+

WO2017018185A1 - Information processing device and method, and program - Google Patents

Information processing device and method, and program Download PDF

Info

Publication number
WO2017018185A1
WO2017018185A1 PCT/JP2016/070429 JP2016070429W WO2017018185A1 WO 2017018185 A1 WO2017018185 A1 WO 2017018185A1 JP 2016070429 W JP2016070429 W JP 2016070429W WO 2017018185 A1 WO2017018185 A1 WO 2017018185A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
information
signal
information processing
Prior art date
Application number
PCT/JP2016/070429
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 米山
小林 誠司
宏幸 三田
真一 北園
彰人 関谷
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017531121A priority Critical patent/JP7042617B2/en
Publication of WO2017018185A1 publication Critical patent/WO2017018185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present technology relates to an information processing apparatus and method, and a program, and more particularly, to an information processing apparatus and method that can suppress an increase in power consumption, and a program.
  • an antenna for communication is installed together with an antenna for receiving broadcast signals on the roof of a house, etc., and transmission of transmission signals and reception signals between the communication antenna and indoor communication devices is performed for receiving broadcast signals.
  • a method of using a coaxial cable for transmitting a broadcast signal received by the antenna of the antenna to an indoor TV receiver or the like see, for example, Patent Document 1).
  • This technology has been proposed in view of such a situation, and aims to suppress an increase in power consumption.
  • An information processing apparatus is an information processing apparatus including a control unit that controls supply of the power to the reception unit so that power is supplied when the reception unit that receives a radio signal is driven.
  • the control unit can control supply of the extracted power supplied to the reception unit by being superimposed on the broadcast wave signal via a coaxial cable that transmits the broadcast wave signal received by the antenna. .
  • the control unit starts supplying the power to the receiving unit, causes the receiving unit to receive the radio signal, stores information obtained from the received radio signal in a storage unit, and When the notification that it is stored in the storage unit is acquired, the supply of the power to the receiving unit can be terminated.
  • the receiving unit may be further provided.
  • the control unit can control the supply of the electric power supplied, extracted, and stored in the power storage unit to the reception unit while being superimposed on the signal via the coaxial cable.
  • the control unit can prohibit the supply of the power to the receiving unit when the amount of power stored in the power storage unit is less than a predetermined threshold.
  • the control unit can further control power storage in the power storage unit of the extracted power supplied and superimposed on the signal via the coaxial cable.
  • the control unit can prohibit the storage of the electric power in the power storage unit when the power storage amount of the power storage unit is larger than a predetermined threshold.
  • the control unit can cause the power storage unit to store the electric power in a predetermined time period.
  • the power storage unit can be further provided.
  • the control unit can further control the supply of power to the transmission unit so that power is supplied when the transmission unit that transmits a radio signal is driven.
  • the control unit starts supplying the power to the transmission unit, causes the transmission unit to generate transmission information, causes the generated transmission information to be transmitted as the radio signal, and transmits the radio signal.
  • the notification is acquired, the supply of the power to the transmission unit can be terminated.
  • the transmitter can be further provided.
  • the control unit can further control the supply of power to the communication unit such that power is supplied when a communication unit that communicates with another communication device is driven.
  • the control unit starts supplying the power to the communication unit, and causes the communication unit to read the information from a storage unit that stores information obtained from the radio signal received by the reception unit.
  • the supply of the power to the communication unit is terminated when the read information is supplied to the other communication device by the communication and a notification that the information has been supplied to the other communication device is acquired. Can do.
  • the communication unit can be further provided.
  • the storage unit may be further provided.
  • the receiving unit can receive the wireless signal in a frequency band including 925 MHz.
  • the information processing method of the present technology is an information processing method for controlling the supply of power to the reception unit so that the information processing apparatus supplies power when the reception unit that receives a radio signal is driven.
  • the program of the present technology is a program for causing a computer to function as a control unit that controls supply of the power to the reception unit so that power is supplied when the reception unit that receives a radio signal is driven. .
  • the supply of the power to the receiving unit is controlled so that the power is supplied when the receiving unit that receives the radio signal is driven.
  • This technology can process information. Moreover, according to this technique, the increase in power consumption can be suppressed.
  • FIG. 20 is a block diagram illustrating a main configuration example of a computer.
  • First embodiment position notification system
  • Second embodiment power control device
  • Third embodiment relay station
  • Fourth embodiment relay station
  • Fifth embodiment signal transmission / reception system
  • FIG. 1 is a diagram illustrating a main configuration example of a position notification system which is an embodiment of a signal transmission / reception system to which the present technology is applied.
  • a position notification system 100 shown in FIG. 1 is a system in which a transmitter 101 notifies its own position.
  • the transmitter 101 transmits position information indicating its own position as a radio signal.
  • the relay station 102 receives the radio signal, acquires the position information of the transmitter 101, and supplies the position information to the server 104 via the network 103.
  • the server 104 manages position information for each transmitter 101.
  • the terminal device 105 operated by a user who wants to know the position of the transmitter 101 accesses the server 104 via the network 103, acquires the position information of the transmitter 101, and displays it with map data, for example, The user is notified of the position of the transmitter 101.
  • the transmitter 101 is, for example, carried by a target person whose user wants to grasp the position.
  • the transmitter 101 is carried by an elderly person 110.
  • the transmitter 101 can appropriately obtain its own position information (for example, latitude and longitude) by receiving a GNSS signal from a GNSS (Global Navigation Satellite System) satellite, for example.
  • the transmitter 101 transmits the position information as a radio signal as appropriate. Therefore, the user can grasp the position of the elderly person 110 who is the position monitoring target by operating the terminal device 105 as described above.
  • GNSS Global Navigation Satellite System
  • the position monitoring target is arbitrary. For example, it may be a child, an animal such as a dog or a cat, or a company employee.
  • the transmitter 101 may be configured as a dedicated device, but may be incorporated into a portable information processing device such as a mobile phone or a smartphone, for example.
  • the network 103 is an arbitrary communication network, and may perform wired communication, wireless communication, or both of them. Further, the network 103 may be configured by a single communication network or may be configured by a plurality of communication networks. For example, communication conforming to the Internet, public telephone network, so-called 3G and 4G wireless mobile wide area networks, WAN (Wide Area Network), LAN (Local Area Network), Bluetooth (registered trademark) standards , Wireless communication network for near field communication such as NFC (Near Field Communication), infrared communication path, HDMI (High-Definition Multimedia Interface) and USB (Universal Serial Bus) standards
  • the network 103 may include a communication network or a communication path of an arbitrary communication standard such as a wired communication network complying with the standard.
  • the server 104 and the terminal device 105 are information processing devices that process information.
  • the server 104 and the terminal device 105 are communicably connected to the network 103, and can communicate with other communication devices connected to the network 103 via the network 103 to exchange information.
  • the number of transmitters 101, relay stations 102, servers 104, and terminal devices 105 is arbitrary and may be plural.
  • the position notification system 100 has N relay stations 102 (N is an arbitrary natural number) installed at different positions (relay station 102-1 through relay station). 102-N).
  • the timing at which the transmitter 101 transmits a radio signal is arbitrary.
  • the transmitter 101 may periodically transmit a wireless signal, or may be transmitted when a predetermined event occurs (for example, when a predetermined distance is moved or a predetermined time is reached). You may make it do.
  • the radio signal transmitted from the transmitter 101 is received by the relay station 102 located near the transmitter 101.
  • the transmitter 101 transmits a radio signal from the communicable range 121 of the relay station 102-K (K is an integer of 1 ⁇ K ⁇ N)
  • the relay station 102-K receives the radio signal and transmits it.
  • the position information of the machine 101 is acquired, and the position information is supplied to the server 104 via the network 103 (position information is relayed).
  • the relay station 102 relays the position information in the same manner. Therefore, as long as the elderly person 110 (transmitter 101) is located within the communicable range of any relay station 102, the user can grasp the position of the elderly person 110.
  • the server 104 manages the location information of the transmitter 101.
  • the server 104 manages position information for each transmitter 101.
  • the transmitter 101 transmits its identification information (ID) together with the position information.
  • ID identification information
  • the server 104 stores and manages the positional information in association with the ID of the transmitter 101. Therefore, the server 104 can provide only the location information of the transmitter 101 requested by the user (terminal device 105).
  • the server 104 can also manage users who are permitted to provide location information for each transmitter 101. That is, the server 104 can provide the position information of each transmitter 101 only to users who are permitted to acquire the position information of the transmitter 101.
  • the server 104 may manage the position information of the transmitter 101 in association with information other than the ID of the transmitter 101.
  • the server 104 may store and manage the position information of the transmitter 101 in association with time information or the like. By doing so, the server 104 can manage and provide a history of position information of the transmitter 101.
  • the time information may be transmitted from the transmitter 101.
  • the transmitter 101 may transmit time information included in the GNSS signal together with the position information as a radio signal.
  • the position information transmitted by the transmitter 101 may be information that can be managed as information indicating the position of the transmitter 101 in the server 104, and the content thereof is arbitrary.
  • the transmitter 101 may transmit a GNSS signal (or time information included in the GNSS signal) without obtaining position information from the GNSS signal.
  • the relay station 102 or the server 104 may obtain the position information of the transmitter 101 using the GNSS signal or time information.
  • an information processing apparatus (such as a server) that obtains position information of the transmitter 101 using the GNSS signal or time information may be provided separately.
  • the position of the transmitter 101 may be obtained based on the installation position of the relay station 102 that receives a radio signal from the transmitter 101.
  • the transmitter 101 is located within the communicable range 121 of the relay station 102.
  • the server 104 estimates that the transmitter 101 is located within the communicable range 121 of the relay station 102-K when the relay station 102-K relays, and manages that fact as position information. You may do it. That is, in this case, the position of the transmitter 101 is managed with the granularity of the number of relay stations 102 (the width of the communication range of each relay station 102). In this case, the transmitter 101 may transmit at least its own ID as a radio signal.
  • the distance between the relay station 102 and the transmitter 101 may be estimated from the radio field intensity of the radio signal received by the relay station 102, and the server 104 may manage the distance as position information. That is, the server 104 may manage the relay station 102 within which communicable range of the transmitter 101 and the distance between the relay station 102 and the transmitter 101.
  • the estimation of the distance may be performed in the relay station 102, may be performed in the server 104, or may be performed by a dedicated information processing apparatus (server or the like) provided separately. Also good.
  • the transmitter 101 when the transmitter 101 is located in a portion where the communicable ranges of the plurality of relay stations 102 overlap, that is, when the radio signal transmitted by the transmitter 101 is relayed by the plurality of relay stations 102, a triangle
  • the position of the transmitter 101 may be estimated using a method or the like.
  • the position estimation may be performed in the server 104 or may be performed by a dedicated information processing apparatus (such as a server) provided separately.
  • Any relay station 102 may be able to relay information of an arbitrary transmitter 101, or each relay station 102 may relay only information of the transmitter 101 corresponding to itself. May be.
  • information transmitted from a certain transmitter 101 may be relayed only by the relay station 102 owned or managed by the owner (or manager) of the transmitter 101.
  • This owner (or manager) may include not only individuals but also businesses. By doing so, it is possible to avoid sharing the relay station 102 among a plurality of users, and it is possible to suppress a reduction in communication safety such as information leakage.
  • the number of usable relay stations 102 may be set according to the amount of the fee paid by the user. Thereby, the quality of the service provided according to the price can be differentiated.
  • the server 104 can manage the position of the transmitter 101.
  • the server 104 can manage the position of the transmitter 101 more accurately as the communication range network of the relay station 102 with the transmitter 101 becomes wider.
  • more accurate management means managing the position of the transmitter 101 in a wider range.
  • the transmitter 101 and the relay station 102 can transmit and receive radio signals farther (communication of each relay station 102 is possible). A wider range is preferred).
  • each relay station 102 is installed in a mutually different position, it is so preferable that there are many relay stations 102.
  • FIG. it is preferable to set a region where the transmitter 101 is more likely to be located as a communicable range of the relay station 102.
  • the installation position of the relay station 102 is arbitrary. However, as described above, in consideration of the number of installations, usefulness, and the like, for example, in a building such as a building, a condominium, or a house, a position monitoring target person (for example, an elderly person 110) carrying the transmitter 101 is located. It is suitable because there are many in urban areas where there is a high possibility and installation is easy. In particular, the home of the position monitoring target person is more preferable because the position monitoring target person is more likely to be located in the vicinity thereof. Further, in terms of securing the installation location, it is easier to obtain an agreement than when the location notification service provider establishes the location and installs the relay station 102 independently.
  • a position monitoring target person for example, an elderly person 110
  • the position notification service provider does not install the relay station 102 independently.
  • the load (cost) of the service provider can be reduced. That is, by doing in this way, more relay stations 102 can be installed at lower cost.
  • the position notification system 100 the larger the number of relay stations 102, the better the quality of service that can be provided, which is preferable. That is, a more useful system can be realized at a lower cost.
  • the installation location of the relay station 102 is arbitrary, and for example, it may be installed on a movable object (also referred to as a moving body) such as an automobile, a motorcycle, or a bicycle. That is, the position of the relay station 102 may be variable.
  • a movable object also referred to as a moving body
  • the position of the relay station 102 may be variable.
  • the relay station 102 is installed in the home (house) of the position monitoring target person as an example.
  • the relay station 102 is installed at a low position in a house such as indoors, there is a possibility that the performance of receiving a radio signal from the transmitter 101 may be reduced due to low ground clearance or obstacles.
  • the wider communicable range of the relay station 102 is more preferable. Therefore, the relay station 102 is preferably installed as high as possible, for example, on the roof, in order to increase the communicable range.
  • the relay station 102 when the relay station 102 is installed on the roof, since there is generally no outlet for household power supply in the vicinity, for example, a power cable or the like is laid from a nearby power pole or indoor to power the relay station 102. Must be supplied. Thus, in order to newly lay the power cable, complicated work such as construction work is required. For this reason, not only the installation cost due to the power cable to be laid, but also the construction cost may increase, and the installation cost of the relay station 102 may increase significantly.
  • the power supply of the relay station 102 is secured using the existing (laid) antenna cable.
  • the relay station 102 is installed on the roof of a building 130 that is the home (house) of the position monitoring target person.
  • This building 130 may be a detached house, a building in which a store, an office, or the like occupies, or an apartment house such as an apartment or a condominium.
  • a terrestrial antenna 141 On the roof of this building 130, a terrestrial antenna 141, a satellite antenna 142, a mixer 143, an antenna cable 144 to an antenna cable 146, a power cable 148, and a relay station 102 are installed.
  • the equipment installed on these roofs is also collectively referred to as rooftop equipment 131.
  • a TV receiver 147 is installed indoors in the building 130.
  • the terrestrial antenna 141 is an antenna for receiving broadcast signals of terrestrial TV digital broadcasting. Broadcast signals received by the terrestrial antenna 141 are supplied to the mixer 143 via the antenna cable 144.
  • the satellite antenna 142 is an antenna for receiving broadcast signals of satellite broadcasting such as BS (Broadcasting Satellite) broadcasting and CS (Communications Satellite) broadcasting. Broadcast signals received by the satellite antenna 142 are supplied to the mixer 143 via the antenna cable 145. The satellite antenna 142 is driven using electric power supplied from the mixer 143 via the antenna cable 145.
  • satellite broadcasting such as BS (Broadcasting Satellite) broadcasting and CS (Communications Satellite) broadcasting.
  • Broadcast signals received by the satellite antenna 142 are supplied to the mixer 143 via the antenna cable 145.
  • the satellite antenna 142 is driven using electric power supplied from the mixer 143 via the antenna cable 145.
  • the mixer 143 mixes the broadcast signal of the terrestrial TV digital broadcast supplied via the antenna cable 144 and the broadcast signal of the satellite broadcast supplied via the antenna cable 145, and uses the mixed signal (RF). Then, the signal is supplied to the indoor TV receiver 147 through the antenna cable 146. Further, the mixer 143 supplies power supplied from the indoor (for example, the TV receiver 147) via the antenna cable 146 to the satellite antenna 142 via the antenna cable 145, or relays via the power cable 148. 102.
  • the antenna cable 144 is a cable that is connected to the terrestrial antenna 141 and the mixer 143 and transmits a broadcast signal received by the terrestrial antenna 141 to the mixer 143.
  • the antenna cable 145 is a cable that is connected to the satellite antenna 142 and the mixer 143 and transmits a broadcast signal received by the satellite antenna 142 to the mixer 143. Further, the antenna cable 145 superimposes the power supplied from the mixer 143 on the broadcast signal and transmits it to the satellite antenna 142.
  • the antenna cable 146 is connected to the mixer 143 and the TV receiver 147, and the mixed signal of the broadcast signal received by the terrestrial antenna 141 and the broadcast signal received by the satellite antenna 142 is transmitted from the mixer 143 to the TV receiver.
  • 147 is a cable to be transmitted.
  • the antenna cable 146 transmits the power supplied from the TV receiver 147 to the mixer 143 by superimposing the power on the mixed signal.
  • the TV receiver 147 is a facility that is installed in a building 130, for example, and uses broadcast signals transmitted from the roof.
  • the TV receiver 147 demodulates a broadcast signal transmitted from the rooftop equipment 131 (mixer 143) via the antenna cable 146, and displays an image such as a broadcast program included in the broadcast signal. Or output audio.
  • the TV receiver 147 is driven by a household power source supplied from an outlet installed indoors in the building 130, and a part of the electric power is transferred to the rooftop equipment 131 (mixed) via the antenna cable 146. 143).
  • the equipment installed indoors in the building 130 may be anything as long as it uses a broadcast signal transmitted from the roof.
  • a set top box, a hard disk recorder, a router with a TV broadcast tuner, a computer, or the like may be installed indoors.
  • the number of apparatuses installed indoors in the building 130 is arbitrary and may be plural.
  • the antenna cables 144 to 146 are realized by, for example, coaxial cables.
  • the antenna cables 144 to 146 may be cables other than the coaxial cable.
  • the power cable 148 is connected to the mixer 143 and the relay station 102 (power control device 151), and transmits the power supplied from the mixer 143 to the relay station 102 (power control device 151).
  • the power cable 148 is realized by a coaxial cable, for example.
  • the power cable 148 may be a cable other than the coaxial cable.
  • the relay station 102 is a device that receives a radio signal transmitted from the transmitter 101, acquires predetermined information included in the radio signal, and supplies the information to the server 104 via the network 103. As illustrated in FIG. 3, the relay station 102 includes a power supply control device 151, a high sensitivity receiver 152, a memory 153, and an LTE (Long Term Term Evolution) modem 154.
  • LTE Long Term Term Evolution
  • the high sensitivity receiver 152 uses the antenna 152A to receive a radio signal transmitted from the transmitter 101 with high sensitivity.
  • the high sensitivity receiver 152 acquires information (for example, position information and ID of the transmitter 101) included in the wireless signal, and supplies the acquired information to the memory 153 for storage. Further, the high sensitivity receiver 152 can also receive the GNSS signal transmitted from the GNSS satellite 161 using the antenna 152B.
  • the high sensitivity receiver 152 obtains its own position information from the received GNSS signal, and supplies the position information to the memory 153 for storage.
  • the high sensitivity receiver 152 is driven by the power supplied from the power supply control device 151.
  • the memory 153 is, for example, an arbitrary recording medium (storage medium) that can be written (rewritten) such as a RAM (Random Access Memory), an SSD (Solid State Drive), a semiconductor memory such as a flash memory, or a magnetic recording medium such as a hard disk. ).
  • the memory 153 stores information supplied from the high sensitivity receiver 152 by the recording medium (storage medium). Further, the memory 153 reads information stored therein and supplies the information to the LTE modem 154 in response to a request from the LTE modem 154.
  • the memory 153 is driven by electric power supplied from the power supply control device 151.
  • the LTE modem 154 reads information stored in the memory 153 and supplies the information to the server 104 via the network 103.
  • the LTE modem 154 is connected to a base station (not shown) by wireless communication based on a communication standard called LTE, and is connected to the network 103 via the base station.
  • LTE is a communication standard for mobile terminals such as mobile phones whose specifications are standardized by 3GPP (Third Generation Partnership Project). That is, the relay station 102 is connected to the network 103 which is a general (general purpose) communication network by the LTE modem 154. As a result, the relay station 102 can supply the information obtained from the transmitter 101 to the server 104 via the network 103 (that is, the information can be relayed).
  • the LTE modem 154 is driven by power supplied from the power supply control device 151.
  • the power supply controller 151 supplies the power supplied via the TV receiver 147, the antenna cable 146, the mixer 143, and the power cable 148 to the high sensitivity receiver 152, the memory 153, and the LTE modem 154.
  • the power supply control device 151 controls power supply to at least one of them.
  • the power supply controller 151 controls power supply to the high sensitivity receiver 152 and the LTE modem 154.
  • the power supply control device 151 starts supplying power to the high-sensitivity receiver 152 to drive the high-sensitivity receiver 152 and execute the operation described above. Further, for example, upon receiving a notification from the high sensitivity receiver 152 that the desired processing has been completed, the power supply control device 151 ends the supply of power and ends the driving of the high sensitivity receiver 152.
  • the power supply control device 151 starts supplying power to the LTE modem 154, thereby driving the LTE modem 154 to execute the operation as described above. Further, for example, when receiving a notification that the desired processing is completed from the LTE modem 154, the power supply control device 151 ends the supply of power and ends the driving of the LTE modem 154.
  • the power supply control device 151 restricts the power supply to the high sensitivity receiver 152 and the LTE modem 154 only when driving them, so that the power supply control device 151 allows the high sensitivity receiver 152 and the LTE modem 154 to operate.
  • An increase in power consumption of the modem 154 (that is, the relay station 102) can be suppressed.
  • the terrestrial antenna 141, the satellite antenna 142, and the antenna cables 144 to 146 are existing (installed) equipment. That is, the relay station 102 is connected to the existing equipment via the mixer 143 and the power cable 148, and is supplied with electric power from the inside using the existing equipment. That is, in this case, the power supply of the relay station 102 can be secured only by installing the mixer 143 and the power cable 148. Therefore, it is installed more easily than when a dedicated power cable is laid from the indoor etc. to the relay station 102 on the roof (suppressing the increase in facility cost and the increase in construction difficulty and work amount) Increase in construction cost). That is, the installation of the building 130 on a high place such as the roof of the relay station 102 can be facilitated.
  • the amount of power supplied via the antenna cable 146 is finite and is generally not so large.
  • the voltage is DC 15 (V) and the current is about 0.5 (A). Therefore, when the power consumption of the high sensitivity receiver 152 or the LTE modem increases, there is a possibility that the power supply is insufficient.
  • the power supply control device 151 controls the supply of power to the high sensitivity receiver 152 so that power is supplied when the high sensitivity receiver 152 is driven. Further, the power supply control device 151 may control the supply of power to the LTE modem 154 so that power is supplied when the LTE modem 154 is driven. Further, the power supply control device 151 controls the supply of power to each of the high sensitivity receiver 152 and the LTE modem 154 so that power is supplied when each of the high sensitivity receiver 152 and the LTE modem 154 is driven. You may do it.
  • the high sensitivity receiver 152 and the LTE modem 154 may not always need to be driven.
  • the high sensitivity receiver 152 does not need to be driven in a period other than the reception timing corresponding to the transmission timing. There may be cases. And it is not necessary to drive the LTE modem 154 until the high sensitivity receiver 152 receives the radio signal.
  • the use of the transmitter 101 is interrupted at night or the like, it may not be necessary to drive the high-sensitivity receiver 152 or the LTE modem 154 during that period.
  • the high sensitivity receiver 152 and the LTE modem 154 may be intermittently driven regardless of the transmission timing of the radio signal by the transmitter 101. For example, it is not necessary to receive all the wireless signals transmitted by the transmitter 101 (for example, when the transmitter 101 repeatedly transmits the same information or when there is no problem even if some information is lost). It is possible.
  • the relay station 102 suppresses the supply of power to them at unnecessary timing when the high sensitivity receiver 152 and the LTE modem 154 are not driven, thereby reducing the power consumption of the relay station 102.
  • the increase can be suppressed.
  • the relay station 102 can suppress the occurrence of power shortage and realize more stable power supply.
  • the power supplied to the high-sensitivity receiver 152 to the LTE modem 154 is transmitted via a coaxial cable that transmits a broadcast signal received by an antenna such as the terrestrial antenna 141 or the satellite antenna 142. May be supplied and extracted in a superimposed manner. That is, electric power may be supplied through existing equipment (antenna cable 146 such as a coaxial cable).
  • the power supply control device 151 controls the supply of power to the high sensitivity receiver 152 and the LTE modem 154 as described above, so that the relay station 102 suppresses the occurrence of power shortage. More stable power supply can be realized. That is, the installation of the building 130 on a high place such as the roof of the relay station 102 can be facilitated.
  • FIG. 4 is a diagram illustrating a main configuration example of the mixer 143.
  • the mixer 143 has four terminals (terminals 171 to 174).
  • An antenna cable 144 is connected to the terminal 171, and a terrestrial TV broadcast broadcast signal (VHF (Very High Frequency) / UHF (Ultra High Frequency) signal) received by the terrestrial antenna 141 is input from the terminal 171.
  • An antenna cable 145 is connected to the terminal 174, and a broadcast signal (BS / CS signal) of BS broadcast or CS broadcast received by the satellite antenna 142 is input from the terminal 174.
  • the power supplied from the TV receiver 147 extracted in the mixer 143 is superimposed on the BS / CS signal in the mixer 143 and output from the terminal 174.
  • the antenna cable 146 is connected to the terminal 172, and a mixed signal of the VHF / UHF signal and the BS / CS signal generated in the mixer 143 is output from the terminal 172. Further, the power supplied from the TV receiver 147 while being superimposed on the mixed signal is input from the terminal 172.
  • a power cable 148 is connected to the terminal 173, and the power supplied from the TV receiver 147 extracted in the mixer 143 is output from the terminal 173.
  • the mixer 143 includes a low-pass filter (LPF (Low-Pass filter)) 181, a low-noise amplifier (LNA (Low-noise filter) 182), and a high-pass filter (HPF (High-Pass Filter)) 183. , A mixing unit 184, a power filter (PF (Power Filter)) 185, and a mixing unit 186.
  • LPF Low-Pass filter
  • LNA Low-noise amplifier
  • HPF High-Pass Filter
  • the LPF 181 is a filter that allows a signal in a lower frequency band than a predetermined frequency to pass.
  • the LPF 181 includes a band (90 MHz to 222 MHz) in which a TV broadcast signal (VHS signal) in the VHF band (30 MHz to 300 MHz) is transmitted and a UHF band (300 MHz to 3000 MHz).
  • the LPF 181 performs the above-described filtering process on the broadcast signal (VHF / UHF signal) input from the terminal 171 and supplies a signal from which unnecessary high-frequency components are removed to the LNA 182.
  • the LNA 182 amplifies the output signal (VHF / UHF signal) of the LPF 181 and supplies it to the mixing unit 184.
  • the HPF 183 is a filter that allows a signal in a frequency band higher than a predetermined frequency to pass. For example, as indicated by a dotted line in FIG. 5, the HPF 183 passes a signal in a high frequency band including a band (950 MHz to 2150 MHz) in which a BS / CS signal is transmitted, and a band in which a VHF / UHF signal is transmitted ( 90 MHz to 222 MHz and 470 MHz to 770 MHz) are removed.
  • the HPF 183 performs the above-described filtering process on the broadcast signal (BS / CS signal) input from the terminal 174 and supplies the signal (BS / CS signal) from which unnecessary low-frequency components are removed to the mixing unit 184. .
  • the mixing unit 184 mixes the VHF / UHF signal supplied from the LNA 182 and the BS / CS signal supplied from the HPF 183 to generate a mixed signal.
  • the mixing unit 184 outputs the mixed signal to the antenna cable 146 via the terminal 172.
  • a predetermined voltage (DC component) is applied to the mixed signal by the TV receiver 147. That is, power is supplied from the TV receiver 147 to the mixer 143 by superimposing it on the mixed signal.
  • PF 185 performs a filtering process on the mixed signal on which the electric power is superimposed, and extracts the electric power. That is, the PF 185 extracts a DC component from the mixed signal.
  • the PF 185 supplies the extracted power to the mixing unit 186.
  • the mixing unit 186 superimposes the electric power on the BS / CS signal and outputs it to the antenna cable 145 via the terminal 174. That is, the mixing unit 186 applies a predetermined voltage (DC component) to the BS / CS signal.
  • DC component predetermined voltage
  • the PF 185 outputs the extracted power to the power cable 148 via the terminal 173. Thereby, electric power is supplied also to the relay station 102 (power supply control apparatus 151).
  • the PF 185 includes inductors 191 to 193 and capacitors 194 to 196.
  • the inductors 191 to 193 are connected in series with each other.
  • One of the inductors 191 is connected to the mixing unit 184 and the terminal 172, and the other is connected to the inductor 192.
  • One of the inductors 192 is connected to the inductor 191 and the other is connected to the inductor 193.
  • One of the inductors 193 is connected to the inductor 192, and the other is connected to the mixing unit 186 and the terminal 173.
  • One of the capacitors 194 is connected between the inductor 191 and the inductor 192, and the other is grounded.
  • One of the capacitors 195 is connected between the inductor 192 and the inductor 193, and the other is grounded.
  • One of the capacitors 196 is connected between the inductor 193 and the mixing unit 186 (terminal 173), and the other is grounded.
  • the PF 185 extracts the electric power (DC component) by performing filter processing using such an LC circuit, for example.
  • FIG. 7 is a diagram illustrating a main configuration example of the power supply control device 151.
  • the power supply control device 151 includes power supply terminals 201 to 204.
  • a mixer 143 is connected to the power terminal 201 (via a power cable 148). The electric power output from the terminal 173 of the mixer 143 is input to the power supply terminal 201 via the power supply cable 148.
  • a high sensitivity receiver 152 is connected to the power terminal 202.
  • the LTE modem 154 is connected to the power terminal 203.
  • a memory 153 is connected to the power supply terminal 204.
  • the power supply control device 151 includes a control unit 211 and a connection unit 212.
  • the control unit 211 performs processing related to control of the connection unit 212.
  • the power input from the power supply terminal 201 is supplied to the connection unit 212.
  • the connection unit 212 selects the power supply destination from the power supply terminal 202 and the power supply terminal 203.
  • connection unit 212 outputs power input from the power supply terminal 201 from the power supply terminal 202 (supplied to the high sensitivity receiver 152) or output from the power supply terminal 203 (supplied to the LTE modem 154). Select whether to supply to either. That is, the connection unit 212 selects whether to connect the power terminal 201 to the power terminal 202 and whether to connect the power terminal 201 to the power terminal 203. The connection unit 212 performs such selection according to the control of the control unit 211.
  • the control unit 211 controls the connection unit 212 to start power supply to the power supply terminal 202 or the power supply terminal 203, for example, at a timing at which the high sensitivity receiver 152 or the LTE modem 154 is to be driven.
  • the power supplied to the power terminal 202 is supplied to the high sensitivity receiver 152 via the power terminal 202.
  • the high sensitivity receiver 152 is driven using the power.
  • the power supplied to the power supply terminal 203 is supplied to the LTE modem 154 via the power supply terminal 203.
  • the LTE modem 154 is driven using the power.
  • the execution timing of this control is arbitrary.
  • it may be a predetermined timing, a timing according to some event such as satisfying a predetermined operation condition, or from the outside such as the high sensitivity receiver 152 or the LTE modem 154
  • the timing may be based on the notification.
  • control unit 211 controls the connection unit 212 to shut off the power supply to the power supply terminal 202 or the power supply terminal 203 and terminate the operation, for example, at a timing when the high sensitivity receiver 152 or the LTE modem 154 is not desired to be driven. .
  • the supply of power to the power supply terminal 202 is finished, the supply of power to the high sensitivity receiver 152 is also finished, so that the driving of the high sensitivity receiver 152 is finished.
  • the supply of power to the power supply terminal 203 is finished, the supply of power to the LTE modem 154 is also finished, so that the driving of the LTE modem 154 is finished.
  • the execution timing of this control is also arbitrary.
  • it may be a predetermined timing, a timing according to some event such as satisfying a predetermined operation condition, or from the outside such as the high sensitivity receiver 152 or the LTE modem 154
  • the timing may be based on the notification.
  • connection unit 212 may be able to supply power to both the power supply terminal 202 and the power supply terminal 203.
  • the high sensitivity receiver 152 and the LTE modem 154 can be prevented from being driven simultaneously by making it possible to supply power only to either one (the power supply terminal 202 or the power supply terminal 203).
  • the peak (maximum value) of power consumption can be suppressed. Therefore, the relay station 102 can suppress the occurrence of power shortage and realize more stable power supply.
  • connection unit 212 is also used to drive the connection unit 212.
  • electric power input from the power supply terminal 201 is also supplied to the control unit 211 and used for driving the control unit 211.
  • the power input from the power supply terminal 201 is also supplied to the power supply terminal 204, and is supplied to the memory 153 through the power supply terminal 204.
  • the memory 153 is driven using this power.
  • the power supply to the memory 153 may be always performed as in the example of FIG. 7, or the power supply control device 151 (control) as in the case of the high sensitivity receiver 152 and the LTE modem 154. It may be controlled by the unit 211 and the connection unit 212).
  • connection unit 212 may be configured by a switch 220 having one input and three outputs.
  • the switch 220 includes a terminal 221 as an input-side terminal and terminals 222 to 224 as output-side terminals.
  • the terminal 221 is connected to the power supply terminal 201.
  • Terminal 222 is connected to power supply terminal 202.
  • the terminal 223 is connected to the power supply terminal 203.
  • the terminal 224 is not connected to any power supply terminal (opened).
  • the switch 220 connects the terminal 221 to one of the terminals 222 to 224 in accordance with the control of the control unit 211 via the control line 225. That is, the switch 220 selects a supply destination of power input via the power supply terminal 201 according to the control of the control unit 211.
  • the power supply destination input via the power terminal 201 is the power terminal 202 (high sensitivity receiver 152).
  • the supply destination of power input via the power terminal 201 is the power terminal 203 (LTE modem 154).
  • the terminal 221 is connected to the terminal 224, the power input via the power terminal 201 is not supplied to any power terminal (any device).
  • the connection unit 212 may be configured by one-input one-output switches (switch 230 and switch 240) for each power supply terminal on the output side.
  • the switch 230 includes a terminal 231 as an input-side terminal and a terminal 232 as an output-side terminal.
  • the terminal 231 is connected to the power supply terminal 201, and the terminal 232 is connected to the power supply terminal 202.
  • the switch 230 connects or disconnects the terminal 231 and the terminal 232 according to the control of the control unit 211 via the control line 233. That is, the switch 230 selects whether to supply the power input via the power supply terminal 201 to the high sensitivity receiver 152 according to the control of the control unit 211.
  • the switch 240 has a terminal 241 as an input terminal, and a terminal 242 as an output terminal.
  • the terminal 241 is connected to the power supply terminal 201, and the terminal 242 is connected to the power supply terminal 203.
  • the switch 240 connects or disconnects the terminal 241 and the terminal 242 according to the control of the control unit 211 via the control line 243. That is, the switch 240 selects whether or not to supply power input via the power supply terminal 201 to the LTE modem 154 according to the control of the control unit 211.
  • the supply destination of the power input via the power supply terminal 201 is the power supply It becomes the terminal 202 (high sensitivity receiver 152).
  • the supply destination of the power input via the power supply terminal 201 is The power terminal 203 (LTE modem 154).
  • the switch 230 disconnects the terminal 231 and the terminal 232 and the switch 240 disconnects the terminal 241 and the terminal 242
  • the power input via the power supply terminal 201 is It is not supplied to the power supply terminal (any device).
  • Transmission / reception of radio signals performed between the transmitter 101 and the high sensitivity receiver 152 will be described. Transmission / reception of a radio signal between the transmitter 101 and the high sensitivity receiver 152 is performed using a frequency band including 925 MHz (also referred to as a 920 MHz band).
  • FIG. 9 is a diagram illustrating a main configuration example of the transmitter 101.
  • the transmitter 101 includes a pseudo random number sequence generation unit 251, a carrier oscillation unit 252, a multiplication unit 253, a bandpass filter (BPF) 254, an amplification unit 255, and an antenna 256.
  • BPF bandpass filter
  • the information to be transmitted is encoded and transmitted as a pseudo random number sequence.
  • the pseudo random number sequence generation unit 251 generates the pseudo random number sequence.
  • the pseudo random number sequence generation unit 251 includes a transmission information generation unit 261, a CRC (Cyclic Redundancy Check) addition unit 262, a synchronization signal generation unit 263, a selection unit 264, a frame counter 265, a register 266, an interleaving unit 267, and a Gold code generation unit 268. , And a multiplication unit 269.
  • CRC Cyclic Redundancy Check
  • the transmission information generation unit 261 generates transmission information TM that is information to be transmitted as a radio signal.
  • This transmission information TM is arbitrary information.
  • the transmission information generation unit 261 receives a GNSS signal from a GNSS satellite, generates position information (for example, latitude / longitude) indicating the current position of the transmitter 101 using the GNSS signal, and includes the position information.
  • Information TM may be generated.
  • the transmission information generation unit 261 may generate transmission information TM including a GNSS signal received from a GNSS satellite (or time information included in the GNSS signal). Further, for example, the transmission information generation unit 261 may generate the transmission information TM including the identification information (ID) of the transmitter 101.
  • ID identification information
  • the transmission information generation unit 261 may acquire information from another device (for example, a sensor) and generate transmission information TM including the information.
  • the transmitter 101 generates a transmission signal TX using the transmission information TM.
  • the transmission information generating unit 261 supplies the generated transmission information TM to the CRC adding unit 262.
  • the CRC adding unit 262 adds a cyclic redundancy check code (CRC) for error detection to the transmission information TM supplied from the transmission information generating unit 261. Any cyclic redundancy check code may be used, and the data length is also arbitrary.
  • the CRC adding unit 262 supplies the transmission signal TM to which the cyclic redundancy check code is added to the selection unit 264.
  • the synchronization signal generator 263 generates a predetermined synchronization pattern. This synchronization pattern may be any type and the data length is also arbitrary.
  • the synchronization signal generation unit 263 supplies the synchronization pattern to the selection unit 264.
  • the selection unit 264 adds the synchronization pattern supplied from the synchronization signal generation unit 263 to the transmission information TM to which the cyclic redundancy check code supplied from the CRC addition unit 262 is added by appropriately selecting an input. That is, the selection unit 264 generates transmission information TM as a predetermined signal transmitted as a radio signal. The selection unit 264 supplies the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added to the register 266 for holding.
  • Transmitter 101 transmits a transmission signal TX using a radio wave of 920 MHz band.
  • the 920 MHz band is a frequency band that has been lifted from July 2011 by the Ministry of Internal Affairs and Communications, and anyone can use it without a license.
  • the maximum continuous transmission time is limited to 4 seconds by regulation (ARIB (Association of Radio Industries and Businesses) and STD T-108). If the continuous transmission time is further shortened to 0.2 seconds, for example, more channels can be allocated and transmission / reception can be performed with less interference.
  • the transmitter 101 performs one data transmission, for example, in units of a super frame for a predetermined time as shown in FIG.
  • the length of the predetermined time is arbitrary. For example, it may be 30 seconds or 5 minutes.
  • a frame of 0.192 seconds is repeated up to 100 times. That is, since the continuous transmission time is less than 0.2 seconds, many transmission channels can be assigned to this transmission. As a result, it becomes possible to select and transmit a relatively free channel, and to build a system that is more resistant to interference.
  • the gap x between frames is a time of at least 2 ms.
  • carrier sense must be performed to confirm whether communication is performed in the band before signal transmission.
  • a signal can be transmitted only when the band is free. Therefore, 920 MHz cannot always be used. Therefore, the gap x may differ every time depending on the result of carrier sense (that is, the degree of channel congestion). If 30 seconds are averaged, frames are transmitted at a rate of about once every 0.3 seconds. As a result, 100 frames are transmitted within a predetermined time of the super frame. The number of frames that can be transmitted varies slightly depending on the degree of channel congestion.
  • the signals transmitted in 100 frames are arbitrary, but in the following description, they are all assumed to be the same.
  • the register 266 holds the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added, which is supplied from the selection unit 264.
  • the register 266 then repeats the transmission information TM to which the cyclic redundancy check code and the synchronization pattern added are stored a predetermined number of times and supplies the transmission information TM to the interleaving unit 267.
  • the frame counter 265 repeats transmission of the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added, that is, the transmission to which the cyclic redundancy check code and the synchronization pattern are added, which is held in the register 266.
  • Count the number of times the information TM has been read.
  • the frame counter 265 supplies such a count value to the register 266.
  • the register 266 grasps the number of times of supply based on the count value.
  • the register 266 repeats reading the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added a predetermined number of times (for example, 100 times), the register 266 discards the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added. Next, the transmission information TM to which the new cyclic redundancy check code and the synchronization pattern supplied from the selection unit 264 are added is acquired and held.
  • the frame counter 265 indicates the number of times the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added is read up to the maximum number of frames transmitted in the superframe (100 times in the case of FIG. 10).
  • Count for example, the frame counter 265 starts counting from the count value 0 and counts until the count value reaches 99). When the count value reaches the maximum value (for example, 99), the count value is reset to the initial value (for example, 0).
  • FIG. 11 is a schematic diagram illustrating an example of a frame configuration (Frame format) of a transmission packet.
  • the transmission packet includes a 2-octet preamble (Preamble), an 1-octet SFD (start-of-frame delimiter), and a 16-octet PSDU (PHY Service Data Unit).
  • Preamble 2-octet preamble
  • SFD start-of-frame delimiter
  • PSDU PHY Service Data Unit
  • the preamble and SFD are fixed data. Its value is arbitrary.
  • the preamble may be a bit string “0011111101011001”.
  • the SFD may be a bit string of “00011100”, for example.
  • the 16-octet PSDU includes a frame control (FC), a sequence number (SN), a transceiver address (ADR), a payload (PAYLOAD), and a frame check sequence (FCS). ).
  • FC frame control
  • SN sequence number
  • ADR transceiver address
  • PAYLOAD payload
  • FCS frame check sequence
  • Frame control is digital information of 2 octets, and is information indicating the configuration of information and the number of bits following frame control.
  • the frame control is an arbitrary fixed bit string, and may be a bit string of “0010000000100110”, for example.
  • the sequence number (SN) is 1-octet digital information and is counted up each time new data is transmitted. By checking this sequence number, the receiver can determine whether or not the data is new.
  • the transceiver address (ADR) is 4-octet information and includes a transmitter address number (transmitter ID) for identifying the transmitter 101.
  • the payload (PAYLOAD) is 4-octet digital information, and the transmission information TM is set as it is.
  • the frame check sequence (FCS) is a 2-octet cyclic redundancy check code and is information for checking whether or not an error has occurred in communication data. This frame check sequence (FCS) is added by the CRC adding unit 22.
  • information from the preamble to the transceiver address (ADR) is generated by the synchronization signal generator 263 as a synchronization pattern (SYNC).
  • This 13-octet synchronization pattern (SYNC) is added by the selection unit 264.
  • a transmission packet having such a configuration is held as transmission information TM to which a cyclic redundancy check code and a synchronization pattern are added.
  • the interleaving unit 267 disassembles the synchronization pattern of the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added, and, as shown in the fourth row from the top in FIG. Disperse. This distribution is performed so that the synchronization pattern is distributed almost evenly.
  • the synchronization pattern (SYNC) is information of 13 octets
  • UND is information of 6 octets.
  • the interleave unit 267 disassembles the 13-octet synchronization pattern (SYNC) by 1 octet, SYNC0 to SYNC12, disassembles 6-octet UND by 1 octet, and UND0 to UND5. They are rearranged in the order shown in the eyes (the following order).
  • the synchronization pattern known to the high-sensitivity receiver 152 is distributed (distributed) over the entire frame, so that the high-sensitivity receiver 152 calculates the frequency and initial phase estimation of the transmission carrier for each short frame. Can be performed more accurately. As a result, even with a short continuous transmission time, the high sensitivity receiver 152 can receive with higher sensitivity.
  • FIG. 11 shows an example of the rearranged transmission information QD in the fifth row from the top.
  • the interleaving unit 267 supplies the transmission information QD rearranged as described above to the multiplying unit 269.
  • the Gold code generator 268 generates a pseudo random number sequence to be added to the transmission information QD.
  • This pseudo-random number sequence may be anything, and its data length is also arbitrary.
  • the Gold code generation unit 268 may generate a bit string of a predetermined pattern having a length of 256 bits as a pseudo random number sequence.
  • the Gold code generator 268 may be configured with two M-sequence generators.
  • the Gold code generation unit 268 supplies the generated pseudo random number sequence to the multiplication unit 269.
  • the multiplication unit 269 multiplies the transmission information QD supplied from the interleaving unit 267 and the pseudo random number sequence supplied from the Gold code generation unit 268 to generate a pseudo random number sequence PN.
  • the multiplication unit 269 assigns a pseudo random number sequence to each bit of the transmission information QD, and generates a pseudo random number sequence PN of, for example, 38400 bits (152 bits x 256 chips) from each transmission packet.
  • the diffusion coefficient is 256, and the chip interval ⁇ is 5 ⁇ s.
  • the multiplication unit 269 supplies the pseudo random number sequence PN generated as described above to the multiplication unit 253.
  • the carrier oscillation unit 252 oscillates at a predetermined frequency (carrier frequency) and generates a carrier signal used for transmission of a radio signal. For example, the carrier oscillation unit 252 transmits the transmission signal at 925 MHz so as to transmit the transmission signal in the 920 MHz band.
  • the carrier oscillation unit 252 supplies the generated carrier signal to the multiplication unit 253.
  • the multiplier 253 modulates the polarity of the carrier signal supplied from the carrier oscillator 252 according to the pseudo random number sequence PN supplied from the multiplier 269. For example, the multiplication unit 253 performs BPSK modulation.
  • the carrier phase is modulated to be ⁇
  • the carrier phase is ⁇ (polarity inversion). Modulated.
  • the multiplier 253 supplies the modulation result to the band pass filter (BPF) 254 as the modulation signal CM.
  • the BPF 254 limits the band of the modulation signal CM supplied from the multiplier 253 to the carrier frequency band.
  • the BPF 254 supplies the modulation signal CM thus band-limited to the amplification unit 255 as the transmission signal TX.
  • the amplification unit 255 amplifies the transmission signal TX supplied from the BPF 254 at a predetermined transmission timing, and transmits the amplified transmission signal TX as a radio signal via the antenna 256.
  • FIG. 12 is a diagram illustrating a main configuration example of the high sensitivity receiver 152 that receives a radio signal transmitted from the transmitter 101.
  • the high sensitivity receiver 152 includes a signal reception unit 301 and a reception information processing unit 302.
  • the signal reception unit 301 and the reception information processing unit 302 are connected to each other via a bus 303.
  • the signal receiving unit 301 receives a signal transmitted from the transmitter 101.
  • the signal receiving unit 301 includes a SAW (Surface Acoustic Wave) filter 311, LNA 312, oscillator 313, frequency divider 314, IQ generator 315, multiplier 316, LPF 317, AAF (Anti -Aliasing Filter) 318, ADC (Analog Digital Converter) 319, multiplier 320, LPF321, AAF322, and ADC323.
  • SAW Surface Acoustic Wave
  • the SAW filter 311 applies the characteristics of surface acoustic waves propagating on the surface of a substance, and has a specific frequency by a regular comb electrode (IDT (Interdigital Transducer)) formed on a piezoelectric thin film or substrate. This is a filter for extracting a band electric signal. The center frequency and band can be determined by the structure period of the comb-shaped electrode and the physical properties of the piezoelectric body and electrode.
  • SAW filter 311 extracts a signal component of a desired frequency band from the received signal that is a radio signal received by antenna 152A.
  • the SAW filter 311 supplies the extracted signal component (that is, the received signal) to the LNA 312.
  • the LNA 312 amplifies the supplied reception signal and supplies it to the multiplier 316 and the multiplier 320.
  • the oscillation unit 313 transmits at a predetermined frequency, and supplies a signal of that frequency to the frequency division unit 314.
  • the frequency divider 314 divides the signal supplied from the oscillator 313 to generate a carrier frequency signal. For example, when receiving a signal transmitted in a 920 MHz band, for example, the oscillation unit 313 and the frequency dividing unit 314 generate a signal having a frequency of 925 MHz.
  • the frequency divider 314 supplies the signal to the IQ generator 315.
  • the IQ generator 315 generates a carrier signal for each of I and Q using the signal supplied from the frequency divider 314. That is, the IQ generator 315 controls the phase of the signal and generates two carrier signals that are 90 degrees out of phase with each other.
  • the IQ generator 315 supplies the generated carrier signal for I to the multiplier 316 and supplies the carrier signal for Q to the multiplier 320.
  • the multiplication unit 316 multiplies the reception signal supplied from the LNA 312 and the carrier signal supplied from the IQ generator 315 to generate a baseband InPhase signal (I signal).
  • the multiplier 316 supplies the I signal to the LPF 317.
  • the LPF 317 performs a filtering process to pass a low frequency component lower than a predetermined frequency and remove a higher frequency component than the predetermined frequency with respect to the supplied I signal.
  • the LPF 317 supplies the I signal resulting from the filtering process to the AAF 318.
  • the AAF 318 performs a filtering process on the supplied I signal so as to suppress aliasing (folding error).
  • the AAF 318 performs a low-pass filter process so that a lower frequency component than a predetermined frequency is passed through the supplied I signal.
  • the AAF 318 supplies the I signal resulting from the filtering process to the ADC 319.
  • the ADC 319 performs A / D conversion on the supplied I signal and converts the analog signal into a digital signal.
  • the ADC 319 supplies the digital I signal to the reception information processing unit 302 (for example, the demodulation unit 333) via the bus 303.
  • the multiplication unit 320 multiplies the reception signal supplied from the LNA 312 and the carrier signal supplied from the IQ generator 315 to generate a baseband Quadrature signal (Q signal).
  • Multiplier 320 supplies the Q signal to LPF 321.
  • the LPF 321 performs a filtering process for passing a low frequency component lower than a predetermined frequency and removing a high frequency component higher than the predetermined frequency for the supplied Q signal.
  • the LPF 321 supplies the Q signal resulting from the filtering process to the AAF 322.
  • the AAF 322 performs a filtering process on the supplied Q signal so as to suppress aliasing. For example, the AAF 322 performs a low-pass filter process on the supplied Q signal so as to pass a low frequency component from a predetermined frequency.
  • the AAF 322 supplies the Q signal resulting from the filtering process to the ADC 323.
  • the ADC 323 performs A / D conversion on the supplied Q signal and converts the analog signal into a digital signal.
  • the ADC 323 supplies the digital Q signal to the reception information processing unit 302 (for example, the demodulation unit 333) via the bus 303.
  • the reception information processing unit 302 performs processing related to information processing for information (reception information) transmitted from the transmitter 101.
  • the reception information processing unit 302 includes a bus 330, a control unit 331, a memory 332, a demodulation unit 333, a GNSS signal reception unit 334, an information processing unit 335, a communication unit 336, and a power supply unit 337.
  • the processing units of the control unit 331 to the power supply unit 337 are connected to each other via the bus 330 and can exchange information.
  • the bus 330 is also connected to the bus 303, and the processing units of the control unit 331 to the power supply unit 337 are also information with the processing units of the signal receiving unit 301 such as the oscillation unit 313, the ADC 319, and the ADC 323. Can be exchanged.
  • the control unit 331 controls each processing unit of the memory 332 to the power supply unit 337, and performs processing related to control for information processing on received information.
  • the memory 332 includes any writable (rewritable) recording medium (storage medium) such as a semiconductor memory such as a RAM, an SSD, or a flash memory, or a magnetic recording medium such as a hard disk.
  • the memory 332 stores various information supplied from, for example, the control unit 331 and any of the demodulation unit 333 to the power supply unit 337 by the recording medium (storage medium).
  • the memory 332 can supply the information stored therein to, for example, the control unit 331, the demodulation unit 333, the power supply unit 337, and the like.
  • the memory 332 can store information supplied from the signal receiving unit 301 via the bus 303, and can also supply the stored information to the signal receiving unit 301 via the bus 303. .
  • the demodulation unit 333 performs processing related to demodulation of digital data of the I signal and Q signal of the reception signal received by the signal reception unit 301 based on the control of the control unit 331, for example.
  • the GNSS signal reception unit 334 performs processing related to reception of a GNSS signal transmitted from the GNSS satellite 161 using the antenna 152B based on the control of the control unit 331, for example.
  • the GNSS signal receiving unit 334 may generate position information of the high sensitivity receiver 152 (relay station 102) using the received GNSS signal.
  • the information processing unit 335 performs processing related to information processing on information (reception information) obtained by demodulation in the demodulation unit 333 based on the control of the control unit 331, for example.
  • the content of this information processing is arbitrary.
  • the communication unit 336 performs processing related to communication with other devices based on the control of the control unit 331, for example.
  • the communication unit 336 can supply and store received information such as position information of the transmitter 101 obtained by processing in the information processing unit 335 or the like to the memory 153.
  • the communication unit 336 can supply and store the position information (or GNSS signal, time information, etc.) of the high sensitivity receiver 152 generated in the GNSS signal receiving unit 334 to the memory 153.
  • the communication unit 336 can associate and store the reception information and the position information of the high sensitivity receiver 152 in the memory 153 and store them.
  • the communication unit 336 can also notify the power supply control device 151.
  • the content of communication performed by the communication unit 336 and the communication partner are arbitrary, and communication other than the above-described example may be performed.
  • the power supply unit 337 performs processing related to the power supplied from the power supply control device 151 based on the control of the control unit 331, for example. For example, the power supply unit 337 appropriately supplies the power supplied from the power supply control device 151 to each processing unit and drives it. For example, the power supply unit 337 can supply power only to the processing unit to be driven. Thereby, an increase in power consumption of the high sensitivity receiver 152 can be suppressed.
  • the wireless signal is detected as a waveform as shown in FIG.
  • the demodulator 333 extracts frame data from such a waveform based on the peak position and the like, and corrects the frequency, initial phase, and the like.
  • the upper part of FIG. 14 shows an example of the phase change in the frame.
  • frames 5 (Frame 5) to 8 (Frame 8) are extracted and displayed, but the phase and frequency are slightly changed.
  • the demodulator 333 obtains a straight line that best approximates the phase change and obtains a correlation value ⁇ 2 (n) as shown in the lower part of FIG. In the lower part of FIG.
  • each straight line corresponds to ⁇ (n)
  • the initial phase corresponds to ⁇ (n).
  • the correlation value ⁇ 2 (n) changes in accordance with the correlation between the phase fluctuation and the approximate line.
  • the demodulating unit 333 adds frame data using such a correlation value ⁇ 2 (n) as a weighting coefficient.
  • FIG. 15 shows a constellation obtained as a result of decoding as described above. As shown in FIG. 15, since two points are separated as BPSK modulation, data is correctly decoded in this case.
  • the demodulator 333 demodulates this to BPSK to obtain received information.
  • the transmitter 101 can set the maximum continuous transmission time short, and for example, by setting 0.2 seconds in the 920 MHz band, it can select and transmit from many frequency channels. It is possible to construct a transmission / reception system that is stronger against interference. Also, by integrating a large number of short time frames, the effective SNR can be improved without exceeding the maximum transmission time limit defined in the Radio Law. At this time, since the synchronization signal is distributed throughout the frame, even when there is a phase fluctuation in the frame, the phase and frequency can be corrected more appropriately. As a result, the high sensitivity receiver 152 can obtain the received information more accurately even if the received signal is so weak as to be buried in noise and difficult to decode by the conventional method. That is, the wireless signal transmitted by the transmitter 101 can be received with higher sensitivity, and the communicable range with the transmitter 101 can be further widened.
  • FIG. 16 is a block diagram illustrating a main configuration example of the LTE modem 154.
  • the LTE modem 154 includes a control unit 351, a memory 352, a communication unit 353, a power supply unit 354, and an LTE communication unit 355.
  • the processing units of the control unit 351 to the LTE communication unit 355 are connected to each other via a bus 350. That is, information can be exchanged and controlled between the processing units.
  • the control unit 351 performs processing related to control of each processing unit of the LTE modem 154.
  • the memory 352 has any writable (rewritable) recording medium (storage medium) such as a semiconductor memory such as a RAM, an SSD, or a flash memory, or a magnetic recording medium such as a hard disk.
  • the memory 352 stores various types of information supplied from, for example, the control unit 351 and any of the communication unit 353 to the LTE communication unit 355 by the recording medium (storage medium). Further, the memory 352 can supply the information stored therein to, for example, the control unit 351, the communication unit 353 to the LTE communication unit 355, and the like.
  • the memory 352 stores information (for example, position information and ID of the transmitter 101 or position information and ID of the high-sensitivity receiver 152) read from the memory 153 acquired by the communication unit 353. can do.
  • the communication unit 353 performs processing related to communication with other devices based on the control of the control unit 351, for example.
  • the communication unit 353 can read information from the memory 153.
  • the communication unit 353 can also notify the power supply control device 151.
  • the content of communication performed by the communication unit 353 and the communication partner are arbitrary, and communication other than the above-described example may be performed.
  • the power supply unit 354 performs processing related to the power supplied from the power supply control device 151 based on the control of the control unit 351, for example. For example, the power supply unit 354 appropriately supplies the power supplied from the power supply control device 151 to each processing unit and drives it. For example, the power supply unit 354 can supply power only to the processing unit to be driven. Thereby, an increase in power consumption of the LTE modem 154 can be suppressed.
  • the LTE communication unit 355 communicates with, for example, an LTE communication base station based on the control of the control unit 351, connects to the network 103, and communicates with the server 104 via the network 103.
  • the LTE communication unit 355 reads information stored in the memory 352 (for example, position information and ID of the transmitter 101 or position information and ID of the high sensitivity receiver 152) and supplies the information to the server 104. be able to.
  • the LTE communication unit 355 can also acquire arbitrary information such as commands and data from the server 104, for example.
  • the power supply control device 151 is connected to the high sensitivity receiver 152 only when the high sensitivity receiver 152 is driven (when the high sensitivity receiver 152 receives a radio signal) as shown in the flowchart of FIG. Supply power.
  • the control unit 211 of the power supply control device 151 controls the connection unit 212 to the high sensitivity receiver 152 in step S101 of FIG.
  • the high-sensitivity receiver 152 is turned on (ON).
  • the power supply unit 337 of the high sensitivity receiver 152 supplies the power to the processing unit that drives the power in step S111 and starts driving them.
  • step S112 the signal receiving unit 301 of the high sensitivity receiver 152 receives the radio signal transmitted from the transmitter 101.
  • the demodulation unit 333 and the information processing unit 335 of the high sensitivity receiver 152 demodulate the received signal and perform signal processing in step S113, and the position information, ID, and the like of the transmitter 101 are received.
  • the information is extracted from the signal and acquired.
  • the demodulation unit 333 and the information processing unit 335 store the acquired information in, for example, the memory 332.
  • step S114 the communication unit 336 of the high sensitivity receiver 152 reads out information (reception information) stored in the memory 332, supplies the information to the memory 153, and stores it.
  • the memory 153 stores the supplied reception information.
  • the communication unit 336 notifies the power supply control device 151 that the received information is stored in the memory 153 in step S115.
  • step S102 the control unit 211 of the power supply control device 151 acquires the notification.
  • the control unit 211 of the power supply control device 151 controls the connection unit 212 to end the supply of power to the high sensitivity receiver 152 in step S103, and turns off the power of the high sensitivity receiver 152 ( OFF).
  • the power supply unit 337 of the high sensitivity receiver 152 also ends the supply of power to each processing unit in step S116 and ends the driving thereof.
  • the control unit 211 of the power supply control device 151 controls the connection unit 212 in step S141 to supply power to the LTE modem 154.
  • Supply is started and the power of the LTE modem 154 is turned on.
  • the power supply unit 354 of the LTE modem 154 supplies the power to the processing unit that drives the power in step S171 and starts the driving thereof.
  • step S 172 the communication unit 353 of the LTE modem 154 reads desired information (such as the position information of the transmitter 101) from the memory 153.
  • the memory 153 supplies the requested information to the LTE modem 154 in step S161.
  • the LTE communication unit 355 of the LTE modem 154 supplies the information to the server 104 in step S173.
  • step S173 When the process of step S173 ends, the communication unit 353 notifies the power supply control device 151 that the information has been transmitted to the server 104 in step S174.
  • step S142 the control unit 211 of the power supply control device 151 acquires the notification.
  • the control unit 211 of the power supply control device 151 controls the connection unit 212 to end the supply of power to the LTE modem 154 and turns off the power of the LTE modem 154 in step S143.
  • the power supply unit 354 of the LTE modem 154 also ends the supply of power to each processing unit in step S175 and ends their driving.
  • the relay station 102 can suppress supply of unnecessary power to the high sensitivity receiver 152 and the LTE modem 154, and can suppress an increase in power consumption thereof.
  • the high sensitivity receiver 152 and the LTE modem 154 can be driven at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  • the control unit 211 of the power control device 151 executes this power supply control process.
  • control unit 211 controls the connection unit 212 to start supplying power to the high sensitivity receiver 152 in step S181, thereby turning on the power of the high sensitivity receiver 152. Turn on (ON) and cause the high sensitivity receiver 152 to start receiving wireless signals.
  • This process corresponds to step S101 in FIG.
  • step S ⁇ b> 182 the control unit 211 receives the radio signal transmitted from the transmitter 101 by the high sensitivity receiver 152, completes demodulation of the radio signal, and stores information (position information and the like) of the transmitter 101 in the memory 153. Whether or not the data has been written is determined, and the process waits until it is determined that the data has been written. That is, the control unit 211 waits until receiving a notification from the high sensitivity receiver 152. If it is determined that the notification from the high sensitivity receiver 152 has been received (when the process of step S102 of FIG. 17 is performed), the control unit 211 advances the process to step S183.
  • step S183 the control unit 211 controls the connection unit 212 to end the supply of power to the high sensitivity receiver 152, thereby turning off the high sensitivity receiver 152 and turning off the high sensitivity receiver 152.
  • the driving of 152 is ended. This process corresponds to step S103 in FIG.
  • step S184 the control unit 211 controls the connection unit 212 to start supplying power to the LTE modem 154, thereby turning on the LTE modem 154 and turning the LTE modem 154 from the memory 153 to the LTE modem 154.
  • the information of the transmitter 101 is read and the information is supplied to the server 104. This process corresponds to step S141 in FIG.
  • step S185 the control unit 211 determines whether or not the LTE modem 154 reads the information of the transmitter 101 from the memory, and further supplies the information to the server 104, and waits until it is determined that the information is supplied. That is, the control unit 211 stands by until a notification to that effect is received from the LTE modem 154. If it is determined that a notification to that effect has been received from the LTE modem 154 (when the process of step S142 in FIG. 18 is performed), the control unit 211 advances the process to step S186.
  • step S186 the control unit 211 controls the connection unit 212 to end the supply of power to the LTE modem 154, thereby turning off the power of the LTE modem 154 and terminating the driving of the LTE modem 154. .
  • This process corresponds to step S143 in FIG.
  • step S186 the power supply control process is terminated.
  • the power supply control device 151 can suppress the supply of unnecessary power to the high-sensitivity receiver 152 and the LTE modem 154, and suppress an increase in power consumption thereof. it can.
  • the high sensitivity receiver 152 and the LTE modem 154 can be driven at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  • the relay station 102 has the LTE modem 154, and the information received from the transmitter 101 has been described to be supplied to the server 104 from the roof by LTE communication. It is not limited to.
  • the information of the transmitter 101 acquired by the high sensitivity receiver 152 may be supplied from the indoor of the building 130 to the server 104 by wired communication via a router (router with modem function).
  • FIG. 20 shows a main configuration example of the relay station 102 and the like in that case.
  • the relay station 102 includes the power control device 151 and the high sensitivity receiver 152, but does not include the memory 153 or the LTE modem 154. Instead, a memory 153 and a router 361 are installed inside the building 130.
  • the router 361 is a router with a so-called modem function, and connects the LAN constructed by the equipment in the building 130 and the network 103. That is, the router 361 can communicate with the server 104 via the network 103. The router 361 can also communicate with the memory 153 and the like.
  • the power cable 148 is connected to the power control device 151 via the mixer 363.
  • the power supply is the same as in the example of FIG.
  • the high-sensitivity receiver 152 supplies information related to the transmitter 101 (for example, location information and ID of the transmitter 101) acquired by receiving the radio signal transmitted from the transmitter 101 to the memory 153.
  • the signal is supplied to the mixer 363 via the signal cable 362 and is superposed on the electric power in the mixer 363.
  • Information regarding the transmitter 101 is supplied to the mixer 143 and further supplied to the indoor memory 153 via the antenna cable 146.
  • the memory 153 stores the information.
  • the router 361 reads information on the transmitter 101 stored in the memory 153 and supplies the information to the server 104 via the network 103.
  • Information relating to the high sensitivity receiver 152 is also supplied to the router 361 via the memory 153 and to the server 104 via the network 103. Also good.
  • the memory 153 and the router 361 can be driven by obtaining a household power source from an indoor outlet or the like. Therefore, the power supply controller 151 need only control the supply of power to the high sensitivity receiver 152.
  • the control method is the same as in the case of FIG. 3, and each processing unit is configured to execute each process related to the high sensitivity receiver 152 as in the case described with reference to the flowcharts of FIGS. 17 to 19. It ’s fine.
  • the power supply control device 151 may include a power storage unit (so-called battery) that charges power.
  • FIG. 21 is a block diagram illustrating a main configuration example of the power supply control device 151 in that case.
  • the power supply control device 151 in this case includes a connection unit 371 and a power storage unit 372 in addition to the configuration described with reference to FIG. 7.
  • the control unit 211 controls not only the connection unit 212 but also the connection unit 371 and the power storage unit 372.
  • connection unit 371 connects or disconnects between the power supply terminal 201 and the power storage unit 372. That is, the connection unit 371 can control power storage to the power storage unit 372.
  • the configuration of the connection unit 371 is arbitrary, but can be configured by, for example, a 1-input 1-output switch (for example, a switch having the same configuration as the switch 230 and the switch 240).
  • the power storage unit 372 is composed of, for example, a battery such as lithium ion, and can be charged with power supplied via the mixer 143 in a state where the power storage unit 372 is connected to the power supply terminal 201 through the connection unit 371.
  • connection unit 212 determines where the output destination from the power storage unit 372 is (for example, whether the output destination is the power supply terminal 202, the power supply terminal 203, or both are not output destinations. Control). This control method is the same as in the example of FIG. 7 in which the connection destination of the power supply terminal 201 is controlled.
  • the power storage unit 372 is once charged with power, and the high sensitivity receiver 152 and the LTE modem 154 are driven using the power stored in the power storage unit 372. Therefore, it is possible to suppress an increase in the load (influence of power use) on the existing equipment when driving the high sensitivity receiver 152 and the LTE modem 154. For example, when the power of the high sensitivity receiver 152 or the LTE modem 154 can be covered by the power charged in the power storage unit 372, the power of the existing equipment is not used (for example, power supply to the satellite antenna 142, etc. The high-sensitivity receiver 152 and the LTE modem 154 can be driven without significantly affecting the receiver.
  • the high sensitivity receiver 152 and the LTE modem 154 can be prevented from being driven. Thereby, increase of the load with respect to the existing installation can be suppressed.
  • the peak of the power consumption of the relay station 102 can be suppressed.
  • charging to the power storage unit 372 can be controlled by the connection unit 371, for example, charging is performed in a time zone where the operation rate of the high sensitivity receiver 152 or the LTE modem 154 is low, such as at night. be able to. Thereby, the peak of the power consumption of the relay station 102 can be suppressed.
  • charging can be performed in a time zone where the operation rate of existing equipment is low, such as at night. Thereby, increase of the load with respect to the existing installation can be suppressed.
  • step S201 the control unit 211 of the power control device 151 controls the connection unit 212 to start supplying power to the high sensitivity receiver 152, and turns on the power of the high sensitivity receiver 152.
  • the power supply unit 337 of the high sensitivity receiver 152 supplies the power to the processing unit that drives the power in step S211, and starts driving them.
  • the GNSS signal receiver 334 of the high sensitivity receiver 152 receives a GNSS signal from the GNSS satellite.
  • the demodulation unit 333 and the information processing unit 335 of the high sensitivity receiver 152 demodulate the received GNSS signal or perform signal processing in step S213, and obtain time information from the GNSS signal. Extract and get.
  • the demodulation unit 333 and the information processing unit 335 store the acquired time information in, for example, the memory 332.
  • the communication unit 336 of the high sensitivity receiver 152 reads the time information stored in the memory 332 and supplies the time information to the power supply control device 151.
  • step S202 the control unit 211 of the power supply control device 151 acquires the time information. Based on the time information, the control unit 211 determines whether or not the current time is a preset designated time zone. In addition, the control unit 211 measures the state of charge (for example, voltage) of the power storage unit 372 and determines whether or not the battery is fully charged, which is a state in which it is fully charged.
  • the state of charge for example, voltage
  • step S ⁇ b> 203 the control unit 211 connects when the current time is a preset designated time zone, the output voltage from the power storage unit 372 is lower than a predetermined threshold, and the power storage unit 372 is not fully charged.
  • the power supply terminal 201 is connected to the power storage unit 372 by controlling the unit 371 and charging of the power storage unit 372 is started.
  • step S ⁇ b> 204 when power storage unit 372 is fully charged or the designated time zone has passed, control unit 211 controls connection unit 371 to disconnect between power supply terminal 201 and power storage unit 372. And the charge to the electrical storage part 372 is complete
  • step S204 ends, the control process ends.
  • an unnecessary increase in power consumption such as power supply to the fully charged power storage unit 372 can be suppressed.
  • the peak of the power consumption of the relay station 102 can be suppressed.
  • the increase in the load with respect to the existing equipment can be suppressed.
  • control processing related to the discharge of the power storage unit 372 that is, the power supply to the high sensitivity receiver 152 and the LTE modem 154, is performed using the flowcharts of FIGS. 17 and 18 except that the power charged in the power storage unit 372 is used. Since it is basically the same as that described, the description thereof is omitted.
  • control unit 211 determines whether or not the power storage unit 372 is in a fully charged state by confirming the output voltage of the power storage unit 372 in step S221. If it is determined that the battery is not fully charged, the process proceeds to step S222.
  • step S222 the control unit 211 controls the connection unit 212 to start supplying power to the high sensitivity receiver 152, thereby turning on the power of the high sensitivity receiver 152 and performing high sensitivity reception.
  • the machine 152 receives the GNSS signal. This process corresponds to step S201 in FIG.
  • step S223 the control unit 211 determines whether or not the high-sensitivity receiver 152 receives the GNSS signal, extracts time information, and supplies the time information from the high-sensitivity receiver 152. Wait until it is judged. When it is determined that the time information has been acquired from the high sensitivity receiver 152 (when the process of step S202 of FIG. 22 is performed), the control unit 211 advances the process to step S224.
  • step S224 the control unit 211 determines whether or not the current time is in the specified time zone based on the acquired time information. If it is determined that it is the designated time zone, the process proceeds to step S225.
  • the control unit 211 controls the connection unit 371 in step S225,
  • the power storage unit 372 is connected to the power supply terminal 201 to charge the power storage unit 372 with power. This process corresponds to step S203 in FIG.
  • step S226 the control unit 211 determines whether or not the power storage unit 372 is fully charged by checking the output voltage of the power storage unit 372 or the like. If it is determined that the battery is not fully charged, the process proceeds to step S227. In step S227, the control unit 211 determines whether or not the current time is in the specified time zone based on the acquired time information. If it is determined that it is the designated time zone, the process returns to step S225, and the subsequent processes are repeated. That is, charging is performed while the power storage unit 372 is not fully charged and the current time is in the specified time zone.
  • Step S227 when it is determined that the current time is not the designated time zone, the control unit 211 controls the connection unit 371 to disconnect between the power supply terminal 201 and the power storage unit 372 and terminate the charging. This process corresponds to step S204 in FIG. When charging ends, the charging control process ends.
  • step S221 If it is determined in step S221 that the power storage unit 372 is in a fully charged state, charging is omitted and the charging control process ends. Moreover, also when it determines with the present time not being a designated time slot
  • step S226 when it is determined in step S226 that the power storage unit 372 is in a fully charged state, the connection unit 371 is controlled to disconnect between the power supply terminal 201 and the power storage unit 372, thereby terminating the charging.
  • This process corresponds to step S204 in FIG.
  • the charging control process ends.
  • the power supply control device 151 can suppress an unnecessary increase in power consumption, such as power supply to the fully charged power storage unit 372, for example. Moreover, the peak of the power consumption of the relay station 102 can be suppressed. Moreover, the increase in the load with respect to the existing equipment can be suppressed.
  • the control unit 211 of the power control device 151 executes this power supply control process.
  • the control unit 211 confirms the output voltage of the power storage unit 372 in step S241 so that the remaining charge amount (power storage amount) of the power storage unit 372 is equal to the high sensitivity receiver 152. Or whether the LTE modem 154 is sufficient to drive.
  • the reference whether or not this is sufficient is set according to the charging capacity of power storage unit 372, the power consumption of high sensitivity receiver 152 and LTE modem 154, and the like. It may be less than a fully charged state.
  • step S242 Each process of step S242 thru
  • step S241 If it is determined in step S241 that the remaining charge of the power storage unit 372 is not sufficient, the power supply control process ends.
  • the high-sensitivity receiver 152 and the LTE modem 154 are driven using the power of the power storage unit 372 as in the case of the first embodiment.
  • the high sensitivity receiver 152 and the LTE modem 154 are driven without using the power of the existing equipment (for example, without greatly affecting the power supply to the satellite antenna 142 or the like). be able to. That is, an increase in load on existing equipment can be suppressed.
  • FIG. 25 shows a main configuration example of the relay station 102 in that case.
  • the relay station 102 has a high sensitivity transceiver 381 instead of the high sensitivity receiver 152.
  • the high sensitivity transceiver 381 is the same device as the high sensitivity receiver 152 except that it has a transmission function. That is, the high sensitivity transceiver 381 can receive a radio signal transmitted from the transmitter 101 using the antenna 381A.
  • the high sensitivity transceiver 381 can also transmit a radio signal to the transmitter 101 using the antenna 381A.
  • the high sensitivity transceiver 381 can also receive a GNSS signal from the GNSS satellite 161 using the antenna 381B.
  • the transmitter 101 also has a reception function for receiving a radio signal transmitted from the high sensitivity transceiver 381. Therefore, strictly speaking, the transmitter / receiver is described as the transmitter 101 here.
  • the transmitter 101 may have the configuration of the high sensitivity receiver 152 described with reference to FIG. 12 in addition to the configuration described with reference to FIG.
  • the content of the information included in the radio signal transmitted from the high sensitivity transceiver 381 to the transmitter 101 is arbitrary.
  • the high sensitivity transmitter / receiver 381 may request the transmitter 101 to transmit position information by transmitting a wireless signal to the transmitter 101.
  • the high sensitivity transceiver 381 may transmit a wireless signal to the transmitter 101 so that the timing at which the transmitter 101 transmits the wireless signal can be designated. By doing so, the wireless signal can be transmitted to the transmitter 101 at the timing when the high-sensitivity transceiver 381 is driven, so that the wireless signal can be easily received by the high-sensitivity transceiver 381. be able to.
  • the high-sensitivity transceiver 381 can supply arbitrary information to the memory 153 and store it, as in the case of the high-sensitivity receiver 152.
  • the LTE modem 154 can also read the information from the memory 153 and supply it to the server 104.
  • the power supply control method by the power supply control device 151 is basically the same as that of the other embodiments described above. In this case, even when the high sensitivity transceiver 381 transmits a radio signal, the power supply control device Power is supplied from 151 to the high sensitivity transceiver 381.
  • the high-sensitivity transceiver 381 includes a signal transceiver 391, a reception information processor 302, and a bus 303.
  • the signal transmission / reception unit 391 performs processing related to transmission / reception of radio signals.
  • the signal transmission / reception unit 391 includes an antenna 381A, a switching unit 392, a signal reception unit 301, and a signal transmission unit 393.
  • the switching unit 392 switches the processing unit connected to the antenna 381A according to signal transmission / reception. For example, when receiving a radio signal, the switching unit 392 connects the signal receiving unit 301 to the antenna 381A. Thereby, the signal receiving part 301 can perform the signal processing with respect to the radio signal received by the antenna 381A. For example, when transmitting a radio signal, the switching unit 392 connects the signal transmission unit 393 to the antenna 381A.
  • the signal transmission unit 393 performs processing related to transmission of a radio signal. In other words, the signal transmission unit 393 can execute signal processing on the signal transmitted from the antenna 381A.
  • the signal transmission unit 393 includes a PLL (Phase Locked Loop) 394, an oscillation unit 395, and an LNA 396.
  • the reception information processing unit 302 supplies a signal indicating transmission information to the signal transmission unit 393 via the bus 303.
  • the PLL 394 generates a signal having a frequency corresponding to the frequency of the signal indicating the transmission information and supplies the signal to the oscillation unit 395. That is, the PLL 394 supplies the signal modulated by the transmission information to the oscillation unit 395.
  • the oscillating unit 395 generates a carrier signal (for example, 925 MHz) modulated according to the signal, and supplies it to the LNA 396 as a transmission signal.
  • the LNA 396 amplifies the transmission signal and transmits it as a radio signal from the antenna 381A via the switching unit 392.
  • the reception information processing unit 302 basically has the same configuration as that in FIG. 12, but includes a modulation / demodulation unit 397 instead of the demodulation unit 333.
  • the modem unit 397 performs not only processing related to demodulation of the received signal but also processing related to modulation of the transmission signal.
  • the modem unit 397 supplies, for example, a signal indicating the modulated transmission information to the signal transmission unit 393.
  • the relay station 102 includes the high sensitivity transceiver 381 instead of the high sensitivity receiver 152, the relay station 102 is not required to drive the high sensitivity transceiver 381 or the LTE modem 154. By suppressing the supply of power to them, an increase in power consumption can be suppressed. Thereby, the relay station 102 can suppress the occurrence of power shortage and realize more stable power supply.
  • the control unit 211 of the power supply controller 151 controls the connection unit 212 to start supplying power to the high-sensitivity transceiver 381 in step S261 of FIG. Then, the power source of the high sensitivity transceiver 381 is turned on.
  • the power supply unit 337 of the high-sensitivity transceiver 381 supplies the power to the processing unit that drives the power in step S271 and starts driving them.
  • step S272 the reception information processing unit 302 of the high sensitivity transceiver 381 generates transmission information to be transmitted from the signal transmission unit 393.
  • step S273 the modem unit 397 modulates the transmission information to generate a transmission signal.
  • the signal transmission unit 393 transmits the transmission signal as a radio signal.
  • the communication unit 336 of the high sensitivity transceiver 381 notifies the power supply control device 151 that the transmission information has been transmitted in step S274.
  • step S262 the control unit 211 of the power supply control device 151 acquires the notification.
  • the control unit 211 of the power supply control device 151 controls the connection unit 212 to end the supply of power to the high sensitivity transmitter / receiver 381 in step S263 and turns off the power of the high sensitivity transmitter / receiver 381 ( OFF).
  • the power supply unit 337 of the high-sensitivity transceiver 381 also ends the supply of power to each processing unit in step S275 and ends their driving.
  • the relay station 102 can suppress supply of unnecessary power to the high-sensitivity transceiver 381 and the LTE modem 154, and can suppress an increase in power consumption thereof.
  • the high-sensitivity transceiver 381 and the LTE modem 154 can be driven at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  • transmission processing and reception processing of the high sensitivity transceiver 381 can be executed at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  • step S281 the control unit 211 determines whether or not the high sensitivity transceiver 381 performs reception. If it is determined that the high sensitivity transceiver 381 performs reception, the process proceeds to step S283. In this case, each process of step S283 to step S288 is executed in the same manner as each process of step S181 to step S186 in FIG. When the process of step S288 ends, the power supply control process ends.
  • step S282 If it is determined in step S282 that the high sensitivity transceiver 381 performs transmission, the process proceeds to step S289.
  • step S289 the control unit 211 controls the connection unit 212 to start supplying power to the high sensitivity transmitter / receiver 381, thereby turning on the power of the high sensitivity transmitter / receiver 381.
  • the sensitivity transceiver 381 is caused to generate transmission information. This process corresponds to step S261 in FIG.
  • step S290 the control unit 211 determines whether or not the transmission information is generated in the high-sensitivity transceiver 381, the transmission information is demodulated, and transmitted to the transmitter 101 as a radio signal, and is determined to be transmitted. stand by. That is, the control unit 211 stands by until a notification to that effect is received from the high sensitivity transceiver 381. If it is determined that a notification to that effect has been received from the high sensitivity transceiver 381 (when the process of step S262 in FIG. 27 is performed), the control unit 211 advances the process to step S291.
  • step S291 the control unit 211 controls the connection unit 212 to end the supply of power to the high sensitivity transmitter / receiver 381, thereby turning off the power of the high sensitivity transmitter / receiver 381 and turning off the high sensitivity transmitter / receiver.
  • the driving of 381 is terminated.
  • step S263 the power supply control process ends.
  • step S281 If it is determined in step S281 that the remaining charge of the power storage unit 372 is not sufficient, the power supply control process ends.
  • the high sensitivity transceiver 381 and the LTE modem 154 are driven using the power of the power storage unit 372.
  • the high-sensitivity transceiver 381 and the LTE modem 154 are driven without using the power of the existing equipment (for example, without greatly affecting the power supply to the satellite antenna 142 or the like). be able to. That is, an increase in load on existing equipment can be suppressed.
  • the high sensitivity transceiver 381 can perform transmission and reception at different timings. Therefore, an increase in the power consumption peak (maximum value) of the high sensitivity transceiver 381 can be suppressed.
  • the power supply control device 151 has been described as including the connection unit 371 and the power storage unit 372.
  • the connection unit 371 and the power storage unit 372 may not be included as in the example of FIG. In that case, the process of step S281 may be omitted in the power supply control process of FIG.
  • the relay station 102 may include a transmitter similar to the transmitter 101 instead of the high sensitivity transceiver 381 described above.
  • the transmitter in that case may be configured such that, for example, the signal receiving unit 301 and the switching unit 392 are omitted from the configuration of the high-sensitivity transceiver 381 illustrated in FIG. That is, as described in the present embodiment, relay station 102 can control the supply of power when transmitting a signal, basically in the same manner as when receiving a signal. Therefore, an increase in power consumption can be suppressed.
  • relay station 102 is not limited to the example described above in each embodiment.
  • the relay station 102 may be configured as one device.
  • at least two of the power supply control device 151, the high sensitivity receiver 152, the memory 153, and the LTE modem 154 may be configured as one device.
  • the mixer 143 may be configured as one device together with the power control device 151 and the like.
  • the power supply control device 151 of the configuration example of FIG. 20 may include the connection unit 371 and the power storage unit 372 as described in the second embodiment. Further, for example, the relay station 102 may include other processing units not described above. The power supply control device 151 may also control the supply of power to the device. The number of devices that the power supply control device 151 controls the power supply is arbitrary.
  • the function of the power supply control device 151 may be built in a plurality of devices.
  • the high sensitivity receiver 152 may include the power control unit 401
  • the LTE modem 154 may include the power control unit 402.
  • the power supply control unit 401 controls the supply of power to the high sensitivity receiver 152.
  • the power control unit 402 controls power supply to the LTE modem 154.
  • Each control method is the same as that of the power control device 151.
  • the power supply control unit 401 and the power supply control unit 402 may perform power supply control in cooperation by exchanging information with each other.
  • the number of terrestrial antennas 141 to power cables 148 is arbitrary and may be plural.
  • a plurality of mixers 143 and power cables 148 may be provided. That is, a plurality of power supply paths may exist. In that case, the power supply from each path may be controlled independently of each other or may be comprehensively controlled.
  • the relay station 102 to be driven may be specified by the server 104 using, for example, an ID.
  • an ID By limiting the relay station 102 to be driven to a part in this way, an increase in power consumption of the entire system can be suppressed.
  • the position notification system 100 has been described as an example, but the present technology can also be applied to systems other than the position notification system 100 described above.
  • the transmitter 101 may be installed not only on a person but also on a moving body.
  • the present technology can also be applied to an anti-theft system 410 for preventing theft of automobiles, motorcycles and the like as shown in FIG.
  • the transmitter 101 is installed on an object whose position is monitored by the user, for example, an automobile 411 or a motorcycle 412 owned by the user.
  • the transmitter 101 notifies the relay station 102 of its own position information (that is, position information of the automobile 411 and the motorcycle 412) as appropriate. That is, as in the case of the position notification system 100, the user can access the server 104 from the terminal device 105 and grasp the positions of the automobile 411 and the motorcycle 412. Therefore, since the user can grasp the positions of the automobile 411 and the motorcycle 412 even if it is stolen, the user can easily retrieve the automobile 411 and the motorcycle 412.
  • the present technology can be applied to the relay station 102 as in the case of the position notification system 100.
  • the present technology it is possible to suppress an increase in power consumption of a device (for example, the high sensitivity receiver 152) that configures the relay station 102.
  • the transmission information generation unit 261 of the transmitter 101 can generate transmission information including arbitrary information.
  • the transmission information generation unit 261 may generate transmission information including image and audio information.
  • the transmission information generation unit 261 may generate transmission information including information indicating measurement results such as temperature, distance, brightness, angle, speed, and acceleration.
  • the transmission information generation unit 261 may generate transmission information including control information for controlling the device.
  • the transmission information generation unit 261 may generate transmission information including other information.
  • the transmission information generation unit 261 may generate transmission information including a plurality of information.
  • the transmission information generation unit 261 may generate transmission information including information supplied from another device.
  • the transmission information generation unit 261 may include an image, light, brightness, saturation, electricity, sound, vibration, acceleration, speed, angular velocity, force, temperature (not temperature distribution), humidity, distance, area, volume, shape, Generates transmission information including information (sensor output) output from various sensors that perform detection or measurement for any variable such as flow rate, time, time, magnetism, chemical substance, odor, or the amount of change. You may do it.
  • the present technology is not limited to the system that notifies the position information as described above, but includes, for example, three-dimensional shape measurement, spatial measurement, object observation, movement deformation observation, biological observation, authentication processing, monitoring, autofocus, and imaging control. , Lighting control, tracking processing, input / output control, electronic device control, actuator control, etc.
  • the present technology can be applied to a system in an arbitrary field such as traffic, medical care, crime prevention, agriculture, livestock industry, mining, beauty, factory, home appliance, weather, and nature monitoring.
  • the present technology can also be applied to a system that captures an image for viewing using a digital camera, a portable device with a camera function, or the like.
  • this technology monitors in-vehicle systems, traveling vehicles, and roads that photograph the front, rear, surroundings, and interiors of automobiles for safe driving such as automatic stop and recognition of the driver's condition.
  • the present invention can also be applied to a system used for traffic, such as a surveillance camera system that performs a distance measurement between vehicles or the like.
  • the present technology can also be applied to a system provided for security using a security camera for surveillance purposes, a camera for personal authentication purposes, or the like.
  • the present technology can also be applied to a system provided for sports using various sensors that can be used for sports applications such as a wearable camera.
  • the present technology can also be applied to a system used for agriculture using various sensors such as a camera for monitoring the state of a field or crop.
  • the present technology can also be applied to a system used for livestock industry that uses various sensors for monitoring the state of livestock such as pigs and cows.
  • the present technology can be applied to systems that monitor natural conditions such as volcanoes, forests, and oceans, meteorological observation systems that observe weather, temperature, humidity, wind speed, sunshine hours, and so on, such as birds, fish, and insects. It can also be applied to a system for observing the ecology of wildlife such as moss, amphibians, mammals, insects and plants.
  • the specifications of radio signals and information transmitted and received are arbitrary. That is, the present technology can be applied to an arbitrary signal transmission / reception system (an apparatus of a relay station) having the above-described configuration in each embodiment.
  • the series of processes described above can be executed by hardware or can be executed by software.
  • a series of processing is executed by software, for example, the control unit 211 of the power supply control device 151, the transmission information generation unit 261 of the transmitter 101, the control unit 331 of the high sensitivity receiver 152, the control unit 351 of the LTE modem 154, The control unit 331 of the sensitivity transceiver 381, the power control unit 401, the control unit 211 of the power control unit 402, and the like may be configured as a computer that can execute the software. Examples of the computer include a computer incorporated in dedicated hardware and a general-purpose computer capable of executing an arbitrary function by installing various programs.
  • FIG. 31 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 620 is also connected to the bus 614.
  • An input unit 621, an output unit 622, a storage unit 623, a communication unit 624, and a drive 625 are connected to the input / output interface 620.
  • the input unit 621 includes arbitrary input devices such as a keyboard, a mouse, a touch panel, an image sensor, a microphone, a switch, and an input terminal.
  • the output unit 622 includes an arbitrary output device such as a display, a speaker, and an output terminal, for example.
  • the storage unit 623 includes an arbitrary storage medium such as a hard disk, a RAM disk, a nonvolatile memory such as an SSD (Solid State Drive) or a USB (Universal Serial Bus) memory.
  • the communication unit 624 is, for example, any communication standard such as Ethernet (registered trademark), Bluetooth (registered trademark), USB, HDMI (registered trademark) (High-Definition Multimedia Interface), IrDA, wired or wireless, or both. Communication interface.
  • the drive 625 drives a removable medium 631 having an arbitrary storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 611 loads the program stored in the storage unit 623 into the RAM 613 via the input / output interface 620 and the bus 614 and executes the program, for example. Is performed.
  • the RAM 613 also appropriately stores data necessary for the CPU 611 to execute various processes.
  • the program executed by the computer can be recorded and applied to, for example, a removable medium 631 as a package medium or the like.
  • the program can be installed in the storage unit 623 via the input / output interface 620 by attaching the removable medium 631 to the drive 625.
  • This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 624 and installed in the storage unit 623.
  • a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be received by the communication unit 624 and installed in the storage unit 623.
  • this program can be installed in the ROM 612 or the storage unit 623 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • each step described above can be executed in each device described above or any device other than each device described above.
  • the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above.
  • Information necessary for processing may be transmitted to the apparatus as appropriate.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the present technology is not limited to this, and any configuration mounted on such a device or a device constituting the system, for example, a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
  • a processor as a system LSI (Large Scale Integration)
  • a module using a plurality of processors a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
  • An information processing apparatus including a control unit that controls supply of the power to the reception unit so that power is supplied when the reception unit that receives a radio signal is driven.
  • the control unit controls the supply of the extracted power supplied to the reception unit by being superimposed on the broadcast wave signal via a coaxial cable that transmits the broadcast wave signal received by the antenna.
  • the information processing apparatus according to (1).
  • (3) The control unit Starting the supply of power to the receiving unit, causing the receiving unit to receive the wireless signal, and storing information obtained from the received wireless signal in a storage unit; The information processing apparatus according to (1) or (2), wherein when the notification that the information is stored in the storage unit is acquired, the supply of the power to the reception unit is terminated.
  • the information processing apparatus according to any one of (1) to (3), further including the reception unit.
  • the control unit controls the supply of the power supplied, extracted, and stored in the power storage unit to the reception unit while being superimposed on the signal via the coaxial cable.
  • the information processing apparatus according to any one of 4).
  • the information processing apparatus according to any one of 4).
  • the information processing apparatus wherein the control unit prohibits the supply of the power to the receiving unit when the power storage amount of the power storage unit is less than a predetermined threshold.
  • the control unit further controls power storage in the power storage unit of the extracted power supplied and superimposed on the signal via the coaxial cable.
  • Information processing device Information processing device.
  • the control unit Starting the supply of power to the transmission unit, causing the transmission unit to generate transmission information, causing the generated transmission information to be transmitted as the radio signal, The information processing apparatus according to (11), wherein when receiving a notification that the wireless signal has been transmitted, the supply of the power to the transmission unit is terminated. (13) The information processing apparatus according to (11) or (12), further including the transmission unit. (14) The control unit further controls the supply of the power to the communication unit so as to supply power when a communication unit that communicates with another communication device is driven. ).
  • the control unit Starting the supply of power to the communication unit, causing the communication unit to read the information from a storage unit that stores information obtained from the radio signal received by the reception unit, and reading the information To the other communication device by the communication, The information processing apparatus according to (14), wherein when the notification that the information is supplied to the other communication apparatus is acquired, the supply of the power to the communication unit is terminated.
  • 100 location notification system 101 transmitter, 102 relay station, 103 network, 104 server, 130 building, 131 rooftop equipment, 143 mixer, 144 to 146 antenna cable, 148 power cable, 151 power control device, 152 high sensitivity reception Machine, 153 memory, 154 LTE modem, 161 GNSS satellite, 185 PF, 186 mixing section, 191 to 193 inductor, 194 to 196 capacitor, 201 to 196 power supply terminal, 211 control section, 212 connection section, 301 signal receiving section, 302 Reception information processing unit, 303 bus, 330 bus, 331 control unit, 332 memory, 333 demodulation unit, 334 GNSS signal reception unit, 335 information processing Unit, 336 communication unit, 337 power supply unit, 350 bus, 351 control unit, 352 memory, 353 communication unit, 354 power supply unit, 355 LTE communication unit, 361 router, 362 signal cable, 363 mixer, 371 connection unit, 372 power storage Unit, 381 high sensitivity transceiver, 391 signal transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This technology pertains to an information processing device and method, and a program, which make it possible to suppress an increase in power consumption. This technology has a control unit which controls the supply of power to a receiving unit in a manner such that power is supplied when the receiving unit for receiving a wireless signal is operating. For example, this control unit controls the supply to the receiving unit of power that is supplied and extracted in a superimposed manner with a broadcast wave signal via a coaxial cable for transmitting the broadcast wave signal which is received through an antenna. This technology is applicable, for example, to an information processing device, a power supply control device, a signal transmission device, a signal receiving device, a signal transmitting/receiving device, a communication device, an electronic device, a computer, a program, a storage medium, a system, and the like.

Description

情報処理装置および方法、並びに、プログラムInformation processing apparatus and method, and program
 本技術は、情報処理装置および方法、並びに、プログラムに関し、特に、消費電力の増大を抑制することができるようにした情報処理装置および方法、並びに、プログラムに関する。 The present technology relates to an information processing apparatus and method, and a program, and more particularly, to an information processing apparatus and method that can suppress an increase in power consumption, and a program.
 従来、家屋の屋根上等に放送信号受信用のアンテナとともに、通信用のアンテナを設置し、その通信用アンテナと屋内の通信装置との間の送信信号や受信信号の伝送を、放送信号受信用のアンテナにより受信された放送信号を屋内のTV受像機等に伝送する同軸ケーブルを用いて行う方法があった(例えば、特許文献1参照)。 Conventionally, an antenna for communication is installed together with an antenna for receiving broadcast signals on the roof of a house, etc., and transmission of transmission signals and reception signals between the communication antenna and indoor communication devices is performed for receiving broadcast signals. There is a method of using a coaxial cable for transmitting a broadcast signal received by the antenna of the antenna to an indoor TV receiver or the like (see, for example, Patent Document 1).
特許第4125545号公報Japanese Patent No. 4125545
 しかしながら、この方法の場合、屋内から屋根上への電力の供給は衛星放送用のアンテナに対するものしか想定されていなかった。屋根上に受信機や通信装置等を設置する場合、それらの装置を駆動させるための電源を用意する必要があるが、これらの装置の消費電力が増大すると、より大規模な電力供給を実現しなければならず、そのためには、設備や設置工事等のコストが増大するおそれがあった。 However, in the case of this method, the power supply from the indoor to the roof was supposed only to the satellite broadcasting antenna. When installing receivers, communication devices, etc. on the roof, it is necessary to prepare a power source for driving these devices. However, if the power consumption of these devices increases, a larger-scale power supply will be realized. For this purpose, the cost of equipment and installation work may increase.
 本技術は、このような状況に鑑みて提案されたものであり、消費電力の増大を抑制することを目的とする。 This technology has been proposed in view of such a situation, and aims to suppress an increase in power consumption.
 本技術の情報処理装置は、無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する制御部を備える情報処理装置である。 An information processing apparatus according to an embodiment of the present technology is an information processing apparatus including a control unit that controls supply of the power to the reception unit so that power is supplied when the reception unit that receives a radio signal is driven.
 前記制御部は、アンテナにおいて受信された放送波信号を伝送する同軸ケーブルを介して前記放送波信号と重畳して供給され、抽出された電力の、前記受信部への供給を制御することができる。 The control unit can control supply of the extracted power supplied to the reception unit by being superimposed on the broadcast wave signal via a coaxial cable that transmits the broadcast wave signal received by the antenna. .
 前記制御部は、前記受信部への前記電力の供給を開始して、前記受信部に前記無線信号を受信させ、受信した前記無線信号より得られた情報を記憶部に記憶させ、前記情報が前記記憶部に記憶されたとの通知を取得した場合、前記受信部への前記電力の供給を終了することができる。 The control unit starts supplying the power to the receiving unit, causes the receiving unit to receive the radio signal, stores information obtained from the received radio signal in a storage unit, and When the notification that it is stored in the storage unit is acquired, the supply of the power to the receiving unit can be terminated.
 前記受信部をさらに備えることができる。 The receiving unit may be further provided.
 前記制御部は、前記同軸ケーブルを介して前記信号と重畳して供給され、抽出され、蓄電部に蓄電された前記電力の、前記受信部への供給を制御することができる。 The control unit can control the supply of the electric power supplied, extracted, and stored in the power storage unit to the reception unit while being superimposed on the signal via the coaxial cable.
 前記制御部は、前記蓄電部の蓄電量が所定の閾値より少ない場合、前記受信部への前記電力の供給を禁止することができる。 The control unit can prohibit the supply of the power to the receiving unit when the amount of power stored in the power storage unit is less than a predetermined threshold.
 前記制御部は、さらに、前記同軸ケーブルを介して前記信号と重畳して供給され、抽出された前記電力の、前記蓄電部への蓄電を制御することができる。 The control unit can further control power storage in the power storage unit of the extracted power supplied and superimposed on the signal via the coaxial cable.
 前記制御部は、前記蓄電部の蓄電量が所定の閾値より多い場合、前記蓄電部への前記電力の蓄電を禁止することができる。 The control unit can prohibit the storage of the electric power in the power storage unit when the power storage amount of the power storage unit is larger than a predetermined threshold.
 前記制御部は、所定の時間帯において前記蓄電部に前記電力を蓄電させることができる。 The control unit can cause the power storage unit to store the electric power in a predetermined time period.
 前記蓄電部をさらに備えることができる。 The power storage unit can be further provided.
 前記制御部は、さらに、無線信号を送信する送信部が駆動する際に電力を供給するように、前記送信部への前記電力の供給を制御することができる。 The control unit can further control the supply of power to the transmission unit so that power is supplied when the transmission unit that transmits a radio signal is driven.
 前記制御部は、前記送信部への前記電力の供給を開始して、前記送信部に送信情報を生成させ、生成した前記送信情報を前記無線信号として送信させ、前記無線信号が送信されたとの通知を取得した場合、前記送信部への前記電力の供給を終了することができる。 The control unit starts supplying the power to the transmission unit, causes the transmission unit to generate transmission information, causes the generated transmission information to be transmitted as the radio signal, and transmits the radio signal. When the notification is acquired, the supply of the power to the transmission unit can be terminated.
 前記送信部をさらに備えることができる。 The transmitter can be further provided.
 前記制御部は、さらに、他の通信装置と通信を行う通信部が駆動する際に電力を供給するように、前記通信部への前記電力の供給を制御することができる。 The control unit can further control the supply of power to the communication unit such that power is supplied when a communication unit that communicates with another communication device is driven.
 前記制御部は、前記通信部への前記電力の供給を開始して、前記通信部に、前記受信部が受信した前記無線信号より得られた情報を記憶する記憶部から前記情報を読み出させ、読み出した前記情報を前記通信により前記他の通信装置に供給させ、前記情報が前記他の通信装置に供給されたとの通知を取得した場合、前記通信部への前記電力の供給を終了することができる。 The control unit starts supplying the power to the communication unit, and causes the communication unit to read the information from a storage unit that stores information obtained from the radio signal received by the reception unit. The supply of the power to the communication unit is terminated when the read information is supplied to the other communication device by the communication and a notification that the information has been supplied to the other communication device is acquired. Can do.
 前記通信部をさらに備えることができる。 The communication unit can be further provided.
 前記記憶部をさらに備えることができる。 The storage unit may be further provided.
 前記受信部は、925MHzを含む周波数帯域の前記無線信号を受信することができる。 The receiving unit can receive the wireless signal in a frequency band including 925 MHz.
 本技術の情報処理方法は、情報処理装置が、無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する情報処理方法である。 The information processing method of the present technology is an information processing method for controlling the supply of power to the reception unit so that the information processing apparatus supplies power when the reception unit that receives a radio signal is driven.
 本技術のプログラムは、コンピュータを、無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する制御部として機能させるためのプログラムである。 The program of the present technology is a program for causing a computer to function as a control unit that controls supply of the power to the reception unit so that power is supplied when the reception unit that receives a radio signal is driven. .
 本技術の情報処理装置および方法、並びに、プログラムにおいては、無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給が制御される。 In the information processing apparatus and method and the program of the present technology, the supply of the power to the receiving unit is controlled so that the power is supplied when the receiving unit that receives the radio signal is driven.
 本技術によれば、情報を処理することが出来る。また本技術によれば、消費電力の増大を抑制することができる。 This technology can process information. Moreover, according to this technique, the increase in power consumption can be suppressed.
位置通知システムの主な構成例を示す図である。It is a figure which shows the main structural examples of a position notification system. 位置通知の様子の例を説明する図である。It is a figure explaining the example of the mode of a position notification. 中継局の主な構成例を示す図である。It is a figure which shows the main structural examples of a relay station. 混合器の主な構成例を示す図である。It is a figure which shows the main structural examples of a mixer. 信号の混合の様子例を説明する図である。It is a figure explaining the example of a mode of signal mixing. PFの主な構成例を示す図である。It is a figure which shows the main structural examples of PF. 電源制御装置の主な構成例を示す図である。It is a figure which shows the main structural examples of a power supply control apparatus. 接続部の主な構成例を示す図である。It is a figure which shows the main structural examples of a connection part. 送信機の主な構成例を示す図である。It is a figure which shows the main structural examples of a transmitter. スーパーフレームの主な構成例を示す図である。It is a figure which shows the main structural examples of a super frame. 各部における信号の例を説明する図である。It is a figure explaining the example of the signal in each part. 高感度受信機の主な構成例を示す図である。It is a figure which shows the main structural examples of a high sensitivity receiver. 受信信号波形の例を示す図である。It is a figure which shows the example of a received signal waveform. 位相揺らぎの近似の様子の例を説明する図である。It is a figure explaining the example of the mode of an approximation of phase fluctuation. 復号結果を示す図である。It is a figure which shows a decoding result. LTEモデムの主な構成例を示す図である。It is a figure which shows the main structural examples of a LTE modem. 制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of control processing. 制御処理の流れの例を説明する、図17に続くフローチャートである。It is a flowchart following FIG. 17 explaining the example of the flow of control processing. 電源供給制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a power supply control process. 中継局の他の構成例を示す図である。It is a figure which shows the other structural example of a relay station. 電源制御装置の他の構成例を示す図である。It is a figure which shows the other structural example of a power supply control apparatus. 制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of control processing. 充電制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a charge control process. 電源供給制御処理の流れの他の例を説明するフローチャートである。It is a flowchart explaining the other example of the flow of a power supply control process. 中継局のさらに他の構成例を示す図である。It is a figure which shows the further another structural example of a relay station. 高感度送受信機の主な構成例を示す図である。It is a figure which shows the main structural examples of a highly sensitive transceiver. 制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of control processing. 電源供給制御処理の流れの、さらに他の例を説明するフローチャートである。It is a flowchart explaining the further another example of the flow of a power supply control process. 中継局のさらに他の構成例を示す図である。It is a figure which shows the further another structural example of a relay station. 盗難防止システムの主な構成例を示す図である。It is a figure which shows the main structural examples of an antitheft system. コンピュータの主な構成例を示すブロック図である。And FIG. 20 is a block diagram illustrating a main configuration example of a computer.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(位置通知システム)
2.第2の実施の形態(電源制御装置)
3.第3の実施の形態(中継局)
4.第4の実施の形態(中継局)
5.第5の実施の形態(信号送受信システム)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. First embodiment (position notification system)
2. Second embodiment (power control device)
3. Third embodiment (relay station)
4). Fourth embodiment (relay station)
5). Fifth embodiment (signal transmission / reception system)
 <1.第1の実施の形態>
  <位置通知システム>
  <信号送受信システム>
 図1は、本技術を適用した信号送受信システムの一実施の形態である位置通知システムの主な構成例を示す図である。図1に示される位置通知システム100は、送信機101が自身の位置を通知するシステムである。
<1. First Embodiment>
<Location notification system>
<Signal transmission / reception system>
FIG. 1 is a diagram illustrating a main configuration example of a position notification system which is an embodiment of a signal transmission / reception system to which the present technology is applied. A position notification system 100 shown in FIG. 1 is a system in which a transmitter 101 notifies its own position.
 送信機101は、自身の位置を示す位置情報を、無線信号として送信する。中継局102は、その無線信号を受信して送信機101の位置情報を取得し、その位置情報を、ネットワーク103を介してサーバ104に供給する。サーバ104は、送信機101毎に位置情報を管理する。送信機101の位置を知りたいユーザに操作される端末装置105は、ネットワーク103を介してサーバ104にアクセスし、送信機101の位置情報を取得し、例えば地図データ等とともに表示する等して、ユーザに送信機101の位置を通知する。 The transmitter 101 transmits position information indicating its own position as a radio signal. The relay station 102 receives the radio signal, acquires the position information of the transmitter 101, and supplies the position information to the server 104 via the network 103. The server 104 manages position information for each transmitter 101. The terminal device 105 operated by a user who wants to know the position of the transmitter 101 accesses the server 104 via the network 103, acquires the position information of the transmitter 101, and displays it with map data, for example, The user is notified of the position of the transmitter 101.
 送信機101は、例えば、ユーザが位置を把握したい対象者に携帯させる。図1の例では、高齢者110に送信機101を携帯させている。送信機101は、例えば、GNSS(Global Navigation Satellite System)衛星からGNSS信号を受信する等して、適宜、自身の位置情報(例えば、緯度および経度)を求めることができる。送信機101は、適宜、その位置情報を無線信号として送信する。したがって、ユーザは、上述したように端末装置105を操作して、位置監視対象である高齢者110の位置を把握することができる。 The transmitter 101 is, for example, carried by a target person whose user wants to grasp the position. In the example of FIG. 1, the transmitter 101 is carried by an elderly person 110. The transmitter 101 can appropriately obtain its own position information (for example, latitude and longitude) by receiving a GNSS signal from a GNSS (Global Navigation Satellite System) satellite, for example. The transmitter 101 transmits the position information as a radio signal as appropriate. Therefore, the user can grasp the position of the elderly person 110 who is the position monitoring target by operating the terminal device 105 as described above.
 なお、位置監視の対象者は、任意である。例えば、子供であってもよいし、犬や猫等の動物であってもよいし、企業の社員等であってもよい。送信機101は、専用の装置として構成されるようにしてもよいが、例えば、携帯電話機やスマートフォンのような携帯型の情報処理装置に組み込むようにしてもよい。 Note that the position monitoring target is arbitrary. For example, it may be a child, an animal such as a dog or a cat, or a company employee. The transmitter 101 may be configured as a dedicated device, but may be incorporated into a portable information processing device such as a mobile phone or a smartphone, for example.
 ネットワーク103は、任意の通信網であり、有線通信を行ってもよいし、無線通信を行ってもよいし、それらの両方を行ってもよい。また、ネットワーク103が、1の通信網により構成されるようにしてもよいし、複数の通信網により構成されるようにしてもよい。例えば、インターネット、公衆電話回線網、所謂3G回線や4G回線等の無線移動体用の広域通信網、WAN(Wide Area Network)、LAN(Local Area Network)、Bluetooth(登録商標)規格に準拠した通信を行う無線通信網、NFC(Near Field Communication)等の近距離無線通信の通信路、赤外線通信の通信路、HDMI(登録商標)(High-Definition Multimedia Interface)やUSB(Universal Serial Bus)等の規格に準拠した有線通信の通信網等、任意の通信規格の通信網や通信路がネットワーク103に含まれるようにしてもよい。 The network 103 is an arbitrary communication network, and may perform wired communication, wireless communication, or both of them. Further, the network 103 may be configured by a single communication network or may be configured by a plurality of communication networks. For example, communication conforming to the Internet, public telephone network, so-called 3G and 4G wireless mobile wide area networks, WAN (Wide Area Network), LAN (Local Area Network), Bluetooth (registered trademark) standards , Wireless communication network for near field communication such as NFC (Near Field Communication), infrared communication path, HDMI (High-Definition Multimedia Interface) and USB (Universal Serial Bus) standards The network 103 may include a communication network or a communication path of an arbitrary communication standard such as a wired communication network complying with the standard.
 サーバ104や端末装置105は、情報を処理する情報処理装置である。サーバ104や端末装置105は、ネットワーク103に通信可能に接続されており、このネットワーク103を介して、ネットワーク103に接続される他の通信装置と通信を行い、情報を授受することができる。 The server 104 and the terminal device 105 are information processing devices that process information. The server 104 and the terminal device 105 are communicably connected to the network 103, and can communicate with other communication devices connected to the network 103 via the network 103 to exchange information.
 このような位置通知システム100において、送信機101、中継局102、サーバ104、および端末装置105の数は任意であり、それぞれ、複数であってもよい。例えば、図2に示されるように、位置通知システム100が、互いに異なる位置に設置されている中継局102をN台(Nは任意の自然数)有するものとする(中継局102-1乃至中継局102-N)。 In such a position notification system 100, the number of transmitters 101, relay stations 102, servers 104, and terminal devices 105 is arbitrary and may be plural. For example, as shown in FIG. 2, it is assumed that the position notification system 100 has N relay stations 102 (N is an arbitrary natural number) installed at different positions (relay station 102-1 through relay station). 102-N).
 送信機101が無線信号(位置情報)を送信するタイミングは任意である。例えば、送信機101が、無線信号を、定期的に送信するようにしてもよいし、所定のイベント発生時(例えば、所定の距離移動した場合や、所定の時刻になった場合等)に送信するようにしてもよい。 The timing at which the transmitter 101 transmits a radio signal (position information) is arbitrary. For example, the transmitter 101 may periodically transmit a wireless signal, or may be transmitted when a predetermined event occurs (for example, when a predetermined distance is moved or a predetermined time is reached). You may make it do.
 この場合、送信機101から送信された無線信号は、送信機101の近くに位置する中継局102により受信される。送信機101が中継局102-K(Kは、1≦K≦Nの整数)の通信可能範囲121内から無線信号を送信すると、中継局102-Kは、その無線信号を受信して、送信機101の位置情報を取得し、その位置情報を、ネットワーク103を介してサーバ104に供給する(位置情報を中継する)。 In this case, the radio signal transmitted from the transmitter 101 is received by the relay station 102 located near the transmitter 101. When the transmitter 101 transmits a radio signal from the communicable range 121 of the relay station 102-K (K is an integer of 1 ≦ K ≦ N), the relay station 102-K receives the radio signal and transmits it. The position information of the machine 101 is acquired, and the position information is supplied to the server 104 via the network 103 (position information is relayed).
 高齢者110(送信機101)が他の中継局102の通信可能範囲内に移動して、送信機101が無線信号を送信すると、その中継局102が同様に位置情報を中継する。したがって、高齢者110(送信機101)が、いずれかの中継局102の通信可能範囲内に位置する限り、ユーザは、高齢者110の位置を把握することができる。 When the elderly person 110 (transmitter 101) moves within the communicable range of another relay station 102 and the transmitter 101 transmits a radio signal, the relay station 102 relays the position information in the same manner. Therefore, as long as the elderly person 110 (transmitter 101) is located within the communicable range of any relay station 102, the user can grasp the position of the elderly person 110.
 サーバ104は、送信機101の位置情報を管理する。送信機101が複数存在する場合、サーバ104は、送信機101毎にその位置情報を管理する。例えば、送信機101は、位置情報とともに自身の識別情報(ID)を送信する。サーバ104は、その位置情報を送信機101のIDと紐づけて記憶し、管理する。したがって、サーバ104は、ユーザ(端末装置105)から要求された送信機101の位置情報のみを提供することができる。なお、サーバ104は、位置情報の提供を許可するユーザも送信機101毎に管理することができる。つまり、サーバ104は、各送信機101の位置情報を、その送信機101の位置情報の取得が許可されたユーザに対してのみ提供することができる。 The server 104 manages the location information of the transmitter 101. When there are a plurality of transmitters 101, the server 104 manages position information for each transmitter 101. For example, the transmitter 101 transmits its identification information (ID) together with the position information. The server 104 stores and manages the positional information in association with the ID of the transmitter 101. Therefore, the server 104 can provide only the location information of the transmitter 101 requested by the user (terminal device 105). The server 104 can also manage users who are permitted to provide location information for each transmitter 101. That is, the server 104 can provide the position information of each transmitter 101 only to users who are permitted to acquire the position information of the transmitter 101.
 なお、サーバ104が、送信機101の位置情報を、送信機101のID以外の他の情報と紐づけて管理するようにしてもよい。例えば、サーバ104が、送信機101の位置情報を時刻情報等と紐づけて記憶し、管理するようにしてもよい。このようにすることにより、サーバ104は、送信機101の位置情報の履歴を管理し、提供することができる。 Note that the server 104 may manage the position information of the transmitter 101 in association with information other than the ID of the transmitter 101. For example, the server 104 may store and manage the position information of the transmitter 101 in association with time information or the like. By doing so, the server 104 can manage and provide a history of position information of the transmitter 101.
 なお、その時刻情報は、送信機101から送信されるようにしてもよい。例えば、送信機101が、位置情報とともにGNSS信号に含まれる時刻情報を無線信号として送信するようにしてもよい。 The time information may be transmitted from the transmitter 101. For example, the transmitter 101 may transmit time information included in the GNSS signal together with the position information as a radio signal.
 また、送信機101が送信する位置情報は、サーバ104において、送信機101の位置を示す情報として管理することができる情報であればよく、その内容は任意である。例えば、送信機101がGNSS信号から位置情報を求めずに、GNSS信号(若しくはGNSS信号に含まれる時刻情報)を送信するようにしてもよい。その場合、中継局102若しくはサーバ104等が、そのGNSS信号若しくは時刻情報を用いて、送信機101の位置情報を求めるようにしてもよい。また、そのGNSS信号若しくは時刻情報を用いて、送信機101の位置情報を求める情報処理装置(サーバ等)を別途設けるようにしてもよい。 Further, the position information transmitted by the transmitter 101 may be information that can be managed as information indicating the position of the transmitter 101 in the server 104, and the content thereof is arbitrary. For example, the transmitter 101 may transmit a GNSS signal (or time information included in the GNSS signal) without obtaining position information from the GNSS signal. In that case, the relay station 102 or the server 104 may obtain the position information of the transmitter 101 using the GNSS signal or time information. Further, an information processing apparatus (such as a server) that obtains position information of the transmitter 101 using the GNSS signal or time information may be provided separately.
 また、例えば、送信機101からの無線信号を受信する中継局102の設置位置に基づいて、送信機101の位置が求められるようにしてもよい。例えば図2の場合、送信機101は、中継局102の通信可能範囲121内に位置する。このような場合に、サーバ104が、中継局102-Kが中継したことをもって、送信機101が中継局102-Kの通信可能範囲121内に位置すると推定し、その旨を位置情報として管理するようにしてもよい。つまり、この場合、送信機101の位置は、中継局102の数(各中継局102の通信可能範囲の広さ)の粒度で管理される。この場合、送信機101は、少なくとも、自身のIDを無線信号として送信すればよい。 Further, for example, the position of the transmitter 101 may be obtained based on the installation position of the relay station 102 that receives a radio signal from the transmitter 101. For example, in the case of FIG. 2, the transmitter 101 is located within the communicable range 121 of the relay station 102. In such a case, the server 104 estimates that the transmitter 101 is located within the communicable range 121 of the relay station 102-K when the relay station 102-K relays, and manages that fact as position information. You may do it. That is, in this case, the position of the transmitter 101 is managed with the granularity of the number of relay stations 102 (the width of the communication range of each relay station 102). In this case, the transmitter 101 may transmit at least its own ID as a radio signal.
 また、例えば、中継局102が受信する無線信号の電波強度等から中継局102と送信機101との距離を推定し、サーバ104が、その距離も位置情報として管理するようにしてもよい。つまり、サーバ104が、送信機101がどの中継局102の通信可能範囲内に位置し、かつ、その中継局102と送信機101との距離がいくつであるかを管理するようにしてもよい。この距離の推定は、中継局102において行われるようにしてもよいし、サーバ104において行われるようにしてもよいし、別途設けられた専用の情報処理装置(サーバ等)により行われるようにしてもよい。 Further, for example, the distance between the relay station 102 and the transmitter 101 may be estimated from the radio field intensity of the radio signal received by the relay station 102, and the server 104 may manage the distance as position information. That is, the server 104 may manage the relay station 102 within which communicable range of the transmitter 101 and the distance between the relay station 102 and the transmitter 101. The estimation of the distance may be performed in the relay station 102, may be performed in the server 104, or may be performed by a dedicated information processing apparatus (server or the like) provided separately. Also good.
 また、例えば、送信機101が、複数の中継局102の通信可能範囲が重畳する部分に位置する場合、すなわち、送信機101が送信した無線信号が複数の中継局102により中継される場合、三角法等を用いて送信機101の位置が推定されるようにしてもよい。この位置の推定は、例えば、サーバ104において行われるようにしてもよいし、別途設けられた専用の情報処理装置(サーバ等)により行われるようにしてもよい。 Further, for example, when the transmitter 101 is located in a portion where the communicable ranges of the plurality of relay stations 102 overlap, that is, when the radio signal transmitted by the transmitter 101 is relayed by the plurality of relay stations 102, a triangle The position of the transmitter 101 may be estimated using a method or the like. For example, the position estimation may be performed in the server 104 or may be performed by a dedicated information processing apparatus (such as a server) provided separately.
 なお、いずれの中継局102も、任意の送信機101の情報を中継することができるようにしてもよいし、各中継局102が、自身に対応する送信機101の情報のみを中継するようにしてもよい。例えば、ある送信機101から送信される情報は、その送信機101の所有者(若しくは管理者)が所有若しくは管理する中継局102のみが中継することができるようにしてもよい。この所有者(若しくは管理者)には、個人だけでなく事業者も含まれるようにしてもよい。このようにすることにより、中継局102を複数のユーザで共有することを避けることができ、例えば情報漏洩等の、通信の安全性の低減を抑制することができる。また、ユーザが支払う料金の金額に応じて、利用可能な中継局102の数が設定されるようにしてもよい。これにより、対価に応じて提供するサービスの質の差別化を図ることができる。 Any relay station 102 may be able to relay information of an arbitrary transmitter 101, or each relay station 102 may relay only information of the transmitter 101 corresponding to itself. May be. For example, information transmitted from a certain transmitter 101 may be relayed only by the relay station 102 owned or managed by the owner (or manager) of the transmitter 101. This owner (or manager) may include not only individuals but also businesses. By doing so, it is possible to avoid sharing the relay station 102 among a plurality of users, and it is possible to suppress a reduction in communication safety such as information leakage. Further, the number of usable relay stations 102 may be set according to the amount of the fee paid by the user. Thereby, the quality of the service provided according to the price can be differentiated.
  <中継局>
 上述したように、送信機101が、いずれかの中継局102の通信可能範囲内に位置する状態において、サーバ104は、その送信機101の位置を管理することができる。換言するに、送信機101の位置が、いずれの中継局102の通信可能範囲からも外れると、サーバ104は、その位置を管理することができなくなる。したがって、中継局102の送信機101との通信可能範囲網がより広範囲になる程、サーバ104は、送信機101の位置をより正確に管理することができる。ここで、より正確な管理とは、より広範囲において送信機101の位置を管理することを意味する。つまり、送信機101の位置を管理可能な範囲をより広範囲とするためには、送信機101と中継局102とがより遠くまで無線信号を送受信することができる程(各中継局102の通信可能範囲がより広い程)好ましい。また、各中継局102は、互いに異なる位置に設置されるので、中継局102の数が多い程好ましい。さらに、有用性を考慮すれば、送信機101が位置する可能性がより高い領域を中継局102の通信可能範囲とすることが好ましい。
<Relay station>
As described above, in a state where the transmitter 101 is located within the communicable range of any relay station 102, the server 104 can manage the position of the transmitter 101. In other words, when the position of the transmitter 101 is out of the communicable range of any relay station 102, the server 104 cannot manage the position. Therefore, the server 104 can manage the position of the transmitter 101 more accurately as the communication range network of the relay station 102 with the transmitter 101 becomes wider. Here, more accurate management means managing the position of the transmitter 101 in a wider range. In other words, in order to make the range in which the position of the transmitter 101 can be managed wider, the transmitter 101 and the relay station 102 can transmit and receive radio signals farther (communication of each relay station 102 is possible). A wider range is preferred). Moreover, since each relay station 102 is installed in a mutually different position, it is so preferable that there are many relay stations 102. FIG. Further, in consideration of usefulness, it is preferable to set a region where the transmitter 101 is more likely to be located as a communicable range of the relay station 102.
 中継局102の設置位置は任意である。ただし、上述したように、設置数や有用性等を考慮すれば、例えば、ビル、マンション、家屋等の建造物は、送信機101を携帯する位置監視対象者(例えば高齢者110)が位置する可能性が高い都市部に数も多く、また、設置も容易であるので、好適である。特に、位置監視対象者の自宅は、その周辺に位置監視対象者が位置する可能性がより高く、好適である。また、設置場所の確保という面についても、この位置通知サービス提供事業者が独自に場所を確保して中継局102を設置する場合よりも、同意を得やすく容易である。 The installation position of the relay station 102 is arbitrary. However, as described above, in consideration of the number of installations, usefulness, and the like, for example, in a building such as a building, a condominium, or a house, a position monitoring target person (for example, an elderly person 110) carrying the transmitter 101 is located. It is suitable because there are many in urban areas where there is a high possibility and installation is easy. In particular, the home of the position monitoring target person is more preferable because the position monitoring target person is more likely to be located in the vicinity thereof. Further, in terms of securing the installation location, it is easier to obtain an agreement than when the location notification service provider establishes the location and installs the relay station 102 independently.
 さらに、例えば、位置監視対象者(若しくはユーザ)が、中継局102を購入若しくは借用して設置することにより、この位置通知サービス提供事業者が独自に中継局102を設置する場合よりも、位置通知サービス提供事業者の負荷(コスト)を低減することができる。つまり、このようにすることにより、より低コストに、より多くの中継局102を設置することができる。上述したように、位置通知システム100としては、中継局102の数が多い程、提供可能なサービスの質が向上することになり、好ましい。つまり、より有用なシステムをより低コストに実現することができる。 Further, for example, when the position monitoring target person (or user) purchases or borrows the relay station 102 and installs it, the position notification service provider does not install the relay station 102 independently. The load (cost) of the service provider can be reduced. That is, by doing in this way, more relay stations 102 can be installed at lower cost. As described above, as the position notification system 100, the larger the number of relay stations 102, the better the quality of service that can be provided, which is preferable. That is, a more useful system can be realized at a lower cost.
 なお、上述したように中継局102の設置場所は任意であり、例えば、自動車、バイク、自転車等の移動可能な物体(移動体とも称する)に設置するようにしてもよい。つまり、中継局102の位置が可変であってもよい。 Note that, as described above, the installation location of the relay station 102 is arbitrary, and for example, it may be installed on a movable object (also referred to as a moving body) such as an automobile, a motorcycle, or a bicycle. That is, the position of the relay station 102 may be variable.
 以下においては、中継局102を位置監視対象者の自宅(家屋)に設置する場合を例に説明する。一般的に、中継局102を屋内等の家屋の低い位置に設置すると、地上高が低いことや障害物等により、送信機101からの無線信号を受信する性能が低減する可能性がある。上述したように、中継局102の通信可能範囲は広い程好ましいので、中継局102は、その通信可能範囲をより広くするために、例えば屋根上等の、できるだけ高所に設置するのが好ましい。 Hereinafter, a case where the relay station 102 is installed in the home (house) of the position monitoring target person will be described as an example. In general, when the relay station 102 is installed at a low position in a house such as indoors, there is a possibility that the performance of receiving a radio signal from the transmitter 101 may be reduced due to low ground clearance or obstacles. As described above, the wider communicable range of the relay station 102 is more preferable. Therefore, the relay station 102 is preferably installed as high as possible, for example, on the roof, in order to increase the communicable range.
 例えば、中継局102を屋根上に設置する場合、一般的に、近傍に家庭用電源のコンセント等が無いため、例えば近隣の電柱や屋内等から電源ケーブル等を敷設して中継局102に電源を供給させなければならない。このように新たに電源ケーブルを敷設するためには工事等の煩雑な作業が必要になる。そのため、敷設する電源ケーブル等による設備費用が増大だけでなく、工事費用も増大する可能性があり、中継局102の設置のコストが大幅に増大する可能性があった。 For example, when the relay station 102 is installed on the roof, since there is generally no outlet for household power supply in the vicinity, for example, a power cable or the like is laid from a nearby power pole or indoor to power the relay station 102. Must be supplied. Thus, in order to newly lay the power cable, complicated work such as construction work is required. For this reason, not only the installation cost due to the power cable to be laid, but also the construction cost may increase, and the installation cost of the relay station 102 may increase significantly.
 そこで、図3に示される例のように、既存の(敷設済みの)アンテナケーブルを利用して中継局102の電源を確保するようにする。 Therefore, as in the example shown in FIG. 3, the power supply of the relay station 102 is secured using the existing (laid) antenna cable.
 図3の例の場合、中継局102は、位置監視対象者の自宅(家屋)である建物130の屋根上に設置されている。この建物130は、戸建であってもよいし、店舗やオフィス等が入居するビルディングであってもよいし、アパートやマンション等の集合住宅であってもよい。 In the case of the example of FIG. 3, the relay station 102 is installed on the roof of a building 130 that is the home (house) of the position monitoring target person. This building 130 may be a detached house, a building in which a store, an office, or the like occupies, or an apartment house such as an apartment or a condominium.
 この建物130の屋根上には、地上波アンテナ141、衛星アンテナ142、混合器143、アンテナケーブル144乃至アンテナケーブル146、電源ケーブル148、および中継局102が設置されている。これらの屋根上に設置される設備をまとめて屋根上設備131とも称する。また、建物130の屋内には、TV受像機147が設置されている。 On the roof of this building 130, a terrestrial antenna 141, a satellite antenna 142, a mixer 143, an antenna cable 144 to an antenna cable 146, a power cable 148, and a relay station 102 are installed. The equipment installed on these roofs is also collectively referred to as rooftop equipment 131. A TV receiver 147 is installed indoors in the building 130.
 地上波アンテナ141は、地上波TVデジタル放送の放送信号を受信するためのアンテナである。地上波アンテナ141において受信された放送信号は、アンテナケーブル144を介して混合器143に供給される。 The terrestrial antenna 141 is an antenna for receiving broadcast signals of terrestrial TV digital broadcasting. Broadcast signals received by the terrestrial antenna 141 are supplied to the mixer 143 via the antenna cable 144.
 衛星アンテナ142は、例えばBS(Broadcasting Satellite)放送やCS(Communications Satellite)放送等の衛星放送の放送信号を受信するためのアンテナである。衛星アンテナ142において受信された放送信号は、アンテナケーブル145を介して混合器143に供給される。なお、衛星アンテナ142は、アンテナケーブル145を介して混合器143から供給される電力を用いて駆動する。 The satellite antenna 142 is an antenna for receiving broadcast signals of satellite broadcasting such as BS (Broadcasting Satellite) broadcasting and CS (Communications Satellite) broadcasting. Broadcast signals received by the satellite antenna 142 are supplied to the mixer 143 via the antenna cable 145. The satellite antenna 142 is driven using electric power supplied from the mixer 143 via the antenna cable 145.
 混合器143は、アンテナケーブル144を介して供給される地上波TVデジタル放送の放送信号と、アンテナケーブル145を介して供給される衛星放送の放送信号とを混合し、その混合信号(RF)を、アンテナケーブル146を介して屋内のTV受像機147に供給する。また、混合器143は、アンテナケーブル146を介して屋内(例えばTV受像機147)から供給される電力を、アンテナケーブル145を介して衛星アンテナ142に供給したり、電源ケーブル148を介して中継局102に供給したりする。 The mixer 143 mixes the broadcast signal of the terrestrial TV digital broadcast supplied via the antenna cable 144 and the broadcast signal of the satellite broadcast supplied via the antenna cable 145, and uses the mixed signal (RF). Then, the signal is supplied to the indoor TV receiver 147 through the antenna cable 146. Further, the mixer 143 supplies power supplied from the indoor (for example, the TV receiver 147) via the antenna cable 146 to the satellite antenna 142 via the antenna cable 145, or relays via the power cable 148. 102.
 アンテナケーブル144は、地上波アンテナ141および混合器143に接続され、地上波アンテナ141において受信された放送信号を混合器143に伝送するケーブルである。 The antenna cable 144 is a cable that is connected to the terrestrial antenna 141 and the mixer 143 and transmits a broadcast signal received by the terrestrial antenna 141 to the mixer 143.
 アンテナケーブル145は、衛星アンテナ142および混合器143に接続され、衛星アンテナ142において受信された放送信号を混合器143に伝送するケーブルである。また、アンテナケーブル145は、混合器143から供給される電力を、その放送信号に重畳して、衛星アンテナ142に伝送する。 The antenna cable 145 is a cable that is connected to the satellite antenna 142 and the mixer 143 and transmits a broadcast signal received by the satellite antenna 142 to the mixer 143. Further, the antenna cable 145 superimposes the power supplied from the mixer 143 on the broadcast signal and transmits it to the satellite antenna 142.
 アンテナケーブル146は、混合器143およびTV受像機147に接続され、地上波アンテナ141において受信された放送信号と、衛星アンテナ142において受信された放送信号との混合信号を混合器143からTV受像機147に伝送するケーブルである。また、アンテナケーブル146は、TV受像機147から供給される電力を、その混合信号に重畳して、混合器143に伝送する。 The antenna cable 146 is connected to the mixer 143 and the TV receiver 147, and the mixed signal of the broadcast signal received by the terrestrial antenna 141 and the broadcast signal received by the satellite antenna 142 is transmitted from the mixer 143 to the TV receiver. 147 is a cable to be transmitted. The antenna cable 146 transmits the power supplied from the TV receiver 147 to the mixer 143 by superimposing the power on the mixed signal.
 TV受像機147は、例えば建物130の屋内に設置され、屋根上から伝送される放送信号を利用する設備である。TV受像機147は、例えば、アンテナケーブル146を介して屋根上設備131(混合器143)から伝送される放送信号を復調する等して、その放送信号に含まれる放送番組等の画像を表示したり音声を出力したりする。また、TV受像機147は、建物130の屋内に設置されるコンセント等から供給される家庭用電源により駆動し、さらに、その電力の一部を、アンテナケーブル146を介して屋根上設備131(混合器143)に伝送させる。なお、建物130の屋内に設置する設備は、屋根上から伝送される放送信号を利用するものであれば、どのようなものであってもよい。例えば、TV受像機147の代わりに、セットトップボックス、ハードディスクレコーダ、TV放送チューナ付きのルータやコンピュータ等を屋内に設置するようにしてもよい。また、この建物130の屋内に設置される装置の数は任意であり、複数であってもよい。 The TV receiver 147 is a facility that is installed in a building 130, for example, and uses broadcast signals transmitted from the roof. For example, the TV receiver 147 demodulates a broadcast signal transmitted from the rooftop equipment 131 (mixer 143) via the antenna cable 146, and displays an image such as a broadcast program included in the broadcast signal. Or output audio. The TV receiver 147 is driven by a household power source supplied from an outlet installed indoors in the building 130, and a part of the electric power is transferred to the rooftop equipment 131 (mixed) via the antenna cable 146. 143). The equipment installed indoors in the building 130 may be anything as long as it uses a broadcast signal transmitted from the roof. For example, instead of the TV receiver 147, a set top box, a hard disk recorder, a router with a TV broadcast tuner, a computer, or the like may be installed indoors. Moreover, the number of apparatuses installed indoors in the building 130 is arbitrary and may be plural.
 アンテナケーブル144乃至アンテナケーブル146は、例えば、同軸ケーブルにより実現される。もちろん、アンテナケーブル144乃至アンテナケーブル146が同軸ケーブル以外のケーブルであってもよい。 The antenna cables 144 to 146 are realized by, for example, coaxial cables. Of course, the antenna cables 144 to 146 may be cables other than the coaxial cable.
 電源ケーブル148は、混合器143および中継局102(電源制御装置151)に接続され、混合器143から供給される電力を中継局102(電源制御装置151)に伝送する。電源ケーブル148は、例えば、同軸ケーブルにより実現される。もちろん、電源ケーブル148が同軸ケーブル以外のケーブルであってもよい。 The power cable 148 is connected to the mixer 143 and the relay station 102 (power control device 151), and transmits the power supplied from the mixer 143 to the relay station 102 (power control device 151). The power cable 148 is realized by a coaxial cable, for example. Of course, the power cable 148 may be a cable other than the coaxial cable.
 中継局102は、送信機101から送信される無線信号を受信し、その無線信号に含まれる所定の情報を取得し、その情報をネットワーク103を介してサーバ104に供給する装置である。図3に示されるように、中継局102は、電源制御装置151、高感度受信機152、メモリ153、およびLTE(Long Term Evolution)モデム154を有する。 The relay station 102 is a device that receives a radio signal transmitted from the transmitter 101, acquires predetermined information included in the radio signal, and supplies the information to the server 104 via the network 103. As illustrated in FIG. 3, the relay station 102 includes a power supply control device 151, a high sensitivity receiver 152, a memory 153, and an LTE (Long Term Term Evolution) modem 154.
 高感度受信機152は、アンテナ152Aを用いて、送信機101から送信される無線信号を高感度に受信する。高感度受信機152は、その無線信号に含まれる情報(例えば、送信機101の位置情報やID等)を取得し、取得したその情報をメモリ153に供給して記憶させる。また、高感度受信機152は、アンテナ152Bを用いて、GNSS衛星161から送信されるGNSS信号を受信することもできる。高感度受信機152は、受信したGNSS信号から自身の位置情報を求め、その位置情報をメモリ153に供給して記憶させる。高感度受信機152は、電源制御装置151から供給される電力により駆動する。 The high sensitivity receiver 152 uses the antenna 152A to receive a radio signal transmitted from the transmitter 101 with high sensitivity. The high sensitivity receiver 152 acquires information (for example, position information and ID of the transmitter 101) included in the wireless signal, and supplies the acquired information to the memory 153 for storage. Further, the high sensitivity receiver 152 can also receive the GNSS signal transmitted from the GNSS satellite 161 using the antenna 152B. The high sensitivity receiver 152 obtains its own position information from the received GNSS signal, and supplies the position information to the memory 153 for storage. The high sensitivity receiver 152 is driven by the power supplied from the power supply control device 151.
 メモリ153は、例えば、RAM(Random Access Memory)、SSD(Solid State Drive)、フラッシュメモリ等の半導体メモリや、ハードディスク等の磁気記録媒体等の、書き込み(書き換え)可能な任意の記録媒体(記憶媒体)を有する。メモリ153は、その記録媒体(記憶媒体)により、高感度受信機152から供給される情報を記憶する。また、メモリ153は、LTEモデム154からの要求に応じて、自身が記憶している情報を読み出してLTEモデム154に供給する。メモリ153は、電源制御装置151から供給される電力により駆動する。 The memory 153 is, for example, an arbitrary recording medium (storage medium) that can be written (rewritten) such as a RAM (Random Access Memory), an SSD (Solid State Drive), a semiconductor memory such as a flash memory, or a magnetic recording medium such as a hard disk. ). The memory 153 stores information supplied from the high sensitivity receiver 152 by the recording medium (storage medium). Further, the memory 153 reads information stored therein and supplies the information to the LTE modem 154 in response to a request from the LTE modem 154. The memory 153 is driven by electric power supplied from the power supply control device 151.
 LTEモデム154は、メモリ153に記憶されている情報を読み出し、その情報を、ネットワーク103を介してサーバ104に供給する。LTEモデム154は、LTEと称する通信規格に準拠した無線通信により図示せぬ基地局と接続し、その基地局を介してネットワーク103に接続する。LTEは、3GPP(Third Generation Partnership Project)により仕様が標準化された、携帯電話機等のモバイル端末向けの通信規格である。つまり、中継局102は、LTEモデム154によって一般の(汎用の)通信網であるネットワーク103に接続する。これにより中継局102は、送信機101から得た情報を、そのネットワーク103を介して、サーバ104に供給することができる(つまり、情報を中継することができる)。LTEモデム154は、電源制御装置151から供給される電力により駆動する。 The LTE modem 154 reads information stored in the memory 153 and supplies the information to the server 104 via the network 103. The LTE modem 154 is connected to a base station (not shown) by wireless communication based on a communication standard called LTE, and is connected to the network 103 via the base station. LTE is a communication standard for mobile terminals such as mobile phones whose specifications are standardized by 3GPP (Third Generation Partnership Project). That is, the relay station 102 is connected to the network 103 which is a general (general purpose) communication network by the LTE modem 154. As a result, the relay station 102 can supply the information obtained from the transmitter 101 to the server 104 via the network 103 (that is, the information can be relayed). The LTE modem 154 is driven by power supplied from the power supply control device 151.
 電源制御装置151は、TV受像機147、アンテナケーブル146、混合器143、および電源ケーブル148を介して供給される電力を、高感度受信機152、メモリ153、およびLTEモデム154に供給する。電源制御装置151は、それらの内、少なくともいずれか1つへの電力供給を制御する。例えば、電源制御装置151は、高感度受信機152とLTEモデム154への電力の供給を制御する。 The power supply controller 151 supplies the power supplied via the TV receiver 147, the antenna cable 146, the mixer 143, and the power cable 148 to the high sensitivity receiver 152, the memory 153, and the LTE modem 154. The power supply control device 151 controls power supply to at least one of them. For example, the power supply controller 151 controls power supply to the high sensitivity receiver 152 and the LTE modem 154.
 例えば、電源制御装置151は、高感度受信機152に対して電力の供給を開始することにより、高感度受信機152を駆動させて、上述したような動作を実行させる。また、例えば、高感度受信機152から所望の処理が終了した旨の通知を受けると、電源制御装置151は、電力の供給を終了して、高感度受信機152の駆動を終了させる。 For example, the power supply control device 151 starts supplying power to the high-sensitivity receiver 152 to drive the high-sensitivity receiver 152 and execute the operation described above. Further, for example, upon receiving a notification from the high sensitivity receiver 152 that the desired processing has been completed, the power supply control device 151 ends the supply of power and ends the driving of the high sensitivity receiver 152.
 さらに、例えば、電源制御装置151は、LTEモデム154に対して電力の供給を開始することにより、LTEモデム154を駆動させて、上述したような動作を実行させる。また、例えば、LTEモデム154から所望の処理が終了した旨の通知を受けると、電源制御装置151は、電力の供給を終了して、LTEモデム154の駆動を終了させる。 Further, for example, the power supply control device 151 starts supplying power to the LTE modem 154, thereby driving the LTE modem 154 to execute the operation as described above. Further, for example, when receiving a notification that the desired processing is completed from the LTE modem 154, the power supply control device 151 ends the supply of power and ends the driving of the LTE modem 154.
 このように、電源制御装置151が、高感度受信機152やLTEモデム154への電力供給を、それらを駆動させる場合のみに制限することにより、電源制御装置151は、高感度受信機152やLTEモデム154(すなわち、中継局102)の消費電力の増大を抑制することができる。 In this way, the power supply control device 151 restricts the power supply to the high sensitivity receiver 152 and the LTE modem 154 only when driving them, so that the power supply control device 151 allows the high sensitivity receiver 152 and the LTE modem 154 to operate. An increase in power consumption of the modem 154 (that is, the relay station 102) can be suppressed.
  <既存設備利用による設置の容易化>
 図3に示される屋根上設備131の構成の内、地上波アンテナ141、衛星アンテナ142、並びに、アンテナケーブル144乃至アンテナケーブル146は、既存(設置済み)の設備である。つまり、中継局102は、混合器143および電源ケーブル148を介して、既存の設備に接続され、その既存の設備を利用して屋内から電力の供給を受けている。つまり、この場合、混合器143および電源ケーブル148を設置するのみで、中継局102の電源を確保することができる。したがって、屋根上の中継局102に対して専用の電源ケーブルを屋内等から敷設する場合よりも、より容易に設置する(設備費用の増大を抑制し、工事の難易度や作業量の増大を抑制して工事費用の増大を抑制する)ことができる。つまり、中継局102の屋根上等の建物130の高所への設置をより容易化することができる。
<Easy installation using existing equipment>
Of the configuration of the rooftop equipment 131 shown in FIG. 3, the terrestrial antenna 141, the satellite antenna 142, and the antenna cables 144 to 146 are existing (installed) equipment. That is, the relay station 102 is connected to the existing equipment via the mixer 143 and the power cable 148, and is supplied with electric power from the inside using the existing equipment. That is, in this case, the power supply of the relay station 102 can be secured only by installing the mixer 143 and the power cable 148. Therefore, it is installed more easily than when a dedicated power cable is laid from the indoor etc. to the relay station 102 on the roof (suppressing the increase in facility cost and the increase in construction difficulty and work amount) Increase in construction cost). That is, the installation of the building 130 on a high place such as the roof of the relay station 102 can be facilitated.
  <消費電力制御>
 ただし、アンテナケーブル146(例えば同軸ケーブル)を介した電力の供給量は有限であり、一般的に、それ程大きな値では無い。例えば、電圧DC15(V)、電流0.5(A)程度である。そのため、高感度受信機152やLTEモデムの消費電力が増大すると、電力の供給が不足する可能性がある。
<Power consumption control>
However, the amount of power supplied via the antenna cable 146 (for example, a coaxial cable) is finite and is generally not so large. For example, the voltage is DC 15 (V) and the current is about 0.5 (A). Therefore, when the power consumption of the high sensitivity receiver 152 or the LTE modem increases, there is a possibility that the power supply is insufficient.
 そこで、電源制御装置151が、高感度受信機152が駆動する際に電力を供給するように、高感度受信機152への電力の供給を制御する。また、電源制御装置151が、LTEモデム154が駆動する際に電力を供給するように、LTEモデム154への電力の供給を制御するようにしてもよい。また、電源制御装置151が、高感度受信機152およびLTEモデム154のそれぞれが駆動する際に電力を供給するように、高感度受信機152およびLTEモデム154のそれぞれへの電力の供給を制御するようにしてもよい。 Therefore, the power supply control device 151 controls the supply of power to the high sensitivity receiver 152 so that power is supplied when the high sensitivity receiver 152 is driven. Further, the power supply control device 151 may control the supply of power to the LTE modem 154 so that power is supplied when the LTE modem 154 is driven. Further, the power supply control device 151 controls the supply of power to each of the high sensitivity receiver 152 and the LTE modem 154 so that power is supplied when each of the high sensitivity receiver 152 and the LTE modem 154 is driven. You may do it.
 送信機101は、常に無線信号を送信し続けるものではないので、高感度受信機152やLTEモデム154も、常に駆動している必要が無い場合も有り得る。例えば、送信機101が間欠的に無線信号を送信する場合、その送信タイミングを把握していれば、高感度受信機152は、その送信タイミングに応じた受信タイミング以外の期間において駆動する必要が無い場合も有り得る。そして、高感度受信機152が無線信号を受信するまで、LTEモデム154も駆動する必要が無い。また、例えば、夜間等に送信機101の使用が中断されるような場合、その期間に高感度受信機152やLTEモデム154も駆動させる必要が無い場合も有り得る。また、送信機101による無線信号の送信タイミングに関わらず、高感度受信機152やLTEモデム154を間欠的に駆動させるようにすることができる場合も有り得る。例えば、送信機101が送信する無線信号を全て受信しなくても良い場合(例えば、送信機101が同じ情報を繰り返し送信する場合や、一部の情報が欠落しても問題ない場合等)も有り得る。 Since the transmitter 101 does not always transmit a radio signal, the high sensitivity receiver 152 and the LTE modem 154 may not always need to be driven. For example, when the transmitter 101 intermittently transmits a radio signal, if the transmission timing is known, the high sensitivity receiver 152 does not need to be driven in a period other than the reception timing corresponding to the transmission timing. There may be cases. And it is not necessary to drive the LTE modem 154 until the high sensitivity receiver 152 receives the radio signal. In addition, for example, when the use of the transmitter 101 is interrupted at night or the like, it may not be necessary to drive the high-sensitivity receiver 152 or the LTE modem 154 during that period. In addition, the high sensitivity receiver 152 and the LTE modem 154 may be intermittently driven regardless of the transmission timing of the radio signal by the transmitter 101. For example, it is not necessary to receive all the wireless signals transmitted by the transmitter 101 (for example, when the transmitter 101 repeatedly transmits the same information or when there is no problem even if some information is lost). It is possible.
 したがって、このようにすることにより、中継局102は、高感度受信機152やLTEモデム154が駆動していない不要なタイミングにおける、それらへの電力の供給を抑制することにより、それらの消費電力の増大を抑制することができる。これにより、中継局102は、電力不足の発生を抑制し、より安定的な電力の供給を実現することができる。 Therefore, by doing so, the relay station 102 suppresses the supply of power to them at unnecessary timing when the high sensitivity receiver 152 and the LTE modem 154 are not driven, thereby reducing the power consumption of the relay station 102. The increase can be suppressed. Thereby, the relay station 102 can suppress the occurrence of power shortage and realize more stable power supply.
 例えば、上述したように、高感度受信機152乃至LTEモデム154に供給する電力が、地上波アンテナ141や衛星アンテナ142等のアンテナにおいて受信された放送信号を伝送する同軸ケーブルを介してその放送信号と重畳して供給され、抽出されるようにしてもよい。つまり、既存の設備(同軸ケーブル等のアンテナケーブル146)を介して電力が供給されるようにしてもよい。 For example, as described above, the power supplied to the high-sensitivity receiver 152 to the LTE modem 154 is transmitted via a coaxial cable that transmits a broadcast signal received by an antenna such as the terrestrial antenna 141 or the satellite antenna 142. May be supplied and extracted in a superimposed manner. That is, electric power may be supplied through existing equipment (antenna cable 146 such as a coaxial cable).
 このような場合であっても、電源制御装置151が上述したように高感度受信機152やLTEモデム154への電力の供給を制御することにより、中継局102は、電力不足の発生を抑制し、より安定的な電力の供給を実現することができる。つまり、中継局102の屋根上等の建物130の高所への設置をより容易化することができる。 Even in such a case, the power supply control device 151 controls the supply of power to the high sensitivity receiver 152 and the LTE modem 154 as described above, so that the relay station 102 suppresses the occurrence of power shortage. More stable power supply can be realized. That is, the installation of the building 130 on a high place such as the roof of the relay station 102 can be facilitated.
  <混合器>
 図4は、混合器143の主な構成例を示す図である。図4に示されるように、混合器143は、4つの端子(端子171乃至端子174)を有する。端子171にはアンテナケーブル144が接続され、地上波アンテナ141において受信された地上波TV放送の放送信号(VHF(Very High Frequency)・UHF(Ultra High Frequency)信号)がその端子171から入力される。端子174にはアンテナケーブル145が接続され、衛星アンテナ142において受信されたBS放送やCS放送の放送信号(BS・CS信号)がその端子174から入力される。また、混合器143内で抽出されたTV受像機147から供給された電力が、混合器143内においてBS・CS信号に重畳され、その端子174から出力される。
<Mixer>
FIG. 4 is a diagram illustrating a main configuration example of the mixer 143. As shown in FIG. 4, the mixer 143 has four terminals (terminals 171 to 174). An antenna cable 144 is connected to the terminal 171, and a terrestrial TV broadcast broadcast signal (VHF (Very High Frequency) / UHF (Ultra High Frequency) signal) received by the terrestrial antenna 141 is input from the terminal 171. . An antenna cable 145 is connected to the terminal 174, and a broadcast signal (BS / CS signal) of BS broadcast or CS broadcast received by the satellite antenna 142 is input from the terminal 174. The power supplied from the TV receiver 147 extracted in the mixer 143 is superimposed on the BS / CS signal in the mixer 143 and output from the terminal 174.
 端子172にはアンテナケーブル146が接続され、混合器143内で生成されたVHF・UHF信号とBS・CS信号との混合信号がその端子172から出力される。また、その混合信号に重畳されてTV受像機147から供給される電力が、その端子172から入力される。端子173には電源ケーブル148が接続され、混合器143内で抽出されたTV受像機147から供給された電力が、その端子173から出力される。 The antenna cable 146 is connected to the terminal 172, and a mixed signal of the VHF / UHF signal and the BS / CS signal generated in the mixer 143 is output from the terminal 172. Further, the power supplied from the TV receiver 147 while being superimposed on the mixed signal is input from the terminal 172. A power cable 148 is connected to the terminal 173, and the power supplied from the TV receiver 147 extracted in the mixer 143 is output from the terminal 173.
 また、混合器143は、内部に、ローパスフィルタ(LPF(Low-Pass Filter))181、低ノイズ増幅部(LNA(Low-noise amplifier))182、ハイパスフィルタ(HPF(High-Pass Filter))183、混合部184、電源フィルタ(PF(Power Filter))185、および混合部186を有する。 The mixer 143 includes a low-pass filter (LPF (Low-Pass filter)) 181, a low-noise amplifier (LNA (Low-noise filter) 182), and a high-pass filter (HPF (High-Pass Filter)) 183. , A mixing unit 184, a power filter (PF (Power Filter)) 185, and a mixing unit 186.
 LPF181は、所定の周波数よりも低周波側の帯域の信号を通過させるフィルタである。例えば図5において点線で示されるように、LPF181は、VHF帯(30MHz乃至300MHz)の内のTV放送信号(VHS信号)が送信される帯域(90MHz乃至222MHz)と、UHF帯(300MHz乃至3000MHz)の内のTV放送信号(UHF信号)が送信される帯域(470MHz乃至770MHz)とを含む低周波側の帯域の信号を通過させ、BS・CS信号が送信される帯域(950MHz乃至2150MHz)を含む高周波側の帯域の信号を除去する。LPF181は、端子171から入力される放送信号(VHF・UHF信号)に対して、上述したフィルタ処理を行い、不要な高周波成分を除去した信号をLNA182に供給する。 The LPF 181 is a filter that allows a signal in a lower frequency band than a predetermined frequency to pass. For example, as indicated by a dotted line in FIG. 5, the LPF 181 includes a band (90 MHz to 222 MHz) in which a TV broadcast signal (VHS signal) in the VHF band (30 MHz to 300 MHz) is transmitted and a UHF band (300 MHz to 3000 MHz). Including a band (950 MHz to 2150 MHz) in which a BS / CS signal is transmitted by passing a signal in a low frequency band including a band (470 MHz to 770 MHz) in which a TV broadcast signal (UHF signal) is transmitted. Remove the signal in the high frequency band. The LPF 181 performs the above-described filtering process on the broadcast signal (VHF / UHF signal) input from the terminal 171 and supplies a signal from which unnecessary high-frequency components are removed to the LNA 182.
 LNA182は、LPF181の出力信号(VHF・UHF信号)を増幅し、混合部184に供給する。 The LNA 182 amplifies the output signal (VHF / UHF signal) of the LPF 181 and supplies it to the mixing unit 184.
 HPF183は、所定の周波数よりも高周波側の帯域の信号を通過させるフィルタである。例えば図5において点線で示されるように、HPF183は、BS・CS信号が送信される帯域(950MHz乃至2150MHz)を含む高周波側の帯域の信号を通過させ、VHF・UHF信号が送信される帯域(90MHz乃至222MHz、並びに、470MHz乃至770MHz)を含む低周波側の帯域の信号を除去する。HPF183は、端子174から入力される放送信号(BS・CS信号)に対して、上述したフィルタ処理を行い、不要な低周波成分を除去した信号(BS・CS信号)を混合部184に供給する。 The HPF 183 is a filter that allows a signal in a frequency band higher than a predetermined frequency to pass. For example, as indicated by a dotted line in FIG. 5, the HPF 183 passes a signal in a high frequency band including a band (950 MHz to 2150 MHz) in which a BS / CS signal is transmitted, and a band in which a VHF / UHF signal is transmitted ( 90 MHz to 222 MHz and 470 MHz to 770 MHz) are removed. The HPF 183 performs the above-described filtering process on the broadcast signal (BS / CS signal) input from the terminal 174 and supplies the signal (BS / CS signal) from which unnecessary low-frequency components are removed to the mixing unit 184. .
 混合部184は、LNA182から供給されるVHF・UHF信号と、HPF183から供給されるBS・CS信号とを混合し、混合信号を生成する。混合部184は、その混合信号を端子172を介してアンテナケーブル146に出力する。この混合信号には、TV受像機147により所定の電圧(DC成分)が印加される。つまり、混合信号に重畳して電力がTV受像機147から混合器143に供給される。 The mixing unit 184 mixes the VHF / UHF signal supplied from the LNA 182 and the BS / CS signal supplied from the HPF 183 to generate a mixed signal. The mixing unit 184 outputs the mixed signal to the antenna cable 146 via the terminal 172. A predetermined voltage (DC component) is applied to the mixed signal by the TV receiver 147. That is, power is supplied from the TV receiver 147 to the mixer 143 by superimposing it on the mixed signal.
 PF185は、この電力が重畳された混合信号に対してフィルタ処理を行い、その電力を抽出する。すなわち、PF185は、混合信号からDC成分を抽出する。PF185は、抽出した電力を混合部186に供給する。混合部186は、その電力をBS・CS信号に重畳して、端子174を介してアンテナケーブル145に出力する。すなわち、混合部186は、BS・CS信号に所定の電圧(DC成分)を印加する。これにより、電力が衛星アンテナ142に供給される。衛星アンテナ142は、その電力により駆動し、衛星放送の放送信号を受信する。 PF 185 performs a filtering process on the mixed signal on which the electric power is superimposed, and extracts the electric power. That is, the PF 185 extracts a DC component from the mixed signal. The PF 185 supplies the extracted power to the mixing unit 186. The mixing unit 186 superimposes the electric power on the BS / CS signal and outputs it to the antenna cable 145 via the terminal 174. That is, the mixing unit 186 applies a predetermined voltage (DC component) to the BS / CS signal. As a result, electric power is supplied to the satellite antenna 142. The satellite antenna 142 is driven by the electric power and receives satellite broadcast signals.
 また、PF185は、抽出した電力を端子173を介して電源ケーブル148に出力する。これにより、電力が、中継局102(電源制御装置151)にも供給される。 Also, the PF 185 outputs the extracted power to the power cable 148 via the terminal 173. Thereby, electric power is supplied also to the relay station 102 (power supply control apparatus 151).
  <PF>
 PF185の主な構成例を図6に示す。図6に示されるように、PF185は、インダクタ191乃至インダクタ193、並びに、キャパシタ194乃至キャパシタ196を有する。インダクタ191乃至インダクタ193は、互いに直列に接続される。インダクタ191は、一方が混合部184や端子172に接続され、他方がインダクタ192に接続される。インダクタ192は、一方がインダクタ191に接続され、他方がインダクタ193に接続される。インダクタ193は、一方がインダクタ192に接続され、他方が混合部186や端子173に接続される。
<PF>
A main configuration example of the PF 185 is shown in FIG. As illustrated in FIG. 6, the PF 185 includes inductors 191 to 193 and capacitors 194 to 196. The inductors 191 to 193 are connected in series with each other. One of the inductors 191 is connected to the mixing unit 184 and the terminal 172, and the other is connected to the inductor 192. One of the inductors 192 is connected to the inductor 191 and the other is connected to the inductor 193. One of the inductors 193 is connected to the inductor 192, and the other is connected to the mixing unit 186 and the terminal 173.
 キャパシタ194は、一方がインダクタ191とインダクタ192との間に接続され、他方が接地される。キャパシタ195は、一方がインダクタ192とインダクタ193との間に接続され、他方が接地される。キャパシタ196は、一方がインダクタ193と混合部186(端子173)との間に接続され、他方が接地される。 One of the capacitors 194 is connected between the inductor 191 and the inductor 192, and the other is grounded. One of the capacitors 195 is connected between the inductor 192 and the inductor 193, and the other is grounded. One of the capacitors 196 is connected between the inductor 193 and the mixing unit 186 (terminal 173), and the other is grounded.
 PF185は、例えば、このようなLC回路によりフィルタ処理を行い、電力(DC成分)を抽出する。 The PF 185 extracts the electric power (DC component) by performing filter processing using such an LC circuit, for example.
  <電源制御装置>
 図7は、電源制御装置151の主な構成例を示す図である。図7に示されるように、電源制御装置151は、電源端子201乃至電源端子204を有する。電源端子201には、(電源ケーブル148を介して)混合器143が接続される。混合器143の端子173から出力された電力は、電源ケーブル148を介して電源端子201に入力される。また、電源端子202には、高感度受信機152が接続される。電源端子203には、LTEモデム154が接続される。電源端子204には、メモリ153が接続される。なお、図示は省略するが、電源制御装置151は、その他の任意の端子を有することができる。
<Power control device>
FIG. 7 is a diagram illustrating a main configuration example of the power supply control device 151. As illustrated in FIG. 7, the power supply control device 151 includes power supply terminals 201 to 204. A mixer 143 is connected to the power terminal 201 (via a power cable 148). The electric power output from the terminal 173 of the mixer 143 is input to the power supply terminal 201 via the power supply cable 148. A high sensitivity receiver 152 is connected to the power terminal 202. The LTE modem 154 is connected to the power terminal 203. A memory 153 is connected to the power supply terminal 204. Although illustration is omitted, the power supply control device 151 can have other arbitrary terminals.
 電源制御装置151は、制御部211および接続部212を有する。制御部211は、接続部212の制御に関する処理を行う。電源端子201から入力された電力は、接続部212に供給される。接続部212は、その電力の供給先を電源端子202および電源端子203の中から選択する。 The power supply control device 151 includes a control unit 211 and a connection unit 212. The control unit 211 performs processing related to control of the connection unit 212. The power input from the power supply terminal 201 is supplied to the connection unit 212. The connection unit 212 selects the power supply destination from the power supply terminal 202 and the power supply terminal 203.
 例えば、接続部212は、電源端子201から入力された電力を、電源端子202から出力させる(高感度受信機152に供給する)か、電源端子203から出力させる(LTEモデム154に供給する)か、どちらにも供給しないかを選択する。つまり、接続部212は、電源端子201を電源端子202に接続するか否か、並びに、電源端子201を電源端子203に接続するか否かを選択する。接続部212は、制御部211の制御に従ってこのような選択を行う。 For example, the connection unit 212 outputs power input from the power supply terminal 201 from the power supply terminal 202 (supplied to the high sensitivity receiver 152) or output from the power supply terminal 203 (supplied to the LTE modem 154). Select whether to supply to either. That is, the connection unit 212 selects whether to connect the power terminal 201 to the power terminal 202 and whether to connect the power terminal 201 to the power terminal 203. The connection unit 212 performs such selection according to the control of the control unit 211.
 制御部211は、例えば、高感度受信機152若しくはLTEモデム154を駆動させたいタイミングにおいて、接続部212を制御して、電源端子202若しくは電源端子203に対する電力供給を開始させる。電源端子202に供給された電力は、その電源端子202を介して高感度受信機152に供給される。高感度受信機152は、その電力を利用して駆動する。同様に、電源端子203に供給された電力は、その電源端子203を介してLTEモデム154に供給される。LTEモデム154は、その電力を利用して駆動する。 The control unit 211 controls the connection unit 212 to start power supply to the power supply terminal 202 or the power supply terminal 203, for example, at a timing at which the high sensitivity receiver 152 or the LTE modem 154 is to be driven. The power supplied to the power terminal 202 is supplied to the high sensitivity receiver 152 via the power terminal 202. The high sensitivity receiver 152 is driven using the power. Similarly, the power supplied to the power supply terminal 203 is supplied to the LTE modem 154 via the power supply terminal 203. The LTE modem 154 is driven using the power.
 なお、この制御の実行タイミングは任意である。例えば、予め定められた所定のタイミングであってもよいし、所定の動作条件を満たす等の何らかのイベントに応じたタイミングであってもよいし、高感度受信機152やLTEモデム154等の外部からの通知に基づくタイミングであってもよい。 Note that the execution timing of this control is arbitrary. For example, it may be a predetermined timing, a timing according to some event such as satisfying a predetermined operation condition, or from the outside such as the high sensitivity receiver 152 or the LTE modem 154 The timing may be based on the notification.
 また、制御部211は、例えば、高感度受信機152若しくはLTEモデム154を駆動させたくないタイミングにおいて、接続部212を制御して、電源端子202若しくは電源端子203に対する電力供給を遮断させて終了させる。電源端子202への電力の供給が終了すると、高感度受信機152への電力の供給も終了するので、高感度受信機152の駆動が終了する。同様に、電源端子203への電力の供給が終了すると、LTEモデム154への電力の供給も終了するので、LTEモデム154の駆動が終了する。 In addition, the control unit 211 controls the connection unit 212 to shut off the power supply to the power supply terminal 202 or the power supply terminal 203 and terminate the operation, for example, at a timing when the high sensitivity receiver 152 or the LTE modem 154 is not desired to be driven. . When the supply of power to the power supply terminal 202 is finished, the supply of power to the high sensitivity receiver 152 is also finished, so that the driving of the high sensitivity receiver 152 is finished. Similarly, when the supply of power to the power supply terminal 203 is finished, the supply of power to the LTE modem 154 is also finished, so that the driving of the LTE modem 154 is finished.
 なお、この制御の実行タイミングも任意である。例えば、予め定められた所定のタイミングであってもよいし、所定の動作条件を満たす等の何らかのイベントに応じたタイミングであってもよいし、高感度受信機152やLTEモデム154等の外部からの通知に基づくタイミングであってもよい。 Note that the execution timing of this control is also arbitrary. For example, it may be a predetermined timing, a timing according to some event such as satisfying a predetermined operation condition, or from the outside such as the high sensitivity receiver 152 or the LTE modem 154 The timing may be based on the notification.
 また、接続部212が、電力を電源端子202および電源端子203の両方に供給することができるようにしてもよい。ただし、いずれか一方(電源端子202若しくは電源端子203)にしか電力を供給することができないようにすることにより、高感度受信機152とLTEモデム154とが同時に駆動しないようにすることができ、消費電力のピーク(最大値)を抑制することができる。したがって、中継局102は、電力不足の発生を抑制し、より安定的な電力の供給を実現することができる。 Further, the connection unit 212 may be able to supply power to both the power supply terminal 202 and the power supply terminal 203. However, the high sensitivity receiver 152 and the LTE modem 154 can be prevented from being driven simultaneously by making it possible to supply power only to either one (the power supply terminal 202 or the power supply terminal 203). The peak (maximum value) of power consumption can be suppressed. Therefore, the relay station 102 can suppress the occurrence of power shortage and realize more stable power supply.
 なお、接続部212に供給される電力は、接続部212の駆動にも利用される。また、電源端子201から入力された電力は、制御部211にも供給され、制御部211の駆動にも利用される。また、電源端子201から入力された電力は、電源端子204にも供給され、その電源端子204を介してメモリ153に供給される。メモリ153は、この電力を利用して駆動する。 Note that the power supplied to the connection unit 212 is also used to drive the connection unit 212. Further, the electric power input from the power supply terminal 201 is also supplied to the control unit 211 and used for driving the control unit 211. The power input from the power supply terminal 201 is also supplied to the power supply terminal 204, and is supplied to the memory 153 through the power supply terminal 204. The memory 153 is driven using this power.
 なお、このメモリ153への電力供給は、図7の例のように、常時行われるようにしてもよいし、高感度受信機152やLTEモデム154に対する場合と同様に、電源制御装置151(制御部211および接続部212)により制御されるようにしてもよい。 The power supply to the memory 153 may be always performed as in the example of FIG. 7, or the power supply control device 151 (control) as in the case of the high sensitivity receiver 152 and the LTE modem 154. It may be controlled by the unit 211 and the connection unit 212).
  <接続部>
 接続部212の構成は任意である。例えば、図8のAに示されるように、接続部212が、1入力3出力のスイッチ220により構成されるようにしてもよい。このスイッチ220は、入力側の端子として端子221を有し、出力側の端子として、端子222乃至端子224を有する。端子221は、電源端子201に接続される。端子222は、電源端子202に接続される。端子223は、電源端子203に接続される。端子224は、いずれの電源端子にも接続されていない(開放されている)。
<Connection part>
The configuration of the connection unit 212 is arbitrary. For example, as illustrated in FIG. 8A, the connection unit 212 may be configured by a switch 220 having one input and three outputs. The switch 220 includes a terminal 221 as an input-side terminal and terminals 222 to 224 as output-side terminals. The terminal 221 is connected to the power supply terminal 201. Terminal 222 is connected to power supply terminal 202. The terminal 223 is connected to the power supply terminal 203. The terminal 224 is not connected to any power supply terminal (opened).
 スイッチ220は、制御線225を介した制御部211の制御に従って、端子221を、端子222乃至端子224のいずれかに接続する。すなわち、スイッチ220は、制御部211の制御に従って、電源端子201を介して入力される電力の供給先を選択する。例えば、端子221が端子222に接続される場合、電源端子201を介して入力される電力の供給先は、電源端子202(高感度受信機152)となる。また、例えば、端子221が端子223に接続される場合、電源端子201を介して入力される電力の供給先は、電源端子203(LTEモデム154)となる。なお、例えば、端子221が端子224に接続される場合、電源端子201を介して入力される電力は、いずれの電源端子(いずれの装置)にも供給されない。 The switch 220 connects the terminal 221 to one of the terminals 222 to 224 in accordance with the control of the control unit 211 via the control line 225. That is, the switch 220 selects a supply destination of power input via the power supply terminal 201 according to the control of the control unit 211. For example, when the terminal 221 is connected to the terminal 222, the power supply destination input via the power terminal 201 is the power terminal 202 (high sensitivity receiver 152). Further, for example, when the terminal 221 is connected to the terminal 223, the supply destination of power input via the power terminal 201 is the power terminal 203 (LTE modem 154). For example, when the terminal 221 is connected to the terminal 224, the power input via the power terminal 201 is not supplied to any power terminal (any device).
 また、例えば、図8のAに示されるように、接続部212が、出力側の電源端子毎の1入力1出力のスイッチ(スイッチ230およびスイッチ240)により構成されるようにしてもよい。この場合、スイッチ230は、入力側の端子として端子231を有し、出力側の端子として、端子232を有する。端子231は、電源端子201に接続され、端子232は、電源端子202に接続される。スイッチ230は、制御線233を介した制御部211の制御に従って、端子231と端子232との間を接続したり、切断したりする。すなわち、スイッチ230は、制御部211の制御に従って、電源端子201を介して入力される電力を、高感度受信機152に供給するか否かを選択する。 Further, for example, as shown in FIG. 8A, the connection unit 212 may be configured by one-input one-output switches (switch 230 and switch 240) for each power supply terminal on the output side. In this case, the switch 230 includes a terminal 231 as an input-side terminal and a terminal 232 as an output-side terminal. The terminal 231 is connected to the power supply terminal 201, and the terminal 232 is connected to the power supply terminal 202. The switch 230 connects or disconnects the terminal 231 and the terminal 232 according to the control of the control unit 211 via the control line 233. That is, the switch 230 selects whether to supply the power input via the power supply terminal 201 to the high sensitivity receiver 152 according to the control of the control unit 211.
 また、スイッチ240は、入力側の端子として端子241を有し、出力側の端子として、端子242を有する。端子241は、電源端子201に接続され、端子242は、電源端子203に接続される。スイッチ240は、制御線243を介した制御部211の制御に従って、端子241と端子242との間を接続したり、切断したりする。すなわち、スイッチ240は、制御部211の制御に従って、電源端子201を介して入力される電力を、LTEモデム154に供給するか否かを選択する。 The switch 240 has a terminal 241 as an input terminal, and a terminal 242 as an output terminal. The terminal 241 is connected to the power supply terminal 201, and the terminal 242 is connected to the power supply terminal 203. The switch 240 connects or disconnects the terminal 241 and the terminal 242 according to the control of the control unit 211 via the control line 243. That is, the switch 240 selects whether or not to supply power input via the power supply terminal 201 to the LTE modem 154 according to the control of the control unit 211.
 例えば、スイッチ230により端子231と端子232との間が接続され、スイッチ240により端子241と端子242との間が切断される場合、電源端子201を介して入力される電力の供給先は、電源端子202(高感度受信機152)となる。また、例えば、スイッチ230により端子231と端子232との間が切断され、スイッチ240により端子241と端子242との間が接続される場合、電源端子201を介して入力される電力の供給先は、電源端子203(LTEモデム154)となる。また、例えば、スイッチ230により端子231と端子232との間が切断され、スイッチ240により端子241と端子242との間が切断される場合、電源端子201を介して入力される電力は、いずれの電源端子(いずれの装置)にも供給されない。 For example, when the switch 230 connects the terminal 231 and the terminal 232 and the switch 240 disconnects the terminal 241 and the terminal 242, the supply destination of the power input via the power supply terminal 201 is the power supply It becomes the terminal 202 (high sensitivity receiver 152). Further, for example, when the terminal 230 and the terminal 232 are disconnected by the switch 230 and the terminal 241 and the terminal 242 are connected by the switch 240, the supply destination of the power input via the power supply terminal 201 is The power terminal 203 (LTE modem 154). For example, when the switch 230 disconnects the terminal 231 and the terminal 232 and the switch 240 disconnects the terminal 241 and the terminal 242, the power input via the power supply terminal 201 is It is not supplied to the power supply terminal (any device).
  <送信機>
 次に、送信機101と高感度受信機152との間で行われる無線信号の送受信について説明する。送信機101と高感度受信機152との間の無線信号の送受信は、925MHzを含む周波数帯(920MHz帯とも称する)を用いて行われる。
<Transmitter>
Next, transmission / reception of radio signals performed between the transmitter 101 and the high sensitivity receiver 152 will be described. Transmission / reception of a radio signal between the transmitter 101 and the high sensitivity receiver 152 is performed using a frequency band including 925 MHz (also referred to as a 920 MHz band).
 図9は、送信機101の主な構成例を示す図である。図9に示されるように、送信機101は、擬似乱数列生成部251、キャリア発振部252、乗算部253、バンドパスフィルタ(BPF)254、増幅部255、およびアンテナ256を有する。 FIG. 9 is a diagram illustrating a main configuration example of the transmitter 101. As illustrated in FIG. 9, the transmitter 101 includes a pseudo random number sequence generation unit 251, a carrier oscillation unit 252, a multiplication unit 253, a bandpass filter (BPF) 254, an amplification unit 255, and an antenna 256.
 送信される情報は、符号化されて擬似乱数列として送信される。擬似乱数列生成部251は、その擬似乱数列を生成する。擬似乱数列生成部251は、送信情報生成部261、CRC(Cyclic Redundancy Check)付加部262、同期信号発生部263、選択部264、フレームカウンタ265、レジスタ266、インタリーブ部267、Gold符号発生部268、および乗算部269を有する。 The information to be transmitted is encoded and transmitted as a pseudo random number sequence. The pseudo random number sequence generation unit 251 generates the pseudo random number sequence. The pseudo random number sequence generation unit 251 includes a transmission information generation unit 261, a CRC (Cyclic Redundancy Check) addition unit 262, a synchronization signal generation unit 263, a selection unit 264, a frame counter 265, a register 266, an interleaving unit 267, and a Gold code generation unit 268. , And a multiplication unit 269.
 送信情報生成部261は、無線信号として送信する情報である送信情報TMを生成する。この送信情報TMは任意の情報である。例えば、送信情報生成部261が、GNSS衛星からGNSS信号を受信し、そのGNSS信号を用いて送信機101の現在位置を示す位置情報(例えば緯度経度等)を生成し、その位置情報を含む送信情報TMを生成するようにしてもよい。また、例えば、送信情報生成部261が、GNSS衛星から受信したGNSS信号(若しくはそのGNSS信号に含まれる時刻情報)を含む送信情報TMを生成するようにしてもよい。さらに、例えば、送信情報生成部261が、送信機101の識別情報(ID)を含む送信情報TMを生成するようにしてもよい。また、例えば、送信情報生成部261が他の装置(例えばセンサ等)から情報を取得し、その情報を含む送信情報TMを生成するようにしてもよい。送信機101は、送信情報TMを用いて送信信号TXを生成する。送信情報生成部261は、生成した送信情報TMをCRC付加部262に供給する。 The transmission information generation unit 261 generates transmission information TM that is information to be transmitted as a radio signal. This transmission information TM is arbitrary information. For example, the transmission information generation unit 261 receives a GNSS signal from a GNSS satellite, generates position information (for example, latitude / longitude) indicating the current position of the transmitter 101 using the GNSS signal, and includes the position information. Information TM may be generated. Further, for example, the transmission information generation unit 261 may generate transmission information TM including a GNSS signal received from a GNSS satellite (or time information included in the GNSS signal). Further, for example, the transmission information generation unit 261 may generate the transmission information TM including the identification information (ID) of the transmitter 101. Further, for example, the transmission information generation unit 261 may acquire information from another device (for example, a sensor) and generate transmission information TM including the information. The transmitter 101 generates a transmission signal TX using the transmission information TM. The transmission information generating unit 261 supplies the generated transmission information TM to the CRC adding unit 262.
 CRC付加部262は、送信情報生成部261から供給される送信情報TMに、誤り検出用の巡回冗長検査符号(CRC)を付加する。この巡回冗長検査符号は、どのようなものであってもよく、そのデータ長も任意である。CRC付加部262は、巡回冗長検査符号が付加された送信信号TMを選択部264に供給する。同期信号発生部263は、所定の同期パタンを発生する。この同期パタンは、どのようなものであってもよく、そのデータ長も任意である。同期信号発生部263は、その同期パタンを選択部264に供給する。選択部264は、適宜入力を選択することにより、CRC付加部262から供給される巡回冗長検査符号が付加された送信情報TMに、同期信号発生部263から供給される同期パタンを付加する。つまり、選択部264は、無線信号として送信される所定の信号としての送信情報TMを生成する。選択部264は、その巡回冗長検査符号と同期パタンが付加された送信情報TMを、レジスタ266に供給し保持させる。 The CRC adding unit 262 adds a cyclic redundancy check code (CRC) for error detection to the transmission information TM supplied from the transmission information generating unit 261. Any cyclic redundancy check code may be used, and the data length is also arbitrary. The CRC adding unit 262 supplies the transmission signal TM to which the cyclic redundancy check code is added to the selection unit 264. The synchronization signal generator 263 generates a predetermined synchronization pattern. This synchronization pattern may be any type and the data length is also arbitrary. The synchronization signal generation unit 263 supplies the synchronization pattern to the selection unit 264. The selection unit 264 adds the synchronization pattern supplied from the synchronization signal generation unit 263 to the transmission information TM to which the cyclic redundancy check code supplied from the CRC addition unit 262 is added by appropriately selecting an input. That is, the selection unit 264 generates transmission information TM as a predetermined signal transmitted as a radio signal. The selection unit 264 supplies the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added to the register 266 for holding.
 送信機101は、920MHz帯の無線電波を使って、送信信号TXを送信する。920MHz帯は、総務省により2011年7月から解禁された周波数帯であり、免許不要で誰でも使うことができる。但し、規定(ARIB(Association of Radio Industries and Businesses) STD T-108)により、最大連続送信時間が4秒間に制限されている。さらに連続送信時間を短くして、例えば0.2秒にすれば、より多くのチャネルが割り当てられ、混信が少ない状態で送受信を行うことができる。 Transmitter 101 transmits a transmission signal TX using a radio wave of 920 MHz band. The 920 MHz band is a frequency band that has been lifted from July 2011 by the Ministry of Internal Affairs and Communications, and anyone can use it without a license. However, the maximum continuous transmission time is limited to 4 seconds by regulation (ARIB (Association of Radio Industries and Businesses) and STD T-108). If the continuous transmission time is further shortened to 0.2 seconds, for example, more channels can be allocated and transmission / reception can be performed with less interference.
 そこで、送信機101は、1回のデータ送信を、例えば、図10に示されるような所定時間のスーパーフレーム(Super Frame)の単位で行う。この所定時間の長さは任意である。例えば、30秒や5分等としてもよい。この所定時間内に、0.192秒のフレームが最大で100回繰り返される。すなわち、連続送信時間0.2秒を下回っているので、この送信に多くの送信チャネルを割り当てることができる。この結果、比較的空いているチャネルを選択して送信することが可能となり、より混信に強いシステムを構築することができる。 Therefore, the transmitter 101 performs one data transmission, for example, in units of a super frame for a predetermined time as shown in FIG. The length of the predetermined time is arbitrary. For example, it may be 30 seconds or 5 minutes. Within this predetermined time, a frame of 0.192 seconds is repeated up to 100 times. That is, since the continuous transmission time is less than 0.2 seconds, many transmission channels can be assigned to this transmission. As a result, it becomes possible to select and transmit a relatively free channel, and to build a system that is more resistant to interference.
 なお、フレーム間のギャップxは、少なくとも2ms以上の時間である。日本国内で920MHz帯を利用する場合、信号送信の前にその帯域において通信が行われているかを確認するキャリアセンスを行わなければならない。そして、帯域が空いている場合のみ、信号を送信することができる。したがって、いつでも920MHzを利用することができるわけではない。したがって、ギャップxは、キャリアセンスの結果(即ちチャネルの混み具合)により毎回異なる可能性がある。30秒間を平均すると、およそ0.3秒に1回の割合でフレームが送信されるように構成されている。この結果、スーパーフレームの所定時間内に100フレームが送信される。送信できるフレーム数は、チャネルの混雑度合いにより若干変動する。100回のフレームで送信される信号は、任意であるが、以下においては、全て同一であるものとして説明する。 Note that the gap x between frames is a time of at least 2 ms. When using the 920 MHz band in Japan, carrier sense must be performed to confirm whether communication is performed in the band before signal transmission. A signal can be transmitted only when the band is free. Therefore, 920 MHz cannot always be used. Therefore, the gap x may differ every time depending on the result of carrier sense (that is, the degree of channel congestion). If 30 seconds are averaged, frames are transmitted at a rate of about once every 0.3 seconds. As a result, 100 frames are transmitted within a predetermined time of the super frame. The number of frames that can be transmitted varies slightly depending on the degree of channel congestion. The signals transmitted in 100 frames are arbitrary, but in the following description, they are all assumed to be the same.
 このように、同一フレームを繰り返し送信するために、レジスタ266は、選択部264から供給される、巡回冗長検査符号と同期パタンが付加された送信情報TMを保持する。そして、レジスタ266は、保持している巡回冗長検査符号と同期パタンが付加された送信情報TMを、所定回数繰り返し、インタリーブ部267に供給する。 Thus, in order to repeatedly transmit the same frame, the register 266 holds the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added, which is supplied from the selection unit 264. The register 266 then repeats the transmission information TM to which the cyclic redundancy check code and the synchronization pattern added are stored a predetermined number of times and supplies the transmission information TM to the interleaving unit 267.
 その際、フレームカウンタ265は、巡回冗長検査符号と同期パタンが付加された送信情報TMの送信を繰り返した回数、すなわち、レジスタ266に保持される、巡回冗長検査符号と同期パタンが付加された送信情報TMが読み出された回数をカウントする。フレームカウンタ265は、このようなカウント値をレジスタ266に供給する。レジスタ266は、そのカウント値により供給回数を把握する。レジスタ266は、巡回冗長検査符号と同期パタンが付加された送信情報TMの読み出しを所定回数(例えば、100回)繰り返すと、その巡回冗長検査符号と同期パタンが付加された送信情報TMを破棄し、次に選択部264から供給される新たな巡回冗長検査符号と同期パタンが付加された送信情報TMを取得し、保持する。 At that time, the frame counter 265 repeats transmission of the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added, that is, the transmission to which the cyclic redundancy check code and the synchronization pattern are added, which is held in the register 266. Count the number of times the information TM has been read. The frame counter 265 supplies such a count value to the register 266. The register 266 grasps the number of times of supply based on the count value. When the register 266 repeats reading the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added a predetermined number of times (for example, 100 times), the register 266 discards the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added. Next, the transmission information TM to which the new cyclic redundancy check code and the synchronization pattern supplied from the selection unit 264 are added is acquired and held.
 つまり、フレームカウンタ265は、スーパーフレーム内で送信されるフレームの最大数(図10の場合、100回)まで、巡回冗長検査符号と同期パタンが付加された送信情報TMが読み出された回数をカウントする(例えば、フレームカウンタ265は、カウント値0からカウントを開始し、カウント値が99になるまでカウントする)。そして、カウント値が最大値(例えば99)に達すると、カウント値が初期値(例えば0)にリセットされる。 That is, the frame counter 265 indicates the number of times the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added is read up to the maximum number of frames transmitted in the superframe (100 times in the case of FIG. 10). Count (for example, the frame counter 265 starts counting from the count value 0 and counts until the count value reaches 99). When the count value reaches the maximum value (for example, 99), the count value is reset to the initial value (for example, 0).
 図11は、送信パケットのフレーム構成(Frame format)の例を示す模式図である。図11の上から1段目に示されるように、送信パケットは、2オクテットのプリアンブル(Preamble)、1オクテットのSFD(start-of-frame delimiter)、そして16オクテットのPSDU(PHY Service Data Unit)から構成される。ここでプリアンブルとSFDは固定のデータである。その値は任意である。プリアンブルは、例えば、「0011111101011001」というビット列としてもよい。またSFDは、例えば「00011100」というビット列としてもよい。 FIG. 11 is a schematic diagram illustrating an example of a frame configuration (Frame format) of a transmission packet. As shown in the first row from the top of FIG. 11, the transmission packet includes a 2-octet preamble (Preamble), an 1-octet SFD (start-of-frame delimiter), and a 16-octet PSDU (PHY Service Data Unit). Consists of Here, the preamble and SFD are fixed data. Its value is arbitrary. For example, the preamble may be a bit string “0011111101011001”. The SFD may be a bit string of “00011100”, for example.
 図11の上から2段目に示されるように、16オクテットのPSDUは、フレームコントロール(FC)、シーケンス番号(SN)、送受信機アドレス(ADR)、ペイロード(PAYLOAD)、およびフレームチェックシーケンス(FCS)により構成されている。 As shown in the second row from the top in FIG. 11, the 16-octet PSDU includes a frame control (FC), a sequence number (SN), a transceiver address (ADR), a payload (PAYLOAD), and a frame check sequence (FCS). ).
 フレームコントロール(FC)は2オクテットのデジタル情報であり、フレームコントロールに続く情報の構成やビット数などを表す情報である。フレームコントロールは、任意の固定のビット列であり、例えば「0010000000100110」というビット列としてもよい。シーケンス番号(SN)は1オクテットのデジタル情報であり、新しいデータが伝送される度にカウントアップされる。このシーケンス番号をチェックすることにより、受信機側では新しいデータであるか否かを判断することができる。送受信機アドレス(ADR)は、4オクテットの情報であり、送信機101を識別する送信機アドレス番号(送信機ID)を含む。ペイロード(PAYLOAD)は、4オクテットのデジタル情報であり、送信情報TMがそのままセットされる。つまり、ペイロード(PAYLOAD)は、送信情報生成部261により生成される。フレームチェックシーケンス(FCS)は、2オクテットの巡回冗長検査符号であり、通信データに誤りが発生したか否かをチェックするための情報である。このフレームチェックシーケンス(FCS)は、CRC付加部22により付加される。 Frame control (FC) is digital information of 2 octets, and is information indicating the configuration of information and the number of bits following frame control. The frame control is an arbitrary fixed bit string, and may be a bit string of “0010000000100110”, for example. The sequence number (SN) is 1-octet digital information and is counted up each time new data is transmitted. By checking this sequence number, the receiver can determine whether or not the data is new. The transceiver address (ADR) is 4-octet information and includes a transmitter address number (transmitter ID) for identifying the transmitter 101. The payload (PAYLOAD) is 4-octet digital information, and the transmission information TM is set as it is. That is, the payload (PAYLOAD) is generated by the transmission information generation unit 261. The frame check sequence (FCS) is a 2-octet cyclic redundancy check code and is information for checking whether or not an error has occurred in communication data. This frame check sequence (FCS) is added by the CRC adding unit 22.
 ここで、プリアンブル(Preamble)乃至送受信機アドレス(ADR)までの情報は、同期パタン(SYNC)として、同期信号発生部263により生成される。この13オクテットの同期パタン(SYNC)は、選択部264により付加される。 Here, information from the preamble to the transceiver address (ADR) is generated by the synchronization signal generator 263 as a synchronization pattern (SYNC). This 13-octet synchronization pattern (SYNC) is added by the selection unit 264.
 レジスタ266には、このような構成の送信パケットが、巡回冗長検査符号と同期パタンが付加された送信情報TMとして保持される。 In the register 266, a transmission packet having such a configuration is held as transmission information TM to which a cyclic redundancy check code and a synchronization pattern are added.
 インタリーブ部267は、この巡回冗長検査符号と同期パタンが付加された送信情報TMの同期パタンを分解し、図11の上から4段目に示されるように、その他の部分(UND)の間に分散させる。この分散は、同期パタンが、ほぼ均等にばらまかれるように行われる。 The interleaving unit 267 disassembles the synchronization pattern of the transmission information TM to which the cyclic redundancy check code and the synchronization pattern are added, and, as shown in the fourth row from the top in FIG. Disperse. This distribution is performed so that the synchronization pattern is distributed almost evenly.
 図11の例の場合、上から3段目に示されるように、同期パタン(SYNC)が13オクテットの情報であり、UNDが6オクテットの情報である。インタリーブ部267は、13オクテットの同期パタン(SYNC)を1オクテットずつ分解し、SYNC0乃至SYNC12とし、6オクテットのUNDを1オクテットずつ分解し、UND0乃至UND5とし、これらを図11の上から4段目に示されるような順(次のような順)に並び替えている。 In the case of the example of FIG. 11, as shown in the third row from the top, the synchronization pattern (SYNC) is information of 13 octets, and UND is information of 6 octets. The interleave unit 267 disassembles the 13-octet synchronization pattern (SYNC) by 1 octet, SYNC0 to SYNC12, disassembles 6-octet UND by 1 octet, and UND0 to UND5. They are rearranged in the order shown in the eyes (the following order).
 SYNC0,SYNC1,UND0、SYNC2、SYNC3,UND1,・・・,UND5,SYNC12 SYNC0, SYNC1, UND0, SYNC2, SYNC3, UND1, ..., UND5, SYNC12
 このように高感度受信機152にとって既知の同期パタンを、フレーム全体にばらまいて(分散させて)送信することにより、高感度受信機152において、送信キャリアの周波数と初期位相推定を、短いフレーム毎により正確に行うことができるようになる。この結果、短い連続送信時間であっても、高感度受信機152がより高感度に受信することができるようになる。 As described above, the synchronization pattern known to the high-sensitivity receiver 152 is distributed (distributed) over the entire frame, so that the high-sensitivity receiver 152 calculates the frequency and initial phase estimation of the transmission carrier for each short frame. Can be performed more accurately. As a result, even with a short continuous transmission time, the high sensitivity receiver 152 can receive with higher sensitivity.
 図11の上から5段目にその並び替えられた送信情報QDの例を示す。インタリーブ部267は、以上のように並び替えられた送信情報QDを、乗算部269に供給する。Gold符号発生部268は、送信情報QDに付加する疑似乱数列を発生する。この擬似乱数列は、どのようなものであってもよく、そのデータ長も任意である。例えば、Gold符号発生部268が、擬似乱数列として、長さ256ビットの所定のパタンのビット列を生成するようにしてもよい。例えば、Gold符号発生部268が、2つのM系列 (Maximum Sequence)発生器で構成されるようにしてもよい。Gold符号発生部268は、発生した疑似乱数列を乗算部269に供給する。乗算部269は、インタリーブ部267から供給される送信情報QDと、Gold符号発生部268から供給される擬似乱数列とを乗算することにより擬似乱数列PNを生成する。 FIG. 11 shows an example of the rearranged transmission information QD in the fifth row from the top. The interleaving unit 267 supplies the transmission information QD rearranged as described above to the multiplying unit 269. The Gold code generator 268 generates a pseudo random number sequence to be added to the transmission information QD. This pseudo-random number sequence may be anything, and its data length is also arbitrary. For example, the Gold code generation unit 268 may generate a bit string of a predetermined pattern having a length of 256 bits as a pseudo random number sequence. For example, the Gold code generator 268 may be configured with two M-sequence generators. The Gold code generation unit 268 supplies the generated pseudo random number sequence to the multiplication unit 269. The multiplication unit 269 multiplies the transmission information QD supplied from the interleaving unit 267 and the pseudo random number sequence supplied from the Gold code generation unit 268 to generate a pseudo random number sequence PN.
 つまり、乗算部269は、送信情報QDの各ビットに対して擬似乱数列を割り当て、各送信パケットから、例えば38400ビット(152bit x 256chips)の擬似乱数列PNを生成する。その際、送信情報QDの、値が「0」のビット(QD=0)に対して割り当てられる擬似乱数列と、値が「1」のビット(QD=1)に対して割り当てられる擬似乱数列とは、各ビットの値が互いに反転している。つまり、例えば、乗算部269は、送信情報QDの値が「0」のビット(QD=0)に対して擬似乱数列を割り当て、送信情報QDの値が「1」のビット(QD=1)に対して各ビットの値を反転させた擬似乱数列を割り当てる。例えば、乗算部269は、図11の最下段に示されるように、送信情報QDの、値が「1」のビット(QD=1)に対して擬似乱数列「1101000110100......1001」を割り当て、値が「0」のビット(QD=0)に対して擬似乱数列「0010111001011......0110」を割り当てる。 That is, the multiplication unit 269 assigns a pseudo random number sequence to each bit of the transmission information QD, and generates a pseudo random number sequence PN of, for example, 38400 bits (152 bits x 256 chips) from each transmission packet. At that time, a pseudo-random number sequence assigned to a bit (QD = 0) having a value “0” and a pseudo-random number sequence assigned to a bit (QD = 1) having a value “1” in the transmission information QD Means that the values of each bit are inverted. That is, for example, the multiplication unit 269 assigns a pseudo-random number sequence to a bit (QD = 0) whose transmission information QD value is “0”, and a bit whose transmission information QD value is “1” (QD = 1). Is assigned a pseudo-random number sequence in which the value of each bit is inverted. For example, as shown in the lowermost stage of FIG. 11, the multiplication unit 269 performs the pseudo random number sequence “1101000110100... 1001” on the bit (QD = 1) of the transmission information QD whose value is “1”. ”And a pseudo random number sequence“ 0010111001011... 0110 ”is assigned to a bit (QD = 0) having a value of“ 0 ”.
 この擬似乱数列PNにおいて、拡散係数は256であり、チップ間隔Δは5μsである。乗算部269は、以上のように生成した擬似乱数列PNを乗算部253に供給する。 In this pseudo random number sequence PN, the diffusion coefficient is 256, and the chip interval Δ is 5 μs. The multiplication unit 269 supplies the pseudo random number sequence PN generated as described above to the multiplication unit 253.
 キャリア発振部252は、所定の周波数(キャリア周波数)で発振し、無線信号の伝送に用いるキャリア信号を生成する。例えば、キャリア発振部252は、送信信号を920MHz帯で送信するように、925MHzで発信する。キャリア発振部252は、生成したキャリア信号を乗算部253に供給する。乗算部253は、乗算部269から供給される擬似乱数列PNに応じて、キャリア発振部252から供給されるキャリア信号の極性を変調する。例えば、乗算部253は、BPSK変調を行う。例えば、擬似乱数列PNが「1」の場合、キャリアの位相がπとなるように変調され、擬似乱数列PNが「0」の場合、キャリアの位相が-π(極性反転)となるように変調される。乗算部253は、その変調結果を変調信号CMとしてバンドパスフィルタ(BPF)254に供給する。BPF254は、乗算部253から供給される変調信号CMの帯域をキャリア周波数の帯域に制限する。BPF254は、このように帯域制限された変調信号CMを送信信号TXとして増幅部255に供給する。増幅部255は、所定の送信タイミングにおいて、BPF254から供給された送信信号TXを増幅し、増幅した送信信号TXを、無線信号として、アンテナ256を介して送信する。 The carrier oscillation unit 252 oscillates at a predetermined frequency (carrier frequency) and generates a carrier signal used for transmission of a radio signal. For example, the carrier oscillation unit 252 transmits the transmission signal at 925 MHz so as to transmit the transmission signal in the 920 MHz band. The carrier oscillation unit 252 supplies the generated carrier signal to the multiplication unit 253. The multiplier 253 modulates the polarity of the carrier signal supplied from the carrier oscillator 252 according to the pseudo random number sequence PN supplied from the multiplier 269. For example, the multiplication unit 253 performs BPSK modulation. For example, when the pseudo random number sequence PN is “1”, the carrier phase is modulated to be π, and when the pseudo random number sequence PN is “0”, the carrier phase is −π (polarity inversion). Modulated. The multiplier 253 supplies the modulation result to the band pass filter (BPF) 254 as the modulation signal CM. The BPF 254 limits the band of the modulation signal CM supplied from the multiplier 253 to the carrier frequency band. The BPF 254 supplies the modulation signal CM thus band-limited to the amplification unit 255 as the transmission signal TX. The amplification unit 255 amplifies the transmission signal TX supplied from the BPF 254 at a predetermined transmission timing, and transmits the amplified transmission signal TX as a radio signal via the antenna 256.
  <高感度受信機>
 図12は、このような送信機101から送信された無線信号を受信する高感度受信機152の主な構成例を示す図である。
<High sensitivity receiver>
FIG. 12 is a diagram illustrating a main configuration example of the high sensitivity receiver 152 that receives a radio signal transmitted from the transmitter 101.
 図12に示されるように、高感度受信機152は、信号受信部301と受信情報処理部302とを有する。また、信号受信部301と受信情報処理部302とは、バス303を介して互いに接続されている。 As shown in FIG. 12, the high sensitivity receiver 152 includes a signal reception unit 301 and a reception information processing unit 302. The signal reception unit 301 and the reception information processing unit 302 are connected to each other via a bus 303.
 信号受信部301は、送信機101から送信された信号を受信する。信号受信部301は、アンテナ152Aの他に、SAW(Surface Acoustic Wave(弾性表面波))フィルタ311、LNA312、発振部313、分周部314、IQジェネレータ315、乗算部316、LPF317、AAF(Anti-Aliasing Filter)318、ADC(Analog Digital Converter)319、乗算部320、LPF321、AAF322、およびADC323を有する。 The signal receiving unit 301 receives a signal transmitted from the transmitter 101. In addition to the antenna 152A, the signal receiving unit 301 includes a SAW (Surface Acoustic Wave) filter 311, LNA 312, oscillator 313, frequency divider 314, IQ generator 315, multiplier 316, LPF 317, AAF (Anti -Aliasing Filter) 318, ADC (Analog Digital Converter) 319, multiplier 320, LPF321, AAF322, and ADC323.
 SAWフィルタ311は、物質の表面を伝搬する弾性表面波の特性を応用し、圧電体の薄膜若しくは基板上に形成された規則性のあるくし型電極(IDT(Interdigital Transducer))により、特定の周波数帯域の電気信号を取り出すフィルタである。そのくし型電極の構造周期と圧電体や電極の物性により、中心周波数や帯域を決めることができる。SAWフィルタ311は、アンテナ152Aにより受信された無線信号である受信信号から所望の周波数帯の信号成分を抽出する。SAWフィルタ311は、その抽出した信号成分(すなわち、受信信号)をLNA312に供給する。LNA312は、供給された受信信号を増幅し、乗算部316および乗算部320に供給する。 The SAW filter 311 applies the characteristics of surface acoustic waves propagating on the surface of a substance, and has a specific frequency by a regular comb electrode (IDT (Interdigital Transducer)) formed on a piezoelectric thin film or substrate. This is a filter for extracting a band electric signal. The center frequency and band can be determined by the structure period of the comb-shaped electrode and the physical properties of the piezoelectric body and electrode. SAW filter 311 extracts a signal component of a desired frequency band from the received signal that is a radio signal received by antenna 152A. The SAW filter 311 supplies the extracted signal component (that is, the received signal) to the LNA 312. The LNA 312 amplifies the supplied reception signal and supplies it to the multiplier 316 and the multiplier 320.
 発振部313は、所定の周波数で発信し、その周波数の信号を分周部314に供給する。分周部314は、発振部313から供給される信号を分周することにより、キャリア周波数の信号を生成する。例えば、例えば920MHz帯で送られた信号を受信する場合、発振部313および分周部314は、周波数925MHzの信号を生成する。分周部314は、その信号をIQジェネレータ315に供給する。IQジェネレータ315は、分周部314から供給される信号を用いて、IとQのそれぞれに対するキャリア信号を生成する。すなわち、IQジェネレータ315は、信号の位相を制御し、互いに90度位相がずれた2つのキャリア信号を生成する。IQジェネレータ315は、生成したI用のキャリア信号を乗算部316に供給し、Q用のキャリア信号を乗算部320に供給する。 The oscillation unit 313 transmits at a predetermined frequency, and supplies a signal of that frequency to the frequency division unit 314. The frequency divider 314 divides the signal supplied from the oscillator 313 to generate a carrier frequency signal. For example, when receiving a signal transmitted in a 920 MHz band, for example, the oscillation unit 313 and the frequency dividing unit 314 generate a signal having a frequency of 925 MHz. The frequency divider 314 supplies the signal to the IQ generator 315. The IQ generator 315 generates a carrier signal for each of I and Q using the signal supplied from the frequency divider 314. That is, the IQ generator 315 controls the phase of the signal and generates two carrier signals that are 90 degrees out of phase with each other. The IQ generator 315 supplies the generated carrier signal for I to the multiplier 316 and supplies the carrier signal for Q to the multiplier 320.
 乗算部316は、LNA312から供給される受信信号と、IQジェネレータ315から供給されるキャリア信号とを乗算し、ベースバンドのInPhase信号(I信号)を生成する。乗算部316は、そのI信号をLPF317に供給する。LPF317は、供給されたI信号に対して、所定の周波数よりも低周波成分を通過させ、その所定の周波数よりも高周波成分を除去するフィルタ処理を行う。LPF317は、そのフィルタ処理結果のI信号をAAF318に供給する。AAF318は、供給されたI信号に対して、エイリアシング(折り返し誤差)を抑制するようにフィルタ処理を行う。例えば、AAF318は、供給されたI信号に対して、所定の周波数よりも低周波成分を通過させるようにローパスフィルタ処理を行う。AAF318は、そのフィルタ処理結果のI信号をADC319に供給する。ADC319は、供給されたI信号をA/D変換し、アナログ信号からデジタル信号に変換する。ADC319は、デジタル信号のI信号を、バス303を介して受信情報処理部302(例えば、復調部333等)に供給する。 The multiplication unit 316 multiplies the reception signal supplied from the LNA 312 and the carrier signal supplied from the IQ generator 315 to generate a baseband InPhase signal (I signal). The multiplier 316 supplies the I signal to the LPF 317. The LPF 317 performs a filtering process to pass a low frequency component lower than a predetermined frequency and remove a higher frequency component than the predetermined frequency with respect to the supplied I signal. The LPF 317 supplies the I signal resulting from the filtering process to the AAF 318. The AAF 318 performs a filtering process on the supplied I signal so as to suppress aliasing (folding error). For example, the AAF 318 performs a low-pass filter process so that a lower frequency component than a predetermined frequency is passed through the supplied I signal. The AAF 318 supplies the I signal resulting from the filtering process to the ADC 319. The ADC 319 performs A / D conversion on the supplied I signal and converts the analog signal into a digital signal. The ADC 319 supplies the digital I signal to the reception information processing unit 302 (for example, the demodulation unit 333) via the bus 303.
 乗算部320は、LNA312から供給される受信信号と、IQジェネレータ315から供給されるキャリア信号とを乗算し、ベースバンドのQuadrature信号(Q信号)を生成する。乗算部320は、そのQ信号をLPF321に供給する。LPF321は、供給されたQ信号に対して、所定の周波数よりも低周波成分を通過させ、その所定の周波数よりも高周波成分を除去するフィルタ処理を行う。LPF321は、そのフィルタ処理結果のQ信号をAAF322に供給する。AAF322は、供給されたQ信号に対して、エイリアシングを抑制するようにフィルタ処理を行う。例えば、AAF322は、供給されたQ信号に対して、所定の周波数よりも低周波成分を通過させるようにローパスフィルタ処理を行う。AAF322は、そのフィルタ処理結果のQ信号をADC323に供給する。ADC323は、供給されたQ信号をA/D変換し、アナログ信号からデジタル信号に変換する。ADC323は、デジタル信号のQ信号を、バス303を介して受信情報処理部302(例えば、復調部333等)に供給する。 The multiplication unit 320 multiplies the reception signal supplied from the LNA 312 and the carrier signal supplied from the IQ generator 315 to generate a baseband Quadrature signal (Q signal). Multiplier 320 supplies the Q signal to LPF 321. The LPF 321 performs a filtering process for passing a low frequency component lower than a predetermined frequency and removing a high frequency component higher than the predetermined frequency for the supplied Q signal. The LPF 321 supplies the Q signal resulting from the filtering process to the AAF 322. The AAF 322 performs a filtering process on the supplied Q signal so as to suppress aliasing. For example, the AAF 322 performs a low-pass filter process on the supplied Q signal so as to pass a low frequency component from a predetermined frequency. The AAF 322 supplies the Q signal resulting from the filtering process to the ADC 323. The ADC 323 performs A / D conversion on the supplied Q signal and converts the analog signal into a digital signal. The ADC 323 supplies the digital Q signal to the reception information processing unit 302 (for example, the demodulation unit 333) via the bus 303.
 受信情報処理部302は、送信機101から送信された情報(受信情報)に対する情報処理に関する処理を行う。受信情報処理部302は、バス330、制御部331、メモリ332、復調部333、GNSS信号受信部334、情報処理部335、通信部336、および電源部337を有する。 The reception information processing unit 302 performs processing related to information processing for information (reception information) transmitted from the transmitter 101. The reception information processing unit 302 includes a bus 330, a control unit 331, a memory 332, a demodulation unit 333, a GNSS signal reception unit 334, an information processing unit 335, a communication unit 336, and a power supply unit 337.
 制御部331乃至電源部337の各処理部は、バス330を介して互いに接続されており、情報の授受を行うことができる。また、このバス330には、バス303も接続されており、制御部331乃至電源部337の各処理部は、例えば、発振部313、ADC319、およびADC323等の信号受信部301の処理部とも情報の授受を行うことができる。 The processing units of the control unit 331 to the power supply unit 337 are connected to each other via the bus 330 and can exchange information. The bus 330 is also connected to the bus 303, and the processing units of the control unit 331 to the power supply unit 337 are also information with the processing units of the signal receiving unit 301 such as the oscillation unit 313, the ADC 319, and the ADC 323. Can be exchanged.
 制御部331は、メモリ332乃至電源部337の各処理部を制御し、受信情報に対する情報処理のための制御に関する処理を行う。メモリ332は、例えば、RAM、SSD、フラッシュメモリ等の半導体メモリや、ハードディスク等の磁気記録媒体等の、書き込み(書き換え)可能な任意の記録媒体(記憶媒体)を有する。メモリ332は、その記録媒体(記憶媒体)により、例えば、制御部331、並びに、復調部333乃至電源部337のいずれかから供給される各種情報を記憶する。また、メモリ332は、自身が記憶している情報を、例えば、制御部331、並びに、復調部333乃至電源部337等に供給することもできる。また、メモリ332は、信号受信部301からバス303を介して供給される情報を記憶することもできるし、記憶している情報を、バス303を介して信号受信部301に供給することもできる。 The control unit 331 controls each processing unit of the memory 332 to the power supply unit 337, and performs processing related to control for information processing on received information. The memory 332 includes any writable (rewritable) recording medium (storage medium) such as a semiconductor memory such as a RAM, an SSD, or a flash memory, or a magnetic recording medium such as a hard disk. The memory 332 stores various information supplied from, for example, the control unit 331 and any of the demodulation unit 333 to the power supply unit 337 by the recording medium (storage medium). In addition, the memory 332 can supply the information stored therein to, for example, the control unit 331, the demodulation unit 333, the power supply unit 337, and the like. Further, the memory 332 can store information supplied from the signal receiving unit 301 via the bus 303, and can also supply the stored information to the signal receiving unit 301 via the bus 303. .
 復調部333は、例えば制御部331の制御に基づいて、信号受信部301において受信される受信信号のI信号のデジタルデータやQ信号のデジタルデータの復調に関する処理を行う。 The demodulation unit 333 performs processing related to demodulation of digital data of the I signal and Q signal of the reception signal received by the signal reception unit 301 based on the control of the control unit 331, for example.
 GNSS信号受信部334は、例えば制御部331の制御に基づいて、アンテナ152Bを用いてGNSS衛星161から送信されるGNSS信号の受信に関する処理を行う。例えば、GNSS信号受信部334が、その受信したGNSS信号を用いて、高感度受信機152(中継局102)の位置情報を生成するようにしてもよい。 The GNSS signal reception unit 334 performs processing related to reception of a GNSS signal transmitted from the GNSS satellite 161 using the antenna 152B based on the control of the control unit 331, for example. For example, the GNSS signal receiving unit 334 may generate position information of the high sensitivity receiver 152 (relay station 102) using the received GNSS signal.
 情報処理部335は、例えば制御部331の制御に基づいて、復調部333において復調されて得られた情報(受信情報)に対する情報処理に関する処理を行う。この情報処理の内容は任意である。 The information processing unit 335 performs processing related to information processing on information (reception information) obtained by demodulation in the demodulation unit 333 based on the control of the control unit 331, for example. The content of this information processing is arbitrary.
 通信部336は、例えば制御部331の制御に基づいて、他の装置との通信に関する処理を行う。例えば、通信部336は、情報処理部335等において処理されて得られた送信機101の位置情報等の受信情報を、メモリ153に供給して記憶させることができる。また、例えば、通信部336は、GNSS信号受信部334において生成された高感度受信機152の位置情報(若しくはGNSS信号や時刻情報等)を、メモリ153に供給して記憶させることができる。例えば、通信部336は、受信情報と高感度受信機152の位置情報とを関連付けてメモリ153に供給して記憶させることができる。また、例えば、通信部336は、電源制御装置151に対して通知を行うこともできる。もちろん、通信部336が行う通信の内容および通信相手は任意であり、上述した例以外の通信を行うことができるようにしてもよい。 The communication unit 336 performs processing related to communication with other devices based on the control of the control unit 331, for example. For example, the communication unit 336 can supply and store received information such as position information of the transmitter 101 obtained by processing in the information processing unit 335 or the like to the memory 153. Further, for example, the communication unit 336 can supply and store the position information (or GNSS signal, time information, etc.) of the high sensitivity receiver 152 generated in the GNSS signal receiving unit 334 to the memory 153. For example, the communication unit 336 can associate and store the reception information and the position information of the high sensitivity receiver 152 in the memory 153 and store them. For example, the communication unit 336 can also notify the power supply control device 151. Of course, the content of communication performed by the communication unit 336 and the communication partner are arbitrary, and communication other than the above-described example may be performed.
 電源部337は、例えば制御部331の制御に基づいて、電源制御装置151から供給される電力に関する処理を行う。例えば、電源部337は、電源制御装置151から供給される電力を各処理部に適宜供給し、駆動させる。例えば、電源部337は、駆動させる処理部にのみ電力を供給することができる。これにより、高感度受信機152の消費電力の増大を抑制することができる。 The power supply unit 337 performs processing related to the power supplied from the power supply control device 151 based on the control of the control unit 331, for example. For example, the power supply unit 337 appropriately supplies the power supplied from the power supply control device 151 to each processing unit and drives it. For example, the power supply unit 337 can supply power only to the processing unit to be driven. Thereby, an increase in power consumption of the high sensitivity receiver 152 can be suppressed.
 信号受信部301が送信機101から送信された無線信号を受信することにより、その無線信号は、例えば、図13に示されるような波形として検出される。復調部333は、このような波形からピーク位置等に基づいて、フレームデータを抽出し、周波数や初期位相等の補正を行う。図14の上段は、フレーム中での位相変化の例を示している。図14においては、フレーム5(Frame5)乃至フレーム8(Frame8)を抽出して表示しているが、それぞれ微妙に位相と周波数が変化している。復調部333は、このように揺らいでいる位相に対して、図14の下段に示されるように、位相変化を最もよく近似する直線を求め、相関値β2(n)を求める。図14の下段において、それぞれの直線の傾きがγ(n)に相当し、初期位相がθ(n)に相当している。また相関値β2(n)は、位相揺らぎと近似直線との相関に応じて変化している。復調部333は、このような相関値β2(n)を重み係数として用いてフレームデータの加算を行う。 When the signal receiving unit 301 receives the wireless signal transmitted from the transmitter 101, the wireless signal is detected as a waveform as shown in FIG. The demodulator 333 extracts frame data from such a waveform based on the peak position and the like, and corrects the frequency, initial phase, and the like. The upper part of FIG. 14 shows an example of the phase change in the frame. In FIG. 14, frames 5 (Frame 5) to 8 (Frame 8) are extracted and displayed, but the phase and frequency are slightly changed. The demodulator 333 obtains a straight line that best approximates the phase change and obtains a correlation value β2 (n) as shown in the lower part of FIG. In the lower part of FIG. 14, the slope of each straight line corresponds to γ (n), and the initial phase corresponds to θ (n). Further, the correlation value β2 (n) changes in accordance with the correlation between the phase fluctuation and the approximate line. The demodulating unit 333 adds frame data using such a correlation value β2 (n) as a weighting coefficient.
 以上のようにして復号した結果のコンスタレーションを図15に示す。図15に示されるように、BPSK変調として、2つの点が分離されていることから、この場合、正しくデータが復号されている。復調部333は、これをBPSK復調して受信情報を得る。 FIG. 15 shows a constellation obtained as a result of decoding as described above. As shown in FIG. 15, since two points are separated as BPSK modulation, data is correctly decoded in this case. The demodulator 333 demodulates this to BPSK to obtain received information.
 以上に説明したように、送信機101は、最大連続送信時間短く設定することができ、例えば920MHz帯で0.2秒と設定することにより、沢山の周波数チャネルから選択して送信することができるので、混信に対してより強い送受信システムを構築することができる。また、短い時間のフレームを多数積算することにより、電波法に定められた最大送信時間の制限を超えずに、実効的なSNRを向上させることができる。このとき、同期信号がフレーム全体に分散されているので、フレーム中に位相揺らぎがあった場合においても、より適切に位相と周波数の補正を行うことができる。これらの結果、例えば、ノイズに埋もれてしまい従来の方法では復号することが困難な程微弱な受信信号であっても、高感度受信機152は、より正確に受信情報を得ることができる。つまり、送信機101が送信した無線信号をより高感度に受信することができ、送信機101との通信可能範囲をより広くすることができる。 As described above, the transmitter 101 can set the maximum continuous transmission time short, and for example, by setting 0.2 seconds in the 920 MHz band, it can select and transmit from many frequency channels. It is possible to construct a transmission / reception system that is stronger against interference. Also, by integrating a large number of short time frames, the effective SNR can be improved without exceeding the maximum transmission time limit defined in the Radio Law. At this time, since the synchronization signal is distributed throughout the frame, even when there is a phase fluctuation in the frame, the phase and frequency can be corrected more appropriately. As a result, the high sensitivity receiver 152 can obtain the received information more accurately even if the received signal is so weak as to be buried in noise and difficult to decode by the conventional method. That is, the wireless signal transmitted by the transmitter 101 can be received with higher sensitivity, and the communicable range with the transmitter 101 can be further widened.
  <LTEモデム>
 中継局102は、図9乃至図15を参照して説明したような無線信号の送受信により、送信機101から高感度受信機152に伝送された情報(受信情報)を、LTEモデム154を用いてサーバ104に供給する。図16は、LTEモデム154の主な構成例を示すブロック図である。
<LTE modem>
The relay station 102 uses the LTE modem 154 to transmit information (reception information) transmitted from the transmitter 101 to the high-sensitivity receiver 152 by transmitting and receiving wireless signals as described with reference to FIGS. Supply to the server 104. FIG. 16 is a block diagram illustrating a main configuration example of the LTE modem 154.
 図16に示されるように、LTEモデム154は、制御部351、メモリ352、通信部353、電源部354、およびLTE通信部355を有する。制御部351乃至LTE通信部355の各処理部は、バス350を介して互いに接続されている。すなわち、各処理部間で情報を授受したり、制御し合ったりすることができる。 16, the LTE modem 154 includes a control unit 351, a memory 352, a communication unit 353, a power supply unit 354, and an LTE communication unit 355. The processing units of the control unit 351 to the LTE communication unit 355 are connected to each other via a bus 350. That is, information can be exchanged and controlled between the processing units.
 制御部351は、LTEモデム154の各処理部の制御に関する処理を行う。メモリ352は、例えば、RAM、SSD、フラッシュメモリ等の半導体メモリや、ハードディスク等の磁気記録媒体等の、書き込み(書き換え)可能な任意の記録媒体(記憶媒体)を有する。メモリ352は、その記録媒体(記憶媒体)により、例えば、制御部351、並びに、通信部353乃至LTE通信部355のいずれかから供給される各種情報を記憶する。また、メモリ352は、自身が記憶している情報を、例えば、制御部351、並びに、通信部353乃至LTE通信部355等に供給することもできる。例えば、メモリ352は、通信部353により取得された、メモリ153から読み出された情報(例えば、送信機101の位置情報やID、または、高感度受信機152の位置情報やID等)を記憶することができる。 The control unit 351 performs processing related to control of each processing unit of the LTE modem 154. The memory 352 has any writable (rewritable) recording medium (storage medium) such as a semiconductor memory such as a RAM, an SSD, or a flash memory, or a magnetic recording medium such as a hard disk. The memory 352 stores various types of information supplied from, for example, the control unit 351 and any of the communication unit 353 to the LTE communication unit 355 by the recording medium (storage medium). Further, the memory 352 can supply the information stored therein to, for example, the control unit 351, the communication unit 353 to the LTE communication unit 355, and the like. For example, the memory 352 stores information (for example, position information and ID of the transmitter 101 or position information and ID of the high-sensitivity receiver 152) read from the memory 153 acquired by the communication unit 353. can do.
 通信部353は、例えば制御部351の制御に基づいて、他の装置との通信に関する処理を行う。例えば、通信部353は、メモリ153から情報を読み出すことができる。また、例えば、通信部353は、電源制御装置151に通知を行うこともできる。もちろん、通信部353が行う通信の内容および通信相手は任意であり、上述した例以外の通信を行うことができるようにしてもよい。 The communication unit 353 performs processing related to communication with other devices based on the control of the control unit 351, for example. For example, the communication unit 353 can read information from the memory 153. For example, the communication unit 353 can also notify the power supply control device 151. Of course, the content of communication performed by the communication unit 353 and the communication partner are arbitrary, and communication other than the above-described example may be performed.
 電源部354は、例えば制御部351の制御に基づいて、電源制御装置151から供給される電力に関する処理を行う。例えば、電源部354は、電源制御装置151から供給される電力を各処理部に適宜供給し、駆動させる。例えば、電源部354は、駆動させる処理部にのみ電力を供給することができる。これにより、LTEモデム154の消費電力の増大を抑制することができる。 The power supply unit 354 performs processing related to the power supplied from the power supply control device 151 based on the control of the control unit 351, for example. For example, the power supply unit 354 appropriately supplies the power supplied from the power supply control device 151 to each processing unit and drives it. For example, the power supply unit 354 can supply power only to the processing unit to be driven. Thereby, an increase in power consumption of the LTE modem 154 can be suppressed.
 LTE通信部355は、例えば制御部351の制御に基づいて、LTE通信の基地局等と通信を行い、ネットワーク103に接続し、そのネットワーク103を介してサーバ104と通信を行う。例えば、LTE通信部355は、メモリ352に記憶されている情報(例えば、送信機101の位置情報やID、または、高感度受信機152の位置情報やID等)を読み出し、サーバ104に供給することができる。また、LTE通信部355は、例えば、サーバ104から命令やデータ等、任意の情報を取得することもできる。 The LTE communication unit 355 communicates with, for example, an LTE communication base station based on the control of the control unit 351, connects to the network 103, and communicates with the server 104 via the network 103. For example, the LTE communication unit 355 reads information stored in the memory 352 (for example, position information and ID of the transmitter 101 or position information and ID of the high sensitivity receiver 152) and supplies the information to the server 104. be able to. The LTE communication unit 355 can also acquire arbitrary information such as commands and data from the server 104, for example.
  <制御処理の流れ>
 以上のような構成の位置通知システム100の中継局102において実行される制御処理の流れの例を、図17および図18のフローチャートを参照して説明する。中継局102は、図17および図18のフローチャートに示されるように制御処理を行うことにより、電源制御装置151を用いて、高感度受信機152およびLTEモデム154に対する電力供給の制御を行う。
<Flow of control processing>
An example of the flow of control processing executed in the relay station 102 of the position notification system 100 configured as described above will be described with reference to the flowcharts of FIGS. The relay station 102 controls the power supply to the high-sensitivity receiver 152 and the LTE modem 154 using the power supply control device 151 by performing control processing as shown in the flowcharts of FIGS. 17 and 18.
 例えば、電源制御装置151は、図17に示されるフローチャートのように、高感度受信機152を駆動させる場合(高感度受信機152に無線信号を受信させる場合)のみ、高感度受信機152に対して電力を供給する。 For example, the power supply control device 151 is connected to the high sensitivity receiver 152 only when the high sensitivity receiver 152 is driven (when the high sensitivity receiver 152 receives a radio signal) as shown in the flowchart of FIG. Supply power.
 すなわち、高感度受信機152に送信機101からの無線信号を受信させる場合、電源制御装置151の制御部211は、図17のステップS101において、接続部212を制御して高感度受信機152への電力の供給を開始させ、高感度受信機152の電源をオン(ON)にする。電力の供給が開始されると、高感度受信機152の電源部337は、ステップS111において、その電力を駆動させる処理部に対して供給し、それらの駆動を開始させる。 That is, when the high sensitivity receiver 152 receives a radio signal from the transmitter 101, the control unit 211 of the power supply control device 151 controls the connection unit 212 to the high sensitivity receiver 152 in step S101 of FIG. The high-sensitivity receiver 152 is turned on (ON). When the supply of power is started, the power supply unit 337 of the high sensitivity receiver 152 supplies the power to the processing unit that drives the power in step S111 and starts driving them.
 そして、ステップS112において、高感度受信機152の信号受信部301は、送信機101から送信される無線信号を受信する。無線信号を受信すると、高感度受信機152の復調部333や情報処理部335は、ステップS113において、受信した信号を復調したり、信号処理したりして、送信機101の位置情報やID等の情報を信号から抽出し、取得する。復調部333や情報処理部335は、取得したその情報を、例えば、メモリ332に記憶させる。ステップS114において、高感度受信機152の通信部336は、そのメモリ332に記憶されている情報(受信情報)を読み出してメモリ153に供給し、記憶させる。ステップS121において、メモリ153は、供給された受信情報を記憶する。ステップS114の処理が終了すると、通信部336は、ステップS115において、受信情報をメモリ153に格納した旨を、電源制御装置151に通知する。 In step S112, the signal receiving unit 301 of the high sensitivity receiver 152 receives the radio signal transmitted from the transmitter 101. When the wireless signal is received, the demodulation unit 333 and the information processing unit 335 of the high sensitivity receiver 152 demodulate the received signal and perform signal processing in step S113, and the position information, ID, and the like of the transmitter 101 are received. The information is extracted from the signal and acquired. The demodulation unit 333 and the information processing unit 335 store the acquired information in, for example, the memory 332. In step S114, the communication unit 336 of the high sensitivity receiver 152 reads out information (reception information) stored in the memory 332, supplies the information to the memory 153, and stores it. In step S121, the memory 153 stores the supplied reception information. When the process of step S114 ends, the communication unit 336 notifies the power supply control device 151 that the received information is stored in the memory 153 in step S115.
 ステップS102において、電源制御装置151の制御部211は、その通知を取得する。通知を取得すると、電源制御装置151の制御部211は、ステップS103において、接続部212を制御して高感度受信機152への電力の供給を終了させ、高感度受信機152の電源をオフ(OFF)にする。電力の供給が終了すると、高感度受信機152の電源部337は、ステップS116において、各処理部への電力の供給も終了し、それらの駆動も終了させる。 In step S102, the control unit 211 of the power supply control device 151 acquires the notification. When the notification is acquired, the control unit 211 of the power supply control device 151 controls the connection unit 212 to end the supply of power to the high sensitivity receiver 152 in step S103, and turns off the power of the high sensitivity receiver 152 ( OFF). When the supply of power ends, the power supply unit 337 of the high sensitivity receiver 152 also ends the supply of power to each processing unit in step S116 and ends the driving thereof.
 また、LTEモデム154に、送信機101から得た情報をサーバ104に供給させる場合、電源制御装置151の制御部211は、ステップS141において、接続部212を制御してLTEモデム154への電力の供給を開始させ、LTEモデム154の電源をオン(ON)にする。電力の供給が開始されると、LTEモデム154の電源部354は、ステップS171において、その電力を駆動させる処理部に対して供給し、それらの駆動を開始させる。 In addition, when the LTE modem 154 supplies the information obtained from the transmitter 101 to the server 104, the control unit 211 of the power supply control device 151 controls the connection unit 212 in step S141 to supply power to the LTE modem 154. Supply is started and the power of the LTE modem 154 is turned on. When the supply of power is started, the power supply unit 354 of the LTE modem 154 supplies the power to the processing unit that drives the power in step S171 and starts the driving thereof.
 そして、ステップS172において、LTEモデム154の通信部353は、メモリ153から、所望の情報(送信機101の位置情報等)を読み出す。メモリ153は、ステップS161において、要求されたその情報をLTEモデム154に供給する。情報を取得すると、LTEモデム154のLTE通信部355は、ステップS173において、その情報を、サーバ104に供給する。 In step S 172, the communication unit 353 of the LTE modem 154 reads desired information (such as the position information of the transmitter 101) from the memory 153. The memory 153 supplies the requested information to the LTE modem 154 in step S161. When the information is acquired, the LTE communication unit 355 of the LTE modem 154 supplies the information to the server 104 in step S173.
 ステップS173の処理が終了すると、通信部353は、ステップS174において、情報をサーバ104に送信した旨を、電源制御装置151に通知する。 When the process of step S173 ends, the communication unit 353 notifies the power supply control device 151 that the information has been transmitted to the server 104 in step S174.
 ステップS142において、電源制御装置151の制御部211は、その通知を取得する。通知を取得すると、電源制御装置151の制御部211は、ステップS143において、接続部212を制御してLTEモデム154への電力の供給を終了させ、LTEモデム154の電源をオフ(OFF)にする。電力の供給が終了すると、LTEモデム154の電源部354は、ステップS175において、各処理部への電力の供給も終了し、それらの駆動も終了させる。 In step S142, the control unit 211 of the power supply control device 151 acquires the notification. When the notification is acquired, the control unit 211 of the power supply control device 151 controls the connection unit 212 to end the supply of power to the LTE modem 154 and turns off the power of the LTE modem 154 in step S143. . When the supply of power ends, the power supply unit 354 of the LTE modem 154 also ends the supply of power to each processing unit in step S175 and ends their driving.
 以上のように制御処理が行われることにより、中継局102は、高感度受信機152やLTEモデム154に対する不要な電力の供給を抑制し、それらの消費電力の増大を抑制することができる。また、高感度受信機152とLTEモデム154とを互いに異なるタイミングにおいて駆動させることができ、消費電力のピーク(最大値)の増大を抑制することができる。 By performing the control process as described above, the relay station 102 can suppress supply of unnecessary power to the high sensitivity receiver 152 and the LTE modem 154, and can suppress an increase in power consumption thereof. In addition, the high sensitivity receiver 152 and the LTE modem 154 can be driven at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  <電源供給制御処理の流れ>
 この場合の電源制御装置151が実行する電源供給制御処理の流れの例を、図19のフローチャートを参照して説明する。
<Flow of power supply control processing>
An example of the flow of power supply control processing executed by the power supply control device 151 in this case will be described with reference to the flowchart of FIG.
 電源制御装置151の制御部211は、送信機101から送信される情報を中継局102に中継させる場合、この電源供給制御処理を実行する。 When the information transmitted from the transmitter 101 is relayed to the relay station 102, the control unit 211 of the power control device 151 executes this power supply control process.
 電源供給制御処理が開始されると、制御部211は、ステップS181において、接続部212を制御して高感度受信機152への電力の供給を開始させることにより、高感度受信機152の電源をオン(ON)にし、高感度受信機152に無線信号の受信を開始させる。この処理は、図17のステップS101に対応する。 When the power supply control process is started, the control unit 211 controls the connection unit 212 to start supplying power to the high sensitivity receiver 152 in step S181, thereby turning on the power of the high sensitivity receiver 152. Turn on (ON) and cause the high sensitivity receiver 152 to start receiving wireless signals. This process corresponds to step S101 in FIG.
 ステップS182において、制御部211は、高感度受信機152において送信機101から送信された無線信号が受信され、その無線信号の復調が完了し、送信機101の情報(位置情報等)がメモリ153に書き込まれたか否かを判定し、書き込まれたと判定するまで待機する。つまり、制御部211は、高感度受信機152からその旨の通知を受けるまで待機する。高感度受信機152からその旨の通知を受けたと判定すると(図17のステップS102の処理が行われると)、制御部211は、処理をステップS183に進める。 In step S <b> 182, the control unit 211 receives the radio signal transmitted from the transmitter 101 by the high sensitivity receiver 152, completes demodulation of the radio signal, and stores information (position information and the like) of the transmitter 101 in the memory 153. Whether or not the data has been written is determined, and the process waits until it is determined that the data has been written. That is, the control unit 211 waits until receiving a notification from the high sensitivity receiver 152. If it is determined that the notification from the high sensitivity receiver 152 has been received (when the process of step S102 of FIG. 17 is performed), the control unit 211 advances the process to step S183.
 ステップS183において、制御部211は、接続部212を制御して高感度受信機152への電力の供給を終了させることにより、高感度受信機152の電源をオフ(OFF)にし、高感度受信機152の駆動を終了させる。この処理は、図17のステップS103に対応する。 In step S183, the control unit 211 controls the connection unit 212 to end the supply of power to the high sensitivity receiver 152, thereby turning off the high sensitivity receiver 152 and turning off the high sensitivity receiver 152. The driving of 152 is ended. This process corresponds to step S103 in FIG.
 ステップS184において、制御部211は、接続部212を制御してLTEモデム154への電力の供給を開始させることにより、LTEモデム154の電源をオン(ON)にし、LTEモデム154に、メモリ153から送信機101の情報を読み出させ、さらにその情報をサーバ104に供給させる。この処理は、図18のステップS141に対応する。 In step S184, the control unit 211 controls the connection unit 212 to start supplying power to the LTE modem 154, thereby turning on the LTE modem 154 and turning the LTE modem 154 from the memory 153 to the LTE modem 154. The information of the transmitter 101 is read and the information is supplied to the server 104. This process corresponds to step S141 in FIG.
 ステップS185において、制御部211は、LTEモデム154がメモリから送信機101の情報を読み出し、さらにその情報をサーバ104に供給したか否かを判定し、供給したと判定するまで待機する。つまり、制御部211は、LTEモデム154からその旨の通知を受けるまで待機する。LTEモデム154からその旨の通知を受けたと判定すると(図18のステップS142の処理が行われると)、制御部211は、処理をステップS186に進める。 In step S185, the control unit 211 determines whether or not the LTE modem 154 reads the information of the transmitter 101 from the memory, and further supplies the information to the server 104, and waits until it is determined that the information is supplied. That is, the control unit 211 stands by until a notification to that effect is received from the LTE modem 154. If it is determined that a notification to that effect has been received from the LTE modem 154 (when the process of step S142 in FIG. 18 is performed), the control unit 211 advances the process to step S186.
 ステップS186において、制御部211は、接続部212を制御してLTEモデム154への電力の供給を終了させることにより、LTEモデム154の電源をオフ(OFF)にし、LTEモデム154の駆動を終了させる。この処理は、図18のステップS143に対応する。 In step S186, the control unit 211 controls the connection unit 212 to end the supply of power to the LTE modem 154, thereby turning off the power of the LTE modem 154 and terminating the driving of the LTE modem 154. . This process corresponds to step S143 in FIG.
 ステップS186の処理が終了すると、電源供給制御処理が終了する。以上のように電源供給制御処理を実行することにより、電源制御装置151は、高感度受信機152やLTEモデム154に対する不要な電力の供給を抑制し、それらの消費電力の増大を抑制することができる。また、高感度受信機152とLTEモデム154とを互いに異なるタイミングにおいて駆動させることができ、消費電力のピーク(最大値)の増大を抑制することができる。 When the process of step S186 is completed, the power supply control process is terminated. By executing the power supply control process as described above, the power supply control device 151 can suppress the supply of unnecessary power to the high-sensitivity receiver 152 and the LTE modem 154, and suppress an increase in power consumption thereof. it can. In addition, the high sensitivity receiver 152 and the LTE modem 154 can be driven at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  <その他>
 以上においては、中継局102がLTEモデム154を有し、送信機101から受信した情報を、屋根上からLTE通信によりサーバ104に供給するように説明したが、中継局102の構成は、この例に限定されない。例えば、高感度受信機152が取得した送信機101の情報は、建物130の屋内から、ルータ(モデム機能付ルータ)を介して有線通信によりサーバ104に供給するようにしてもよい。
<Others>
In the above description, the relay station 102 has the LTE modem 154, and the information received from the transmitter 101 has been described to be supplied to the server 104 from the roof by LTE communication. It is not limited to. For example, the information of the transmitter 101 acquired by the high sensitivity receiver 152 may be supplied from the indoor of the building 130 to the server 104 by wired communication via a router (router with modem function).
 その場合の、中継局102等の主な構成例を、図20に示す。図20に示される例の場合、中継局102は、電源制御装置151および高感度受信機152を有するものの、メモリ153やLTEモデム154を有していない。その代わり、建物130の屋内に、メモリ153やルータ361が設置されている。 FIG. 20 shows a main configuration example of the relay station 102 and the like in that case. In the case of the example illustrated in FIG. 20, the relay station 102 includes the power control device 151 and the high sensitivity receiver 152, but does not include the memory 153 or the LTE modem 154. Instead, a memory 153 and a router 361 are installed inside the building 130.
 ルータ361は、所謂モデム機能付のルータであり、建物130内の設備により構築されるLANとネットワーク103とを接続する。すなわち、ルータ361は、ネットワーク103を介してサーバ104と通信を行うことができる。また、ルータ361は、メモリ153等と通信を行うこともできる。 The router 361 is a router with a so-called modem function, and connects the LAN constructed by the equipment in the building 130 and the network 103. That is, the router 361 can communicate with the server 104 via the network 103. The router 361 can also communicate with the memory 153 and the like.
 また、屋根上設備131においては、電源ケーブル148は、混合器363を介して電源制御装置151に接続されている。電力の供給に関しては、図3の例の場合と同様である。ただし、高感度受信機152は、送信機101から送信された無線信号を受信して取得した送信機101に関する情報(例えば、送信機101の位置情報やID等)は、メモリ153に供給して記憶させる代わりに、信号ケーブル362を介して混合器363に供給され、その混合器363において、電力に重畳される。この送信機101に関する情報は、混合器143に供給され、さらに、アンテナケーブル146を介して屋内のメモリ153に供給される。 Moreover, in the rooftop equipment 131, the power cable 148 is connected to the power control device 151 via the mixer 363. The power supply is the same as in the example of FIG. However, the high-sensitivity receiver 152 supplies information related to the transmitter 101 (for example, location information and ID of the transmitter 101) acquired by receiving the radio signal transmitted from the transmitter 101 to the memory 153. Instead of storing, the signal is supplied to the mixer 363 via the signal cable 362 and is superposed on the electric power in the mixer 363. Information regarding the transmitter 101 is supplied to the mixer 143 and further supplied to the indoor memory 153 via the antenna cable 146.
 メモリ153は、その情報を記憶する。ルータ361は、メモリ153に記憶されている送信機101に関する情報を読み出して、ネットワーク103を介してサーバ104に供給する。なお、高感度受信機152に関する情報(高感度受信機152の位置情報やID等)も、同様にメモリ153を介してルータ361に供給し、ネットワーク103を介してサーバ104に供給させるようにしてもよい。 The memory 153 stores the information. The router 361 reads information on the transmitter 101 stored in the memory 153 and supplies the information to the server 104 via the network 103. Information relating to the high sensitivity receiver 152 (position information, ID, etc. of the high sensitivity receiver 152) is also supplied to the router 361 via the memory 153 and to the server 104 via the network 103. Also good.
 この場合、メモリ153やルータ361は、屋内のコンセント等から家庭用電源を得て駆動することができる。したがって、電源制御装置151は、高感度受信機152に対する電力の供給のみを制御すれば良い。その制御方法は図3の場合と同様であり、各処理部が、図17乃至図19のフローチャートを参照して説明した場合と同様に、高感度受信機152に関する各処理を実行するようにすれば良い。 In this case, the memory 153 and the router 361 can be driven by obtaining a household power source from an indoor outlet or the like. Therefore, the power supply controller 151 need only control the supply of power to the high sensitivity receiver 152. The control method is the same as in the case of FIG. 3, and each processing unit is configured to execute each process related to the high sensitivity receiver 152 as in the case described with reference to the flowcharts of FIGS. 17 to 19. It ’s fine.
 <2.第2の実施の形態>
  <バッテリ>
 なお、電源制御装置151が、電力を充電する蓄電部(所謂バッテリ)を有するようにしてもよい。図21は、その場合の電源制御装置151の主な構成例を示すブロック図である。図21に示されるように、この場合の電源制御装置151は、図7を参照して説明した構成に加え、接続部371および蓄電部372を有する。この場合、制御部211は、接続部212だけでなく、接続部371および蓄電部372も制御する。
<2. Second Embodiment>
<Battery>
Note that the power supply control device 151 may include a power storage unit (so-called battery) that charges power. FIG. 21 is a block diagram illustrating a main configuration example of the power supply control device 151 in that case. As illustrated in FIG. 21, the power supply control device 151 in this case includes a connection unit 371 and a power storage unit 372 in addition to the configuration described with reference to FIG. 7. In this case, the control unit 211 controls not only the connection unit 212 but also the connection unit 371 and the power storage unit 372.
 接続部371は、電源端子201と蓄電部372との間を接続したり切断したりする。つまり、接続部371は、蓄電部372への蓄電を制御することができる。接続部371の構成は任意であるが、例えば、1入力1出力のスイッチ(例えば、スイッチ230やスイッチ240と同様の構成のスイッチ)により構成することができる。 The connection unit 371 connects or disconnects between the power supply terminal 201 and the power storage unit 372. That is, the connection unit 371 can control power storage to the power storage unit 372. The configuration of the connection unit 371 is arbitrary, but can be configured by, for example, a 1-input 1-output switch (for example, a switch having the same configuration as the switch 230 and the switch 240).
 蓄電部372は、例えばリチウムイオン等のバッテリ等により構成され、接続部371により電源端子201と接続された状態において、混合器143を介して供給される電力を充電することができる。 The power storage unit 372 is composed of, for example, a battery such as lithium ion, and can be charged with power supplied via the mixer 143 in a state where the power storage unit 372 is connected to the power supply terminal 201 through the connection unit 371.
 また、この場合、接続部212は、蓄電部372からの出力先を何処にするか(例えば、出力先を電源端子202にするか、電源端子203にするか、若しくは、両方とも出力先としないか)を制御する。この制御方法は、電源端子201の接続先を制御する図7の例の場合と同様である。 In this case, the connection unit 212 determines where the output destination from the power storage unit 372 is (for example, whether the output destination is the power supply terminal 202, the power supply terminal 203, or both are not output destinations. Control). This control method is the same as in the example of FIG. 7 in which the connection destination of the power supply terminal 201 is controlled.
 つまり、この場合、一旦蓄電部372に電力を充電し、その蓄電部372に充電された電力を用いて高感度受信機152やLTEモデム154を駆動させる。したがって、高感度受信機152やLTEモデム154を駆動する際の、既存の設備に対する負荷(電力利用の影響)の増大を抑制することができる。例えば、高感度受信機152やLTEモデム154の電力を、蓄電部372に充電された電力で賄うことができる場合、既存の設備の電力を使用せずに(例えば衛星アンテナ142への電力供給等に対して大きな影響を与えることなく)、高感度受信機152やLTEモデム154を駆動させることができる。さらに、例えば、蓄電部372の充電残量(蓄電量)が十分でない場合、高感度受信機152やLTEモデム154を駆動させないようにすることもできる。これにより、既存の設備に対する負荷の増大を抑制することができる。 That is, in this case, the power storage unit 372 is once charged with power, and the high sensitivity receiver 152 and the LTE modem 154 are driven using the power stored in the power storage unit 372. Therefore, it is possible to suppress an increase in the load (influence of power use) on the existing equipment when driving the high sensitivity receiver 152 and the LTE modem 154. For example, when the power of the high sensitivity receiver 152 or the LTE modem 154 can be covered by the power charged in the power storage unit 372, the power of the existing equipment is not used (for example, power supply to the satellite antenna 142, etc. The high-sensitivity receiver 152 and the LTE modem 154 can be driven without significantly affecting the receiver. Further, for example, when the remaining charge amount (power storage amount) of the power storage unit 372 is not sufficient, the high sensitivity receiver 152 and the LTE modem 154 can be prevented from being driven. Thereby, increase of the load with respect to the existing installation can be suppressed.
 また、例えば、蓄電部372に蓄電する際の電力を小さくし、より長時間かけて充電するようにすることにより、中継局102の消費電力のピークを抑制することができる。さらに、接続部371により蓄電部372への充電も制御することができるので、例えば、夜間等、高感度受信機152やLTEモデム154の稼働率が低い時間帯に、充電を行わせるようにすることができる。これにより、中継局102の消費電力のピークを抑制することができる。また、例えば、夜間等、既存の設備の稼働率が低い時間帯に、充電を行わせるようにすることができる。これにより、既存の設備に対する負荷の増大を抑制することができる。 In addition, for example, by reducing the electric power when the electric power is stored in the electric storage unit 372 and charging it for a longer time, the peak of the power consumption of the relay station 102 can be suppressed. Furthermore, since charging to the power storage unit 372 can be controlled by the connection unit 371, for example, charging is performed in a time zone where the operation rate of the high sensitivity receiver 152 or the LTE modem 154 is low, such as at night. be able to. Thereby, the peak of the power consumption of the relay station 102 can be suppressed. Further, for example, charging can be performed in a time zone where the operation rate of existing equipment is low, such as at night. Thereby, increase of the load with respect to the existing installation can be suppressed.
  <制御処理の流れ>
 この場合の中継局102において実行される充電に関する制御処理の流れの例を、図22のフローチャートを参照して説明する。
<Flow of control processing>
An example of the flow of control processing relating to charging executed in the relay station 102 in this case will be described with reference to the flowchart of FIG.
 電源制御装置151の制御部211は、ステップS201において、接続部212を制御して高感度受信機152への電力の供給を開始させ、高感度受信機152の電源をオン(ON)にする。電力の供給が開始されると、高感度受信機152の電源部337は、ステップS211において、その電力を駆動させる処理部に対して供給し、それらの駆動を開始させる。 In step S201, the control unit 211 of the power control device 151 controls the connection unit 212 to start supplying power to the high sensitivity receiver 152, and turns on the power of the high sensitivity receiver 152. When the supply of power is started, the power supply unit 337 of the high sensitivity receiver 152 supplies the power to the processing unit that drives the power in step S211, and starts driving them.
 そして、ステップS212において、高感度受信機152のGNSS信号受信部334は、GNSS衛星からGNSS信号を受信する。GNSS信号を受信すると、高感度受信機152の復調部333や情報処理部335は、ステップS213において、その受信したGNSS信号を復調したり、信号処理したりして、そのGNSS信号から時刻情報を抽出し、取得する。復調部333や情報処理部335は、取得したその時刻情報を、例えば、メモリ332に記憶させる。ステップS214において、高感度受信機152の通信部336は、そのメモリ332に記憶されている時刻情報を読み出して電源制御装置151に供給する。 In step S212, the GNSS signal receiver 334 of the high sensitivity receiver 152 receives a GNSS signal from the GNSS satellite. When receiving the GNSS signal, the demodulation unit 333 and the information processing unit 335 of the high sensitivity receiver 152 demodulate the received GNSS signal or perform signal processing in step S213, and obtain time information from the GNSS signal. Extract and get. The demodulation unit 333 and the information processing unit 335 store the acquired time information in, for example, the memory 332. In step S <b> 214, the communication unit 336 of the high sensitivity receiver 152 reads the time information stored in the memory 332 and supplies the time information to the power supply control device 151.
 ステップS202において、電源制御装置151の制御部211は、その時刻情報を取得する。制御部211は、その時刻情報に基づいて、現在時刻が予め設定された指定時間帯であるか否かを判定する。また、制御部211は、蓄電部372の充電状態(例えば電圧)を計測し、十分に充電されている状態である満充電状態であるか否かを判定する。 In step S202, the control unit 211 of the power supply control device 151 acquires the time information. Based on the time information, the control unit 211 determines whether or not the current time is a preset designated time zone. In addition, the control unit 211 measures the state of charge (for example, voltage) of the power storage unit 372 and determines whether or not the battery is fully charged, which is a state in which it is fully charged.
 ステップS203において、制御部211は、現在時刻が予め設定された指定時間帯であり、かつ、蓄電部372からの出力電圧が所定の閾値より低く、蓄電部372が満充電状態で無い場合、接続部371を制御して、電源端子201を蓄電部372に接続させ、蓄電部372への充電を開始する。 In step S <b> 203, the control unit 211 connects when the current time is a preset designated time zone, the output voltage from the power storage unit 372 is lower than a predetermined threshold, and the power storage unit 372 is not fully charged. The power supply terminal 201 is connected to the power storage unit 372 by controlling the unit 371 and charging of the power storage unit 372 is started.
 ステップS204において、蓄電部372が満充電状態になるか、または、指定時間帯を過ぎた場合、制御部211は、接続部371を制御して、電源端子201と蓄電部372との間を切断し、蓄電部372への充電を終了する。 In step S <b> 204, when power storage unit 372 is fully charged or the designated time zone has passed, control unit 211 controls connection unit 371 to disconnect between power supply terminal 201 and power storage unit 372. And the charge to the electrical storage part 372 is complete | finished.
 ステップS204の処理が終了すると、制御処理が終了する。このように蓄電部372への充電を制御することにより、例えば、満充電状態の蓄電部372に対する給電等、不要な消費電力の増大を抑制することができる。また、中継局102の消費電力のピークを抑制することができる。また、既存の設備に対する負荷の増大を抑制することができる。 When the process of step S204 ends, the control process ends. By controlling the charging of the power storage unit 372 in this manner, for example, an unnecessary increase in power consumption such as power supply to the fully charged power storage unit 372 can be suppressed. Moreover, the peak of the power consumption of the relay station 102 can be suppressed. Moreover, the increase in the load with respect to the existing equipment can be suppressed.
 なお、蓄電部372の放電、すなわち、高感度受信機152やLTEモデム154に対する電力供給に関する制御処理は、蓄電部372に充電された電力を利用すること以外は、図17および図18のフローチャートを説明した場合と基本的に同様であるので、その説明は省略する。 It should be noted that the control processing related to the discharge of the power storage unit 372, that is, the power supply to the high sensitivity receiver 152 and the LTE modem 154, is performed using the flowcharts of FIGS. 17 and 18 except that the power charged in the power storage unit 372 is used. Since it is basically the same as that described, the description thereof is omitted.
  <充電制御処理の流れ>
 この場合の電源制御装置151が実行する充電制御処理の流れの例を、図23のフローチャートを参照して説明する。
<Charge control process flow>
An example of the flow of charge control processing executed by the power supply control device 151 in this case will be described with reference to the flowchart of FIG.
 充電制御処理が開始されると、制御部211は、ステップS221において、蓄電部372の出力電圧を確認する等して、蓄電部372が満充電状態であるか否かを判定する。満充電状態でないと判定された場合、処理はステップS222に進む。 When the charging control process is started, the control unit 211 determines whether or not the power storage unit 372 is in a fully charged state by confirming the output voltage of the power storage unit 372 in step S221. If it is determined that the battery is not fully charged, the process proceeds to step S222.
 ステップS222において、制御部211は、接続部212を制御して、高感度受信機152への電力の供給を開始させることにより、高感度受信機152の電源をオン(ON)にし、高感度受信機152にGNSS信号を受信させる。この処理は、図22のステップS201に対応する。 In step S222, the control unit 211 controls the connection unit 212 to start supplying power to the high sensitivity receiver 152, thereby turning on the power of the high sensitivity receiver 152 and performing high sensitivity reception. The machine 152 receives the GNSS signal. This process corresponds to step S201 in FIG.
 ステップS223において、制御部211は、高感度受信機152においてGNSS信号が受信されて時刻情報が抽出され、その高感度受信機152からその時刻情報が供給されたか否かを判定し、供給されたと判定するまで待機する。高感度受信機152から時刻情報を取得したと判定すると(図22のステップS202の処理が行われると)、制御部211は、処理をステップS224に進める。 In step S223, the control unit 211 determines whether or not the high-sensitivity receiver 152 receives the GNSS signal, extracts time information, and supplies the time information from the high-sensitivity receiver 152. Wait until it is judged. When it is determined that the time information has been acquired from the high sensitivity receiver 152 (when the process of step S202 of FIG. 22 is performed), the control unit 211 advances the process to step S224.
 ステップS224において、制御部211は、取得した時刻情報に基づいて、現在時刻が指定時間帯であるか否かを判定する。指定時間帯であると判定された場合、処理はステップS225に進む。 In step S224, the control unit 211 determines whether or not the current time is in the specified time zone based on the acquired time information. If it is determined that it is the designated time zone, the process proceeds to step S225.
 つまり、蓄電部372が満充電状態でなく、かつ、現在時刻が指定時間帯(例えば夜間等)であると判定された場合、制御部211は、ステップS225において、接続部371を制御して、蓄電部372を電源端子201に接続し、蓄電部372に電力を充電させる。この処理は、図22のステップS203に対応する。 That is, when it is determined that the power storage unit 372 is not fully charged and the current time is in a specified time zone (for example, at night), the control unit 211 controls the connection unit 371 in step S225, The power storage unit 372 is connected to the power supply terminal 201 to charge the power storage unit 372 with power. This process corresponds to step S203 in FIG.
 ステップS226において、制御部211は、蓄電部372の出力電圧を確認する等して、蓄電部372が満充電状態であるか否かを判定する。満充電状態でないと判定された場合、処理はステップS227に進む。ステップS227において、制御部211は、取得した時刻情報に基づいて、現在時刻が指定時間帯であるか否かを判定する。指定時間帯であると判定された場合、処理はステップS225に戻り、それ以降の処理を繰り返す。すなわち、蓄電部372が満充電状態でなく、かつ、現在時刻が指定時間帯である間は、充電が行われる。 In step S226, the control unit 211 determines whether or not the power storage unit 372 is fully charged by checking the output voltage of the power storage unit 372 or the like. If it is determined that the battery is not fully charged, the process proceeds to step S227. In step S227, the control unit 211 determines whether or not the current time is in the specified time zone based on the acquired time information. If it is determined that it is the designated time zone, the process returns to step S225, and the subsequent processes are repeated. That is, charging is performed while the power storage unit 372 is not fully charged and the current time is in the specified time zone.
 ステップS227において、現在時刻が指定時間帯でないと判定された場合、制御部211は、接続部371を制御して電源端子201と蓄電部372との間を切断し、充電を終了させる。この処理は、図22のステップS204に対応する。充電が終了すると、充電制御処理が終了する。 In Step S227, when it is determined that the current time is not the designated time zone, the control unit 211 controls the connection unit 371 to disconnect between the power supply terminal 201 and the power storage unit 372 and terminate the charging. This process corresponds to step S204 in FIG. When charging ends, the charging control process ends.
 また、ステップS221において、蓄電部372が満充電状態であると判定された場合、充電が省略され、充電制御処理が終了する。また、ステップS224において、現在時刻が指定時間帯でないと判定された場合も、充電が省略され、充電制御処理が終了する。 If it is determined in step S221 that the power storage unit 372 is in a fully charged state, charging is omitted and the charging control process ends. Moreover, also when it determines with the present time not being a designated time slot | zone in step S224, charge is abbreviate | omitted and a charge control process is complete | finished.
 さらに、ステップS226において、蓄電部372が満充電状態であると判定された場合、接続部371を制御して電源端子201と蓄電部372との間を切断し、充電を終了させる。この処理は、図22のステップS204に対応する。充電が終了すると、充電制御処理が終了する。 Furthermore, when it is determined in step S226 that the power storage unit 372 is in a fully charged state, the connection unit 371 is controlled to disconnect between the power supply terminal 201 and the power storage unit 372, thereby terminating the charging. This process corresponds to step S204 in FIG. When charging ends, the charging control process ends.
 以上のように充電制御処理を実行することにより、電源制御装置151は、例えば、満充電状態の蓄電部372に対する給電等、不要な消費電力の増大を抑制することができる。また、中継局102の消費電力のピークを抑制することができる。また、既存の設備に対する負荷の増大を抑制することができる。 By executing the charge control process as described above, the power supply control device 151 can suppress an unnecessary increase in power consumption, such as power supply to the fully charged power storage unit 372, for example. Moreover, the peak of the power consumption of the relay station 102 can be suppressed. Moreover, the increase in the load with respect to the existing equipment can be suppressed.
  <電源供給制御処理の流れ>
 また、この場合の電源供給制御処理の流れの例を、図24のフローチャートを参照して説明する。
<Flow of power supply control processing>
An example of the flow of the power supply control process in this case will be described with reference to the flowchart of FIG.
 電源制御装置151の制御部211は、送信機101から送信される情報を中継局102に中継させる場合、この電源供給制御処理を実行する。 When the information transmitted from the transmitter 101 is relayed to the relay station 102, the control unit 211 of the power control device 151 executes this power supply control process.
 電源供給制御処理が開始されると、制御部211は、ステップS241において、蓄電部372の出力電圧を確認する等して、蓄電部372の充電残量(蓄電量)が、高感度受信機152やLTEモデム154を駆動させるのに十分であるか否かを判定する。この十分か否かの基準は、蓄電部372の充電容量や、高感度受信機152やLTEモデム154の消費電力等に応じて設定される。満充電状態よりも少なくてもよい。 When the power supply control process is started, the control unit 211 confirms the output voltage of the power storage unit 372 in step S241 so that the remaining charge amount (power storage amount) of the power storage unit 372 is equal to the high sensitivity receiver 152. Or whether the LTE modem 154 is sufficient to drive. The reference whether or not this is sufficient is set according to the charging capacity of power storage unit 372, the power consumption of high sensitivity receiver 152 and LTE modem 154, and the like. It may be less than a fully charged state.
 蓄電部372の充電残量が十分であると判定された場合、処理はステップS242に進む。ステップS242乃至ステップS247の各処理は、図19のステップS181乃至ステップS186の各処理と同様に実行される。 If it is determined that the remaining charge of the power storage unit 372 is sufficient, the process proceeds to step S242. Each process of step S242 thru | or step S247 is performed similarly to each process of step S181 thru | or step S186 of FIG.
 また、ステップS241において、蓄電部372の充電残量が十分でないと判定された場合、電源供給制御処理が終了する。 If it is determined in step S241 that the remaining charge of the power storage unit 372 is not sufficient, the power supply control process ends.
 つまり、充電残量が十分である場合のみ、その蓄電部372の電力を用いて、第1の実施の形態の場合と同様に高感度受信機152やLTEモデム154が駆動される。このようにすることにより、既存の設備の電力を使用せずに(例えば衛星アンテナ142への電力供給等に対して大きな影響を与えることなく)、高感度受信機152やLTEモデム154を駆動させることができる。つまり、既存の設備に対する負荷の増大を抑制することができる。 That is, only when the remaining charge amount is sufficient, the high-sensitivity receiver 152 and the LTE modem 154 are driven using the power of the power storage unit 372 as in the case of the first embodiment. By doing so, the high sensitivity receiver 152 and the LTE modem 154 are driven without using the power of the existing equipment (for example, without greatly affecting the power supply to the satellite antenna 142 or the like). be able to. That is, an increase in load on existing equipment can be suppressed.
 <3.第3の実施の形態>
  <中継局>
 なお、中継局102から送信機101に対して無線信号を送信することができるようにしてもよい。その場合の中継局102の主な構成例を図25に示す。図25に示されるように、この場合、中継局102は、高感度受信機152の代わりに、高感度送受信機381を有する。高感度送受信機381は、送信機能を有すること以外は、高感度受信機152と同様の装置である。つまり、高感度送受信機381は、アンテナ381Aを用いて送信機101から送信される無線信号を受信することができる。また、高感度送受信機381は、そのアンテナ381Aを用いて送信機101に対して無線信号を送信することもできる。また、高感度送受信機381は、アンテナ381Bを用いてGNSS衛星161からGNSS信号を受信することもできる。
<3. Third Embodiment>
<Relay station>
Note that a radio signal may be transmitted from the relay station 102 to the transmitter 101. FIG. 25 shows a main configuration example of the relay station 102 in that case. As shown in FIG. 25, in this case, the relay station 102 has a high sensitivity transceiver 381 instead of the high sensitivity receiver 152. The high sensitivity transceiver 381 is the same device as the high sensitivity receiver 152 except that it has a transmission function. That is, the high sensitivity transceiver 381 can receive a radio signal transmitted from the transmitter 101 using the antenna 381A. The high sensitivity transceiver 381 can also transmit a radio signal to the transmitter 101 using the antenna 381A. The high sensitivity transceiver 381 can also receive a GNSS signal from the GNSS satellite 161 using the antenna 381B.
 なお、この場合、送信機101も、高感度送受信機381から送信される無線信号を受信する受信機能を有する。したがって、厳密には送受信機であるが、ここでは送信機101として説明する。この場合、送信機101は、図9を参照して説明した構成に加え、図12を参照して説明した高感度受信機152の構成を有するようにすればよい。 In this case, the transmitter 101 also has a reception function for receiving a radio signal transmitted from the high sensitivity transceiver 381. Therefore, strictly speaking, the transmitter / receiver is described as the transmitter 101 here. In this case, the transmitter 101 may have the configuration of the high sensitivity receiver 152 described with reference to FIG. 12 in addition to the configuration described with reference to FIG.
 高感度送受信機381が送信機101に送信する無線信号に含まれる情報の内容は任意である。例えば、高感度送受信機381が送信機101に無線信号を送信することにより、送信機101に対して位置情報の送信を要求することができるようにしてもよい。また、例えば、高感度送受信機381が送信機101に無線信号を送信することにより、送信機101が無線信号を送信するタイミングを指定することができるようにしてもよい。これらのようにすることにより、高感度送受信機381を駆動させているタイミングにおいて、送信機101に無線信号を送信させることができるので、高感度送受信機381による無線信号の受信をより容易に行うことができる。 The content of the information included in the radio signal transmitted from the high sensitivity transceiver 381 to the transmitter 101 is arbitrary. For example, the high sensitivity transmitter / receiver 381 may request the transmitter 101 to transmit position information by transmitting a wireless signal to the transmitter 101. Further, for example, the high sensitivity transceiver 381 may transmit a wireless signal to the transmitter 101 so that the timing at which the transmitter 101 transmits the wireless signal can be designated. By doing so, the wireless signal can be transmitted to the transmitter 101 at the timing when the high-sensitivity transceiver 381 is driven, so that the wireless signal can be easily received by the high-sensitivity transceiver 381. be able to.
 高感度送受信機381は、高感度受信機152の場合と同様に、任意の情報をメモリ153に供給して記憶させることができる。そして、LTEモデム154も、その情報をメモリ153から読み出して、サーバ104に供給することができる。 The high-sensitivity transceiver 381 can supply arbitrary information to the memory 153 and store it, as in the case of the high-sensitivity receiver 152. The LTE modem 154 can also read the information from the memory 153 and supply it to the server 104.
 電源制御装置151による電力供給の制御方法は、基本的に上述した他の実施の形態の場合と同様であるが、この場合、高感度送受信機381が無線信号を送信する場合も、電源制御装置151から高感度送受信機381に対して電力の供給が行われる。 The power supply control method by the power supply control device 151 is basically the same as that of the other embodiments described above. In this case, even when the high sensitivity transceiver 381 transmits a radio signal, the power supply control device Power is supplied from 151 to the high sensitivity transceiver 381.
  <高感度送受信機>
 高感度送受信機381の主な構成例を図26に示す。図26に示されるように、高感度送受信機381は、信号送受信部391、受信情報処理部302、およびバス303を有する。
<High sensitivity transceiver>
A main configuration example of the high sensitivity transceiver 381 is shown in FIG. As shown in FIG. 26, the high-sensitivity transceiver 381 includes a signal transceiver 391, a reception information processor 302, and a bus 303.
 信号送受信部391は、無線信号の送受信に関する処理を行う。信号送受信部391は、アンテナ381A、切替部392、信号受信部301、および信号送信部393を有する。 The signal transmission / reception unit 391 performs processing related to transmission / reception of radio signals. The signal transmission / reception unit 391 includes an antenna 381A, a switching unit 392, a signal reception unit 301, and a signal transmission unit 393.
 切替部392は、信号の送受信に応じて、アンテナ381Aに接続する処理部を切り替える。例えば、無線信号を受信する場合、切替部392は、アンテナ381Aに信号受信部301を接続する。これにより、信号受信部301が、アンテナ381Aにより受信される無線信号に対する信号処理を実行することができる。また、例えば、無線信号を送信する場合、切替部392は、アンテナ381Aに信号送信部393を接続する。信号送信部393は、無線信号の送信に関する処理を実行する。つまり、これにより、信号送信部393が、アンテナ381Aから送信する信号に対する信号処理を実行することができる。 The switching unit 392 switches the processing unit connected to the antenna 381A according to signal transmission / reception. For example, when receiving a radio signal, the switching unit 392 connects the signal receiving unit 301 to the antenna 381A. Thereby, the signal receiving part 301 can perform the signal processing with respect to the radio signal received by the antenna 381A. For example, when transmitting a radio signal, the switching unit 392 connects the signal transmission unit 393 to the antenna 381A. The signal transmission unit 393 performs processing related to transmission of a radio signal. In other words, the signal transmission unit 393 can execute signal processing on the signal transmitted from the antenna 381A.
 信号送信部393は、PLL(Phase Locked Loop)394、発振部395、およびLNA396を有する。受信情報処理部302は、送信情報を示す信号をバス303を介して信号送信部393に供給する。PLL394は、その送信情報を示す信号の周波数に応じた周波数の信号を生成し、発振部395に供給する。つまり、PLL394は、送信情報により変調された信号を発振部395に供給する。発振部395は、その信号に応じて変調されたキャリア信号(例えば925MHz)を生成し、それを送信信号としてLNA396に供給する。LNA396は、その送信信号を増幅し、切替部392を介してアンテナ381Aから無線信号として送信させる。 The signal transmission unit 393 includes a PLL (Phase Locked Loop) 394, an oscillation unit 395, and an LNA 396. The reception information processing unit 302 supplies a signal indicating transmission information to the signal transmission unit 393 via the bus 303. The PLL 394 generates a signal having a frequency corresponding to the frequency of the signal indicating the transmission information and supplies the signal to the oscillation unit 395. That is, the PLL 394 supplies the signal modulated by the transmission information to the oscillation unit 395. The oscillating unit 395 generates a carrier signal (for example, 925 MHz) modulated according to the signal, and supplies it to the LNA 396 as a transmission signal. The LNA 396 amplifies the transmission signal and transmits it as a radio signal from the antenna 381A via the switching unit 392.
 受信情報処理部302は、基本的に図12の場合と同様の構成を有するが、復調部333の代わりに変復調部397を有する。変復調部397は、受信信号の復調に関する処理だけでなく、送信信号の変調に関する処理も行う。変復調部397は、例えば、変調した送信情報を示す信号を、信号送信部393に供給する。 The reception information processing unit 302 basically has the same configuration as that in FIG. 12, but includes a modulation / demodulation unit 397 instead of the demodulation unit 333. The modem unit 397 performs not only processing related to demodulation of the received signal but also processing related to modulation of the transmission signal. The modem unit 397 supplies, for example, a signal indicating the modulated transmission information to the signal transmission unit 393.
 このように、中継局102が高感度受信機152の代わりに高感度送受信機381を有する場合も、中継局102は、高感度送受信機381やLTEモデム154が駆動していない不要なタイミングにおける、それらへの電力の供給を抑制することにより、それらの消費電力の増大を抑制することができる。これにより、中継局102は、電力不足の発生を抑制し、より安定的な電力の供給を実現することができる。 As described above, even when the relay station 102 includes the high sensitivity transceiver 381 instead of the high sensitivity receiver 152, the relay station 102 is not required to drive the high sensitivity transceiver 381 or the LTE modem 154. By suppressing the supply of power to them, an increase in power consumption can be suppressed. Thereby, the relay station 102 can suppress the occurrence of power shortage and realize more stable power supply.
  <制御処理の流れ>
 この場合も、送信機101から送信される無線信号の受信に関する制御処理は、図17や図18のフローチャートを参照して説明した場合と同様に行われるのでその説明は省略する。図27のフローチャートを参照して、高感度送受信機381による無線信号の送信に関する制御処理の流れの例を説明する。
<Flow of control processing>
Also in this case, the control processing related to reception of the radio signal transmitted from the transmitter 101 is performed in the same manner as described with reference to the flowcharts of FIGS. With reference to the flowchart of FIG. 27, an example of a flow of control processing related to transmission of a radio signal by the high sensitivity transceiver 381 will be described.
 電源制御装置151の制御部211は、高感度送受信機381に無線信号を送信させる場合、図27のステップS261において、接続部212を制御して高感度送受信機381への電力の供給を開始させ、高感度送受信機381の電源をオン(ON)にする。電力の供給が開始されると、高感度送受信機381の電源部337は、ステップS271において、その電力を駆動させる処理部に対して供給し、それらの駆動を開始させる。 When the high-sensitivity transceiver 381 transmits a wireless signal, the control unit 211 of the power supply controller 151 controls the connection unit 212 to start supplying power to the high-sensitivity transceiver 381 in step S261 of FIG. Then, the power source of the high sensitivity transceiver 381 is turned on. When the supply of power is started, the power supply unit 337 of the high-sensitivity transceiver 381 supplies the power to the processing unit that drives the power in step S271 and starts driving them.
 そして、ステップS272において、高感度送受信機381の受信情報処理部302は、信号送信部393から送信する送信情報を生成する。ステップS273において、変復調部397は、その送信情報を変調して送信信号を生成する。また、信号送信部393は、その送信信号を無線信号として送信する。無線信号を送信すると、高感度送受信機381の通信部336は、ステップS274において、送信情報を送信した旨を、電源制御装置151に通知する。 In step S272, the reception information processing unit 302 of the high sensitivity transceiver 381 generates transmission information to be transmitted from the signal transmission unit 393. In step S273, the modem unit 397 modulates the transmission information to generate a transmission signal. In addition, the signal transmission unit 393 transmits the transmission signal as a radio signal. When the wireless signal is transmitted, the communication unit 336 of the high sensitivity transceiver 381 notifies the power supply control device 151 that the transmission information has been transmitted in step S274.
 ステップS262において、電源制御装置151の制御部211は、その通知を取得する。通知を取得すると、電源制御装置151の制御部211は、ステップS263において、接続部212を制御して高感度送受信機381への電力の供給を終了させ、高感度送受信機381の電源をオフ(OFF)にする。電力の供給が終了すると、高感度送受信機381の電源部337は、ステップS275において、各処理部への電力の供給も終了し、それらの駆動も終了させる。 In step S262, the control unit 211 of the power supply control device 151 acquires the notification. When the notification is acquired, the control unit 211 of the power supply control device 151 controls the connection unit 212 to end the supply of power to the high sensitivity transmitter / receiver 381 in step S263 and turns off the power of the high sensitivity transmitter / receiver 381 ( OFF). When the supply of power ends, the power supply unit 337 of the high-sensitivity transceiver 381 also ends the supply of power to each processing unit in step S275 and ends their driving.
 以上のように制御処理が行われることにより、中継局102は、高感度送受信機381やLTEモデム154に対する不要な電力の供給を抑制し、それらの消費電力の増大を抑制することができる。また、高感度送受信機381とLTEモデム154とを互いに異なるタイミングにおいて駆動させることができ、消費電力のピーク(最大値)の増大を抑制することができる。さらに、高感度送受信機381の送信処理と受信処理とを互いに異なるタイミングにおいて実行させることができ、消費電力のピーク(最大値)の増大を抑制することができる。 By performing the control process as described above, the relay station 102 can suppress supply of unnecessary power to the high-sensitivity transceiver 381 and the LTE modem 154, and can suppress an increase in power consumption thereof. In addition, the high-sensitivity transceiver 381 and the LTE modem 154 can be driven at different timings, and an increase in power consumption peak (maximum value) can be suppressed. Furthermore, transmission processing and reception processing of the high sensitivity transceiver 381 can be executed at different timings, and an increase in power consumption peak (maximum value) can be suppressed.
  <電源供給制御処理の流れ>
 この場合の電源制御装置151が実行する電源供給制御処理の流れの例を、図28のフローチャートを参照して説明する。なお、電源制御装置151は、第2の実施の形態(図21)の場合と同様に、接続部371および蓄電部372を有するものとして説明する。
<Flow of power supply control processing>
An example of the flow of power supply control processing executed by the power supply control device 151 in this case will be described with reference to the flowchart of FIG. The power supply control device 151 will be described as having a connection unit 371 and a power storage unit 372 as in the case of the second embodiment (FIG. 21).
 電源供給制御処理が開始されると、制御部211は、ステップS281において、蓄電部372の出力電圧を確認する等して、蓄電部372の充電残量(蓄電量)が、高感度受信機152やLTEモデム154を駆動させるのに十分であるか否かを判定する。蓄電部372の充電残量が十分であると判定された場合、処理はステップS282に進む。ステップS282において、制御部211は、高感度送受信機381が受信を行うか否かを判定する。高感度送受信機381が受信を行うと判定された場合、処理はステップS283に進む。この場合、ステップS283乃至ステップS288の各処理が、図19のステップS181乃至ステップS186の各処理と同様に実行される。ステップS288の処理が終了すると電源供給制御処理が終了する。 When the power supply control process is started, the control unit 211 confirms the output voltage of the power storage unit 372 in step S281 so that the remaining charge amount (power storage amount) of the power storage unit 372 is equal to the high sensitivity receiver 152. Or whether the LTE modem 154 is sufficient to drive. If it is determined that the remaining charge of power storage unit 372 is sufficient, the process proceeds to step S282. In step S282, the control unit 211 determines whether or not the high sensitivity transceiver 381 performs reception. If it is determined that the high sensitivity transceiver 381 performs reception, the process proceeds to step S283. In this case, each process of step S283 to step S288 is executed in the same manner as each process of step S181 to step S186 in FIG. When the process of step S288 ends, the power supply control process ends.
 また、ステップS282において、高感度送受信機381が送信を行うと判定された場合、処理はステップS289に進む。この場合、ステップS289において、制御部211は、接続部212を制御して高感度送受信機381への電力の供給を開始させることにより、高感度送受信機381の電源をオン(ON)にし、高感度送受信機381に送信情報を生成させる。この処理は、図27のステップS261に対応する。 If it is determined in step S282 that the high sensitivity transceiver 381 performs transmission, the process proceeds to step S289. In this case, in step S289, the control unit 211 controls the connection unit 212 to start supplying power to the high sensitivity transmitter / receiver 381, thereby turning on the power of the high sensitivity transmitter / receiver 381. The sensitivity transceiver 381 is caused to generate transmission information. This process corresponds to step S261 in FIG.
 ステップS290において、制御部211は、高感度送受信機381において送信情報が生成され、その送信情報が復調され、無線信号として送信機101に送信されたか否かを判定し、送信されたと判定するまで待機する。つまり、制御部211は、高感度送受信機381からその旨の通知を受けるまで待機する。高感度送受信機381からその旨の通知を受けたと判定すると(図27のステップS262の処理が行われると)、制御部211は、処理をステップS291に進める。 In step S290, the control unit 211 determines whether or not the transmission information is generated in the high-sensitivity transceiver 381, the transmission information is demodulated, and transmitted to the transmitter 101 as a radio signal, and is determined to be transmitted. stand by. That is, the control unit 211 stands by until a notification to that effect is received from the high sensitivity transceiver 381. If it is determined that a notification to that effect has been received from the high sensitivity transceiver 381 (when the process of step S262 in FIG. 27 is performed), the control unit 211 advances the process to step S291.
 ステップS291において、制御部211は、接続部212を制御して高感度送受信機381への電力の供給を終了させることにより、高感度送受信機381の電源をオフ(OFF)にし、高感度送受信機381の駆動を終了させる。この処理は、図27のステップS263に対応する。ステップS291の処理が終了すると、電源供給制御処理が終了する。 In step S291, the control unit 211 controls the connection unit 212 to end the supply of power to the high sensitivity transmitter / receiver 381, thereby turning off the power of the high sensitivity transmitter / receiver 381 and turning off the high sensitivity transmitter / receiver. The driving of 381 is terminated. This process corresponds to step S263 in FIG. When the process of step S291 ends, the power supply control process ends.
 また、ステップS281において、蓄電部372の充電残量が十分でないと判定された場合、電源供給制御処理が終了する。 If it is determined in step S281 that the remaining charge of the power storage unit 372 is not sufficient, the power supply control process ends.
 つまり、充電残量が十分である場合のみ、その蓄電部372の電力を用いて、高感度送受信機381やLTEモデム154が駆動される。このようにすることにより、既存の設備の電力を使用せずに(例えば衛星アンテナ142への電力供給等に対して大きな影響を与えることなく)、高感度送受信機381やLTEモデム154を駆動させることができる。つまり、既存の設備に対する負荷の増大を抑制することができる。 That is, only when the remaining charge amount is sufficient, the high sensitivity transceiver 381 and the LTE modem 154 are driven using the power of the power storage unit 372. By doing so, the high-sensitivity transceiver 381 and the LTE modem 154 are driven without using the power of the existing equipment (for example, without greatly affecting the power supply to the satellite antenna 142 or the like). be able to. That is, an increase in load on existing equipment can be suppressed.
 また、無線信号を送信する場合と、受信する場合とで処理を分けることにより、高感度送受信機381が送信と受信とを互いに異なるタイミングにおいて行うようにすることができる。したがって、高感度送受信機381の消費電力のピーク(最大値)の増大を抑制することができる。 In addition, by dividing the processing between the case of transmitting a radio signal and the case of receiving a wireless signal, the high sensitivity transceiver 381 can perform transmission and reception at different timings. Therefore, an increase in the power consumption peak (maximum value) of the high sensitivity transceiver 381 can be suppressed.
 以上においては、電源制御装置151が、接続部371および蓄電部372を有するものとして説明したが、図7の例のように、接続部371および蓄電部372を有していなくてもよい。その場合、図28の電源供給制御処理において、ステップS281の処理が省略されるようにすればよい。 In the above description, the power supply control device 151 has been described as including the connection unit 371 and the power storage unit 372. However, the connection unit 371 and the power storage unit 372 may not be included as in the example of FIG. In that case, the process of step S281 may be omitted in the power supply control process of FIG.
  <その他>
 なお、中継局102が、以上において説明した高感度送受信機381の代わりに送信機101と同様の送信機を有するようにしてもよい。その場合の送信機は、例えば、図26に示される高感度送受信機381の構成の内、信号受信部301と切替部392を省略するようにすればよい。つまり、本実施の形態において説明したように、中継局102は、信号を送信する場合も、信号を受信する場合と基本的に同様に、電力の供給を制御することができる。したがって、消費電力の増大を抑制することができる。
<Others>
Note that the relay station 102 may include a transmitter similar to the transmitter 101 instead of the high sensitivity transceiver 381 described above. The transmitter in that case may be configured such that, for example, the signal receiving unit 301 and the switching unit 392 are omitted from the configuration of the high-sensitivity transceiver 381 illustrated in FIG. That is, as described in the present embodiment, relay station 102 can control the supply of power when transmitting a signal, basically in the same manner as when receiving a signal. Therefore, an increase in power consumption can be suppressed.
 <4.第4の実施の形態>
  <他の構成>
 なお、中継局102の構成は、各実施の形態において上述した例に限定されない。例えば、中継局102が1つの装置として構成されるようにしてもよい。また、例えば、図3の例において、電源制御装置151、高感度受信機152、メモリ153、およびLTEモデム154の内の少なくともいずれか2つ以上が1つの装置として構成されるようにしてもよい。さらに、混合器143も電源制御装置151等とともに1つの装置として構成されるようにしてもよい。
<4. Fourth Embodiment>
<Other configurations>
Note that the configuration of relay station 102 is not limited to the example described above in each embodiment. For example, the relay station 102 may be configured as one device. In addition, for example, in the example of FIG. 3, at least two of the power supply control device 151, the high sensitivity receiver 152, the memory 153, and the LTE modem 154 may be configured as one device. . Further, the mixer 143 may be configured as one device together with the power control device 151 and the like.
 さらに、上述した複数の構成例を適宜組み合わせるようにしてもよい。例えば、図20の構成例の高感度受信機152の代わりに、第3の実施の形態において説明した高感度送受信機381を適用するようにしてもよい。また、図20の構成例の電源制御装置151が、第2の実施の形態において説明したように、接続部371や蓄電部372を有するようにしてもよい。また、例えば、中継局102が、上述していない他の処理部を有するようにしてもよい。そして、電源制御装置151がその装置への電力の供給も制御するようにしてもよい。電源制御装置151が電力供給を制御する装置の数は任意である。 Furthermore, a plurality of configuration examples described above may be appropriately combined. For example, instead of the high sensitivity receiver 152 of the configuration example of FIG. 20, the high sensitivity transceiver 381 described in the third embodiment may be applied. In addition, the power supply control device 151 of the configuration example of FIG. 20 may include the connection unit 371 and the power storage unit 372 as described in the second embodiment. Further, for example, the relay station 102 may include other processing units not described above. The power supply control device 151 may also control the supply of power to the device. The number of devices that the power supply control device 151 controls the power supply is arbitrary.
 また、電源制御装置151の機能が、複数の装置に内蔵されるようにしてもよい。例えば、図29に示されるように、高感度受信機152が電源制御部401を有し、LTEモデム154が電源制御部402を有するようにしてもよい。 Further, the function of the power supply control device 151 may be built in a plurality of devices. For example, as illustrated in FIG. 29, the high sensitivity receiver 152 may include the power control unit 401, and the LTE modem 154 may include the power control unit 402.
 その場合、電源制御部401は、高感度受信機152に対する電力の供給を制御する。電源制御部402は、LTEモデム154に対する電力の供給を制御する。それぞれの制御方法は、電源制御装置151の場合と同様である。 In that case, the power supply control unit 401 controls the supply of power to the high sensitivity receiver 152. The power control unit 402 controls power supply to the LTE modem 154. Each control method is the same as that of the power control device 151.
 なお、その際に、電源制御部401と電源制御部402とが互いに情報を授受する等して、協働して電力供給制御を行うようにしてもよい。 In this case, the power supply control unit 401 and the power supply control unit 402 may perform power supply control in cooperation by exchanging information with each other.
  <その他>
 なお、地上波アンテナ141乃至電源ケーブル148のそれぞれの数は任意であり、複数であってもよい。例えば、混合器143や電源ケーブル148が複数設けられるようにしてもよい。すなわち、電源供給経路が複数存在するようにしてもよい。その場合、それぞれの経路からの電源供給を、互いに独立に制御するようにしてもよいし、総合的に制御するようにしてもよい。
<Others>
The number of terrestrial antennas 141 to power cables 148 is arbitrary and may be plural. For example, a plurality of mixers 143 and power cables 148 may be provided. That is, a plurality of power supply paths may exist. In that case, the power supply from each path may be controlled independently of each other or may be comprehensively controlled.
 なお、位置通知システム100において、駆動する中継局102を、サーバ104が例えばID等を用いて指定することができるようにしてもよい。このように駆動する中継局102を一部に限定することにより、システム全体の消費電力の増大を抑制することができる。 In the position notification system 100, the relay station 102 to be driven may be specified by the server 104 using, for example, an ID. By limiting the relay station 102 to be driven to a part in this way, an increase in power consumption of the entire system can be suppressed.
 <5.第5の実施の形態>
  <他の信号送受信システム>
 以上においては、位置通知システム100を例に説明したが、本技術は、上述した位置通知システム100以外のシステムにも適用することができる。例えば、送信機101は、人物だけでなく、移動体等に設置するようにしてもよい。
<5. Fifth embodiment>
<Other signal transmission / reception systems>
In the above, the position notification system 100 has been described as an example, but the present technology can also be applied to systems other than the position notification system 100 described above. For example, the transmitter 101 may be installed not only on a person but also on a moving body.
 例えば、本技術は、図30に示されるような自動車やバイク等の盗難を防ぐための盗難防止システム410に適用することもできる。この盗難防止システム410の場合、送信機101は、ユーザが位置を監視する対象物、例えばユーザが所有する自動車411やバイク412に設置される。送信機101は、位置通知システム100の場合と同様に、自身の位置情報(すなわち、自動車411やバイク412の位置情報)を、適宜、中継局102に通知する。つまり、ユーザは、位置通知システム100の場合と同様に、端末装置105からサーバ104にアクセスして、自動車411やバイク412の位置を把握することができる。したがって、ユーザは、盗難に合った場合であっても、自動車411やバイク412の位置を把握することができるので、その自動車411やバイク412を容易に取り戻すことができる。 For example, the present technology can also be applied to an anti-theft system 410 for preventing theft of automobiles, motorcycles and the like as shown in FIG. In the case of this anti-theft system 410, the transmitter 101 is installed on an object whose position is monitored by the user, for example, an automobile 411 or a motorcycle 412 owned by the user. As in the case of the position notification system 100, the transmitter 101 notifies the relay station 102 of its own position information (that is, position information of the automobile 411 and the motorcycle 412) as appropriate. That is, as in the case of the position notification system 100, the user can access the server 104 from the terminal device 105 and grasp the positions of the automobile 411 and the motorcycle 412. Therefore, since the user can grasp the positions of the automobile 411 and the motorcycle 412 even if it is stolen, the user can easily retrieve the automobile 411 and the motorcycle 412.
 このような盗難防止システム410の場合も、位置通知システム100の場合と同様に、中継局102に対して本技術を適用することができる。そして、本技術を適用することにより、中継局102を構成する装置(例えば高感度受信機152等)の消費電力の増大を抑制することができる。 In the case of such an anti-theft system 410, the present technology can be applied to the relay station 102 as in the case of the position notification system 100. By applying the present technology, it is possible to suppress an increase in power consumption of a device (for example, the high sensitivity receiver 152) that configures the relay station 102.
 また、送受信される情報も任意であり、上述した位置情報に限定されない。送信機101の送信情報生成部261は、任意の情報を含む送信情報を生成することができる。例えば、送信情報生成部261が、画像や音声の情報を含む送信情報を生成するようにしてもよい。また、例えば、送信情報生成部261が、温度、距離、明度、角度、速度、加速度等の計測結果を示す情報を含む送信情報を生成するようにしてもよい。さらに、例えば、送信情報生成部261が、機器を制御する制御情報を含む送信情報を生成するようにしてもよい。また、例えば、送信情報生成部261が、それら以外の情報を含む送信情報を生成するようにしてもよい。さらに、例えば、送信情報生成部261が、複数の情報を含む送信情報を生成するようにしてもよい。 Also, the information transmitted and received is arbitrary, and is not limited to the position information described above. The transmission information generation unit 261 of the transmitter 101 can generate transmission information including arbitrary information. For example, the transmission information generation unit 261 may generate transmission information including image and audio information. In addition, for example, the transmission information generation unit 261 may generate transmission information including information indicating measurement results such as temperature, distance, brightness, angle, speed, and acceleration. Further, for example, the transmission information generation unit 261 may generate transmission information including control information for controlling the device. Further, for example, the transmission information generation unit 261 may generate transmission information including other information. Further, for example, the transmission information generation unit 261 may generate transmission information including a plurality of information.
 また、例えば、送信情報生成部261が、他の装置から供給される情報を含む送信情報を生成するようにしてもよい。例えば、送信情報生成部261が、画像、光、明度、彩度、電気、音、振動、加速度、速度、角速度、力、温度(温度分布ではない)、湿度、距離、面積、体積、形状、流量、時刻、時間、磁気、化学物質、または匂い等、任意の変数について、またはその変化量について、検出若しくは計測等を行う各種センサから出力される情報(センサ出力)を含む送信情報を生成するようにしてもよい。 Also, for example, the transmission information generation unit 261 may generate transmission information including information supplied from another device. For example, the transmission information generation unit 261 may include an image, light, brightness, saturation, electricity, sound, vibration, acceleration, speed, angular velocity, force, temperature (not temperature distribution), humidity, distance, area, volume, shape, Generates transmission information including information (sensor output) output from various sensors that perform detection or measurement for any variable such as flow rate, time, time, magnetism, chemical substance, odor, or the amount of change. You may do it.
 つまり、本技術は、上述したような位置情報の通知を行うシステムに限らず、例えば、立体形状計測、空間計測、物体観測、移動変形観測、生体観測、認証処理、監視、オートフォーカス、撮像制御、照明制御、追尾処理、入出力制御、電子機器制御、アクチュエータ制御等、任意の用途に用いられるシステムに適用することができる。 That is, the present technology is not limited to the system that notifies the position information as described above, but includes, for example, three-dimensional shape measurement, spatial measurement, object observation, movement deformation observation, biological observation, authentication processing, monitoring, autofocus, and imaging control. , Lighting control, tracking processing, input / output control, electronic device control, actuator control, etc.
 また、本技術は、例えば、交通、医療、防犯、農業、畜産業、鉱業、美容、工場、家電、気象、自然監視等、任意の分野のシステムに適用することができる。例えば、本技術は、ディジタルカメラや、カメラ機能付きの携帯機器等を用いる、鑑賞の用に供される画像を撮影するシステムにも適用することができる。また、例えば、本技術は、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用システム、走行車両や道路を監視する監視カメラシステム、車両間等の測距を行う測距システム等の、交通の用に供されるシステムにも適用することができる。さらに、例えば、本技術は、防犯用途の監視カメラや、人物認証用途のカメラ等を用いる、セキュリティの用に供されるシステムにも適用することができる。また、例えば、本技術は、ウェアラブルカメラ等のようなスポーツ用途等向けに利用可能な各種センサ等を用いる、スポーツの用に供されるシステムにも適用することができる。さらに、例えば、本技術は、畑や作物の状態を監視するためのカメラ等の各種センサを用いる、農業の用に供されるシステムにも適用することができる。また、例えば、本技術は、豚や牛等の家畜の状態を監視するための各種センサを用いる、畜産業の用に供されるシステムにも適用することができる。さらに、本技術は、例えば火山、森林、海洋等の自然の状態を監視するシステムや、例えば天気、気温、湿度、風速、日照時間等を観測する気象観測システムや、例えば鳥類、魚類、ハ虫類、両生類、哺乳類、昆虫、植物等の野生生物の生態を観測するシステム等にも適用することができる。 In addition, the present technology can be applied to a system in an arbitrary field such as traffic, medical care, crime prevention, agriculture, livestock industry, mining, beauty, factory, home appliance, weather, and nature monitoring. For example, the present technology can also be applied to a system that captures an image for viewing using a digital camera, a portable device with a camera function, or the like. In addition, for example, this technology monitors in-vehicle systems, traveling vehicles, and roads that photograph the front, rear, surroundings, and interiors of automobiles for safe driving such as automatic stop and recognition of the driver's condition. The present invention can also be applied to a system used for traffic, such as a surveillance camera system that performs a distance measurement between vehicles or the like. Furthermore, for example, the present technology can also be applied to a system provided for security using a security camera for surveillance purposes, a camera for personal authentication purposes, or the like. In addition, for example, the present technology can also be applied to a system provided for sports using various sensors that can be used for sports applications such as a wearable camera. Furthermore, for example, the present technology can also be applied to a system used for agriculture using various sensors such as a camera for monitoring the state of a field or crop. In addition, for example, the present technology can also be applied to a system used for livestock industry that uses various sensors for monitoring the state of livestock such as pigs and cows. Furthermore, the present technology can be applied to systems that monitor natural conditions such as volcanoes, forests, and oceans, meteorological observation systems that observe weather, temperature, humidity, wind speed, sunshine hours, and so on, such as birds, fish, and insects. It can also be applied to a system for observing the ecology of wildlife such as moss, amphibians, mammals, insects and plants.
 さらに、送受信される無線信号や情報の仕様は任意である。つまり、本技術は、各実施の形態において上述したような構成を有する任意の信号送受信システム(の中継局の装置)に適用することができる。 Furthermore, the specifications of radio signals and information transmitted and received are arbitrary. That is, the present technology can be applied to an arbitrary signal transmission / reception system (an apparatus of a relay station) having the above-described configuration in each embodiment.
  <コンピュータ>
 上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行する場合、例えば電源制御装置151の制御部211、送信機101の送信情報生成部261、高感度受信機152の制御部331、LTEモデム154の制御部351、高感度送受信機381の制御部331、並びに、電源制御部401および電源制御部402の制御部211等が、そのソフトウエアを実行することができるコンピュータとしての構成を有するようにすればよい。このコンピュータには、例えば、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、任意の機能を実行することが可能な汎用のコンピュータ等が含まれる。
<Computer>
The series of processes described above can be executed by hardware or can be executed by software. When a series of processing is executed by software, for example, the control unit 211 of the power supply control device 151, the transmission information generation unit 261 of the transmitter 101, the control unit 331 of the high sensitivity receiver 152, the control unit 351 of the LTE modem 154, The control unit 331 of the sensitivity transceiver 381, the power control unit 401, the control unit 211 of the power control unit 402, and the like may be configured as a computer that can execute the software. Examples of the computer include a computer incorporated in dedicated hardware and a general-purpose computer capable of executing an arbitrary function by installing various programs.
 図31は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。 FIG. 31 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
 図31に示されるコンピュータ600において、CPU(Central Processing Unit)611、ROM(Read Only Memory)612、RAM(Random Access Memory)613は、バス614を介して相互に接続されている。 In a computer 600 shown in FIG. 31, a CPU (Central Processing Unit) 611, a ROM (Read Only Memory) 612, and a RAM (Random Access Memory) 613 are connected to each other via a bus 614.
 バス614にはまた、入出力インタフェース620も接続されている。入出力インタフェース620には、入力部621、出力部622、記憶部623、通信部624、およびドライブ625が接続されている。 An input / output interface 620 is also connected to the bus 614. An input unit 621, an output unit 622, a storage unit 623, a communication unit 624, and a drive 625 are connected to the input / output interface 620.
 入力部621は、例えば、キーボード、マウス、タッチパネル、イメージセンサ、マイクロホン、スイッチ、入力端子等の任意の入力デバイスを有する。出力部622は、例えば、ディスプレイ、スピーカ、出力端子等の任意の出力デバイスを有する。記憶部623は、例えば、ハードディスク、RAMディスク、SSD(Solid State Drive)やUSB(Universal Serial Bus)メモリ等のような不揮発性のメモリ等、任意の記憶媒体を有する。通信部624は、例えば、イーサネット(登録商標)、Bluetooth(登録商標)、USB、HDMI(登録商標)(High-Definition Multimedia Interface)、IrDA等の、有線若しくは無線、または両方の、任意の通信規格の通信インタフェースを有する。ドライブ625は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等の任意の記憶媒体を有するリムーバブルメディア631を駆動する。 The input unit 621 includes arbitrary input devices such as a keyboard, a mouse, a touch panel, an image sensor, a microphone, a switch, and an input terminal. The output unit 622 includes an arbitrary output device such as a display, a speaker, and an output terminal, for example. The storage unit 623 includes an arbitrary storage medium such as a hard disk, a RAM disk, a nonvolatile memory such as an SSD (Solid State Drive) or a USB (Universal Serial Bus) memory. The communication unit 624 is, for example, any communication standard such as Ethernet (registered trademark), Bluetooth (registered trademark), USB, HDMI (registered trademark) (High-Definition Multimedia Interface), IrDA, wired or wireless, or both. Communication interface. The drive 625 drives a removable medium 631 having an arbitrary storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータでは、CPU611が、例えば、記憶部623に記憶されているプログラムを、入出力インタフェース620およびバス614を介して、RAM613にロードして実行することにより、上述した一連の処理が行われる。RAM613にはまた、CPU611が各種の処理を実行する上において必要なデータなども適宜記憶される。 In the computer configured as described above, the CPU 611 loads the program stored in the storage unit 623 into the RAM 613 via the input / output interface 620 and the bus 614 and executes the program, for example. Is performed. The RAM 613 also appropriately stores data necessary for the CPU 611 to execute various processes.
 コンピュータ(CPU611)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア631に記録して適用することができる。その場合、プログラムは、リムーバブルメディア631をドライブ625に装着することにより、入出力インタフェース620を介して、記憶部623にインストールすることができる。 The program executed by the computer (CPU 611) can be recorded and applied to, for example, a removable medium 631 as a package medium or the like. In that case, the program can be installed in the storage unit 623 via the input / output interface 620 by attaching the removable medium 631 to the drive 625.
 また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部624で受信し、記憶部623にインストールすることができる。 This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 624 and installed in the storage unit 623.
 その他、このプログラムは、ROM612や記憶部623に、あらかじめインストールしておくこともできる。 In addition, this program can be installed in the ROM 612 or the storage unit 623 in advance.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。 Further, in the present specification, the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
 また、上述した各ステップの処理は、上述した各装置、若しくは、上述した各装置以外の任意の装置において、実行することができる。その場合、その処理を実行する装置が、上述した、その処理を実行するのに必要な機能(機能ブロック等)を有するようにすればよい。また、処理に必要な情報を、適宜、その装置に伝送するようにすればよい。 Further, the processing of each step described above can be executed in each device described above or any device other than each device described above. In that case, the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above. Information necessary for processing may be transmitted to the apparatus as appropriate.
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 In this specification, the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 Also, in the above, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
 また、本技術は、これに限らず、このような装置またはシステムを構成する装置に搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 In addition, the present technology is not limited to this, and any configuration mounted on such a device or a device constituting the system, for example, a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
 なお、本技術は以下のような構成も取ることができる。
 (1) 無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する制御部
 を備える情報処理装置。
 (2) 前記制御部は、アンテナにおいて受信された放送波信号を伝送する同軸ケーブルを介して前記放送波信号と重畳して供給され、抽出された電力の、前記受信部への供給を制御する
 (1)に記載の情報処理装置。
 (3) 前記制御部は、
  前記受信部への前記電力の供給を開始して、前記受信部に前記無線信号を受信させ、受信した前記無線信号より得られた情報を記憶部に記憶させ、
  前記情報が前記記憶部に記憶されたとの通知を取得した場合、前記受信部への前記電力の供給を終了する
 (1)または(2)に記載の情報処理装置。
 (4) 前記受信部をさらに備える
 (1)乃至(3)のいずれかに記載の情報処理装置。
 (5) 前記制御部は、前記同軸ケーブルを介して前記信号と重畳して供給され、抽出され、蓄電部に蓄電された前記電力の、前記受信部への供給を制御する
 (1)乃至(4)のいずれかに記載の情報処理装置。
 (6) 前記制御部は、前記蓄電部の蓄電量が所定の閾値より少ない場合、前記受信部への前記電力の供給を禁止する
 (5)に記載の情報処理装置。
 (7) 前記制御部は、さらに、前記同軸ケーブルを介して前記信号と重畳して供給され、抽出された前記電力の、前記蓄電部への蓄電を制御する
 (5)または(6)に記載の情報処理装置。
 (8) 前記制御部は、前記蓄電部の蓄電量が所定の閾値より多い場合、前記蓄電部への前記電力の蓄電を禁止する
 (7)に記載の情報処理装置。
 (9) 前記制御部は、所定の時間帯において前記蓄電部に前記電力を蓄電させる
 (7)または(8)に記載の情報処理装置。
 (10) 前記蓄電部をさらに備える
 (5)乃至(9)のいずれかに記載の情報処理装置。
 (11) 前記制御部は、さらに、無線信号を送信する送信部が駆動する際に電力を供給するように、前記送信部への前記電力の供給を制御する
 (1)乃至(10)のいずれかに記載の情報処理装置。
 (12) 前記制御部は、
  前記送信部への前記電力の供給を開始して、前記送信部に送信情報を生成させ、生成した前記送信情報を前記無線信号として送信させ、
  前記無線信号が送信されたとの通知を取得した場合、前記送信部への前記電力の供給を終了する
 (11)に記載の情報処理装置。
 (13) 前記送信部をさらに備える
 (11)または(12)に記載の情報処理装置。
 (14) 前記制御部は、さらに、他の通信装置と通信を行う通信部が駆動する際に電力を供給するように、前記通信部への前記電力の供給を制御する
 (1)乃至(13)のいずれかに記載の情報処理装置。
 (15) 前記制御部は、
  前記通信部への前記電力の供給を開始して、前記通信部に、前記受信部が受信した前記無線信号より得られた情報を記憶する記憶部から前記情報を読み出させ、読み出した前記情報を前記通信により前記他の通信装置に供給させ、
  前記情報が前記他の通信装置に供給されたとの通知を取得した場合、前記通信部への前記電力の供給を終了する
 (14)に記載の情報処理装置。
 (16) 前記通信部をさらに備える
 (14)または(15)に記載の情報処理装置。
 (17) 前記記憶部をさらに備える
 (15)または(16)に記載の情報処理装置。
 (18) 前記受信部は、925MHzを含む周波数帯域の前記無線信号を受信する
 (1)乃至(17)のいずれかに記載の情報処理装置。
 (19) 情報処理装置が、無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する
 情報処理方法。
 (20) コンピュータを、
 無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する制御部
 として機能させるためのプログラム。
In addition, this technique can also take the following structures.
(1) An information processing apparatus including a control unit that controls supply of the power to the reception unit so that power is supplied when the reception unit that receives a radio signal is driven.
(2) The control unit controls the supply of the extracted power supplied to the reception unit by being superimposed on the broadcast wave signal via a coaxial cable that transmits the broadcast wave signal received by the antenna. The information processing apparatus according to (1).
(3) The control unit
Starting the supply of power to the receiving unit, causing the receiving unit to receive the wireless signal, and storing information obtained from the received wireless signal in a storage unit;
The information processing apparatus according to (1) or (2), wherein when the notification that the information is stored in the storage unit is acquired, the supply of the power to the reception unit is terminated.
(4) The information processing apparatus according to any one of (1) to (3), further including the reception unit.
(5) The control unit controls the supply of the power supplied, extracted, and stored in the power storage unit to the reception unit while being superimposed on the signal via the coaxial cable. The information processing apparatus according to any one of 4).
(6) The information processing apparatus according to (5), wherein the control unit prohibits the supply of the power to the receiving unit when the power storage amount of the power storage unit is less than a predetermined threshold.
(7) The control unit further controls power storage in the power storage unit of the extracted power supplied and superimposed on the signal via the coaxial cable. (5) or (6) Information processing device.
(8) The information processing apparatus according to (7), wherein the control unit prohibits the storage of the electric power in the power storage unit when the power storage amount of the power storage unit is greater than a predetermined threshold.
(9) The information processing apparatus according to (7) or (8), wherein the control unit causes the power storage unit to store the power in a predetermined time period.
(10) The information processing apparatus according to any one of (5) to (9), further including the power storage unit.
(11) The control unit further controls supply of the power to the transmission unit such that power is supplied when the transmission unit that transmits a radio signal is driven. (1) to (10) An information processing apparatus according to claim 1.
(12) The control unit
Starting the supply of power to the transmission unit, causing the transmission unit to generate transmission information, causing the generated transmission information to be transmitted as the radio signal,
The information processing apparatus according to (11), wherein when receiving a notification that the wireless signal has been transmitted, the supply of the power to the transmission unit is terminated.
(13) The information processing apparatus according to (11) or (12), further including the transmission unit.
(14) The control unit further controls the supply of the power to the communication unit so as to supply power when a communication unit that communicates with another communication device is driven. ).
(15) The control unit
Starting the supply of power to the communication unit, causing the communication unit to read the information from a storage unit that stores information obtained from the radio signal received by the reception unit, and reading the information To the other communication device by the communication,
The information processing apparatus according to (14), wherein when the notification that the information is supplied to the other communication apparatus is acquired, the supply of the power to the communication unit is terminated.
(16) The information processing apparatus according to (14) or (15), further including the communication unit.
(17) The information processing apparatus according to (15) or (16), further including the storage unit.
(18) The information processing apparatus according to any one of (1) to (17), wherein the reception unit receives the wireless signal in a frequency band including 925 MHz.
(19) An information processing method for controlling supply of power to the reception unit so that the information processing apparatus supplies power when a reception unit that receives a radio signal is driven.
(20)
The program for functioning as a control part which controls supply of the electric power to the receiving part so that electric power is supplied when the receiving part which receives a radio signal drives.
 100 位置通知システム, 101 送信機, 102 中継局, 103 ネットワーク, 104 サーバ, 130 建物, 131 屋根上設備, 143 混合器, 144乃至146 アンテナケーブル, 148 電源ケーブル, 151 電源制御装置, 152 高感度受信機, 153 メモリ, 154 LTEモデム, 161 GNSS衛星, 185 PF, 186 混合部, 191乃至193 インダクタ, 194乃至196 キャパシタ, 201乃至204 電源端子, 211 制御部, 212 接続部, 301 信号受信部, 302 受信情報処理部, 303 バス, 330 バス, 331 制御部, 332 メモリ, 333 復調部, 334 GNSS信号受信部, 335 情報処理部, 336 通信部, 337 電源部, 350 バス, 351 制御部, 352 メモリ, 353 通信部, 354 電源部, 355 LTE通信部, 361 ルータ, 362 信号ケーブル, 363 混合器, 371 接続部, 372 蓄電部, 381 高感度送受信機, 391 信号送受信部, 392 切替部, 393 信号送信部, 394 PLL, 395 発振部, 396 LNA, 397 変復調部, 401 電源制御部, 402 電源制御部, 410 盗難防止システム, 600 コンピュータ 100 location notification system, 101 transmitter, 102 relay station, 103 network, 104 server, 130 building, 131 rooftop equipment, 143 mixer, 144 to 146 antenna cable, 148 power cable, 151 power control device, 152 high sensitivity reception Machine, 153 memory, 154 LTE modem, 161 GNSS satellite, 185 PF, 186 mixing section, 191 to 193 inductor, 194 to 196 capacitor, 201 to 196 power supply terminal, 211 control section, 212 connection section, 301 signal receiving section, 302 Reception information processing unit, 303 bus, 330 bus, 331 control unit, 332 memory, 333 demodulation unit, 334 GNSS signal reception unit, 335 information processing Unit, 336 communication unit, 337 power supply unit, 350 bus, 351 control unit, 352 memory, 353 communication unit, 354 power supply unit, 355 LTE communication unit, 361 router, 362 signal cable, 363 mixer, 371 connection unit, 372 power storage Unit, 381 high sensitivity transceiver, 391 signal transmission / reception unit, 392 switching unit, 393 signal transmission unit, 394 PLL, 395 oscillation unit, 396 LNA, 397 modulation / demodulation unit, 401 power supply control unit, 402 power supply control unit, 410 anti-theft system , 600 computers

Claims (20)

  1.  無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する制御部
     を備える情報処理装置。
    An information processing apparatus comprising: a control unit that controls supply of the power to the receiving unit so that power is supplied when a receiving unit that receives a radio signal is driven.
  2.  前記制御部は、アンテナにおいて受信された放送波信号を伝送する同軸ケーブルを介して前記放送波信号と重畳して供給され、抽出された電力の、前記受信部への供給を制御する
     請求項1に記載の情報処理装置。
    2. The control unit controls supply of the extracted power supplied to the reception unit, superimposed on the broadcast wave signal via a coaxial cable that transmits a broadcast wave signal received by an antenna. The information processing apparatus described in 1.
  3.  前記制御部は、
      前記受信部への前記電力の供給を開始して、前記受信部に前記無線信号を受信させ、受信した前記無線信号より得られた情報を記憶部に記憶させ、
      前記情報が前記記憶部に記憶されたとの通知を取得した場合、前記受信部への前記電力の供給を終了する
     請求項1または請求項2に記載の情報処理装置。
    The controller is
    Starting the supply of power to the receiving unit, causing the receiving unit to receive the wireless signal, and storing information obtained from the received wireless signal in a storage unit;
    The information processing apparatus according to claim 1, wherein when the notification that the information is stored in the storage unit is acquired, the supply of the power to the reception unit is terminated.
  4.  前記受信部をさらに備える
     請求項1乃至請求項3のいずれかに記載の情報処理装置。
    The information processing apparatus according to any one of claims 1 to 3, further comprising the receiving unit.
  5.  前記制御部は、前記同軸ケーブルを介して前記信号と重畳して供給され、抽出され、蓄電部に蓄電された前記電力の、前記受信部への供給を制御する
     請求項1乃至請求項4のいずれかに記載の情報処理装置。
    The control unit controls the supply of the electric power supplied and extracted by being superimposed on the signal via the coaxial cable, extracted, and stored in the power storage unit to the reception unit. The information processing apparatus according to any one of the above.
  6.  前記制御部は、前記蓄電部の蓄電量が所定の閾値より少ない場合、前記受信部への前記電力の供給を禁止する
     請求項5に記載の情報処理装置。
    The information processing apparatus according to claim 5, wherein the control unit prohibits the supply of the power to the receiving unit when the amount of power stored in the power storage unit is smaller than a predetermined threshold.
  7.  前記制御部は、さらに、前記同軸ケーブルを介して前記信号と重畳して供給され、抽出された前記電力の、前記蓄電部への蓄電を制御する
     請求項5または請求項6に記載の情報処理装置。
    7. The information processing according to claim 5, wherein the control unit further controls storage of the extracted power that is supplied and superimposed on the signal via the coaxial cable to the power storage unit. 8. apparatus.
  8.  前記制御部は、前記蓄電部の蓄電量が所定の閾値より多い場合、前記蓄電部への前記電力の蓄電を禁止する
     請求項7に記載の情報処理装置。
    The information processing apparatus according to claim 7, wherein the control unit prohibits the storage of the electric power in the power storage unit when the power storage amount of the power storage unit is greater than a predetermined threshold.
  9.  前記制御部は、所定の時間帯において前記蓄電部に前記電力を蓄電させる
     請求項7または請求項8に記載の情報処理装置。
    The information processing apparatus according to claim 7, wherein the control unit causes the power storage unit to store the electric power in a predetermined time zone.
  10.  前記蓄電部をさらに備える
     請求項5乃至請求項9のいずれかに記載の情報処理装置。
    The information processing apparatus according to claim 5, further comprising the power storage unit.
  11.  前記制御部は、さらに、無線信号を送信する送信部が駆動する際に電力を供給するように、前記送信部への前記電力の供給を制御する
     請求項1乃至請求項10のいずれかに記載の情報処理装置。
    The said control part further controls supply of the said electric power to the said transmission part so that it may supply electric power when the transmission part which transmits a radio signal drives. Information processing device.
  12.  前記制御部は、
      前記送信部への前記電力の供給を開始して、前記送信部に送信情報を生成させ、生成した前記送信情報を前記無線信号として送信させ、
      前記無線信号が送信されたとの通知を取得した場合、前記送信部への前記電力の供給を終了する
     請求項11に記載の情報処理装置。
    The controller is
    Starting the supply of power to the transmission unit, causing the transmission unit to generate transmission information, causing the generated transmission information to be transmitted as the radio signal,
    The information processing apparatus according to claim 11, wherein when receiving a notification that the wireless signal has been transmitted, the supply of the power to the transmission unit is terminated.
  13.  前記送信部をさらに備える
     請求項11または請求項12に記載の情報処理装置。
    The information processing apparatus according to claim 11, further comprising the transmission unit.
  14.  前記制御部は、さらに、他の通信装置と通信を行う通信部が駆動する際に電力を供給するように、前記通信部への前記電力の供給を制御する
     請求項1乃至請求項13のいずれかに記載の情報処理装置。
    The control unit further controls supply of the power to the communication unit so as to supply power when a communication unit that communicates with another communication device is driven. An information processing apparatus according to claim 1.
  15.  前記制御部は、
      前記通信部への前記電力の供給を開始して、前記通信部に、前記受信部が受信した前記無線信号より得られた情報を記憶する記憶部から前記情報を読み出させ、読み出した前記情報を前記通信により前記他の通信装置に供給させ、
      前記情報が前記他の通信装置に供給されたとの通知を取得した場合、前記通信部への前記電力の供給を終了する
     請求項14に記載の情報処理装置。
    The controller is
    Starting the supply of power to the communication unit, causing the communication unit to read the information from a storage unit that stores information obtained from the radio signal received by the reception unit, and reading the information To the other communication device by the communication,
    The information processing apparatus according to claim 14, wherein when receiving a notification that the information is supplied to the other communication apparatus, the supply of the power to the communication unit is terminated.
  16.  前記通信部をさらに備える
     請求項14または請求項15に記載の情報処理装置。
    The information processing apparatus according to claim 14, further comprising the communication unit.
  17.  前記記憶部をさらに備える
     請求項15または請求項16に記載の情報処理装置。
    The information processing apparatus according to claim 15 or 16, further comprising the storage unit.
  18.  前記受信部は、925MHzを含む周波数帯域の前記無線信号を受信する
     請求項1乃至請求項17のいずれかに記載の情報処理装置。
    The information processing apparatus according to claim 1, wherein the reception unit receives the radio signal in a frequency band including 925 MHz.
  19.  情報処理装置が、無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する
     情報処理方法。
    An information processing method for controlling supply of the power to the reception unit such that the information processing apparatus supplies power when the reception unit that receives a radio signal is driven.
  20.  コンピュータを、
     無線信号を受信する受信部が駆動する際に電力を供給するように、前記受信部への前記電力の供給を制御する制御部
     として機能させるためのプログラム。
    Computer
    The program for functioning as a control part which controls supply of the electric power to the receiving part so that electric power is supplied when the receiving part which receives a radio signal drives.
PCT/JP2016/070429 2015-07-24 2016-07-11 Information processing device and method, and program WO2017018185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017531121A JP7042617B2 (en) 2015-07-24 2016-07-11 Information processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-146764 2015-07-24
JP2015146764 2015-07-24

Publications (1)

Publication Number Publication Date
WO2017018185A1 true WO2017018185A1 (en) 2017-02-02

Family

ID=57884524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070429 WO2017018185A1 (en) 2015-07-24 2016-07-11 Information processing device and method, and program

Country Status (2)

Country Link
JP (1) JP7042617B2 (en)
WO (1) WO2017018185A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437152B1 (en) * 2018-06-26 2018-12-12 正直 井内 Tree watching system
CN111654459A (en) * 2020-05-15 2020-09-11 Oppo广东移动通信有限公司 Signal processing method, terminal and storage medium
US10919957B2 (en) 2017-04-13 2021-02-16 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276330A (en) * 1987-05-07 1988-11-14 Sony Corp Transmission equipment
JP2001069150A (en) * 1999-08-31 2001-03-16 Daito Engineering:Kk Data communication system
JP2002050998A (en) * 2000-07-31 2002-02-15 Ntt Docomo Inc Mobile wireless communication terminal equipment
JP2004356786A (en) * 2003-05-28 2004-12-16 Hitachi Industries Co Ltd Wireless information transmission / reception system
JP2014052870A (en) * 2012-09-07 2014-03-20 Fujitsu Telecom Networks Ltd Transmitter, slave station device, master station device, and tracking system
JP2015053605A (en) * 2013-09-06 2015-03-19 株式会社メイエレック Sensor network system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503130B2 (en) * 2000-03-31 2010-07-14 Dxアンテナ株式会社 Internet connection device
JP2003087180A (en) * 2001-09-11 2003-03-20 Oki Electric Ind Co Ltd Method for intermittent reception radio communication for emergency transmission
EP2165468B1 (en) * 2007-06-06 2019-08-28 Telecom Italia S.p.A. Method for managing the transfer of information packets across a wireless network and routing nodes implementing it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276330A (en) * 1987-05-07 1988-11-14 Sony Corp Transmission equipment
JP2001069150A (en) * 1999-08-31 2001-03-16 Daito Engineering:Kk Data communication system
JP2002050998A (en) * 2000-07-31 2002-02-15 Ntt Docomo Inc Mobile wireless communication terminal equipment
JP2004356786A (en) * 2003-05-28 2004-12-16 Hitachi Industries Co Ltd Wireless information transmission / reception system
JP2014052870A (en) * 2012-09-07 2014-03-20 Fujitsu Telecom Networks Ltd Transmitter, slave station device, master station device, and tracking system
JP2015053605A (en) * 2013-09-06 2015-03-19 株式会社メイエレック Sensor network system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919957B2 (en) 2017-04-13 2021-02-16 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
JP6437152B1 (en) * 2018-06-26 2018-12-12 正直 井内 Tree watching system
JP2020003900A (en) * 2018-06-26 2020-01-09 正直 井内 Tree watching system
CN111654459A (en) * 2020-05-15 2020-09-11 Oppo广东移动通信有限公司 Signal processing method, terminal and storage medium
CN111654459B (en) * 2020-05-15 2023-06-23 Oppo广东移动通信有限公司 Signal processing method, terminal and storage medium

Also Published As

Publication number Publication date
JP7042617B2 (en) 2022-03-28
JPWO2017018185A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US11197042B2 (en) Distributed 3D video for navigation
JP7027146B2 (en) Information processing equipment and methods, receivers and methods
US10440452B2 (en) Apparatus and method for transmitting and receiving environmental information in wireless communication system
WO2017018185A1 (en) Information processing device and method, and program
EP3471359B1 (en) Transmission device and method, reception device and method
US11475748B2 (en) System and method for RF tripwire based intrusion detection
KR102285552B1 (en) Apparatus and method for transmitting and receiving environment information in wireless communication system
JP6952601B2 (en) Signal processing equipment and methods, as well as programs
JP6819591B2 (en) Information processing equipment and methods, and programs
WO2018173795A1 (en) Transmission device, transmission method, reception device, and reception method
US11114749B2 (en) Communication apparatus and method, antenna apparatus, and communication system
EP3611891B1 (en) Signal processing device and method
US10904918B2 (en) Communication apparatus and method, and communication system
WO2018180529A1 (en) Signal processing device and method
JPWO2017130726A1 (en) INFORMATION PROCESSING APPARATUS AND METHOD
JP7106248B2 (en) Signal processing apparatus and method
Effrosyni Overview of the LoRaWAN standard and the MAC layer
Soni et al. SIGNAL SEEKER: SAFEGUARDING WIRELESS COMMUNICATION WITH LoRa TECH
Zgaren Réseau sans-fil de capteurs appliqué au suivi de stationnements
Dorsey Watershed Sensor Network Non-Line-Of-Sight Data Telemetry System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830290

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载