+

WO2017033885A1 - モータ駆動ハンド - Google Patents

モータ駆動ハンド Download PDF

Info

Publication number
WO2017033885A1
WO2017033885A1 PCT/JP2016/074365 JP2016074365W WO2017033885A1 WO 2017033885 A1 WO2017033885 A1 WO 2017033885A1 JP 2016074365 W JP2016074365 W JP 2016074365W WO 2017033885 A1 WO2017033885 A1 WO 2017033885A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
wire
pulley
wire portion
driven hand
Prior art date
Application number
PCT/JP2016/074365
Other languages
English (en)
French (fr)
Inventor
浩史 横井
鶴松 叶
銀来 姜
壮一郎 森下
辰太郎 迫田
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2017536417A priority Critical patent/JPWO2017033885A1/ja
Publication of WO2017033885A1 publication Critical patent/WO2017033885A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a motor-driven hand applied to an artificial prosthesis, a robot hand or the like.
  • a servo motor for radio control (referred to as “RC servo motor”) for an electric hand is an effective method for realizing controllability and responsiveness of the joint angle.
  • a driving method of the electric hand a direct-acting driving method and a driving method using a winding mechanism are known.
  • the direct drive system is a system in which the rotation shaft of the joint portion is rotated from the motor main shaft through a gear or a belt. This method can only generate torque proportional to the rotation angle of the motor spindle, and the gear ratio cannot be changed freely.
  • the drive system using the winding mechanism moves the finger using a wire pulling mechanism such as a winch. It is a method. This method can realize a more natural movement as compared with the direct-acting driving method.
  • a robot hand has been proposed in which a plurality of phalanx parts separated from each other are connected with wires, and a plurality of adjacent fingers are moved in conjunction with each other, and a driving force is concentrated on one finger from a plurality of driving parts.
  • a plurality of phalanx parts separated from each other are connected with wires, and a plurality of adjacent fingers are moved in conjunction with each other, and a driving force is concentrated on one finger from a plurality of driving parts.
  • the tow wire gets entangled with the motor spindle and causes problems such as biting the wire. For this reason, the motor is limited to a single-rotation type motor, and the problem of insufficient torque occurs. If a plurality of motors are used to supplement the driving force, the apparatus becomes large.
  • myoelectric prostheses that use surface myoelectric potentials generated in muscles as a control signal in response to commands from the brain have attracted attention.
  • myoelectric prosthetic hands it is faster to learn from children, but it is necessary to change prosthetic hands as they grow up. Therefore, a motor drive mechanism that is inexpensive, small, and has high followability is further desired.
  • the motor size is restricted if the electric hand is downsized.
  • a small RC servo motor is inexpensive and easily available, but its output is limited and it is difficult to obtain sufficient finger joint torque. Even when the electric hand is downsized, the strength of the pinch force and natural movement are still required.
  • an object is to provide a small motor-driven hand having sufficient pinch force and natural movement.
  • the motor-driven hand is Palm (51), A finger part (53) rotatably connected to the palm part by a joint rotation axis (21); A motor (11) for driving the fingers; A first wire portion having one end wound around a pulley (17) fixed to the output shaft (13) of the motor and the other end connected to a first action point (19A) of the finger portion; , A second wire portion having one end wrapped around the pulley and the other end connected to a second operating point (19B) of the finger; Have The first wire portion is connected to the first action point so that a distance between the first wire portion and the joint rotation axis is increased when the motor rotates in a first direction; The second wire portion is connected to the second action point so that a tension increases when the motor rotates in a second direction opposite to the first direction.
  • the above configuration realizes a small motor-driven hand with sufficient pinch force and natural movement.
  • a booster mechanism that obtains a large torque with a small general-purpose motor, and (2) a configuration in which the gear ratio between the motor output shaft and the rotation shaft to be driven is variable are realized.
  • the booster mechanism (1) a small electric hand having a sufficient pinch force can be realized at low cost.
  • the variable speed ratio variable configuration (2) enables more natural and stable movement.
  • FIG. 1 is a schematic view of a motor-driven hand 1A according to the first embodiment.
  • 1A is a side view seen from the thumb side when the palm of the motor-driven hand is front
  • FIG. 1B is a cross-sectional view taken along line AA ′ of FIG.
  • a small general-purpose servo motor and a wire winding mechanism are used to increase the torque by changing the distance between the rotating shaft to be driven and the wire, thereby improving the pinch force of the motor driving hand 1A.
  • the gear ratio between the output shaft of the motor and the rotation shaft to be driven becomes variable, for example, as the hand of the motor drive hand 1A closes in order to grasp an object, the movement becomes slower. Can be.
  • the motor drive hand 1 ⁇ / b> A includes a motor 12 that drives the thumb 52 and a motor 11 that drives the index finger 53.
  • the motors 11 and 12 are both small general-purpose RC servomotors.
  • the driving force of the motor 11 is transmitted to the index finger 53 by a wire.
  • the driving force of the motor 12 is transmitted to the thumb 52 via a pole (crank arm) 18 having one end fixed to the main shaft of the motor 12.
  • the five fingers including the thumb 52 and the index finger 53 are connected to the palm 51.
  • the index finger 53 and the four fingers (not shown), the middle finger, the ring finger, and the little finger are connected in common to the palm 51 through a metacarpophalangeal (MP) joint rotation shaft 21 at the base of the finger so as to move integrally.
  • MP metacarpophalangeal
  • a bearing 14 and a pulley 17 are disposed coaxially with the output shaft 13 of the motor 11, and a wire A and a wire B are wound around the pulley 17.
  • the pulley 17 is fixed to the output shaft 13 of the motor 11 and rotates around the central axis C. As the motor 11 rotates, the wire A and the wire B are wound and unwound on the pulley 17.
  • a cylinder housing 15 for guiding the wires may be provided so that the wires A and B do not come off the pulley 17.
  • the wire A arranged on the palm side is fixed to the action point 19A of the index finger 53, and the other end is wound around the pulley 17 in a clockwise direction.
  • the wire A has an action point 19A so that the distance R between the wire A and the MP joint rotation shaft 21 increases as the motor-driven hand 1A moves in the direction of closing the hand and grasping an object. It is connected to the.
  • the action point 19A is set in the vicinity of the second joint 53P that hits the middle of the index finger 53, but an appropriate force that can transmit the force from the motor 11 to the index finger 53 and move it effectively.
  • a point can be selected as the point of action 19A.
  • the action point 19A is preferably located on the palm side with respect to a straight line connecting the center of the output shaft 13 and the center of the MP joint rotation shaft 21.
  • the wire B arranged on the back side (back side) of the hand is fixed to the action point 19B near the back side of the second joint 53P of the index finger 53, and the other end is wound around the pulley 17 in the counterclockwise direction. It has been.
  • the wire B is connected to the action point 19B so that the rotational force of the motor 11 is effectively transmitted to the index finger 53 and the tension of the wire B is appropriately maintained while the motor drive hand 1A is operating.
  • the action point 19 ⁇ / b> B is preferably located on the back side of the hand with respect to a straight line connecting the center of the output shaft 13 and the center of the MP joint rotation shaft 21.
  • the wire A and the wire B may be two independent wires or may be wound around the pulley 17 so as not to idle one wire (see FIG. 1B), and one end may be the wire A and the other end may be the wire B. . That is, regardless of the number of wires, a portion corresponding to wire A having one end fixed to the action point 19A and the other end wound around the pulley 17, and one end fixed to the action point 19B and the other end wound around the pulley 17. It is sufficient if there is a portion corresponding to the attached wire B.
  • the rotation of the motor 11 is transmitted to the MP joint rotation shaft 21 by directly winding one end side of the wires A and B around the MP joint rotation shaft 21.
  • the output level of the motor must be increased in order to increase the torque, but the output of the small general-purpose RC servo motor has a limit.
  • one end side of the wire A moves to the action point 19A of the index finger 53 so that as the index finger 53 closes, the wire A passes through a position away from the MP joint rotation shaft 21 in the palm direction. It is connected.
  • the output shaft 13 of the motor 11 rotates clockwise in FIG. 1A
  • the wire A is wound around the pulley 17 and the index finger 53 is pulled downward in the figure.
  • the action point 19A also moves downward in the figure.
  • the moment increases because the wire A moves away from the MP joint rotation shaft 21.
  • the rotation of the MP joint rotation shaft 21 causes the middle finger, the ring finger, and the little finger (not shown) to move in the same direction in conjunction with the index finger 53.
  • the wire B is unwound from the pulley 17.
  • the distance (moment arm) R from the axis of the MP joint rotation shaft 21 to the wire A is greater than the distance from the axis of the output shaft 13 of the motor 11 to the wire A.
  • the torque increases. That is, a greater effect can be obtained with a small force.
  • the output of the motor 11 is represented by the product of torque and angular velocity.
  • the motor output is constant, when the torque increases, the angular velocity of the MP joint rotation shaft 21 decreases and the reduction ratio increases. That is, the moving speed of the index finger 53 becomes slower as the index finger 53 moves in the direction of pinching and the pinch force increases. This action is closer to the movement of the human hand and is advantageous when pinching small and fragile things with care and sufficient pinch force.
  • the output shaft 13 of the motor 11 rotates counterclockwise.
  • the wire B is wound around the pulley 17 and the index finger 53 moves upward in the drawing.
  • the MP joint rotation shaft 21 also rotates counterclockwise, and the four fingers commonly connected to the palm 51 move in a direction away from the thumb 52.
  • the wire A is unwound from the pulley 17, but the wire A passes through a position away from the MP joint rotation shaft 21, so that the entanglement with the MP joint rotation shaft 21 does not occur.
  • the rotation of the motor 11 may be feedback controlled in accordance with the rotation angle of the MP joint rotation shaft 21 detected by the potentiometer 23.
  • the motor 1 can increase torque while using a small general-purpose motor, so that even a small myoelectric prosthetic hand for children can have a sufficient pinch force.
  • a general-purpose motor and a simple mechanism are used, the cost for producing a prosthetic hand can be greatly reduced.
  • the entanglement of the wire can be suppressed and the output shaft 13 of the motor 11 can be rotated one or more times.
  • the index finger 53 and four fingers of middle finger, ring finger, and little finger are commonly connected to the palm 51 by the MP joint rotation shaft 21, the four fingers may be configured to move apart. . In that case, the above mechanism may be provided for each of the four fingers.
  • FIG. 2 is a modification of FIG. In FIG. 2, three wires A, B, and C and a spring structure 20 are used.
  • the spring structure 20 absorbs the tension of the wire when the MP joint rotation shaft 21 rotates to reduce the resistance.
  • the spring structure 20 includes a pair of washers (or spring washers) 36 and 37 and a compression spring 31 fixed between the washers 36 and 37.
  • one end of the wire A is connected to the palm-side action point 19A in the vicinity of the second joint 53P of the index finger 53, and the other end is wound clockwise around the pulley 17 (see FIG. 1B). It has been.
  • One end of the wire B is wound around the pulley 17 counterclockwise, and the other end is fixed to the washer 37 of the spring structure 20.
  • One end of the wire C is connected to the washer 36 of the spring structure 20, and the other end is fixed to the acting point 19 ⁇ / b> B on the back side in the vicinity of the second joint 53 ⁇ / b> P of the index finger 53. Since the wire B and the wire C are inserted and guided through the compression spring 31, the compression spring 31 may be referred to as a “guide coil”.
  • the wire A and the wire B may be two independent wires or may be wound around the pulley 17 so as not to idle one wire (see FIG. 1B), and one end may be the wire A and the other end may be the wire B. This is the same as FIG. That is, it is only necessary to have a portion corresponding to the wire A and a portion corresponding to the wire B regardless of the number of wires.
  • the distance R (moment arm) between the wire A and the MP joint rotation shaft 21 increases as the index finger 53 bends toward the lower side of the figure, as in FIG.
  • the wires B and C are connected to the spring structure 20 to adjust the lengths of the wires B and C to maintain the tension.
  • winding and unwinding of the wire B can be performed smoothly.
  • the compression spring 31 contracts when tension is generated in the wire, and the compression spring 31 extends when the tension of the wire is released. Biting into the pulley 17 can be prevented.
  • FIG. 2 shows an example in which the spring structure 20 is provided on the wire B side
  • the spring structure 20 may be on the wire A side, or may be on both the wire B side and the wire A side.
  • a structure using a compression spring and a washer is shown as the spring structure 20
  • a structure in which the wire B and the wire C are connected to both ends of the tension spring may be used.
  • FIG. 3 is a schematic view of a motor-driven hand 1C according to the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the motor drive hand 1 ⁇ / b> C has a wire A, a wire B, a wire C, and a guide coil lever 30.
  • the guide coil lever 30 has a function of adjusting the distance R between the wire C and the MP joint rotation shaft 21, that is, the moment arm, while adjusting the lengths of the wires A and C.
  • the guide coil lever 30 realizes a torque-sensitive boosting mechanism, and the angular velocity of the MP joint rotation shaft 21 can be changed more effectively.
  • the guide coil lever 30 is fixed to the palm 51, and the wire A and the wire C are guided into the compression spring 31 of the guide coil lever 30.
  • One end of the wire A is inserted into the compression spring 31 and fixed to the washer 37 (see FIG. 4) of the spring structure 20, and the other end is wound around the pulley 17 (see FIG. 1B) clockwise.
  • One end of the wire C is inserted into the compression spring 31 and connected to the washer 36 (see FIG. 4) of the spring structure 20, and the other end is connected to the action point 19 ⁇ / b> A of the index finger 53.
  • the wire C is connected to the action point 19A so as to pass through a position away from the MP joint rotation shaft 21.
  • the wire A and the wire B may be two independent wires or may be wound around the pulley 17 so as not to idle one wire (see FIG. 1B), and one end may be the wire A and the other end may be the wire B. . That is, it is only necessary to have a portion corresponding to the wire A and a portion corresponding to the wire B regardless of the number of wires.
  • FIG. 4 shows a configuration example of the guide coil lever 30.
  • the guide coil lever 30 includes a spring structure 20, a cross link 35 connected to the spring structure 20, and a base 38 that supports the cross link 35.
  • the guide coil lever 30 is fixed to the palm 51 by a base 38.
  • the spring structure 20 has a pair of washers 36 and 37 and a compression spring 31 fixed at both ends to the washers 36 and 37, as in FIG.
  • One end of one link 35 a of the cross link 35 is fixed to a washer 36, and the other end is slidably held in a groove 39 of the base 38.
  • One end of the other link 35b is fixed to the washer 37, and the other end is slidably held in the groove 39 of the base 38.
  • FIG. 5 shows a state in which the hand is closed by the motor-driven hand 1C.
  • the torque is maximized and the pinch force is maximized.
  • the angle formed by the base 38 and the link 35a of the guide coils lever 30 (or links 35b), the maximum angle theta 2, and the height of the cross link 35 is the highest.
  • the wire C is farthest from the MP joint rotation axis 21 and the moment arm R is maximum.
  • the wire B is pulled in a direction to be unwound from the pulley 17 (or the output shaft 13 of the motor 11).
  • the gear ratio can be made variable efficiently.
  • any member that can expand and contract such as a pantograph or a bellows, may be used.
  • FIG. 6 shows a motor-driven hand 1D as a modification of the second embodiment.
  • 6A shows a state in which the hand is opened
  • FIG. 6B shows a state in which the hand is closed.
  • the motor-driven hand 1D has two guide coil levers 30A and 30B that are commonly supported by the base 38.
  • the guide coil lever 30A and the guide coil lever 30B have the same configuration as described with reference to FIGS.
  • the wire D is used.
  • One end of the wire B is wound counterclockwise around the pulley 17 or the output shaft 13 of the motor 11, and the other end is fixed to the end (washer) on the index finger 53 side of the guide coil lever 30B.
  • One end of the wire D is fixed to the end (washer) of the guide coil lever 30B on the motor 11 side, and the other end is connected to the action point 19B of the index finger 53. Both the wire B and the wire D are inserted through the compression spring 31 and guided.
  • the compression spring 31 of the guide coil lever 30A is contracted by the tension of the wire A and the wire C, and the cross link 35A is raised.
  • the wire B is unwound to reduce the tension, the cross link 35B of the guide coil lever 30B is folded to the lowest position, and the moment arm R 'is reduced.
  • FIG. 7 is a schematic view of a motor-driven hand 1E according to the third embodiment.
  • 7A is a side view seen from the thumb side when the palm of the motor-driven hand is the front
  • FIG. 7B is a cross-sectional view taken along the line AA ′ in FIG. 7A.
  • the self-aligning tensioner 40 is used to realize a quick movement at the start of the hand opening / closing operation and a stable wire tension.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the self-aligning tensioner 40 includes a housing 45 and a guide coil 41 and a guide coil 42 each having one end fixed to the housing 45.
  • the housing 45 surrounds the output shaft 13 of the motor 11 and is in contact with the pulley 17 in a frictionable state.
  • the guide coils 41 and 42 are formed of compression springs, the wire A is inserted through the guide coil 41, one end of which is wound around the pulley 17 in the clockwise direction, and the other end is connected to the action point 19A of the index finger 53. .
  • the wire B is inserted through the guide coil 42, one end of which is wound around the pulley 17 counterclockwise, and the other end is connected to the action point 19 ⁇ / b> B of the index finger 53.
  • the wire A and the wire B may be two independent wires or may be wound around the pulley 17 so as not to idle one wire (see FIG. 1B), and one end may be the wire A and the other end may be the wire B. .
  • the pulley 17 is fixed to the output shaft 13 of the motor 11, and the rotational force of the motor 11 is transmitted from the pulley 17 to the action points 19 A and 19 B of the index finger via the wires A and B.
  • the guide coil 41 is fixed starting from the intersection of the tangent drawn from the point of action 19A of the index finger 53 to the pulley 17 and the outer periphery of the housing 45 or the vicinity thereof.
  • the guide coil 42 is fixed starting from the intersection of the tangent drawn from the point of action 19B of the index finger 53 to the pulley 17 and the outer periphery of the housing 45 or the vicinity thereof.
  • the direction in which the guide coil 41 and the guide coil 42 extend is in a plane parallel to the rotation surface of the housing 45.
  • the self-aligning tensioner 40 uses the frictional force between the housing 45 and the pulley 17 to generate an acting force in the normal direction of the wire A and the wire B, thereby reducing the reduction ratio and the wire. Stabilize traction of A and B. However, almost no force is generated in the longitudinal direction of the wires A and B, and the operation of the four fingers including the index finger 53 is not limited.
  • FIG. 8A shows an initial state. In this state, the motor 11 is not rotating.
  • the guide coils 41 and 42 are bent by the interaction between the wire A and the guide coil 41 and the interaction between the wire B and the guide coil 42 during the gripping operation, and the turning radius for the wire A is increased. Becomes smaller. In other words, the moment arm as seen from the output shaft 13 of the motor 11 gradually decreases, and the reduction ratio gradually increases.
  • the housing 45 rotates in the clockwise direction together with the pulley 17 until just before the rotation of the motor 11 overcomes the static frictional force.
  • Whether the housing 45 is interlocked with the rotation of the motor 11 is determined by the magnitude relationship between the frictional force between the pulley 17 and the tension applied to the wire A and the wire B. That is, the housing 45 rotates in the clockwise direction and the counterclockwise direction within a certain angle range according to the rotation direction of the motor 11.
  • FIG. 10 is a schematic view of a motor-driven hand 1F according to the fourth embodiment.
  • the guide coil levers 30A and 30B of the second embodiment and the self-aligning tensioner 40 of the third embodiment are used in combination.
  • FIG. 10A shows a state where the hand is open
  • FIG. 10B shows a state where the hand is closed.
  • the gripping operation is started and the object is approached, that is, when the operation is performed with a relatively weak torque
  • the self-aligning tensioner 40 works effectively to realize a quick movement.
  • the lengths of the wire A and the wire B are adjusted by the compression springs 31 of the guide coil levers 30A and 30B to prevent the wire A and the wire B from being entangled.
  • This configuration realizes a motor-driven hand 1F having a sufficient pinch force and natural operation. Even when the guide coil lever 30B is omitted, the same effect can be obtained.
  • FIG. 11 shows an example of a control configuration for preventing overload.
  • a motor current detection circuit 60 is connected to the motor drive hand 1F.
  • the motor current detection circuit 60 includes a motor controller 61 and a current sensor 62.
  • the rotation angle of the MP joint rotation shaft 21 is detected by the potentiometer 23, and the detection result is supplied to the motor controller 61.
  • the motor controller 61 controls the motor 11 based on the detected rotation angle so that the rotation angle of the MP joint rotation shaft 21 does not exceed a predetermined value.
  • the current sensor 62 may be connected to the motor 11 and the motor 11 may be controlled so that the current value of the motor 11 does not exceed a certain value based on the current detection result.
  • FIG. 12 shows an example of overload prevention control by the motor controller 61.
  • the horizontal axis represents time, and the vertical axis represents the current flowing through the motor 11.
  • the current value suddenly rises from zero, and the index finger 53 starts to move toward the thumb 52.
  • the current value gradually increases.
  • the moment arm with respect to the MP joint rotation shaft 21 is large at this time, and a sufficient pinch force is ensured.
  • a more accurate pinch operation may be realized by combining current control. The movement of the four fingers in this section is slow, and the operation moves to carefully grasping the object.
  • the current value is controlled so as not to exceed a certain value. An excessive load is prevented from being applied to the motor 11, and the object is held with a constant force.
  • control which detects the electric current of the motor 11 may replace with the control which detects the electric current of the motor 11, and may detect and control the change of the length of the compression spring 31 of the guide coil lever 30.
  • FIG. 13 is a diagram showing the effect of the boost mechanism of the motor-driven hand according to the embodiment in comparison with the conventional configuration.
  • FIG. 13A shows the pinch force in the configuration of the first embodiment
  • FIG. 13B shows the pinch force in the conventional linear motion drive system.
  • the same general-purpose RC servo motor was used, and the current value of the maximum output of the servo motor was measured using a pinch meter. From the measurement results, it can be seen that the configuration of Embodiment 1 can achieve a pinch force that is twice or more that of the direct drive system.
  • the configuration of the second embodiment can increase the moment arm more effectively than the first embodiment, it is predicted that the pinch force can be further increased under the same conditions. Further, by using at least one of the guide coil lever 30 and the self-aligning tensioner 40, a more natural movement is realized in the motor-driven hand.
  • FIG. 14 is a diagram for explaining the mechanism of the boost mechanism of the motor-driven hand having the configuration of the first embodiment.
  • the point O is the rotation center of the output shaft 13 of the motor 11
  • the point C is the action point 19 ⁇ / b> A
  • the point M is the rotation center of the MP joint rotation shaft 21.
  • the T point is the tip of the index finger 52
  • a pinch force is generated at the T point by the rotation of the motor 11.
  • Y is a vertical base line
  • ⁇ 3 is an angle formed by the MO line and the vertical base line Y.
  • FIG. 15 plots the pinch force as a function of ⁇ 3.
  • the horizontal axis is the angle ⁇ 3, and the vertical axis is the magnitude of the pinch force.
  • the motor drive voltage is 5 V
  • the distance between MCs is 26 mm
  • the distance between MTs is 70 mm.
  • ⁇ 3 and the pinch force are correlated, and as the value of ⁇ 3 decreases, the moment arm length increases and the pinch force increases. From FIG. 15, it is confirmed that the angle ⁇ 3 is one of the machine elements that influence the maximum pinch force of the motor-driven hand. Further, ⁇ 3 can be set in a range of at least 70 ° to 110 ° with a motor-driven hand.
  • the torque increasing operation of the first to fourth embodiments or the operation of the booster mechanism is further stabilized.
  • the angular velocity of the MP joint rotation shaft 21 can be effectively reduced. It is changing. However, due to secular change, at least a part of the wires A, B, C, and D may be deteriorated, and bending and slipping may occur. Therefore, the ball chain 65 is used for at least a part of the wires A to D.
  • the ball chain 65 is made of a light and strong material such as stainless steel, aluminum, carbon, and duralumin. The diameter of each ball of the ball chain 65 can be appropriately selected according to the size of the motor-driven hand 1G and required characteristics.
  • a stainless steel ball chain 65 having a ball diameter of 2.0 to 2.5 mm is used.
  • One end side of the ball chain 65 is fixed to the action point 19A of the index finger 53 of the motor-driven hand 1G, and the other end is fixed to the action point 19B opposite to the action point 19A of the index finger 53.
  • the chain wheel 80 is used for the pulley fitted to the output shaft 13 of the motor 11 so that the motor 11 can pull the ball chain 65 and rotate the four fingers including the index finger.
  • FIG. 17 shows a configuration example of the chain wheel 80.
  • FIG. 17A is an external view of the chain wheel 80
  • FIG. 17B shows a gear shape formed on the chain wheel 80.
  • the chain wheel 80 is designed to suit the size and characteristics of the ball chain 65.
  • the dynamic torque ⁇ of the motor 11 when the input voltage is 5 V is 529 N ⁇ mm.
  • the length r of the normal from the center of the MP joint rotation shaft 21 to the ball chain 65 is decreased.
  • the ball diameter of the ball chain 65 is 2.3 mm
  • the diameter of the output shaft 13 of the motor 11 the size of the motor driving hand 1G (including the distance from the MP joint rotating shaft 21 to the tip of the index finger 53)
  • the action point 19A From the conditions such as the position, the minimum value of the moment arm r is about 5.2 mm. That is, the maximum value of the pulling force F is 101.7N. If the yield strength of the ball chain 65 is 51N to 59N, as shown in FIG.
  • the hole 82 is formed in two stages in the pulley 82 of the chain wheel 80, and the ball chain 65 is used in a double manner. Is desirable. Thereby, the pulling force F can be dispersed to prevent the ball chain 65 from being broken.
  • the hole 81 formed on the outer periphery of the chain wheel 80 may be formed in one step.
  • the pulley 82 may be provided with three or more steps (triple) holes 81.
  • the diameter of the hole 81 of the chain wheel 80 is set according to the ball diameter of the ball chain 65 to be used.
  • twelve holes 81 are formed per step along the outer periphery of the pulley body 62 having a diameter of about 10 mm.
  • the cross-sectional shape of the hole 81 may take any shape such as a semicircular shape (hemispherical groove), a V shape (conical groove), or a U shape (a combination of a cylindrical groove and a hemispherical groove).
  • the design specifications in FIG. 17 are merely examples, and can be appropriately changed according to the age, body shape, etc. of the wearer of the motor-driven hand 1G. 16 and 17 may be combined with at least one of the guide coil lever 30 and the self-aligning tensioner 40.
  • the human finger moves quickly when the resistance is low, and generates a large force when the resistance is high.
  • the guide coil lever 30 By using the guide coil lever 30, the moment arm length between the MP joint rotation shaft 21 and the ball chain 65 is adjusted to enable an operation closer to a human finger.
  • the self-aligning tensioner 40 it is possible to quickly absorb the deflection of the chain wheel 80 and the ball chain 65 when performing an operation of grasping and releasing an object.
  • the pulley 70 includes a first cylinder 71 and a second cylinder 72 having different diameters.
  • the other end of the wire A one end of which is fixed to the action point 19A (see FIG. 1 and the like), is fixed and wound around the first cylinder 71 having a small diameter.
  • the other end of the wire B one end of which is fixed to the action point 19B (see FIG. 1, etc.), is fixed and wound around the second cylinder 72 having a large diameter.
  • the winding directions of the wire A and the wire B are opposite to each other.
  • the first cylinder 71 having a small diameter has a smaller winding amount per unit time than the second cylinder 72, and moves the index finger 53 of the motor-driven hand slowly.
  • the second cylinder 72 has a larger winding amount per unit time than the first cylinder, and moves the index finger 53 of the motor-driven hand faster.
  • a hole 81 as in the fifth embodiment may be formed in each of the first cylinder 71 and the second cylinder 72, and the ball chain 61 may be used for at least one of the wire A and the wire B. As a result, the opening / closing operation of the motor-driven hand becomes more stable.
  • the motor-driven hands 1A to 1G described in the embodiment and any combination thereof are applied to a myoelectric prosthetic hand and a robot hand, and are particularly expected to be applied to a myoelectric prosthetic hand and a small robot hand for children.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

十分なピンチ力と自然な動きを有する小型のモータ駆動ハンドを提供する。 モータ駆動ハンドは、掌部と、関節回転軸により前記掌部に対して回転可能に接続される指部と、前記指部を駆動するモータと、一端が前記モータの出力軸のまわりに巻きつけられ、他端が前記指部の第1の作用点に接続される第1ワイヤ部と、一端が前記モータの前記出力軸のまわりに巻きつけられ、他端が前記指部上の第2の作用点固定される第2ワイヤ部とを有し、前記第1ワイヤ部は、前記モータが第1の方向に回転するときに、前記第1ワイヤ部と前記関節回転軸の間の距離が大きくなるように前記第1の作用点に接続され、前記第2ワイヤ部は、前記モータが前記第1の方向と反対の第2の方向に回転するときに張力が増大するように前記第2の作用点に接続されている。

Description

モータ駆動ハンド
 本発明は、人工義手、ロボットハンド等に適用されるモータ駆動ハンドに関する。
 電動ハンドに無線操縦(Radio Control)用のサーボモータ(「RCサーボモータ」と称する)を用いることは、関節角度の制御性と即応性を実現するために有効な方法である。電動ハンドの駆動方法として、直動型の駆動方式と、巻き取り機構による駆動方式が知られている。直動型の駆動方式は、モータ主軸からギヤまたはベルトを介して関節部の回動軸を回転させる方式である。この方法は、モータ主軸の回転角に比例した量のトルクしか生成できず、変速比を自由に変えることができない
 巻き取り機構による駆動方式は、ウィンチ等のワイヤ牽引機構を用いて指部を動かす方式である。この方式は、直動型の駆動方式と比較して、より自然な動きを実現することができる。互いに分離されている複数の指節部の間をワイヤで連結して、隣接する複数の指を連動して動かすとともに、複数の駆動部から駆動力をひとつの指に集中させるロボットハンドが提案されている(たとえば、特許文献1参照)。
 しかし、従来の巻き取り機構では、牽引用のワイヤがモータ主軸に絡みつき、ワイヤを噛み込むなどの問題を生じる。そのため、単一回転型のモータに制約され、やはりトルク不足の問題が生じる。駆動力を補うためにモータを複数用いると、装置が大型化する。
 近年、脳からの指令により筋肉に発生する表面筋電位を制御信号として用いる筋電義手が注目されている。筋電義手の場合、子供のうちから練習するほうが習得が早いが、成長に合わせて義手を替えていく必要がある。そのため、安価で小型、かつ追従性の高いモータ駆動機構がいっそう望まれる。
特開2011-245575号公報
 いずれの駆動方式でも、電動ハンドの小型化を目指すと、モータサイズが制約される。小型のRCサーボモータは安価で入手が容易であるが、その出力に限界があり、十分な指関節トルクを得ることが難しい。電動ハンドを小型化する場合でも、ピンチ力の強さや自然な動きは従来どおり求められる。
 そこで、十分なピンチ力と自然な動きを有する小型のモータ駆動ハンドの提供を目的とする。
 上記課題を解決するために、モータ駆動ハンドは、
 掌部(51)と、
 関節回転軸(21)により前記掌部に対して回動可能に接続される指部(53)と、
 前記指部を駆動するモータ(11)と、
 一端が、前記モータの出力軸(13)に固定されたプーリ(17)のまわりに巻きつけられ、他端が前記指部の第1の作用点(19A)に接続された第1ワイヤ部と、
 一端が前記プーリのまわりに巻きつけられ、他端が前記指部の第2の作用点(19B)に接続された第2ワイヤ部と、
を有し、
 前記第1ワイヤ部は、前記モータが第1の方向に回転するときに、前記第1ワイヤ部と前記関節回転軸の間の距離が大きくなるように前記第1の作用点に接続され、
 前記第2ワイヤ部は、前記モータが前記第1の方向と反対の第2の方向に回転するときに張力が増大するように前記第2の作用点に接続されていることを特徴とする。
 上記構成により、十分なピンチ力と自然な動きを有する小型のモータ駆動ハンドが実現する。
第1実施形態のモータ駆動ハンドの概略図である。 第1実施形態の変形例を示す図である。 第2実施形態のモータ駆動ハンドの概略図である。 図3のモータ駆動ハンドで用いられるガイドコイルレバーの構成例である。 図3のモータ駆動ハンドの手が閉じた状態を示す図である。 第2実施形態の変形例を示す図である。 第3実施形態のモータ駆動ハンドの概略図である。 図7のモータ駆動ハンドで用いられる自動調進テンショナーの動作を説明する図である。 図7のモータ駆動ハンドで用いられる自動調進テンショナーの動作を説明する図である。 第4実施形態のモータ駆動ハンドの概略図である。 実施形態で用いられるモータ電流検知回路の一例を示す図である。 モータ電流検知によるフィードバック制御の例を示す図である。 実施形態のモータ駆動ハンドの倍力機構の効果を示す図である。 実施形態の構成のモータ駆動ハンドでMP関節を回転させるときの模式図である。 図14の角度θ3とピンチ力の関係を示す図である。 第5実施形態のモータ駆動ハンドの概略図である。 図16で用いられるチェーンホイールの概略図である。 プーリの変形例を示す図である。 プーリ回転時のワイヤの引っ張り方向を示す図である。
 実施形態では、モータ駆動ハンドにおいて、(1)小型の汎用モータで大きなトルクを得る倍力機構と、(2)モータ出力軸と駆動対象の回転軸の変速比を可変にする構成、を実現する。(1)の倍力機構により、十分なピンチ力を有する小型の電動ハンドが低コストで実現する。(2)の変速比可変構成により、より自然で安定した動きが可能になる。
 以下で、図面を参照して具体的な構成について説明する。
<第1実施形態>
 図1は、第1実施形態のモータ駆動ハンド1Aの概略図である。図1(A)はモータ駆動ハンドの掌を正面とした場合に親指側から見た側面図、図1(B)は図1(A)のA-A’断面図である。第1実施形態では、小型の汎用サーボモータとワイヤ巻き取り機構を用い、駆動対象の回転軸とワイヤとの間の距離を可変にしてトルクを増大し、モータ駆動ハンド1Aのピンチ力を向上する。また、詳細は後述するが、モータの出力軸と駆動対象の回転軸との変速比が可変になるので、たとえば、物をつかむためにモータ駆動ハンド1Aの手が閉じていくほど、動きを緩やかにすることができる。
 モータ駆動ハンド1Aは、親指52を駆動するモータ12と、人差指53を駆動するモータ11を有する。モータ11、12は、ともに小型の汎用RCサーボモータである。モータ11の駆動力は、ワイヤにより人差指53に伝達される。モータ12の駆動力は、モータ12の主軸に一端を固定されたポール(クランクアーム)18を介して親指52に伝達される。
 親指52と人差指53を含む5本の指部は、掌部51に接続されている。このうち、人差指53と図示しない中指、薬指、小指の4指は一体的に動くように、指の付け根にあたる中手指節(MP:Metacarpophalangeal)関節回転軸21により、掌部51に共通に接続されている。モータ駆動ハンド1Aの内部に、MP関節回転軸21と同軸のポテンショメータ23を配置して、MP関節回転軸21の回転角を検出する構成としてもよい。
 モータ11の出力軸13と同軸に軸受け14とプーリ17が配置され、プーリ17にワイヤAとワイヤBが巻きつけられている。プーリ17はモータ11の出力軸13に固定され、中心軸Cを中心に回転する。モータ11の回転に応じて、プーリ17に対してワイヤAとワイヤBの巻き取りと巻きほどきが行われる。ワイヤAとワイヤBがプーリ17から外れないように、ワイヤをガイドするためのシリンダハウジング15を設けてもよい。
 掌側に配置されたワイヤAの一端は、人差指53の作用点19Aに固定され、他端がプーリ17に時計回りに巻きつけられている。図1の特徴として、ワイヤAは、モータ駆動ハンド1Aが手を閉じて物をつかむ方向に動くにつれて、ワイヤAとMP関節回転軸21との間の距離Rが大きくなるように、作用点19Aに接続されている。図1の例では、作用点19Aは、人差指53の中腹に当たる第2関節53Pの近傍に設定されているが、モータ11からの力を人差指53に伝達して効果的に動かすことのできる適切な点を作用点19Aとして選択することができる。作用点19Aは、出力軸13の中心とMP関節回転軸21の中心を結ぶ直線に対し、掌側に位置することが望ましい。
 手の背面側(甲側)に配置されたワイヤBの一端は、人差指部53の第2関節53Pの甲側近傍の作用点19Bに固定され、他端がプーリ17に反時計回りに巻きつけられている。ワイヤBは、モータ駆動ハンド1Aが動作中に、モータ11の回転力を人差指53に効果的に伝え、かつワイヤBの張力が適切に維持されるように、作用点19Bに接続されている。作用点19Bは、出力軸13の中心とMP関節回転軸21の中心を結ぶ直線に対し、手の背面側に位置することが望ましい。
 ワイヤAとワイヤBは2本の独立したワイヤでも、1本のワイヤを空回りしないようにプーリ17に巻きつけ(図1(B)参照)、一端をワイヤA、他端をワイヤBとしても良い。すなわち、ワイヤの本数にかかわりなく、一端が作用点19Aに固定され他端がプーリ17に巻きつけられたワイヤAに相当する部分と、一端が作用点19Bに固定され他端がプーリ17に巻きつけられたワイヤBに相当する部分があれば良い。
 従来の巻き取り機構では、ワイヤA,Bの一端側をMP関節回転軸21に直接巻きつけることで、モータ11の回転をMP関節回転軸21に伝達していた。このような従来の巻き取り機構では、トルクを大きくするためにモータの出力レベルを上げざるを得ないが、小型の汎用RCサーボモータの出力には限界がある。
 これに対し図1の構成では、ワイヤAの一端側は、人差指53が閉じるに連れてワイヤAがMP関節回転軸21から掌方向に離れた位置を通るように、人差指53の作用点19Aに接続されている。図1(A)でモータ11の出力軸13が時計回りに回転すると、ワイヤAがプーリ17に巻き取られ、人差指53が図の下側に向かって引っ張られる。人差指53が閉じる動きに合わせて、作用点19Aも図の下方向に向かって移動する。その結果、ワイヤAがMP関節回転軸21から離れるためモーメントが増す。また、MP関節回転軸21の回転により、図示しない中指、薬指、小指が、人差し指53に連動して同じ方向に動く。このとき、ワイヤBはプーリ17から巻きほどかれる。
 モータ11の出力レベルが一定の場合、MP関節回転軸21の軸心からワイヤAまでの距離(モーメントアーム)Rが、モータ11の出力軸13の軸心からワイヤAまでの距離よりも大きければ、トルクは増大する。すなわち、小さい力で、より大きな作用を得ることができる。
 図1では、手が閉じられるにつれ作用点19Aが図の下方向に向かって移動し、ワイヤAがMP関節回転軸21から離れてモーメントアームRが大きくなる構成を採用しているので、従来構成と比較して、トルク、すなわちピンチ力を大きくできる。
 人差指53が親指52に近づくほど、MP関節回転軸21とワイヤAの距離Rが大きくなり、トルクが大きくなる。トルクは、親指52が人差し指53の先端に触れるときに最大になる。
 モータ11の出力は、トルクと角速度の積で表される。モータ出力が一定の場合、トルクが大きくなると、MP関節回転軸21の角速度は小さくなり、減速比が大きくなる。すなわち、人差指53がものを挟む方向に動いてピンチ力が大きくなるほど、人差指53の動く速度は緩やかになる。この動作は、より人間の手の動きに近く、小さなものや壊れやすいものを、慎重に且つ十分なピンチ力でつまむときに有利である。
 指を解放するときは、モータ11の出力軸13が反時計回りに回転する。ワイヤBがプーリ17に巻き取られ、人差指53は図の上側へ移動する。MP関節回転軸21も反時計回りに回転し、掌部51に共通に接続される4本の指が親指52から離れる方向に動く。このとき、ワイヤAはプーリ17から巻きほどかれるが、ワイヤAはMP関節回転軸21から離れた位置を通るので、MP関節回転軸21への絡みつきは生じない。
 なお、ポテンショメータ23で検知されたMP関節回転軸21の回転角に応じて、モータ11の回転をフィードバック制御してもよい。
 図1の構成は、小型の汎用モータを用いつつ、トルクを増大することができるので、子供用の小さなサイズの筋電義手でも十分なピンチ力を持たせることができる。また、汎用モータおよび簡易な機構を用いているため、義手の作製コストを大幅に低減することができる。また、ワイヤの絡みつきを抑制し、モータ11の出力軸13を1回転以上回転することができる。人差指53と図示しない中指、薬指、小指の4指を、MP関節回転軸21により掌部51に共通に接続した例を示したが、4指は、それぞれバラバラに動くように構成しても良い。その場合には、4指の各々に上記の機構を設ければ良い。
 図2は図1の変形例である。図2では、3本のワイヤA,B、Cと、バネ構造20を用いる。バネ構造20は、MP関節回転軸21が回転するときにワイヤの張力を吸収して抵抗を低減する。図2(B)に示すようにバネ構造20は、一対の座金(またはスプリングワッシャー)36及び37と、座金36と37の間に固定される圧縮バネ31を有する。
 ワイヤAは、図1と同様に、一端が人差指53の第2関節53P近傍の掌側の作用点19Aに接続され、他端がプーリ17(図1(B)参照)に時計回りに巻きつけられている。ワイヤBは、一端がプーリ17に反時計回りに巻きつけられ、他端がバネ構造20の座金37に固定される。ワイヤCは、一端がバネ構造20の座金36に接続され、他端が、人差指53の第2関節53P近傍の甲側の作用点19Bに固定される。ワイヤBとワイヤCが、圧縮バネ31に挿通され案内されることから、圧縮バネ31を「ガイドコイル」と呼んでもよい。ワイヤAとワイヤBは2本の独立したワイヤでも、1本のワイヤを空回りしないようにプーリ17に巻きつけ(図1(B)参照)、一端をワイヤA、他端をワイヤBとしても良いのは図1と同様である。すなわち、ワイヤの本数にかかわりなく、ワイヤAに相当する部分と、ワイヤBに相当する部分があれば良い。
 手を閉じる際に人差指53が図の下側に向かって曲がるほど、ワイヤAとMP関節回転軸21の間の距離R(モーメントアーム)が増大するのは、図1と同様である。図2の例では、ワイヤBとワイヤCをバネ構造20に接続することで、ワイヤBとCの長さを調節してテンションを維持する。これにより、ワイヤBの巻き取りと巻きほどきを円滑に行うことができる。また、バネ構造20を設けることにより、ワイヤに張力が発生しているときは圧縮バネ31が縮み、ワイヤの張力が解放されたときには圧縮バネ31が伸びるため、ワイヤの弛みを緩和でき、ワイヤのプーリ17への噛み込みを防止することができる。
 図2ではバネ構造20をワイヤB側に設けた例を示したが、バネ構造20はワイヤA側にあっても良く、またはワイヤB側とワイヤA側の両方にあっても良い。バネ構造20として圧縮バネと座金を用いた構造を示したが、引っ張りバネの両端にワイヤBおよびワイヤCを接続する構造でも良い。
<第2実施形態>
 図3は、第2実施形態のモータ駆動ハンド1Cの概略図である。図1と同じ構成要素には同じ符号を付けて、重複する説明を省略する。
 モータ駆動ハンド1Cは、ワイヤA、ワイヤB、及びワイヤCと、ガイドコイルレバー30を有する。ガイドコイルレバー30は、ワイヤAとワイヤCの長さを調節するとともに、ワイヤCとMP関節回転軸21との距離R、すなわちモーメントアームを調節する機能を有する。ガイドコイルレバー30により、トルク感応型の倍力機構が実現し、MP関節回転軸21の角速度をより効果的に変化させることができる。
 ガイドコイルレバー30は、掌部51に固定され、ワイヤAとワイヤCが、ガイドコイルレバー30の圧縮バネ31の内部に案内されている。ワイヤAの一端は、圧縮バネ31内を挿通してバネ構造20の座金37(図4参照)に固定され、他端はプーリ17(図1(B)参照)に時計回りに巻きつけられている。ワイヤCの一端は、圧縮バネ31内を挿通してバネ構造20の座金36(図4参照)に接続され、他端は人差指53の作用点19Aに接続されている。第1実施形態と同様に、ワイヤCは、MP関節回転軸21から離れた位置を通るように、作用点19Aに接続されている。ワイヤBの一端は、人差指53の第2関節53Pの近傍の甲側の作用点19Bに固定され、他端はプーリ17に反時計回りに巻きつけられている。ワイヤAとワイヤBは2本の独立したワイヤでも、1本のワイヤを空回りしないようにプーリ17に巻きつけ(図1(B)参照)、一端をワイヤA、他端をワイヤBとしても良い。すなわち、ワイヤの本数にかかわりなく、ワイヤAに相当する部分と、ワイヤBに相当する部分があれば良い。
 図4は、ガイドコイルレバー30の構成例を示す。ガイドコイルレバー30は、バネ構造20と、バネ構造20に接続されるクロスリンク35と、クロスリンク35を支持するベース38を有する。ガイドコイルレバー30は、ベース38で掌部51に固定される。
 バネ構造20は、図2(B)と同様に、一対の座金36、37と、両端が座金36、37に固定された圧縮バネ31を有する。クロスリンク35の一方のリンク35aの一端は座金36に固定され、他端はベース38の溝39の中にスライド可能に保持されている。もう一方のリンク35bの一端は座金37に固定され、他端はベース38の溝39の中にスライド可能に保持されている。
 モータ11が時計回りの方向に回転して人差指53がものをつかむ方向に動くと、ワイヤAはモータ11側に引っ張られてプーリ17に巻きとられる。ワイヤAがプーリ17に巻きとられても、ワイヤCの長さは不変であるため、互いに引っ張り合うワイヤAとワイヤCの張力によって圧縮バネ31が収縮する。圧縮バネ31の収縮につれて、リンク35aとリンク35bの先端は、溝39内で互いに近づく方向にスライドし、ベース38とリンク35a(またはリンク35b)が成す角度θが初期角度θから徐々に大きくなる。それによって、ワイヤCは、MP関節回転軸21からさらに離れ、モーメントアームRが増大する。
 図5は、モータ駆動ハンド1Cで手が閉じた状態を示す。人差指53が親指52に最も近づいた図5の状態で、トルクは最大になり、ピンチ力が最大になる。このとき、ガイドコイルレバー30のベース38とリンク35a(またはリンク35b)の成す角度は、最大角θとなり、クロスリンク35の高さが最も高くなる。ワイヤCはMP関節回転軸21から最も遠くなり、モーメントアームRは最大になる。ワイヤBはプーリ17(またはモータ11の出力軸13)から巻きほどかれる方向に引っ張られている。
 モータ11が反時計回りに回転して手を開く方向に動くと、ワイヤCの張力が低減するとともに、ワイヤAがプーリ17から巻きほどかれる。ガイドコイルレバー30の圧縮バネ31は元の長さに伸長し、リンク35aとリンク35bは溝39内で互いに離れる方向にスライドする。ベース38とリンク35a(またはリンク35b)が成す角度は、元の初期角度θ(図4参照)に戻り、モータ駆動ハンド1Cは図3の状態に戻る。ワイヤBはプーリ17に巻き取られて張力が増す。
 第2実施形態の構成では、第1実施形態よりも効果的にモーメントアームを大きくしてトルクを増大することができ、効率的に変速比を可変にすることができる。なお、ガイドコイルレバー30のクロスリンク35に替えて、パンタグラフ、ベローズなど伸び縮み可能な任意の部材を用いてもよい。
 図6は、第2実施形態の変形例として、モータ駆動ハンド1Dを示す。図6(A)は、手が開いた状態、図6(B)は手が閉じた状態である。
 モータ駆動ハンド1Dは、ベース38に共通に支持される2つのガイドコイルレバー30A、及び30Bを有する。ガイドコイルレバー30Aとガイドコイルレバー30Bの構成は同じであり、図3~図5を参照して説明したとおりである。
 図6に示す変形例では、ワイヤA~Cに加えて、ワイヤDが用いられる。ワイヤBの一端はプーリ17またはモータ11の出力軸13に反時計回りに巻きつけられ、他端が、ガイドコイルレバー30Bの人差指53側の端部(座金)に固定される。ワイヤDの一端は、ガイドコイルレバー30Bのモータ11側の端部(座金)に固定され、他端が、人差指53の作用点19Bに接続される。ワイヤBとワイヤDは、ともに圧縮バネ31に挿通され案内されている。
 図6(A)の手が開いた状態では、ガイドコイルレバー30Aが畳まれた状態で最も高さが低くなっている。ガイドコイルレバー30Bは、ワイヤDとワイヤBの張力により、クロスリンク35Bが少し立ち上り、モーメントアームR’が大きくなっている。
 図6(B)の手が閉じた状態では、ワイヤAとワイヤCの張力によりガイドコイルレバー30Aの圧縮バネ31が縮んで、クロスリンク35Aが立ち上がる。ワイヤBは巻きほどかれて張力が減少し、ガイドコイルレバー30Bのクロスリンク35Bは最も低い位置に折りたたまれ、モーメントアームR’が小さくなっている。
 図6の構成により、人差指53の両方の側でワイヤの長さが調整されるとともに、指の開閉の両方の動作において、より効果的な変速比可変の倍力機構が実現される。
<第3実施形態>
 図7は、第3実施形態のモータ駆動ハンド1Eの概略図である。図7(A)はモータ駆動ハンドの掌を正面とした場合に親指側から見た側面図、図7(B)は、図7(A)のA-A’ラインでの断面図である。第3実施形態では、自動調心テンショナー40を用いて、手の開閉動作の開始時のすばやい動きと、ワイヤ張力の安定を実現する。第1実施形態と同じ構成要素には同じ符号をつけて、重複する説明を省略する。
 自動調心テンショナー40は、ハウジング45と、一端側がハウジング45に固定されたガイドコイル41及びガイドコイル42を有する。ハウジング45は、モータ11の出力軸13を取り囲み、摩擦可能な状態でプーリ17に接触している。
 ガイドコイル41,42は圧縮バネから成り、ワイヤAはガイドコイル41に挿通されて、その一端がプーリ17に時計回りに巻きつけられ、他端は、人差指53の作用点19Aに接続されている。ワイヤBはガイドコイル42に挿通されて、その一端がプーリ17に反時計回りに巻きつけられ、他端は人差指53の作用点19Bに接続されている。ワイヤAとワイヤBは2本の独立したワイヤでも、1本のワイヤを空回りしないようにプーリ17に巻きつけ(図1(B)参照)、一端をワイヤA、他端をワイヤBとしても良い。すなわち、ワイヤの本数にかかわりなく、ワイヤAに相当する部分と、ワイヤBに相当する部分があれば良い。プーリ17は、モータ11の出力軸13に固定されており、モータ11の回転力は、プーリ17からワイヤAとワイヤBを介して、人差指の作用点19A、19Bに伝達される。
 ガイドコイル41は、人差指53の作用点19Aからプーリ17に引いた接線と、ハウジング45の外周との交点またはその近傍を起始点として固定される。ガイドコイル42は、人差指53の作用点19Bからプーリ17に引いた接線と、ハウジング45の外周との交点またはその近傍を起始点として固定される。ガイドコイル41とガイドコイル42が延びる方向は、ハウジング45の回転面と平行な面内にある。
 自動調心テンショナー40は、ハウジング45とプーリ17との間の摩擦力を利用して、ワイヤA及びワイヤBの法線方向に作用力を発生されることで、減速比を小さくするとともに、ワイヤA,Bの牽引を安定化させる。ただし、ワイヤAとワイヤBの長手方向に対しては力をほとんど発生させず、人差指53を含む4指の動作は制限されない。
 図8及び図9は、自動調心テンショナー40の動作を説明する図である。図8(A)は初期状態を示す。この状態では、モータ11は回転していない。
 図8(B)で、モータ11が回転して握る動作が開始されると、ワイヤA、ワイヤBのテンションはまだ小さく(負荷がほとんどかかっていない)、プーリ17と共にハウジング45が回転する。このとき、ガイドコイル41,42はほとんど変形せずにモータ11の動力をワイヤAの法線方向に伝達する。更にモータ11が回転すると、ワイヤAの法線方向の力によってワイヤAのテンションが大きくなり、牽引力が増加する。ハウジング45は、プーリ17との間の静止摩擦力により、モータ11の出力軸13とともに時計回りに回転する。この状態では、ワイヤAにとって、回転半径rはプーリ17の半径よりも大きいため、減速比はかなり小さい。このとき、回転半径rが大きくワイヤAの巻き取り速度が速いため、ワイヤAに弛みがあっても、プーリ17に噛み込むことなく速やかに弛みを除去することができる。
 図8(C)で、握る動作の進行中、ワイヤAとガイドコイル41の相互作用、及びワイヤBとガイドコイル42の相互作用により、ガイドコイル41、42が屈曲し、ワイヤAにとっての回転半径が小さくなる。換言すると、モータ11の出力軸13からみたときのモーメントアームが徐々に減少し、減速比が徐々に大きくなる。ハウジング45は、モータ11の回転が静止摩擦力に打ち勝つ直前まで、プーリ17と共に時計回り方向に回転する。
 図9(A)で、握る動作の終盤で、ワイヤAのテンションはさらに大きくなる。すると、モータ11の回転がハウジング45とプーリ17との間の静止摩擦力に打ち勝って、ハウジング45とプーリ17が空回りし、ハウジング45は元の位置に戻る。この状態では、ワイヤAにとっての回転半径はプーリ17の半径となる。また、テンションのかからないワイヤBに弛みが生じる。
 図9(B)で、開く動作が開始されると、ワイヤBのテンションが小さく、ハウジング45はプーリ17と共に、反時計回りに回転する。この状態では、ワイヤBにとっての回転半径rが大きく、ワイヤBの巻き取り速度が速いため、ワイヤBの弛みは素早く吸収される。
 ハウジング45がモータ11の回転に連動するか否かは、プーリ17との間の摩擦力とワイヤA及びワイヤBにかかるテンションの大小関係によって決まる。すなわち、ハウジング45は、モータ11の回転方向に応じて、一定の角度範囲で時計回り方向と反時計回り方向に回動する。
 第1実施形態と第2実施形態では、物をつかむ直前の状態、すなわち図9(A)に対応する状態で、トルクを最大にしてピンチ力を大きくするとともに、減速比を大きくして、4指の動きを緩やかに制御した。
 これに対し、第3実施形態では、物をつかむ位置に近づくまでの間は、図8(C)に対応する状態で、減速比を小さくして、目的物に対する素早い動きを実現する。これにより、より自然な動作が実現できる。
<第4実施形態>
 図10は、第4実施形態のモータ駆動ハンド1Fの概略図である。第4実施形態では、第2実施形態のガイドコイルレバー30A、30Bと、第3実施形態の自動調心テンショナー40を組み合わせて用いる。
 図10(A)は手が開いた状態、図10(B)は手が閉じた状態を示す。握る動作が開始されて目的物に近づく間、すなわち比較的弱いトルクで動作する際には、自動調心テンショナー40が効果的に働いて、迅速な動きを実現する。同時に、ガイドコイルレバー30A、30Bの圧縮バネ31により、ワイヤAとワイヤBの長さを調整し、ワイヤAとワイヤBの絡みを防止する。
 図10(B)のように、目的物をつまむ直前で十分な回転トルクが必要になる場合は、ガイドコイルレバー30A、30BのMP関節回転軸21に対するモーメントアームを大きくするとともに、4指の移動速度を緩和して慎重な動きにする。
 この構成により、十分なピンチ力と自然な動作を有するモータ駆動ハンド1Fが実現する。なお、ガイドコイルレバー30Bを省略した場合でも、同様の効果を奏することができる。
 第4実施形態では、第2実施形態と第3実施形態を組み合わせた例を一例として示したが、第1~第3実施形態が任意に組み合わせ可能であることは言うまでもない。
<過負荷の防止>
 図11は、過負荷を防止する制御構成の一例を示す。モータ駆動ハンド1Fに、モータ電流検知回路60が接続される。モータ電流検知回路60は、モータコントローラ61と、電流センサ62を含む。MP関節回転軸21の回転角はポテンショメータ23で検出され、検出結果がモータコントローラ61に供給される。モータコントローラ61は、検出された回転角に基づいて、MP関節回転軸21の回転角が所定値を超えないように、モータ11を制御する。また、モータ11に電流センサ62を接続し、電流検知結果に基づいて、モータ11の電流値が一定値を超えないようにモータ11を制御してもよい。
 図12は、モータコントローラ61による過負荷防止の制御例を示す。横軸は時間、縦軸はモータ11に流れる電流である。動作開始の区間Aでは、電流値はゼロから急激に立ち上がって、人差指53が親指52に向かって動き始める。
 動作が開始されて目的物に近づく区間Bで、前半部分は電流出力は一定にされる。目的物のサイズは未知なので、モータ11は、4指と親指が接触するまでの指令値を目指して動く。この段階のトルクはそれほど大きくなくてもよい。自動調心テンショナー40を用いる実施形態では、この区間の4指の動きが迅速化される。
 その後、人差指53が目的物の近傍に近づくと、電流値は緩やかに上昇する。実施形態では、このときMP関節回転軸21に対するモーメントアームが大きくなっており、十分なピンチ力が確保されているが、電流制御を組み合わせて、より正確なピンチ動作を実現してもよい。この区間の4指の動きは緩やかになっており、目的物を慎重につかむ動作に移行する。
 目的物をつかんでいる区間Cでは、電流値が一定値を超えないように制御する。モータ11に過度の負荷がかかるのを防止し、一定の力で目的物を保持する。
 なお、モータ11の電流を検知する制御に替えて、ガイドコイルレバー30の圧縮バネ31の長さの変化を検知して、制御してもよい。
 図13は、実施形態のモータ駆動ハンドの倍力機構の効果を、従来構成と比較して示す図である。図13(A)は第1実施形態1の構成でのピンチ力を示し、図13(B)は、従来の直動型駆動方式でのピンチ力を示す。同じ汎用RCサーボモータを用い、サーボモータの最大出力の電流値で、ピンチメータを用いて測定した。測定結果から、実施形態1の構成で、直動型駆動方式の2倍以上のピンチ力が実現できることがわかる。
 実施形態2の構成は、実施形態1よりもさらに効果的にモーメントアームを増大させることができるので、同じ条件でピンチ力をさらに増大できると予測される。また、ガイドコイルレバー30と自動調心テンショナー40の少なくとも一方を用いることで、モータ駆動ハンドにおいてより自然な動きが実現する。
 図14は、第1実施形態の構成のモータ駆動ハンドの倍力機構のメカニズムを説明する図である。図14で、O点がモータ11の出力軸13の回転中心、C点が作用点19A、M点がMP関節回転軸21の回転中心である。T点は、人差指52の先端であり、モータ11の回転によってT点にピンチ力が発生する。Yは垂直ベースラインであり、θ3は、MOラインと垂直ベースラインYがなす角度である。θ3が小さくなるにつれてM点とワイヤの間の法線距離が大きくなり、モーメントアーム長が長くなる。これは、人差指53が親指52に近づく方向に移動する場合に相当する。θ3が大きくなる場合は、M点とワイヤの間の法線距離が小さくなりモーメントアーム長が短くなる。これは、人差指53が親指52から離れる方向に移動する場合に相当する。
 図15は、θ3の関数としてピンチ力をプロットしたものである。横軸が角度θ3、縦軸がピンチ力の大きさである。このシミュレーションでは、モータの駆動電圧を5V、MC間の距離を26mm、MT間の距離を70mmとして計算している。θ3とピンチ力は相関し、θ3の値が小さくなると、モーメントアーム長が大きくなってピンチ力が増大する。図15から、角度θ3がモータ駆動ハンドの最大ピンチ力に影響を与える機械要素の一つであることが確認される。また、モータ駆動ハンドでθ3を少なくとも70°~110°の範囲に設定することができる。
<第5実施形態>
 図16は、第5実施形態のモータ駆動ハンド1Gの概略図である。第5実施形態では、で、第1~第4実施形態のトルク増大動作、または倍力機構の動作をより安定化させる。第1~第4実施形態では、バネ構造20、ガイドコイルレバー30(30A及び/または30B)、及び自動調心テンショナー40の少なくともひとつを用いることで、効果的にMP関節回転軸21の角速度を変化させている。しかし経年的変化により、ワイヤA、B、C、Dの少なくとも一部が劣化して、撓みやすべりが発生する場合があり得る。そこで、ワイヤA~Dの少なくとも一部にボールチェーン65を用いる。ボールチェーン65は、ステンレス、アルミニウム、カーボン、ジェラルミン等の軽くで丈夫な材料で形成されている。ボールチェーン65の各ボールの径は、モータ駆動ハンド1Gのサイズや必要とされる特性に応じて適宜選択することができる。
 一例として、ボール径が2.0~2.5mmのステンレスのボールチェーン65を用いる。ボールチェーン65の一端側を、モータ駆動ハンド1Gの人差指53の作用点19Aに固定し、他端を人差指53の作用点19Aと反対側の作用点19Bに固定する。
 モータ11がボールチェーン65を確実に引っ張って人差指を含む4指を回転できるように、モータ11の出力軸13と嵌合するプーリにチェーンホイール80を用いる。
 図17は、チェーンホイール80の構成例を示す。図17(A)はチェーンホイール80の外観図、図17(B)はチェーンホイール80に形成されたギヤ形状を示す。チェーンホイール80は、ボールチェーン65のサイズと特性に適した設計となっている。たとえば、入力電圧が5Vのときのモータ11のダイナミックトルクτを529N・mmとする。作用点19Aに固定されたボールチェーン65を引っ張る力の大きさをF、引っ張り力Fの作用線への法線の長さ(モーメントアーム)をrとすると、ダイナミックトルクτは、
   τ=r×F×sin90°
と表される。一定のモータ駆動電圧で、ボールチェーン65を引っ張る力を大きくするには、MP関節回転軸21の中心からボールチェーン65への法線の長さrを小さくする。ボールチェーン65のボール径を2.3mmとすると、モータ11の出力軸13の径、モータ駆動ハンド1Gのサイズ(MP関節回転軸21から人差指53の先端までの距離を含む)、作用点19Aの位置、等の条件から、モーメントアームrの最小値は5.2mm程度になる。すなわち、引っ張り力Fの最大値は101.7Nとなる。ボールチェーン65の降伏強度を51N~59Nとすると、図17(A)に示すように、チェーンホイール80のプーリ82に穴81を2段階に形成して、ボールチェーン65を二重にして用いるのが望ましい。これにより引っ張り力Fを分散させてボールチェーン65の破断を防止することができる。
 ボールチェーン65の降伏強度が引っ張り力Fの最大値以上のときは、チェーンホイール80の外周に形成される穴81を一段にしてもよい。逆に、ボールチェーン65の降伏強度が引っ張り力Fと比較して小さいときは、プーリ82に3段(3重)以上の穴81を設けてもよい。
 チェーンホイール80の穴81の径は、用いるボールチェーン65のボール径に応じて設定されている。図17の例では、たとえば直径が10mm程度のプーリ本体62の外周に沿って、一段当たり12個の穴81が形成されている。穴81の断面形状は、半円形(半球溝)、V字型(円錐溝)、U字型(円筒溝と半球溝の組み合わせ)等、任意の形状をとり得る。ボールチェーン65の各ボールをプーリ82の穴81に噛み合わせることで、すべりや撓みを低減して、モータ駆動ハンド1Gの動作を安定化することができる。
 図17の設計諸元は一例にすぎず、モータ駆動ハンド1Gの装着者の年齢、体型等に応じて適宜変更することができる。図16及び図17の構成に、ガイドコイルレバー30と自動調心テンショナー40の少なくとも一方を組み合わせてもよい。上述したように、人間の指は抵抗が小さいときに素早く動き、抵抗が大きいときに大きな力を生成する。ガイドコイルレバー30を用いることで、MP関節回転軸21とボールチェーン65の間のモーメントアーム長を調整して、より人間の指に近い動作を可能にする。また、自動調心テンショナー40を用いることで、ものをつかむ動作と、ものを離す動作を行う際に、チェーンホイール80とボールチェーン65の撓みを素早く吸収することができる。
<プーリの変形例>
 図18及び図19は、第1実施形態~第5実施形態で用いられるプーリの変形例を示す図である。プーリ70は、互いに径の異なる第1シリンダ71と第2シリンダ72を有する。一端が作用点19A(図1等参照)に固定されているワイヤAの他端は、径の小さい第1シリンダ71に固定されて巻きつけられる。一端が作用点19B(図1等参照)に固定されているワイヤBの他端は、径の大きい第2シリンダ72に固定され巻きつけられる。ワイヤAとワイヤBの巻きつけ方向は互いに逆向きである。
 径の小さい第1シリンダ71は第2シリンダ72と比較して単位時間あたりの巻き取り量が少なく、モータ駆動ハンドの人差指53をゆっくりと動かす。第2シリンダ72は、第1シリンダよりも単位時間当たりの巻き取り量が多く、モータ駆動ハンドの人差指53を速く動かす。
 図18及び図19に示すように、プーリ70が出力軸13とともに矢印Rの方向に回転すると、ワイヤAが矢印Aの方向に巻きとられ、人差指53が親指52に近づく方向に動く。このとき、ワイヤBは矢印Bの方向に巻きほどかれる。人差指53が親指52に近づくにつれてMP関節回転軸21から力の作用線への法線の長さR(図1参照)、またはモーメントアームが大きくなり、第1シリンダ71の回転が支配的になる。これにより人差指53の動きはゆっくりになる。人差指53が親指52から離れる場合は、プーリ70は矢印Rと反対方向に回転する。モーメントアームが小さくなると指の動きが速くなり、第2シリンダ72の回転が支配的になる。
 図18及び図19に示すプーリ70を、バネ構造20、ガイドコイルレバー30、自動調心テンショナー40の少なくともひとつと組み合わせてもよい。バネ構造20を用いることでワイヤの撓みを緩和することができる。ガイドコイルレバー30を用いることで、モーメントアームの大きさを効果的に変えることができる。自動調心テンショナー40と組み合わせることで、ワイヤの弛みを吸収して張力を適正に維持することができる。さらに、第1シリンダ71と第2シリンダ72のそれぞれに第5実施形態のような穴81を形成し、ワイヤAとワイヤBの少なくとも一方に、ボールチェーン61を用いてもよい。これによりモータ駆動ハンドの開閉動作がより安定する。
 実施形態で述べたモータ駆動ハンド1A~1G、及びこれらの任意の組み合わせは、筋電義手やロボットハンドに適用され、特に子供用の筋電義手や小型ロボットハンドへの適用が期待される。
 この出願は、2015年8月24日に日本国特許庁に出願された特許出願第2015-165296号に基づき、その全内容を含むものである。
1A~1G モータ駆動ハンド
11、12 モータ
13 出力軸
14 軸受け
17、70 プーリ
19A、19B 作用点
21 MP関節回転軸
30 ガイドコイルレバー(ワイヤ調整部)
31 圧縮バネ
36、37 座金
35 クロスリンク(伸縮部材)
40 自動調心テンショナー
41、42 ガイドコイル
45 ハウジング
51 掌部
52 親指(指部)
53 人差指(指部)
65 ボールチェーン
71 第1シリンダ
72 第2シリンダ
80 チェーンホイール
81 穴
82 プーリ本体

Claims (10)

  1.  掌部と、
     関節回転軸により前記掌部に対して回動可能に接続される指部と、
     前記指部を駆動するモータと、
     一端が、前記モータの出力軸に固定されたプーリのまわりに巻きつけられ、他端が前記指部の第1の作用点に接続された第1ワイヤ部と、
     一端が前記プーリのまわりに巻きつけられ、他端が前記指部の第2の作用点に接続された第2ワイヤ部と、
    を有し、
     前記第1ワイヤ部は、前記モータが第1の方向に回転するときに、前記第1ワイヤ部と前記関節回転軸の間の距離が大きくなるように前記第1の作用点に接続され、
     前記第2ワイヤ部は、前記モータが前記第1の方向と反対の第2の方向に回転するときに張力が増大するように前記第2の作用点に接続されていることを特徴とするモータ駆動ハンド。
  2.  前記プーリと前記第1の作用点の間、または、前記プーリと前記第2の作用点の間の少なくとも何れか一方に、ワイヤの弛みを緩和するためのバネ構造を有する、
    ことを特徴とする請求項1に記載のモータ駆動ハンド。
  3.  前記プーリと前記第1の作用点の間に配置される倍力機構
    をさらに有し、
     前記第1ワイヤ部は、一端が前記プーリのまわりに巻きつけられ他端が前記倍力機構の一方の端部に接続される第1部分と、一端が前記倍力機構の他方の端部に接続され他端が前記第1の作用点に接続される第2部分とを有する、
    ことを特徴とする請求項1に記載のモータ駆動ハンド。
  4.  前記倍力機構は、
     前記第1ワイヤ部を案内する圧縮バネと、
     前記圧縮バネの両端に接続される伸縮部材と、
     前記掌部に固定されて前記伸縮部材を支持するベースと、
    を有し、
     前記モータの回転による前記指部の動きに応じて前記伸縮部材の高さが変化し、前記第1ワイヤ部と前記関節回転軸との間の距離を変化させることを特徴とする請求項3に記載のモータ駆動ハンド。
  5.  前記伸縮部材は、クロスリンクまたはパンタグラフであり、
     前記クロスリンクまたはパンタグラフは、前記ベースに形成された溝内をスライド可能に支持されることを特徴とする請求項4に記載のモータ駆動ハンド。
  6.  前記プーリに対して回転可能に設置されて、第1ガイドコイルと第2ガイドコイルを有する調心テンショナー、
    をさらに有し、
     前記第1ワイヤ部は、前記第1ガイドコイルに案内されて前記プーリのまわりに巻きつけられ、前記第2ワイヤ部は、前記第2ガイドコイルに案内されて前記プーリのまわりに巻きつけられていることを特徴とする請求項1~5の何れか1つに記載のモータ駆動ハンド。
  7.  前記調心テンショナーは、前記プーリと同軸に配置されるハウジングを有し、
     前記第1ガイドコイルの一端と、前記第2ガイドコイルの一端は、それぞれ前記ハウジングに固定され、
     前記ハウジングは、所定の摩擦力によって前記プーリの回転に追従するように設置され、前記摩擦力よりも大きな力が働くと前記プーリに対して空回り可能である
    ことを特徴とする請求項6に記載のモータ駆動ハンド。
  8.  前記第1ワイヤ部と前記第2ワイヤ部の少なくとも一部はボールチェーンであり、
     前記プーリは外周に前記ボールチェーンのボール径に応じたサイズの穴が形成され、
     前記ボールチェーンは前記穴と係合することを特徴とする請求項1に記載のモータ駆動ハンド。
  9.  前記プーリは第1の径を有する第1シリンダと、前記第1の径よりも大きい第2の径を有する第2シリンダとを有し、
     前記第1ワイヤ部は前記第1シリンダに巻かれ、前記第2ワイヤ部は前記第2シリンダに巻かれることを特徴とする請求項1~8のいずれか1項に記載のモータ駆動ハンド。
  10.  前記第1ワイヤ部と前記第2ワイヤ部の巻き方向は互いに逆方向であることを特徴とする請求項9に記載のモータ駆動ハンド。
     
     
PCT/JP2016/074365 2015-08-24 2016-08-22 モータ駆動ハンド WO2017033885A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017536417A JPWO2017033885A1 (ja) 2015-08-24 2016-08-22 モータ駆動ハンド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165296 2015-08-24
JP2015-165296 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017033885A1 true WO2017033885A1 (ja) 2017-03-02

Family

ID=58101176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074365 WO2017033885A1 (ja) 2015-08-24 2016-08-22 モータ駆動ハンド

Country Status (2)

Country Link
JP (1) JPWO2017033885A1 (ja)
WO (1) WO2017033885A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799099A (zh) * 2021-09-10 2021-12-17 迈宝智能科技(苏州)有限公司 驱动组件、有源外骨骼运动模组及有源外骨骼机器人
CN114193493A (zh) * 2021-11-15 2022-03-18 国家电网有限公司 绝缘杆构成的无线控制电动机械爪系统
CN117257448A (zh) * 2023-09-20 2023-12-22 北京航空航天大学 一种牵拉结构及柔性手术机器人
WO2024171670A1 (ja) * 2023-02-16 2024-08-22 株式会社椿本チエイン チェーン
JP7577638B2 (ja) 2021-10-22 2024-11-05 本田技研工業株式会社 駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267987A (ja) * 1998-03-23 1999-10-05 Mitsubishi Heavy Ind Ltd 関節機構
JP2007319954A (ja) * 2006-05-30 2007-12-13 Merry B:Kk 可動軸駆動装置およびロボット装置
JP2012106311A (ja) * 2010-11-17 2012-06-07 Canon Inc 関節駆動機構
JP2015136526A (ja) * 2014-01-23 2015-07-30 オリンパス株式会社 術具及び医療用マニピュレータシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267987A (ja) * 1998-03-23 1999-10-05 Mitsubishi Heavy Ind Ltd 関節機構
JP2007319954A (ja) * 2006-05-30 2007-12-13 Merry B:Kk 可動軸駆動装置およびロボット装置
JP2012106311A (ja) * 2010-11-17 2012-06-07 Canon Inc 関節駆動機構
JP2015136526A (ja) * 2014-01-23 2015-07-30 オリンパス株式会社 術具及び医療用マニピュレータシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799099A (zh) * 2021-09-10 2021-12-17 迈宝智能科技(苏州)有限公司 驱动组件、有源外骨骼运动模组及有源外骨骼机器人
JP7577638B2 (ja) 2021-10-22 2024-11-05 本田技研工業株式会社 駆動装置
CN114193493A (zh) * 2021-11-15 2022-03-18 国家电网有限公司 绝缘杆构成的无线控制电动机械爪系统
CN114193493B (zh) * 2021-11-15 2024-04-02 国家电网有限公司 绝缘杆构成的无线控制电动机械爪系统
WO2024171670A1 (ja) * 2023-02-16 2024-08-22 株式会社椿本チエイン チェーン
CN117257448A (zh) * 2023-09-20 2023-12-22 北京航空航天大学 一种牵拉结构及柔性手术机器人

Also Published As

Publication number Publication date
JPWO2017033885A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017033885A1 (ja) モータ駆動ハンド
JP5590355B2 (ja) ロボットハンド及びロボット装置
US4843921A (en) Twisted cord actuator
US9931229B2 (en) Gripping device with switchable prehension modes
US9016744B2 (en) Mechanical capstan amplifier
CN111390892B (zh) 一种基于气动肌肉的全驱动仿生灵巧手
CN105358100A (zh) 人造手指
US10682756B1 (en) Driving assembly and robotic hand having the same
JP2011152620A (ja) ロボットアーム駆動装置
KR101843530B1 (ko) 줄 꼬임 장치
KR101261986B1 (ko) 듀얼 모드 줄꼬임 액츄에이터
WO2015063524A1 (en) Twisted cord actuating system for robotic arm
JP5437444B2 (ja) アクチュエータ装置およびこれを用いるロボット装置
JP2011131305A (ja) 人工筋肉及び柔軟関節機構
JPWO2018193500A1 (ja) 動力伝達機構および処置具
JP4247396B2 (ja) ロボットハンド
WO2021049350A1 (ja) 術具、手術支援システム、並びに手術用操作ユニット
JP4512194B2 (ja) ロボットアーム
US11628577B2 (en) Robot hand
WO2018037785A1 (ja) 力伝達装置及び動作補助装置
CN109381326B (zh) 手指康复训练装置
US20250120873A1 (en) Unidirectional actuator with customizable nonlinear series elasticity
JP2018155294A (ja) ロボットの駆動装置及び動作補助装置
CN211729166U (zh) 一种基于气动肌肉的全驱动仿生灵巧手
CN219337728U (zh) 一种机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839232

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载