+

WO2017038681A1 - ラック軸及びその製造方法 - Google Patents

ラック軸及びその製造方法 Download PDF

Info

Publication number
WO2017038681A1
WO2017038681A1 PCT/JP2016/074975 JP2016074975W WO2017038681A1 WO 2017038681 A1 WO2017038681 A1 WO 2017038681A1 JP 2016074975 W JP2016074975 W JP 2016074975W WO 2017038681 A1 WO2017038681 A1 WO 2017038681A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
shaft
tooth
rack shaft
axial direction
Prior art date
Application number
PCT/JP2016/074975
Other languages
English (en)
French (fr)
Inventor
洋斗 水谷
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/749,644 priority Critical patent/US20180221938A1/en
Priority to EP16841713.7A priority patent/EP3315225B1/en
Priority to CN201680045429.XA priority patent/CN107848018B/zh
Priority to JP2017537837A priority patent/JP6304458B2/ja
Publication of WO2017038681A1 publication Critical patent/WO2017038681A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/767Toothed racks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/14Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • B62D3/126Steering gears mechanical of rack-and-pinion type characterised by the rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/26Racks

Definitions

  • the present invention relates to, for example, a rack shaft that is incorporated in a steering device that constitutes a steering device for an automobile and pushes and pulls a tie rod with an axial displacement, and an improvement of the manufacturing method thereof.
  • a rack and pinion type steering device using a rack and a pinion is known as a mechanism for converting a rotational motion input from a steering wheel into a linear motion for giving a steering angle.
  • Such a rack-and-pinion type steering device is widely used because it can be configured to be small and light, and has high rigidity and good steering feeling.
  • FIG. 16 shows an example of such a rack and pinion type steering device.
  • the steering gear unit 5 includes a pinion shaft that is rotationally driven by the input shaft 6 and a rack shaft that meshes with the pinion shaft.
  • the rack shaft is displaced in the axial direction, and a pair of tie rods 7, 7 coupled to both ends thereof are pushed and pulled to give a desired steering angle to the steered wheels.
  • a specific stroke rack axis movement amount / pinion one rotation
  • a steering gear unit 5 having a variable gear ratio (VGR) structure that is changed according to the rotation angle of the pinion shaft 8 is known (see Patent Document 1).
  • the specific stroke is set to a low value near the center of the stroke (steering center side) and set to a high value at both ends of the stroke (steering end side).
  • a tire turning angle with respect to a steering operation amount in the vicinity is reduced to improve running stability during straight running.
  • the specific stroke is set by changing the specifications of the rack teeth 10 (the pitch between teeth, the shape of the teeth, the inclination angle of the tooth traces, etc.) according to the axial position. For this reason, the rack tooth 10 is provided with a region where the specific stroke is constant and a region where the specific stroke changes. And in the area
  • rack teeth are formed by forging
  • shape of the rack teeth can be freely set by changing the shape of the forging die, but in the case of forging, the rack teeth are formed using the plastic flow of the material. Due to the formation, a large processing strain is stored in the rack teeth. For this reason, if heat treatment is performed after forging for the purpose of improving the strength and wear resistance of the rack teeth, the rack teeth are likely to be greatly deformed, making it difficult to ensure the required accuracy.
  • the steering device is required to have a smooth feeling for the driver's steering operation. For this reason, it is desirable to improve the meshing accuracy between the rack teeth and the pinion teeth, and to smoothly convert the steering wheel operation into the displacement of the tie rod, and the rack teeth are also required to have high accuracy (dimensional accuracy, shape accuracy, etc.).
  • the present invention has been invented to realize a rack shaft and a method for manufacturing the rack shaft that can secure necessary and sufficient accuracy with respect to rack teeth at a low cost in view of the circumstances as described above.
  • rack teeth are provided in a part in the axial direction, and the ratio corresponding to the amount of movement of the rack shaft per one rotation of the pinion shaft having pinion teeth meshing with the rack teeth.
  • a rack shaft whose stroke is constant at least at a predetermined position in the axial direction of the rack teeth is a manufacturing object.
  • the predetermined position in the axial direction of the rack teeth does not indicate only one point in the axial direction of the rack teeth, but indicates a range (section) having a certain width.
  • the rack teeth are formed by forging (hot forging, warm forging, or cold forging), and heat treatment (for example, quenching and tempering). Then, if necessary, the shaft is subjected to bending correction processing, and then only the axial center part (of the tooth surface or the tooth surface and the tooth bottom) where the specific stroke is constant among the rack teeth. Finishing (for example, grinding) is performed.
  • the rack teeth are formed by forging (hot forging, warm forging, or cold forging), and heat treatment (for example, quenching, and After the tempering process, if necessary, the shaft is subjected to bending correction processing, and then the axial center portion and both axial end portions (of the tooth surface or Finishing (for example, grinding) is performed only on the tooth surface and the tooth bottom.
  • the axial center portion of the rack teeth does not indicate only one point existing in the axial center, but a width including the axial center and its vicinity (near). Point to the range you have.
  • a portion of the back surface of the rack shaft that performs the finishing process can be formed by forging in a portion aligned in the axial direction.
  • the back surface with respect to the rack shaft refers to the opposite surface when the surface facing the pinion shaft is the front surface.
  • a rack shaft having a variable gear portion in which the specific stroke varies on the rack teeth can be a manufacturing target.
  • the rack and pinion type steering gear unit configured by the rack shaft and the pinion shaft having such a configuration is called a steering gear unit having a variable gear ratio structure.
  • the rack shaft in which the specific stroke is constant over the entire axial length of the rack teeth can be a manufacturing object.
  • the rack and pinion type steering gear unit configured by the rack shaft and the pinion shaft having such a configuration is called a constant gear ratio (CGR) structure steering gear unit.
  • CGR constant gear ratio
  • each of the rack shafts of the present invention is provided with rack teeth which are forged parts in a part in the axial direction, and the amount of movement of the rack shaft per one rotation of the pinion shaft having pinion teeth meshing with the rack teeth.
  • the specific stroke corresponding to is constant at least at a predetermined position in the axial direction of the rack teeth.
  • a finishing portion is provided only in the central portion in the axial direction where the specific stroke is constant among the rack teeth having a heat treatment hardened layer formed on at least the surface layer portion. .
  • the finishing process is performed only on the axially central portion where the specific stroke is constant.
  • the finish processing portion is only provided in the axial center portion and both axial end portions where the specific stroke is constant. Is provided.
  • the finishing process is performed only on the axially central portion and both axial end portions where the specific stroke is constant.
  • a variable gear portion in which the specific stroke changes can be provided on the rack teeth.
  • the specific stroke can be made constant over the entire axial length of the rack teeth.
  • the rack shaft and its manufacturing method of the present invention configured as described above, it is possible to obtain a rack shaft capable of ensuring necessary and sufficient accuracy with respect to rack teeth at a low cost. That is, in the case of the present invention, after rack teeth are formed by forging and heat treatment is performed, finishing is performed only on the axial central portion where the specific stroke is constant among the rack teeth, or the axial center Finishing is applied only to the part and both ends in the axial direction.
  • the axially central portion subjected to finishing processing can be made smooth, and a smooth feeling can be realized with respect to a steering operation frequently performed in a straight traveling state of the vehicle.
  • the finishing process is performed only on the axial center part of the rack tooth where the specific stroke is constant, or the finishing process is performed only on the axial center part and both axial end parts. It is possible to smooth the feeling in the straight running state, which is particularly important for the driver, while keeping the finishing processing range small.
  • finishing process range can be reduced, and it is not necessary to repeatedly modify the forging die used for forging and maintain the accuracy of the forging die higher than necessary, thereby reducing development costs and manufacturing costs. You can also do things. As a result, according to the present invention, it is possible to obtain a rack shaft that can secure a necessary and sufficient accuracy for realizing a smooth feeling with respect to the rack teeth at a low cost.
  • the steering gear unit is configured by the groove for retaining grease according to the present invention
  • grease is provided between the rack guide that supports the back surface of the rack shaft and the groove formed on the back surface of the rack shaft. Can be held. For this reason, the operation characteristics of the steering gear unit at the axial center of the rack teeth (near the center of the stroke) can be maintained well over a long period of time.
  • the concave groove can be processed simultaneously with the rack teeth being processed by forging.
  • an increase in the manufacturing cost of the forging die can be suppressed. Therefore, the manufacturing cost of the rack shaft can be sufficiently suppressed.
  • FIGS. 4A to 4D are cross-sectional views illustrating the forging process according to the first embodiment in the order of steps.
  • FIGS. 6A to 6F are schematic views illustrating six examples of a groove pattern that can be formed on the back surface of the rack shaft according to the third embodiment.
  • FIGS. The figure equivalent to Drawing 3 (B) showing a 4th embodiment of the present invention.
  • (A) And (B) is a diagram which shows the specific stroke of the modification of this invention, respectively.
  • the steering gear unit 5a of this embodiment is a rack and pinion type steering gear unit having a variable gear ratio structure, and includes a housing 11, a pinion shaft 8a, a rack shaft 9a, and a pressing means 12.
  • the housing 11 is fixed to the vehicle body.
  • the housing 11 accommodates the axial intermediate portion of the rack shaft 9a.
  • the cylindrical first housing 13a having both ends opened and the tip half of the pinion shaft 8a.
  • a bottomed cylindrical second housing 13b that is open only and a third housing 13c that houses the pressing means 12 are integrally provided.
  • the pinion shaft 8a is provided with pinion teeth 14 near the tip of the outer peripheral surface.
  • the pinion shaft 8a is supported by the pair of rolling bearings 15a and 15b so as to be rotatable only with respect to the second housing 13b in a state where the front half is inserted inside the second housing 13b.
  • the rack shaft 9a is made of a metal material such as carbon steel or stainless steel, and a rack tooth 10a, which is a forging portion formed by forging, is provided at a portion near one end in the axial direction of the front surface (portion near the left end in FIG. 1). It has been.
  • the outer peripheral surface of the rack shaft 9a is a cylindrical surface except for the portion where the rack teeth 10a are formed.
  • the cross-sectional shape of the outer peripheral surface of the rack shaft 9a is circular at a portion deviating from the rack teeth 10a in the axial direction, and a portion corresponding to the rack teeth 10a is straight at a portion where the rack teeth 10a are formed in the axial direction.
  • the remaining part is arcuate.
  • a heat treatment hardened layer 16 having, for example, Hv 500 or more is formed on the surface layer portion of the rack tooth 10a.
  • a specific stroke (rack axis movement amount / pinion one rotation) corresponding to the axial movement amount of the rack shaft 9a per rotation of the pinion shaft 8a (steering wheel) is It is changed according to the rotation angle of the pinion shaft 8a. More specifically, as shown in FIG. 3A, the specific stroke is set to a constant low value near the center of the stroke (steering center side), and the specific stroke is set at both ends of the stroke (steering end side). Is set to be constant at a high value, and the specific stroke is set to vary between the center of the stroke and the end of the stroke.
  • the specifications of the rack teeth 10a are changed according to the axial position.
  • the center portion in the axial direction of the rack teeth 10a (the range in which the rotation angle of the pinion shaft 8a is, for example, 0 ° to ⁇ 90 °) is set to the center-side invariable gear portion 17.
  • the tooth traces of the rack teeth 10a are linear (tooth surfaces are flat), and the pitch between the teeth is set small.
  • both end portions in the axial direction of the rack tooth 10a are defined as end side invariable gear portions 18 and 18, and the rack teeth 10a
  • the tooth trace is linear (tooth surface is flat) and the pitch between teeth is set large.
  • the axially intermediate portion of the rack tooth 10a (the portion between the center side invariant gear portion 17 and the end side invariant gear portion 18, the range in which the rotation angle of the pinion 8a is, for example, ⁇ 180 degrees or more and less than ⁇ 90 degrees, and +90 degrees or more and 180 degrees or less) is the variable gear portions 19 and 19, the tooth traces of the rack teeth 10 a are curved (the tooth surfaces are curved), the inclination angle (twist angle) and the teeth The pitch is changed to gradually increase toward the end in the axial direction.
  • the finished portion is a finished portion that has higher dimensional accuracy and shape accuracy.
  • the pressing means 12 constituting the steering gear unit 5a is housed inside the third housing 13c and includes a rack guide 40 and a spring 41.
  • the pressing surface which is the front end surface of the rack guide 40, is arranged in the axial direction of the rack shaft 8 a with respect to the portion of the back surface of the rack shaft 9 a opposite to the pinion shaft 8 a across the rack shaft 9 a. Are in contact with each other.
  • the rack guide 40 is elastically pressed by the spring 41 toward the back surface of the rack shaft 8a.
  • the rack guide 40 is entirely made of a low friction material, or has a low friction material layer on the pressing surface that is in sliding contact with the back surface of the rack shaft 9a.
  • Step 1 a coil material or bar material (bar-shaped member) made of a metal material such as carbon steel or stainless steel and having a circular cross-sectional shape is prepared.
  • step 2 (S2) the material is annealed to remove the internal strain of the material.
  • step 3 the outer diameter dimension of the material is adjusted to a desired size by subjecting the annealed material to outer diameter grinding or drawing.
  • step 4 (S4) the processed material is cut into a predetermined length to obtain a cylindrical intermediate material having a predetermined length.
  • step 5 both ends of the intermediate material are processed to form screw holes for screwing and fixing the ball joints on both end surfaces of the intermediate material.
  • step 6 (S6) the intermediate material (first intermediate material 20) subjected to both end processing is subjected to cold forging processing (plastic processing) at a portion near one end in the axial direction of the front surface, thereby the portion.
  • the rack teeth 10a are formed on the surface.
  • the first intermediate material 20 having a circular bowl shape is set (placed) in a concave groove portion 22 having an arc cross section provided on the upper surface of the receiving die 21.
  • the radius of curvature of the inner surface of the concave groove portion 22 is substantially the same as the radius of curvature of the back surface portion of the rack shaft 9a (except for the amount of springback associated with the release of the processing force).
  • the shape of the tip surface of the pressing punch 23 is generally a flat surface. However, with respect to the width direction of the groove portion 22 (left and right direction in FIG. 7), a concave curved surface having a large radius of curvature, or both end portions in the width direction project linearly or curvedly toward the receiving die 21 (upset forging It can also be a concave shape (such as embrace the upper end of the processed shape).
  • the portion where the rack teeth 10a are to be formed in a part of the first intermediate material 20 in the axial direction is crushed in the vertical direction and the horizontal direction
  • the width dimension is expanded to be the second intermediate material 24.
  • the holding hole 26 has a U-shaped cross-sectional shape, and the radius of curvature of the bottom portion 27 substantially coincides with the radius of curvature of the inner surface of the concave groove portion 22 of the receiving die 21.
  • the pair of inner side surfaces 28, 28 constituting the holding hole 26 are planes parallel to each other.
  • a pair of guide inclined surface portions 29 and 29 are provided in the upper end opening of the holding hole 26 and are inclined in a direction in which the distance between the holding holes 26 increases upward.
  • the tooth forming punch 30 is inserted into the holding hole 26 by the tooth forming punch 30.
  • the second intermediate material 24 is strongly pushed into the holding hole 26 by the tooth forming punch 30.
  • the second intermediate material 24 is restrained by the inner surface of the holding hole 26 except for the flat surface portion 31 where the rack teeth 10a are to be formed.
  • step 7 the rack shaft 9a subjected to forging (tooth processing) is subjected to heat treatment to improve the mechanical properties such as hardness of the rack teeth 10a.
  • the rack teeth 10a are subjected to curing heat treatment including carburizing or carbonitriding, quenching, and tempering, and the surface portions of the rack teeth 10a (for example, from the surface)
  • the heat-treated cured layer 16 having a hardness of Hv 500 or more is formed in a range of a depth of 5 to 15 mm.
  • induction hardening can be performed.
  • step 8 (S8) the rack shaft 9a subjected to the heat treatment is subjected to correction processing such as bending correction processing.
  • step 9 out of the rack shaft 9a subjected to the bending correction processing, finishing processing (surface finishing processing) is performed only on the axial center portion (center side invariable gear portion 17) of the rack teeth 10a.
  • finishing processing surface finishing processing
  • a finishing process by grinding is performed only on the tooth surfaces (side surfaces, the oblique lattice pattern portions in FIGS. 3 and 4) of the center-side invariable gear portion 17.
  • a finishing portion is formed in the center-side invariant gear portion 17.
  • the rack shaft 9a is cleaned, and the manufacturing operation of the rack shaft 9a is completed.
  • the rack shaft 9a that constitutes the steering gear unit 5a of the present embodiment manufactured by the process as described above, it is possible to secure necessary and sufficient accuracy with respect to the rack teeth 10a while suppressing cost. That is, in the case of the present embodiment, the rack teeth 10a are formed by cold forging, and after heat treatment, the central portion (center side invariable gear portion 17) of the rack teeth 10a where the specific stroke is constant. ) Only finish.
  • the axially central portion subjected to finishing With respect to the center-side invariable gear portion 17), the operation of the steering gear unit 5a can be made smooth, and it becomes possible to realize a smooth feeling with respect to a steering operation frequently performed in a straight traveling state of the vehicle. .
  • the finishing process is performed only on the axial direction center part (center side invariable gear part 17) of the rack tooth 10a having a constant specific stroke, the finishing process range is suppressed to be small. It becomes possible to smooth the feeling in the straight running state which is particularly important for the driver.
  • the finishing range can be suppressed to a small level, and the forging die (die 25, tooth forming punch 30) used for the forging process may be repeatedly corrected or the forging die accuracy may not be maintained higher than necessary. Therefore, development costs and manufacturing costs can be reduced.
  • the rack shaft 9a that can ensure the necessary and sufficient accuracy for realizing the smooth feeling with respect to the rack teeth 10a can be obtained at low cost.
  • the specific stroke is set as shown in FIG. 3A, the tire turning angle with respect to the steering operation amount in the vicinity of the center of the steering wheel is reduced, and the vehicle travels straight ahead. Stability can be improved.
  • the rack shaft 9b of the present embodiment having the above-described configuration, it is possible to improve the return performance of the steering wheel. That is, if the dimensional accuracy and shape accuracy of the end-side invariable gear portions 18 and 18 of the rack teeth 10a are poor and the frictional resistance between the rack teeth 10a and the pinion teeth 14 (see FIGS. 2 and 5) increases, the steering wheel can easily return. (Ease of returning when the handle is cut and released to the vicinity of the stroke end, or return by self-aligning torque) may be deteriorated.
  • the concave and convex portions for processing the concave groove 32 are formed in the bottom portion 27 of the holding hole 26 of the die 25 shown in FIG. Are formed by forging at the same time as the rack teeth 10a are formed on the front surface of the rack shaft 9c.
  • the concave groove 32 is formed only in a portion that comes into contact with the pressing surface of the rack guide 40 (see FIG. 2), and the rhombus pattern arranged in a state of being separated in the circumferential direction on the back surface of the rack shaft 9c. It is composed of a pair of oblique grid-like groove portions 33, 33 which are continuous in the direction.
  • the shape of the groove 32 is not limited to the shape as described above, and for example, a shape as shown in FIG. 11 can be adopted.
  • FIG. 11A circumferentially long circumferential groove portions 34, 34 extending over the entire width (full width in the vertical direction in FIG. 11) on the back surface of the rack shaft 9c are provided in the axial direction.
  • FIG. 11C the axial concave grooves 35 and 35 extending in the axial direction can be formed on the back surface of the rack shaft 9c at equal intervals in the circumferential direction.
  • (E) a configuration in which the circumferential grooves 34 and 34 in FIG. 11A and the axial grooves 35 and 35 in FIG.
  • FIG. 11C are overlapped (combined) may be adopted. it can. Further, as shown in FIG. 11B, one half (the upper half in FIG. 11) and the other half (the lower half in FIG. 11) on the back surface of the rack shaft 9c are spaced apart from each other.
  • the circumferential groove portions 34a and 34b which are long in the circumferential direction are formed at equal intervals in the axial direction, or the axial groove portions 35a and 35b extending in the axial direction on the back surface of the rack shaft 9c as shown in FIG. Can be formed in a state of being biased to one half and the other half on the back of the rack shaft 9c, or as shown in FIG. 11 (F), the circumferential groove 34a in FIG. 11 (B). , 34b and the axial groove portions 35a, 35b in FIG. 11D can be employed.
  • the rack guide 40 (see FIG. 2) that supports the back surface of the rack shaft 9c in a state where the steering gear unit 5a (see FIGS. 1 and 2) is configured.
  • the concave groove 32 can be processed simultaneously with the rack teeth 10a being processed by cold forging. And since the formation range of this ditch
  • the manufacturing cost of the rack shaft 9c can be sufficiently suppressed.
  • Other configurations and operational effects including the manufacturing method of the rack shaft 9c other than forging are the same as in the case of the first embodiment.
  • the formation range of the concave groove 32 should just contain the part matched with the center side invariable gear part 17 regarding an axial direction at least. That is, the formation range of the concave groove 32 may be longer in the axial direction than the center-side invariable gear portion 17.
  • a fourth embodiment of the present invention will be described with reference to FIG.
  • the specifications of the rack teeth 10b formed on a part of the front surface of the rack shaft 9d in the axial direction are different from those in the first to third embodiments. That is, in the case of the steering gear unit 5b of this embodiment, a specific stroke (rack axis movement amount / pinion one rotation) corresponding to the axial movement amount of the rack shaft 9d per rotation of the pinion shaft 8a (see FIGS. 1 and 2). ) Is constant without changing according to the rotation angle of the pinion shaft 8a.
  • the specifications of the rack teeth 10b are constant without changing according to the axial position
  • the specific stroke is set to be constant within the entire axial length of the rack teeth 10b.
  • the rack shaft 9d constituting the steering gear unit having a constant gear ratio (CGR) structure is targeted, but the first embodiment also applies to such a rack shaft 9d.
  • finishing processing such as grinding is performed only on the central portion (tooth surface) of the rack teeth 10 in the axial direction, and a finishing processing portion is provided in the portion (slanted lattice pattern portion in FIG. 12). .
  • the specifications of the rack teeth 10b are made constant without changing according to the position in the axial direction, and within a range over the entire axial length of the rack teeth 10b.
  • the rack shaft 9e having a constant specific stroke not only the axial center portion (the tooth surface, the oblique lattice pattern portion in FIG. 13) but also the axial end portions (the tooth surface) are ground.
  • the finishing part is provided in the part (the hatched part in FIG. 13).
  • the specific stroke is set constant at a high value near the center of the stroke (steering center side), and the specific stroke is set constant at a low value at both ends of the stroke (steering end side).
  • the specific stroke may be set to change between the vicinity of the center of the stroke and the end of the stroke.
  • the specific stroke may be set to be constant at a low value near the center of the stroke, and may be changed so that the specific stroke is high up to both ends of the stroke. In this case, as shown in FIG.
  • the present invention can be implemented by appropriately combining the structures of the above-described embodiments.
  • the specific manufacturing method for forming the rack teeth by forging is not limited to the method shown in the embodiment, and any conventional method can be used as long as it is classified as forging.
  • Various methods can be employed.
  • the heat treatment performed after forging and the finishing are not limited to the methods shown in the embodiments, and various conventionally known methods can be employed.
  • the finishing process can be applied not only to the tooth surface (side surface) of the rack tooth but also to the bottom portion and the tooth tip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Gears, Cams (AREA)
  • Forging (AREA)
  • Transmission Devices (AREA)

Abstract

ラック歯(10a)を鍛造加工により形成し、焼き入れ処理及び焼き戻し処理等の熱処理を施した後、該ラック歯(10a)のうち、比ストロークが一定となる軸方向中央部に設けられたセンタ側不変ギヤ部(17)のみに仕上加工を施し、斜格子模様で表した仕上加工部を設ける。これにより、低コストで、ラック歯に関して必要十分な精度を確保できる、ラック軸の製造方法を実現する。

Description

ラック軸及びその製造方法
 本発明は、例えば自動車用操舵装置を構成するステアリング装置に組み込み、軸方向の変位に伴ってタイロッドを押し引きするラック軸及びその製造方法の改良に関する。
 ステアリングホイールから入力された回転運動を舵角付与の為の直線運動に変換する為の機構として、ラック及びピニオンを使用する、ラックアンドピニオン式のステアリング装置が知られている。この様なラックアンドピニオン式ステアリング装置は、小型且つ軽量に構成でき、しかも剛性が高く良好な操舵感を得られる為、広く使用されている。
 図16は、この様なラックアンドピニオン式ステアリング装置の1例を示している。このステアリング装置では、ステアリングホイール1の操作に伴って回転するステアリングシャフト2の動きを、自在継手3、3及び中間シャフト4を介して、ステアリングギヤユニット5の入力軸6に伝達する。該ステアリングギヤユニット5は、入力軸6により回転駆動されるピニオン軸と、該ピニオン軸と噛合したラック軸とを備える。入力軸6と共にピニオン軸が回転すると、ラック軸が軸方向に変位し、その両端部に結合した1対のタイロッド7、7を押し引きして、操舵輪に所望の舵角を付与する。
 上述の様なステアリングギヤユニットとしては、例えば図17に示す様な、ピニオン軸8の1回転当たりのラック軸9の軸方向移動量に相当する比ストローク(ラック軸移動量/ピニオン1回転)を、ピニオン軸8の回転角度に応じて変化させた、バリアブルギヤレシオ(VGR)構造のステアリングギヤユニット5が知られている(特許文献1参照)。又、バリアブルギヤレシオ構造のステアリングギヤユニット5では、比ストロークを、ストローク中央付近(ステアリングセンタ側)で低い値に設定し、ストローク両端部(ステアリングエンド側)で高い値に設定する事で、ステアリング中央付近でのステアリング操作量に対するタイヤの切れ角を小さくし、直進走行時の走行安定性を向上させる事が行われている。
 又、比ストロークの設定は、ラック歯10の諸元(歯同士のピッチ、歯の形状、歯筋の傾斜角等)を軸方向位置に応じて変化させる事で行われる。この為、該ラック歯10には、比ストロークが一定となる領域と、比ストロークが変化する領域とが、それぞれ設けられている。そして、このうちの比ストロークが変化する領域では、ラック歯10の歯面(側面)形状が、複雑な曲面形状となる。従って、この様なラック歯10は、切削加工により形成する事が困難であり、一般的には、塑性加工(鍛造加工)により形成する事が行われている。
 鍛造加工によりラック歯を形成する場合、鍛造型の形状を変更する事でラック歯の形状を自由に設定できるといった利点があるが、鍛造加工の場合、素材の塑性流動を利用してラック歯を形成する為、該ラック歯には大きな加工ひずみが蓄えられる。この為、ラック歯の強度及び耐摩耗性等の向上を図る目的で、鍛造加工後に熱処理を施すと、ラック歯に大きな変形が生じ易く、必要とする精度を確保する事が難しくなる。
 一方、ステアリング装置には、運転者の操舵操作に対して滑らかなフィーリング性が要求される。この為、ラック歯とピニオン歯との噛み合い精度を高め、ステアリングホイールの操作をタイロッドの変位へとスムーズに変換する事が望ましく、ラック歯にも高い精度(寸法精度、形状精度等)が要求される。特に、車両直進状態で行われる僅かな操舵操作は、直進性を維持する等の目的で高い頻度で行われる為、この様な操舵操作に対して滑らかなフィーリング性を実現する事が重要になる。そして、この為には、ストローク中央(ラック歯の軸方向中央)付近で、ステアリングギヤユニットの作動を滑らかにする事が重要になる。但し、上述した様に、ラック歯を鍛造加工により形成した場合には、その後に行う熱処理に伴う変形により、ラック歯の精度を確保する事が難しくなる。又、ラック歯の精度を確保する為には、鍛造加工に使用する鍛造型の修正等を繰り返し行う必要があり、開発コストの上昇、及び、製造コストの上昇を招く。
日本国特開2015-10685号公報
 本発明は、上述の様な事情に鑑みて、低コストで、ラック歯に関して必要十分な精度を確保できる、ラック軸及び該ラック軸の製造方法を実現すべく発明したものである。
 本発明のラック軸の製造方法は何れも、軸方向一部分にラック歯が設けられており、該ラック歯に噛合するピニオン歯を有するピニオン軸の1回転当たりのラック軸の移動量に相当する比ストロークが、少なくとも前記ラック歯の軸方向所定位置にて一定となる、ラック軸を製造対象とする。
 尚、本明細書及び特許請求の範囲で、ラック歯の軸方向所定位置とは、ラック歯の軸方向に関する1点のみを指すのではなく、ある程度の幅を持った範囲(区間)を指す。
 特に、第1発明のラック軸の製造方法の場合には、前記ラック歯を鍛造加工(熱間鍛造、温間鍛造、又は冷間鍛造)により形成し、熱処理(例えば焼入れ処理、及び焼戻し処理)を施した後、必要に応じて、軸の曲げ修正加工を施し、次いで、該ラック歯のうち前記比ストロークが一定となる軸方向中央部(のうち歯面又は歯面及び歯底)にのみ仕上加工(例えば研削加工)を施す。
 これに対して、第2発明のラック軸の製造方法の場合には、前記ラック歯を鍛造加工(熱間鍛造、温間鍛造、又は冷間鍛造)により形成し、熱処理(例えば焼入れ処理、及び焼戻し処理)を施した後、必要に応じて、軸の曲げ修正加工を施し、次いで、該ラック歯のうち前記比ストロークが一定となる軸方向中央部及び軸方向両端部(のうち歯面又は歯面及び歯底)にのみ仕上加工(例えば研削加工)を施す。
 尚、本明細書及び特許請求の範囲で、ラック歯の軸方向中央部とは、軸方向中央に存在する1点のみを指すのではなく、軸方向中央とその近傍(付近)を含む幅を持った範囲を指す。
 上述した様な第1及び第2発明のラック軸の製造方法を実施する場合には、例えば、前記ラック歯を形成するのと同時に、前記ラック軸の背面のうち、前記仕上加工を施す部分と軸方向に関して整合する部分に、グリース保持用の凹溝を鍛造加工により形成する事ができる。
 尚、本明細書及び特許請求の範囲で、ラック軸に関して背面とは、ピニオン軸と対向する面を前面としたときの反対側の面をいう。
 又、本発明のラック軸の製造方法を実施する場合には、例えば、前記ラック歯に前記比ストロークが変化する可変ギヤ部を有する、ラック軸を製造対象とする事ができる。
 尚、この様な構成を有するラック軸とピニオン軸とにより構成されるラックアンドピニオン式ステアリングギヤユニットが、バリアブルギヤレシオ構造のステアリングギヤユニットと呼ばれる。
 又、本発明のラック軸の製造方法を実施する場合には、例えば、前記比ストロークが前記ラック歯の軸方向全長に亙り一定となる、ラック軸を製造対象とする事ができる。
 尚、この様な構成を有するラック軸とピニオン軸とにより構成されるラックアンドピニオン式ステアリングギヤユニットが、コンスタントギヤレシオ(CGR)構造のステアリングギヤユニットと呼ばれる。
 又、本発明のラック軸は何れも、軸方向一部分に鍛造加工部位であるラック歯が設けられており、該ラック歯に噛合するピニオン歯を有するピニオン軸の1回転当たりのラック軸の移動量に相当する比ストロークが、少なくとも前記ラック歯の軸方向所定位置にて一定となっている。
 特に、第3発明のラック軸の場合には、少なくとも表層部に熱処理硬化層が形成された前記ラック歯のうち、前記比ストロークが一定となる軸方向中央部のみに仕上加工部を設けている。別な表現によれば、鍛造加工後、熱処理が施された前記ラック歯のうち、前記比ストロークが一定となる軸方向中央部のみに仕上加工が施されている。
 或いは、第4発明のラック軸の様に、少なくとも表層部に熱処理硬化層が形成された前記ラック歯のうち、前記比ストロークが一定となる軸方向中央部及び軸方向両端部のみに仕上加工部を設けている。別な表現によれば、鍛造加工後、熱処理が施された前記ラック歯のうち、前記比ストロークが一定となる軸方向中央部及び軸方向両端部のみに仕上加工が施されている。
 又、上述した様な第3及び第4発明のラック軸を実施する場合には、例えば、前記ラック軸の背面のうち、前記ラック歯に設けられた前記仕上加工部と軸方向に関して整合する部分に、グリース保持用の凹溝を設ける事ができる。
 又、本発明のラック軸を実施する場合には、例えば、前記ラック歯に、前記比ストロークが変化する可変ギヤ部を設ける事ができる。
 或いは、前記比ストロークを、前記ラック歯の軸方向全長に亙り一定とする事ができる。
 上述の様に構成する、本発明のラック軸及びその製造方法によれば、ラック歯に関して必要十分な精度を確保できるラック軸を、低コストで得る事ができる。
 即ち、本発明の場合には、鍛造加工によりラック歯を形成し、熱処理を施した後、ラック歯のうち比ストロークが一定となる軸方向中央部のみに仕上加工を施す、又は、軸方向中央部及び軸方向両端部のみに仕上加工を施している。
 この為、鍛造加工後のラック歯の精度を低く設定したり、熱処理後の精度を低く設定(例えば曲がり許容値を大きく設定)した場合にも、仕上加工が施された軸方向中央部に関しては、ステアリングギヤユニットの作動を滑らかにする事ができ、車両直進状態で頻繁に行われる操舵操作に対して滑らかなフィーリング性を実現する事が可能になる。
 この様に、本発明の場合には、比ストロークが一定となるラック歯の軸方向中央部のみに仕上加工を施すか、又は、軸方向中央部及び軸方向両端部のみに仕上加工を施す為、仕上加工範囲を少なく抑えつつ、運転者にとって特に重要な直進状態でのフィーリング性を滑らかにする事が可能になる。
 又、仕上加工範囲を少なく抑えられると共に、鍛造加工に使用する鍛造型の修正等を繰り返し行ったり、鍛造型の精度を必要以上に高く維持しなくても済む為、開発コストや製造コストを抑える事もできる。
 この結果、本発明によれば、ラック歯に関して滑らかなフィーリング性を実現する上で必要十分な精度を確保できるラック軸を、低コストで得る事ができる。
 又、本発明のグリース保持用の凹溝により、ステアリングギヤユニットを構成した状態で、ラック軸の背面を支持するラックガイドと、該ラック軸の背面に形成した凹溝との間に、グリースを保持する事ができる。この為、ラック歯の軸方向中央部(ストローク中央付近)でのステアリングギヤユニットの作動特性を、長期間に亙り良好に維持する事ができる。又、前記凹溝は、ラック歯を鍛造加工により加工するのと同時に加工できる。しかも、該凹溝の形成範囲を、運転者にとってフィーリング性が特に重要になる範囲に限定する事で、鍛造型の製造コストの上昇も抑えられる。従って、ラック軸の製造コストを十分に抑える事ができる。
本発明の第1実施形態を示す、ステアリングギヤユニットの断面図。 図1のII-II断面図。 第1実施形態の比ストロークを示す線図(A)及びラック軸を取り出して前面側から見た図(B)。 第1実施形態のラック歯の軸方向中央部の拡大図。 第1実施形態のラック歯とピニオン歯との噛合状態を示す断面図。 第1実施形態のラック軸の製造工程の1例を示すフローチャート。 (A)~(D)は、第1実施形態の鍛造加工を工程順に示す断面図。 本発明の第2実施形態を示す、図3(B)に相当する図。 本発明の第3実施形態に関して、ラック軸を前面側、側面側及び背面側の三方から見た図。 第3実施形態のラック軸の背面の軸方向中央部の拡大図。 (A)~(F)は、第3実施形態のラック軸の背面に形成可能な凹溝パターンの6例を示す模式図。 本発明の第4実施形態を示す、図3(B)に相当する図。 本発明の第5実施形態を示す、図3(B)に相当する図。 本発明の第6実施形態を示す、図9に相当する図。 (A)及び(B)は、本発明の変形例の比ストロークをそれぞれ示す線図である。 本発明の対象となるラック軸を組み込んだステアリングギヤユニットを備えた自動車用操舵装置の1例を示す図。 従来構造のステアリングギヤユニットに関して、比ストロークを示す線図及びラック軸とピニオン軸との噛合部を示す図。
[第1実施形態]
 本発明の第1実施形態に就いて、図1~7を参照しつつ説明する。本実施形態のステアリングギヤユニット5aは、バリアブルギヤレシオ構造のラックアンドピニオン式ステアリングギヤユニットであり、ハウジング11と、ピニオン軸8aと、ラック軸9aと、押圧手段12とを備えている。
 ハウジング11は、車体に固定されるもので、ラック軸9aの軸方向中間部を収容する、両端が開口した円筒状の第一収容体13aと、ピニオン軸8aの先半部を収容する、一端のみが開口した有底円筒状の第二収容体13bと、押圧手段12を収容する第三収容体13cとを、一体的に備えている。
 ピニオン軸8aは、外周面の先端寄り部分にピニオン歯14を設けている。ピニオン軸8aは、先半部を第二収容体13bの内側に挿入した状態で、この第二収容体13bに対し、1対の転がり軸受15a、15bにより回転のみ可能に支持されている。
 ラック軸9aは、炭素鋼、ステンレス鋼等の金属材製で、前面の軸方向一端寄り部分(図1の左端寄り部分)に、鍛造加工により形成された鍛造加工部位であるラック歯10aが設けられている。ラック軸9aの外周面は、ラック歯10aを形成した部分を除き、円筒面である。即ち、ラック軸9aの外周面の断面形状は、軸方向に関してラック歯10aから外れた部分では円形であり、軸方向に関してラック歯10aを形成した部分では、ラック歯10aに対応する部分が直線で、残りの部分が円弧形である。又、図5に示す様に、ラック歯10aの表層部には、例えばHv500以上である、熱処理硬化層16が形成されている。
 又、本実施形態のステアリングギヤユニット5aの場合、ピニオン軸8a(ステアリングホイール)の1回転当たりのラック軸9aの軸方向移動量に相当する比ストローク(ラック軸移動量/ピニオン1回転)を、ピニオン軸8aの回転角度に応じて変化させている。より具体的には、図3(A)に示す様に、ストローク中央付近(ステアリングセンタ側)で、比ストロークを低い値で一定に設定すると共に、ストローク両端部(ステアリングエンド側)で、比ストロークを高い値で一定に設定し、これらストローク中央付近とストローク端部との間部分で、比ストロークを変化させる様に設定している。
 この為に、ラック歯10aの諸元(歯同士のピッチ、歯の形状、歯筋の傾斜角等)を、軸方向位置に応じて変化させている。具体的には、図3(B)に示す様に、ラック歯10aの軸方向中央部(ピニオン軸8aの回転角が例えば0度~±90度となる範囲)を、センタ側不変ギヤ部17とし、ラック歯10aの歯筋を直線状(歯面を平坦面状)とすると共に、歯同士のピッチを小さく設定している。又、ラック歯10aの軸方向両端部(ピニオン8aの回転角が例えば-180度未満となる範囲及び+180度よりも大きくなる範囲)を、エンド側不変ギヤ部18、18とし、ラック歯10aの歯筋を直線状(歯面を平坦面状)とすると共に、歯同士のピッチを大きく設定している。更に、ラック歯10aの軸方向中間部(センタ側不変ギヤ部17とエンド側不変ギヤ部18との間部分、ピニオン8aの回転角が例えば-180度以上-90度未満となる範囲、及び、+90度以上180度以下となる範囲)を、可変ギヤ部19、19とし、ラック歯10aの歯筋を曲線状(歯面を曲面状)とすると共に、傾斜角度(捩れ角度)及び歯同士のピッチを軸方向端部側に向かうに従って次第に大きくなるように変化させている。
 更に、本実施形態の場合には、図3、4に斜格子模様を付した部分である、ラック歯10aのうちのセンタ側不変ギヤ部17の歯面(側面)のみを、他の部分(エンド側不変ギヤ部18、18及び可変ギヤ部19)に比べて、寸法精度及び形状精度の高い、仕上加工が施された仕上加工部としている。
 又、ステアリングギヤユニット5aを構成する押圧手段12は、第三収容体13cの内側に収容されており、ラックガイド40と、ばね41とを備える。そして、このうちのラックガイド40の先端面である押圧面を、ラック軸9aの背面のうち、このラック軸9aを挟んでピニオン軸8aと反対側の部分に対し、このラック軸8aの軸方向の摺動を可能に接触させている。又、この状態で、ばね41により、ラックガイド40をラック軸8aの背面に向け、弾性的に押圧している。これにより、ピニオン歯14とラック歯10aとの噛合部に予圧を付与する事で、この噛合部で異音が発生するのを抑制すると共に、ステアリング装置の操作感を向上させている。尚、ラックガイド40は、全体が低摩擦材により造られているか、或いは、ラック軸9aの背面と摺接する押圧面に低摩擦材層を有している。
 次に、バリアブルギヤレシオ構造の本実施形態のステアリングギヤユニット5aを構成する、ラック軸9aの製造方法に就いて説明する。
 本実施形態のラック軸9aは、例えば図6に示す様な工程順に製造する。
 先ず、ステップ1(S1)で、素材となる、炭素鋼、ステンレス鋼等の金属材製で、断面形状が円形のコイル材又はバー材(棒状部材)を用意する。
 次に、ステップ2(S2)で、素材に対し、焼鈍の処理を施す事により、該素材の内部ひずみを取り除く。
 次に、ステップ3(S3)で、焼鈍の処理を施した素材に対し、外径研削又は引抜加工を施す事により、該素材の外径寸法を所望の大きさに整える。
 次に、ステップ4(S4)で、処理を施した素材を所定の長さに切断する事により、所定の長さを有する円柱状の中間素材を得る。
 次に、ステップ5(S5)で、中間素材に対し、両端加工を施す事により、該中間素材の両端面に、ボールジョイントをねじ止め固定する為のねじ孔を形成する。
 次に、ステップ6(S6)で、両端加工を施した中間素材(第一中間素材20)に対し、前面の軸方向一端寄り部分に冷間鍛造加工(塑性加工)を施す事により、当該部分にラック歯10aを形成する。
 より具体的には、図7(A)に示す様に、円杆状の第一中間素材20を、受型21の上面に設けた、断面円弧形の凹溝部22内にセット(載置)する。この凹溝部22の内面の曲率半径は、ラック軸9aの背面部分の曲率半径とほぼ(加工力解除に伴うスプリングバック分を除き)一致している。
 次いで、図7(B)に示す様に、凹溝部22に沿って長い押圧パンチ23の先端面(下端面)により第一中間素材20をこの凹溝部22に向けて強く押圧する、据え込み鍛造加工を行う。押圧パンチ23の先端面の形状は、一般的には平坦面とする。但し、凹溝部22の幅方向(図7の左右方向)に関して、曲率半径が大きな凹曲面としたり、幅方向両端部が受型21に向けて直線的又は曲線的に突出する、(据え込み鍛造加工後の形状の上端部を抱き込む様な)凹形状とする事もできる。何れにしても、図7(B)に示した据え込み鍛造加工では、第一中間素材20の軸方向一部でラック歯10aを形成すべき部分を、上下方向に押し潰すと共に、水平方向の幅寸法を拡げて、第二中間素材24とする。
 次いで、第二中間素材24を、受型21の凹溝部22から取り出して、図7(C)に示す様に、ダイス25に設けた保持孔26の底部に挿入(セット)する。この保持孔26は、U字形の断面形状を有し、底部27の曲率半径は、受型21の凹溝部22の内面の曲率半径と、ほぼ一致している。又、保持孔26を構成する1対の内側面28、28は、互いに平行な平面としている。更に、該保持孔26の上端開口部には、上方に向かう程互いの間隔が拡がる方向に傾斜した、1対のガイド傾斜面部29、29を設けている。
 第二中間素材24を、ダイス25の保持孔26にセットしたならば、次いで、図7(C)→(D)に示す様に、この保持孔26内に歯成形用パンチ30を挿入し、この歯成形用パンチ30により、第二中間素材24を保持孔26内に強く押し込む。この歯成形用パンチ30の下面には、得るべきラック歯10aに見合う(完成後の形状に対して凹凸が反転した)形状の、成形用の波形凹凸を設けている。又、第二中間素材24は、保持孔26の内面により、ラック歯10aを形成すべき平坦面部31を除き、拘束されている。この為、歯成形用パンチ30により第二中間素材24を保持孔26内に強く押し込む事で、該第二中間素材24のうちの平坦面部31が、波形凹凸に倣って塑性変形し、図7(D)に示す様なラック歯10aを有する、ラック軸9aに加工される。又、必要に応じて、ラック歯10aの形状精度及び寸法精度をより良好にする為に、図7(D)の工程の後に、サイジング加工を施す事もできる。
 次に、ステップ7(S7)で、鍛造加工(歯加工)を施したラック軸9aに対し、熱処理を施す事により、ラック歯10aの硬度等の機械的性質を向上させる。より具体的には、本実施形態の場合には、該ラック歯10aに、浸炭又は浸炭窒化処理、焼き入れ処理、焼き戻し処理からなる硬化熱処理を施し、ラック歯10aの表層部(例えば表面から5~15mmの深さまでの範囲)に、硬さがHv500以上の熱処理硬化層16を形成する。但し、上述の様な熱処理工程に代えて、例えば、高周波焼き入れ処理を施す事もできる。
 次に、ステップ8(S8)で、熱処理を施したラック軸9aに対し、曲がり修正加工等の矯正加工を施す。
 次に、ステップ9(S9)で、曲がり修正加工を施したラック軸9aのうち、ラック歯10aの軸方向中央部(センタ側不変ギヤ部17)のみに対し、仕上加工(表面仕上げ処理)を施す。具体的には、センタ側不変ギヤ部17の歯面(側面、図3、4の斜格子模様部分)のみに対し、研削加工による仕上加工(表面仕上げ処理)を施す。これにより、センタ側不変ギヤ部17に仕上加工部を形成する。
 そして、最後のステップ10(S10)で、ラック軸9aの洗浄を行い、このラック軸9aの製造作業を完了する。
 以上の様な工程により製造される本実施形態のステアリングギヤユニット5aを構成するラック軸9aによれば、コストを抑えつつ、ラック歯10aに関して必要十分な精度を確保する事が可能になる。
 即ち、本実施形態の場合には、冷間鍛造加工によりラック歯10aを形成し、熱処理を施した後、ラック歯10aのうち比ストロークが一定となる軸方向中央部(センタ側不変ギヤ部17)のみに仕上加工を施している。この為、鍛造加工後のラック歯10aの精度を低く設定したり、熱処理後の精度を低く設定(例えば曲がり許容値を大きく設定)した場合にも、仕上加工が施された軸方向中央部(センタ側不変ギヤ部17)に関しては、ステアリングギヤユニット5aの作動を滑らかにする事ができ、車両直進状態で頻繁に行われる操舵操作に対して滑らかなフィーリング性を実現する事が可能になる。
 この様に、本実施形態の場合には、比ストロークが一定となるラック歯10aの軸方向中央部(センタ側不変ギヤ部17)のみに仕上加工を施す為、仕上加工範囲を少なく抑えつつ、運転者にとって特に重要な直進状態でのフィーリング性を滑らかにする事が可能になる。又、仕上加工範囲を少なく抑えられると共に、鍛造加工に使用する鍛造型(ダイス25、歯成形用パンチ30)の修正等を繰り返し行ったり、鍛造型の精度を必要以上に高く維持しなくても済む為、開発コストや製造コストを抑える事もできる。この結果、本実施形態の場合には、ラック歯10aに関して滑らかなフィーリング性を実現する上で必要十分な精度を確保できるラック軸9aを、低コストで得る事ができる。又、本実施形態の場合には、図3(A)の様に、比ストロークを設定している為、ステアリング中央付近でのステアリング操作量に対するタイヤの切れ角を小さくし、直進走行時の走行安定性を向上させる事ができる。
[第2実施形態]
 本発明の第2実施形態に就いて、図8を参照しつつ説明する。本実施形態の場合には、ラック軸9bの前面の軸方向一部分に形成したラック歯10aのうち、軸方向中央部に設けたセンタ側不変ギヤ部17(の歯面、図8の斜格子模様部分)だけでなく、軸方向両端部に設けたエンド側不変ギヤ部18、18(の歯面)に対しても、研削加工等の仕上加工を施し、当該部分(図8の斜線模様部分)に仕上加工部を設けている点が、第1実施形態の場合と異なる。
 以上の様な構成を有する本実施形態のラック軸9bによれば、ステアリングホイールの戻り性能を向上する事が可能になる。即ち、ラック歯10aのうち、エンド側不変ギヤ部18、18の寸法精度及び形状精度が悪く、ピニオン歯14(図2、5参照)との間の摩擦抵抗が大きくなると、ステアリングホイールの戻り易さ(ストロークエンド付近までハンドルを切って離した際の戻り易さ、又は、セルフアライニングトルクによる戻り易さ)が悪くなる可能性がある。これに対し、本実施形態の場合には、エンド側不変ギヤ部18、18の寸法精度及び形状精度を良好にできる為、ピニオン歯14との間の摩擦抵抗を低く抑える事が可能になり、ステアリングホイールの戻り性能を向上させる事ができる。
 仕上加工以外のラック軸9bの製造方法を含め、その他の構成及び作用効果に就いては、第1実施形態の場合と同様である。
 [第3実施形態]
 本発明の第3実施形態に就いて、図9~11を参照しつつ説明する。本実施形態の場合には、ラック軸9cの背面のうち、仕上加工が施されたセンタ側不変ギヤ部17と軸方向に関して整合する部分に、グリース保持用の凹溝32を設けた点が、第1実施形態の場合と異なる。
 本実施形態の場合には、例えば、図7(D)に示した、ダイス25の保持孔26の底部27に、凹溝32加工用の凹凸部を形成しておく事で、該凹溝32を、ラック軸9cの前面にラック歯10aを形成するのと同時に鍛造加工により形成している。又、凹溝32は、ラックガイド40(図2参照)の押圧面と接触する部分にのみ形成されており、ラック軸9cの背面の周方向に離隔した状態で配置された、ひし形模様を軸方向に連続させた如き1対の斜格子状凹溝部33、33により構成されている。
 但し、凹溝32の形状は、上述の様な形状に限定されず、例えば図11に示した様な形状を採用できる。具体的には、図11(A)の様に、ラック軸9cの背面に全幅(図11の上下方向全幅)に亙って伸びた周方向に長い周方向凹溝部34、34を、軸方向等間隔に形成したり、図11(C)の様に、ラック軸9cの背面に軸方向に伸びた軸方向凹溝部35、35を、周方向等間隔に形成する事もできるし、図11(E)の様に、図11(A)の周方向凹溝部34、34と図11(C)の軸方向凹溝部35、35とを重ね合わせた(組み合わせた)如き構成を採用する事もできる。又、図11(B)に示した様に、ラック軸9cの背面の片半部(図11の上半部)と他半部(図11の下半部)とに互いに離隔して配置された周方向に長い周方向凹溝部34a、34bを、軸方向等間隔に形成したり、図11(D)の様に、ラック軸9cの背面に軸方向に伸びた軸方向凹溝部35a、35bを、該ラック軸9cの背面の片半部と他半部とに偏らせた状態で形成する事もできるし、図11(F)の様に、図11(B)の周方向凹溝部34a、34bと図11(D)の軸方向凹溝部35a、35bとを組み合わせた如き構成を採用する事もできる。
 何れの形状を採用した場合にも、本実施形態の場合には、ステアリングギヤユニット5a(図1、2参照)を構成した状態で、ラック軸9cの背面を支持するラックガイド40(図2参照)と、該ラック軸9cの背面に形成した凹溝32との間に、グリースを保持する事ができる。この為、ストローク中央付近でのステアリングギヤユニット5aの作動特性を、長期間に亙り良好に維持する事ができる。又、本実施形態の場合には、凹溝32をラック歯10aを冷間鍛造加工により加工するのと同時に加工できる。しかも、該凹溝32の形成範囲を、運転者にとってフィーリング性が特に重要になる範囲に限定している為、鍛造型の製造コストの上昇も抑えられる。従って、ラック軸9cの製造コストを十分に抑える事ができる。
 鍛造加工以外のラック軸9cの製造方法を含め、その他の構成及び作用効果に就いては、第1実施形態の場合と同様である。
 なお、凹溝32の形成範囲は、センタ側不変ギヤ部17と軸方向に関して整合する部分を少なくとも含んでいればよい。即ち、凹溝32の形成範囲は、センタ側不変ギヤ部17よりも軸方向に関して長くしてもよい。
 [第4実施形態]
 本発明の第4実施形態に就いて、図12を参照しつつ説明する。本実施形態の場合には、ラック軸9dの前面の軸方向一部分に形成するラック歯10bの諸元が、第1~3実施形態の場合とは異なっている。即ち、本実施形態のステアリングギヤユニット5bの場合、ピニオン軸8a(図1、2参照)の1回転当たりのラック軸9dの軸方向移動量に相当する比ストローク(ラック軸移動量/ピニオン1回転)を、ピニオン軸8aの回転角度に応じて変化させず、一定としている。この為、本実施形態の場合には、ラック歯10bの諸元(歯同士のピッチ、歯の形状、歯筋の傾斜角等)を、軸方向位置に応じて変化させずに一定としており、ラック歯10bの軸方向全長に亙る範囲で、比ストロークが一定となる様にしている。
 以上の様に、本実施形態の場合には、コンスタントギヤレシオ(CGR)構造のステアリングギヤユニットを構成するラック軸9dを対象としているが、この様なラック軸9dの場合にも、第1実施形態の場合と同様に、ラック歯10の軸方向中央部(の歯面)にのみ、研削加工等の仕上加工を施し、当該部分(図12の斜格子模様部分)に仕上加工部を設けている。
 以上の様な構成を有する本実施形態の場合、ラック歯10bを、切削加工に比べて製造コストを抑えられる鍛造加工により加工した場合にも、運転者にとって特に重要な直進状態でのフィーリング性を滑らかにする事が可能になる。
 ラック軸9dの製造方法を含め、その他の構成及び作用効果に就いては、第1実施形態の場合と同様である。
 [第5実施形態]
 本発明の第5実施形態に就いて、図13を参照しつつ説明する。本実施形態の場合には、第4実施形態の場合と同様に、ラック歯10bの諸元を、軸方向位置に応じて変化させずに一定とし、ラック歯10bの軸方向全長に亙る範囲で、比ストロークを一定としたラック軸9eに関して、軸方向中央部(の歯面、図13の斜格子模様部分)だけでなく、軸方向両端部(の歯面)に対しても、研削加工等の仕上加工を施し、当該部分(図13の斜線模様部分)に仕上加工部を設けている。
 以上の様な構成を有する本実施形態の場合には、第2実施形態の場合と同様に、ステアリングホイールの戻り性能を向上する事が可能になる。
 その他の構成及び作用効果に就いては、第1、第2、及び、第4実施形態の場合と同様である。
 [第6実施形態]
 本発明の第6実施形態に就いて、図14を参照しつつ説明する。本実施形態の場合には、第4実施形態の場合と同様に、ラック歯10bの諸元を、軸方向位置に応じて変化させずに一定とし、ラック歯10bの軸方向全長に亙る範囲で、比ストロークを一定としたラック軸9fに関して、該ラック軸9fの背面のうち、仕上加工が施された軸方向中央部と軸方向に関して整合する部分に、1対の斜格子状凹溝部33、33から成る、グリース保持用の凹溝32を設けている。
 以上の様な構成を有する本実施形態の場合には、第3実施形態の場合と同様に、ストローク中央付近でのステアリングギヤユニットの作動特性を、長期間に亙り良好に維持する事ができる。
 その他の構成及び作用効果に就いては、第1、第3、及び、第4実施形態の場合と同様である。
 なお、本発明は上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
 例えば、図15Aに示すように、ストローク中央付近(ステアリングセンタ側)で、比ストロークを高い値で一定に設定すると共に、ストローク両端部(ステアリングエンド側)で、比ストロークを低い値で一定に設定し、これらストローク中央付近とストローク端部との間部分で、比ストロークを変化させる様に設定してもよい。
 また、図15Bに示すように、ストローク中央付近で、比ストロークを低い値で一定に設定すると共に、ストローク両端部まで高い比ストロークとなるように変化させてもよい。この場合、図15Bに示すように、ストローク両端部では、比ストロークが一定に設定される部分がない。なお、図示しないが、ストローク両端部に、比ストロークが一定の部分を短く設定してもよい。
 この場合にも、図15Aや図15Bに示す比ストロークに応じて、ラック歯10aの諸元(歯同士のピッチ、歯の形状、歯筋の傾斜角等)を、軸方向位置で変化させればよい。
 本発明は、上述した各実施形態の構造を、適宜組み合わせて実施する事が可能である。例えば、第2実施形態と第3実施形態の構造を組み合わせたり、第5実施形態と第6実施形態の構造とを組み合わせる事で、ラック軸の背面のうち、ラック歯の軸方向両端部と整合する部分にも、グリース保持用の凹溝を設ける事ができる。又、ラック歯を鍛造加工により形成する為の具体的な製造方法に就いては、実施の形態で示した方法に限定されず、鍛造加工に分類されるものであれば、従来から知られた各種の方法を採用する事ができる。又、鍛造加工後に施す熱処理、及び、仕上加工に就いても同様に、実施の形態で示した方法に限定されず、従来から知られた各種方法を採用する事ができる。又、本発明を実施する場合に、仕上加工に就いては、ラック歯の歯面(側面)だけでなく、底部や歯先にも施す事ができる。
 本出願は、2015年9月3日出願の日本特許出願2015-173808に基づくものであり、その内容はここに参照として取り込まれる。
  1  ステアリングホイール
  2  ステアリングシャフト
  3  自在継手
  4  中間シャフト
  5、5a ステアリングギヤユニット
  6  入力軸
  7  タイロッド
  8、8a ピニオン軸
  9、9a~9f ラック軸
 10、10a、10b ラック歯
 11  ハウジング
 12  押圧手段
 13a~13c 第一~第三収容体
 14  ピニオン歯
 15a、15b 転がり軸受
 16  熱処理硬化層
 17  センタ側不変ギヤ部
 18  エンド側不変ギヤ部
 19  可変ギヤ部
 20  第一中間素材
 21  受型
 22  凹溝部
 23  押圧パンチ
 24  第二中間素材
 25  ダイス
 26  保持孔
 27  底部
 28  内側面
 29  ガイド傾斜面部
 30  歯成形用パンチ
 31  平坦面部
 32  凹溝
 33  斜格子状凹溝部
 34、34a、34b 周方向凹溝部
 35、35a、35b 軸方向凹溝部

Claims (10)

  1.  軸方向一部分にラック歯が設けられており、該ラック歯に噛合するピニオン歯を有するピニオン軸の1回転当たりのラック軸の移動量に相当する比ストロークが、少なくとも前記ラック歯の軸方向所定位置にて一定となる、ラック軸の製造方法であって、
     前記ラック歯を鍛造加工により形成し、熱処理を施した後、該ラック歯のうち前記比ストロークが一定となる軸方向中央部にのみ仕上加工を施す事を特徴とするラック軸の製造方法。
  2.  軸方向一部分にラック歯が設けられており、該ラック歯に噛合するピニオン歯を有するピニオン軸の1回転当たりのラック軸の移動量に相当する比ストロークが、少なくとも前記ラック歯の軸方向所定位置にて一定となる、ラック軸の製造方法であって、
     前記ラック歯を鍛造加工により形成し、熱処理を施した後、該ラック歯のうち前記比ストロークが一定となる軸方向中央部及び軸方向両端部にのみ仕上加工を施す事を特徴とするラック軸の製造方法。
  3.  前記ラック歯を形成するのと同時に、前記ラック軸の背面のうち、前記仕上加工を施す部分と軸方向に関して整合する部分に、グリース保持用の凹溝を鍛造加工により形成する、請求項1又は2に記載したラック軸の製造方法。
  4.  前記ラック歯に、前記比ストロークが変化する可変ギヤ部が設けられている、請求項1~3のうちの何れか1項に記載したラック軸の製造方法。
  5.  前記比ストロークが、前記ラック歯の軸方向全長に亙り一定である、請求項1~3のうちの何れか1項に記載したラック軸の製造方法。
  6.  軸方向一部分に鍛造加工部位であるラック歯が設けられており、該ラック歯に噛合するピニオン歯を有するピニオン軸の1回転当たりのラック軸の移動量に相当する比ストロークが、少なくとも前記ラック歯の軸方向所定位置にて一定となる、ラック軸であって、
     少なくとも表層部に熱処理硬化層が形成された前記ラック歯のうち、前記比ストロークが一定となる軸方向中央部のみに仕上加工部が設けられている事を特徴とするラック軸。
  7.  軸方向一部分に鍛造加工部位であるラック歯が設けられており、該ラック歯に噛合するピニオン歯を有するピニオン軸の1回転当たりのラック軸の移動量に相当する比ストロークが、少なくとも前記ラック歯の軸方向所定位置にて一定となる、ラック軸であって、
     少なくとも表層部に熱処理硬化層が形成された前記ラック歯のうち、前記比ストロークが一定となる軸方向中央部及び軸方向両端部のみに仕上加工部が設けられている事を特徴とするラック軸。
  8.  前記ラック軸の背面のうち、前記ラック歯に設けられた前記仕上加工部と軸方向に関して整合する部分に、グリース保持用の凹溝が形成されている、請求項6又は7に記載したラック軸。
  9.  前記ラック歯に、前記比ストロークが変化する可変ギヤ部が設けられている、請求項6~8のうちの何れか1項に記載したラック軸。
  10.  前記比ストロークが、前記ラック歯の軸方向全長に亙り一定である、請求項6~8のうちの何れか1項に記載したラック軸。
PCT/JP2016/074975 2015-09-03 2016-08-26 ラック軸及びその製造方法 WO2017038681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/749,644 US20180221938A1 (en) 2015-09-03 2016-08-26 Rack shaft and method for producing same
EP16841713.7A EP3315225B1 (en) 2015-09-03 2016-08-26 Rack shaft and method for producing same
CN201680045429.XA CN107848018B (zh) 2015-09-03 2016-08-26 齿条轴及其制造方法
JP2017537837A JP6304458B2 (ja) 2015-09-03 2016-08-26 ラック軸及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-173808 2015-09-03
JP2015173808 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017038681A1 true WO2017038681A1 (ja) 2017-03-09

Family

ID=58187854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074975 WO2017038681A1 (ja) 2015-09-03 2016-08-26 ラック軸及びその製造方法

Country Status (5)

Country Link
US (1) US20180221938A1 (ja)
EP (1) EP3315225B1 (ja)
JP (1) JP6304458B2 (ja)
CN (1) CN107848018B (ja)
WO (1) WO2017038681A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111791941A (zh) * 2019-04-02 2020-10-20 株式会社捷太格特 齿条杆和转向装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202109B2 (ja) * 2014-01-22 2017-09-27 日本精工株式会社 ステアリング用ラック、操舵装置、自動車、及び、ステアリング用ラックの製造方法、操舵装置の製造方法、自動車の製造方法
JP6202061B2 (ja) * 2015-08-25 2017-09-27 日本精工株式会社 ラック及びその製造方法、操舵装置及びその製造方法、並びに、自動車及びその製造方法
DE102016212304B4 (de) 2016-07-06 2018-02-22 Thyssenkrupp Ag Verfahren zur Herstellung einer Zahnstange für ein Lenkgetriebe eines Kraftfahrzeugs, sowie Zahnstange
DE102016212308B4 (de) * 2016-07-06 2018-02-22 Thyssenkrupp Ag Verfahren zur Herstellung einer Zahnstange für ein Lenkgetriebe eines Kraftfahrzeugs, sowie Zahnstange
DE102016212303A1 (de) 2016-07-06 2018-01-11 Thyssenkrupp Ag Zahnstange und ein Verfahren zur Herstellung einer Zahnstange für ein Lenkgetriebe eines Kraftfahrzeugs
US20180252015A1 (en) * 2017-03-01 2018-09-06 Hampton Products International Corporation Door closing device with multi-ratio rack and pinion
KR102479307B1 (ko) * 2018-07-05 2022-12-19 가부시키가이샤 하모닉 드라이브 시스템즈 랙기어 부착구조 및 랙기어
DE112022004402T5 (de) * 2021-09-13 2024-08-14 Hitachi Astemo, Ltd. Zahnstange und Lenkvorrichtung
CN118408012B (zh) * 2024-07-01 2024-08-30 四川普什宁江机床有限公司 一种圆柱齿条及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662731A (en) * 1979-10-27 1981-05-28 Jidosha Kiki Co Ltd Manufacture of rack
JP2011148403A (ja) * 2010-01-21 2011-08-04 Nsk Ltd ラックアンドピニオン式ステアリング装置の製造方法
JP2015010685A (ja) * 2013-07-01 2015-01-19 株式会社ジェイテクト ブランク及びこれを用いたラックシャフトの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390230B1 (en) * 1999-10-06 2002-05-21 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
WO2002076653A1 (en) * 2001-03-22 2002-10-03 Bishop Innovation Limited Method and apparatus for manufacture of a forged rack
CN101590588B (zh) * 2008-05-29 2011-05-11 江苏威鹰机械有限公司 机械传动链轮的生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662731A (en) * 1979-10-27 1981-05-28 Jidosha Kiki Co Ltd Manufacture of rack
JP2011148403A (ja) * 2010-01-21 2011-08-04 Nsk Ltd ラックアンドピニオン式ステアリング装置の製造方法
JP2015010685A (ja) * 2013-07-01 2015-01-19 株式会社ジェイテクト ブランク及びこれを用いたラックシャフトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315225A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111791941A (zh) * 2019-04-02 2020-10-20 株式会社捷太格特 齿条杆和转向装置

Also Published As

Publication number Publication date
JPWO2017038681A1 (ja) 2018-05-24
JP6304458B2 (ja) 2018-04-04
CN107848018A (zh) 2018-03-27
EP3315225A1 (en) 2018-05-02
US20180221938A1 (en) 2018-08-09
EP3315225A4 (en) 2018-07-11
CN107848018B (zh) 2019-08-09
EP3315225B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6304458B2 (ja) ラック軸及びその製造方法
US20200139494A1 (en) Method for manufacturing rack bar
US20160153499A1 (en) Torque transmission shaft having universal joint yoke and method of manufacturing the same
US20150298721A1 (en) Rack shaft and method for manufacturing rack shaft
WO2017033995A1 (ja) ステアリングラック及びその製造方法
WO2015111595A1 (ja) ステアリング用ラック、及びその製造方法
US9975163B2 (en) Method of making shaft
JP2008213756A (ja) 自動車用ステアリング装置及び自動車用ステアリング装置用ラックの製造方法
WO2006013730A1 (ja) 中空状動力伝達シャフト及びその製造方法
US11781633B2 (en) Rack bar and steering apparatus
JP2000238650A (ja) ラック軸およびその製造方法
JP5544281B2 (ja) 減速ギヤの製造方法
EP3904183A1 (en) Linear drive shaft for electric power steering device, electric power steering device, and method for manufacturing same
JP5060424B2 (ja) 中空シャフトの製造方法
JP4554299B2 (ja) 中空状動力伝達シャフトの製造方法
JP2011144820A (ja) 伸縮軸及びその製造方法
KR101559672B1 (ko) 랙 피니언 방식 조향장치
CN117836540A (zh) 齿条轴及其制造方法、以及齿条齿轮式转向齿轮单元
KR101701769B1 (ko) 조향장치용 피니언축 및 피니언축의 제조방법
JP5459287B2 (ja) 十字軸式自在継手
JP2006045605A (ja) 中空状動力伝達シャフトの製造方法
JP2006250332A (ja) 中空状動力伝達シャフト
JP2010018068A (ja) ラックアンドピニオン式ステアリング装置
KR20110125339A (ko) 랙바와 이 랙바를 구비한 조향장치 및 랙바의 제조방법
JP2013174253A (ja) 十字軸式自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537837

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15749644

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841713

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载