (3: 1 ratio of 3 DF ectIN / mRNA or 3 DF ectIN / pDN A) were prepared with hMSCs following the procedure described in example 1, but using mRNA encoding Sox9 (see synthesis in example 7). The scaffolds were grown for 48 h in complete medium, at 37 ° C, with 90% relative humidity and 5% C0 2 . Gene expression of SOX9 in the cells was assessed by qRT-PCR as described in example 6 at 12, 24 and 48 h. The maximum expression values of the gene were adjusted to 100% arbitrarily to compare the kinetics of mRNA and pDNA at the same scale. SOX9 expression values were expressed as relative to cell levels before encapsulation. The results showed a similar behavior for scaffolds of 2 and 4 mg / mL of fibrin. Maximum levels of expression were obtained at short times in the case of scaffolds activated with mRNA and at longer times for scaffolds activated with pDNA (Figure 12 C and D).
Ejemplo 8 Example 8
En este experimento, se probó la capacidad de los andamiajes activados con mRNA de inducir la diferenciación celular directa hacia un linaje condrogénico. Andamiajes de fibrina (4 mg/mL) se activaron con mRNA codificante para SOX9 (relación 3 : 1) y se sembraron con hMSCs, siguiendo el procedimiento descrito en el ejemplo 6. Como referencia, se utilizó un andamiaje sembrado con hMSCs y activado con pDNA (también
relación 3 : 1). Andamiajes sembrados con hMSCS y no activados se emplearon como control. In this experiment, the ability of mRNA activated scaffolds to induce direct cell differentiation towards a chondrogenic lineage was tested. Fibrin scaffolds (4 mg / mL) were activated with mRNA encoding SOX9 (3: 1 ratio) and seeded with hMSCs, following the procedure described in example 6. As a reference, scaffolding seeded with hMSCs was used and activated with pDNA (also 3: 1 ratio). Scaffolds seeded with hMSCS and not activated were used as control.
Después de la formación del andamiaje por reticulación (1 h a 37°C después de la adición de la trombina), se añadió medio de cultivo celular a las placas de cultivo donde fueron colocados los andamiajes. El experimento se realizó cultivando las células en los andamiajes en dos medios diferentes: (i) medio condrogénico incompleto (ICM) y (ii) medio condrogénico completo (CCM). El ICM contenía DMEM con alta glucosa (Sigma), 100 nM de dexametasona, 50 μg/mL de ácido ascórbico 2-fosfato, 40 μg /mL de L-prolina, 1% de suplemento Premix ITS (Becton Dickinson), 1 mM piruvato sódico (Sigma) y 1% de penicilina/estreptomicina (Sigma). El CCM contenía ICM y 10 ng/mL de TGF-P3 (Peprotech, UK). Los andamiajes se cultivaron durante 21 días, con 3 cambios de medio a la semana, a 37°C, con un 90% de humedad y 5% de C02. Después de 21 días, se evaluó la expresión de genes marcadores de diferenciación condrogénica Sox9, agrecano (ACAN) y colágeno de tipo II (Col2al). After the formation of the cross-linking scaffolding (1 h at 37 ° C after the addition of thrombin), cell culture medium was added to the culture plates where the scaffolds were placed. The experiment was carried out by culturing the cells in the scaffolds in two different media: (i) incomplete chondrogenic medium (ICM) and (ii) complete chondrogenic medium (MCC). The ICM contained DMEM with high glucose (Sigma), 100 nM dexamethasone, 50 μg / mL ascorbic acid 2-phosphate, 40 μg / mL L-proline, 1% Premix ITS supplement (Becton Dickinson), 1 mM pyruvate sodium (Sigma) and 1% penicillin / streptomycin (Sigma). The CCM contained ICM and 10 ng / mL of TGF-P3 (Peprotech, UK). The scaffolds were grown for 21 days, with 3 changes of medium per week, at 37 ° C, with 90% humidity and 5% C0 2 . After 21 days, the expression of chondrogenic differentiation marker genes Sox9, aggrecan (ACAN) and type II collagen (Col2al) was evaluated.
Los resultados mostraron que los andamiajes, tanto activados con mRNA como con pDNA, producen cantidades mucho más grandes que los controles del regulador condrogénico maestro SOX9 después de 21 días, independientemente del medio de cultivo (ICM o CCM). Los andamiajes activados con mRNA fueron también capaces de inducir la expresión de ACAN en comparación con los controles en ICM, aunque su efecto parecía ser negativo para este gen en los andamiajes cultivados en CCM (Figura 13). The results showed that scaffolds, both activated with mRNA and pDNA, produce much larger quantities than the controls of the master chondrogenic regulator SOX9 after 21 days, regardless of the culture medium (ICM or CCM). The mRNA activated scaffolds were also able to induce ACAN expression compared to the controls in ICM, although their effect appeared to be negative for this gene in the scaffolds grown in CCM (Figure 13).
También se midió la expresión de Col2al . Sin embargo, debido a que el gen no se detectó en los andamiajes control, no fuimos capaces de utilizar el procedimiento de cálculo 2AACt. En su lugar, la Tabla 2 presenta el Ct de Col2al y los genes de referencia (GAPDH, ActB) para cada muestra. Es reseñable que los andamiajes activados con mRNA fueron el único tipo de muestra donde el Col2al se expresó consistentemente, y que este resultado fue independiente del medio de cultivo empleado (ICM o MCP). The expression of Col2al was also measured. However, we because the gene was not detected on Scaffolds control were not able to use the calculation method 2 AACT. Instead, Table 2 presents the Ct of Col2al and the reference genes (GAPDH, ActB) for each sample. It is noteworthy that mRNA activated scaffolds were the only type of sample where Col2al was consistently expressed, and that this result was independent of the culture medium used (ICM or MCP).
En general, este dato confirma que los andamiajes activados con mRNA pueden inducir por si mismos la diferenciación de hMSC hacia un linaje condrogénico. Tabla 2: Valores de Ct de Col2al y de los genes de referencia (GAPDH, ActB) expresados por hMSCs cultivadas en ICM o MCP durante 21 días en andamiajes de fibrina (4 mg/mL)
no activados (C-), activados con 3DFectIN/mRNA (relación 3 : 1) o activados con 3 DF ectIN/ pDN A (relación 3 : 1). N/D = No detectado. In general, this data confirms that mRNA activated scaffolds can induce hMSC differentiation towards a chondrogenic lineage. Table 2: C2 values of Col2al and reference genes (GAPDH, ActB) expressed by hMSCs cultured in ICM or MCP for 21 days in fibrin scaffolds (4 mg / mL) not activated (C-), activated with 3DFectIN / mRNA (3: 1 ratio) or activated with 3 DF ectIN / pDN A (3: 1 ratio). N / A = Not detected.
Ejemplo 9 Example 9
En esta prueba, se repitió el mismo experimento que en el ejemplo 8, pero utilizando andamiajes con dos concentraciones de fibrina (2 mg/mL y 4 mg/mL), preparadas como en el ejemplo 6. Además, en este experimento los marcadores de diferenciación se analizaron después de 28 días de cultivo. In this test, the same experiment as in example 8 was repeated, but using scaffolds with two fibrin concentrations (2 mg / mL and 4 mg / mL), prepared as in example 6. In addition, in this experiment the markers of Differentiation were analyzed after 28 days of culture.
A los 28 días, Sox9 estaba claramente sobreexpresado en los andamiajes activados con mRNA en comparación con los controles, y este resultado fue independiente de la concentración de fibrina en el andamiaje (2 mg/mL o 4 mg/mL) y del medio de cultivo (ICM o CCM). A los 28 días, ACAN también estaba sobreexperesado en comparación con el control en los andamiajes activados con mRNA de 2 mg/mL, y este resultado también era independiente del medio de cultivo utilizado. Para los andamiajes de 4 mg/mL, los prototipos activados con mRNA mostraron niveles similares a los controles con ambos medios (Figura 14). At 28 days, Sox9 was clearly overexpressed in mRNA activated scaffolds compared to controls, and this result was independent of the fibrin concentration in the scaffolding (2 mg / mL or 4 mg / mL) and the culture medium (ICM or CCM). At 28 days, ACAN was also overexpressed compared to the control in scaffolds activated with 2 mg / mL mRNA, and this result was also independent of the culture medium used. For the 4 mg / mL scaffolds, the mRNA activated prototypes showed similar levels to the controls with both media (Figure 14).
El análisis de la expresión génica Col2al solamente se realizó con andamiajes cultivados en CCM. Los resultados confirmaron que los andamiajes activados con mRNA fueron los únicos capaces de producir la expresión consistente de este gen. En este experimento, todos los andamiajes con 4 mg/mL de fibrina fueron capaces de expresar Col2al. Sin embargo, sólo los andamiajes activados con mRNA mostraron expresión de mRNA en los prototipos con 2 mg/mL de fibrina (Tabla 3). Este dato confirma que los andamiajes
activados con mRNA pueden inducir la diferenciación de hMSC hacia un linaje condrogénico, ya sea por sí mismo, o en combinación con medios clásicos de diferenciación con factores de crecimiento. Tabla 3 : Los valores de Ct de Col2al y del gen de referencia(GAPDH) expresados por hMSCs cultivadas en CCM durante 28 días en andamiajes de 2 o 4 mg/mL de fibrina, no activados (C-), activados con 3DFectIN/mRNA (relación 3 : 1), o activados con 3 DF ectIN/ pDN A (relación 3 : 1). N/D = No detectado. The analysis of the Col2al gene expression was only performed with scaffolds grown in CCM. The results confirmed that mRNA activated scaffolds were the only ones capable of producing consistent expression of this gene. In this experiment, all scaffolds with 4 mg / mL of fibrin were able to express Col2al. However, only mRNA activated scaffolds showed mRNA expression in prototypes with 2 mg / mL fibrin (Table 3). This data confirms that the scaffolding activated with mRNA can induce the differentiation of hMSC towards a chondrogenic lineage, either by itself, or in combination with classical means of differentiation with growth factors. Table 3: The Ct values of Col2al and the reference gene (GAPDH) expressed by hMSCs cultured in CCM for 28 days in scaffolds of 2 or 4 mg / mL fibrin, not activated (C-), activated with 3DFectIN / mRNA (3: 1 ratio), or activated with 3 DF ectIN / pDN A (3: 1 ratio). N / A = Not detected.
Ejemplo 10. Example 10
En este ensayo de diferenciación, repetimos el mismo experimento que en el ejemplo 9, pero se analizó la expresión del marcador condrogénico después de 7 y 21 días en cultivo. También se testaron dos dosis de mRNA/pDNA por andamiaje (100 μΌ} 1 y 0,25 μg. Todos los andamiajes se cultivaron en CCM con algunas diferencias en la preparación del medio como se comparó en experimentos previos. No se incluyó ningún andamiaje de control y los niveles de expresión de genes al final del experimento se compararon con los niveles de hMSCs antes de la encapsulación. In this differentiation test, we repeat the same experiment as in example 9, but the expression of the chondrogenic marker was analyzed after 7 and 21 days in culture. Two doses of mRNA / pDNA were also tested per scaffolding (100 μΌ} 1 and 0.25 μg. All scaffolds were grown in CCM with some differences in the preparation of the medium as compared in previous experiments. No scaffolding was included. Control and gene expression levels at the end of the experiment were compared with hMSCs levels before encapsulation.
A los 7 días, la expresión de SOX9 se reguló en todos los andamiajes activados: andamiajes activados con ^g de DNA produjeron la mayor regulación positiva de genes seguidos de los andamiajes activados con ^g RNA. La menor expresión de SOX9 la produjeron DNA 0,25 μg y RNA 0,25 μg aunque sus niveles de expresión fueron todavía
más elevados que aquellos observados en cultivos estándar de micromasa (Pellet). La mayor expresión ACAN a este tiempo se obtuvo para ambos andamiajes activados con RNA, sin diferencias estadísticas entre ellos. Niveles de ACAN para andamiajes de DNA y pellets celular fueron muchos menores que los andamiajes de RNA. Finalmente, en relación a la expresión de Col2Al, los andamiajes de RNA obtuvieron la mayor expresión génica otra vez, seguido de los andamiajes de DNA, y finalmente de los cultivos de micromasa, con una muy baja expresión en comparación. No hubo diferencias estadísticas entre andamiajes de 2 y 4 mg/mL en este punto (Figura 15, izquierda). At 7 days, SOX9 expression was regulated in all activated scaffolds: scaffolds activated with ^ g of DNA produced the highest positive regulation of genes followed by scaffolds activated with ^ g RNA. The lowest expression of SOX9 was produced by 0.25 μg DNA and 0.25 μg RNA although its expression levels were still higher than those observed in standard cultures of micromassage (Pellet). The highest ACAN expression at this time was obtained for both RNA-activated scaffolds, with no statistical differences between them. ACAN levels for DNA scaffolds and cell pellets were many lower than RNA scaffolds. Finally, in relation to the expression of Col2Al, RNA scaffolds obtained the highest gene expression again, followed by DNA scaffolds, and finally micromassage cultures, with a very low expression in comparison. There were no statistical differences between 2 and 4 mg / mL scaffolds at this point (Figure 15, left).
A los 21 días, la expresión de SOX9 no cambió cuando se comparó a la expresión encontrada a los 7 días, excepto para los andamiajes activados con 0,25 μg de DNA, que alcanzaron los mismos niveles de expresión que los andamiajes de 1 μg DNA. Las diferencias entre andamiajes de 2 y 4 mg/mL de fibrina aparecieron en este punto: andamiajes de 2 mg/mL indujeron una expresión de ACAN y Col2Al más elevada que 4 mg/mL para casi todas las condiciones evaluadas. De hecho, los andamiajes de 4 mg/mL no indujeron niveles detectables de Col2Al para la mayor parte de las condiciones. Las dosis de RNA/DNA no tuvieron un impacto significativo en la inducción de ACAN, consiguiéndose los mismos niveles de ACAN con ambas dosis. Por el contrario, andamiajes activados con 1 μg de RNA y 0,25 μg de DNA se sembraron para promocionar la mayor expresión de Col21Al (Figura 15, derecha). At 21 days, the expression of SOX9 did not change when compared to the expression found at 7 days, except for scaffolds activated with 0.25 μg of DNA, which reached the same levels of expression as scaffolds of 1 μg DNA . Differences between 2 and 4 mg / mL scaffolds of fibrin appeared at this point: 2 mg / mL scaffolds induced ACAN and Col2Al expression higher than 4 mg / mL for almost all conditions evaluated. In fact, the 4 mg / mL scaffolds did not induce detectable levels of Col2Al for most conditions. The RNA / DNA doses did not have a significant impact on the induction of ACAN, achieving the same levels of ACAN with both doses. In contrast, scaffolds activated with 1 μg of RNA and 0.25 μg of DNA were seeded to promote greater expression of Col21Al (Figure 15, right).
Además, estos resultados confirman la capacidad de los andamiajes activados con SOX9 para inducir la expresión de marcadores condrogénicos clave ACAN y Col21Al . In addition, these results confirm the ability of SOX9 activated scaffolds to induce the expression of key chondrogenic markers ACAN and Col21Al.
Ejemplo 11. Example 11
Este ejemplo constituye un experimento análogo al presentado en el ejemplo 7. Esta vez, intentamos determinar la cinética de expresión de MyoD sobre las transfección de hMSCs dentro de un andamiaje activado con MyoD-mRNA. Andamiajes con 2 y 4 mg/mL de fibrina se activaron con 0,5 μg de MyoD mRNA (3 : 1 3DFectIN/mRNA) siguiendo el procedimiento descrito en el ejemplo 1, pero usando mRNA codificando MyoD (Miltenvi Biotec, Alemania). Este es un mRNA comercial modificado químicamente, resistente a la degradación por RNAsas, que induce la diferenciación miogénica a fibroblastos y hMSCs después de transfección. Los andamiajes se cultivaron durante 48 horas en un medio completo, a 37°C, con 90% de humedad y 5% de C02. La expresión forzada de MyoD en
hMSCs se siguió mediante PCR cuantitativa a tiempo real a 12, 24 y 48 h. Como se comparó en el experimento descrito en el ejemplo 7, en este experimento también evaluamos las cinéticas de expresión de marcadores miogénicos MyoG y CDH15, genes que regulan positivamente una vez que la diferenciación miogénica en cascada se ha iniciado. La Figura 16 muestra una regulación positiva muy elevada del factor de transcripción transfectado, MyoD, y del factor de transcripción miogénico MyoG, en los hMSCs encapsulados en los andamiajes de la invención. Esta regulación positiva se observa a las 12 h post-transfección. Más importante aún, también se detectó la expresión de un gen miogénico temprano, CDH15, a las 12 h post-transfección. No se encontraron diferencias significativas en la expresión de marcadores miogénicos entre los andamiajes de fibrina de 2 y 4 mg/mL. Estos resultados sugieren la inducción de diferenciación miogénica en hMSCs encapsuladas con andamiajes de fibrina activados con MyoD mRNA. Ejemplo 12. This example constitutes an experiment analogous to that presented in Example 7. This time, we tried to determine the kinetics of MyoD expression on the transfection of hMSCs within a scaffold activated with MyoD-mRNA. Scaffolds with 2 and 4 mg / mL of fibrin were activated with 0.5 μg of MyoD mRNA (3: 1 3DFectIN / mRNA) following the procedure described in example 1, but using mRNA encoding MyoD (Miltenvi Biotec, Germany). This is a chemically modified commercial mRNA, resistant to degradation by RNAsas, that induces myogenic differentiation to fibroblasts and hMSCs after transfection. The scaffolds were grown for 48 hours in a complete medium, at 37 ° C, with 90% humidity and 5% C02. The forced expression of MyoD in hMSCs were followed by quantitative real-time PCR at 12, 24 and 48 h. As compared in the experiment described in Example 7, in this experiment we also evaluated the expression kinetics of myogenic markers MyoG and CDH15, genes that positively regulate once myogenic cascade differentiation has begun. Figure 16 shows a very high positive regulation of the transfected transcription factor, MyoD, and the MyoG myogenic transcription factor, in the hMSCs encapsulated in the scaffolds of the invention. This positive regulation is observed at 12 h post-transfection. More importantly, the expression of an early myogenic gene, CDH15, was also detected at 12 h post-transfection. No significant differences were found in the expression of myogenic markers between the 2 and 4 mg / mL fibrin scaffolds. These results suggest the induction of myogenic differentiation in hMSCs encapsulated with fibrin scaffolds activated with MyoD mRNA. Example 12
Este experimento tiene relación con la difereciación miogénica de hMSCs encapsuladas en geles de fibrina activadas con MyoD mRNA. Geles de fibrina de 2 y 4 mg/mL (200 μΕ) se activaron con 0,5 μg de MyoD mRNA y se encapsularon hMSCs dentro de ellos. Los geles se prepararon como en el ejemplo 1 pero la cantidad de todos los componentes se incrementó 2 veces y el gel se preparó al doble de volumen (200 en lugar de 100 μΕ). Se añadió medio de crecimiento completo (a-MEM + 10% Fetal Bovine Serum, 1% Penicillin-streptomicina y 10 ng/mL FGF-2) sobre los geles durante las primeras 24 h para promocionar la transfección. El día después de la transfección, el medio se cambió por suero DMEM (DMEM glucosa elevada + 1% Horse Serum y 1% Penicillin-streptomicina) para promocionar la diferenciación. Las células se cultivaron durante 14 días, cambiando el medio cada 3 días, y se retiró al final del experimento para permitir la cuantificación de la expresión del marcador miogénico medíate PCR cuantitativo en tiempo real. Como se muestra en la Figura 17, la expresión de MyoD y MyoG se reguló positivamente en hMSCs encapsuladas dentro de andamiajes de fibrina activados con MyoD. La expresión de MyoG fue mayor en andamiajes de 4 mg/mL en comparación a los de 2 mg/mL.
This experiment is related to the myogenic differentiation of hMSCs encapsulated in fibrin gels activated with MyoD mRNA. 2 and 4 mg / mL fibrin gels (200 μΕ) were activated with 0.5 μg of MyoD mRNA and hMSCs were encapsulated within them. The gels were prepared as in example 1 but the amount of all components was increased 2 times and the gel was prepared at twice the volume (200 instead of 100 µΕ). Complete growth medium (a-MEM + 10% Fetal Bovine Serum, 1% Penicillin-streptomycin and 10 ng / mL FGF-2) was added on the gels during the first 24 h to promote transfection. The day after transfection, the medium was changed to DMEM serum (DMEM high glucose + 1% Horse Serum and 1% Penicillin-streptomycin) to promote differentiation. The cells were cultured for 14 days, changing the medium every 3 days, and removed at the end of the experiment to allow quantification of myogenic marker expression by quantitative real-time PCR. As shown in Figure 17, the expression of MyoD and MyoG was positively regulated in hMSCs encapsulated within fibrin scaffolds activated with MyoD. MyoG expression was higher in scaffolds of 4 mg / mL compared to 2 mg / mL.
Claims
1. Andamio biodegradable que comprende un polímero biodegradable, un mRNA aislado que codifica para un factor de transcripción y un agente de transfección.1. Biodegradable scaffold comprising a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent.
2. Andamio, según la reivindicación 1, que además comprende células seleccionadas del grupo que consiste en células primarias y líneas celulares inmortalizadas. 2. Scaffolding according to claim 1, further comprising cells selected from the group consisting of primary cells and immortalized cell lines.
3. Andamio, según cualquiera de las reivindicaciones anteriores, donde el mRNA codifica para un factor de transcripción condrogénico. 3. Scaffolding according to any of the preceding claims, wherein the mRNA encodes for a chondrogenic transcription factor.
4. Andamio, según las reivindicaciones 1-2, donde el mRNA codifica para un factor de transcripción seleccionado del grupo que consiste en SOX9, MyoD, NeuroDl, c- Myc, Klf4, Nanog, Oct4, SOX2, C/ΕΒΡ-β, PPAR-γ, Brn2, Lmxla, Nurrl, Mashl, 4. Scaffolding according to claims 1-2, wherein the mRNA encodes a transcription factor selected from the group consisting of SOX9, MyoD, NeuroDl, c-Myc, Klf4, Nanog, Oct4, SOX2, C / ΕΒΡ-β, PPAR-γ, Brn2, Lmxla, Nurrl, Mashl,
Mytll y NeuroG2. Mytll and NeuroG2.
5. Andamio, según las reivindicaciones 1-2, donde el mRNA codifica para factor de trascripción de desdiferenciación. 5. Scaffolding according to claims 1-2, wherein the mRNA encodes for dedifferentiation transcription factor.
6. Andamio, según cualquiera de las reivindicaciones anteriores, donde el mRNA codifica para un factor de transcripción seleccionado de SOX9, MyoD, NeuroDl, 6. Scaffolding according to any of the preceding claims, wherein the mRNA encodes for a transcription factor selected from SOX9, MyoD, NeuroDl,
SOX2, Oct4, Klf4 y c-Myc. SOX2, Oct4, Klf4 and c-Myc.
7. Andamio, según las reivindicaciones 2-6, donde las células primarias son células madre pluripotentes inducidas o células madre adultas. 7. Scaffolding according to claims 2-6, wherein the primary cells are induced pluripotent stem cells or adult stem cells.
8. Andamio, según las reivindicaciones 2-6, donde las células primarias son fibroblastos o condrocitos. 8. Scaffolding according to claims 2-6, wherein the primary cells are fibroblasts or chondrocytes.
9. Andamio, según cualquiera de las reivindicaciones anteriores, donde el polímero biodegradable se selecciona de fibrina, alginato y mezclas de los mismos. 9. Scaffolding according to any of the preceding claims, wherein the biodegradable polymer is selected from fibrin, alginate and mixtures thereof.
10. Andamio, según cualquiera de las reivindicaciones anteriores, donde el agente de transfección se selecciona de un lípido catiónico, un polímero catiónico, y una sal de fosfato cálcico. 10. Scaffolding according to any of the preceding claims, wherein the transfection agent is selected from a cationic lipid, a cationic polymer, and a calcium phosphate salt.
11. Andamio, según la reivindicación 10, donde el polímero catiónico es poliarginina o un polifosfaceno catiónico. 11. Scaffolding according to claim 10, wherein the cationic polymer is polyarginine or a cationic polyphosphazene.
12. Andamio, según cualquiera de las reivindicaciones 1-11, para uso como medicamento. 12. Scaffolding, according to any of claims 1-11, for use as a medicament.
13. Andamio, según cualquiera de las reivindicaciones 1-11, para uso en terapia regenerativa de tejidos u órganos.
Andamio, según cualquiera de las reivindicaciones 1-11, para uso según la reivindicación 13 donde el tejido es cartílago, músculo o tejido nervioso. 13. Scaffolding according to any of claims 1-11, for use in regenerative therapy of tissues or organs. Scaffolding, according to any of claims 1-11, for use according to claim 13 wherein the tissue is cartilage, muscle or nerve tissue.
Andamio, según cualquiera de las reivindicaciones 1-11, para uso en el tratamiento de un defecto de cartílago, daño muscular o daño en el tejido nervioso. Scaffolding, according to any of claims 1-11, for use in the treatment of a cartilage defect, muscle damage or nerve tissue damage.
Composición farmacéutica que comprende el andamio descrito en cualquiera de las reivindicaciones 1-11. Pharmaceutical composition comprising the scaffold described in any of claims 1-11.
Composición farmacéutica según la reivindicación 16, donde además comprende vehículos farmacéuticos aceptables. Pharmaceutical composition according to claim 16, wherein it further comprises acceptable pharmaceutical vehicles.
Composición farmacéutica según cualquiera de las reivindicaciones 16-17, que además comprende al menos un ingrediente farmacéutico activo adicional. Pharmaceutical composition according to any of claims 16-17, which further comprises at least one additional active pharmaceutical ingredient.
Composición farmacéutica según las reivindicaciones 16-18, que es una solución inyectable, suspensión, hidrogel o una matriz porosa sólida. Pharmaceutical composition according to claims 16-18, which is an injectable solution, suspension, hydrogel or a solid porous matrix.
Composición farmacéutica según cualquiera de las reivindicaciones 16-19, para uso como vacuna. Pharmaceutical composition according to any of claims 16-19, for use as a vaccine.
Composición cosmética que comprende el andamio según se describió en cualquiera de las reivindicaciones 1-11. Cosmetic composition comprising the scaffold as described in any of claims 1-11.
Un método para preparar el andamio como se describe en cualquiera de las reivindicaciones 1-11, que comprende: A method of preparing the scaffold as described in any of claims 1-11, comprising:
(i) Mezclar un polímero biodegradable, un mRNA aislado que codifica para un factor de transcripción y un agente de transfección, y opcionalmente células seleccionadas de entre el grupo que consiste en células primarias y líneas celulares inmortalizadas, (i) Mixing a biodegradable polymer, an isolated mRNA encoding a transcription factor and a transfection agent, and optionally selected cells from the group consisting of primary cells and immortalized cell lines,
(ii) Incubar la mezcla preparada en (i), (ii) Incubate the prepared mixture in (i),
(iii) Inducir la coagulación de la mezcla preparada en (ii). (iii) Induce coagulation of the mixture prepared in (ii).
Método, según la reivindicación 22, donde la etapa de coagulación (iii) se lleva a cabo mediante la adición de un agente de coagulación. Method according to claim 22, wherein the coagulation step (iii) is carried out by the addition of a coagulation agent.
Método para preparar el andamio como se describe en cualquiera de las reivindicaciones 1-11, que comprende: Method for preparing the scaffold as described in any of claims 1-11, comprising:
(i) Preparar un andamio, (i) Prepare a scaffold,
(ii) Mezclar un mRNA aislado que codifica para un agente de transcripción y un agente de transfección,
(iii) Incubar la mezcla preparada en (ii) sobre el andamio preparado en (i), y opcionalmente añadir células. (ii) Mix an isolated mRNA encoding a transcription agent and a transfection agent, (iii) Incubate the mixture prepared in (ii) on the scaffold prepared in (i), and optionally add cells.
Andamio biodegradable obtenido mediante el método según las reivindicaciones 22-23 o mediante el método según la reivindicación 24. Biodegradable scaffolding obtained by the method according to claims 22-23 or by the method according to claim 24.
Uso de un andamio según se describe en cualquiera de las reivindicaciones 1-11, como un reactivo de diferenciación in vitro o como implante cosmético.
Use of a scaffold as described in any of claims 1-11, as an in vitro differentiation reagent or as a cosmetic implant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201630565 | 2016-05-02 | ||
ES201630565A ES2584107B2 (en) | 2016-05-02 | 2016-05-02 | Biodegradable scaffolding comprising messenger RNA |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017191345A1 true WO2017191345A1 (en) | 2017-11-09 |
Family
ID=56930391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2017/070262 WO2017191345A1 (en) | 2016-05-02 | 2017-04-28 | Biodegradable scaffold comprising messenger rna |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2584107B2 (en) |
WO (1) | WO2017191345A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2809348A1 (en) * | 2020-10-27 | 2021-03-03 | Univ Santiago Compostela | POLYMERS FOR GENE THERAPY (Machine-translation by Google Translate, not legally binding) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070031465A1 (en) * | 2003-10-15 | 2007-02-08 | Japan Science And Technology Agency | Implant for regenerating bone or cartilage with the use of transcriptional factor |
US20100189794A1 (en) * | 2009-01-05 | 2010-07-29 | Cornell University | Nucleic acid hydrogel via rolling circle amplification |
US20140341870A1 (en) * | 2011-12-29 | 2014-11-20 | "Nextgen" Company Limited | Biocomposite for regeneration of injured tissue and organs, a kit for making the biocomposite, a method of making the biocomposite and a method of treating injuries |
US20150010501A1 (en) * | 2012-03-27 | 2015-01-08 | Parcell Laboratories, Llc | Intervertebral disc repair compositions and methods |
-
2016
- 2016-05-02 ES ES201630565A patent/ES2584107B2/en active Active
-
2017
- 2017-04-28 WO PCT/ES2017/070262 patent/WO2017191345A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070031465A1 (en) * | 2003-10-15 | 2007-02-08 | Japan Science And Technology Agency | Implant for regenerating bone or cartilage with the use of transcriptional factor |
US20100189794A1 (en) * | 2009-01-05 | 2010-07-29 | Cornell University | Nucleic acid hydrogel via rolling circle amplification |
US20140341870A1 (en) * | 2011-12-29 | 2014-11-20 | "Nextgen" Company Limited | Biocomposite for regeneration of injured tissue and organs, a kit for making the biocomposite, a method of making the biocomposite and a method of treating injuries |
US20150010501A1 (en) * | 2012-03-27 | 2015-01-08 | Parcell Laboratories, Llc | Intervertebral disc repair compositions and methods |
Non-Patent Citations (1)
Title |
---|
HASTINGS CONN L ET AL.: "Drug and cell delivery for cardiac regeneration", ADVANCED DRUG DELIVERY REVIEWS NETHERLANDS, vol. 84, April 2015 (2015-04-01), pages 85 - 106, XP029224307, ISSN: 1872-8294 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2809348A1 (en) * | 2020-10-27 | 2021-03-03 | Univ Santiago Compostela | POLYMERS FOR GENE THERAPY (Machine-translation by Google Translate, not legally binding) |
WO2022090598A1 (en) * | 2020-10-27 | 2022-05-05 | Universidade De Santiago De Compostela | Polymers for gene therapy |
Also Published As
Publication number | Publication date |
---|---|
ES2584107B2 (en) | 2017-04-06 |
ES2584107A1 (en) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raftery et al. | Highly versatile cell-penetrating peptide loaded scaffold for efficient and localised gene delivery to multiple cell types: From development to application in tissue engineering | |
Truong et al. | Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer | |
US20220226510A1 (en) | Stimuli-responsive nanoparticles for biomedical applications | |
ES2811301T3 (en) | Click chemistry cross-linked hydrogels and methods of use | |
O’Rorke et al. | Non-viral polyplexes: Scaffold mediated delivery for gene therapy | |
Megeed et al. | In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy | |
Carthew et al. | In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells | |
Gantenbein et al. | Non-viral gene delivery methods for bone and joints | |
ES2373955T3 (en) | POROUS MATRIX | |
JP2021185168A (en) | Induction of osteogenesis by delivering bmp encoding rna | |
US10406231B2 (en) | Chain-extending poloxamers, thermoreversible hydrogels formed by them which include biological materials, and medicinal applications of same | |
Balmayor et al. | Modified mRNA for BMP-2 in combination with biomaterials serves as a transcript-activated matrix for effectively inducing osteogenic pathways in stem cells | |
US10092654B2 (en) | Coacervate micro and/or nano droplets and hydrogels | |
CN102137658A (en) | Methods, compositions and systems for local delivery of drugs | |
Walsh et al. | An efficient, non-viral dendritic vector for gene delivery in tissue engineering | |
Jo et al. | Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy | |
Bjørge et al. | Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation | |
US20220409746A1 (en) | Nucleic acid loaded flowable hydrogels and compositions, systems and methods related thereto | |
Pankongadisak et al. | Electrospun gelatin matrices with bioactive pDNA polyplexes | |
Keeney et al. | Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness | |
Chen et al. | Non-viral CRISPR activation system targeting VEGF-A and TGF-β1 for enhanced osteogenesis of pre-osteoblasts implanted with dual-crosslinked hydrogel | |
Meng et al. | An injectable miRNA-activated matrix for effective bone regeneration in vivo | |
ES2584107B2 (en) | Biodegradable scaffolding comprising messenger RNA | |
CN107849512B (en) | Compositions for targeted delivery of nucleic acid-based therapies | |
US20240301138A1 (en) | Polmeric transfection reagents to deliver nucleic acids for host cell modification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17792550 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17792550 Country of ref document: EP Kind code of ref document: A1 |