+

WO2017033993A1 - 電池用セパレータおよびその製造方法 - Google Patents

電池用セパレータおよびその製造方法 Download PDF

Info

Publication number
WO2017033993A1
WO2017033993A1 PCT/JP2016/074774 JP2016074774W WO2017033993A1 WO 2017033993 A1 WO2017033993 A1 WO 2017033993A1 JP 2016074774 W JP2016074774 W JP 2016074774W WO 2017033993 A1 WO2017033993 A1 WO 2017033993A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
battery separator
substantially spherical
spherical organic
organic particles
Prior art date
Application number
PCT/JP2016/074774
Other languages
English (en)
French (fr)
Inventor
水野 直樹
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to CN201680043565.5A priority Critical patent/CN107925034B/zh
Priority to KR1020187004801A priority patent/KR102187519B1/ko
Priority to JP2017536475A priority patent/JP6669174B2/ja
Publication of WO2017033993A1 publication Critical patent/WO2017033993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is a battery separator suitable for a lithium ion secondary battery having a high volumetric energy density, comprising a porous layer having adhesion to an electrode material and a polyolefin microporous film.
  • Polyolefin microporous membranes typified by polyethylene microporous membranes have excellent electrical insulation properties, ion permeability, electrolyte resistance, and oxidation resistance due to electrolyte impregnation, and an abnormal battery temperature rise of about 120 to 150 ° C.
  • the microporous membrane has a shutdown characteristic that closes the pores of the microporous membrane and cuts off the current to suppress excessive temperature rise, and is suitably used as a separator for non-aqueous electrolyte secondary batteries.
  • the viscosity of the polyolefin decreases and the microporous membrane contracts, which may cause membrane breakage of the microporous membrane.
  • lithium-ion battery separators are deeply involved in battery characteristics, battery productivity, and battery safety, and require permeability, mechanical characteristics, heat resistance, shutdown characteristics, melt-breaking characteristics (meltdown characteristics), etc.
  • improvements in adhesion to electrode materials from the viewpoint of battery cycle characteristics, and improvements in electrolyte permeability from the viewpoint of productivity have been required. Improvements in functionality are being considered.
  • the electrode body in which the negative electrode, the separator, and the positive electrode are superimposed can be filled in the container at a high density. Rather, it is predicted that a high density winding property is required.
  • Patent Document 1 in order to improve adhesion to an electrode material, a coating solution containing inorganic particles such as aluminum hydroxide oxide having an average particle diameter of 1 to 1.8 ⁇ m and an acrylic latex is used.
  • An inorganic filler layer having a thickness of 2 to 7 ⁇ m is laminated on one side of a polyolefin resin porous membrane having a thickness of 9 to 18 ⁇ m, and two types of acrylic resins having an average particle diameter of 60 to 161 nm and different glass transition temperatures (Tg) are contained on both sides.
  • Tg glass transition temperatures
  • Patent Document 2 discloses a coating solution in which a fine particle containing a vinylidene fluoride-acrylic copolymer resin having an average particle diameter of 250 nm, inorganic particles or organic particles having an average particle diameter of 200 to 1800 nm, and an aqueous emulsion is mixed with a film thickness of 9
  • the present invention assumes that the capacity of the battery will increase further in the future, and even when the battery separator is thinned, it has adhesiveness with the electrode material and unnecessary space between the electrode material and the separator. Aiming to provide a battery separator particularly suitable for lithium ion secondary battery separators, which can increase the number of windings and the number of layers of the electrode body by minimizing the number of electrodes and obtain an electrode body with a high volume energy density. It is a thing.
  • the battery separator of the present invention has the following configuration. That is, (1) It has a polyolefin microporous film, and a substantially spherical organic particle made of an acrylic resin or a fluorine resin and a porous layer containing a plate-like inorganic particle on at least one surface, and the substantially spherical organic particle is in the film thickness direction.
  • the ratio (r / t) between the average particle diameter r ( ⁇ m) of the substantially spherical organic particles and the average thickness t ( ⁇ m) of the plate-like inorganic particles is Satisfactory battery separator. 0.1 ⁇ m ⁇ r ⁇ 0.8 ⁇ m ...
  • the plate-like inorganic particles are preferably alumina or boehmite.
  • the volume of the substantially spherical organic particles is preferably 10 to 30% by volume with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles.
  • the battery separator of the present invention is preferably a lithium ion secondary battery separator.
  • the battery separator manufacturing method of the present invention has the following configuration. That is, (5) A battery separator manufacturing method including the following steps (a) and (b) in sequence.
  • the viscosity of the coating liquid A is preferably 10 to 30 mPa ⁇ s.
  • the viscosity of the coating liquid B is preferably 1 to 10 mPa ⁇ s.
  • the present invention assumes that the capacity of the battery will increase further in the future, and even when the battery separator is thinned, it has adhesiveness with the electrode material and unnecessary space between the electrode material and the separator. It is a battery separator particularly suitable for a lithium ion secondary battery separator, which can increase the number of windings and the number of laminated layers of the electrode body by minimizing the amount of electrode and obtain an electrode body having a high volume energy density.
  • the polyolefin microporous membrane preferably contains a polyolefin resin having a melting point (softening point) of 70 to 150 ° C. from the viewpoint of the function of blocking the pores when the charge / discharge reaction is abnormal.
  • the polyolefin resin may be a single substance such as polyethylene or polypropylene, a mixture thereof, a mixture of two or more different polyolefin resins, or a copolymer of different olefins.
  • polyethylene resin is preferable from the viewpoint of the function of blocking the pores.
  • the polyolefin microporous film may be a single layer or a multilayer film composed of two or more layers having different molecular weights or average pore diameters.
  • a method for producing a multilayer film composed of two or more layers for example, the polyolefin resin constituting the A1 layer or the A2 layer is melt-kneaded with a film-forming solvent, and the resulting molten mixture is sent from each extruder to one die. It is possible to produce either a method in which gel sheets constituting each component are integrated and co-extruded or a method in which gel sheets constituting each layer are superposed and heat-sealed.
  • the coextrusion method is more preferable because it is easy to obtain a high interlayer adhesive strength, and it is easy to form communication holes between layers, so that high permeability is easily maintained and productivity is excellent.
  • the film thickness of the polyolefin microporous membrane is preferably 3 ⁇ m or more and less than 10 ⁇ m, more preferably 5 ⁇ m or more and less than 9.0 ⁇ m, and even more preferably 6 ⁇ m or more and 8 ⁇ m, from the viewpoint of increasing the volume energy of the battery that will be advanced in the future. Is less than.
  • the average pore diameter of the polyolefin microporous membrane is 0.01 to 1.0 ⁇ m, preferably 0.05 to 0.5 ⁇ m, more preferably 0.1 to 0.3 ⁇ m, from the viewpoint of the pore closing speed and the pore closing temperature. .
  • the average pore diameter of the polyolefin microporous membrane is within the above-mentioned preferable range, the anchoring effect by the resin of the porous layer can be obtained without significantly deteriorating the air resistance when the porous layer is laminated.
  • the air permeability resistance of the polyolefin microporous membrane is preferably 50 to 500 sec / 100 cc Air.
  • the porosity of the polyolefin microporous membrane is preferably 30 to 70%.
  • the porous layer includes plate-like inorganic particles and substantially spherical organic particles.
  • the plate-like inorganic particles play a role of reinforcing the polyolefin microporous membrane by its heat resistance and improving the melt-breaking properties.
  • the substantially spherical organic particles play a role of improving the adhesion with the electrode material and improving the cycle characteristics when incorporated in a battery.
  • the porous layer is formed by sequentially applying a coating liquid A containing plate-like inorganic particles and a coating liquid B containing substantially spherical organic particles to a polyolefin microporous film.
  • the coating liquid A contains plate-like inorganic particles and a dispersion medium, and may contain a binder as necessary.
  • the material of the plate-like inorganic particles is not particularly limited, but alumina, boehmite, and mica are relatively easily available and suitable.
  • boehmite is preferable from the viewpoint that the hardness is low and wear of a coating roll or the like can be suppressed.
  • plate-like inorganic particles refers to particles having an aspect ratio (major axis / thickness) of 1.5 or more and a major axis / minor axis ratio of 1 to 10.
  • the lower limit of the aspect ratio of the plate-like inorganic particles is preferably 2, more preferably 3, and still more preferably 5.
  • the upper limit is preferably 50, more preferably 20, and even more preferably 10.
  • the average particle size (average major axis) of the plate-like inorganic particles is preferably 0.5 ⁇ m to 2.0 ⁇ m, and the average thickness is preferably 0.1 ⁇ m or more and less than 0.5 ⁇ m.
  • the plate-like inorganic particles can be easily arranged in a direction substantially parallel to the plane direction of the polyolefin microporous membrane.
  • the porous layer can be filled with a relatively high density, and generation of coarse voids and surface protrusions exceeding 1 ⁇ m in size can be suppressed in the porous layer.
  • the average value of the ratio of the long axis direction length to the short axis direction length (major axis / minor axis) of the plate-like inorganic particles is preferably 3 or less, more preferably 2 or less and a value close to 1. .
  • the binder is not particularly limited as long as it provides the adhesion between the polyolefin microporous membrane and the porous layer and adheres the plate-like inorganic particles.
  • a water-soluble resin or a water-dispersible resin is preferable.
  • the water-soluble resin or water-dispersible resin include acrylic resins such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, and polymethacrylic acid.
  • polyvinyl alcohol and acrylic resin are preferable.
  • acrylic resin commercially available acrylic emulsions can be used. For example, “Acryset” (registered trademark) TF-300 manufactured by Nippon Shokubai Co., Ltd., “Polysol” (registered trademark) AP manufactured by Showa Denko K.K. -4735.
  • the dispersion medium of the coating liquid A contains water as a main component, and ethyl alcohol, butyl alcohol, or the like may be added to improve the coating property. Furthermore, you may add a binder, a dispersing agent, and a thickener as needed.
  • the viscosity of the coating liquid A is preferably 10 to 30 mPa ⁇ s, more preferably 12 to 25 mPa ⁇ s, and still more preferably 15 to 25 mPa ⁇ s.
  • the content of the plate-like inorganic particles in the coating liquid A is preferably 40 to 60% by mass. When the viscosity of the coating liquid A and the content of the plate-like inorganic particles are within the above preferable ranges, the plate-like inorganic particles can be made substantially parallel to the plane direction of the polyolefin microporous membrane.
  • the coating amount is preferably 1 g / m 2 or more and 3 g / m 2 or less in consideration of the volume energy density when the wound body is used as a film breaking strength or an electrode body.
  • the coating liquid B contains substantially spherical organic particles and a dispersion medium, and may contain a binder as necessary.
  • the circularity of the substantially spherical organic particles is 0.97 or more, preferably 0.98 or more, and most preferably 0.99 to 1.00.
  • L0 in the above equation is the perimeter of an ideal circle (perfect circle) having the same area as the area calculated from the projection image (particle image) of the target particle actually measured, and L1 is the measurement. This is the actual perimeter measured from the particle projection image (particle image) of the target particle.
  • the lower limit of the average particle diameter (r) of the substantially spherical organic particles is preferably 0.1 ⁇ m, more preferably 0.2 ⁇ m, and still more preferably 0.3 ⁇ m.
  • the upper limit is preferably 0.8 ⁇ m, more preferably 0.7 ⁇ m, and even more preferably 0.6 ⁇ m. If the average particle size (r) is less than 0.1 ⁇ m, it may penetrate into the gaps between the plate-like inorganic particles as far as possible, and may not sufficiently contribute to the improvement in adhesion to the electrode material. If it exceeds 0.8 ⁇ m, it tends to fall off, which is not preferable.
  • the substantially spherical organic particles preferably contain a fluorine resin, an acrylic resin, or both.
  • the fluororesin is at least one selected from the group consisting of vinylidene fluoride homopolymers, vinylidene fluoride / fluorinated olefin copolymers, vinyl fluoride homopolymers, and vinyl fluoride / fluorinated olefin copolymers. Can be used.
  • a vinylidene fluoride / hexafluoropropylene copolymer is preferable from the viewpoint of adhesion to an electrode material.
  • the mol% of hexafluoropropylene is more preferably 1 to 3 mol%.
  • This polymer has excellent adhesion to electrode materials, moderate swelling with non-aqueous electrolytes, and high chemical and physical stability against non-aqueous electrolytes. Affinity with the electrolytic solution can be sufficiently maintained even when used in
  • fluororesin a commercially available fluororesin can be used after being refined into a spherical shape if necessary.
  • examples of commercially available fluororesins include KYNAR FREX (registered trademark) 2851-00, 2801-00, 2821-00, 2501-20 and the like manufactured by ARKEMA.
  • the acrylic resin is not particularly limited as long as it has adhesiveness with the electrode material, but a resin obtained by polymerizing an acrylate monomer is preferable.
  • the acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl meth (acrylate), isopyl pill (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • De port carboxymethyl group-containing (meth) acrylate De port carboxymethyl group-containing (meth) acrylate.
  • a coating liquid in which commercially available acrylic resin particles are dispersed may be used.
  • examples of the coating liquid in which commercially available acrylic resin particles are dispersed include ASR latex product name: TRD202A manufactured by JSR Corporation.
  • Non-crosslinked organic particles are preferred from the viewpoint of adhesion to the electrode material.
  • the dispersion medium of the coating liquid B contains water as a main component, and ethyl alcohol, butyl alcohol, or the like may be added as necessary in order to improve coating properties. Furthermore, you may add a binder, a dispersing agent, and a thickener as needed.
  • the binder is not particularly limited as long as it imparts adhesion between the polyolefin microporous membrane and the porous layer and adheres substantially spherical organic particles.
  • the same binder as the first layer can be used.
  • the viscosity of the coating liquid B is preferably 1 to 10 mPa ⁇ s, more preferably 2 to 8 mPa ⁇ s, and further preferably 3 to 6 mPa ⁇ s.
  • the content of the substantially spherical organic particles in the coating liquid B is preferably 3 to 10% by mass.
  • the substantially spherical organic particles roll on the plate-like inorganic particles, and the surface recesses between the plate-like inorganic particles are likely to enter. As shown in 1 and 2, it becomes easy to obtain a sea-island structure state of aggregates of substantially spherical organic particles and plate-like inorganic particles.
  • the volume of the substantially spherical organic particles is preferably 10 to 30% by volume with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles. If it is 10 volume% or more, the function which provides or improves the adhesiveness with an electrode material will be easy to be obtained. If it is 30% by volume or less, a relatively large content of the plate-like inorganic particles can be maintained, and sufficient film breaking strength can be easily obtained.
  • the ratio (r / t) of the average particle diameter r ( ⁇ m) of the substantially spherical organic particles to the average thickness t ( ⁇ m) of the plate-like inorganic particles is set within the range of 0.3 ⁇ r / t ⁇ 1.0. is important. Within the above preferable range, when the coating liquid B is applied to the plate-like inorganic particle layer, the substantially spherical organic particles roll on the surface of the plate-like inorganic particle layer and easily enter the recesses of the plate-like inorganic particle layer.
  • the cross section of the porous layer has a form in which the substantially spherical organic particles enter the recesses on the surface of the plate-like inorganic particle layer so as to have adhesiveness with the electrode (see FIG. 1).
  • the surface of the porous layer is magnified, almost spherical organic particles are present so as to fill the recesses on the surface of the plate-like inorganic particle layer, and an aggregate of plate-like inorganic particles and spherical organic particles is observed. It has a form (see FIG. 2).
  • FIG. 2 shows an example in which the plate-like inorganic particles are islands and the aggregate of spherical organic particles is the sea.
  • the porous layer has a sea-island structure, the adhesion with the electrode material can be improved while suppressing an increase in the thickness of the porous layer. If it is strong, it leads to the improvement of the volume energy density of the battery obtained.
  • the thickness of the porous layer varies depending on the intended use of the obtained battery, but is preferably 0.5 to 2.5 ⁇ m, more preferably 0.8 to 2.2 ⁇ m, and still more preferably 1.0 to 2.0 ⁇ m. is there. Adhesiveness with an electrode material can be provided or improved as the film thickness of the porous layer is within the above preferred range.
  • the membrane breaking strength when the polyolefin microporous membrane is melted / shrinked at a temperature equal to or higher than the melting point of the polyolefin can be maintained, and insulation can be secured. Further, a high volume energy density can be obtained when a wound body is used as the electrode body.
  • the porosity of the porous layer is preferably 30 to 90% from the viewpoint of the electric resistance and film strength of the film.
  • the air resistance of the porous layer is preferably 1 to 600 sec / 100 cc Air measured by a method based on JIS P 8117 from the viewpoint of film strength and cycle characteristics.
  • the battery separator of the present invention is obtained by applying a coating liquid A containing plate-like inorganic particles and a coating liquid B containing substantially spherical organic particles to a polyolefin microporous film.
  • the coating liquid A is applied to the polyolefin microporous membrane so that the plate-like inorganic particles are substantially parallel to the polyolefin microporous membrane, and dried to form a plate-like inorganic particle layer.
  • the direction of the plate-like inorganic particles becomes irregular, and voids exceeding 1 ⁇ m in size are easily formed in the porous layer, and plate-like inorganic particles that are not substantially parallel are easily generated as protrusions on the surface, and the electrode body. As a result, voids are likely to occur.
  • the coating liquid B may be applied only on the plate-like inorganic particle layer, or may be applied to the other surface of the polyolefin microporous film not provided with the plate-like inorganic particle layer. In order to obtain adhesiveness with the electrode material, it is sufficient that the substantially spherical organic particles of the coating liquid B can be applied so as to be unevenly distributed on the surface.
  • a well-known method can be adopted as the wet coating method.
  • examples thereof include a roll coating method, a gravure coating method, a kiss coating method, a dip coating method, a spray coating method, an air knife coating method, a Meyer bar coating method, a pipe doctor method, a blade coating method, and a die coating method.
  • a method of applying a relatively strong shearing force to the coating solution on the polyolefin microporous film is preferable, and among the roll coating method and the gravure coating method, the reverse roll coating method and the reverse gravure coating method are preferable.
  • the rotation direction of the coating roll relative to the traveling direction of the polyolefin microporous membrane is opposite, so that a strong shearing force can be applied to the coating liquid, and the plate-like inorganic particles are applied to the polyolefin microporous membrane. It can be made to be substantially parallel to it.
  • the ratio between the conveying speed (F) of the polyolefin microporous membrane and the peripheral speed (S) of the coating roll rotating in reverse (hereinafter abbreviated as S / F ratio) is preferably 1.02 or more.
  • a more preferred lower limit is 1.05, and even more preferably 1.07. If it is 1.02 or more, a sufficient shearing force can be applied to the coating solution.
  • the upper limit is not particularly defined but can be 1.20.
  • the total thickness of the battery separator is preferably 6 to 13 ⁇ m, more preferably 7 to 12 ⁇ m, from the viewpoint of mechanical strength and insulation. Also, a high volume energy density can be obtained when a wound body is used as the electrode body.
  • the measured value in an Example is a value measured with the following method.
  • the obtained sample was observed by SEM at a magnification of 20,000 times.
  • Arbitrary 20 particles were selected on the image obtained by SEM measurement, and the average value of the particle diameters of the 20 particles was defined as the average particle diameter of the substantially spherical organic particles.
  • Average particle size of the plate-like inorganic particles From among the images obtained by the SEM measurement used in the above 3, arbitrary 20 particles whose planar shape is observed on the image are selected with respect to the double-sided tape. The average value of the length of the major axis was taken as the average particle size of the plate-like inorganic particles.
  • Film thickness Measured using a contact-type film thickness meter Digital Micrometer M-30 manufactured by Sony Manufacturing Systems Co., Ltd..
  • the layer coat electrode A100 (1.6mAh / cm ⁇ 2 >) by the Piotrec company company was used as a negative electrode.
  • Active material of negative electrode adheres to modified porous layer of battery separator in an area ratio of less than 30%
  • meltdown characteristics While the separators obtained in the examples and comparative examples were heated at a rate of temperature increase of 5 ° C./min, the air resistance was measured with an Oken type air resistance meter (Asahi Seiko Co., Ltd., EGO-1T). Then, after the air resistance reached the detection limit of 1 ⁇ 10 5 sec / 100 cc, the temperature at which the air resistance began to drop again to 1 ⁇ 10 5 sec / 100 cc or less was obtained and was defined as the meltdown temperature (° C.). When the judgment meltdown temperature (° C) exceeds 200 ° C When the meltdown temperature (° C) is 200 ° C or lower ⁇ ⁇
  • Viscosity of coating liquid The viscosity of the coating liquid at 25 ° C. was measured using a viscometer (DV-I PRIME manufactured by BROOKFIELD).
  • Example 1 (Preparation of coating solution A) 40 parts by weight of a mixture of 58 parts by weight of ion-exchanged water and 1 part by weight of butanol (plate boehmite having an average particle diameter of 1.0 ⁇ m and an average thickness of 0.4 ⁇ m, major axis / minor axis ratio of 2) and Ken as a binder 1 part by mass of 95% of polyvinyl alcohol was added and dispersed well. Subsequently, carboxymethylcellulose (CMC) was added as a thickener, and the liquid viscosity was adjusted to 20 mPa ⁇ s to obtain a coating liquid A1.
  • CMC carboxymethylcellulose
  • Example 2 The same procedure as in Example 1 was conducted except that coating liquid A2 in the form of plate-like boehmite particles (average particle size 2.0 ⁇ m, average thickness 0.4 ⁇ m, major axis / minor axis ratio 3) was used instead of plate-like boehmite. A battery separator was obtained.
  • Example 3 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A3 having a liquid viscosity adjusted to 10 mPa ⁇ s was used.
  • Example 4 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A4 having a liquid viscosity adjusted to 30 mPa ⁇ s was used.
  • Example 5 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A5 having an average particle size of 1.0 ⁇ m, an average thickness of 0.2 ⁇ m, and a major axis / minor axis ratio of 3 was used. .
  • Example 6 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A6 having an average particle size of 2.0 ⁇ m, an average thickness of 0.6 ⁇ m, and a major axis / minor axis ratio of 3 was used for the plate-like boehmite particles.
  • Example 7 The same procedure as in Example 1 was performed except that the coating amount of the coating liquid B was adjusted so that the volume of the substantially spherical organic particles was 25% by volume with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles. Thus, a battery separator was obtained.
  • Example 8 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A was applied under conditions of an S / F ratio of 1.18.
  • Example 9 In the preparation of the coating liquid B, a battery separator was obtained in the same manner as in Example 1 except that the coating liquid B2 having a liquid viscosity adjusted to 10 mPa ⁇ s was used.
  • Example 10 In the preparation of the coating liquid B, a battery separator was obtained in the same manner as in Example 1 except that the coating liquid B3 having a liquid viscosity adjusted to 2 mPa ⁇ s was used.
  • Comparative Example 1 (Preparation of coating solution) 40 parts by mass of plate boehmite having an average particle diameter of 1.0 ⁇ m and an average thickness of 0.4 ⁇ m in a mixed solution composed of 58 parts by mass of ion-exchanged water and 1 part by mass of butanol, and 1 mass of polyvinyl alcohol having a saponification degree of 95% as a binder And a substantially spherical organic particle dispersion liquid (TRD202A manufactured by JSR Corporation, solid content concentration 40% by mass) made of an acrylic resin having an average particle size of 0.2 ⁇ m with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles Then, it was added so that the volume of the substantially spherical organic particles was 15% by volume and well dispersed.
  • TRD202A manufactured by JSR Corporation, solid content concentration 40% by mass
  • Carboxymethylcellulose (CMC) was added as a thickener to this dispersion, and the liquid viscosity was adjusted to 20 mPa ⁇ s to obtain a coating liquid C.
  • a coating device reverse gravure coating method shown in FIG. 3 on a polyethylene microporous membrane (thickness 7 ⁇ m, porosity 21%, air permeability 120 seconds / 100 cc)
  • a conveyance speed of 30 m / min S / F Coating and drying were performed under the condition of a ratio of 1.05, and a porous layer was laminated to obtain a battery separator.
  • the basis weight when the porous layer was dried was 2.7 g / m 2 .
  • Comparative Example 2 In the preparation of the coating liquid A, a battery separator was obtained in the same manner as in Example 1 except that the coating liquid A7 in which alumina particles having an average particle diameter of 0.4 ⁇ m were used instead of the plate boehmite was used.
  • Comparative Example 3 In the preparation of the coating liquid A, a battery separator was obtained in the same manner as in Example 1 except that the coating liquid A8 having a liquid viscosity adjusted to 8 mPa ⁇ s was used.
  • Comparative Example 4 In the preparation of the coating liquid B, a battery separator was obtained in the same manner as in Example 1 except that the coating liquid B4 having a liquid viscosity adjusted to 20 mPa ⁇ s was used.
  • Comparative Example 5 In the preparation of the coating liquid B, a coating liquid B5 obtained by replacing the substantially spherical organic particle dispersion with an aqueous dispersion (solid content concentration 15% by mass) of melamine / formaldehyde condensate spherical particles (average particle size 0.4 ⁇ m) is used. A battery separator was obtained in the same manner as in Example 1 except that it was used.
  • Comparative Example 6 The same procedure as in Example 1 was conducted except that the coating amount of the coating liquid B was adjusted so that the volume of the substantially spherical organic particles was 5% by volume with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles. Thus, a battery separator was obtained.
  • Comparative Example 7 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A was applied under conditions of an S / F ratio of 0.50.
  • Comparative Example 8 Similar to Example 1 except that the rotation direction of the gravure roll is the same as the transport direction of the polyethylene microporous membrane when the coating liquid A1 is applied, and the coating liquid A1 is applied under the condition of S / F ratio of 1.25. Thus, a battery separator was obtained.
  • Comparative Example 9 A polyethylene microporous membrane (porosity 23%, air permeability 110 seconds / 100 cc) having the same thickness as the battery separator of Comparative Example 1 was used as the battery separator.
  • Table 1 shows the characteristics of the battery separators obtained in Examples 1 to 10 and Comparative Examples 1 to 9.
  • Table 1 shows the characteristics of the battery separators obtained in Examples 1 to 10 and Comparative Examples 1 to 9.
  • Example 1 to 10 and Comparative Examples 3 and 5 to 7 substantially spherical organic particles are unevenly distributed on the surface of the porous layer, and the plate-like inorganic particles are islands. It was a sea-island structure with substantially spherical organic particles as the sea.
  • Comparative Examples 1 and 4 plate-like inorganic particles and substantially spherical organic particles were mixed, and the sea-island structure was not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

本発明者は電池用セパレータが今後ますます薄膜化と高容量化が進んだ場合を想定し、電極材料との接着性を有し、電極材料とセパレータ間の無駄な空間を最小限にすることができる電池用セパレータを提供するものであり、電極材料とセパレータを重ね合わせて捲回体とする際に高い体積エネルギー密度が得られ、特にリチウムイオン二次電池用セパレータに好適な電池用セパレータを提供する。 ポリオレフィン微多孔膜と、その表面にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子と板状無機粒子を含む多孔層が積層され、略球状有機粒子が多孔層の表面に偏在しており、略球状有機粒子の平均粒径r(μm)と板状無機粒子の平均厚さt(μm)の比(r/t)が式1及び式2を満足する電池用セパレータ。 0.1μm≦r≦0.8μm・・・・式1 0.3≦r/t≦1.0 ・・・・式2

Description

電池用セパレータおよびその製造方法
 本発明は電極材料との密着性を有する多孔層とポリオレフィン微多孔膜からなる、体積エネルギー密度の高いリチウムイオン二次電池に適した電池用セパレータである。
 ポリエチレン微多孔膜に代表されるポリオレフィン微多孔膜は、電気絶縁性、電解液含浸によりイオン透過性、耐電解液性、耐酸化性などに優れ、さらに約120~150℃という電池の異常昇温時において微多孔膜の細孔を閉塞し、電流を遮断することで過度の昇温を抑制するシャットダウン特性を備えており、非水電解質二次電池用セパレータとして好適に使用されている。しかしながら、何らかの原因でシャットダウン後も電池の昇温が続く場合、ポリオレフィンの粘度が低下し、微多孔膜が収縮することで微多孔膜の破膜を生じることがある。
 特に、リチウムイオン電池用セパレータは電池特性、電池生産性及び電池安全性に深く関わっており、透過性、機械的特性、耐熱性、シャットダウン特性、溶融破膜特性(メルトダウン特性)等が要求される。近年では、電池のサイクル特性の観点から電極材料との密着性の向上、生産性の観点からは電解液浸透性の向上などが要求され、これまでに微多孔膜に多孔層を設けることでこれら機能を向上させることが検討されている。
 さらに、捲回型電池においては体積エネルギー密度の向上のため、負極、セパレータ、正極を重ね合わせた電極体を高密度に容器内に充填できることが望まれており、今後、セパレータには薄膜化のみならず、高密度の捲回性が要求されることが予測される。
 特許文献1には、電極材料との接着性を向上させるために、平均粒径1~1.8μmの水酸化酸化アルミニウムなどの無機粒子と、アクリル系ラテックスを含む塗布液を用いて、厚さ9~18μmのポリオレフィン樹脂多孔膜の片面に厚さ2~7μmの無機フィラー層を積層し、その両面に平均粒径60~161nmでガラス転移温度(Tg)の異なる2種のアクリル系樹脂を含むラテックスをドット状に形成させた蓄電デバイス用セパレータが例示されている。
 特許文献2には、平均粒径250nmのフッ化ビニリデン-アクリル共重体樹脂を含む微粒子と、平均粒径200~1800nmの無機粒子または有機粒子と、水系エマルジョンを混合した塗工液を膜厚9~12μmのポリオレフィン微多孔膜の両面に塗工厚1.3~15μmで積層した非水系二次電池用セパレータを例示されている。
 ポリオレフィン微多孔膜と多孔層を備えた電池用セパレータにおいて、溶融破膜特性や電極材料との接着性を付与または向上させるためにこれら機能を多孔層に持たせた場合、多孔層の厚みを厚くするほどその機能は十分に発揮される。一方で、多孔層の厚みを厚くすることで高密度の捲回が難しくなり捲回型電池の体積エネルギー密度が低下するといった問題が生じる。すなわち、多孔層に求める機能と高密度の捲回性とは二律背反の関係にあると言っても過言ではない。   
国際公開2014/017651号 国際公開2013/133074号
 本発明は今後ますます電池の高容量化が進んだ場合を想定し、電池用セパレータを薄膜化した場合においても電極材料との接着性を有し、かつ、電極材料とセパレータ間の不要な空間を最小限にすることで電極体の巻き数、積層数を増加させ、高い体積エネルギー密度の電極体を得ることができる、特にリチウムイオン二次電池用セパレータに好適な電池用セパレータの提供を目指したものである。
 上記課題を解決するために本発明の電池用セパレータは以下の構成を有する。
すなわち、
(1)ポリオレフィン微多孔膜と、少なくともその片面にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子と板状無機粒子を含む多孔層とを有し、略球状有機粒子が膜厚方向に対して多孔層の表面に偏在しており、略球状有機粒子の平均粒径r(μm)と板状無機粒子の平均厚さt(μm)の比(r/t)が式1及び式2を満足する電池用セパレータ、である。
  0.1μm≦r≦0.8μm・・・・式1
  0.3≦r/t≦1.0  ・・・・式2  
(2)本発明の電池用セパレータは、板状無機粒子はアルミナまたはベーマイトであることが好ましい。
(3)本発明の電池用セパレータは、略球状有機粒子の体積が略球状有機粒子と板状無機粒子の総体積に対して10~30体積%であることが好ましい。
(4)本発明の電池用セパレータは、リチウムイオン二次電池用セパレータであることが好ましい。
 上記課題を解決するために本発明の電池用セパレータの製造方法は以下の構成を有する。
すなわち、
(5)以下の工程(a)及び(b)を順次含む電池用セパレータの製造方法、である。
 (a)ポリオレフィン微多孔膜に板状無機粒子を含む塗工液Aをリバースグラビアコート法で塗布し、乾燥させ、板状無機粒子層を積層させる工程。
 (b)板状無機粒子層上にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子を含む塗工液Bをリバースグラビアコート法で塗布し、乾燥させ電池用セパレータを得る工程。
(6)本発明の電池用セパレータの製造方法は、塗工液Aの粘度が10~30mPa・sであることが好ましい。
(7)本発明の電池用セパレータの製造方法は、塗工液Bの粘度が1~10mPa・sであることが好ましい。
 本発明は今後ますます電池の高容量化が進んだ場合を想定し、電池用セパレータを薄膜化した場合においても電極材料との接着性を有し、かつ、電極材料とセパレータ間の不要な空間を最小限にすることで電極体の巻き数、積層数を増加させ、高い体積エネルギー密度の電極体を得ることができる、特にリチウムイオン二次電池用セパレータに好適な電池用セパレータである。
本発明のセパレータの断面拡大模式図である。 本発明のセパレータにおける多孔層表面の拡大模式図である。 本発明に用いる塗工装置の概略図である。
1.ポリオレフィン微多孔膜
 まず、本発明で用いるポリオレフィン微多孔膜について説明する。
 ポリオレフィン微多孔膜は、充放電反応の異常時に孔が閉塞する機能の観点から、融点(軟化点)が70~150℃のポリオレフィン樹脂を含有することが好ましい。ポリオレフィン樹脂は、ポリエチレンやポリプロピレンなどの単一物、これらの混合物、2種以上の異なるポリオレフィン樹脂の混合物、又は異なるオレフィンの共重合体であってもよい。特に、孔が閉塞する機能の観点からポリエチレン樹脂が好ましい。
 ポリオレフィン微多孔膜は、単層であってもよいし、分子量あるいは平均細孔径の異なる二層以上からなる多層膜であってもよい。二層以上からなる多層膜の製造方法としては、例えば、A1層またはA2層を構成するポリオレフィン樹脂をそれぞれ成膜用溶剤と溶融混練し、得られた溶融混合物をそれぞれの押出機から1つのダイに供給し各成分を構成するゲルシートを一体化させて共押出する方法や、各層を構成するゲルシートを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が、高い層間接着強度を得やすく、層間に連通孔を形成しやすいために高透過性を維持しやすく、生産性にも優れているためにより好ましい。
 ポリオレフィン微多孔膜の膜厚は、今後、進むであろう電池の体積エネルギーの高密度化の観点から、3μm以上10μm未満が好ましく、より好ましくは5μm以上9.0μm未満、さらに好ましくは6μm以上8μm未満である。
 ポリオレフィン微多孔膜の平均孔径は、孔閉塞速度と孔閉塞温度の観点から、0.01~1.0μm、好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。ポリオレフィン微多孔膜の平均孔径が上記好ましい範囲内であると、多孔層を積層した際に透気抵抗度が大幅に悪化することなく、多孔層の樹脂によるアンカー効果が得られる。
 ポリオレフィン微多孔膜の透気抵抗度は50~500sec/100ccAirが好ましい。ポリオレフィン微多孔膜の空孔率は30~70%が好ましい。ポリオレフィン微多孔膜の透気抵抗度及び空孔率が上記好ましい範囲内であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)、電池の寿命(電解液の保持量と密接に関係する)を得ることができる。
2.多孔層
 次に多孔層について説明する。
 多孔層は板状無機粒子と略球状有機粒子を含む。板状無機粒子はその耐熱性によりポリオレフィン微多孔膜を補強し溶融破膜特性を向上させる役割を担う。略球状有機粒子は電極材料との接着性を向上させ、電池に組み込んだときのサイクル特性を向上させる役割を担う。多孔層はポリオレフィン微多孔膜に板状無機粒子を含む塗工液A、略球状有機粒子を含む塗工液Bを順次塗布することで形成される。ポリオレフィン微多孔膜に多孔層を設けることで高い安全性を確保でき、さらに長寿命の電池が得られる。
(1)塗工液A
 塗工液Aは板状無機粒子と分散媒を含み、必要に応じてバインダーを含んでもよい。
 板状無機粒子の材質は特に限定されないが、アルミナ、ベーマイト、雲母が比較的入手しやすく好適である。特に、ベーマイトは硬度が低く、塗工ロールなどの摩耗を抑えられるという観点から好ましい。
 本明細書でいう板状無機粒子とは、アスペクト比(長径/厚さ)が1.5以上であり、長径/短径の比は1以上、10以下のものをいう。板状無機粒子のアスペクト比の下限値は2が好ましく、より好ましくは3、さらに好ましくは5である。上限値は50が好ましく、より好ましくは20、さらに好ましくは10である。板状無機粒子の平均粒径(平均長径)は0.5μmから2.0μmが好ましく、平均厚さは0.1μm以上、0.5μm未満が好ましい。板状無機粒子のアスペクト比と平均粒径が上記好ましい範囲内であると、板状無機粒子をポリオレフィン微多孔膜の面方向に対して略平行方向に配置しやすい。略平行方向に配置することによって、多孔層に比較的高密度に充填でき、多孔層に大きさ1μmを超えるような粗大な空隙や表面突起の発生を抑制できる。
 板状無機粒子の平板面の長軸方向長さと短軸方向長さの比(長径/短径)の平均値は3以下が好ましく、より好ましくは2以下、1に近い値であることが望ましい。
 バインダーは、ポリオレフィン微多孔膜と多孔層の接着性を付与し、板状無機粒子同士を接着させるものであれば特に限定されない。作業環境の観点から、水溶性樹脂または水分散性樹脂が好ましい。水溶性樹脂または水分散性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等のアクリル系樹脂が挙げられる。特に、ポリビニルアルコール、アクリル系樹脂が好ましい。アクリル系樹脂は市販されているアクリルエマルジョンを用いることができ、例えば、(株)日本触媒製“アクリセット“(登録商標)TF-300、昭和電工(株)製“ポリゾール“(登録商標)AP-4735が挙げられる。
 塗工液Aの分散媒は水を主成分とし、塗工性を向上させるためにエチルアルコール、ブチルアルコール等を添加してもよい。さらに必要に応じてバインダー、分散剤、増粘剤を添加してもよい。
 塗工液Aの粘度は10~30mPa・sが好ましく、より好ましくは12~25mPa・s、さらに好ましくは15~25mPa・sである。塗工液Aの板状無機粒子の含有量は40~60質量%が好ましい。塗工液Aの粘度及び板状無機粒子の含有量が上記好ましい範囲内であると、板状無機粒子をポリオレフィン微多孔膜の面方向に対して略平行方向にしやすくなる。
 塗工量は、破膜強度や電極体として捲回体にした時に体積エネルギー密度を考慮すると1g/m以上、3g/m以下が好ましい。
(2)塗工液B
 塗工液Bは略球状有機粒子と分散媒を含み、必要に応じてバインダーを含んでもよい。
略球状有機粒子の円形度は0.97以上、好ましくは0.98以上、最も好ましくは0.99~1.00である。上記略球状有機粒子の円形度とは、例えば、粒子の投影像(粒子画像)から周囲長と面積を算出し、次の式により求めることができる。
円形度=L0/L1 
ここで、上記式中のL0は実際に測定した対象の粒子の投影像(粒子画像)から算出された面積と同一の面積を有する理想円(真円)の周囲長であり、L1は当該測定対象の粒子の粒子投影像(粒子画像)から測定した実際の周囲長である。
 略球状有機粒子の平均粒径(r)は、下限値が0.1μmであることが好ましく、より好ましくは0.2μmであり、さらに好ましくは0.3μmである。上限値は0.8μmであることが好ましく、より好ましくは0.7μmであり、さらに好ましくは0.6μmである。平均粒径(r)が0.1μm未満であると板状無機粒子間の隙間に奥まで入り込み、電極材料との接着性向上に十分寄与しない場合がある。0.8μmを超えると脱落しやすくなり好ましくない。
 略球状有機粒子は、フッ素系樹脂、アクリル系樹脂または両方を含むことが好ましい。フッ素系樹脂は、フッ化ビニリデン単独重合体、フッ化ビニリデン/フッ化オレフィン共重合体、フッ化ビニル単独重合体、及びフッ化ビニル/フッ化オレフィン共重合体からなる群より選ばれる1種以上を使用することができる。特に、電極材料との接着性の観点からフッ化ビニリデン/ヘキサフルオロプロピレン共重合体が好ましい。この共重合体はヘキサフルオロプロピレンのモル%が1~3モル%であることがより好ましい。この重合体は優れた電極材料との接着性を有し、非水電解液に対して適度な膨潤性を有し、非水電解液に対する化学的、物理的な安定性が高いため、高温下での使用にも電解液との親和性を十分維持できる。
 フッ素系樹脂は、市販のフッ素系樹脂を必要により球状に微細化加工して用いることができる。市販のフッ素系樹脂とは例えば、ARKEMA社製KYNAR FREX(登録商標)2851-00、2801-00、2821-00、2501-20等が挙げられる。
 アクリル系樹脂は、電極材料との接着性を有するものであれば特に限定されないが、好ましくはアクリレートモノマーを重合してなる樹脂が好ましい。アクリレートモノマーは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プ口ピル(メタ)アクリレート、イソプ口ピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tーブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ
)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート、ヒド口キシエチル(メタ)アクリレート、ヒド口キシプ口ピル(メタ)アクリレート、ヒド口キシブチル(メタ)アクリレート等のヒド口キシ基含有(メタ)アクリレートが挙げられる。また、市販のアクリル系樹脂粒子を分散させた塗工液を用いてもよい。市販のアクリル系樹脂粒子を分散させた塗工液とは例えば、JSR株式会社製アクリルラテックス商品名:TRD202Aなどが挙げられる。架橋していない有機粒子が電極材料との接着性の観点から好ましい。
 塗工液Bの分散媒は水を主成分とし、塗工性を向上させるために必要に応じてエチルアルコール、ブチルアルコール等を添加してもよい。さらに必要に応じて、バインダー、分散剤、増粘剤を添加してもよい。
 バインダーは、ポリオレフィン微多孔膜と多孔層の接着性を付与し、略球状有機粒子同士を接着させるものであれば特に限定されない。例えば、第一の層と同じバインダーを用いることができる。
 塗工液Bの粘度は、1~10mPa・sが好ましく、より好ましくは2~8mPa・s、さらに好ましくは3~6mPa・sである。塗工液Bの略球状有機粒子の含有量は、3~10質量%が好ましい。塗工液Bの略球状有機粒子の粘度及び含有量が上記好ましい範囲内であると、略球状有機粒子が板状無機粒子の上を転がり、板状無機粒子間の表面凹部入り込みやすくなり、図1及び2に示すような、略球状有機粒子の集合体と板状無機粒子の海島構造状態を得やすくなる。
 略球状有機粒子の体積は、略球状有機粒子と板状無機粒子の総体積に対して10~30体積%であることが好ましい。10体積%以上であればと電極材料との接着性を付与または向上させる機能が得られやすい。30体積%以下であれば相対的に板状無機粒子の含有量を多く保つことができ、十分な破膜強度を得られやすい。
 略球状有機粒子の平均粒径r(μm)と板状無機粒子の平均厚さt(μm)の比(r/t)を0.3≦r/t≦1.0の範囲内にすることが重要である。上記好ましい範囲内であると、板状無機粒子層に塗工液Bを塗布する際に略球状有機粒子が板状無機粒子層の表面を転がり、板状無機粒子層の凹部に入り込みやすくなる。この結果、多孔層の断面は略球状有機粒子が電極との接着性を有するように板状無機粒子層の表面の凹部に入り込んだ形態を有する(図1参照)。多孔層の表面を拡大観察すると、略球状有機粒子が板状無機粒子層の表面の凹部を埋めるように存在することで板状無機粒子と球状有機粒子の集合体が認められ、海島構造様の形態を有する(図2参照)。なお、図2は板状無機粒子が島、球状有機粒子の集合体が海の例である。ここで全ての略球状有機粒子が凹部に入り込む必要はない。多孔層が海島構造の形態となることで、多孔層の厚さが増加するのを抑制しながら、電極材料との接着性向上が図れる。強いては得られる電池の体積エネルギー密度の向上に繋がる。
 多孔層の膜厚は得られた電池の使用目的によっても異なるが、0.5~2.5μmが好ましく、より好ましくは0.8~2.2μm、さらに好ましくは1.0~2.0μmである。多孔層の膜厚が上記好ましい範囲内であると、電極材料との接着性を付与または向上させることができる。また、ポリオレフィン微多孔膜がポリオレフィンの融点以上で溶融・収縮した際の破膜強度を維持し、絶縁性を確保できる。さらに、電極体として捲回体にした時に高い体積エネルギー密度が得られる。
 多孔層の空孔率は、膜の電気抵抗と膜強度の観点から30~90%が好ましい。
 多孔層の透気抵抗度は、膜強度とサイクル特性の観点から、JIS P 8117に準拠した方法により測定した値が1~600sec/100ccAirであることが好ましい。
3.電池用セパレータ
 電池用セパレータについて説明する。
 本発明の電池用セパレータは、板状無機粒子を含む塗工液Aと略球状有機粒子を含む塗工液Bをポリオレフィン微多孔膜に塗布することで得られる。例えば、板状無機粒子をポリオレフィン微多孔膜に対して略平行方向となるように塗工液Aをポリオレフィン微多孔膜に塗工し、乾燥して板状無機粒子層を形成し、その後、板状無機粒子層上に塗工液Bを塗工、乾燥して、ポリオレフィン微多孔膜に多孔層を設けることで得られる。つまり、2段階の塗工工程を得て多孔層を積層するのが好ましい。これにより、略球状有機粒子を板状無機粒子層の表面に偏在させ薄くて十分な電極材料との接着性を得ることができる。あらかじめ板状無機粒子と略球状有機粒子を混合した塗工液を用いると、略球状有機粒子を多孔層の表層に偏在させることが困難となる。また、十分な電極材料との接着性を得ようとすれば多孔層を厚くする必要がある。さらに、板状無機粒子の方向が不規則となり、多孔層内に大きさ1μmを超えるような空隙ができやすく、略平行になっていない板状無機粒子が表面に突起として発生しやすくなり電極体として捲回した際、空隙が発生しやすくなる。
 塗工液Bは板状無機粒子層上にのみ塗布してもよいし、さらに板状無機粒子層が設けられていないポリオレフィン微多孔膜のもう一方の面に塗布してもよい。電極材料との接着性を得るため塗工液Bの略球状有機粒子が表面に偏在するように塗布できればよい。
 湿式塗工方法は公知の方法を採用することができる。例えば、ロールコート法、グラビアコート法、キスコート法、ディップコート法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられる。特に、ポリオレフィン微多孔膜上で塗工液に比較的強い剪断力を加えながら塗工する方法が好ましく、ロールコート法、グラビアコート法の内、リバースロールコート法、リバースグラビアコート法が好ましい。これらの塗工方法はポリオレフィン微多孔膜の走行方向と対する塗工ロールの回転方向が逆であるため、塗工液に強い剪断力を与えることができ、板状無機粒子がポリオレフィン微多孔膜に対して略平行になるようにできる。
 ポリオレフィン微多孔膜の搬送速度(F)と逆回転する塗工ロールの周速(S)との比(以下、S/F比と略記する。)は、1.02以上が好ましい。より好ましい下限値は1.05、さらに好ましくは1.07である。1.02以上であれば塗工液に十分な剪断力を掛けることができる。上限は特に定めないが1.20とすることができる。
 電池用セパレータの全体の膜厚は、機械強度と絶縁性の観点から、6~13μmが好ましく、より好ましくは7~12μmである。また、電極体として捲回体にした時に高い体積エネルギー密度が得られことができる。
 以下実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。
1.高密度捲回性の評価
 実施例、比較例で得られた電池用セパレータを外形96mm、肉厚10mmの紙管に50N/mの張力でセパレータの肉厚が15mmになるまで巻き付け、その巻き長さを計測した。セパレータの肉厚は巻き取り前の任意の紙管表面位置を0mmとし、レーザーセンサーによって検知した。比較例1の巻き長さを100とし、各実施例、比較例のセパレータ巻き長さを相対的に比較した。値が大きいほど高密度捲回性が優れることを意味する。
2.略球状有機粒子の平均粒径の測定
(1)分散媒に分散されている場合
 試料を適当な濃度(固形分濃度2~3質量%)に希釈し、該希釈液をスライドガラス上に滴下し、光学顕微鏡で観察した。光学顕微鏡観察で得られた画像上で任意の20個を選択し、それら20個の粒径の平均値を略球状有機粒子の平均粒径とした。
(2)粉末の場合
 測定用セルに上に両面テープを貼り、該両面テープ上全面に略球状有機粒子を固着させた。次いで、プラチナまたは金を数分間真空蒸着させ、SEM観察用試料を得た。得られた試料を倍率20,000倍でSEM観察をおこなった。SEM測定で得られた画像上で任意の20個を選択し、それら20個の粒径の平均値を略球状有機粒子の平均粒径とした。
3.板状無機粒子の平均厚さの測定
 測定用セルに上に両面テープを貼り、該両面テープ上全面に板状無機粒子を固着させた。次いで、プラチナまたは金を数分間真空蒸着させSEM観察用試料を得た。得られた試料を倍率20,000倍でSEM観察をおこなった。SEM測定で得られた画像上で両面テープに対し、垂直に立っている任意の20個を選択し、それら20個の板状無機粒子の厚さの平均値を板状無機粒子の平均厚さとした。
4.板状無機粒子の平均粒径
 上記3で用いたSEM測定で得られた画像上の中から、両面テープに対し画像上で平面形状が観察される任意の20個を選択し、それら20個の長径の長さの平均値を板状無機粒子の平均粒径とした。
5.膜厚
 接触式膜厚計(ソニーマニュファクチュアリングシステムズ(株)製 デジタルマイクロメーター M-30)を使用して測定した。
6.電極材料との接着性
 負極および電池用セパレータをそれぞれ2cm×5cmの大きさに切り出し、負極の活物質面と電池用セパレータの改質多孔層面を合わせ、1MのLiPF濃度の1:2の重量組成を有するEC(Ethylene Carbonate)/EMC(Ethyl Methyl Carbonate)を含んでなる液体電解質に浸した。貼り合わせ面の温度を50℃に保持しながら2MPaの圧力で3分間プレスした。その後、負極と電池用セパレータを剥がし、電池用セパレータの剥離面を観察して以下の基準より判定した。なお、負極電極としてパイオトレック社製、層コート電極A100(1.6mAh/cm)を用いた。
◎:負極の活物質が電池用セパレータの改質多孔層に面積比で80%以上付着
○:負極の活物質が電池用セパレータの改質多孔層に面積比で50%以上、80%未満付着
△:負極の活物質が電池用セパレータの改質多孔層に面積比で30%以上、50%未満付着
×:負極の活物質が電池用セパレータの改質多孔層に面積比で30%未満付着
7.溶融破膜特性(メルトダウン特性)
 実施例及び比較例で得られたセパレータを5℃/分の昇温速度で加熱しながら、王研式透気抵抗度計(旭精工株式会社製、EGO-1T)により透気抵抗度を測定し、透気抵抗度が検出限界である1×10sec/100ccに到達した後、再び1×10sec/100cc以下に降下し始めた温度を求め、メルトダウン温度(℃)とした。
判定
メルトダウン温度(℃)が200℃を超える場合・・・○
メルトダウン温度(℃)が200℃以下の場合・・・・×
8.塗工液の粘度
 粘度計(BROOKFIELD社製DV-I PRIME)を用い、25℃での塗工液の粘度を測定した。
実施例1
(塗工液Aの調製)
 イオン交換水58質量部とブタノール1質量部からなる混合液に(平均粒径1.0μm、平均厚さ0.4μmの板状ベーマイト、長径/短径比2)を40質量部、バインダーとしてケン化度95%のポリビニルアルコール1質量部を添加しよく分散させた。次いで、増粘剤としてカルボキシメチルセルロース(CMC)添加し、液粘度を20mPa・sに調整して塗工液A1とした。
(塗工液Bの調製)
 イオン交換水79質量部とブタノール1質量部からなる混合液にアクリル系樹脂からなる略球状有機粒子分散液(JSR株式会社製TRD202A、平均粒径0.2μm、固形分濃度40質量%)を20質量部添加し、攪拌して均一に分散させた。次いで、カルボキシメチルセルロース(CMC)添加し、液粘度を5mPa・sに調整して塗工液B1とした。
(多孔層の積層)
 ポリエチレン微多孔膜(厚さ7μm、空孔率21%、透気抵抗度120秒/100cc)の片面にリバースグラビアコート法を用いて搬送速度30m/分、S/F比1.05の条件で塗工液A1を塗布、乾燥し、板状無機粒子層を積層した。板状無機粒子層の乾燥時の目付は2.5g/mであった。次いで、板状無機粒子層上に塗工液B1を塗工液A1と同様にして塗布、乾燥して電池用セパレータを得た。なお、塗工目付は略球状有機粒子と板状無機粒子の総体積に対して、略球状有機粒子の体積が15体積%となるようにした。
実施例2
 板状ベーマイトに替えて板状ベーマイト粒子(平均粒径2.0μm、平均厚さ0.4μm、長径/短径比3)とした塗工液A2を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例3
 液粘度を10mPa・sに調整した塗工液A3を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例4
 液粘度を30mPa・sに調整した塗工液A4を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例5
 板状ベーマイト粒子の平均粒径1.0μm、平均厚さを0.2μm、長径/短径比3とした塗工液A5を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例6
 板状ベーマイト粒子を平均粒径2.0μm、平均厚さ0.6μm、長径/短径比3とした塗工液A6を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例7
 塗工液Bの塗工量を調整し、略球状有機粒子と板状無機粒子の総体積に対して略球状有機粒子の体積が25体積%となるようにした以外は実施例1と同様にして電池用セパレータを得た。
実施例8
 塗工液Aを塗布する際にS/F比1.18の条件とした以外は実施例1と同様にして電池用セパレータを得た。
実施例9
 塗工液Bの調製において、液粘度を10mPa・sに調整した塗工液B2を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例10
 塗工液Bの調製において、液粘度を2mPa・sに調整した塗工液B3を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例1
(塗工液の調製)
 イオン交換水58質量部とブタノール1質量部からなる混合液に平均粒径1.0μm、平均厚さ0.4μmの板状ベーマイトを40質量部、バインダーとしてケン化度95%のポリビニルアルコール1質量部、及び平均粒径0.2μmのアクリル系樹脂からなる略球状有機粒子分散液(JSR株式会社製TRD202A、固形分濃度40質量%)を略球状有機粒子と板状無機粒子の総体積に対して略球状有機粒子の体積が15体積%となるように添加し、よく分散させた。この分散液に増粘剤としてカルボキシメチルセルロース(CMC)添加し、液粘度を20mPa・sに調整して塗工液Cとした。
(多孔層の積層)
 ポリエチレン微多孔膜(厚さ7μm、空孔率21%、透気抵抗度120秒/100cc)に図3に示す塗工装置(リバースグラビアコート法)を用いて搬送速度30m/分、S/F比1.05の条件で塗布、乾燥し、多孔層を積層し、電池用セパレータを得た。多孔層の乾燥時の目付は2.7g/mであった。
比較例2
 塗工液Aの調製において、板状ベーマイトに替えて平均粒径0.4μmのアルミナ粒子とした塗工液A7を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例3
 塗工液Aの調製において、液粘度を8mPa・sに調整した塗工液A8を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例4
 塗工液Bの調製において、液粘度を20mPa・sに調整した塗工液B4を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例5
 塗工液Bの調製において、略球状有機粒子分散液をメラミン・ホルムアルデヒド縮合物球状粒子(平均粒径0.4μm)の水分散液(固形分濃度15質量%)に替えた塗工液B5を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例6
 塗工液Bの塗工量を調整し、略球状有機粒子と板状無機粒子の総体積に対して略球状有機粒子の体積が5体積%となるようにした以外は実施例1と同様にして電池用セパレータを得た。
比較例7
 塗工液Aを塗布する際にS/F比0.50の条件とした以外は実施例1と同様にして電池用セパレータを得た。
比較例8
 塗工液A1を塗布する際にグラビアロールの回転方向をポリエチレン微多孔膜の搬送方向と同じにし、S/F比1.25の条件で塗工液A1を塗布した以外は実施例1と同様にして電池用セパレータを得た。
比較例9
 比較例1の電池用セパレータと同厚みのポリエチレン微多孔膜(空孔率23%、透気抵抗度110秒/100cc)を電池用セパレータとした。
 実施例1~10及び比較例1~9で得られた電池用セパレータの特性を表1に示す。
 なお、多孔層の表面、及び断面を拡大観察した結果、実施例1~10、及び、比較例3、5~7は略球状有機粒子が多孔層の表面に偏在し、板状無機粒子が島、略球状有機粒子を海とする海島構造であった。比較例1及び4は板状無機粒子と略球状有機粒子が混在し、海島構造ではなかった。
Figure JPOXMLDOC01-appb-T000001
1.略球状有機粒子
2.板状無機粒子
3.ポリオレフィン微多孔膜
4.ポリオレフィン微多孔膜の搬送方向
5.グラビアロール
6.グラビアロールの回転方向

Claims (7)

  1. ポリオレフィン微多孔膜と、少なくともその片面にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子と板状無機粒子を含む多孔層と、を有し、
    前記略球状有機粒子が膜厚方向に対して前記多孔層の表面に偏在しており、
    前記略球状有機粒子の平均粒径r(μm)と前記板状無機粒子の平均厚さt(μm)の比(r/t)が式1及び式2を満足する電池用セパレータ。
      0.1μm≦r≦0.8μm・・・・式1
      0.3≦r/t≦1.0  ・・・・式2
  2. 前記板状無機粒子がアルミナまたはベーマイトである請求項1に記載の電池用セパレータ。
  3. 前記略球状有機粒子の体積が前記略球状有機粒子と前記板状無機粒子の総体積に対して10~30体積%である請求項1又は2に記載の電池用セパレータ。
  4. 前記電池用セパレータがリチウムイオン二次電池用セパレータである請求項1~3のいずれか1項に記載の電池用セパレータ。
  5. 以下の工程(a)及び(b)を順次含む、請求項1~4のいずれか1項に記載の電池用セパレータの製造方法。
    (a)ポリオレフィン微多孔膜に板状無機粒子を含む塗工液Aをリバースグラビアコート法で塗布し、乾燥させ、板状無機粒子層を積層させる工程。
    (b)前記板状無機粒子層上に電極材料との密着性を付与または向上させる樹脂からなる略球状有機粒子を含む塗工液Bをリバースグラビアコート法で塗布し、乾燥させ電池用セパレータを得る工程。
  6. 前記塗工液Aの粘度が10~30mPa・sである請求項5に記載の電池用セパレータの製造方法。
  7. 前記塗工液Bの粘度が1~10mPa・sである請求項5または6に記載の電池用セパレータの製造方法。
PCT/JP2016/074774 2015-08-27 2016-08-25 電池用セパレータおよびその製造方法 WO2017033993A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680043565.5A CN107925034B (zh) 2015-08-27 2016-08-25 电池用隔膜及其制造方法
KR1020187004801A KR102187519B1 (ko) 2015-08-27 2016-08-25 전지용 세퍼레이터 및 그 제조방법
JP2017536475A JP6669174B2 (ja) 2015-08-27 2016-08-25 電池用セパレータおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015168183 2015-08-27
JP2015-168183 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017033993A1 true WO2017033993A1 (ja) 2017-03-02

Family

ID=58100300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074774 WO2017033993A1 (ja) 2015-08-27 2016-08-25 電池用セパレータおよびその製造方法

Country Status (4)

Country Link
JP (1) JP6669174B2 (ja)
KR (1) KR102187519B1 (ja)
CN (1) CN107925034B (ja)
WO (1) WO2017033993A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510472A (ja) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. リチウム二次電池用融着型複合分離膜およびその製造方法
JP2018190722A (ja) * 2017-04-28 2018-11-29 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
WO2019065845A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 多孔複合フィルム、電池用セパレータ、及び多孔複合フィルムの製造方法
WO2019117687A1 (ko) * 2017-12-15 2019-06-20 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
KR20190072479A (ko) * 2017-12-15 2019-06-25 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
CN110233223A (zh) * 2018-03-06 2019-09-13 三星Sdi株式会社 隔板、制备隔板的方法以及包括隔板的锂电池
JP2019160408A (ja) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 電池およびその製造方法
JPWO2019003770A1 (ja) * 2017-06-30 2020-03-19 日立オートモティブシステムズ株式会社 二次電池およびその製造方法
WO2020105673A1 (ja) 2018-11-22 2020-05-28 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2021085144A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 電気化学素子用機能層およびその製造方法、電気化学素子用機能層付きセパレータおよびその製造方法、並びに電気化学素子およびその製造方法
US20220263194A1 (en) * 2019-07-30 2022-08-18 Lg Chem, Ltd. Composite separator for electrochemical device and electrochemical device including the same
US12002990B2 (en) 2018-10-12 2024-06-04 Lg Energy Solution, Ltd. Porous separator and lithium secondary battery comprising same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018006435T5 (de) * 2017-12-18 2020-09-17 Ngk Insulators, Ltd. LDH-Separator und Zink-Sekundärbatterie
CN110660948B (zh) * 2018-06-29 2022-06-10 宁德时代新能源科技股份有限公司 一种隔离膜及其制备方法和含有该隔离膜的电化学装置
CN109524603B (zh) * 2018-11-26 2020-08-25 深圳市星源材质科技股份有限公司 一种功能隔膜及其制备方法
CN111653717B (zh) * 2020-07-10 2022-08-12 东莞市魔方新能源科技有限公司 一种复合隔膜的制备方法、复合隔膜和锂离子电池
CN114024100B (zh) * 2022-01-05 2022-04-15 湖南中锂新材料科技有限公司 非水电解液锂二次电池用隔膜及非水电解液锂二次电池
KR102594964B1 (ko) 2022-05-26 2023-10-26 주식회사 엘지에너지솔루션 유기/무기 복합 다공성 코팅층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전기화학소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066768A1 (ja) * 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
JP2011131470A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 積層フィルムおよび非水電解質二次電池
JP2014137985A (ja) * 2013-01-18 2014-07-28 Toyota Motor Corp 二次電池
US20140308565A1 (en) * 2013-04-16 2014-10-16 Samsung Sdi Co, Ltd. Separator and lithium battery including the separator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530353B2 (ja) * 2008-06-09 2014-06-25 日立マクセル株式会社 セパレータ用多孔質膜、電池用セパレータ、電池用電極およびそれらの製造方法、ならびにリチウム二次電池
JP2014517580A (ja) 2011-05-06 2014-07-17 富士通株式会社 伝送モードの設定方法、ユーザ機器及び基地局
JP5751414B2 (ja) * 2011-07-11 2015-07-22 日本ゼオン株式会社 二次電池多孔膜用スラリー組成物
US10803970B2 (en) 2011-11-14 2020-10-13 Seagate Technology Llc Solid-state disk manufacturing self test
JPWO2013080701A1 (ja) * 2011-12-02 2015-04-27 三菱樹脂株式会社 積層多孔フィルムロール及びその製造方法
JP6281220B2 (ja) * 2013-09-26 2018-02-21 日本ゼオン株式会社 二次電池用耐熱セパレータの製造方法
JP5702873B2 (ja) * 2014-04-04 2015-04-15 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066768A1 (ja) * 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
JP2011131470A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 積層フィルムおよび非水電解質二次電池
JP2014137985A (ja) * 2013-01-18 2014-07-28 Toyota Motor Corp 二次電池
US20140308565A1 (en) * 2013-04-16 2014-10-16 Samsung Sdi Co, Ltd. Separator and lithium battery including the separator

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510472A (ja) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. リチウム二次電池用融着型複合分離膜およびその製造方法
JP7073105B2 (ja) 2015-04-02 2022-05-23 エスケー イノベーション カンパニー リミテッド リチウム二次電池用融着型複合分離膜およびその製造方法
US10985356B2 (en) 2015-04-02 2021-04-20 Sk Innovation Co., Ltd. Composite separation membrane for lithium secondary battery and manufacturing method therefor
JP2018190722A (ja) * 2017-04-28 2018-11-29 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
JPWO2019003770A1 (ja) * 2017-06-30 2020-03-19 日立オートモティブシステムズ株式会社 二次電池およびその製造方法
JPWO2019065845A1 (ja) * 2017-09-29 2020-09-10 東レ株式会社 多孔複合フィルム、電池用セパレータ、及び多孔複合フィルムの製造方法
WO2019065845A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 多孔複合フィルム、電池用セパレータ、及び多孔複合フィルムの製造方法
JP7160034B2 (ja) 2017-09-29 2022-10-25 東レ株式会社 多孔複合フィルム、電池用セパレータ、及び多孔複合フィルムの製造方法
KR102207528B1 (ko) * 2017-12-15 2021-01-26 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
KR20190072479A (ko) * 2017-12-15 2019-06-25 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
US11411282B2 (en) 2017-12-15 2022-08-09 Lg Energy Solution, Ltd. Porous separator including porous layer including plate-type inorganic particles and porous coating layer including spherical inorganic particles and electrochemical device including the same
WO2019117687A1 (ko) * 2017-12-15 2019-06-20 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
CN110233223A (zh) * 2018-03-06 2019-09-13 三星Sdi株式会社 隔板、制备隔板的方法以及包括隔板的锂电池
US11502373B2 (en) 2018-03-06 2022-11-15 Samsung Sdi Co., Ltd. Separator, method of preparing the same, and lithium battery including the same
CN110233223B (zh) * 2018-03-06 2022-10-11 三星Sdi株式会社 隔板、制备隔板的方法以及包括隔板的锂电池
JP2019160408A (ja) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 電池およびその製造方法
JP7032180B2 (ja) 2018-03-07 2022-03-08 トヨタ自動車株式会社 電池およびその製造方法
US12002990B2 (en) 2018-10-12 2024-06-04 Lg Energy Solution, Ltd. Porous separator and lithium secondary battery comprising same
WO2020105673A1 (ja) 2018-11-22 2020-05-28 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
KR20210092191A (ko) 2018-11-22 2021-07-23 도레이 카부시키가이샤 다공성 필름, 이차전지용 세퍼레이터 및 이차전지
JP2022542567A (ja) * 2019-07-30 2022-10-05 エルジー・ケム・リミテッド 電気化学素子用複合分離膜及びそれを含む電気化学素子
US20220263194A1 (en) * 2019-07-30 2022-08-18 Lg Chem, Ltd. Composite separator for electrochemical device and electrochemical device including the same
EP3996183A4 (en) * 2019-07-30 2023-01-04 LG Chem, Ltd. COMPOSITE SEPARATOR FOR ELECTROCHEMICAL DEVICE AND ELECTROCHEMICAL DEVICE THEREOF
JP7372438B2 (ja) 2019-07-30 2023-10-31 エルジー・ケム・リミテッド 電気化学素子用複合分離膜及びそれを含む電気化学素子
US12266821B2 (en) * 2019-07-30 2025-04-01 Lg Chem, Ltd. Composite separator for electrochemical device and electrochemical device including the same
WO2021085144A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 電気化学素子用機能層およびその製造方法、電気化学素子用機能層付きセパレータおよびその製造方法、並びに電気化学素子およびその製造方法

Also Published As

Publication number Publication date
JP6669174B2 (ja) 2020-03-18
JPWO2017033993A1 (ja) 2018-06-14
KR20180041137A (ko) 2018-04-23
KR102187519B1 (ko) 2020-12-07
CN107925034A (zh) 2018-04-17
CN107925034B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2017033993A1 (ja) 電池用セパレータおよびその製造方法
JP6657055B2 (ja) 非水電解液二次電池用セパレータ
JP6220415B2 (ja) 積層多孔質フィルム及び非水電解液二次電池
JP2023058556A (ja) リチウム電池用の改善されたコーティングしたセパレータおよび関連方法
JP5355823B1 (ja) 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
JP5681703B2 (ja) 電気化学素子用セパレータおよびそれを用いた電気化学素子、並びにその電気化学素子用セパレータの製造方法
JP5882549B1 (ja) 非水系二次電池用セパレータ、その製造方法及び非水系二次電池
JP5865168B2 (ja) 積層多孔質フィルムの製造方法及び積層多孔質フィルム、並びに非水電解液二次電池
CN107039620A (zh) 非水电解液二次电池用间隔件
JP2012226921A (ja) 積層多孔質フィルム
JP6041970B1 (ja) 非水電解液二次電池用セパレータ
EP4518001A1 (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2019110063A (ja) 非水電解液二次電池
JP6507219B1 (ja) 非水電解液二次電池
TWI709267B (zh) 電池用隔膜及其製造方法
JP7411005B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2016193613A (ja) 積層多孔質フィルム及び非水電解液二次電池
US20240372220A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5964493B2 (ja) 積層多孔質フィルム、及び非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536475

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004801

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839340

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载