+

WO2017170663A1 - Savonius wind power generation device and control method therefor - Google Patents

Savonius wind power generation device and control method therefor Download PDF

Info

Publication number
WO2017170663A1
WO2017170663A1 PCT/JP2017/012851 JP2017012851W WO2017170663A1 WO 2017170663 A1 WO2017170663 A1 WO 2017170663A1 JP 2017012851 W JP2017012851 W JP 2017012851W WO 2017170663 A1 WO2017170663 A1 WO 2017170663A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
power generation
stage
wind power
type
Prior art date
Application number
PCT/JP2017/012851
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 石原田
禎史 濱田
慶一郎 谷口
Original Assignee
国立大学法人鹿児島大学
茂建設株式会社
株式会社S-style
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鹿児島大学, 茂建設株式会社, 株式会社S-style filed Critical 国立大学法人鹿児島大学
Priority to JP2018508135A priority Critical patent/JPWO2017170663A1/en
Publication of WO2017170663A1 publication Critical patent/WO2017170663A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • Wind turbines used in wind turbine generators include horizontal axis types such as multi-blade type, sail wing type, Dutch type, and propeller type, and vertical axis types such as crossflow type, Savonius type, Darius type, and gyromill type.
  • the horizontal axis type generally has the advantage of good power generation efficiency and is easy to increase in size, while the vertical axis type is easy to install and maintain, can receive wind in all directions of 360 degrees, and can install many units in a narrow installation space.
  • the Savonius type has the advantage that it can rotate even in light winds and obtain a large torque.
  • the present invention has been made in view of the above circumstances, and is provided with a plurality of savonium-type wind turbines at the front and rear, and can efficiently rotate each wind turbine with respect to wind from an arbitrary direction to increase power generation efficiency.
  • An object of the present invention is to provide a wind turbine generator and a control method thereof.
  • Savonius type wind power generator Two Savonius type wind turbines are arranged on the left and right in the middle between the front and rear stages, In the middle stage, each outer wind-receiving bucket receives wind power passing from the front to the back, one rotates counterclockwise and the other rotates clockwise, Further, according to the second feature, the middle stage is arranged so that each inward wind receiving bucket of the middle stage partially overlaps with the outer wind receiving bucket on the same side of the previous stage as viewed from the front with respect to the front stage. To do.
  • a fourth feature is that the three sets of wind power generation units are arranged so as to form a substantially equilateral triangle as a whole when viewed in plan so that an internal angle between adjacent wind power generation units is approximately 60 degrees.
  • approximately 60 degrees means, for example, 55 degrees or more and less than 65 degrees.
  • the direction of the main flow direction of the wind is calculated based on a combination of a plurality of information, and a rotation instruction is given to the rotation unit based on the calculated value so that the main flow direction of the wind matches the optimum wind direction arrangement of the wind power generation unit.
  • the method for controlling a Savonius type wind power generator is characterized by rotating the wind power generator.
  • the Savonius-type wind power generator of the present invention it is possible to efficiently receive the wind force amplified by the wind turbine in the front with respect to the wind from an arbitrary direction, thereby generating power efficiency. And an excellent effect that an optimal small wind power generator can be realized.
  • mold wind power generator which concerns on this invention The top view which shows the wind power generation part of the wind power generator of FIG.
  • action of the wind force with respect to the wind power generation part of FIG. A model diagram showing how the wind passing between two Savonius type windmills increases in speed, A diagram showing the relationship between wind speed and power in a savonium type windmill
  • a Savonius type wind power generator S (hereinafter referred to as a wind power generator S) is installed on a flat land G such as a park or a station square as an example.
  • the land G may be a plateau, a slope, or a mountain where wind passes.
  • the wind power generator S includes a support unit 100, a wind power generation unit 200, a control unit 300, and a power conditioner 400.
  • the savonium type windmill 210 is a vertical axis type windmill, that is, an omnidirectional type windmill that does not depend on the wind direction, and includes a vertical rotating shaft 211, upper and lower end plates 212 that hold the vertical rotating shaft 211, and a curved inner surface that curves in an arc shape.
  • 213a includes two wind receiving buckets 213 that face the same rotation direction with the vertical rotation shaft 211 therebetween and are held between the upper and lower end plates 212.
  • the wind receiving bucket 213 receives wind energy from all directions, and rotates the vertical rotation shaft 211.
  • the savonium type windmill 210 of the present embodiment starts rotating with low speed (1.0 to 1.5 m / S) wind power.
  • the generator 220 generates power by the rotation of the vertical rotation shaft 211 of the savonium type windmill 210 (hereinafter referred to as the windmill 210).
  • the generator 220 an AC generator (induction generator, synchronous generator) is usually used.
  • the electric power generated by the generator 220 is transmitted to the power conditioner 400 via the transmission line 160.
  • the control from the control unit 300 when the wind is strong, the output of the generated power is suppressed by the control from the control unit 300.
  • the power conditioner 400 converts the power generated by the wind power generation unit 200 from direct current to alternating current.
  • the electric power converted into alternating current is transmitted to the electric power company and others through the transmission line 160.
  • FIG. 2 shows a layout of three power generation units 200A to 200C in the wind power generation unit 200.
  • the three sets of power generation units 200A to 200C are arranged on the upper surface of the base 201 so that the inner space formed by each unit in a plan view is a substantially equilateral triangle.
  • each unit is arranged so that an angle formed by an extension line of a line connecting the vertical rotation shafts 211 of the two wind turbines 210 in each unit is approximately 60 degrees.
  • the rotation direction of the wind turbine at each stage will be described.
  • the wind turbine 210 1L of the left power generation unit 200A among the wind turbines at the front stage is clockwise with respect to the wind direction W1 (from the top to the bottom of the figure).
  • the direction of the curved inner surface 213a of each wind receiving bucket 213 is set so that the windmill 210 1R of the right power generation unit 200B is counterclockwise.
  • the middle stage wind turbine that is, the wind turbine 210 2L outside the rear of the power generation unit 200A inclined on the left side and the wind turbine 210 2R outside the rear of the power generation unit 200B inclined on the right side are arranged on the same unit side in the previous stage. More specifically, when the wind turbine 210 2L in the middle stage and the wind-receiving buckets 213 of the wind turbine 210 2R are positioned inward so as to partially overlap the wind turbine in the wind direction W1, the wind turbine 210 1L in the front stage The wind receiving buckets 213 located on the outer sides of the windmill 210 1R are arranged so as to overlap with each other by 1/2 or more (in the example shown, about 2/3) when viewed in the wind direction W1.
  • the rear wind turbine that is, the left wind turbine 210 3L and the right wind turbine 210 3R of the power generation unit 200C facing the wind direction W1
  • the rear wind turbine are viewed in the wind direction W1 with respect to the same wind turbine in the front and the same wind turbine in the middle. More specifically, when the wind-receiving buckets 213 of the rear wind turbine 210 3L and the wind turbine 210 3R are located outward, the positions of the wind turbine 210 1L and the wind turbine 210 1R are located inward of the wind turbine 210 1L.
  • the wind receiving bucket 213 overlaps with the wind receiving bucket 213 in the wind direction W1 by more than 1/2 (in the illustrated example, about 100%), and is located inward of each of the middle wind turbine 210 2L and the wind turbine 210 2R. They are arranged so as to partially overlap (about 1 ⁇ 4 in the illustrated example) when viewed in the wind direction W1.
  • FIG. 4 shows a wind flow model when wind of 4 m / s is input to two Savonius type wind turbines.
  • a wind having a constant width (S1) having a wind speed of 4 m / s passes through the gap (S2) between the two wind turbines, the wind speed increases to about 8 m / s due to the venturi effect.
  • the wind power generator S of the present invention uses the venturi effect to increase the rotational speed of the wind turbine at the subsequent stage.
  • FIG. 5 shows the relationship between wind speed (m / s) and electric power (W) in a savonium type windmill.
  • the power when the wind speed is 4 m / s is about 100 W, but when it reaches 5 m / s, it reaches about 250 W, when it reaches 8 m / s, it reaches about 750 W, and when it reaches 10 m / s, it reaches about 1450 W.
  • the wind turbine at the front stage receives positive and negative winds of 4 m / s to generate about 100 W respectively, and the wind turbine at the middle stage is positive at 4 m / s.
  • the speed is substantially increased to 5 m / s, generating about 250 W each, and the subsequent wind turbine is a positive wind (speed increased to 8 m / s by the Venturi effect) And negative winds) to substantially increase the speed to 10 m / s, generating about 1450 W each.
  • the wind power generator S according to the present invention can generate power generation efficiency of about seven times at the maximum.
  • the main wind direction of the wind may not be the optimal wind direction arrangement (the arrangement shown in FIG. 2) of the wind power generation unit 200.
  • the optimal wind direction arrangement of the wind power generation unit 200 is made to coincide with the main wind direction in the range of maximum ⁇ 60 degrees by the operation of the control unit 300 and the rotation unit 120. That is, the control unit 300 collects the wind direction information from the anemometer 140, collects the wind distribution information based on the wind map of the installation area, and collects the wind direction information from the generated power acquisition unit 221 of the wind power generation unit 200 for each windmill.
  • Collect power generation information (power generation amount, number of revolutions) and determine the direction of the mainstream direction of the wind based on any one of the collected wind direction information, wind distribution information, power generation information for each windmill, or a combination of multiple information. Calculation is performed (every hour / every hour / day / night / day / month / season), a rotation instruction is given to the rotation unit 120, and the rotation support unit 130 is rotated (maximum ⁇ 60 degrees). Thereby, the mainstream direction of a wind and the optimal wind direction arrangement
  • FIG. 7 shows a configuration example of the control unit 300.
  • the control unit 300 includes a wind direction information collection unit 310, a wind distribution information collection unit 320, a power generation information collection unit 330, and a wind direction calculation unit 340 in order to realize the rotation control with respect to the rotation unit 120 described above.
  • a rotation instruction unit 350 is provided.
  • the control unit 300 may rotate the rotation support unit 130 at a maximum of 60 degrees, and stop at a position where the total power generation amount becomes maximum on the way.
  • the three wind power generation units 200A to 200C are arranged so as to form an equilateral triangle, so that the wind power generation unit 200 is not rotated. It is possible to match the optimum wind direction position. That is, among the three different wind directions shown in FIG. 8 (W1 to W3: interval 120 degrees), the wind turbine 210 2R of the power generation unit 200B and the power generation unit for the wind of the wind direction W2 (lower right to upper left).
  • the windmill 210 3R of the 200C is the front stage
  • the windmill 210 1R of the power generation unit 200B and the windmill 210 3L of the power generation unit 200C are the middle stage
  • the windmill 210 1L and the windmill 210 2L of the power generation unit 200A correspond to the rear stage.
  • the direction of the rotation direction of each wind turbine with respect to the wind of the wind direction W2 is the same as that with respect to the wind of the wind direction W1.
  • the wind turbine 210 3L of the power generation unit 200C and the wind turbine 210 2L of the power generation unit 200A are in front of the wind of the wind direction W3 (lower left to upper right), and the wind turbine 210 3R of the power generation unit 200C and the power generation unit 200A
  • the windmill 210 1L corresponds to the middle stage
  • the windmill 210 2R and the windmill 210 1R of the power generation unit 200B correspond to the latter stage.
  • the direction of the rotation direction of each wind turbine with respect to the wind of the wind direction W3 is the same as that with respect to the wind of the wind direction W1. Therefore, the generated power similar to the wind of the wind direction W1 is obtained for both the wind direction W2 and the wind direction W3.
  • Fig. 9 shows the wind map of a certain region in Japan.
  • the wind power generation unit is designed to maximize power generation efficiency based on annual wind data (wind speed, frequency of occurrence, direction) obtained from the wind map.
  • the orientation of 200 may be optimally arranged.
  • the direction of high wind frequency of 7m / s throughout the year is north-northwest, east, south-southwest.
  • the wind power generator 200 may be optimally arranged (the wind power generator 200 is oriented so that the wind direction W1 in FIG. 2 is north-northwest). Thereby, power generation efficiency can be increased as much as possible.
  • the rotation rate can be increased by increasing the rotation speed of the middle wind turbine as compared with the previous wind turbine, and the subsequent wind turbine can increase the rotation speed. Further, it is possible to increase the rotation rate by increasing the speed, thereby increasing the power generation amount of the entire system and improving the power generation efficiency.
  • the power generation efficiency is about seven times that of a layout (FIG. 6) in which the same number of wind turbines are arranged in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

[Problem] To provide a wind power generation device that is provided with multi-stage Savonius windmills in the front-and-rear direction, and that enables the windmills to rotate efficiently against wind from any direction and improves power generation efficiency. [Solution] Three wind power generation units 200A-200C each having two Savonius windmills 210 disposed side by side are arranged so as to form a substantially equilateral triangle. A narrow space S is provided between the windmills at the front stage with respect to a wind direction W1, wind power passing from the front to the rear is received by inner wind-receiving buckets 213 so that the windmill on one side rotates clockwise and the windmill on the other side rotates counterclockwise. At the middle stage, wind power passing from the front is received by outer wind-receiving buckets so that the windmill on one side rotates counterclockwise and the windmill on the other side rotates clockwise. At the rear stage, the wind power having passed through the space S at the front stage is received by inner wind-receiving buckets so that the windmill on one side rotates clockwise and the windmill on the other side rotates counterclockwise. Further, in a view from the front, each of the inner wind-receiving buckets at the middle stage partially overlaps the outer wind-receiving bucket on the same side at the front stage, and each of the outer wind-receiving buckets at the rear stage partially overlaps the inner wind-receiving bucket on the same side at the front stage.

Description

サボニウス型風力発電装置とその制御方法Savonius wind power generator and control method thereof
 本発明は、垂直軸型風車の一つであるサボニウス型風車を備えたサボニウス型風力発電装置とその制御方法に関するものである。 The present invention relates to a Savonius type wind power generator equipped with a Savonius type windmill which is one of vertical axis type windmills, and a control method thereof.
 風力発電装置に用いられる風車には、多翼型、セイルウィング型、オランダ型、プロペラ型などの水平軸型と、クロスフロー型、サボニウス型、ダリウス型、ジャイロミル型などの垂直軸型がある。水平軸型は一般に発電効率がよく、大型化しやすい利点があり、垂直軸型は設置やメンテナンスが容易で、360度のあらゆる方向の風を受けることができ、狭い設置スペースに多数台数を設置できる利点がある。特にサボニウス型は微風でも回転し、大きなトルクが得られるという利点がある。 Wind turbines used in wind turbine generators include horizontal axis types such as multi-blade type, sail wing type, Dutch type, and propeller type, and vertical axis types such as crossflow type, Savonius type, Darius type, and gyromill type. . The horizontal axis type generally has the advantage of good power generation efficiency and is easy to increase in size, while the vertical axis type is easy to install and maintain, can receive wind in all directions of 360 degrees, and can install many units in a narrow installation space. There are advantages. In particular, the Savonius type has the advantage that it can rotate even in light winds and obtain a large torque.
 従来より、サボニウス型風車を用いた例として、サボニウス型翼の形状を変更して回転効率を上げるようにした風車(特許文献1~2)、ダリウス型とサボニウス型の翼を備え、微風時には低速回転特性に優れたサボニウス型翼による回転を利用し、風速が所定値を越えると高速回転特性に優れたダリウス型翼による回転を利用するようにした風力発電装置(特許文献3)などが知られている。 Conventionally, as an example using a Savonius type windmill, it has a windmill (Patent Documents 1 and 2) whose rotational efficiency is improved by changing the shape of the Savonius type wing, and has Darrieus type and Savonius type wings, and it is low speed in a light wind There is known a wind power generator (Patent Document 3) that uses rotation by a Savonius type wing excellent in rotation characteristics and uses rotation by a Darius type wing excellent in high speed rotation characteristics when the wind speed exceeds a predetermined value. ing.
特開2003-293928号公報JP 2003-293928 A 特開2007-113512号公報JP 2007-113512 A 特開2007-113562号公報JP 2007-113562 A
 しかしながら、サボニウス型風車は、図10に示すように、回転軸1に対する1対の受風バケット2が回転を生み出す正の風と回転を制止しようとする負の風を同時に受けるため、風速に対する回転効率が悪く、回転効率を上げようとすると上記特許文献1~2のように翼形状が複雑化する。さらに、特許文献3の発電装置は、回転軸が長いダリウス型翼を組み合わせるため装置が大型化し、またダリウス型翼は高速回転するから装置を地面に安全に強固に設置しなければならない。 However, in the Savonius type windmill, as shown in FIG. 10, the pair of wind receiving buckets 2 with respect to the rotating shaft 1 simultaneously receives a positive wind that generates rotation and a negative wind that tries to stop the rotation. If the efficiency is poor and the rotation efficiency is increased, the blade shape becomes complicated as in Patent Documents 1 and 2 above. Furthermore, since the power generator of Patent Document 3 is combined with a Darius type wing having a long rotating shaft, the size of the apparatus increases, and since the Darius type wing rotates at a high speed, the apparatus must be securely and firmly installed on the ground.
 近年は環境アセスメントや景観維持の観点から大型風力発電の建設が伸び悩んでおり、駅前広場や公園内などにも設置できる小型風力発電装置への期待が高まっている。 In recent years, construction of large-scale wind power generation has been sluggish from the viewpoint of environmental assessment and landscape maintenance, and expectations are growing for small-scale wind power generation devices that can be installed in station squares and parks.
 本発明は、上記実情に鑑みてなされたもので、前後に複数段のサボニウム型風車を備え、任意方向からの風に対し各風車を効率よく回転させ、発電効率を高めることが可能なサボニウス型風力発電装置とその制御方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is provided with a plurality of savonium-type wind turbines at the front and rear, and can efficiently rotate each wind turbine with respect to wind from an arbitrary direction to increase power generation efficiency. An object of the present invention is to provide a wind turbine generator and a control method thereof.
 本発明に係るサボニウス型風力発電装置は、
 サボニウス型風車を回転させて発電機により発電を行うサボニウス型発電装置であって、前記サボニウス型風車は、垂直回転軸と、当該垂直回転軸を保持する上下の端板と、円弧状の湾曲する内面が前記垂直回転軸を挟んで同一回転方向を向くと共に前記上下の端板間に保持された2つの受風バケットを備え、
 前記サボニウス型風車を前段と後段に左右2個ずつ配置し、
 前段は左右の風車間に狭幅の隙間を設けて前方から背後に通過する風力を内寄りの各受風バケットが受けて一方が時計回りに他方が反時計回りに回転し、
 後段は前段の前記隙間を通過した後の風力を内寄りの各受風バケットが受けて一方が時計回りに他方が反時計回りに回転し、
 さらに、後段は前段に対し前方から見て後段の外寄りの受風バケットが前段の同じ側の内寄りの受風バケットと部分的に重なるように配置したことを第1の特徴とする。
Savonius type wind power generator according to the present invention,
A Savonius-type power generation device that generates power by a generator by rotating a Savonius-type windmill, wherein the Savonius-type windmill is curved in an arc shape with a vertical rotation shaft, upper and lower end plates that hold the vertical rotation shaft Two wind receiving buckets having an inner surface facing the same rotation direction across the vertical rotation shaft and held between the upper and lower end plates,
Two Savonius type wind turbines are arranged on the left and right in the front and rear stages,
The front stage has a narrow gap between the left and right windmills, each wind receiving bucket receives the wind force passing from the front to the back, one rotates clockwise and the other rotates counterclockwise,
The rear stage receives the wind force after passing through the gap in the previous stage by each wind receiving bucket, and one rotates clockwise and the other counterclockwise,
Furthermore, the first stage is characterized in that the rear stage is arranged so that the outer wind receiving bucket of the rear stage partially overlaps the inner wind receiving bucket on the same side of the front stage as viewed from the front with respect to the front stage.
 本発明に係るサボニウス型風力発電装置は、
 前記サボニウス型風車を前段と後段の間の中段に左右2個配置し、
 中段は外寄りの各受風バケットが前方から背後に通過する風力を受けて一方が反時計回りに他方が時計回りに回転し、
 さらに、中段は前段に対し前方から見て中段の内寄りの各受風バケットが前段の同じ側の外寄りの受風バケットと部分的に重なるように配置されていることを第2の特徴とする。
Savonius type wind power generator according to the present invention,
Two Savonius type wind turbines are arranged on the left and right in the middle between the front and rear stages,
In the middle stage, each outer wind-receiving bucket receives wind power passing from the front to the back, one rotates counterclockwise and the other rotates clockwise,
Further, according to the second feature, the middle stage is arranged so that each inward wind receiving bucket of the middle stage partially overlaps with the outer wind receiving bucket on the same side of the previous stage as viewed from the front with respect to the front stage. To do.
 本発明に係るサボニウス型風力発電装置は、
 サボニウム型風車を2個並列した3組の風力発電ユニットを平面視して全体で略三角形となるように配置してなり、風向きに対し手前の2個の風車が前段となり、背後の2個の風車が後段となり、その中間の2個の風車が中段となることを第3の特徴とする。
Savonius type wind power generator according to the present invention,
Three sets of wind power generation units with two savonium-type windmills arranged in parallel are arranged in a generally triangular shape in plan view, and the two windmills in front of the wind direction are the front stage, and the two The third feature is that the windmill is the latter stage and the two middle windmills are the middle stage.
 本発明に係るサボニウス型風力発電装置は、
 前記3組の風力発電ユニットを、隣接する風力発電ユニット間の内角が略60度となるように平面視して全体で略正三角形となるように配置したことを第4の特徴とする。ここで略60度とは例えば55度以上、65度未満を意味する。
Savonius type wind power generator according to the present invention,
A fourth feature is that the three sets of wind power generation units are arranged so as to form a substantially equilateral triangle as a whole when viewed in plan so that an internal angle between adjacent wind power generation units is approximately 60 degrees. Here, approximately 60 degrees means, for example, 55 degrees or more and less than 65 degrees.
 本発明に係るサボニウス型風力発電装置は、
 支持部と、前段と後段の各風車または前段と中段と後段の各風車を含む風力発電部と、前記支持部と前記風力発電部の間に介在されて前記風力発電部を風の主流方向に合わせて最適風向配置となるように回動させる回転部を備えることを第5の特徴とする。
Savonius type wind power generator according to the present invention,
A wind power generation unit including a support unit, wind turbines at the front stage and the rear stage or wind turbines at the front stage, the middle stage, and the rear stage; and the wind power generation unit is interposed between the support unit and the wind power generation unit in the mainstream direction of the wind In addition, a fifth feature is that a rotating portion is provided that is rotated so as to obtain an optimal wind direction arrangement.
 本発明に係るサボニウス型風力発電装置の制御方法は、
 支持部と、前段と後段にまたは前段と中段と後段に左右2個ずつサボニウム型風車を配置してなる風力発電部と、前記支持部と前記風力発電部の間に介在された回転部と、制御部を備えるサボニウム型風力発電装置において、
 風の主流方向が前記風力発電部の最適風向配置と異なる場合、前記制御部が、風向計からの風向情報、風配図からの風配情報、風車ごとの発電情報のうちいずれか一の情報または複数の情報の組合せに基づき、風の主流方向の向きを算出し、当該算出値に基づき回転部に回動指示を与え、風の主流方向が前記風力発電部の最適風向配置と一致するように前記風力発電部を回動させることを特徴とするサボニウス型風力発電装置の制御方法。
The control method of the Savonius type wind power generator according to the present invention,
A support unit, a wind power generation unit in which two left and right savonium-type wind turbines are arranged in the front stage, the rear stage, or the front stage, the middle stage, and the rear stage, and a rotating unit interposed between the support unit and the wind power generation unit, In the savonium-type wind power generator equipped with a control unit,
When the main wind direction is different from the optimum wind direction arrangement of the wind power generation unit, the control unit is one of information on wind direction information from an anemometer, wind distribution information from a wind map, and power generation information for each windmill. Alternatively, the direction of the main flow direction of the wind is calculated based on a combination of a plurality of information, and a rotation instruction is given to the rotation unit based on the calculated value so that the main flow direction of the wind matches the optimum wind direction arrangement of the wind power generation unit. The method for controlling a Savonius type wind power generator is characterized by rotating the wind power generator.
 以上説明したように、本発明のサボニウス型風力発電装置によれば、任意方向からの風に対し、手前の風車で増幅された風力を効率よく背後の風車で受けることができ、これにより発電効率を向上させることができ、最適な小型風力発電装置を実現できるという優れた効果を奏する。 As described above, according to the Savonius-type wind power generator of the present invention, it is possible to efficiently receive the wind force amplified by the wind turbine in the front with respect to the wind from an arbitrary direction, thereby generating power efficiency. And an excellent effect that an optimal small wind power generator can be realized.
本発明に係るサボニウス型風力発電装置の全体構成例を示す正面図、The front view which shows the example of whole structure of the Savonius type | mold wind power generator which concerns on this invention, 図1の風力発電装置の風力発電部を示す平面図、The top view which shows the wind power generation part of the wind power generator of FIG. 図2の風力発電部に対する風力の作用を示す平面図、The top view which shows the effect | action of the wind force with respect to the wind power generation part of FIG. 2個のサボニウス型風車間を通過する風が増速する様子を示すモデル図、A model diagram showing how the wind passing between two Savonius type windmills increases in speed, サボニウム型風車における風速と電力の関係を示す図、A diagram showing the relationship between wind speed and power in a savonium type windmill 比較例として多数の風車を横一列に並列したタイプを示す平面図、A plan view showing a type in which a large number of windmills are arranged in a horizontal row as a comparative example, 制御部の構成例を示す図、The figure which shows the structural example of a control part, 図2の風力発電部に対する三方向からの風向きを示す平面図、The top view which shows the wind direction from three directions with respect to the wind power generation part of FIG. 風配図モデルを示す図、A diagram showing a wind chart model, サボニウス型風車に対する風力の作用を示す図である。It is a figure which shows the effect | action of the wind force with respect to a Savonius type | mold windmill.
 以下、本発明を実施するための最良の形態について図面を参照しながら説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 図1に示すように、サボニウス型風力発電装置S(以下、風力発電装置Sという)は、一例として公園や駅前広場などの平坦な土地Gに設置される。土地Gは高台、斜面、風が通過する山間などでもよい。風力発電装置Sは支持部100と風力発電部200と制御部300とパワーコンディショナー400を備えている。 As shown in FIG. 1, a Savonius type wind power generator S (hereinafter referred to as a wind power generator S) is installed on a flat land G such as a park or a station square as an example. The land G may be a plateau, a slope, or a mountain where wind passes. The wind power generator S includes a support unit 100, a wind power generation unit 200, a control unit 300, and a power conditioner 400.
 支持部100は、土地G上に垂直に固定された固定支柱110と、固定支柱110の上端に回転部120を介して回動可能に支持された回転支持部130を備えている。回転部120は図示しない駆動モータを備え、制御部300からの制御によって駆動モータを正逆回転させ、回転支持部130に支持された風力発電部200を風向きに応じて回動させるようになっている。 The support unit 100 includes a fixed column 110 fixed vertically on the land G, and a rotation support unit 130 supported rotatably at the upper end of the fixed column 110 via the rotation unit 120. The rotation unit 120 includes a drive motor (not shown), and rotates the drive motor forward and backward by control from the control unit 300 to rotate the wind power generation unit 200 supported by the rotation support unit 130 according to the wind direction. Yes.
 風力発電部200は、ベース201と、ベース201上に配置された3組の発電ユニット200A~200Cから構成されている。発電ユニット200A~200Cは、水平方向一列に連設された複数個(2~n個、図示例は2個)のサボニウム型風車210と、各風車210に接続された複数の発電機220を備えている。 The wind power generation unit 200 includes a base 201 and three sets of power generation units 200A to 200C arranged on the base 201. The power generation units 200A to 200C include a plurality (2 to n, two in the illustrated example) of savonium-type windmills 210 connected in a row in the horizontal direction, and a plurality of generators 220 connected to each windmill 210. ing.
 サボニウム型風車210は、垂直軸型風車、すなわち風向きに依存しない全方位型の風車で、垂直回転軸211と、垂直回転軸211を保持する上下の端板212と、円弧状に湾曲する湾曲内面213aが前記垂直回転軸211を挟んで同一回転方向を向きかつ前記上下の端板212間に保持された2つの受風バケット213を備えている。そして、全方位からの風力エネルギを受風バケット213が受けて、垂直回転軸211を回転させるようになっている。本実施形態のサボニウム型風車210は、低速(1.0~1.5m/S)の風力で回転起動する。 The savonium type windmill 210 is a vertical axis type windmill, that is, an omnidirectional type windmill that does not depend on the wind direction, and includes a vertical rotating shaft 211, upper and lower end plates 212 that hold the vertical rotating shaft 211, and a curved inner surface that curves in an arc shape. 213a includes two wind receiving buckets 213 that face the same rotation direction with the vertical rotation shaft 211 therebetween and are held between the upper and lower end plates 212. The wind receiving bucket 213 receives wind energy from all directions, and rotates the vertical rotation shaft 211. The savonium type windmill 210 of the present embodiment starts rotating with low speed (1.0 to 1.5 m / S) wind power.
 発電機220は、サボニウム型風車210(以下、風車210という)の垂直回転軸211の回転により発電を行う。発電機220には交流発電機(誘導発電機、同期発電機)が通常用いられる。発電機220で発電された電力は送電線160を介してパワーコンディショナー400に送電される。また強風時などは制御部300からの制御により発電電力の出力が抑制される。 The generator 220 generates power by the rotation of the vertical rotation shaft 211 of the savonium type windmill 210 (hereinafter referred to as the windmill 210). As the generator 220, an AC generator (induction generator, synchronous generator) is usually used. The electric power generated by the generator 220 is transmitted to the power conditioner 400 via the transmission line 160. In addition, when the wind is strong, the output of the generated power is suppressed by the control from the control unit 300.
 制御部300は、風力発電装置S全体を制御すると共に、回線150を通じて風向計140から風向情報を収集し、また、外部から設置地域の年間の風配図に基づく風配情報(風速、出現頻度、方角)を収集し、さらに、回線150を通じて風力発電部200の発電電力取得部221から風車ごとの発電情報(発電電力量、回転数)を収集する。そして、収集した風向情報、風配情報、風車ごとの発電情報のいずれか一の情報または複数の情報の組合せに基づき、風の主流方向の向きを算出し、回転部120に回動指示を与え、風力発電部200を最大発電効率となる向き(最適風向配置)に回動させるようになっている。 The control unit 300 controls the entire wind power generator S, collects wind direction information from the anemometer 140 through the line 150, and also distributes wind direction information (wind speed, appearance frequency) based on the annual wind map of the installation area from the outside. , Direction), and further, power generation information (power generation amount, rotation speed) for each wind turbine is collected from the generated power acquisition unit 221 of the wind power generation unit 200 through the line 150. Then, based on any one of the collected wind direction information, wind distribution information, and power generation information for each wind turbine, or a combination of a plurality of information, the direction of the main wind direction of the wind is calculated, and a rotation instruction is given to the rotating unit 120. The wind power generator 200 is rotated in a direction (optimal wind direction arrangement) that provides maximum power generation efficiency.
 パワーコンディショナー400は風力発電部200で発電された電力を直流から交流に変換する。交流に変換された電力は送電線160を通じて電力会社その他に送電されるようになっている。 The power conditioner 400 converts the power generated by the wind power generation unit 200 from direct current to alternating current. The electric power converted into alternating current is transmitted to the electric power company and others through the transmission line 160.
 図2は風力発電部200における3組の発電ユニット200A~200Cのレイアウトを示している。図2に示すように3組の発電ユニット200A~200Cは、ベース201の上面に平面視して各ユニットで形成される内側空間が略正三角形となるように配置されている。具体的には、各ユニット内の2個の風車210の垂直回転軸211を結ぶ線の延長線どうしのなす角度が略60度となるように各ユニットが配置されている。 FIG. 2 shows a layout of three power generation units 200A to 200C in the wind power generation unit 200. As shown in FIG. 2, the three sets of power generation units 200A to 200C are arranged on the upper surface of the base 201 so that the inner space formed by each unit in a plan view is a substantially equilateral triangle. Specifically, each unit is arranged so that an angle formed by an extension line of a line connecting the vertical rotation shafts 211 of the two wind turbines 210 in each unit is approximately 60 degrees.
 各発電ユニット200A~200Cの各風車210は、本発明の効果を最大限に発揮させるべく、回転方向と上記正三角形配置による互いの位置関係に規制が加えられている。 Each wind turbine 210 of each of the power generation units 200A to 200C is restricted in the positional relationship between the rotation direction and the regular triangle arrangement so as to maximize the effects of the present invention.
 まず、各段の風車の回転方向について説明すると、図2のレイアウトにおいて、風向きW1(図の上から下)に対し、前段となる風車のうち、左の発電ユニット200Aの風車2101Lが時計回り、右の発電ユニット200Bの風車2101Rが反時計回りになるように、各受風バケット213の湾曲内面213aの向きがそれぞれ設定されている。 First, the rotation direction of the wind turbine at each stage will be described. In the layout of FIG. 2, the wind turbine 210 1L of the left power generation unit 200A among the wind turbines at the front stage is clockwise with respect to the wind direction W1 (from the top to the bottom of the figure). The direction of the curved inner surface 213a of each wind receiving bucket 213 is set so that the windmill 210 1R of the right power generation unit 200B is counterclockwise.
 同様に、風向きW1に対し、中段となる風車のうち、左の発電ユニット200Aの風車2102Lが反時計回り、右の発電ユニット200Bの風車2102Rが時計回りになるように、各受風バケット213の湾曲内面213aの向きがそれぞれ設定されている。さらには、風向きW1に対し、後段となる風車のうち、正対する発電ユニット200Cの左の風車2103Lが時計回り、右の風車2103Rが反時計回りになるように、各受風バケット213の湾曲内面213aの向きがそれぞれ設定されている。 Similarly, among the wind turbines in the middle stage with respect to the wind direction W1, each wind-receiving bucket is set such that the wind turbine 210 2L of the left power generation unit 200A is counterclockwise and the wind turbine 210 2R of the right power generation unit 200B is clockwise. The direction of the curved inner surface 213a of 213 is set. Further, among the wind turbines at the subsequent stage with respect to the wind direction W1, the wind turbine 210 3L of the power generation unit 200C facing the wind turbine W3 is clockwise and the wind turbine 210 3R is counterclockwise so that the right wind turbine 210 3R is counterclockwise. The direction of the curved inner surface 213a is set.
 次に、互いの位置関係について説明すると、図2のレイアウトにおいて、風向きW1(主流方向:図の上から下)に対し、前段の風車、すなわち左側に傾斜配置された発電ユニット200Aの前方内寄りの風車2101Lと右側に傾斜配置された発電ユニット200Bの前方内寄りの風車2101Rの隙間Sが狭幅(左記風車の直径よりも狭い幅)に設定されている。 Next, the mutual positional relationship will be described. In the layout of FIG. 2, the front windmill, that is, the front inward of the power generation unit 200A inclined to the left side with respect to the wind direction W1 (main flow direction: from the top to the bottom). The gap S between the wind turbine 210 1L and the wind turbine 210 1R inward of the power generation unit 200B inclined to the right is set to be narrow (a width narrower than the diameter of the wind turbine on the left).
 また、中段の風車、すなわち左側に傾斜配置された発電ユニット200Aの後方外寄りの風車2102Lと右側に傾斜配置された発電ユニット200Bの後方外寄りの風車2102Rが、前段の同一ユニット側の風車に対し風向きW1に見て部分的に重なるように、より詳しくは中段の前記風車2102Lと前記風車2102Rの各受風バケット213が内寄りに位置するときに、前段の風車2101Lと風車2101Rの各外寄りに位置する受風バケット213に対し風向きW1に見て1/2以上(図示例は約2/3)重なるように配置されている。 Further, the middle stage wind turbine, that is, the wind turbine 210 2L outside the rear of the power generation unit 200A inclined on the left side and the wind turbine 210 2R outside the rear of the power generation unit 200B inclined on the right side are arranged on the same unit side in the previous stage. More specifically, when the wind turbine 210 2L in the middle stage and the wind-receiving buckets 213 of the wind turbine 210 2R are positioned inward so as to partially overlap the wind turbine in the wind direction W1, the wind turbine 210 1L in the front stage The wind receiving buckets 213 located on the outer sides of the windmill 210 1R are arranged so as to overlap with each other by 1/2 or more (in the example shown, about 2/3) when viewed in the wind direction W1.
 同様に、後段の風車、すなわち風向きW1に正対する発電ユニット200Cの左側の風車2103Lと右側の風車2103Rが、それぞれ前段の同一側の風車と中段の同一側の風車に対し風向きW1に見て部分的に重なるように、より詳しくは後段の風車2103Lと風車2103Rの各受風バケット213が外寄りに位置するときに、前段の風車2101Lと風車2101Rの各内寄りに位置する受風バケット213に対し風向きW1に見て1/2以上(図示例は約100%)重なり、かつ、中段の風車2102Lと風車2102Rの各内寄りに位置する受風バケット213に対し風向きW1に見て部分的に(図示例は約1/4)重なるように配置されている。 Similarly, the rear wind turbine, that is, the left wind turbine 210 3L and the right wind turbine 210 3R of the power generation unit 200C facing the wind direction W1, are viewed in the wind direction W1 with respect to the same wind turbine in the front and the same wind turbine in the middle. More specifically, when the wind-receiving buckets 213 of the rear wind turbine 210 3L and the wind turbine 210 3R are located outward, the positions of the wind turbine 210 1L and the wind turbine 210 1R are located inward of the wind turbine 210 1L. The wind receiving bucket 213 overlaps with the wind receiving bucket 213 in the wind direction W1 by more than 1/2 (in the illustrated example, about 100%), and is located inward of each of the middle wind turbine 210 2L and the wind turbine 210 2R. They are arranged so as to partially overlap (about ¼ in the illustrated example) when viewed in the wind direction W1.
 これによって、上記風力発電部200は、各風車の回転方向の規制と発電ユニット200A~200Cのレイアウトにより、図2および図3を参照して、まず、前段の風車2101L,2101Rに対しては、風向きW1の風(例えば風速4m/秒)を内寄りの受風バケット213が受けて左の風車2101Lが時計回りに回転し、右の風車2101Rが反時計回りに回転し、それぞれ発電する。 As a result, the wind power generation unit 200 first controls the wind turbines 210 1L and 210 1R in the preceding stage with reference to FIGS. 2 and 3 according to the regulation of the rotation direction of each wind turbine and the layout of the power generation units 200A to 200C. Is received by the inward wind receiving bucket 213, and the left windmill 210 1L rotates clockwise, the right windmill 210 1R rotates counterclockwise, respectively. Generate electricity.
 次いで、中段の風車2102L,2102Rに対しては、風向きW1の風(例えば風速4m/秒)を外寄りの受風バケット213が受けて左の風車2102Lが反時計回りに回転し、右の風車2102Rが時計回りに回転し、それぞれ発電する。このとき、中段の風車2102L,2102Rは、内寄りの受風バケット213が、前段の風車2101L,2101Rの外寄りの受風バケット213と風向きW1に見て重なる位置関係にあるので、回転を制止する負の風が遮られる(図3の楕円Aおよび図10参照)。その結果、中段の風車2102L,2102Rは、回転数が増加して発電電力が増加する。 Next, for the wind turbines 210 2L and 210 2R in the middle stage, the wind turbine W 2 in the outside receives wind of the wind direction W1 (for example, wind speed 4 m / second), and the left wind turbine 210 2L rotates counterclockwise, The right windmill 210 2R rotates clockwise to generate electricity. At this time, the wind turbines 210 2L and 210 2R in the middle stage are in a positional relationship in which the inner wind receiving bucket 213 overlaps with the outer wind receiving buckets 213 of the front wind turbines 210 1L and 210 1R when viewed in the wind direction W1. The negative wind that stops the rotation is blocked (see ellipse A in FIG. 3 and FIG. 10). As a result, in the middle stage wind turbines 210 2L and 210 2R , the rotation speed increases and the generated power increases.
 次に、後段の風車2103L,2103Rに対しては、前段の風車2101L,2101R間の隙間Sを通過した風を内寄りの受風バケット213が受けて左の風車2103Lが時計回りに、右の風車2103Rが反時計回りに回転し、それぞれ発電する。このとき、後段の風車2103L,2103Rに向かう風は、前段の風車2101L,2101R間の狭幅の隙間Sを通過する際のベンチュリ効果により増速(風速8m/秒)して風力が増大し、後段の風車2103L,2103Rの回転数を増加させ、発電電力が大きく増加する。 Next, with respect to the rear wind turbines 210 3L and 210 3R , the wind passing through the gap S between the front wind turbines 210 1L and 210 1R is received by the inner wind receiving bucket 213, and the left wind turbine 210 3L is operated as a clock. Around, the right windmill 210 3R rotates counterclockwise to generate electricity. At this time, the wind toward the rear wind turbines 210 3L and 210 3R is increased in speed (wind speed of 8 m / sec) by the venturi effect when passing through the narrow gap S between the front wind turbines 210 1L and 210 1R. Increases, the rotational speed of the wind turbines 210 3L and 210 3R in the subsequent stage is increased, and the generated power greatly increases.
 図4は2個のサボニウス型風車に対し風速4m/sの風が入力した場合の風の流れモデルを示している。風速4m/sの一定幅(S1)の風が2個の風車間の隙間(S2)を通過するとベンチュリ効果により風速が約8m/sに増速する。本発明の風力発電装置Sは同ベンチュリ効果を利用して後段の風車の回転数を増加させている。 FIG. 4 shows a wind flow model when wind of 4 m / s is input to two Savonius type wind turbines. When a wind having a constant width (S1) having a wind speed of 4 m / s passes through the gap (S2) between the two wind turbines, the wind speed increases to about 8 m / s due to the venturi effect. The wind power generator S of the present invention uses the venturi effect to increase the rotational speed of the wind turbine at the subsequent stage.
 図5はサボニウム型風車における風速(m/s)と電力(W)の関係を示している。同図に示すように、風速が4m/sのときの電力は約100Wであるが、5m/sになると約250W、8m/sになると約750W、10m/sになると約1450Wに達する。 FIG. 5 shows the relationship between wind speed (m / s) and electric power (W) in a savonium type windmill. As shown in the figure, the power when the wind speed is 4 m / s is about 100 W, but when it reaches 5 m / s, it reaches about 250 W, when it reaches 8 m / s, it reaches about 750 W, and when it reaches 10 m / s, it reaches about 1450 W.
 本発明に係る風力発電装置Sは、図3および図5を参照して前段の風車は4m/sの正負の風を受けてそれぞれ約100Wを発電し、中段の風車は4m/sの正の風(と負の風の遮り)を受けて実質的に5m/sに増速し、それぞれ約250Wを発電し、後段の風車はベンチュリ―効果により8m/sに増速された正の風(と負の風の遮り)を受けて実質的に10m/sに増速し、それぞれ約1450Wを発電する。システム全体として合計3600Wの発電が可能である。また稼働率も20%(3.6kW/18kW=0.2)になる。 In the wind turbine generator S according to the present invention, referring to FIG. 3 and FIG. 5, the wind turbine at the front stage receives positive and negative winds of 4 m / s to generate about 100 W respectively, and the wind turbine at the middle stage is positive at 4 m / s. In response to the wind (and blocking the negative wind), the speed is substantially increased to 5 m / s, generating about 250 W each, and the subsequent wind turbine is a positive wind (speed increased to 8 m / s by the Venturi effect) And negative winds) to substantially increase the speed to 10 m / s, generating about 1450 W each. The system as a whole can generate a total of 3600W. Also, the operating rate is 20% (3.6 kW / 18 kW = 0.2).
 図6は比較例として風向きW1に対し風車を同数(6個)だけ並列配置したレイアウトであるが、4m/sの風力に対し、100×6=600Wの発電、稼働率3%(0.6kW/18kW=0.03)に留まる。本発明に係る風力発電装置Sは、同数の風車を並列配置した図6の例に比べると、最大約7倍の発電効率が得られる。 FIG. 6 shows a layout in which the same number (six) of wind turbines are arranged in parallel with respect to the wind direction W1 as a comparative example, but 100 × 6 = 600 W of power generation and operation rate of 3% (0.6 kW) with respect to 4 m / s of wind power. / 18 kW = 0.03). Compared with the example of FIG. 6 in which the same number of wind turbines are arranged in parallel, the wind power generator S according to the present invention can generate power generation efficiency of about seven times at the maximum.
 風の主流方向が風力発電部200の最適風向配置(図2の配置)とならない場合がある。この場合は制御部300と回転部120の作動により最大±60度の範囲で風力発電部200の最適風向配置を風の主流方向に一致させるようにする。すなわち、制御部300が風向計140からの風向情報を収集し、また、設置地域の風配図に基づく風配情報を収集し、また、風力発電部200の発電電力取得部221から風車ごとの発電情報(発電電力量、回転数)を収集し、収集した風向情報、風配情報、風車ごとの発電情報のいずれか一の情報または複数の情報の組合せに基づき、風の主流方向の向きを算出し(1時間毎/数時間毎/昼夜別/1日毎/月毎/季節毎)、回転部120に回動指示を与え、回転支持部130を回動させる(最大±60度)。これにより、風の主流方向と風力発電部200の最適風向配置を一致させ、発電効率を最大化できる。 The main wind direction of the wind may not be the optimal wind direction arrangement (the arrangement shown in FIG. 2) of the wind power generation unit 200. In this case, the optimal wind direction arrangement of the wind power generation unit 200 is made to coincide with the main wind direction in the range of maximum ± 60 degrees by the operation of the control unit 300 and the rotation unit 120. That is, the control unit 300 collects the wind direction information from the anemometer 140, collects the wind distribution information based on the wind map of the installation area, and collects the wind direction information from the generated power acquisition unit 221 of the wind power generation unit 200 for each windmill. Collect power generation information (power generation amount, number of revolutions) and determine the direction of the mainstream direction of the wind based on any one of the collected wind direction information, wind distribution information, power generation information for each windmill, or a combination of multiple information. Calculation is performed (every hour / every hour / day / night / day / month / season), a rotation instruction is given to the rotation unit 120, and the rotation support unit 130 is rotated (maximum ± 60 degrees). Thereby, the mainstream direction of a wind and the optimal wind direction arrangement | positioning of the wind power generation part 200 can be matched, and electric power generation efficiency can be maximized.
 図7は制御部300の構成例を示している。同図に示すように、制御部300は、上記した回転部120に対する回動制御を実現すべく、風向情報収集部310と風配情報収集部320と発電情報収集部330と風向計算部340と回転指示部350を備えている。制御部300は、回転支持部130を最大60度回動させ、途中で合計発電量が最大になる位置で停止するようにしてもよい。 FIG. 7 shows a configuration example of the control unit 300. As shown in the figure, the control unit 300 includes a wind direction information collection unit 310, a wind distribution information collection unit 320, a power generation information collection unit 330, and a wind direction calculation unit 340 in order to realize the rotation control with respect to the rotation unit 120 described above. A rotation instruction unit 350 is provided. The control unit 300 may rotate the rotation support unit 130 at a maximum of 60 degrees, and stop at a position where the total power generation amount becomes maximum on the way.
 風の主流方向が互いに略120度をなす三方向である場合、3組の風力発電ユニット200A~200Cが互いに正三角形をなすように配置されているので、風力発電部200を回動させることなく最適風向位置に一致させることができる。すなわち、図8に示す異なる三方向の風向き(W1~W3:間隔120度)のうち、風向きW2(右下から左斜め上)の風に対しては、発電ユニット200Bの風車2102Rと発電ユニット200Cの風車2103Rが前段となり、発電ユニット200Bの風車2101Rと発電ユニット200Cの風車2103Lが中段となり、発電ユニット200Aの風車2101Lと風車2102Lが後段となって対応する。風向きW2の風に対する各風車の回転方向の向きは風向きW1の風に対する場合と同一となる。 When the main wind directions are three directions that form approximately 120 degrees with each other, the three wind power generation units 200A to 200C are arranged so as to form an equilateral triangle, so that the wind power generation unit 200 is not rotated. It is possible to match the optimum wind direction position. That is, among the three different wind directions shown in FIG. 8 (W1 to W3: interval 120 degrees), the wind turbine 210 2R of the power generation unit 200B and the power generation unit for the wind of the wind direction W2 (lower right to upper left). The windmill 210 3R of the 200C is the front stage, the windmill 210 1R of the power generation unit 200B and the windmill 210 3L of the power generation unit 200C are the middle stage, and the windmill 210 1L and the windmill 210 2L of the power generation unit 200A correspond to the rear stage. The direction of the rotation direction of each wind turbine with respect to the wind of the wind direction W2 is the same as that with respect to the wind of the wind direction W1.
 同様に、風向きW3(左下から右斜め上)の風に対しては、発電ユニット200Cの風車2103Lと発電ユニット200Aの風車2102Lが前段となり、発電ユニット200Cの風車2103Rと発電ユニット200Aの風車2101Lが中段となり、発電ユニット200Bの風車2102Rと風車2101Rが後段となって対応する。風向きW3の風に対する各風車の回転方向の向きは風向きW1の風に対する場合と同一となる。したがって、風向きW2と風向きW3のどちらの風に対しても風向きW1の風と同様の発電電力が得られる。 Similarly, the wind turbine 210 3L of the power generation unit 200C and the wind turbine 210 2L of the power generation unit 200A are in front of the wind of the wind direction W3 (lower left to upper right), and the wind turbine 210 3R of the power generation unit 200C and the power generation unit 200A The windmill 210 1L corresponds to the middle stage, and the windmill 210 2R and the windmill 210 1R of the power generation unit 200B correspond to the latter stage. The direction of the rotation direction of each wind turbine with respect to the wind of the wind direction W3 is the same as that with respect to the wind of the wind direction W1. Therefore, the generated power similar to the wind of the wind direction W1 is obtained for both the wind direction W2 and the wind direction W3.
 図9は日本国内のある地域の風配図を示しており、同風配図から得られる年間の風データ(風速、出現頻度、方角)を基に発電効率が最大となるように風力発電部200の向きを最適配置するようにしてよい。図9の例で言えば、年間を通して風速7m/sの風の出現頻度が高い方角は北北西、東、南南西であるから、このような地域では三方向(北北西、東、南南西)に合わせて上記風力発電部200の向きを最適配置すればよい(図2の風向きW1が北北西になるように風力発電部200の向きを合わせる)。これにより発電効率を極力高めることができる。 Fig. 9 shows the wind map of a certain region in Japan. The wind power generation unit is designed to maximize power generation efficiency based on annual wind data (wind speed, frequency of occurrence, direction) obtained from the wind map. The orientation of 200 may be optimally arranged. In the example of Fig. 9, the direction of high wind frequency of 7m / s throughout the year is north-northwest, east, south-southwest. The wind power generator 200 may be optimally arranged (the wind power generator 200 is oriented so that the wind direction W1 in FIG. 2 is north-northwest). Thereby, power generation efficiency can be increased as much as possible.
 以上説明したように、本発明に係る風力発電装置Sによると、前段の風車に比して中段の風車の回転数を増速させて回転率を高めることができ、後段の風車は回転数をさらに増速させて回転率を高めることができ、これによりシステム全体の発電量の増加と発電効率の向上を図ることができる。特に同数の風車を並列に並べたレイアウト(図6)に比べて約7倍の発電効率を実現することができる。 As described above, according to the wind turbine generator S according to the present invention, the rotation rate can be increased by increasing the rotation speed of the middle wind turbine as compared with the previous wind turbine, and the subsequent wind turbine can increase the rotation speed. Further, it is possible to increase the rotation rate by increasing the speed, thereby increasing the power generation amount of the entire system and improving the power generation efficiency. In particular, the power generation efficiency is about seven times that of a layout (FIG. 6) in which the same number of wind turbines are arranged in parallel.
 上記風力発電装置Sは、水平展開した3組の風力発電ユニット200A~200Cをそのままの形態で縦方向に複数または多段に積み上げてよい。また、各風力発電ユニット200A~200C内の風車212のみをを縦方向に複数または多段に積み上げてもよい。 In the wind power generator S, three sets of wind power generation units 200A to 200C that are horizontally deployed may be stacked in the vertical direction in a plurality or in multiple stages. Alternatively, only the wind turbines 212 in each of the wind power generation units 200A to 200C may be stacked in the vertical direction in a plurality or in multiple stages.
 上記風力発電装置Sは、サボニウム型風車の例を説明したが、他の垂直軸型風車にも適用可能で、複数個の垂直軸型風車を前後に複数段配置し、後段の風車がベンチュリ―効果により増速されることで、小型で発電効率の高い風力発電装置を実現できる。さらにはサボニウム型風車と他の垂直軸型風車との組合せにも適用可能である。 The wind turbine generator S has been described as an example of a savonium type windmill, but can also be applied to other vertical axis type windmills. A plurality of vertical axis type windmills are arranged in a plurality of stages at the front and rear, and the latter windmill is a venturi. By speeding up due to the effect, a small-sized wind power generator with high power generation efficiency can be realized. Furthermore, the present invention can be applied to a combination of a savonium type windmill and another vertical axis type windmill.
 かくして、本発明に係る風力発電装置によると、複数個のサボニウム型風車を、前後に複数段最適配置しかつ各風車の回転方向を最適化することで、小型で発電効率の高い風力発電装置を実現することができた。 Thus, according to the wind turbine generator according to the present invention, a plurality of savonium-type wind turbines are optimally arranged in a plurality of stages at the front and rear, and the rotation direction of each wind turbine is optimized, so that a small wind turbine generator with high power generation efficiency can be obtained. Could be realized.
 本発明に係る風力発電装置は、平地、高台、斜面、風が通過する山間等の土地に設置して幅広く利用可能である。 The wind power generator according to the present invention can be widely used by being installed on land such as flat ground, upland, slopes, and mountains where wind passes.
 100 支持部
 110 固定支柱
 120 回転部
 130 回転支持部
 140 風向計
 150 回線
 160 送電線
 200 風力発電部
 200A,200B,200C 発電ユニット
 201 ベース
 210 サボニウム型風車(風車)
 211 垂直回転軸
 212 端板
 213 受風バケット
 213a 湾曲内面
 220 発電機
 221 発電電力取得部
 300 制御部
 310 風向情報収集部
 320 風配情報収集部
 330 発電情報収集部
 340 風向計算部
 350 回転指示部
 400 パワーコンディショナー
 G 土地
 S 風力発電装置
DESCRIPTION OF SYMBOLS 100 Support part 110 Fixed support | pillar 120 Rotation part 130 Rotation support part 140 Anemometer 150 Line 160 Transmission line 200 Wind power generation part 200A, 200B, 200C Power generation unit 201 Base 210 Savonium type windmill (windmill)
211 vertical rotation shaft 212 end plate 213 wind receiving bucket 213a curved inner surface 220 generator 221 generated power acquisition unit 300 control unit 310 wind direction information collection unit 320 wind distribution information collection unit 330 power generation information collection unit 340 wind direction calculation unit 350 rotation instruction unit 400 Power conditioner G Land S Wind power generator

Claims (6)

  1.  サボニウス型風車を回転させて発電を行うサボニウス型発電装置であって、前記サボニウス型風車は、垂直軸と、当該垂直軸を保持する上下の端板と、円弧状の湾曲内面が前記垂直軸を挟んで同一回転方向を向くと共に前記上下の端板間に保持された2つの受風バケットを備え、
     前記サボニウス型風車を前段と後段に左右2個ずつ配置し、
     前段は左右の風車間に狭幅の隙間を設けて前方から背後に通過する風力を内寄りの各受風バケットが受けて一方が時計回りに他方が反時計回りに回転し、
     後段は前段の前記隙間を通過した後の風力を内寄りの各受風バケットが受けて一方が時計回りに他方が反時計回りに回転し、
     さらに、後段は前段に対し前方から見て後段の外寄りの受風バケットが前段の同じ側の内寄りの受風バケットと部分的に重なるように配置してなることを特徴とするサボニウス型風力発電装置。
    A Savonius-type power generator that generates power by rotating a Savonius-type windmill, wherein the Savonius-type windmill has a vertical axis, upper and lower end plates that hold the vertical axis, and an arc-shaped curved inner surface that Two wind-receiving buckets sandwiched in the same rotational direction and held between the upper and lower end plates;
    Two Savonius type wind turbines are arranged on the left and right in the front and rear stages,
    The front stage has a narrow gap between the left and right windmills, each wind receiving bucket receives the wind force passing from the front to the back, one rotates clockwise and the other rotates counterclockwise,
    The rear stage receives the wind force after passing through the gap in the previous stage by each wind receiving bucket, and one rotates clockwise and the other counterclockwise,
    Further, the rear stage is arranged so that the outer wind-receiving bucket of the rear stage partially overlaps with the inner wind-receiving bucket on the same side of the front stage as viewed from the front with respect to the front stage. Power generation device.
  2.  前記サボニウス型風車を前段と後段の間の中段に左右2個配置し、
     中段は外寄りの各受風バケットが前方から背後に通過する風力を受けて一方が反時計回りに他方が時計回りに回転し、
     さらに、中段は前段に対し前方から見て中段の内寄りの各受風バケットが前段の同じ側の外寄りの受風バケットと部分的に重なるように配置してなることを特徴とする請求項1記載のサボニウス型風力発電装置。
    Two Savonius type wind turbines are arranged on the left and right in the middle between the front and rear stages,
    In the middle stage, each outer wind-receiving bucket receives wind power passing from the front to the back, one rotates counterclockwise and the other rotates clockwise,
    Furthermore, the middle stage is arranged so that each inward wind receiving bucket of the middle stage partially overlaps with the outer wind receiving bucket on the same side of the previous stage as viewed from the front with respect to the front stage. The Savonius type wind power generator according to 1.
  3.  サボニウム型風車を2個並列した3組の風力発電ユニットを平面視して全体で略三角形となるように配置してなり、風向きに対し手前の2個の風車が前段となり、背後の2個の風車が後段となり、その中間の2個の風車が中段となることを特徴とする請求項2記載のサボニウス型風力発電装置。 Three sets of wind power generation units with two savonium-type windmills arranged in parallel are arranged in a generally triangular shape in plan view, and the two windmills in front of the wind direction are the front stage, and the two 3. A Savonius type wind power generator according to claim 2, wherein the wind turbine is a rear stage and two wind turbines in the middle are middle stages.
  4.  前記3組の風力発電ユニットを、隣接する風力発電ユニット間の内角が略60度となるように平面視して全体で略正三角形となるように配置してなることを特徴とする請求項3記載のサボニウス型風力発電装置。 The three sets of wind power generation units are arranged so as to form a substantially equilateral triangle as a whole when viewed in plan so that an internal angle between adjacent wind power generation units is approximately 60 degrees. The Savonius type wind power generator described.
  5.  支持部と、前段と後段の各風車または前段と中段と後段の各風車を含む風力発電部と、前記支持部と前記風力発電部の間に介在されて前記風力発電部を風の主流方向に合わせて最適風向配置となるように回動させる回転部を備えることを特徴とする請求項1ないし請求項4のいずれか一項に記載のサボニウス型風力発電装置。 A wind power generation unit including a support unit, wind turbines at the front stage and the rear stage or wind turbines at the front stage, the middle stage, and the rear stage; and the wind power generation unit is interposed between the support unit and the wind power generation unit in the mainstream direction of the wind The Savonius type wind power generator according to any one of claims 1 to 4, further comprising: a rotating unit that rotates so as to obtain an optimal wind direction arrangement.
  6.  支持部と、前段と後段にまたは前段と中段と後段に左右2個ずつサボニウム型風車を配置してなる風力発電部と、前記支持部と前記風力発電部の間に介在された回転部と、制御部を備えるサボニウム型風力発電装置において、
     風の主流方向が前記風力発電部の最適風向配置と異なる場合、前記制御部が、風向計からの風向情報、風配図からの風配情報、風車ごとの発電情報のうちいずれか一の情報または複数の情報の組合せに基づき、風の主流方向の向きを算出し、当該算出値に基づき回転部に回動指示を与え、風の主流方向が前記風力発電部の最適風向配置と一致するように前記風力発電部を回動させることを特徴とするサボニウス型風力発電装置の制御方法。
     
    A support unit, a wind power generation unit in which two left and right savonium-type wind turbines are arranged in the front stage, the rear stage, or the front stage, the middle stage, and the rear stage, and a rotating unit interposed between the support unit and the wind power generation unit, In the savonium-type wind power generator equipped with a control unit,
    When the main wind direction is different from the optimum wind direction arrangement of the wind power generation unit, the control unit is one of information on wind direction information from an anemometer, wind distribution information from a wind map, and power generation information for each windmill. Alternatively, the direction of the main flow direction of the wind is calculated based on a combination of a plurality of information, and a rotation instruction is given to the rotation unit based on the calculated value so that the main flow direction of the wind matches the optimum wind direction arrangement of the wind power generation unit. The method for controlling a Savonius type wind power generator is characterized by rotating the wind power generator.
PCT/JP2017/012851 2016-03-30 2017-03-29 Savonius wind power generation device and control method therefor WO2017170663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508135A JPWO2017170663A1 (en) 2016-03-30 2017-03-29 Savonius wind power generator and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066953 2016-03-30
JP2016-066953 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170663A1 true WO2017170663A1 (en) 2017-10-05

Family

ID=59964679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012851 WO2017170663A1 (en) 2016-03-30 2017-03-29 Savonius wind power generation device and control method therefor

Country Status (2)

Country Link
JP (1) JPWO2017170663A1 (en)
WO (1) WO2017170663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486050A (en) * 2020-03-05 2020-08-04 天津大学 A deformable power-generating sail and an unmanned detection ship carrying the sail
WO2024185722A1 (en) * 2023-03-03 2024-09-12 Topwind株式会社 Lightweight vertical axis wind turbine, and lightweight wind-powered electricity generating apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037983A (en) * 1975-04-07 1977-07-26 Rolando Poeta Wind motor
FR2468003A1 (en) * 1979-10-16 1981-04-30 Scoarnec Roger Wind driven rotary generator - has joined parallel rollers and cuts to reflect air flow towards rotors
JP2007046574A (en) * 2005-08-12 2007-02-22 Ntt Facilities Inc Wind power generator with speed increasing hood
WO2007068054A1 (en) * 2005-12-16 2007-06-21 Water Unlimited Cross-axis wind turbine energy converter
DE102009028820A1 (en) * 2009-08-21 2011-02-24 Valentin Biermann Wind turbine, has axial surfaces partially covered with flow conducting device, so that axial inflow opening is formed, and turbine blades blowing against flow directed on axial surfaces by axial inflow opening
JP2012057505A (en) * 2010-09-07 2012-03-22 Vyacheslav Stepanovich Klimov Rotor-type super windmill and method for increasing kinetic energy of air flow
JP2012097723A (en) * 2010-11-01 2012-05-24 Yoshio Abe Shake resistance increasing machine for wind turbine use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037983A (en) * 1975-04-07 1977-07-26 Rolando Poeta Wind motor
FR2468003A1 (en) * 1979-10-16 1981-04-30 Scoarnec Roger Wind driven rotary generator - has joined parallel rollers and cuts to reflect air flow towards rotors
JP2007046574A (en) * 2005-08-12 2007-02-22 Ntt Facilities Inc Wind power generator with speed increasing hood
WO2007068054A1 (en) * 2005-12-16 2007-06-21 Water Unlimited Cross-axis wind turbine energy converter
DE102009028820A1 (en) * 2009-08-21 2011-02-24 Valentin Biermann Wind turbine, has axial surfaces partially covered with flow conducting device, so that axial inflow opening is formed, and turbine blades blowing against flow directed on axial surfaces by axial inflow opening
JP2012057505A (en) * 2010-09-07 2012-03-22 Vyacheslav Stepanovich Klimov Rotor-type super windmill and method for increasing kinetic energy of air flow
JP2012097723A (en) * 2010-11-01 2012-05-24 Yoshio Abe Shake resistance increasing machine for wind turbine use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486050A (en) * 2020-03-05 2020-08-04 天津大学 A deformable power-generating sail and an unmanned detection ship carrying the sail
CN111486050B (en) * 2020-03-05 2022-04-15 天津大学 Deformable power generation sail and unmanned exploration ship carrying same
WO2024185722A1 (en) * 2023-03-03 2024-09-12 Topwind株式会社 Lightweight vertical axis wind turbine, and lightweight wind-powered electricity generating apparatus

Also Published As

Publication number Publication date
JPWO2017170663A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US7008171B1 (en) Modified Savonius rotor
US20090218823A1 (en) Wind turbine structure having a plurality of propeller-type rotors
US10612515B2 (en) Vertical axis wind turbine
US8648483B2 (en) Vertical axis wind turbine system
US9041239B2 (en) Vertical axis wind turbine with cambered airfoil blades
US9989033B2 (en) Horizontal axis wind or water turbine with forked or multi-blade upper segments
US20220228555A1 (en) Vertical axis wind turbine
US20090001730A1 (en) Vertical axis windmill with wingletted air-tiltable blades
US10378510B2 (en) Vertical axis wind turbine with self-orientating blades
EP3564525B1 (en) Vertical shaft wind power generator driving device for self-adaptive variable-propeller, and wind power generator
US20110037271A1 (en) Wind turbine system and modular wind turbine unit therefor
US7766602B1 (en) Windmill with pivoting blades
US20140064918A1 (en) Device and system for harvesting the energy of a fluid stream
CN107061151A (en) Modular frame formula high efficiency vertical axis windmill
US9890768B2 (en) Hybrid vertical axis wind turbine
JP2002021705A (en) Windmill for installation on roof
JP2017036703A (en) Wind power and sunlight integrated power generation solar
WO2017170663A1 (en) Savonius wind power generation device and control method therefor
US8556572B2 (en) Wind power turbine
KR20120139154A (en) Vertical axis type wind power generator fused lift and drag
KR101508304B1 (en) Wind power generation of vertical type
US20130015666A1 (en) Horizontal-axis wind turbine
JP2003003944A (en) Hybrid wind power generator
KR101810872B1 (en) Apparatus for generating by wind power
US20120107118A1 (en) Wind Turbine Device Having Rotor for Starting Up and Avoiding Overspeed

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508135

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775198

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775198

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载