WO2017018034A1 - Optical switch device and design method therefor - Google Patents
Optical switch device and design method therefor Download PDFInfo
- Publication number
- WO2017018034A1 WO2017018034A1 PCT/JP2016/065173 JP2016065173W WO2017018034A1 WO 2017018034 A1 WO2017018034 A1 WO 2017018034A1 JP 2016065173 W JP2016065173 W JP 2016065173W WO 2017018034 A1 WO2017018034 A1 WO 2017018034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- output
- optical
- switch
- polarization
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 393
- 238000000034 method Methods 0.000 title claims description 10
- 238000013461 design Methods 0.000 title description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 249
- 230000010287 polarization Effects 0.000 claims description 230
- 238000010168 coupling process Methods 0.000 claims description 38
- 238000005859 coupling reaction Methods 0.000 claims description 38
- 230000008878 coupling Effects 0.000 claims description 37
- 238000000926 separation method Methods 0.000 claims description 25
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 description 39
- 238000010586 diagram Methods 0.000 description 35
- 230000000903 blocking effect Effects 0.000 description 12
- 239000013307 optical fiber Substances 0.000 description 11
- 230000002457 bidirectional effect Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 4
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
- H04Q3/42—Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker
- H04Q3/52—Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
Definitions
- the present invention relates to an optical switch device using a matrix switch circuit configured by arranging N 2 two-input two-output optical switches and a design method thereof.
- an optical cross-connect device In optical transmission, an optical cross-connect device is known as a device that can switch an optical path without converting light into electricity. When this optical cross-connect device is applied, the flexibility of the network can be increased and the management cost can be reduced.
- the matrix switch used in the optical cross-connect device is also called a PILOSS (Path-independent Insertion Loss) switch, and an optical switch that can be switched to either a cross or a bar state with two inputs and two outputs on a square lattice.
- PILOSS Pulth-independent Insertion Loss
- an optical switch that can be switched to either a cross or a bar state with two inputs and two outputs on a square lattice.
- a square lattice type matrix switch in which N 2 pieces are arranged
- a rhombus lattice type matrix switch in which N 2 pieces of the optical switches are arranged on a rhombus lattice (see, for example, Patent Document 1).
- FIG. 1 is a diagram (1) showing a circuit configuration of a conventional square lattice matrix switch.
- the tetragonal lattice matrix switch for example, is configured by arranging four two optical switches S11 ⁇ S44 on a square lattice of four rows and four columns.
- Input ports A1 to A4 are set in the order of up, down, up and down in the upper and lower two externally connectable input / output ports in the first row, and the remaining input / output ports are unused.
- the upper and lower two externally connectable input / output ports are set with the output ports B1 to B4 in the order of lower, upper and lower, and the remaining input / output ports are unused.
- input / output ports used in conventional matrix switches including square lattice type matrix switches and rhombus lattice type matrix switches, are referred to as “original ports”, and unused input / output ports (in the figure) , *) Are referred to as “idle ports”.
- each of the optical switches S11 to S44 has a cross state in which a line between a and d and a line between bc and a line between a and c and b and d, respectively. It is connected to one of the bar states where the gaps are connected.
- 2A is an explanatory diagram for explaining the optical switch
- FIG. 2B is an explanatory diagram for explaining the cross state
- FIG. 2C is a diagram showing the bar state. It is explanatory drawing for demonstrating.
- any four optical switches among the optical switches S11 to S44 are set in a bar state and the rest are set in a cross state, thereby completely non-blocking and independent of path loss.
- the original ports of input ports A1 to A4 and output ports B1 to B4 are 4! It is possible to connect on the street.
- the relationship between input and output is arbitrary, and the square lattice matrix switch shown in FIG. 1 can also use the input ports A1 to A4 as output ports and the output ports B1 to B4 as input ports.
- FIG. 3 is a diagram showing a circuit configuration of a conventional rhombus lattice matrix switch.
- rhombic lattice matrix switch for example, is configured by arranging four two optical switches S11 ⁇ S44 on a square lattice of four rows and four columns.
- the lower input / output port of the two unconnected input / output ports is set as the original port as the input port A1, and the remaining input / output ports are set as idle ports. Is done.
- the unconnected input / output ports are set as the input ports A2 to A4 as original ports, and the optical switches S12 to S1 in the first row other than the optical switch S11 are set.
- the unconnected input / output port is set as an idle port.
- the lower input / output port of the two unconnected input / output ports is set as the original port as the output port B1, and the remaining input / output ports are set as idle ports.
- the unconnected input / output ports are set as the output ports B2 to B4 as original ports.
- the unconnected input / output ports are set as idle ports.
- each of the two unconnected input / output ports is set as an idle port.
- the input / output port on the input port A3 side of the two unconnected input / output ports is the original port.
- the input / output port on the output port B3 side is set as the original port to the output port B4.
- FIG. 4 is an explanatory diagram for explaining the polarization diversity optical switch device. As shown in FIG.
- each of the lights 1 to 4 is separated into a first polarization component and a second polarization component whose electric field amplitude directions are orthogonal to each other, and the first polarization
- the component is input to the upper square lattice type matrix switch (4 ⁇ 4 PILOSS switch) in the drawing, and the second polarization component is input to the lower square lattice type matrix switch (4 ⁇ 4 PILOSS switch) in the drawing.
- Two square lattice matrix switches are synchronized, and the first polarization component and the second polarization component to be output are polarization-coupled to be output as the original lights 1 to 4.
- this polarization diversity optical switch device requires two square lattice matrix switches, and the circuit scale of the matrix switch (area, number of optical switches, number of wires, number of control terminals, etc.) is simply doubled. There is a problem. This problem also occurs when the polarization diversity optical switch device is configured with a rhombus lattice matrix switch. This problem also occurs in other synchronous optical switches that use two signals in synchronization in addition to the polarization diversity optical switch device.
- An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide an optical switch device capable of inputting / outputting two signals in synchronization with each other while keeping the circuit scale of the matrix switch small and a design method thereof.
- FIG. 5A is a diagram (1) illustrating an example of a connection pattern of a square lattice matrix switch.
- FIG. 5B is a diagram (2) illustrating an example of a connection pattern of a square lattice matrix switch. In the connection pattern shown in FIG.
- the input / output paths whose (input ⁇ output) are (A1 ⁇ B1), (A2 ⁇ B2), (A3 ⁇ B3), (A4 ⁇ B4) , (K1 ⁇ L1), (K2 ⁇ L2), (K3 ⁇ L3), and (K4 ⁇ L4) and two input / output paths are formed.
- the first polarization component and the second polarization component of the same light are input to one of the input ports one by one with (A1, K1) as a pair of input ports, B1 and L1) as a pair of output ports, the first polarization component and the second polarization component of the same light can be output from either output port one by one.
- (A2, K2) Let (A3, K3), (A4, K4) be a pair of input ports for inputting the first polarization component and the second polarization component of the same light, and (B2, L2), (B3, L3), (B4, As a pair of output ports that output the first polarization component and the second polarization component of the same light as L4), the first polarization component and the second polarization component can be synchronized.
- FIG. 5C is a diagram (3) illustrating an example of a connection pattern of a square lattice matrix switch.
- the connection pattern shown in FIG. 5C is a connection pattern when the optical switches S12, S22, S32, and S42 are switched to the bar state and the remaining optical switches are switched to the cross state.
- the input / output paths are (A1 ⁇ B1), (A2 ⁇ B3), (A3 ⁇ B2), (A4 ⁇ B4), and (K1 ⁇ L4), (K2 ⁇
- Two input / output paths are formed with the input / output paths of (L2), (K3 ⁇ L3), and (K4 ⁇ L1).
- outputs corresponding to (A1, K1), (A2, K2), (A3, K3), and (A4, K4) that are pairs of input ports of the same polarization component of the first polarization component and the second polarization component
- the port pairs are (B1, L4), (B3, L2), (B2, L3), (B4, L1).
- the input port pair (A1, K1) is the input port of the first polarization component and the second polarization component of the light 1
- the input port pair (A2, K2) is the first polarization component of the light 2.
- a pair of input ports (A3, K3) are input ports for the first polarization component and the second polarization component of the light 3, and a pair of input ports (A4, K4).
- a pair of output ports corresponding to (A4, K4) is set as (B1, L1), (B2, L2), (B3, L3), (B4, L4).
- the optical switch is switched to the connection pattern, the first polarization component of light 3 and the second polarization component of light 2 are combined, and the first polarization component of light 2 and the second polarization of light 3 are combined.
- the components are combined, and the original lights 2 and 3 cannot be obtained.
- the original light cannot be obtained from the outputs of the light 1 and 4 as well.
- (input ⁇ output) changes from (A2 ⁇ B2) (see FIG. 5 (b)) to (A2 ⁇ B3) (FIG.
- FIG. 6A is a diagram (4) illustrating an example of a connection pattern of a square lattice matrix switch.
- the input ports K1 to K4 are set in order from the top to the idle ports on the output ports B1 to B4 side.
- the output ports L1 to L4 are set to the idle ports on the input ports A1 to A4 side so that (input ⁇ output) becomes (K1 ⁇ L1), (K2 ⁇ L2), (K3 ⁇ L3), (K4 ⁇ L4) Has been.
- the switch states of the optical switches S11 to S44 in the cross state and the bar state are the same as the connection pattern shown in FIG.
- (input ⁇ output) is (A1 ⁇ B1), (A2 ⁇ B2), (A3 ⁇ B3), (A4 ⁇ ) as in the connection pattern shown in FIG. 5 (b).
- Two input / output paths are formed: an input / output path that is (B4) and an input / output path that is (K1 ⁇ L1), (K2 ⁇ L2), (K3 ⁇ L3), and (K4 ⁇ L4), and (A1 , K1), (A2, K2), (A3, K3), (A4, K4) as input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4)
- the first polarization component and the second polarization component can be synchronized.
- FIG. 6B is a diagram (5) illustrating an example of a connection pattern of a square lattice matrix switch.
- the connection pattern shown in FIG. 6 (b) is the same switch as the connection pattern shown in FIG. 5 (c) from the connection pattern shown in FIG. 6 (a) in the cross state and the bar state switch state of S11 to S44 of the optical switch. It has been changed to the state.
- (input ⁇ output) is (A1 ⁇ B1), (A2 ⁇ B3), (A3 ⁇ B2), (A4).
- ⁇ B4) and two input / output paths of (K1 ⁇ L1), (K2 ⁇ L3), (K3 ⁇ L2), and (K4 ⁇ L4) are formed.
- the first polarization component and the second polarization component can be synchronized using L4) as an output pair.
- FIG. 6C is a diagram (6) illustrating an example of a connection pattern of a square lattice matrix switch.
- the connection pattern shown in FIG. 6C is a connection pattern when the optical switches S13, S23, S33, and S43 are switched to the bar state and the remaining optical switches are switched to the cross state.
- the input / output paths (input ⁇ output) are (A1 ⁇ B2), (A2 ⁇ B1), (A3 ⁇ B4), (A4 ⁇ B3), and (K1 ⁇ L3), (K2 ⁇
- Two input / output paths are formed with the input / output paths of (L4), (K3 ⁇ L1), and (K4 ⁇ L2).
- the pair relationship of the input pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4) of the connection patterns shown in FIGS. 6A and 6B is maintained.
- 6A and 6B are (B1, L1), (B2, L2), (B3, L3), (B4, L4) to (B2). , L3), (B1, L4), (B4, L1), (B3, L2). Therefore, the input ports K1 to K4 are set as the idle ports on the output ports B1 to B4 side, and the output ports L1 to L4 are set as the idle ports on the input ports A1 to A4 side. Can not.
- Fig.7 (a) is a figure (7) which shows an example of the connection pattern of a square lattice type
- the connection pattern shown in FIG. 7A the settings of the input ports K1 to K4 and the output ports L1 to L4 are changed from the connection pattern shown in FIG. 6A as shown in the figure.
- the switch states of the optical switches S11 to S44 in the cross state and the bar state are the same as the connection pattern shown in FIG.
- (input ⁇ output) is (A1 ⁇ B1), (A2 ⁇ B2), (A3 ⁇ B3), (A4) as in the connection pattern shown in FIG. 6 (a).
- ⁇ B4) and two input / output paths are formed: (K1 ⁇ L1), (K2 ⁇ L2), (K3 ⁇ L3), and (K4 ⁇ L4).
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4)
- the first polarization component and the second polarization component can be synchronized.
- FIG. 7B is a diagram (8) illustrating an example of a connection pattern of a square lattice matrix switch.
- the connection pattern shown in FIG. 7B is the same switch state as the connection pattern shown in FIG. 6B from the connection pattern shown in FIG. 7A to the cross state and the bar state switch state of the optical switches S11 to S44. It has been changed to.
- (input ⁇ output) is (A1 ⁇ B1), (A2 ⁇ B3), (A3 ⁇ B2), (A4) as in the connection pattern shown in FIG. 6 (b).
- ⁇ B4) and two input / output paths of (K1 ⁇ L1), (K2 ⁇ L3), (K3 ⁇ L2), and (K4 ⁇ L4) are formed.
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) )
- the first polarization component and the second polarization component can be synchronized.
- FIG. 7C is a diagram (9) illustrating an example of a connection pattern of a square lattice matrix switch.
- the switch state in the cross state and the bar state of the optical switches S11 to S44 is changed from the connection pattern shown in FIG. 7A to the connection pattern shown in FIG. 6C. It has been changed.
- the (input ⁇ output) is (A1 ⁇ B2), (A2 ⁇ B1), (A3 ⁇ B4), (A4 ⁇ B3) and the input / output paths of (K1 ⁇ L2), (K2 ⁇ L1), (K3 ⁇ L4), (K4 ⁇ L3) are formed, and still ( (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) As the output pair, the first polarization component and the second polarization component can be synchronized.
- each input / output path ((A1-K1), (A1)) of the matrix switch is connected in a state where all the optical switches (S11 to S44) are switched to the cross state (see FIG. 8).
- I / O port pairs ((A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), Half of (B2, L2), (B3, L3), (B4, L4)) including N (4) original ports (A1 to A4) in the first row of a square lattice matrix switch in a pair N pairs (4) of the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the N (4) pairs are designated as the second input / output pair group ((B1, L1 ), (B2, L2), (B3, L3), (B4, L4)), the first input / output pair group ((A1, K1), (A2, K2), (A1, K2), (A2, K2), (A3, L3), (B4, L4)), the first input / output pair group ((A1, K1), (A2, K2), (A1, K2), (A2, K2), (A2, K2)
- FIG. 9A is a diagram (2) showing a circuit configuration of a conventional square lattice matrix switch
- FIG. 9B is a diagram (3) showing a circuit configuration of a conventional square lattice matrix switch.
- 9A and 9B are located above and below the original port and the idle port based on the difference in the connection method between adjacent optical switches. Although the relationship is different, any square lattice matrix switch is 4! A completely non-blocking matrix switch having a common connection pattern, and a completely non-blocking synchronous optical switch can be configured based on the regularity.
- N is an integer of 2 or more
- N 2 optical switches are arranged on an N row N column matrix
- the N optical switches are in a bar state.
- N Even when generalized as a completely non-blocking matrix switch having a common connection pattern, a completely non-blocking synchronous optical switch can be configured based on the above regularity.
- the name of the rhomboid matrix switch is conceptually distinguished from the square lattice matrix switch, and the overall shape of the circuit does not necessarily have to be a rhombus, and there is a connection relationship between adjacent optical switches.
- the circuit having the square shape shown in FIG. 11 is included in the rhombus lattice matrix switch regardless of the overall shape of the circuit.
- a circuit having a different overall shape is also a square lattice type matrix switch. included.
- FIG. 11 is a diagram illustrating another configuration example of the rhomboid matrix switch.
- the present invention is based on the above knowledge, and means for solving the above problems are as follows. That is, ⁇ 1> 2 input 2 switchable optical switch in one of two states: cross and bar output is disposed two N in a matrix of N rows and N columns where N is an integer of 2 or more, and a square lattice matrix switch A matrix switch having a circuit configuration of any one of the rhombic lattice matrix switches and an external input / output path of the matrix switch connected in a state where all the optical switches of the matrix switch are switched to the cross state Of the 2N input / output port pairs that are paired with the original port that constitutes one of the connectable two input / output ports and the idle port that constitutes the other, N of the matrix switches in the first row Half of the N pairs including the original port in the pair constitute the first input / output pair group, and the remaining half When N pairs are used as a second input / output pair group, the N ports connected in a one-to-one relationship with the original ports in either the first input / output
- N first optical outputs connected one-to-one with the unconnected original ports in one of the first input / output pair group and the second input / output pair group
- N second optical input means connected in a one-to-one relationship with each of the idle ports including the original port connected to the first optical input means in the pair
- An optical switch device comprising: N second optical output means connected in a one-to-one relationship with each of the unconnected idle ports including the original port to be connected in the pair.
- the light is separated into a first polarization component and a second polarization component, the first polarization component is input to the first light input means, and the second polarization component is changed to the second polarization component.
- the optical switch device according to any one of ⁇ 1> to ⁇ 2>, further including N polarization coupling units.
- a polarization splitter that splits light into a first polarization component and a second polarization component, and a polarization of any one of the first polarization component and the second polarization component.
- a first polarization rotating element that rotates the wave axis to the other polarization axis, and the polarization coupling means rotates the polarization axis by the first polarization rotating element, and A second polarization rotation element that re-rotates one of the polarization axes of the second polarization component to the original polarization axis before rotation, and the polarization axis is re-rotated by the second polarization rotation element;
- the optical switch device according to ⁇ 3>, further comprising: a beam combiner that polarization-couples one of the first polarization component and the second polarization component.
- each optical switch from the first column to the N ⁇ 1 column in the first row is connected to the optical switch in the first row and the optical switch in the next row in the next column
- the optical switches from the first column to the N ⁇ 1 column are connected to the N rows of optical switches and the previous row of optical switches
- Each optical switch up to one column is connected to the optical switch in the previous row and the optical switch in the next row in the next row, the row directions in all rows are parallel, and the column directions in all columns are parallel.
- a square lattice type matrix switch which is substantially the same size and in the same row as the square lattice type matrix switch, and replaces all the optical switches of the square lattice type matrix switch with cross-connections. Positive connected In a state where the rectangular grid wiring is arranged opposite to each other in the column direction so that each of the cross-shaped connections forms one set with respect to each of the optical switches of the square grid matrix switch in plan view, Arranged on either the front or back surface of the square lattice matrix switch developed in a planar shape in the matrix direction, each set of the optical switch and the cross-shaped connection in the Nth column is the original of the optical switch A port and a port corresponding to the original port of the cross-shaped connection when the square lattice type wiring is regarded as the square lattice type matrix switch, and an idle port of the optical switch and the square lattice type A port corresponding to the idle port of the cross-like connection when wiring is regarded as the square lattice type matrix switch is connected.
- Each set of the optical switch and the cross-shaped connection in the first row is the cross-shaped connection when the original port of the optical switch and the square lattice type wiring are regarded as the square lattice type matrix switch.
- a port corresponding to the original port is connected to the common polarization separation means via the first optical input means and the second optical input means, and the idle port of the optical switch and the square lattice type wiring are connected to the square lattice
- a port corresponding to the idle port of the cross connection when viewed as a type matrix switch is connected to a common polarization coupling means via the first optical output means and the second optical output means Or the input / output relationship of light is reversed, and the original port of the optical switch and the square lattice type wiring are connected to the square lattice type matrix switch.
- a port corresponding to the original port of the cross-shaped connection when viewed as a common polarization coupling means via the first light output means and the second light output means, and An idle port of an optical switch and a port corresponding to the idle port of the cross-like connection when the square lattice type wiring is regarded as the square lattice type matrix switch are the first optical input means and the second optical input.
- the optical switch device according to any one of ⁇ 3> to ⁇ 4>, wherein the optical switch device is connected to a common polarization separation unit through a unit.
- the pair of first light input means and the second light output means are N first input / output sections connectable to the N first input / output sources, and the pair of second light input means and the first light.
- the optical switch device according to any one of ⁇ 1> to ⁇ 2>, wherein the output unit includes N second input / output units connectable to N second input / output sources.
- an optical switch device capable of solving the above-described problems in the prior art and capable of inputting and outputting two signals in synchronization with each other while keeping the circuit scale of the matrix switch small and a design method thereof are provided. Can be provided.
- FIG. (1) shows the circuit structure of the conventional square lattice type
- FIG (4) which shows an example of the connection pattern of a square lattice type matrix switch. It is a figure (5) which shows an example of the connection pattern of a square lattice type matrix switch. It is a figure (6) which shows an example of the connection pattern of a square lattice type matrix switch. It is a figure (7) which shows an example of the connection pattern of a square lattice type matrix switch. It is a figure (8) which shows an example of the connection pattern of a square lattice type matrix switch. It is a figure (9) which shows an example of the connection pattern of a square lattice type matrix switch.
- the optical switch device of the present invention includes at least a matrix switch, first light input means, second light input means, first light output means, and second light output means.
- the optical switch is not particularly limited as long as it is an optical switch (see FIGS. 2 (a) to 2 (c)) that can be switched to either a cross state or a bar state with two inputs and two outputs.
- the prism can be appropriately selected according to the purpose.
- the tetragonal lattice matrix switch is arranged two N on square lattice matrix of N rows and N columns where N is an integer of 2 or more, any of N to the optical switch and the bar state, the remaining The optical switch is set to the cross state, and N! It is a matrix switch that can be connected in the street.
- the square lattice matrix switch is not particularly limited, and can be appropriately selected from known square lattice matrix switches according to the purpose, and is shown in FIGS. 1, 9A and 9B. Others in which the wiring relationship between the adjacent optical switches and the square lattice type matrix switch of 4 rows and 4 columns and the square lattice type matrix switch of 4 rows and 4 columns shown in FIGS. Examples thereof include a square lattice type matrix switch and a square lattice type matrix switch obtained by generalizing these square lattice type matrix switches into N rows and N columns.
- the rhombic lattice matrix switch is arranged two N on the rhombic matrix with N rows and N columns where N is an integer of 2 or more, and any N number of the optical switch and the bar state, the remaining With the optical switch in the cross state, N! It is a matrix switch that can be connected in the street.
- the rhombus lattice type matrix switch is not particularly limited, and can be appropriately selected from known rhombus lattice type matrix switches according to the purpose.
- Matrix switch, other rhombus grid type matrix switch having a common connection relationship between the adjacent optical switch and the 4 ⁇ 4 rhombus grid type matrix switch shown in FIGS. 3 and 11, and these rhombus grid type matrix switches Is a rhombus lattice matrix switch that is generalized to N rows and N columns.
- the number of the optical switches that pass between the input / output paths is different, and the light attenuation action is different between the input / output paths. Since all the input / output paths are formed via the same number of the optical switches, it is possible to output light that is not affected by the attenuation effect or the like for each input / output path (independent of path loss).
- the first light input means and the second light input means are not particularly limited, and are known light transmitting devices such as optical fibers or the like that transmit light from the light transmitting device such as an optical fiber to the matrix switch.
- An optical transmission member is mentioned.
- the first optical output means and the second optical output means are not particularly limited, and light output from the matrix switch such as an optical fiber is supplied to the optical receiving apparatus in addition to the known optical receiving apparatus itself.
- a known optical transmission member for transmission may be used.
- the first optical input means, the second optical input means, the first optical output means, the second optical output means, and the input / output ports of the matrix switch are shown in FIGS.
- the optical switch device includes two input / output paths that can be connected externally in each input / output path of the matrix switch and the matrix switch connected in a state where all the optical switches of the matrix switch are switched to the cross state.
- the N original ports in the first column of the matrix switch are the pair.
- the optical switch device configured as described above, it is possible to realize a synchronous optical switch that can input and output two signals by synchronizing them while keeping the circuit scale of the matrix switch small.
- Examples of the configuration of the synchronous optical switch include a polarization diversity optical switch and a bidirectional optical switch described later as the first to fourth embodiments of the present invention.
- the design method of the optical switch device of the present invention is a method of designing the optical switch device of the present invention based on the regularity. That is, N 2 optical switches that can be switched to either the cross state or the bar state with two inputs and two outputs are arranged on the matrix of N rows and N columns, where N is an integer, and the square lattice matrix switch And each of the matrix switches connected in a state in which all the optical switches of the matrix switch are switched to the cross state with respect to the matrix switch having a circuit configuration of any one of the rhomboid matrix switch.
- FIG. 12 is an explanatory diagram illustrating the configuration of the optical switch device according to the first embodiment
- FIG. 13 is an explanatory diagram illustrating the operation of the optical switch device according to the first embodiment.
- the optical switch device includes the square lattice matrix switch of 4 rows and 4 columns.
- this square lattice matrix switch referring to FIG. 8 again, each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state based on the regularity described above.
- the first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the second input / output pair group ((B1, L1), (B2, L2) ), (B 3, L 3), (B 4, L 4)) are arbitrary as an input pair group and an output pair group, but in the example shown in FIG.
- the output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) is taken as the input pair group, and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are set as an output pair group.
- the input pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the output pair group ((B1, L1), (B2, L2), (B3 , L3), (B4, L4)) in the first embodiment the four polarizations that separate the lights 1 to 4 into the first polarization component and the second polarization component
- the separating means X1 to X4 are connected to the square lattice matrix switch as follows. That is, the input pair (A1, K1) is connected to the polarization separation means X1, the input pair (A2, K2) is connected to the polarization separation means X2, and the input pair (A3, K3) is connected to the polarization separation means X3.
- the input pair (A4, K4) is connected to the polarization separation means X4.
- Each of the polarization separation means X1 to X4 adds the beams 1 to 4 to the first polarization component and the second polarization component, and the polarization axis of the second polarization component is the first polarization. It has a polarization rotation element that rotates about the polarization axis of the component. When such a polarization rotation element is used, in the square lattice matrix switch, the first polarization component and the second polarization component can be handled as homogeneous polarization components.
- the polarization rotation element of the wave separation means X4 and the input port A4 are connected by an optical waveguide such as an optical fiber as the first light input means.
- the beam splitter of the separating means X4 and the input port K4 are connected by an optical waveguide such as an optical fiber as the second light input means.
- the output pair (B1, L1) is connected to the polarization coupling means Y1
- the output pair (B2, L2) is connected to the polarization coupling means Y2
- the output pair (B3, L3) is polarized. It is connected to the coupling means Y3, and the output pair (B4, L4) is connected to the polarization coupling means Y4.
- Each polarization coupling means Y1 to Y4 rotates the second polarization component after rotation in addition to the beam combiner that couples the first polarization component and the second polarization component to the original light 1 to 4. It has a polarization rotation element that re-rotates to the previous original polarization axis.
- the first polarization component and the second polarization component can be handled as homogeneous polarization components.
- the beam splitter and the beam combiner are configured with known prisms or the like, and a common one can be used.
- the polarization rotation element is also composed of a known rotation element, and a common element can be used for the polarization separation means and the polarization coupling means.
- the polarization rotation element of the wave coupling means Y4 and the output port B4 are connected by an optical waveguide such as an optical fiber as the first light output means.
- the beam coupler of the polarization coupling means Y4 and the output port L4 are connected by an optical waveguide such as an optical fiber as the second light output means.
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1) , (B2, L2), (B3, L3), (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized. That is, as shown in FIG. 13, when the optical switches S12, S14, S42, and S44 are set to the bar state and the remaining optical switches are set to the cross state, (input ⁇ output) is (A1 ⁇ B4), (A2 ⁇ B3).
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized (for example, see FIGS. 7A, 7B, and 7C).
- FIG. 14 is an explanatory diagram illustrating the configuration of the optical switch device according to the second embodiment
- FIG. 15 is an explanatory diagram illustrating the operation of the optical switch device according to the second embodiment.
- the optical switch according to the second embodiment is the same as the first embodiment except that a rhomboid matrix switch is used instead of the square lattice matrix switch in the optical switch according to the first embodiment. It is set as the structure similar to the optical switch concerning. That is, referring again to FIG. 10, based on the regularity described above, each input / output path ((A1-K1)) of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state.
- Input / output pair group ((A1, K1), (A2, K ), (A3, K3), (A4, K4)), and the remaining four pairs are the second input / output pair groups ((B1, L1), (B2, L2), (B3, L3)). , (B4, L4)).
- These first input / output pair groups ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) are set, and the remaining four pairs are the second input / output pair groups.
- ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are the same as those in the optical switch device according to the first embodiment.
- the polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 are connected via the light input means, the first light output means and the second light output means.
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1) , (B2, L2), (B3, L3), (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized. That is, as shown in FIG. 15, when the optical switches S11, S21, S33, and S44 are set to the bar state and the remaining optical switches are set to the cross state, (input ⁇ output) is (A1 ⁇ B4), (A2 ⁇ B3).
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
- the input and output settings are optional, and the input / output relationship can be inverted as in the optical switch device according to the first embodiment.
- FIG. 16 is an explanatory diagram illustrating the configuration of the optical switch device according to the third embodiment
- FIG. 17 is an explanatory diagram illustrating the operation of the optical switch device according to the third embodiment.
- the optical switch device does not perform polarization separation or polarization coupling of light, and (A1, K1), (A2, K2), (A3 , K3), (A4, K4) and the second input / output pair group (B1, L1), (B2, L2), (B3, L3), (B4, L4). Used as a bidirectional optical switch.
- the optical switch device has a 4 ⁇ 4 square lattice matrix switch.
- this square lattice matrix switch referring to FIG. 8 again, each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state based on the regularity described above.
- the first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the second input / output pair group ((B1, L1), (B2, L2) ), (B 3, L 3), (B 4, L 4)) is arbitrary as an input pair group or an output pair group, but in the example shown in FIG.
- the output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) is taken as the input pair group, and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are set as an output pair group.
- the input pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the output pair group ((B1, L1), (B2, L2), (B3 , L3), (B4, L4)) are set, the optical input device such as an optical fiber connected to the original ports (A1 to A4) of the input pair group is the first.
- Optical input means such as optical fiber connected to the idle ports (K1 to K4) of the input pair group as optical input means is used as the second optical input means and connected to the original ports (B1 to B4) of the output pair group
- the optical output means such as an optical fiber is the first optical output means
- the optical output means such as an optical fiber connected to the idle ports (L1 to L4) of the output pair group is the second optical output means.
- the four first input / output sources E to H can be connected to any pair of first light input means (connected to any one of A1 to A4) and second light output means (connected to any of L1 to L4).
- the pair of first light input means and second light output means constitute a first input / output unit.
- the first input / output source E is connected to the input port via the first optical input means (connected to any of A1 to A4) and the second optical output means (connected to any of L1 to L4).
- the first input / output source F is connected to the input port A2 and the output port L2
- the first input / output source G is connected to the input port A3 and the output port L3
- the first input / output source is connected to the A1 and the output port L1.
- H is connected to the input port A4 and the output port L4.
- the four second input / output sources K to N are connected to an arbitrary pair of second light input means (connected to any one of K1 to K4) and first light output means (connected to any of B1 to B4).
- the pair of second light input means and first light output means constitute a second input / output unit.
- the second input / output source K is connected to the input port via the second optical input means (connected to any of K1 to K4) and the first optical output means (connected to any of B1 to B4).
- K1 and the output port B1 the second input / output source L is connected to the input port K2 and the output port B2, the second input / output source M is connected to the input port K3 and the output port B3, and the second input / output source is connected.
- N is connected to the input port K4 and the output port B4.
- the input / output source includes a signal input / output source such as a signal input / output device such as a personal computer operated by an operator and a signal repeater disposed between the input / output device and the optical switch device. This is true.
- Each bidirectional connection has (input ⁇ output) different from the input / output path of (A1 ⁇ B4), (A2 ⁇ B3), (A3 ⁇ B2), (A4 ⁇ B1), (Input ⁇ Output) is composed of two input / output paths including (K1 ⁇ L4), (K2 ⁇ L3), (K3 ⁇ L2), and (K4 ⁇ L1). Therefore, it is possible to reduce restrictions on usable light as compared to the case where the same input / output path is propagated oppositely to form a bidirectional connection.
- an optical switch has an upper limit on the intensity of light that can be operated.
- 2 Double light intensity can be used.
- (Input ⁇ Output) is (A1 ⁇ B1), (A2 ⁇ B2), (A3 ⁇ B3), (A4 ⁇ B4), and (Input ⁇ Output) is (K1 ⁇ L1), (K2 ⁇ L2) ), (K3 ⁇ L3), (K4 ⁇ L4) and two input / output paths, and (1) male user of the first input / output source E (input port A1, output port L1 is used) ) And a female user of the second input / output source K (using the input port K1 and output port B1), (2) a male user of the first input / output source F (using the input port A2 and output port L2) and the second input Female user of output source L (input port K2, output port B2 Use), (3) male user of first input / output source G
- Two-way connection is made through the optical switch device of the form, and conversation can be enjoyed. That is, even if the connection state of the square lattice matrix switch is changed, there is no change in the pair relationship between the input pair and the output pair. As a result, the pair of input ports and output ports assigned to each user is changed. Therefore, a bidirectional connection in which input (speaking) and output (listening) are synchronized between one male user and one female user is realized. In this bidirectional connection, all four of the optical switches S11 to S44 are set to the bar state and the remaining optical switches are set to the cross state. It can be realized in a street connection state (see FIGS. 7B, 7C, etc.).
- FIG. 18 is an explanatory diagram illustrating the configuration of the optical switch device according to the fourth embodiment
- FIG. 19 is an explanatory diagram illustrating the operation of the optical switch device according to the fourth embodiment.
- the optical switch according to the fourth embodiment is the same as the optical switch according to the third embodiment except that a rhombus lattice matrix switch is used instead of the square lattice matrix switch. It is set as the structure similar to the optical switch concerning. That is, referring again to FIG. 10, on the basis of the above-mentioned regularity, external connection is possible in each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state.
- Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), (B2) , L2), (B3, L3), and (B4, L4), half of the four pairs including the four original ports (A1 to A4) in the first row of the rhomboid matrix switch 1 input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the four pairs are connected to the second input / output pair group (( B1, L1), (B2, L2), (B3 3) is set to (B4, L4)).
- first input / output pair groups ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) are set, and the remaining four pairs are the second input / output pair groups.
- ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are in the same relationship as the optical switch device of the third embodiment, and the first light input means and the second light
- the connection relationship between the first input / output sources E to H and the second input / output sources K to N can be set via the input means, the first light output means, and the second light output means. Therefore, of the optical switches S11 to S44, any four optical switches are set to the bar state, and the remaining optical switches are set to the cross state so that all four! Bidirectional connection in which the input and output are synchronized between the first input / output sources E to H and the second input / output sources K to N can be realized in the normal connection state.
- the optical switch device according to the first embodiment and the second embodiment has been described as an application example to the polarization diversity optical switch.
- these optical switch devices constitute an input / output path.
- the wiring length can be made the same and the circuit scale can be further reduced.
- FIG. 20 is an explanatory diagram illustrating the configuration of the optical switch device according to the fifth embodiment
- FIG. 21 is an explanatory diagram illustrating the operation of the optical switch device according to the fifth embodiment.
- the optical switch device according to the first embodiment see FIGS. 12 and 13
- input / output paths, input / output port pairs, first input / output pair groups, and second input / output pair groups are provided.
- the circuit scale can be further increased.
- the circuit layout is made smaller and the circuit layout is made more compact. That is, any four optical switches are set to the bar state (for example, S12, S14, S42, S44 in FIG. 21), the remaining optical switches are set to the cross state, and the relationship between the input pair and the output pair is not changed. All four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as an output pair, the first polarization component and the second polarization component can be synchronized, which is the same as the optical switch device according to the first embodiment.
- the changes will be described.
- the wiring exiting from the Nth column (fourth column) to the outside of the matrix switch is folded back toward the first column in such a manner as to pass through the matrix switch, and the folded wiring end portion Is connected to the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 arranged only on the first column side, the circuit scale is reduced and the circuit layout is made compact. That is, in the optical switch device according to the fifth embodiment, the optical switch device according to the first embodiment is simultaneously provided in the optical switch device according to the first embodiment with wiring arranged outside the matrix switch in the matrix switch.
- the arrangement destinations of the polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 that have selectivity in the arrangement destinations are grouped on the first column side, so that the circuit is more effective than the optical switch device according to the first embodiment.
- the scale is reduced and the circuit layout is made compact.
- the optical switch device according to the fifth embodiment is configured with the following regularity, the wiring length can be made the same and the polarization dependent loss can be reduced.
- FIG. 22 is a diagram showing a circuit configuration of a square lattice matrix switch constituting the optical switch device according to the fifth embodiment.
- S14) and the optical switches (S22 to S24) in the next row and the optical switches (S41 to S4) from the first column of the Nth row (fourth row) to the N-1th column (4-1 column 3 columns).
- To S24) and the optical switches (S32 to S34 and S42 to S44) in the next row are connected.
- the direction of the rows in all the rows are the parallel and the direction of the columns in the total column is a square lattice matrix switch are parallel.
- FIG. 23 is a diagram illustrating a circuit configuration of a square lattice type wiring included in the optical switch device according to the fifth embodiment.
- This square lattice type wiring is substantially the same size in the same row and column as the square lattice type matrix switch, and is connected by replacing all the optical switches of the square lattice type matrix switch with the connection in the cross state. That is, the square lattice type wiring is substantially the same size in 4 rows and 4 columns as the square lattice type matrix switch, and all the optical switches (S11 to S44) of the square lattice type matrix switch are in the cross state. This is different from the square lattice type matrix switch in that it is connected with the connection (C11 to C44).
- each cross-shaped connection (C11 to C44) is one in the same row and the same column with respect to each optical switch (S11 to S44) of the square lattice matrix switch in a plan view.
- this square lattice type wiring is arranged on either the front or back surface of the square lattice type matrix switch. That is, either one of the square lattice type wiring and the square lattice type matrix switch, which are developed in a planar shape in the matrix direction, is arranged on the same plane in the previous state with respect to the other.
- FIG. 24 is an explanatory diagram (1) for explaining a state in which square lattice wirings are arranged on a square lattice matrix switch.
- each set of optical switches (S14, S24, S34, S44) and cross-shaped connections (C14, C24, C34, C44) in the Nth row (fourth row) Cross connection (C14, C24, C34, C44) when the original ports (B1 to B4) of the optical switch (S14, S24, S34, S44) and the square lattice type wiring are regarded as the square lattice type matrix switch.
- Are connected to the ports (B1 to B4) corresponding to the original ports, and the idle ports (K1 to K4) of the optical switches (S14, S24, S34, S44) and the square lattice type wiring are connected to the square lattice type.
- FIG. 25 is an explanatory diagram (2) for explaining a state in which square lattice wirings are arranged on a square lattice matrix switch.
- the optical switches (S11, S21, S31, S41) of each pair (S11 and C11, S21 and C21, S31 and C31, S41 and C41) in the first row are cross-shaped.
- Connections (C11, C21, C31, C41) are when the original ports (A1 to A4) of the optical switch (S11, S21, S31, S41) and the square lattice type wiring are regarded as the square lattice type matrix switch.
- Ports (A1 to A4) corresponding to the original ports of the cross connection (C11, C21, C31, C41) are connected to the common polarization separation means (X1) via the first optical input means and the second optical input means.
- the polarization separation means (X1 to X4) and the polarization coupling means (Y1 to Y4) are arranged so as to be connected to the polarization coupling means (Y1 to Y4) (first row side), and Connect to the wiring.
- the input / output relationship of light is arbitrary, and when the original ports (A1 to A4) of the optical switch (S11, S21, S31, S41) and the square lattice type wiring are regarded as the square lattice type matrix switch Polarization coupling common to the ports (A1 to A4) corresponding to the original ports of the cross-shaped connections (C11, C21, C31, C41) via the first light output means and the second light output means Cross when the idle ports (L1 to L4) of the optical switches (S11, S21, S31, and S41) and the square lattice type wiring are regarded as the square lattice type matrix switch connected to the means (Y1 to Y4) Ports (L1 to L4) corresponding to the idle ports of the C-shaped connections (C11, C21, C31, C41) and the first optical input means and the May be modified so as to be connected to a common polarization separating means via the second optical input means (X1 ⁇ X4).
- input / output paths are arranged on an optical circuit board such as the board 100 (see FIG. 20).
- the length of the wiring for example, the optical waveguide
- the loss due to the propagation of the optical signal proportional to the wiring length is equal.
- an intersection which is a place where wirings straddle, always occurs. At the intersection, optical signal loss occurs.
- the optical switch device according to the fifth embodiment is configured with the regularity, all of the eight input / output paths arbitrarily formed on the substrate 100 by setting the optical switch in the bar state. In each case, the number of times of passing through the intersection is 20 times.
- the optical switch device According to the fifth embodiment, there is no difference between the optical signals transmitted through the eight input / output paths, and the loss does not depend on the path, and the polarization dependent loss can be reduced. .
- the number of intersections in the eight input / output paths differs by a maximum of two times, but the number of intersections outside the substrate 100 is sufficiently smaller than the number of intersections on the substrate 100. Therefore, it can be substantially ignored as the loss is small.
- a part of the wiring constituting the input / output path is extended outward from the substrate 100, and the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 existing outside the substrate 100, Although connected, the polarization separating means X1 to X4, the polarization coupling means Y1 to Y4, and the wirings leading to these means may be arranged on the substrate 100.
- FIG. 26 shows a modification of the optical switch device according to the fifth embodiment. This modified example relates to a matrix portion that is separated into two upper and lower layers so that the two upper and lower layers can be moved back and forth at a point portion indicated by a black circle.
- the wiring length is the same between the upper and lower layers, and the number of intersections in the planes constituting each layer can be reduced. Loss can be reduced. As long as the upper and lower layers are separated, it is arbitrary which of the square lattice type matrix switch and the square lattice type wiring is used as an upper layer or a lower layer.
- the circuit scale can be further reduced by changing the wiring that constitutes the input / output path of the optical switch device (diamond-lattice matrix switch) according to the second embodiment.
- FIGS. 27 is an explanatory diagram illustrating the configuration of the optical switch device according to the sixth embodiment
- FIG. 28 is an explanatory diagram illustrating the operation of the optical switch device according to the sixth embodiment.
- the optical switch device (see FIGS. 14 and 15) according to the second embodiment and each of the input / output path, the pair of input / output ports, the first input / output pair group, and the second input / output pair group.
- the circuit scale can be further increased.
- the circuit layout is made smaller and the circuit layout is made more compact. That is, any four optical switches are set to the bar state and the remaining optical switches are set to the cross state, and the relationship between the input pair and the output pair is not changed, and all four!
- (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as an output pair, the first polarization component and the second polarization component can be synchronized, which is the same as the optical switch device according to the second embodiment.
- the changes will be described below.
- the wiring that goes out of the matrix switch from the Nth column (fourth column) passes through the matrix switch and is directed to the first column.
- the circuit scale is reduced and the circuit layout is compact. It is going to become. That is, in the optical switch device according to the sixth embodiment, the optical switch device according to the second embodiment is provided at the same time as the wiring arranged outside the matrix switch is arranged in the matrix switch in the optical switch device according to the second embodiment.
- the arrangement destinations of the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 that have selectivity in the arrangement destinations are grouped on the first column side, so that they are not polarization independent as in the second embodiment.
- the circuit scale is smaller and the circuit layout is more compact than the optical switch device according to the second embodiment.
- symbol 200 in FIG. 28 shows a board
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
- Optical Communication System (AREA)
Abstract
[Problem] To provide an optical switch device and the like capable of synchronizing and outputting/inputting two signals while the circuit size of a matrix switch is kept small.
[Solution] With respect to a matrix switch in which N2 2-input 2-output optical switches that are switchable to either a cross or bar state are arranged in a matrix with N rows and N columns, where N is an integer of 2 or more, among 2N pairs of input/output ports formed by pairing an original port and an idle port respectively constituting one and the other of externally connectable two input/output ports in each input/output path of the matrix switch connected with all of the optical switches of the matrix switch being switched to the cross state, half, i.e., N, of the pairs including N of the original ports in the first column of the matrix switch are set as a first input/output pair group, and the remaining half, i.e., N, of the pairs are set as a second input/output pair group.
Description
本発明は、2入力2出力の光スイッチをN2個配して構成されるマトリクススイッチ回路を用いた光スイッチ装置及びその設計方法に関する。
The present invention relates to an optical switch device using a matrix switch circuit configured by arranging N 2 two-input two-output optical switches and a design method thereof.
光伝送において、光を電気に変換することなく光路を切替可能な装置として、光クロスコネクト装置が知られている。この光クロスコネクト装置を適用すると、ネットワークのフレキシビリティを高め、また、管理コストを低減させることができる。
In optical transmission, an optical cross-connect device is known as a device that can switch an optical path without converting light into electricity. When this optical cross-connect device is applied, the flexibility of the network can be increased and the management cost can be reduced.
前記光クロスコネクト装置に用いられるマトリクススイッチとしては、PILOSS(Path-independent Insertion Loss)スイッチとも呼ばれ、2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチが正方格子上にN2個配された正方格子型マトリクススイッチや、同じく、前記光スイッチが菱形格子上にN2個配された菱形格子型マトリクススイッチが知られている(例えば、特許文献1参照)。
The matrix switch used in the optical cross-connect device is also called a PILOSS (Path-independent Insertion Loss) switch, and an optical switch that can be switched to either a cross or a bar state with two inputs and two outputs on a square lattice. There are known a square lattice type matrix switch in which N 2 pieces are arranged, and similarly, a rhombus lattice type matrix switch in which N 2 pieces of the optical switches are arranged on a rhombus lattice (see, for example, Patent Document 1).
こうしたマトリクススイッチの具体的な回路構成を図面を参照しつつ説明する。
図1は、従来の正方格子型マトリクススイッチの回路構成を示す図(1)である。該図1に示すように、前記正方格子型マトリクススイッチは、例えば、4行4列の正方格子上に42個の光スイッチS11~S44を配して構成される。1列目における上下2つの外部接続可能な入出力ポートには、上下上下の順で入力ポートA1~A4が設定され、残りの入出力ポートが未使用とされる。4列目における上下2つの外部接続可能な入出力ポートには、逆に下上下上の順で出力ポートB1~B4が設定され、残りの入出力ポートが未使用とされる。
なお、本明細書では、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチを含め、従来のマトリクススイッチにおいて使用される入出力ポートを「オリジナルポート」と呼称し、未使用の入出力ポート(図中、*で示す入出力ポート)を「アイドルポート」と呼称することとする。 A specific circuit configuration of such a matrix switch will be described with reference to the drawings.
FIG. 1 is a diagram (1) showing a circuit configuration of a conventional square lattice matrix switch. As shown in figure 1, the tetragonal lattice matrix switch, for example, is configured by arranging four two optical switches S11 ~ S44 on a square lattice of four rows and four columns. Input ports A1 to A4 are set in the order of up, down, up and down in the upper and lower two externally connectable input / output ports in the first row, and the remaining input / output ports are unused. In the fourth row, the upper and lower two externally connectable input / output ports are set with the output ports B1 to B4 in the order of lower, upper and lower, and the remaining input / output ports are unused.
In this specification, input / output ports used in conventional matrix switches, including square lattice type matrix switches and rhombus lattice type matrix switches, are referred to as “original ports”, and unused input / output ports (in the figure) , *) Are referred to as “idle ports”.
図1は、従来の正方格子型マトリクススイッチの回路構成を示す図(1)である。該図1に示すように、前記正方格子型マトリクススイッチは、例えば、4行4列の正方格子上に42個の光スイッチS11~S44を配して構成される。1列目における上下2つの外部接続可能な入出力ポートには、上下上下の順で入力ポートA1~A4が設定され、残りの入出力ポートが未使用とされる。4列目における上下2つの外部接続可能な入出力ポートには、逆に下上下上の順で出力ポートB1~B4が設定され、残りの入出力ポートが未使用とされる。
なお、本明細書では、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチを含め、従来のマトリクススイッチにおいて使用される入出力ポートを「オリジナルポート」と呼称し、未使用の入出力ポート(図中、*で示す入出力ポート)を「アイドルポート」と呼称することとする。 A specific circuit configuration of such a matrix switch will be described with reference to the drawings.
FIG. 1 is a diagram (1) showing a circuit configuration of a conventional square lattice matrix switch. As shown in figure 1, the tetragonal lattice matrix switch, for example, is configured by arranging four two optical switches S11 ~ S44 on a square lattice of four rows and four columns. Input ports A1 to A4 are set in the order of up, down, up and down in the upper and lower two externally connectable input / output ports in the first row, and the remaining input / output ports are unused. In the fourth row, the upper and lower two externally connectable input / output ports are set with the output ports B1 to B4 in the order of lower, upper and lower, and the remaining input / output ports are unused.
In this specification, input / output ports used in conventional matrix switches, including square lattice type matrix switches and rhombus lattice type matrix switches, are referred to as “original ports”, and unused input / output ports (in the figure) , *) Are referred to as “idle ports”.
ここで、個々の光スイッチS11~S44は、図2(a)~(c)に示すようにa-d間及びb-c間が結線されたクロス状態と、a-c間及びb-d間が結線されたバー状態のいずれかの状態に結線される。なお、図2(a)は、光スイッチを説明するための説明図であり、図2(b)は、クロス状態を説明するための説明図であり、図2(c)は、バー状態を説明するための説明図である。
このように構成される正方格子型マトリクススイッチでは、光スイッチS11~S44のうち、任意の4個の光スイッチをバー状態とし、残りをクロス状態とすることで、完全非閉塞かつ経路損失無依存であり、入力ポートA1~A4と出力ポートB1~B4とのオリジナルポート同士が4!通りで結線可能とされる。
なお、入力と出力の関係には任意性があり、図1に示す正方格子型マトリクススイッチは、入力ポートA1~A4を出力ポートとし、出力ポートB1~B4を入力ポートとして利用することもできる。 Here, as shown in FIGS. 2A to 2C, each of the optical switches S11 to S44 has a cross state in which a line between a and d and a line between bc and a line between a and c and b and d, respectively. It is connected to one of the bar states where the gaps are connected. 2A is an explanatory diagram for explaining the optical switch, FIG. 2B is an explanatory diagram for explaining the cross state, and FIG. 2C is a diagram showing the bar state. It is explanatory drawing for demonstrating.
In the square lattice matrix switch configured as described above, any four optical switches among the optical switches S11 to S44 are set in a bar state and the rest are set in a cross state, thereby completely non-blocking and independent of path loss. The original ports of input ports A1 to A4 and output ports B1 to B4 are 4! It is possible to connect on the street.
The relationship between input and output is arbitrary, and the square lattice matrix switch shown in FIG. 1 can also use the input ports A1 to A4 as output ports and the output ports B1 to B4 as input ports.
このように構成される正方格子型マトリクススイッチでは、光スイッチS11~S44のうち、任意の4個の光スイッチをバー状態とし、残りをクロス状態とすることで、完全非閉塞かつ経路損失無依存であり、入力ポートA1~A4と出力ポートB1~B4とのオリジナルポート同士が4!通りで結線可能とされる。
なお、入力と出力の関係には任意性があり、図1に示す正方格子型マトリクススイッチは、入力ポートA1~A4を出力ポートとし、出力ポートB1~B4を入力ポートとして利用することもできる。 Here, as shown in FIGS. 2A to 2C, each of the optical switches S11 to S44 has a cross state in which a line between a and d and a line between bc and a line between a and c and b and d, respectively. It is connected to one of the bar states where the gaps are connected. 2A is an explanatory diagram for explaining the optical switch, FIG. 2B is an explanatory diagram for explaining the cross state, and FIG. 2C is a diagram showing the bar state. It is explanatory drawing for demonstrating.
In the square lattice matrix switch configured as described above, any four optical switches among the optical switches S11 to S44 are set in a bar state and the rest are set in a cross state, thereby completely non-blocking and independent of path loss. The original ports of input ports A1 to A4 and output ports B1 to B4 are 4! It is possible to connect on the street.
The relationship between input and output is arbitrary, and the square lattice matrix switch shown in FIG. 1 can also use the input ports A1 to A4 as output ports and the output ports B1 to B4 as input ports.
図3は、従来の菱形格子型マトリクススイッチの回路構成を示す図である。該図3に示すように、菱形格子型マトリクススイッチは、例えば、4行4列の正方格子上に42個の光スイッチS11~S44を配して構成される。
ここで、1行1列の光スイッチS11では、未接続の2つの入出力ポートのうち下側の入出力ポートがオリジナルポートとして入力ポートA1に設定され、残りの入出力ポートがアイドルポートに設定される。また、光スイッチS11以外の1列目の光スイッチS21~S41では、未接続の入出力ポートがオリジナルポートとして入力ポートA2~A4に設定され、光スイッチS11以外の1行目の光スイッチS12~S14では、未接続の入出力ポートがアイドルポートに設定される。
4行4列の光スイッチS44では、未接続の2つの入出力ポートのうち下側の入出力ポートがオリジナルポートとして出力ポートB1に設定され、残りの入出力ポートがアイドルポートに設定される。また、光スイッチS44以外の4行目の光スイッチS41~S43では、未接続の入出力ポートがオリジナルポートとして出力ポートB2~B4に設定される。また、光スイッチS44以外の4列目の光スイッチS14~S34では、未接続の入出力ポートがアイドルポートに設定される。
なお、光スイッチS14では、未接続の2つの入出力ポートのそれぞれがアイドルポートに設定され、光スイッチS41では、未接続の2つの入出力ポートのうち入力ポートA3側の入出力ポートがオリジナルポートとして入力ポートA4に設定され、出力ポートB3側の入出力ポートがオリジナルポートとして出力ポートB4に設定される。
このように構成される菱形格子型マトリクススイッチでは、光スイッチS11~S44のうち、任意の4個の光スイッチをバー状態とし、残りをクロス状態とすると、入力ポートから出力ポートに至る4つの経路で光スイッチの経由数が異なり経路損失無依存ではないものの、正方格子型マトリクススイッチと同様に完全非閉塞であり、入力ポートA1~A4と出力ポートB1~B4とのオリジナルポート同士が4!通りで結線可能とされる。
なお、入力と出力の関係には任意性があり、図3に示す菱形格子型マトリクススイッチは、入力ポートA1~A4を出力ポートとし、出力ポートB1~B4を入力ポートとして利用することもできる。 FIG. 3 is a diagram showing a circuit configuration of a conventional rhombus lattice matrix switch. As shown in figure 3, rhombic lattice matrix switch, for example, is configured by arranging four two optical switches S11 ~ S44 on a square lattice of four rows and four columns.
Here, in the 1 × 1 optical switch S11, the lower input / output port of the two unconnected input / output ports is set as the original port as the input port A1, and the remaining input / output ports are set as idle ports. Is done. Further, in the optical switches S21 to S41 in the first column other than the optical switch S11, the unconnected input / output ports are set as the input ports A2 to A4 as original ports, and the optical switches S12 to S1 in the first row other than the optical switch S11 are set. In S14, the unconnected input / output port is set as an idle port.
In the 4 × 4 optical switch S44, the lower input / output port of the two unconnected input / output ports is set as the original port as the output port B1, and the remaining input / output ports are set as idle ports. In the optical switches S41 to S43 in the fourth row other than the optical switch S44, the unconnected input / output ports are set as the output ports B2 to B4 as original ports. Further, in the optical switches S14 to S34 in the fourth column other than the optical switch S44, the unconnected input / output ports are set as idle ports.
In the optical switch S14, each of the two unconnected input / output ports is set as an idle port. In the optical switch S41, the input / output port on the input port A3 side of the two unconnected input / output ports is the original port. And the input / output port on the output port B3 side is set as the original port to the output port B4.
In the rhombus lattice matrix switch configured as described above, four paths from the input port to the output port are assumed when any four of the optical switches S11 to S44 are in the bar state and the rest are in the cross state. However, it is completely non-blocking like the square lattice type matrix switch, and the original ports of the input ports A1 to A4 and the output ports B1 to B4 are 4! It is possible to connect on the street.
The relationship between input and output is arbitrary, and the rhomboid matrix switch shown in FIG. 3 can use the input ports A1 to A4 as output ports and the output ports B1 to B4 as input ports.
ここで、1行1列の光スイッチS11では、未接続の2つの入出力ポートのうち下側の入出力ポートがオリジナルポートとして入力ポートA1に設定され、残りの入出力ポートがアイドルポートに設定される。また、光スイッチS11以外の1列目の光スイッチS21~S41では、未接続の入出力ポートがオリジナルポートとして入力ポートA2~A4に設定され、光スイッチS11以外の1行目の光スイッチS12~S14では、未接続の入出力ポートがアイドルポートに設定される。
4行4列の光スイッチS44では、未接続の2つの入出力ポートのうち下側の入出力ポートがオリジナルポートとして出力ポートB1に設定され、残りの入出力ポートがアイドルポートに設定される。また、光スイッチS44以外の4行目の光スイッチS41~S43では、未接続の入出力ポートがオリジナルポートとして出力ポートB2~B4に設定される。また、光スイッチS44以外の4列目の光スイッチS14~S34では、未接続の入出力ポートがアイドルポートに設定される。
なお、光スイッチS14では、未接続の2つの入出力ポートのそれぞれがアイドルポートに設定され、光スイッチS41では、未接続の2つの入出力ポートのうち入力ポートA3側の入出力ポートがオリジナルポートとして入力ポートA4に設定され、出力ポートB3側の入出力ポートがオリジナルポートとして出力ポートB4に設定される。
このように構成される菱形格子型マトリクススイッチでは、光スイッチS11~S44のうち、任意の4個の光スイッチをバー状態とし、残りをクロス状態とすると、入力ポートから出力ポートに至る4つの経路で光スイッチの経由数が異なり経路損失無依存ではないものの、正方格子型マトリクススイッチと同様に完全非閉塞であり、入力ポートA1~A4と出力ポートB1~B4とのオリジナルポート同士が4!通りで結線可能とされる。
なお、入力と出力の関係には任意性があり、図3に示す菱形格子型マトリクススイッチは、入力ポートA1~A4を出力ポートとし、出力ポートB1~B4を入力ポートとして利用することもできる。 FIG. 3 is a diagram showing a circuit configuration of a conventional rhombus lattice matrix switch. As shown in figure 3, rhombic lattice matrix switch, for example, is configured by arranging four two optical switches S11 ~ S44 on a square lattice of four rows and four columns.
Here, in the 1 × 1 optical switch S11, the lower input / output port of the two unconnected input / output ports is set as the original port as the input port A1, and the remaining input / output ports are set as idle ports. Is done. Further, in the optical switches S21 to S41 in the first column other than the optical switch S11, the unconnected input / output ports are set as the input ports A2 to A4 as original ports, and the optical switches S12 to S1 in the first row other than the optical switch S11 are set. In S14, the unconnected input / output port is set as an idle port.
In the 4 × 4 optical switch S44, the lower input / output port of the two unconnected input / output ports is set as the original port as the output port B1, and the remaining input / output ports are set as idle ports. In the optical switches S41 to S43 in the fourth row other than the optical switch S44, the unconnected input / output ports are set as the output ports B2 to B4 as original ports. Further, in the optical switches S14 to S34 in the fourth column other than the optical switch S44, the unconnected input / output ports are set as idle ports.
In the optical switch S14, each of the two unconnected input / output ports is set as an idle port. In the optical switch S41, the input / output port on the input port A3 side of the two unconnected input / output ports is the original port. And the input / output port on the output port B3 side is set as the original port to the output port B4.
In the rhombus lattice matrix switch configured as described above, four paths from the input port to the output port are assumed when any four of the optical switches S11 to S44 are in the bar state and the rest are in the cross state. However, it is completely non-blocking like the square lattice type matrix switch, and the original ports of the input ports A1 to A4 and the output ports B1 to B4 are 4! It is possible to connect on the street.
The relationship between input and output is arbitrary, and the rhomboid matrix switch shown in FIG. 3 can use the input ports A1 to A4 as output ports and the output ports B1 to B4 as input ports.
ところで、本発明者らは、光スイッチの入力偏波無依存化を実現するために、正方格子型マトリクススイッチを用いた偏波ダイバーシティ光スイッチ装置を提案している(非特許文献1参照)。図4は、偏波ダイバーシティ光スイッチ装置を説明するための説明図である。
該図4に示すように、偏波ダイバーシティ光スイッチ装置では、光1~4のそれぞれを電界振幅方向が互いに直交する第1偏波成分と第2偏波成分とに分離し、第1偏波成分を図中上側の正方格子型マトリクススイッチ(4×4PILOSSスイッチ)に入力させるとともに、第2偏波成分を図中下側の正方格子型マトリクススイッチ(4×4PILOSSスイッチ)に入力させ、これら2つの正方格子型マトリクススイッチの同期をとり、出力される第1偏波成分と第2偏波成分とを偏波結合し、元の光1~4として出力させることとしている。
しかしながら、この偏波ダイバーシティ光スイッチ装置では、正方格子型マトリクススイッチが2つ必要であり、マトリクススイッチの回路規模(面積、光スイッチの数、配線数、制御端子数等)が単純に2倍となる問題がある。
なお、この問題は、偏波ダイバーシティ光スイッチ装置を菱形格子型マトリクススイッチで構成した場合にも同様に生ずる。また、この問題は、偏波ダイバーシティ光スイッチ装置以外でも2つの信号を同期させて用いる他の同期型光スイッチでも同様に生ずる。 By the way, the present inventors have proposed a polarization diversity optical switch device using a square lattice matrix switch in order to make the input polarization independent of the optical switch (see Non-Patent Document 1). FIG. 4 is an explanatory diagram for explaining the polarization diversity optical switch device.
As shown in FIG. 4, in the polarization diversity optical switch device, each of thelights 1 to 4 is separated into a first polarization component and a second polarization component whose electric field amplitude directions are orthogonal to each other, and the first polarization The component is input to the upper square lattice type matrix switch (4 × 4 PILOSS switch) in the drawing, and the second polarization component is input to the lower square lattice type matrix switch (4 × 4 PILOSS switch) in the drawing. Two square lattice matrix switches are synchronized, and the first polarization component and the second polarization component to be output are polarization-coupled to be output as the original lights 1 to 4.
However, this polarization diversity optical switch device requires two square lattice matrix switches, and the circuit scale of the matrix switch (area, number of optical switches, number of wires, number of control terminals, etc.) is simply doubled. There is a problem.
This problem also occurs when the polarization diversity optical switch device is configured with a rhombus lattice matrix switch. This problem also occurs in other synchronous optical switches that use two signals in synchronization in addition to the polarization diversity optical switch device.
該図4に示すように、偏波ダイバーシティ光スイッチ装置では、光1~4のそれぞれを電界振幅方向が互いに直交する第1偏波成分と第2偏波成分とに分離し、第1偏波成分を図中上側の正方格子型マトリクススイッチ(4×4PILOSSスイッチ)に入力させるとともに、第2偏波成分を図中下側の正方格子型マトリクススイッチ(4×4PILOSSスイッチ)に入力させ、これら2つの正方格子型マトリクススイッチの同期をとり、出力される第1偏波成分と第2偏波成分とを偏波結合し、元の光1~4として出力させることとしている。
しかしながら、この偏波ダイバーシティ光スイッチ装置では、正方格子型マトリクススイッチが2つ必要であり、マトリクススイッチの回路規模(面積、光スイッチの数、配線数、制御端子数等)が単純に2倍となる問題がある。
なお、この問題は、偏波ダイバーシティ光スイッチ装置を菱形格子型マトリクススイッチで構成した場合にも同様に生ずる。また、この問題は、偏波ダイバーシティ光スイッチ装置以外でも2つの信号を同期させて用いる他の同期型光スイッチでも同様に生ずる。 By the way, the present inventors have proposed a polarization diversity optical switch device using a square lattice matrix switch in order to make the input polarization independent of the optical switch (see Non-Patent Document 1). FIG. 4 is an explanatory diagram for explaining the polarization diversity optical switch device.
As shown in FIG. 4, in the polarization diversity optical switch device, each of the
However, this polarization diversity optical switch device requires two square lattice matrix switches, and the circuit scale of the matrix switch (area, number of optical switches, number of wires, number of control terminals, etc.) is simply doubled. There is a problem.
This problem also occurs when the polarization diversity optical switch device is configured with a rhombus lattice matrix switch. This problem also occurs in other synchronous optical switches that use two signals in synchronization in addition to the polarization diversity optical switch device.
本発明は、従来技術における前記諸問題を解決し、マトリクススイッチの回路規模を小さく保ったまま、2つの信号同士を同期させて入出力可能な光スイッチ装置及びその設計方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide an optical switch device capable of inputting / outputting two signals in synchronization with each other while keeping the circuit scale of the matrix switch small and a design method thereof. And
本発明者らは、従来のマトリクススイッチにおいて、空状態のアイドルポートに設定される入出力ポートを利用することで、前記課題を解決することができないか、鋭意検討を行った。
先ず、4行4列の正方格子型マトリクススイッチの1つの結線パターンとして、図5(a)に示す、S22,S24,S32,S34の光スイッチをバー状態とし、残りの光スイッチを全てクロス状態として、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)となる結線パターンで検討を行った。なお、図5(a)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(1)である。 The present inventors diligently studied whether or not the above problem can be solved by using an input / output port set as an idle port in an empty state in a conventional matrix switch.
First, as one connection pattern of a 4 × 4 square lattice matrix switch, the optical switches S22, S24, S32, and S34 shown in FIG. 5A are set to the bar state, and the remaining optical switches are all set to the cross state. As a result, a connection pattern in which (input → output) is (A1 → B1), (A2 → B2), (A3 → B3), (A4 → B4) was examined. FIG. 5A is a diagram (1) illustrating an example of a connection pattern of a square lattice matrix switch.
先ず、4行4列の正方格子型マトリクススイッチの1つの結線パターンとして、図5(a)に示す、S22,S24,S32,S34の光スイッチをバー状態とし、残りの光スイッチを全てクロス状態として、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)となる結線パターンで検討を行った。なお、図5(a)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(1)である。 The present inventors diligently studied whether or not the above problem can be solved by using an input / output port set as an idle port in an empty state in a conventional matrix switch.
First, as one connection pattern of a 4 × 4 square lattice matrix switch, the optical switches S22, S24, S32, and S34 shown in FIG. 5A are set to the bar state, and the remaining optical switches are all set to the cross state. As a result, a connection pattern in which (input → output) is (A1 → B1), (A2 → B2), (A3 → B3), (A4 → B4) was examined. FIG. 5A is a diagram (1) illustrating an example of a connection pattern of a square lattice matrix switch.
ここでは、図5(b)に示すように、入力側のアイドルポートに対し、上から順にK1,K2,K3,K4の入力ポートの設定を行い、K1~K4の(入力→出力)が(K1→L1),(K2→L2),(K3→L3),(K4→L4)となるように出力側のアイドルポートに対し、L1~L4の出力ポートの設定を行う。なお、図5(b)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(2)である。
図5(b)に示す結線パターンでは、先の通り、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)である入出力経路と、(K1→L1),(K2→L2),(K3→L3),(K4→L4)である入出力経路との2つの入出力経路が形成される。
また、この結線パターンでは、例えば、同じ光の第1偏波成分と第2偏波成分とを、(A1,K1)を入力ポートのペアとして、いずれかの入力ポートに片方ずつ入力し、(B1,L1)を出力ポートのペアとして、いずれかの出力ポートから同じ光の第1偏波成分と第2偏波成分とを片方ずつ出力させることができ、同様に、(A2,K2),(A3,K3),(A4,K4)を同じ光の第1偏波成分及び第2偏波成分を入力する入力ポートのペアとし、(B2,L2),(B3,L3),(B4,L4)を同じ光の第1偏波成分及び第2偏波成分を出力する出力ポートのペアとして、第1偏波成分と第2偏波成分の同期をとることができる。 Here, as shown in FIG. 5B, the input ports K1, K2, K3 and K4 are set in order from the top for the idle port on the input side, and (input → output) of K1 to K4 is ( The output ports L1 to L4 are set for the idle port on the output side so that K1 → L1), (K2 → L2), (K3 → L3), and (K4 → L4). FIG. 5B is a diagram (2) illustrating an example of a connection pattern of a square lattice matrix switch.
In the connection pattern shown in FIG. 5 (b), as described above, the input / output paths whose (input → output) are (A1 → B1), (A2 → B2), (A3 → B3), (A4 → B4) , (K1 → L1), (K2 → L2), (K3 → L3), and (K4 → L4) and two input / output paths are formed.
In this connection pattern, for example, the first polarization component and the second polarization component of the same light are input to one of the input ports one by one with (A1, K1) as a pair of input ports, B1 and L1) as a pair of output ports, the first polarization component and the second polarization component of the same light can be output from either output port one by one. Similarly, (A2, K2), Let (A3, K3), (A4, K4) be a pair of input ports for inputting the first polarization component and the second polarization component of the same light, and (B2, L2), (B3, L3), (B4, As a pair of output ports that output the first polarization component and the second polarization component of the same light as L4), the first polarization component and the second polarization component can be synchronized.
図5(b)に示す結線パターンでは、先の通り、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)である入出力経路と、(K1→L1),(K2→L2),(K3→L3),(K4→L4)である入出力経路との2つの入出力経路が形成される。
また、この結線パターンでは、例えば、同じ光の第1偏波成分と第2偏波成分とを、(A1,K1)を入力ポートのペアとして、いずれかの入力ポートに片方ずつ入力し、(B1,L1)を出力ポートのペアとして、いずれかの出力ポートから同じ光の第1偏波成分と第2偏波成分とを片方ずつ出力させることができ、同様に、(A2,K2),(A3,K3),(A4,K4)を同じ光の第1偏波成分及び第2偏波成分を入力する入力ポートのペアとし、(B2,L2),(B3,L3),(B4,L4)を同じ光の第1偏波成分及び第2偏波成分を出力する出力ポートのペアとして、第1偏波成分と第2偏波成分の同期をとることができる。 Here, as shown in FIG. 5B, the input ports K1, K2, K3 and K4 are set in order from the top for the idle port on the input side, and (input → output) of K1 to K4 is ( The output ports L1 to L4 are set for the idle port on the output side so that K1 → L1), (K2 → L2), (K3 → L3), and (K4 → L4). FIG. 5B is a diagram (2) illustrating an example of a connection pattern of a square lattice matrix switch.
In the connection pattern shown in FIG. 5 (b), as described above, the input / output paths whose (input → output) are (A1 → B1), (A2 → B2), (A3 → B3), (A4 → B4) , (K1 → L1), (K2 → L2), (K3 → L3), and (K4 → L4) and two input / output paths are formed.
In this connection pattern, for example, the first polarization component and the second polarization component of the same light are input to one of the input ports one by one with (A1, K1) as a pair of input ports, B1 and L1) as a pair of output ports, the first polarization component and the second polarization component of the same light can be output from either output port one by one. Similarly, (A2, K2), Let (A3, K3), (A4, K4) be a pair of input ports for inputting the first polarization component and the second polarization component of the same light, and (B2, L2), (B3, L3), (B4, As a pair of output ports that output the first polarization component and the second polarization component of the same light as L4), the first polarization component and the second polarization component can be synchronized.
次に、正方格子型マトリクススイッチにおいて、図5(b)に示す結線パターンから図5(c)に示す結線パターンにスイッチさせ、2つの信号を同期させて入出力する同期型光スイッチとして用いることができるかを検討する。なお、図5(c)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(3)である。
この図5(c)に示す結線パターンは、光スイッチS12,S22,S32,S42をバー状態にスイッチし、残りの光スイッチをクロス状態にスイッチしたときの結線パターンである。この結線パターンでは、(入力→出力)が(A1→B1),(A2→B3),(A3→B2),(A4→B4)である入出力経路と、(K1→L4),(K2→L2),(K3→L3),(K4→L1)である入出力経路との2つの入出力経路が形成される。
また、同じ光の第1偏波成分及び第2偏波成分の入力ポートのペアである(A1,K1),(A2,K2),(A3,K3),(A4,K4)に対応する出力ポートのペアは、(B1,L4),(B3,L2),(B2,L3),(B4,L1)となる。 Next, in the square lattice type matrix switch, the connection pattern shown in FIG. 5B is switched to the connection pattern shown in FIG. 5C and used as a synchronous optical switch that inputs and outputs two signals in synchronization. Consider whether you can. FIG. 5C is a diagram (3) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 5C is a connection pattern when the optical switches S12, S22, S32, and S42 are switched to the bar state and the remaining optical switches are switched to the cross state. In this connection pattern, the input / output paths (input → output) are (A1 → B1), (A2 → B3), (A3 → B2), (A4 → B4), and (K1 → L4), (K2 → Two input / output paths are formed with the input / output paths of (L2), (K3 → L3), and (K4 → L1).
In addition, outputs corresponding to (A1, K1), (A2, K2), (A3, K3), and (A4, K4) that are pairs of input ports of the same polarization component of the first polarization component and the second polarization component The port pairs are (B1, L4), (B3, L2), (B2, L3), (B4, L1).
この図5(c)に示す結線パターンは、光スイッチS12,S22,S32,S42をバー状態にスイッチし、残りの光スイッチをクロス状態にスイッチしたときの結線パターンである。この結線パターンでは、(入力→出力)が(A1→B1),(A2→B3),(A3→B2),(A4→B4)である入出力経路と、(K1→L4),(K2→L2),(K3→L3),(K4→L1)である入出力経路との2つの入出力経路が形成される。
また、同じ光の第1偏波成分及び第2偏波成分の入力ポートのペアである(A1,K1),(A2,K2),(A3,K3),(A4,K4)に対応する出力ポートのペアは、(B1,L4),(B3,L2),(B2,L3),(B4,L1)となる。 Next, in the square lattice type matrix switch, the connection pattern shown in FIG. 5B is switched to the connection pattern shown in FIG. 5C and used as a synchronous optical switch that inputs and outputs two signals in synchronization. Consider whether you can. FIG. 5C is a diagram (3) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 5C is a connection pattern when the optical switches S12, S22, S32, and S42 are switched to the bar state and the remaining optical switches are switched to the cross state. In this connection pattern, the input / output paths (input → output) are (A1 → B1), (A2 → B3), (A3 → B2), (A4 → B4), and (K1 → L4), (K2 → Two input / output paths are formed with the input / output paths of (L2), (K3 → L3), and (K4 → L1).
In addition, outputs corresponding to (A1, K1), (A2, K2), (A3, K3), and (A4, K4) that are pairs of input ports of the same polarization component of the first polarization component and the second polarization component The port pairs are (B1, L4), (B3, L2), (B2, L3), (B4, L1).
今、入力ポートのペア(A1,K1)が光1の第1偏波成分及び第2偏波成分の入力ポートであり、入力ポートのペア(A2,K2)が光2の第1偏波成分及び第2偏波成分の入力ポートであり、入力ポートのペア(A3,K3)が光3の第1偏波成分及び第2偏波成分の入力ポートであり、入力ポートのペア(A4,K4)が光4の第1偏波成分及び第2偏波成分の入力ポートであるとすれば、入力ポートのペア(A2,K2)に対応する出力ポートのペア(B3,L2)から光2の第1偏波成分及び第2偏波成分が出力されることとなり、また、入力ポートのペア(A3,K3)に対応する出力ポートのペア(B2,L3)から光3の第1偏波成分及び第2偏波成分が出力されることとなる。
図5(b)に示す結線パターンに基づき、同じ光の第1偏波成分及び第2偏波成分を入力する入力ペア(A1,K1),(A2,K2),(A3,K3),(A4,K4)に対応する出力ポートのペアは、(B1,L1),(B2,L2),(B3,L3),(B4,L4)と設定されることから、図5(c)に示す結線パターンに光スイッチをスイッチさせると、光3の第1偏波成分と光2の第2偏波成分とが結合し、また、光2の第1偏波成分と光3の第2偏波成分とが結合することとなり、元の光2,3が得られない。光1,4についても同様に元の光を出力で得ることができない。
同期型光スイッチとして用いるためには、光スイッチのスイッチによる結線パターンの変更に伴い、(入力→出力)が(A2→B2)(図5(b)参照)から(A2→B3)(図5(c)参照)に変更されたとき、入力ポートK2の出力先がこの変更に同期して出力ポートB3のペアである出力ポートL3に変更される必要がある。同様に、(入力→出力)が(A3→B3)(図5(b)参照)から(A3→B2)(図5(c)参照)に変更されたとき、入力ポートL3の出力先がこの変更に同期して出力ポートB2のペアである出力ポートL2に変更される必要がある。
換言すれば、同期型光スイッチとして用いるためには、結線パターンの変更によって、元の結線パターンで設定した入力ペア及び出力ペアのペア関係が変更されないことが条件となる。 Now, the input port pair (A1, K1) is the input port of the first polarization component and the second polarization component of thelight 1, and the input port pair (A2, K2) is the first polarization component of the light 2. And a pair of input ports (A3, K3) are input ports for the first polarization component and the second polarization component of the light 3, and a pair of input ports (A4, K4). ) Is the input port of the first polarization component and the second polarization component of the light 4, the output port pair (B3, L2) corresponding to the input port pair (A2, K2) The first polarization component and the second polarization component are output, and the first polarization component of the light 3 from the output port pair (B2, L3) corresponding to the input port pair (A3, K3). The second polarization component is output.
Based on the connection pattern shown in FIG. 5B, input pairs (A1, K1), (A2, K2), (A3, K3), (A) for inputting the first polarization component and the second polarization component of the same light. A pair of output ports corresponding to (A4, K4) is set as (B1, L1), (B2, L2), (B3, L3), (B4, L4). When the optical switch is switched to the connection pattern, the first polarization component oflight 3 and the second polarization component of light 2 are combined, and the first polarization component of light 2 and the second polarization of light 3 are combined. The components are combined, and the original lights 2 and 3 cannot be obtained. Similarly, the original light cannot be obtained from the outputs of the light 1 and 4 as well.
For use as a synchronous optical switch, (input → output) changes from (A2 → B2) (see FIG. 5 (b)) to (A2 → B3) (FIG. 5) in accordance with the change of the connection pattern by the switch of the optical switch. (C), the output destination of the input port K2 needs to be changed to the output port L3 which is a pair of the output port B3 in synchronization with the change. Similarly, when (input → output) is changed from (A3 → B3) (see FIG. 5 (b)) to (A3 → B2) (see FIG. 5 (c)), the output destination of the input port L3 is It is necessary to change to the output port L2 that is a pair of the output port B2 in synchronization with the change.
In other words, in order to use as a synchronous optical switch, it is a condition that the pair relationship between the input pair and the output pair set by the original connection pattern is not changed by the change of the connection pattern.
図5(b)に示す結線パターンに基づき、同じ光の第1偏波成分及び第2偏波成分を入力する入力ペア(A1,K1),(A2,K2),(A3,K3),(A4,K4)に対応する出力ポートのペアは、(B1,L1),(B2,L2),(B3,L3),(B4,L4)と設定されることから、図5(c)に示す結線パターンに光スイッチをスイッチさせると、光3の第1偏波成分と光2の第2偏波成分とが結合し、また、光2の第1偏波成分と光3の第2偏波成分とが結合することとなり、元の光2,3が得られない。光1,4についても同様に元の光を出力で得ることができない。
同期型光スイッチとして用いるためには、光スイッチのスイッチによる結線パターンの変更に伴い、(入力→出力)が(A2→B2)(図5(b)参照)から(A2→B3)(図5(c)参照)に変更されたとき、入力ポートK2の出力先がこの変更に同期して出力ポートB3のペアである出力ポートL3に変更される必要がある。同様に、(入力→出力)が(A3→B3)(図5(b)参照)から(A3→B2)(図5(c)参照)に変更されたとき、入力ポートL3の出力先がこの変更に同期して出力ポートB2のペアである出力ポートL2に変更される必要がある。
換言すれば、同期型光スイッチとして用いるためには、結線パターンの変更によって、元の結線パターンで設定した入力ペア及び出力ペアのペア関係が変更されないことが条件となる。 Now, the input port pair (A1, K1) is the input port of the first polarization component and the second polarization component of the
Based on the connection pattern shown in FIG. 5B, input pairs (A1, K1), (A2, K2), (A3, K3), (A) for inputting the first polarization component and the second polarization component of the same light. A pair of output ports corresponding to (A4, K4) is set as (B1, L1), (B2, L2), (B3, L3), (B4, L4). When the optical switch is switched to the connection pattern, the first polarization component of
For use as a synchronous optical switch, (input → output) changes from (A2 → B2) (see FIG. 5 (b)) to (A2 → B3) (FIG. 5) in accordance with the change of the connection pattern by the switch of the optical switch. (C), the output destination of the input port K2 needs to be changed to the output port L3 which is a pair of the output port B3 in synchronization with the change. Similarly, when (input → output) is changed from (A3 → B3) (see FIG. 5 (b)) to (A3 → B2) (see FIG. 5 (c)), the output destination of the input port L3 is It is necessary to change to the output port L2 that is a pair of the output port B2 in synchronization with the change.
In other words, in order to use as a synchronous optical switch, it is a condition that the pair relationship between the input pair and the output pair set by the original connection pattern is not changed by the change of the connection pattern.
次に、正方格子型マトリクススイッチにおいて、図6(a)に示す結線パターンが同期型光スイッチとして用いることができるかを検討する。なお、図6(a)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(4)である。
この図6(a)に示す結線パターンでは、図5(b)に示す結線パターンと異なり、出力ポートB1~B4側のアイドルポートに上から順に入力ポートK1~K4が設定され、K1~K4の(入力→出力)が(K1→L1),(K2→L2),(K3→L3),(K4→L4)となるように入力ポートA1~A4側のアイドルポートに出力ポートL1~L4が設定されている。なお、光スイッチS11~S44のクロス状態、バー状態のスイッチ状態は、図5(b)に示す結線パターンと同じである。 Next, it is examined whether the connection pattern shown in FIG. 6A can be used as a synchronous optical switch in a square lattice matrix switch. FIG. 6A is a diagram (4) illustrating an example of a connection pattern of a square lattice matrix switch.
In the connection pattern shown in FIG. 6 (a), unlike the connection pattern shown in FIG. 5 (b), the input ports K1 to K4 are set in order from the top to the idle ports on the output ports B1 to B4 side. The output ports L1 to L4 are set to the idle ports on the input ports A1 to A4 side so that (input → output) becomes (K1 → L1), (K2 → L2), (K3 → L3), (K4 → L4) Has been. The switch states of the optical switches S11 to S44 in the cross state and the bar state are the same as the connection pattern shown in FIG.
この図6(a)に示す結線パターンでは、図5(b)に示す結線パターンと異なり、出力ポートB1~B4側のアイドルポートに上から順に入力ポートK1~K4が設定され、K1~K4の(入力→出力)が(K1→L1),(K2→L2),(K3→L3),(K4→L4)となるように入力ポートA1~A4側のアイドルポートに出力ポートL1~L4が設定されている。なお、光スイッチS11~S44のクロス状態、バー状態のスイッチ状態は、図5(b)に示す結線パターンと同じである。 Next, it is examined whether the connection pattern shown in FIG. 6A can be used as a synchronous optical switch in a square lattice matrix switch. FIG. 6A is a diagram (4) illustrating an example of a connection pattern of a square lattice matrix switch.
In the connection pattern shown in FIG. 6 (a), unlike the connection pattern shown in FIG. 5 (b), the input ports K1 to K4 are set in order from the top to the idle ports on the output ports B1 to B4 side. The output ports L1 to L4 are set to the idle ports on the input ports A1 to A4 side so that (input → output) becomes (K1 → L1), (K2 → L2), (K3 → L3), (K4 → L4) Has been. The switch states of the optical switches S11 to S44 in the cross state and the bar state are the same as the connection pattern shown in FIG.
図6(a)に示す結線パターンでは、図5(b)に示す結線パターンと同様、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)である入出力経路と、(K1→L1),(K2→L2),(K3→L3),(K4→L4)である入出力経路との2つの入出力経路が形成され、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
In the connection pattern shown in FIG. 6 (a), (input → output) is (A1 → B1), (A2 → B2), (A3 → B3), (A4 →) as in the connection pattern shown in FIG. 5 (b). Two input / output paths are formed: an input / output path that is (B4) and an input / output path that is (K1 → L1), (K2 → L2), (K3 → L3), and (K4 → L4), and (A1 , K1), (A2, K2), (A3, K3), (A4, K4) as input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) As an output pair, the first polarization component and the second polarization component can be synchronized.
次に、図6(a)に示す結線パターンを図6(b)に示す結線パターンに変更したときに、同期型光スイッチとして用いることができるかを検討する。なお、図6(b)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(5)である。
この図6(b)に示す結線パターンは、図6(a)に示す結線パターンから光スイッチのS11~S44のクロス状態、バー状態のスイッチ状態を図5(c)に示す結線パターンと同じスイッチ状態に変更させたものである。 Next, it will be examined whether the connection pattern shown in FIG. 6A can be used as a synchronous optical switch when the connection pattern shown in FIG. 6B is changed. FIG. 6B is a diagram (5) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 6 (b) is the same switch as the connection pattern shown in FIG. 5 (c) from the connection pattern shown in FIG. 6 (a) in the cross state and the bar state switch state of S11 to S44 of the optical switch. It has been changed to the state.
この図6(b)に示す結線パターンは、図6(a)に示す結線パターンから光スイッチのS11~S44のクロス状態、バー状態のスイッチ状態を図5(c)に示す結線パターンと同じスイッチ状態に変更させたものである。 Next, it will be examined whether the connection pattern shown in FIG. 6A can be used as a synchronous optical switch when the connection pattern shown in FIG. 6B is changed. FIG. 6B is a diagram (5) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 6 (b) is the same switch as the connection pattern shown in FIG. 5 (c) from the connection pattern shown in FIG. 6 (a) in the cross state and the bar state switch state of S11 to S44 of the optical switch. It has been changed to the state.
この図6(b)に示す結線パターンでは、図5(c)に示す結線パターンと異なり、(入力→出力)が(A1→B1),(A2→B3),(A3→B2),(A4→B4)である入出力経路と、(K1→L1),(K2→L3),(K3→L2),(K4→L4)である入出力経路との2つの入出力経路が形成され、依然として、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
In the connection pattern shown in FIG. 6B, unlike the connection pattern shown in FIG. 5C, (input → output) is (A1 → B1), (A2 → B3), (A3 → B2), (A4). → B4) and two input / output paths of (K1 → L1), (K2 → L3), (K3 → L2), and (K4 → L4) are formed. , (A1, K1), (A2, K2), (A3, K3), (A4, K4) as input pairs, (B1, L1), (B2, L2), (B3, L3), (B4 The first polarization component and the second polarization component can be synchronized using L4) as an output pair.
更に、図6(a)に示す結線パターンを図6(c)に示す結線パターンに変更したときに、同期型光スイッチとして用いることができるかを検討する。なお、図6(c)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(6)である。
この図6(c)に示す結線パターンは、光スイッチS13,S23,S33,S43をバー状態にスイッチし、残りの光スイッチをクロス状態にスイッチしたときの結線パターンである。この結線パターンでは、(入力→出力)が(A1→B2),(A2→B1),(A3→B4),(A4→B3)である入出力経路と、(K1→L3),(K2→L4),(K3→L1),(K4→L2)である入出力経路との2つの入出力経路が形成される。
このとき、図6(a),(b)に示す各結線パターンの入力ペア(A1,K1),(A2,K2),(A3,K3),(A4,K4)のペア関係を維持した状態とすると、図6(a),(b)に示す各結線パターンの出力ペアのペア関係が(B1,L1),(B2,L2),(B3,L3),(B4,L4)から(B2,L3),(B1,L4),(B4,L1),(B3,L2)に変更されることとなる。
したがって、出力ポートB1~B4側のアイドルポートに入力ポートK1~K4を設定し、入力ポートA1~A4側のアイドルポートに出力ポートL1~L4を設定するだけでは、同期型光スイッチとして用いることができない。 Further, it will be examined whether the connection pattern shown in FIG. 6A can be used as a synchronous optical switch when the connection pattern shown in FIG. 6C is changed. FIG. 6C is a diagram (6) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 6C is a connection pattern when the optical switches S13, S23, S33, and S43 are switched to the bar state and the remaining optical switches are switched to the cross state. In this connection pattern, the input / output paths (input → output) are (A1 → B2), (A2 → B1), (A3 → B4), (A4 → B3), and (K1 → L3), (K2 → Two input / output paths are formed with the input / output paths of (L4), (K3 → L1), and (K4 → L2).
At this time, the pair relationship of the input pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4) of the connection patterns shown in FIGS. 6A and 6B is maintained. Then, the pair relationships of the output pairs of the connection patterns shown in FIGS. 6A and 6B are (B1, L1), (B2, L2), (B3, L3), (B4, L4) to (B2). , L3), (B1, L4), (B4, L1), (B3, L2).
Therefore, the input ports K1 to K4 are set as the idle ports on the output ports B1 to B4 side, and the output ports L1 to L4 are set as the idle ports on the input ports A1 to A4 side. Can not.
この図6(c)に示す結線パターンは、光スイッチS13,S23,S33,S43をバー状態にスイッチし、残りの光スイッチをクロス状態にスイッチしたときの結線パターンである。この結線パターンでは、(入力→出力)が(A1→B2),(A2→B1),(A3→B4),(A4→B3)である入出力経路と、(K1→L3),(K2→L4),(K3→L1),(K4→L2)である入出力経路との2つの入出力経路が形成される。
このとき、図6(a),(b)に示す各結線パターンの入力ペア(A1,K1),(A2,K2),(A3,K3),(A4,K4)のペア関係を維持した状態とすると、図6(a),(b)に示す各結線パターンの出力ペアのペア関係が(B1,L1),(B2,L2),(B3,L3),(B4,L4)から(B2,L3),(B1,L4),(B4,L1),(B3,L2)に変更されることとなる。
したがって、出力ポートB1~B4側のアイドルポートに入力ポートK1~K4を設定し、入力ポートA1~A4側のアイドルポートに出力ポートL1~L4を設定するだけでは、同期型光スイッチとして用いることができない。 Further, it will be examined whether the connection pattern shown in FIG. 6A can be used as a synchronous optical switch when the connection pattern shown in FIG. 6C is changed. FIG. 6C is a diagram (6) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 6C is a connection pattern when the optical switches S13, S23, S33, and S43 are switched to the bar state and the remaining optical switches are switched to the cross state. In this connection pattern, the input / output paths (input → output) are (A1 → B2), (A2 → B1), (A3 → B4), (A4 → B3), and (K1 → L3), (K2 → Two input / output paths are formed with the input / output paths of (L4), (K3 → L1), and (K4 → L2).
At this time, the pair relationship of the input pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4) of the connection patterns shown in FIGS. 6A and 6B is maintained. Then, the pair relationships of the output pairs of the connection patterns shown in FIGS. 6A and 6B are (B1, L1), (B2, L2), (B3, L3), (B4, L4) to (B2). , L3), (B1, L4), (B4, L1), (B3, L2).
Therefore, the input ports K1 to K4 are set as the idle ports on the output ports B1 to B4 side, and the output ports L1 to L4 are set as the idle ports on the input ports A1 to A4 side. Can not.
引き続き、出力ポートB1~B4側のアイドルポートに入力ポートK1~K4を設定し、入力ポートA1~A4側のアイドルポートに出力ポートL1~L4を設定する場合に、同期型光スイッチとして用いることができるか検討する。図7(a)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(7)である。
図7(a)に示す結線パターンでは、入力ポートK1~K4及び出力ポートL1~L4の設定が、図6(a)に示す結線パターンから図に示すように変更されている。なお、光スイッチS11~S44のクロス状態、バー状態のスイッチ状態は、図6(a)に示す結線パターンと同じである。 Subsequently, when the input ports K1 to K4 are set to the idle ports on the output ports B1 to B4 side, and the output ports L1 to L4 are set to the idle ports on the input ports A1 to A4 side, they are used as synchronous optical switches. Consider whether it can be done. Fig.7 (a) is a figure (7) which shows an example of the connection pattern of a square lattice type | mold matrix switch.
In the connection pattern shown in FIG. 7A, the settings of the input ports K1 to K4 and the output ports L1 to L4 are changed from the connection pattern shown in FIG. 6A as shown in the figure. The switch states of the optical switches S11 to S44 in the cross state and the bar state are the same as the connection pattern shown in FIG.
図7(a)に示す結線パターンでは、入力ポートK1~K4及び出力ポートL1~L4の設定が、図6(a)に示す結線パターンから図に示すように変更されている。なお、光スイッチS11~S44のクロス状態、バー状態のスイッチ状態は、図6(a)に示す結線パターンと同じである。 Subsequently, when the input ports K1 to K4 are set to the idle ports on the output ports B1 to B4 side, and the output ports L1 to L4 are set to the idle ports on the input ports A1 to A4 side, they are used as synchronous optical switches. Consider whether it can be done. Fig.7 (a) is a figure (7) which shows an example of the connection pattern of a square lattice type | mold matrix switch.
In the connection pattern shown in FIG. 7A, the settings of the input ports K1 to K4 and the output ports L1 to L4 are changed from the connection pattern shown in FIG. 6A as shown in the figure. The switch states of the optical switches S11 to S44 in the cross state and the bar state are the same as the connection pattern shown in FIG.
この図7(a)に示す結線パターンでは、図6(a)に示す結線パターンと同様、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)である入出力経路と、(K1→L1),(K2→L2),(K3→L3),(K4→L4)である入出力経路との2つの入出力経路が形成され、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
In the connection pattern shown in FIG. 7A, (input → output) is (A1 → B1), (A2 → B2), (A3 → B3), (A4) as in the connection pattern shown in FIG. 6 (a). → B4) and two input / output paths are formed: (K1 → L1), (K2 → L2), (K3 → L3), and (K4 → L4). (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) As the output pair, the first polarization component and the second polarization component can be synchronized.
次に、図7(a)に示す結線パターンを図7(b)に示す結線パターンに変更したときに、同期型光スイッチとして用いることができるかを検討する。なお、図7(b)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(8)である。
この図7(b)に示す結線パターンは、図7(a)に示す結線パターンから光スイッチS11~S44のクロス状態、バー状態のスイッチ状態を図6(b)に示す結線パターンと同じスイッチ状態に変更させたものである。 Next, it will be examined whether the connection pattern shown in FIG. 7A can be used as a synchronous optical switch when the connection pattern shown in FIG. 7B is changed. FIG. 7B is a diagram (8) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 7B is the same switch state as the connection pattern shown in FIG. 6B from the connection pattern shown in FIG. 7A to the cross state and the bar state switch state of the optical switches S11 to S44. It has been changed to.
この図7(b)に示す結線パターンは、図7(a)に示す結線パターンから光スイッチS11~S44のクロス状態、バー状態のスイッチ状態を図6(b)に示す結線パターンと同じスイッチ状態に変更させたものである。 Next, it will be examined whether the connection pattern shown in FIG. 7A can be used as a synchronous optical switch when the connection pattern shown in FIG. 7B is changed. FIG. 7B is a diagram (8) illustrating an example of a connection pattern of a square lattice matrix switch.
The connection pattern shown in FIG. 7B is the same switch state as the connection pattern shown in FIG. 6B from the connection pattern shown in FIG. 7A to the cross state and the bar state switch state of the optical switches S11 to S44. It has been changed to.
この図7(b)に示す結線パターンでは、図6(b)に示す結線パターンと同様、(入力→出力)が(A1→B1),(A2→B3),(A3→B2),(A4→B4)である入出力経路と、(K1→L1),(K2→L3),(K3→L2),(K4→L4)である入出力経路との2つの入出力経路が形成され、依然として(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
In the connection pattern shown in FIG. 7B, (input → output) is (A1 → B1), (A2 → B3), (A3 → B2), (A4) as in the connection pattern shown in FIG. 6 (b). → B4) and two input / output paths of (K1 → L1), (K2 → L3), (K3 → L2), and (K4 → L4) are formed. (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) ) As an output pair, the first polarization component and the second polarization component can be synchronized.
更に、図7(a)に示す結線パターンを図7(c)に示す結線パターンに変更したときに、同期型光スイッチとして用いることができるかを検討する。なお、図7(c)は、正方格子型マトリクススイッチの結線パターンの一例を示す図(9)である。
この図7(c)に示す結線パターンは、図7(a)に示す結線パターンから光スイッチS11~S44のクロス状態、バー状態のスイッチ状態を図6(c)に示す結線パターンにスイッチ状態を変更させたものである。 Further, it will be examined whether the connection pattern shown in FIG. 7A can be used as a synchronous optical switch when the connection pattern shown in FIG. 7C is changed. FIG. 7C is a diagram (9) illustrating an example of a connection pattern of a square lattice matrix switch.
In the connection pattern shown in FIG. 7C, the switch state in the cross state and the bar state of the optical switches S11 to S44 is changed from the connection pattern shown in FIG. 7A to the connection pattern shown in FIG. 6C. It has been changed.
この図7(c)に示す結線パターンは、図7(a)に示す結線パターンから光スイッチS11~S44のクロス状態、バー状態のスイッチ状態を図6(c)に示す結線パターンにスイッチ状態を変更させたものである。 Further, it will be examined whether the connection pattern shown in FIG. 7A can be used as a synchronous optical switch when the connection pattern shown in FIG. 7C is changed. FIG. 7C is a diagram (9) illustrating an example of a connection pattern of a square lattice matrix switch.
In the connection pattern shown in FIG. 7C, the switch state in the cross state and the bar state of the optical switches S11 to S44 is changed from the connection pattern shown in FIG. 7A to the connection pattern shown in FIG. 6C. It has been changed.
この図7(c)に示す例では、図6(c)に示す結線パターンと異なり、(入力→出力)が(A1→B2),(A2→B1),(A3→B4),(A4→B3)である入出力経路と、(K1→L2),(K2→L1),(K3→L4),(K4→L3)である入出力経路との2つの入出力経路が形成され、依然として(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
また、図7(a)に示す入力ポートK1~K4及び出力ポートL1~L4の設定では、図7(b),(c)に示す結線パターン以外の状態でも光スイッチS11~S44のクロス状態、バー状態のスイッチ状態を変更させて同期型光スイッチの動作を検討したが、4!通りの全結線パターンで入力ペア及び出力ペアのペア関係に変更がなく、同期型光スイッチとして動作させることができることが確認された。即ち、完全非閉塞の同期型光スイッチとして動作させることができることが確認された。 In the example shown in FIG. 7C, unlike the connection pattern shown in FIG. 6C, the (input → output) is (A1 → B2), (A2 → B1), (A3 → B4), (A4 → B3) and the input / output paths of (K1 → L2), (K2 → L1), (K3 → L4), (K4 → L3) are formed, and still ( (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) As the output pair, the first polarization component and the second polarization component can be synchronized.
Further, in the setting of the input ports K1 to K4 and the output ports L1 to L4 shown in FIG. 7A, the cross state of the optical switches S11 to S44, even in a state other than the connection pattern shown in FIGS. 7B and 7C, We examined the operation of the synchronous optical switch by changing the switch state in the bar state. It was confirmed that the pair relationship between the input pair and the output pair was not changed in all the connection patterns, and could be operated as a synchronous optical switch. That is, it was confirmed that it can be operated as a completely non-blocking synchronous optical switch.
また、図7(a)に示す入力ポートK1~K4及び出力ポートL1~L4の設定では、図7(b),(c)に示す結線パターン以外の状態でも光スイッチS11~S44のクロス状態、バー状態のスイッチ状態を変更させて同期型光スイッチの動作を検討したが、4!通りの全結線パターンで入力ペア及び出力ペアのペア関係に変更がなく、同期型光スイッチとして動作させることができることが確認された。即ち、完全非閉塞の同期型光スイッチとして動作させることができることが確認された。 In the example shown in FIG. 7C, unlike the connection pattern shown in FIG. 6C, the (input → output) is (A1 → B2), (A2 → B1), (A3 → B4), (A4 → B3) and the input / output paths of (K1 → L2), (K2 → L1), (K3 → L4), (K4 → L3) are formed, and still ( (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) As the output pair, the first polarization component and the second polarization component can be synchronized.
Further, in the setting of the input ports K1 to K4 and the output ports L1 to L4 shown in FIG. 7A, the cross state of the optical switches S11 to S44, even in a state other than the connection pattern shown in FIGS. 7B and 7C, We examined the operation of the synchronous optical switch by changing the switch state in the bar state. It was confirmed that the pair relationship between the input pair and the output pair was not changed in all the connection patterns, and could be operated as a synchronous optical switch. That is, it was confirmed that it can be operated as a completely non-blocking synchronous optical switch.
更に、この完全非閉塞の同期型光スイッチにおける、入力ポートK1~K4及び出力ポートL1~L4の設定について検討を進めると、次の規則性を有することが確認された。
即ち、正方格子型マトリクススイッチでは、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態(図8参照)で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる2N個(8個)の入出力ポートのペア((A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4))のうち、正方格子型マトリクススイッチの1列目におけるN個(4個)のオリジナルポート(A1~A4)をペアに含む半数のN個(4個)のペアを第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))とし、残り半数のN個(4個)のペアを第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とすると、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのどちらかを一方を入力ペア群とし、他方を出力ペア群とする完全非閉塞の同期型光スイッチが構成される。なお、図8は、正方格子型マトリクススイッチの全ての光スイッチをクロス状態として結線した状態を示す図である。 Further, when the setting of the input ports K1 to K4 and the output ports L1 to L4 in this completely non-blocking synchronous optical switch was studied, it was confirmed that the following regularity was obtained.
That is, in the square lattice matrix switch, each input / output path ((A1-K1), (A1)) of the matrix switch is connected in a state where all the optical switches (S11 to S44) are switched to the cross state (see FIG. 8). A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)), two externally connectable inputs / outputs 2N (8) I / O port pairs ((A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), Half of (B2, L2), (B3, L3), (B4, L4)) including N (4) original ports (A1 to A4) in the first row of a square lattice matrix switch in a pair N pairs (4) of the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the N (4) pairs are designated as the second input / output pair group ((B1, L1 ), (B2, L2), (B3, L3), (B4, L4)), the first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4 , K4)) and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) as one input pair group and the other as the other A completely non-blocking synchronous optical switch as an output pair group is configured. FIG. 8 is a diagram illustrating a state in which all the optical switches of the square lattice matrix switch are connected in a cross state.
即ち、正方格子型マトリクススイッチでは、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態(図8参照)で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる2N個(8個)の入出力ポートのペア((A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4))のうち、正方格子型マトリクススイッチの1列目におけるN個(4個)のオリジナルポート(A1~A4)をペアに含む半数のN個(4個)のペアを第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))とし、残り半数のN個(4個)のペアを第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とすると、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのどちらかを一方を入力ペア群とし、他方を出力ペア群とする完全非閉塞の同期型光スイッチが構成される。なお、図8は、正方格子型マトリクススイッチの全ての光スイッチをクロス状態として結線した状態を示す図である。 Further, when the setting of the input ports K1 to K4 and the output ports L1 to L4 in this completely non-blocking synchronous optical switch was studied, it was confirmed that the following regularity was obtained.
That is, in the square lattice matrix switch, each input / output path ((A1-K1), (A1)) of the matrix switch is connected in a state where all the optical switches (S11 to S44) are switched to the cross state (see FIG. 8). A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)), two externally connectable inputs / outputs 2N (8) I / O port pairs ((A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), Half of (B2, L2), (B3, L3), (B4, L4)) including N (4) original ports (A1 to A4) in the first row of a square lattice matrix switch in a pair N pairs (4) of the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the N (4) pairs are designated as the second input / output pair group ((B1, L1 ), (B2, L2), (B3, L3), (B4, L4)), the first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4 , K4)) and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) as one input pair group and the other as the other A completely non-blocking synchronous optical switch as an output pair group is configured. FIG. 8 is a diagram illustrating a state in which all the optical switches of the square lattice matrix switch are connected in a cross state.
正方格子型マトリクススイッチとして、これまで図1に示す正方格子型マトリクススイッチに基づいて同期型光スイッチの説明を行ってきたが、図9(a),(b)に示す従来の正方格子型マトリクススイッチ(特許文献1の図5、6参照)においても、先の規則性により、完全非閉塞の同期型光スイッチを構成できることが確認された。なお、図9(a)は、従来の正方格子型マトリクススイッチの回路構成を示す図(2)であり、図9(b)は、従来の正方格子型マトリクススイッチの回路構成を示す図(3)である。
即ち、図1に示す正方格子型マトリクススイッチと図9(a),(b)に示す各正方格子型とは、隣接する光スイッチ間の結線方法の相違に基づき、オリジナルポート及びアイドルポートの上下関係が異なるが、いずれの正方格子型マトリクススイッチも4!通りの結線パターンを有する完全非閉塞のマトリクススイッチとして共通し、先の規則性に基づいて、完全非閉塞の同期型光スイッチを構成できる。 As the square lattice type matrix switch, the synchronous optical switch has been described based on the square lattice type matrix switch shown in FIG. 1, but the conventional square lattice type matrix switch shown in FIGS. Also in the switch (see FIGS. 5 and 6 of Patent Document 1), it has been confirmed that a completely non-blocking synchronous optical switch can be configured by the above regularity. FIG. 9A is a diagram (2) showing a circuit configuration of a conventional square lattice matrix switch, and FIG. 9B is a diagram (3) showing a circuit configuration of a conventional square lattice matrix switch. ).
That is, the square lattice type matrix switch shown in FIG. 1 and each square lattice type shown in FIGS. 9A and 9B are located above and below the original port and the idle port based on the difference in the connection method between adjacent optical switches. Although the relationship is different, any square lattice matrix switch is 4! A completely non-blocking matrix switch having a common connection pattern, and a completely non-blocking synchronous optical switch can be configured based on the regularity.
即ち、図1に示す正方格子型マトリクススイッチと図9(a),(b)に示す各正方格子型とは、隣接する光スイッチ間の結線方法の相違に基づき、オリジナルポート及びアイドルポートの上下関係が異なるが、いずれの正方格子型マトリクススイッチも4!通りの結線パターンを有する完全非閉塞のマトリクススイッチとして共通し、先の規則性に基づいて、完全非閉塞の同期型光スイッチを構成できる。 As the square lattice type matrix switch, the synchronous optical switch has been described based on the square lattice type matrix switch shown in FIG. 1, but the conventional square lattice type matrix switch shown in FIGS. Also in the switch (see FIGS. 5 and 6 of Patent Document 1), it has been confirmed that a completely non-blocking synchronous optical switch can be configured by the above regularity. FIG. 9A is a diagram (2) showing a circuit configuration of a conventional square lattice matrix switch, and FIG. 9B is a diagram (3) showing a circuit configuration of a conventional square lattice matrix switch. ).
That is, the square lattice type matrix switch shown in FIG. 1 and each square lattice type shown in FIGS. 9A and 9B are located above and below the original port and the idle port based on the difference in the connection method between adjacent optical switches. Although the relationship is different, any square lattice matrix switch is 4! A completely non-blocking matrix switch having a common connection pattern, and a completely non-blocking synchronous optical switch can be configured based on the regularity.
また、図1,図9(a),(b)に示す各正方格子型マトリクススイッチは、いずれも4行4列マトリクス上に42個の光スイッチを配し、4個の光スイッチをバー状態として4!通りの結線パターンを有する完全非閉塞のマトリクススイッチであるが、これらをNを2以上の整数としてN行N列マトリクス上にN2個の光スイッチを配し、N個の光スイッチをバー状態としてN!通りの結線パターンを有する完全非閉塞のマトリクススイッチとして一般化させた場合においても、先の規則性に基づいて、全て完全非閉塞の同期型光スイッチを構成できる。
Further, FIG. 1, FIG. 9 (a), the square lattice-type matrix switch shown in (b), both arranged 4 two optical switches in four rows and four columns on the matrix, bar four optical switch 4 as a state! This is a completely non-blocking matrix switch having a normal connection pattern, but N is an integer of 2 or more, N 2 optical switches are arranged on an N row N column matrix, and the N optical switches are in a bar state. As N! Even when generalized as a completely non-blocking matrix switch having a common connection pattern, a completely non-blocking synchronous optical switch can be configured based on the above regularity.
また、先の規則性は、菱形格子型マトリクススイッチにも共通する。
即ち、菱形格子マトリクススイッチでは、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態(図10参照)で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる2N個(8個)の入出力ポートのペア((A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4))のうち、菱形格子型マトリクススイッチの1列目におけるN個(4個)のオリジナルポート(A1~A4)をペアに含む半数のN個(4個)のペアを第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))とし、残り半数のN個(4個)のペアを第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とすると、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのどちらか一方を入力ペア群とし、他方を出力ペア群とする完全非閉塞の同期型光スイッチが構成される。なお、図10は、菱形格子型マトリクススイッチの全ての光スイッチをクロス状態として結線した状態を示す図である。 The above regularity is common to the rhombus lattice matrix switch.
That is, in the rhombus lattice matrix switch, each input / output path ((A1-K1), (A2) of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state (see FIG. 10). -K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)), two input / output ports that can be connected externally 2N (8) input / output port pairs ((A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), ( B2, L2), (B3, L3), (B4, L4)), half of the pairs including N (four) original ports (A1 to A4) in the first row of the rhomboid matrix switch N (4) pairs as the first input / output pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the N (4) pairs are designated as the second input / output pair group ((B1, L1 ), (B2, L2), (B3, L3), (B4, L4)), the first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4 , K4)) and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) as an input pair group and the other as an output A completely non-blocking synchronous optical switch as a pair group is configured. FIG. 10 is a diagram illustrating a state in which all the optical switches of the rhombus lattice matrix switch are connected in a cross state.
即ち、菱形格子マトリクススイッチでは、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態(図10参照)で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる2N個(8個)の入出力ポートのペア((A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4))のうち、菱形格子型マトリクススイッチの1列目におけるN個(4個)のオリジナルポート(A1~A4)をペアに含む半数のN個(4個)のペアを第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))とし、残り半数のN個(4個)のペアを第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とすると、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのどちらか一方を入力ペア群とし、他方を出力ペア群とする完全非閉塞の同期型光スイッチが構成される。なお、図10は、菱形格子型マトリクススイッチの全ての光スイッチをクロス状態として結線した状態を示す図である。 The above regularity is common to the rhombus lattice matrix switch.
That is, in the rhombus lattice matrix switch, each input / output path ((A1-K1), (A2) of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state (see FIG. 10). -K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)), two input / output ports that can be connected externally 2N (8) input / output port pairs ((A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), ( B2, L2), (B3, L3), (B4, L4)), half of the pairs including N (four) original ports (A1 to A4) in the first row of the rhomboid matrix switch N (4) pairs as the first input / output pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the N (4) pairs are designated as the second input / output pair group ((B1, L1 ), (B2, L2), (B3, L3), (B4, L4)), the first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4 , K4)) and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) as an input pair group and the other as an output A completely non-blocking synchronous optical switch as a pair group is configured. FIG. 10 is a diagram illustrating a state in which all the optical switches of the rhombus lattice matrix switch are connected in a cross state.
なお、菱形格子型マトリクススイッチの呼称は、正方格子型マトリクススイッチと概念的に区別するための呼称であり、必ずしも回路の全体形状が菱形である必要はなく、隣接する光スイッチ間の結線関係が図3に示す菱形格子型マトリクススイッチと共通する限り、例えば、図11に示す回路の全体形状が正方形状ものも回路の全体形状を問わず菱形格子型マトリクススイッチに含まれる。また、逆に、隣接する光スイッチ間の結線関係が図1,9(a)、(b)示す正方格子型マトリクススイッチと共通する限り、回路の全体形状が異なる回路も正方格子型マトリクススイッチに含まれる。なお、図11は、菱形格子型マトリクススイッチの他の構成例を示す図である。
The name of the rhomboid matrix switch is conceptually distinguished from the square lattice matrix switch, and the overall shape of the circuit does not necessarily have to be a rhombus, and there is a connection relationship between adjacent optical switches. As long as it is in common with the rhombus lattice matrix switch shown in FIG. 3, for example, the circuit having the square shape shown in FIG. 11 is included in the rhombus lattice matrix switch regardless of the overall shape of the circuit. Conversely, as long as the connection relationship between adjacent optical switches is in common with the square lattice type matrix switch shown in FIGS. 1, 9 (a) and 9 (b), a circuit having a different overall shape is also a square lattice type matrix switch. included. FIG. 11 is a diagram illustrating another configuration example of the rhomboid matrix switch.
本発明は、前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされるマトリクススイッチと、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群としたとき、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における前記各オリジナルポートと1対1で接続されるN個の第1光入力手段と、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における未接続の前記各オリジナルポートと1対1で接続されるN個の第1光出力手段と、前記第1光入力手段と接続される前記オリジナルポートを前記ペアに含む前記各アイドルポートと1対1で接続されるN個の第2光入力手段と、前記第1光出力手段と接続される前記オリジナルポートを前記ペアに含む未接続の前記各アイドルポートと1対1で接続されるN個の第2光出力手段と、を有することを特徴とする光スイッチ装置。
<2> マトリクススイッチが、正方格子型マトリクススイッチの回路構成とされる前記<1>に記載の光スイッチ装置。
<3> 更に、光を第1偏波成分と第2偏波成分とに偏波分離して前記第1偏波成分を第1光入力手段に入力するとともに前記第2偏波成分を第2光入力手段に入力するN個の偏波分離手段と、第1光出力手段及び第2光出力手段から片方ずつ出力される前記第1偏波成分と前記第2偏波成分とを偏波結合するN個の偏波結合手段と、を有する前記<1>から<2>のいずれかに記載の光スイッチ装置。
<4> 偏波分離手段が光を第1偏波成分と第2偏波成分とに偏波分離するビームスプリッタと、前記第1偏波成分及び前記第2偏波成分のいずれか一方の偏波軸を他方の偏波軸に回転させる第1偏波回転素子とを有し、偏波結合手段が前記第1偏波回転素子で偏波軸を回転させた前記第1偏波成分及び前記第2偏波成分のいずれか一方の偏波軸を回転前の元の偏波軸に再回転させる第2偏波回転素子と、前記第2偏波回転素子で偏波軸を再回転させた前記第1偏波成分及び前記第2偏波成分のいずれか一方と他方とを偏波結合するビーム結合器と、を有する前記<3>に記載の光スイッチ装置。
<5> 正方格子型マトリクススイッチが、1行目の1列からN-1列までの各光スイッチが次列において1行の前記光スイッチ及び次行の前記光スイッチと結線され、N行目の1列からN-1列までの前記各光スイッチが次列においてN行の前記光スイッチ及び前行の前記光スイッチと結線され、2行目からN-1行目の1列からN-1列までの前記各光スイッチが次行において前行の前記光スイッチ及び次行の前記光スイッチと結線され、全行における行の方向が並行とされ、かつ、全列における列の方向が並行とされる正方格子型マトリクススイッチであり、前記正方格子型マトリクススイッチと同行同列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての前記光スイッチをクロス状態の結線に置換して結線される正方格子型配線が、平面視で前記正方格子型マトリクススイッチの個々の前記光スイッチに対して個々の前記クロス状の結線が1つの組をなすように列の方向に対向配置される状態で、行列方向に平面状で展開される前記正方格子型マトリクススイッチの表裏いずれかの面上に配され、N列目における各組の前記光スイッチと前記クロス状の結線とが、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが結線され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが結線され、1列目における各組の前記光スイッチと前記クロス状の結線とが、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが第1光入力手段及び第2光入力手段を介して共通の偏波分離手段に接続され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段に接続されるか、又は、光の入出力関係を逆として、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段に接続され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが前記第1光入力手段及び前記第2光入力手段を介して共通の偏波分離手段に接続される前記<3>から<4>のいずれかに記載の光スイッチ装置。
<6> 一対の第1光入力手段及び第2光出力手段をN個の第1入出力源と接続可能なN個の第1入出力部とし、一対の第2光入力手段及び第1光出力手段をN個の第2入出力源と接続可能なN個の第2入出力部とする前記<1>から<2>のいずれかに記載の光スイッチ装置。
<7> 2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされるマトリクススイッチに対し、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群と設定し、残り半数のN個の前記ペアを第2入出力ペア群と設定する工程を含むことを特徴とする光スイッチ装置の設計方法。 The present invention is based on the above knowledge, and means for solving the above problems are as follows. That is,
<1> 2input 2 switchable optical switch in one of two states: cross and bar output is disposed two N in a matrix of N rows and N columns where N is an integer of 2 or more, and a square lattice matrix switch A matrix switch having a circuit configuration of any one of the rhombic lattice matrix switches and an external input / output path of the matrix switch connected in a state where all the optical switches of the matrix switch are switched to the cross state Of the 2N input / output port pairs that are paired with the original port that constitutes one of the connectable two input / output ports and the idle port that constitutes the other, N of the matrix switches in the first row Half of the N pairs including the original port in the pair constitute the first input / output pair group, and the remaining half When N pairs are used as a second input / output pair group, the N ports connected in a one-to-one relationship with the original ports in either the first input / output pair group or the second input / output pair group. First optical input means, and N first optical outputs connected one-to-one with the unconnected original ports in one of the first input / output pair group and the second input / output pair group And N second optical input means connected in a one-to-one relationship with each of the idle ports including the original port connected to the first optical input means in the pair, and the first optical output means, An optical switch device comprising: N second optical output means connected in a one-to-one relationship with each of the unconnected idle ports including the original port to be connected in the pair.
<2> The optical switch device according to <1>, wherein the matrix switch has a circuit configuration of a square lattice matrix switch.
<3> Furthermore, the light is separated into a first polarization component and a second polarization component, the first polarization component is input to the first light input means, and the second polarization component is changed to the second polarization component. Polarization coupling of the N polarization splitting means input to the optical input means, and the first polarization component and the second polarization component output from the first optical output means and the second optical output means one by one The optical switch device according to any one of <1> to <2>, further including N polarization coupling units.
<4> A polarization splitter that splits light into a first polarization component and a second polarization component, and a polarization of any one of the first polarization component and the second polarization component. A first polarization rotating element that rotates the wave axis to the other polarization axis, and the polarization coupling means rotates the polarization axis by the first polarization rotating element, and A second polarization rotation element that re-rotates one of the polarization axes of the second polarization component to the original polarization axis before rotation, and the polarization axis is re-rotated by the second polarization rotation element; The optical switch device according to <3>, further comprising: a beam combiner that polarization-couples one of the first polarization component and the second polarization component.
<5> In the square lattice matrix switch, each optical switch from the first column to the N−1 column in the first row is connected to the optical switch in the first row and the optical switch in the next row in the next column, In the next column, the optical switches from the first column to the N−1 column are connected to the N rows of optical switches and the previous row of optical switches, and the second to N−1 rows from the first column to the N− Each optical switch up to one column is connected to the optical switch in the previous row and the optical switch in the next row in the next row, the row directions in all rows are parallel, and the column directions in all columns are parallel. A square lattice type matrix switch, which is substantially the same size and in the same row as the square lattice type matrix switch, and replaces all the optical switches of the square lattice type matrix switch with cross-connections. Positive connected In a state where the rectangular grid wiring is arranged opposite to each other in the column direction so that each of the cross-shaped connections forms one set with respect to each of the optical switches of the square grid matrix switch in plan view, Arranged on either the front or back surface of the square lattice matrix switch developed in a planar shape in the matrix direction, each set of the optical switch and the cross-shaped connection in the Nth column is the original of the optical switch A port and a port corresponding to the original port of the cross-shaped connection when the square lattice type wiring is regarded as the square lattice type matrix switch, and an idle port of the optical switch and the square lattice type A port corresponding to the idle port of the cross-like connection when wiring is regarded as the square lattice type matrix switch is connected. Each set of the optical switch and the cross-shaped connection in the first row is the cross-shaped connection when the original port of the optical switch and the square lattice type wiring are regarded as the square lattice type matrix switch. A port corresponding to the original port is connected to the common polarization separation means via the first optical input means and the second optical input means, and the idle port of the optical switch and the square lattice type wiring are connected to the square lattice A port corresponding to the idle port of the cross connection when viewed as a type matrix switch is connected to a common polarization coupling means via the first optical output means and the second optical output means Or the input / output relationship of light is reversed, and the original port of the optical switch and the square lattice type wiring are connected to the square lattice type matrix switch. And a port corresponding to the original port of the cross-shaped connection when viewed as a common polarization coupling means via the first light output means and the second light output means, and An idle port of an optical switch and a port corresponding to the idle port of the cross-like connection when the square lattice type wiring is regarded as the square lattice type matrix switch are the first optical input means and the second optical input. The optical switch device according to any one of <3> to <4>, wherein the optical switch device is connected to a common polarization separation unit through a unit.
<6> The pair of first light input means and the second light output means are N first input / output sections connectable to the N first input / output sources, and the pair of second light input means and the first light. The optical switch device according to any one of <1> to <2>, wherein the output unit includes N second input / output units connectable to N second input / output sources.
<7> 2input 2 switchable optical switch in one of two states: cross and bar output is disposed two N in a matrix of N rows and N columns where N is an integer of 2 or more, and a square lattice matrix switch In each input / output path of the matrix switch that is connected in a state in which all the optical switches of the matrix switch are switched to the cross state with respect to the matrix switch having a circuit configuration of any one of the rhomboid matrix switches Of the 2N input / output port pairs to be paired with the original port constituting one of the two externally connectable input / output ports and the idle port constituting the other, N in the first row of the matrix switch And half of the N pairs including the original ports of the pair as the first input / output pair group, Method of designing an optical switching device, characterized in that the N pieces of said pair of half comprising the step of setting the second input-output pair group Ri.
<1> 2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされるマトリクススイッチと、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群としたとき、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における前記各オリジナルポートと1対1で接続されるN個の第1光入力手段と、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における未接続の前記各オリジナルポートと1対1で接続されるN個の第1光出力手段と、前記第1光入力手段と接続される前記オリジナルポートを前記ペアに含む前記各アイドルポートと1対1で接続されるN個の第2光入力手段と、前記第1光出力手段と接続される前記オリジナルポートを前記ペアに含む未接続の前記各アイドルポートと1対1で接続されるN個の第2光出力手段と、を有することを特徴とする光スイッチ装置。
<2> マトリクススイッチが、正方格子型マトリクススイッチの回路構成とされる前記<1>に記載の光スイッチ装置。
<3> 更に、光を第1偏波成分と第2偏波成分とに偏波分離して前記第1偏波成分を第1光入力手段に入力するとともに前記第2偏波成分を第2光入力手段に入力するN個の偏波分離手段と、第1光出力手段及び第2光出力手段から片方ずつ出力される前記第1偏波成分と前記第2偏波成分とを偏波結合するN個の偏波結合手段と、を有する前記<1>から<2>のいずれかに記載の光スイッチ装置。
<4> 偏波分離手段が光を第1偏波成分と第2偏波成分とに偏波分離するビームスプリッタと、前記第1偏波成分及び前記第2偏波成分のいずれか一方の偏波軸を他方の偏波軸に回転させる第1偏波回転素子とを有し、偏波結合手段が前記第1偏波回転素子で偏波軸を回転させた前記第1偏波成分及び前記第2偏波成分のいずれか一方の偏波軸を回転前の元の偏波軸に再回転させる第2偏波回転素子と、前記第2偏波回転素子で偏波軸を再回転させた前記第1偏波成分及び前記第2偏波成分のいずれか一方と他方とを偏波結合するビーム結合器と、を有する前記<3>に記載の光スイッチ装置。
<5> 正方格子型マトリクススイッチが、1行目の1列からN-1列までの各光スイッチが次列において1行の前記光スイッチ及び次行の前記光スイッチと結線され、N行目の1列からN-1列までの前記各光スイッチが次列においてN行の前記光スイッチ及び前行の前記光スイッチと結線され、2行目からN-1行目の1列からN-1列までの前記各光スイッチが次行において前行の前記光スイッチ及び次行の前記光スイッチと結線され、全行における行の方向が並行とされ、かつ、全列における列の方向が並行とされる正方格子型マトリクススイッチであり、前記正方格子型マトリクススイッチと同行同列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての前記光スイッチをクロス状態の結線に置換して結線される正方格子型配線が、平面視で前記正方格子型マトリクススイッチの個々の前記光スイッチに対して個々の前記クロス状の結線が1つの組をなすように列の方向に対向配置される状態で、行列方向に平面状で展開される前記正方格子型マトリクススイッチの表裏いずれかの面上に配され、N列目における各組の前記光スイッチと前記クロス状の結線とが、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが結線され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが結線され、1列目における各組の前記光スイッチと前記クロス状の結線とが、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが第1光入力手段及び第2光入力手段を介して共通の偏波分離手段に接続され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段に接続されるか、又は、光の入出力関係を逆として、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段に接続され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが前記第1光入力手段及び前記第2光入力手段を介して共通の偏波分離手段に接続される前記<3>から<4>のいずれかに記載の光スイッチ装置。
<6> 一対の第1光入力手段及び第2光出力手段をN個の第1入出力源と接続可能なN個の第1入出力部とし、一対の第2光入力手段及び第1光出力手段をN個の第2入出力源と接続可能なN個の第2入出力部とする前記<1>から<2>のいずれかに記載の光スイッチ装置。
<7> 2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされるマトリクススイッチに対し、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群と設定し、残り半数のN個の前記ペアを第2入出力ペア群と設定する工程を含むことを特徴とする光スイッチ装置の設計方法。 The present invention is based on the above knowledge, and means for solving the above problems are as follows. That is,
<1> 2
<2> The optical switch device according to <1>, wherein the matrix switch has a circuit configuration of a square lattice matrix switch.
<3> Furthermore, the light is separated into a first polarization component and a second polarization component, the first polarization component is input to the first light input means, and the second polarization component is changed to the second polarization component. Polarization coupling of the N polarization splitting means input to the optical input means, and the first polarization component and the second polarization component output from the first optical output means and the second optical output means one by one The optical switch device according to any one of <1> to <2>, further including N polarization coupling units.
<4> A polarization splitter that splits light into a first polarization component and a second polarization component, and a polarization of any one of the first polarization component and the second polarization component. A first polarization rotating element that rotates the wave axis to the other polarization axis, and the polarization coupling means rotates the polarization axis by the first polarization rotating element, and A second polarization rotation element that re-rotates one of the polarization axes of the second polarization component to the original polarization axis before rotation, and the polarization axis is re-rotated by the second polarization rotation element; The optical switch device according to <3>, further comprising: a beam combiner that polarization-couples one of the first polarization component and the second polarization component.
<5> In the square lattice matrix switch, each optical switch from the first column to the N−1 column in the first row is connected to the optical switch in the first row and the optical switch in the next row in the next column, In the next column, the optical switches from the first column to the N−1 column are connected to the N rows of optical switches and the previous row of optical switches, and the second to N−1 rows from the first column to the N− Each optical switch up to one column is connected to the optical switch in the previous row and the optical switch in the next row in the next row, the row directions in all rows are parallel, and the column directions in all columns are parallel. A square lattice type matrix switch, which is substantially the same size and in the same row as the square lattice type matrix switch, and replaces all the optical switches of the square lattice type matrix switch with cross-connections. Positive connected In a state where the rectangular grid wiring is arranged opposite to each other in the column direction so that each of the cross-shaped connections forms one set with respect to each of the optical switches of the square grid matrix switch in plan view, Arranged on either the front or back surface of the square lattice matrix switch developed in a planar shape in the matrix direction, each set of the optical switch and the cross-shaped connection in the Nth column is the original of the optical switch A port and a port corresponding to the original port of the cross-shaped connection when the square lattice type wiring is regarded as the square lattice type matrix switch, and an idle port of the optical switch and the square lattice type A port corresponding to the idle port of the cross-like connection when wiring is regarded as the square lattice type matrix switch is connected. Each set of the optical switch and the cross-shaped connection in the first row is the cross-shaped connection when the original port of the optical switch and the square lattice type wiring are regarded as the square lattice type matrix switch. A port corresponding to the original port is connected to the common polarization separation means via the first optical input means and the second optical input means, and the idle port of the optical switch and the square lattice type wiring are connected to the square lattice A port corresponding to the idle port of the cross connection when viewed as a type matrix switch is connected to a common polarization coupling means via the first optical output means and the second optical output means Or the input / output relationship of light is reversed, and the original port of the optical switch and the square lattice type wiring are connected to the square lattice type matrix switch. And a port corresponding to the original port of the cross-shaped connection when viewed as a common polarization coupling means via the first light output means and the second light output means, and An idle port of an optical switch and a port corresponding to the idle port of the cross-like connection when the square lattice type wiring is regarded as the square lattice type matrix switch are the first optical input means and the second optical input. The optical switch device according to any one of <3> to <4>, wherein the optical switch device is connected to a common polarization separation unit through a unit.
<6> The pair of first light input means and the second light output means are N first input / output sections connectable to the N first input / output sources, and the pair of second light input means and the first light. The optical switch device according to any one of <1> to <2>, wherein the output unit includes N second input / output units connectable to N second input / output sources.
<7> 2
本発明によれば、従来技術における前記諸問題を解決することができ、マトリクススイッチの回路規模を小さく保ったまま、2つの信号同士を同期させて入出力可能な光スイッチ装置及びその設計方法を提供することができる。
According to the present invention, an optical switch device capable of solving the above-described problems in the prior art and capable of inputting and outputting two signals in synchronization with each other while keeping the circuit scale of the matrix switch small and a design method thereof are provided. Can be provided.
(光スイッチ装置)
本発明の光スイッチ装置は、少なくとも、マトリクススイッチ、第1光入力手段、第2光入力手段、第1光出力手段、及び第2光出力手段を有する。 (Optical switch device)
The optical switch device of the present invention includes at least a matrix switch, first light input means, second light input means, first light output means, and second light output means.
本発明の光スイッチ装置は、少なくとも、マトリクススイッチ、第1光入力手段、第2光入力手段、第1光出力手段、及び第2光出力手段を有する。 (Optical switch device)
The optical switch device of the present invention includes at least a matrix switch, first light input means, second light input means, first light output means, and second light output means.
前記マトリクススイッチは、光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされる。
It said matrix switch, optical switch arranged two N in a matrix of N rows and N columns where N is an integer of 2 or more, are any of the circuit configuration of the square lattice-type matrix switch and rhombic lattice matrix switch.
前記光スイッチとしては、2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチ(図2(a)~(c)参照)であれば特に制限はなく、公知の光導波スイッチ、プリズム等の中から目的に応じて適宜選択することができる。
The optical switch is not particularly limited as long as it is an optical switch (see FIGS. 2 (a) to 2 (c)) that can be switched to either a cross state or a bar state with two inputs and two outputs. The prism can be appropriately selected according to the purpose.
前記正方格子型マトリクススイッチは、前記光スイッチがNを2以上の整数としてN行N列の正方格子マトリクス上にN2個配され、任意のN個の前記光スイッチを前記バー状態とし、残りの前記光スイッチを前記クロス状態として、完全非閉塞でN!通りの結線が可能なマトリクススイッチである。
前記正方格子型マトリクススイッチとしては、特に制限はなく、公知の正方格子型マトリクススイッチの中から目的に応じて適宜選択することができ、図1,図9(a),(b)に示す4行4列の正方格子型マトリクススイッチや、図1,図9(a),(b)に示す4行4列の正方格子型マトリクススイッチと隣接する前記光スイッチ間の結線関係が共通する他の正方格子型マトリクススイッチや、これらの正方格子型マトリクススイッチをN行N列に一般化させた正方格子型マトリクススイッチが挙げられる。 The tetragonal lattice matrix switch, the optical switch is arranged two N on square lattice matrix of N rows and N columns where N is an integer of 2 or more, any of N to the optical switch and the bar state, the remaining The optical switch is set to the cross state, and N! It is a matrix switch that can be connected in the street.
The square lattice matrix switch is not particularly limited, and can be appropriately selected from known square lattice matrix switches according to the purpose, and is shown in FIGS. 1, 9A and 9B. Others in which the wiring relationship between the adjacent optical switches and the square lattice type matrix switch of 4 rows and 4 columns and the square lattice type matrix switch of 4 rows and 4 columns shown in FIGS. Examples thereof include a square lattice type matrix switch and a square lattice type matrix switch obtained by generalizing these square lattice type matrix switches into N rows and N columns.
前記正方格子型マトリクススイッチとしては、特に制限はなく、公知の正方格子型マトリクススイッチの中から目的に応じて適宜選択することができ、図1,図9(a),(b)に示す4行4列の正方格子型マトリクススイッチや、図1,図9(a),(b)に示す4行4列の正方格子型マトリクススイッチと隣接する前記光スイッチ間の結線関係が共通する他の正方格子型マトリクススイッチや、これらの正方格子型マトリクススイッチをN行N列に一般化させた正方格子型マトリクススイッチが挙げられる。 The tetragonal lattice matrix switch, the optical switch is arranged two N on square lattice matrix of N rows and N columns where N is an integer of 2 or more, any of N to the optical switch and the bar state, the remaining The optical switch is set to the cross state, and N! It is a matrix switch that can be connected in the street.
The square lattice matrix switch is not particularly limited, and can be appropriately selected from known square lattice matrix switches according to the purpose, and is shown in FIGS. 1, 9A and 9B. Others in which the wiring relationship between the adjacent optical switches and the square lattice type matrix switch of 4 rows and 4 columns and the square lattice type matrix switch of 4 rows and 4 columns shown in FIGS. Examples thereof include a square lattice type matrix switch and a square lattice type matrix switch obtained by generalizing these square lattice type matrix switches into N rows and N columns.
前記菱形格子型マトリクススイッチは、前記光スイッチがNを2以上の整数としてN行N列の菱形マトリクス上にN2個配され、任意のN個の前記光スイッチを前記バー状態とし、残りの前記光スイッチを前記クロス状態として、完全非閉塞でN!通りの結線が可能なマトリクススイッチである。
前記菱形格子型マトリクススイッチとしては、特に制限はなく、公知の菱形格子型マトリクススイッチの中から目的に応じて適宜選択することができ、図3,図11に示す4行4列の菱形格子型マトリクススイッチや、図3,図11に示す4行4列の菱形格子型マトリクススイッチと隣接する前記光スイッチ間の結線関係が共通する他の菱形格子型マトリクススイッチや、これらの菱形格子型マトリクススイッチをN行N列に一般化させた菱形格子型マトリクススイッチが挙げられる。 The rhombic lattice matrix switch, the optical switch is arranged two N on the rhombic matrix with N rows and N columns where N is an integer of 2 or more, and any N number of the optical switch and the bar state, the remaining With the optical switch in the cross state, N! It is a matrix switch that can be connected in the street.
The rhombus lattice type matrix switch is not particularly limited, and can be appropriately selected from known rhombus lattice type matrix switches according to the purpose. The rhombus lattice type of 4 rows and 4 columns shown in FIGS. Matrix switch, other rhombus grid type matrix switch having a common connection relationship between the adjacent optical switch and the 4 × 4 rhombus grid type matrix switch shown in FIGS. 3 and 11, and these rhombus grid type matrix switches Is a rhombus lattice matrix switch that is generalized to N rows and N columns.
前記菱形格子型マトリクススイッチとしては、特に制限はなく、公知の菱形格子型マトリクススイッチの中から目的に応じて適宜選択することができ、図3,図11に示す4行4列の菱形格子型マトリクススイッチや、図3,図11に示す4行4列の菱形格子型マトリクススイッチと隣接する前記光スイッチ間の結線関係が共通する他の菱形格子型マトリクススイッチや、これらの菱形格子型マトリクススイッチをN行N列に一般化させた菱形格子型マトリクススイッチが挙げられる。 The rhombic lattice matrix switch, the optical switch is arranged two N on the rhombic matrix with N rows and N columns where N is an integer of 2 or more, and any N number of the optical switch and the bar state, the remaining With the optical switch in the cross state, N! It is a matrix switch that can be connected in the street.
The rhombus lattice type matrix switch is not particularly limited, and can be appropriately selected from known rhombus lattice type matrix switches according to the purpose. The rhombus lattice type of 4 rows and 4 columns shown in FIGS. Matrix switch, other rhombus grid type matrix switch having a common connection relationship between the adjacent optical switch and the 4 × 4 rhombus grid type matrix switch shown in FIGS. 3 and 11, and these rhombus grid type matrix switches Is a rhombus lattice matrix switch that is generalized to N rows and N columns.
なお、前記菱形格子型マトリクススイッチでは、形成される入出力経路間で経由する前記光スイッチの数が異なり、入出力経路間で異なる光の減衰作用等を受けるが、前記正方格子型マトリクススイッチでは、同じ数の前記光スイッチを経由して全ての入出力経路が形成されるため、入出力経路ごとに減衰作用等による影響差がない光を出力させることができる(経路損失無依存)。
In the rhomboid matrix switch, the number of the optical switches that pass between the input / output paths is different, and the light attenuation action is different between the input / output paths. Since all the input / output paths are formed via the same number of the optical switches, it is possible to output light that is not affected by the attenuation effect or the like for each input / output path (independent of path loss).
前記第1光入力手段及び前記第2光入力手段としては、特に制限はなく、公知の光送信装置そのもののほか、光ファイバ等の前記光送信装置からの光を前記マトリクススイッチに送信する公知の光伝送部材が挙げられる。
また、前記第1光出力手段及び前記第2光出力手段としても、特に制限はなく、公知の光受信装置そのもののほか、光ファイバ等の前記マトリクススイッチから出力される光を前記光受信装置に送信する公知の光伝送部材が挙げられる。 The first light input means and the second light input means are not particularly limited, and are known light transmitting devices such as optical fibers or the like that transmit light from the light transmitting device such as an optical fiber to the matrix switch. An optical transmission member is mentioned.
Further, the first optical output means and the second optical output means are not particularly limited, and light output from the matrix switch such as an optical fiber is supplied to the optical receiving apparatus in addition to the known optical receiving apparatus itself. A known optical transmission member for transmission may be used.
また、前記第1光出力手段及び前記第2光出力手段としても、特に制限はなく、公知の光受信装置そのもののほか、光ファイバ等の前記マトリクススイッチから出力される光を前記光受信装置に送信する公知の光伝送部材が挙げられる。 The first light input means and the second light input means are not particularly limited, and are known light transmitting devices such as optical fibers or the like that transmit light from the light transmitting device such as an optical fiber to the matrix switch. An optical transmission member is mentioned.
Further, the first optical output means and the second optical output means are not particularly limited, and light output from the matrix switch such as an optical fiber is supplied to the optical receiving apparatus in addition to the known optical receiving apparatus itself. A known optical transmission member for transmission may be used.
前記光スイッチ装置では、前記第1光入力手段、前記第2光入力手段、前記第1光出力手段及び前記第2光出力手段と、前記マトリクススイッチの入出力ポートとが、図8、図10を用いて先に検討された規則性に基づいて接続される関係を有する。
即ち、前記光スイッチ装置は、前記マトリクススイッチと、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群としたとき、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における前記各オリジナルポートと1対1で接続されるN個の第1光入力手段と、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における未接続の前記各オリジナルポートと1対1で接続されるN個の第1光出力手段と、前記第1光入力手段と接続される前記オリジナルポートを前記ペアに含む前記各アイドルポートと1対1で接続されるN個の第2光入力手段と、前記第1光出力手段と接続される前記オリジナルポートを前記ペアに含む未接続の前記各アイドルポートと1対1で接続されるN個の第2光出力手段と、を有して構成される。 In the optical switch device, the first optical input means, the second optical input means, the first optical output means, the second optical output means, and the input / output ports of the matrix switch are shown in FIGS. Are connected based on the regularity previously discussed.
That is, the optical switch device includes two input / output paths that can be connected externally in each input / output path of the matrix switch and the matrix switch connected in a state where all the optical switches of the matrix switch are switched to the cross state. Of the 2N I / O port pairs paired with the original port constituting one of the output ports and the idle port constituting the other, the N original ports in the first column of the matrix switch are the pair. Half of the N pairs included in the first input / output pair group and the remaining half of the N pairs as the second input / output pair group, the first input / output pair group and the second input / output pair N first optical input means connected one-to-one with the original ports in any one of the pair groups, and the first input / output pair group And the N first optical output means connected in a one-to-one relationship with the unconnected original ports in any one of the second input / output pair groups, and the original connected to the first optical input means N second optical input means connected in a one-to-one relationship with each of the idle ports that include the port in the pair, and the unconnected, the original port that is connected to the first optical output means in the pair N second optical output means connected to each idle port on a one-to-one basis.
即ち、前記光スイッチ装置は、前記マトリクススイッチと、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群としたとき、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における前記各オリジナルポートと1対1で接続されるN個の第1光入力手段と、前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における未接続の前記各オリジナルポートと1対1で接続されるN個の第1光出力手段と、前記第1光入力手段と接続される前記オリジナルポートを前記ペアに含む前記各アイドルポートと1対1で接続されるN個の第2光入力手段と、前記第1光出力手段と接続される前記オリジナルポートを前記ペアに含む未接続の前記各アイドルポートと1対1で接続されるN個の第2光出力手段と、を有して構成される。 In the optical switch device, the first optical input means, the second optical input means, the first optical output means, the second optical output means, and the input / output ports of the matrix switch are shown in FIGS. Are connected based on the regularity previously discussed.
That is, the optical switch device includes two input / output paths that can be connected externally in each input / output path of the matrix switch and the matrix switch connected in a state where all the optical switches of the matrix switch are switched to the cross state. Of the 2N I / O port pairs paired with the original port constituting one of the output ports and the idle port constituting the other, the N original ports in the first column of the matrix switch are the pair. Half of the N pairs included in the first input / output pair group and the remaining half of the N pairs as the second input / output pair group, the first input / output pair group and the second input / output pair N first optical input means connected one-to-one with the original ports in any one of the pair groups, and the first input / output pair group And the N first optical output means connected in a one-to-one relationship with the unconnected original ports in any one of the second input / output pair groups, and the original connected to the first optical input means N second optical input means connected in a one-to-one relationship with each of the idle ports that include the port in the pair, and the unconnected, the original port that is connected to the first optical output means in the pair N second optical output means connected to each idle port on a one-to-one basis.
このように構成される前記光スイッチ装置では、前記マトリクススイッチの回路規模を小さく保ったまま、2つの信号同士を同期させて入出力可能な同期型光スイッチを実現することができる。なお、前記同期型光スイッチの構成例としては、本発明の第1実施形態~第4実施形態として後述する偏波ダイバーシティ光スイッチや双方向光スイッチ等を挙げることができる。
In the optical switch device configured as described above, it is possible to realize a synchronous optical switch that can input and output two signals by synchronizing them while keeping the circuit scale of the matrix switch small. Examples of the configuration of the synchronous optical switch include a polarization diversity optical switch and a bidirectional optical switch described later as the first to fourth embodiments of the present invention.
(光スイッチ装置の設計方法)
本発明の光スイッチ装置の設計方法は、前記規則性に基づいて本発明の前記光スイッチ装置を設計する方法である。即ち、2入力2出力で前記クロス及び前記バーのいずれかの状態にスイッチ可能な前記光スイッチがNを整数としてN行N列の前記マトリクス上にN2個配され、前記正方格子型マトリクススイッチ及び前記菱形格子型マトリクススイッチのいずれかの回路構成とされる前記マトリクススイッチに対し、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成する前記オリジナルポートと他方を構成する前記アイドルポートとでペアリングされる2N個の入出力ポートの前記ペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群として設定する工程を含む。
なお、前記工程以外の設定事項については、前記光スイッチ装置及び後述する前記光スイッチ装置の第1実施形態~第4実施形態について説明する事項の中から適宜選択して採用することができる。
以下では、前記光スイッチ装置の応用例を第1実施形態~第4実施形態として説明するが、本発明の思想は、これらの応用例に限定されることはない。 (Design method of optical switch device)
The design method of the optical switch device of the present invention is a method of designing the optical switch device of the present invention based on the regularity. That is, N 2 optical switches that can be switched to either the cross state or the bar state with two inputs and two outputs are arranged on the matrix of N rows and N columns, where N is an integer, and the square lattice matrix switch And each of the matrix switches connected in a state in which all the optical switches of the matrix switch are switched to the cross state with respect to the matrix switch having a circuit configuration of any one of the rhomboid matrix switch. Of the 2N input / output ports paired with the original port that constitutes one of two externally connectable input / output ports in the output path and the idle port that constitutes the other, of the matrix switch Half of the N pairs including the N original ports in the first row in the pair. (A) is set as the first input / output pair group, and the remaining half of the N pairs are set as the second input / output pair group.
The setting items other than the steps can be appropriately selected from the items described in the first to fourth embodiments of the optical switch device and the optical switch device described later.
Hereinafter, application examples of the optical switch device will be described as first to fourth embodiments, but the idea of the present invention is not limited to these application examples.
本発明の光スイッチ装置の設計方法は、前記規則性に基づいて本発明の前記光スイッチ装置を設計する方法である。即ち、2入力2出力で前記クロス及び前記バーのいずれかの状態にスイッチ可能な前記光スイッチがNを整数としてN行N列の前記マトリクス上にN2個配され、前記正方格子型マトリクススイッチ及び前記菱形格子型マトリクススイッチのいずれかの回路構成とされる前記マトリクススイッチに対し、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成する前記オリジナルポートと他方を構成する前記アイドルポートとでペアリングされる2N個の入出力ポートの前記ペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群として設定する工程を含む。
なお、前記工程以外の設定事項については、前記光スイッチ装置及び後述する前記光スイッチ装置の第1実施形態~第4実施形態について説明する事項の中から適宜選択して採用することができる。
以下では、前記光スイッチ装置の応用例を第1実施形態~第4実施形態として説明するが、本発明の思想は、これらの応用例に限定されることはない。 (Design method of optical switch device)
The design method of the optical switch device of the present invention is a method of designing the optical switch device of the present invention based on the regularity. That is, N 2 optical switches that can be switched to either the cross state or the bar state with two inputs and two outputs are arranged on the matrix of N rows and N columns, where N is an integer, and the square lattice matrix switch And each of the matrix switches connected in a state in which all the optical switches of the matrix switch are switched to the cross state with respect to the matrix switch having a circuit configuration of any one of the rhomboid matrix switch. Of the 2N input / output ports paired with the original port that constitutes one of two externally connectable input / output ports in the output path and the idle port that constitutes the other, of the matrix switch Half of the N pairs including the N original ports in the first row in the pair. (A) is set as the first input / output pair group, and the remaining half of the N pairs are set as the second input / output pair group.
The setting items other than the steps can be appropriately selected from the items described in the first to fourth embodiments of the optical switch device and the optical switch device described later.
Hereinafter, application examples of the optical switch device will be described as first to fourth embodiments, but the idea of the present invention is not limited to these application examples.
<第1実施形態>
前記光スイッチ装置の第1実施形態を図12及び図13を参照しつつ説明する。この第1実施形態は、前記光スイッチ装置を前記正方格子型マトリクススイッチを用いた前記偏波ダイバーシティ光スイッチとして応用する場合の一実施形態に係る。なお、図12は、第1実施形態に係る光スイッチ装置の構成を説明する説明図であり、図13は、第1実施形態に係る光スイッチ装置の動作を説明する説明図である。 <First Embodiment>
A first embodiment of the optical switch device will be described with reference to FIGS. The first embodiment relates to an embodiment in which the optical switch device is applied as the polarization diversity optical switch using the square lattice matrix switch. FIG. 12 is an explanatory diagram illustrating the configuration of the optical switch device according to the first embodiment, and FIG. 13 is an explanatory diagram illustrating the operation of the optical switch device according to the first embodiment.
前記光スイッチ装置の第1実施形態を図12及び図13を参照しつつ説明する。この第1実施形態は、前記光スイッチ装置を前記正方格子型マトリクススイッチを用いた前記偏波ダイバーシティ光スイッチとして応用する場合の一実施形態に係る。なお、図12は、第1実施形態に係る光スイッチ装置の構成を説明する説明図であり、図13は、第1実施形態に係る光スイッチ装置の動作を説明する説明図である。 <First Embodiment>
A first embodiment of the optical switch device will be described with reference to FIGS. The first embodiment relates to an embodiment in which the optical switch device is applied as the polarization diversity optical switch using the square lattice matrix switch. FIG. 12 is an explanatory diagram illustrating the configuration of the optical switch device according to the first embodiment, and FIG. 13 is an explanatory diagram illustrating the operation of the optical switch device according to the first embodiment.
図12に示すように、第1実施形態に係る光スイッチ装置は、4行4列の前記正方格子型マトリクススイッチを有する。
この正方格子型マトリクススイッチでは、再び図8を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、正方格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのいずれを入力ペア群、出力ペア群とするかには任意性があるが、図12に示す例では、説明の便宜上、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))を入力ペア群とし、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))を出力ペア群とする。 As shown in FIG. 12, the optical switch device according to the first embodiment includes the square lattice matrix switch of 4 rows and 4 columns.
In this square lattice matrix switch, referring to FIG. 8 again, each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state based on the regularity described above. ((A1-K1), (A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)) Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, paired between two externally connectable input / output ports L1), (B2, L2), (B3, L3), (B4, L4), half of the four including the four original ports (A1 to A4) in the first row of the square lattice matrix switch Pair is the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining four pairs constitute the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)).
The first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the second input / output pair group ((B1, L1), (B2, L2) ), (B 3, L 3), (B 4, L 4)) are arbitrary as an input pair group and an output pair group, but in the example shown in FIG. The output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) is taken as the input pair group, and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are set as an output pair group.
この正方格子型マトリクススイッチでは、再び図8を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、正方格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのいずれを入力ペア群、出力ペア群とするかには任意性があるが、図12に示す例では、説明の便宜上、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))を入力ペア群とし、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))を出力ペア群とする。 As shown in FIG. 12, the optical switch device according to the first embodiment includes the square lattice matrix switch of 4 rows and 4 columns.
In this square lattice matrix switch, referring to FIG. 8 again, each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state based on the regularity described above. ((A1-K1), (A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)) Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, paired between two externally connectable input / output ports L1), (B2, L2), (B3, L3), (B4, L4), half of the four including the four original ports (A1 to A4) in the first row of the square lattice matrix switch Pair is the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining four pairs constitute the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)).
The first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the second input / output pair group ((B1, L1), (B2, L2) ), (
このように入力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))及び出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))が設定される第1実施形態に係る光スイッチ装置では、光1~4を第1偏波成分及び第2偏波成分に偏波分離する4つの偏波分離手段X1~X4とが、次のように正方格子型マトリクススイッチと接続される関係とされる。
即ち、入力ペア(A1,K1)が偏波分離手段X1と接続され、入力ペア(A2,K2)が偏波分離手段X2と接続され、入力ペア(A3,K3)が偏波分離手段X3と接続され、入力ペア(A4,K4)が偏波分離手段X4と接続される関係とされる。
各偏波分離手段X1~X4は、光1~4を第1偏波成分及び第2偏波成分に偏波分離するビームスプリッタに加え、第2偏波成分の偏波軸を第1偏波成分の偏波軸に回転させる偏波回転素子を有する。このような偏波回転素子を用いると、正方格子型マトリクススイッチにおいて、第1偏波成分及び第2偏波成分を同質の偏波成分として取り扱うことができる。
偏波分離手段X1の偏波回転素子-入力ポートA1間、偏波分離手段X2の偏波回転素子-入力ポートA2間、偏波分離手段X3の偏波回転素子-入力ポートA3間、及び偏波分離手段X4の偏波回転素子-入力ポートA4間は、それぞれ第1光入力手段としての光ファイバ等の光導波路で接続されている。また、同様に、偏波分離手段X1のビームスプリッタ-入力ポートK1間、偏波分離手段X2のビームスプリッタ-入力ポートK2間、偏波分離手段X3のビームスプリッタ-入力ポートK3間、及び偏波分離手段X4のビームスプリッタ-入力ポートK4間は、それぞれ第2光入力手段としての光ファイバ等の光導波路で接続されている。 Thus, the input pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the output pair group ((B1, L1), (B2, L2), (B3 , L3), (B4, L4)) in the first embodiment, the four polarizations that separate thelights 1 to 4 into the first polarization component and the second polarization component The separating means X1 to X4 are connected to the square lattice matrix switch as follows.
That is, the input pair (A1, K1) is connected to the polarization separation means X1, the input pair (A2, K2) is connected to the polarization separation means X2, and the input pair (A3, K3) is connected to the polarization separation means X3. The input pair (A4, K4) is connected to the polarization separation means X4.
Each of the polarization separation means X1 to X4 adds thebeams 1 to 4 to the first polarization component and the second polarization component, and the polarization axis of the second polarization component is the first polarization. It has a polarization rotation element that rotates about the polarization axis of the component. When such a polarization rotation element is used, in the square lattice matrix switch, the first polarization component and the second polarization component can be handled as homogeneous polarization components.
Between the polarization rotation element of the polarization separation means X1 and the input port A1, between the polarization rotation element of the polarization separation means X2 and the input port A2, between the polarization rotation element of the polarization separation means X3 and the input port A3, and the polarization The polarization rotation element of the wave separation means X4 and the input port A4 are connected by an optical waveguide such as an optical fiber as the first light input means. Similarly, between the beam splitter and the input port K1 of the polarization separation means X1, between the beam splitter and the input port K2 of the polarization separation means X2, between the beam splitter and the input port K3 of the polarization separation means X3, and the polarization The beam splitter of the separating means X4 and the input port K4 are connected by an optical waveguide such as an optical fiber as the second light input means.
即ち、入力ペア(A1,K1)が偏波分離手段X1と接続され、入力ペア(A2,K2)が偏波分離手段X2と接続され、入力ペア(A3,K3)が偏波分離手段X3と接続され、入力ペア(A4,K4)が偏波分離手段X4と接続される関係とされる。
各偏波分離手段X1~X4は、光1~4を第1偏波成分及び第2偏波成分に偏波分離するビームスプリッタに加え、第2偏波成分の偏波軸を第1偏波成分の偏波軸に回転させる偏波回転素子を有する。このような偏波回転素子を用いると、正方格子型マトリクススイッチにおいて、第1偏波成分及び第2偏波成分を同質の偏波成分として取り扱うことができる。
偏波分離手段X1の偏波回転素子-入力ポートA1間、偏波分離手段X2の偏波回転素子-入力ポートA2間、偏波分離手段X3の偏波回転素子-入力ポートA3間、及び偏波分離手段X4の偏波回転素子-入力ポートA4間は、それぞれ第1光入力手段としての光ファイバ等の光導波路で接続されている。また、同様に、偏波分離手段X1のビームスプリッタ-入力ポートK1間、偏波分離手段X2のビームスプリッタ-入力ポートK2間、偏波分離手段X3のビームスプリッタ-入力ポートK3間、及び偏波分離手段X4のビームスプリッタ-入力ポートK4間は、それぞれ第2光入力手段としての光ファイバ等の光導波路で接続されている。 Thus, the input pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the output pair group ((B1, L1), (B2, L2), (B3 , L3), (B4, L4)) in the first embodiment, the four polarizations that separate the
That is, the input pair (A1, K1) is connected to the polarization separation means X1, the input pair (A2, K2) is connected to the polarization separation means X2, and the input pair (A3, K3) is connected to the polarization separation means X3. The input pair (A4, K4) is connected to the polarization separation means X4.
Each of the polarization separation means X1 to X4 adds the
Between the polarization rotation element of the polarization separation means X1 and the input port A1, between the polarization rotation element of the polarization separation means X2 and the input port A2, between the polarization rotation element of the polarization separation means X3 and the input port A3, and the polarization The polarization rotation element of the wave separation means X4 and the input port A4 are connected by an optical waveguide such as an optical fiber as the first light input means. Similarly, between the beam splitter and the input port K1 of the polarization separation means X1, between the beam splitter and the input port K2 of the polarization separation means X2, between the beam splitter and the input port K3 of the polarization separation means X3, and the polarization The beam splitter of the separating means X4 and the input port K4 are connected by an optical waveguide such as an optical fiber as the second light input means.
また、出力側では、出力ペア(B1,L1)が偏波結合手段Y1と接続され、出力ペア(B2,L2)が偏波結合手段Y2と接続され、出力ペア(B3,L3)が偏波結合手段Y3と接続され、出力ペア(B4,L4)が偏波結合手段Y4と接続される関係とされる。
各偏波結合手段Y1~Y4は、第1偏波成分及び第2偏波成分を元の光1~4とする偏波結合するビーム結合器に加え、回転後の第2偏波成分を回転前の元の偏波軸に再回転させる偏波回転素子を有する。このような偏波回転素子を用いると、正方格子型マトリクススイッチにおいて、第1偏波成分及び第2偏波成分を同質の偏波成分として取り扱うことができる。なお、ビームスプリッタとビーム結合器は、公知のプリズム等で構成され、共通のものを用いることができる。また、偏波回転素子も、公知の回転素子で構成され、偏波分離手段と偏波結合手段とで共通のものを用いることができる。
偏波結合手段Y1の偏波回転素子-出力ポートB1間、偏波結合手段Y2の偏波回転素子-出力ポートB2間、偏波結合手段Y3の偏波回転素子-出力ポートB3間、及び偏波結合手段Y4の偏波回転素子-出力ポートB4間は、それぞれ第1光出力手段としての光ファイバ等の光導波路で接続されている。また、同様に、偏波結合手段Y1のビーム結合器-出力ポートL1間、偏波結合手段Y2のビーム結合器-出力ポートL2間、偏波結合手段Y3のビーム結合器-出力ポートL3間、及び偏波結合手段Y4のビーム結合器-出力ポートL4間は、それぞれ第2光出力手段としての光ファイバ等の光導波路で接続されている。 On the output side, the output pair (B1, L1) is connected to the polarization coupling means Y1, the output pair (B2, L2) is connected to the polarization coupling means Y2, and the output pair (B3, L3) is polarized. It is connected to the coupling means Y3, and the output pair (B4, L4) is connected to the polarization coupling means Y4.
Each polarization coupling means Y1 to Y4 rotates the second polarization component after rotation in addition to the beam combiner that couples the first polarization component and the second polarization component to theoriginal light 1 to 4. It has a polarization rotation element that re-rotates to the previous original polarization axis. When such a polarization rotation element is used, in the square lattice matrix switch, the first polarization component and the second polarization component can be handled as homogeneous polarization components. The beam splitter and the beam combiner are configured with known prisms or the like, and a common one can be used. Further, the polarization rotation element is also composed of a known rotation element, and a common element can be used for the polarization separation means and the polarization coupling means.
Between the polarization rotation element of the polarization coupling means Y1 and the output port B1, between the polarization rotation element of the polarization coupling means Y2 and the output port B2, between the polarization rotation element of the polarization coupling means Y3 and the output port B3, and between The polarization rotation element of the wave coupling means Y4 and the output port B4 are connected by an optical waveguide such as an optical fiber as the first light output means. Similarly, between the beam combiner and output port L1 of the polarization coupling means Y1, between the beam combiner and output port L2 of the polarization coupling means Y2, between the beam combiner and output port L3 of the polarization coupling means Y3, The beam coupler of the polarization coupling means Y4 and the output port L4 are connected by an optical waveguide such as an optical fiber as the second light output means.
各偏波結合手段Y1~Y4は、第1偏波成分及び第2偏波成分を元の光1~4とする偏波結合するビーム結合器に加え、回転後の第2偏波成分を回転前の元の偏波軸に再回転させる偏波回転素子を有する。このような偏波回転素子を用いると、正方格子型マトリクススイッチにおいて、第1偏波成分及び第2偏波成分を同質の偏波成分として取り扱うことができる。なお、ビームスプリッタとビーム結合器は、公知のプリズム等で構成され、共通のものを用いることができる。また、偏波回転素子も、公知の回転素子で構成され、偏波分離手段と偏波結合手段とで共通のものを用いることができる。
偏波結合手段Y1の偏波回転素子-出力ポートB1間、偏波結合手段Y2の偏波回転素子-出力ポートB2間、偏波結合手段Y3の偏波回転素子-出力ポートB3間、及び偏波結合手段Y4の偏波回転素子-出力ポートB4間は、それぞれ第1光出力手段としての光ファイバ等の光導波路で接続されている。また、同様に、偏波結合手段Y1のビーム結合器-出力ポートL1間、偏波結合手段Y2のビーム結合器-出力ポートL2間、偏波結合手段Y3のビーム結合器-出力ポートL3間、及び偏波結合手段Y4のビーム結合器-出力ポートL4間は、それぞれ第2光出力手段としての光ファイバ等の光導波路で接続されている。 On the output side, the output pair (B1, L1) is connected to the polarization coupling means Y1, the output pair (B2, L2) is connected to the polarization coupling means Y2, and the output pair (B3, L3) is polarized. It is connected to the coupling means Y3, and the output pair (B4, L4) is connected to the polarization coupling means Y4.
Each polarization coupling means Y1 to Y4 rotates the second polarization component after rotation in addition to the beam combiner that couples the first polarization component and the second polarization component to the
Between the polarization rotation element of the polarization coupling means Y1 and the output port B1, between the polarization rotation element of the polarization coupling means Y2 and the output port B2, between the polarization rotation element of the polarization coupling means Y3 and the output port B3, and between The polarization rotation element of the wave coupling means Y4 and the output port B4 are connected by an optical waveguide such as an optical fiber as the first light output means. Similarly, between the beam combiner and output port L1 of the polarization coupling means Y1, between the beam combiner and output port L2 of the polarization coupling means Y2, between the beam combiner and output port L3 of the polarization coupling means Y3, The beam coupler of the polarization coupling means Y4 and the output port L4 are connected by an optical waveguide such as an optical fiber as the second light output means.
このように構成される第1実施形態に係る光スイッチ装置では、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
即ち、図13に示すように、光スイッチS12,S14,S42,S44をバー状態とし、残りの光スイッチをクロス状態とすると、(入力→出力)が(A1→B4),(A2→B3),(A3→B2),(A4→B1)の入出力経路と、(K1→L4),(K2→L3),(K3→L2),(K4→L1)の入出力経路とが形成され、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。また、光スイッチS11~S44のうち、別の任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態としても、入力ペアと出力ペアの関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる(例えば、図7(a),(b),(c)参照)。 In the optical switch device according to the first embodiment configured as described above, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1) , (B2, L2), (B3, L3), (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
That is, as shown in FIG. 13, when the optical switches S12, S14, S42, and S44 are set to the bar state and the remaining optical switches are set to the cross state, (input → output) is (A1 → B4), (A2 → B3). , (A3 → B2), (A4 → B1) and (K1 → L4), (K2 → L3), (K3 → L2), (K4 → L1) input / output paths are formed, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) ) As an output pair, the first polarization component and the second polarization component can be synchronized. Further, among the optical switches S11 to S44, if any other four optical switches are set to the bar state and the remaining optical switches are set to the cross state, the relationship between the input pair and the output pair is not changed, and all four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized (for example, see FIGS. 7A, 7B, and 7C).
即ち、図13に示すように、光スイッチS12,S14,S42,S44をバー状態とし、残りの光スイッチをクロス状態とすると、(入力→出力)が(A1→B4),(A2→B3),(A3→B2),(A4→B1)の入出力経路と、(K1→L4),(K2→L3),(K3→L2),(K4→L1)の入出力経路とが形成され、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。また、光スイッチS11~S44のうち、別の任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態としても、入力ペアと出力ペアの関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる(例えば、図7(a),(b),(c)参照)。 In the optical switch device according to the first embodiment configured as described above, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1) , (B2, L2), (B3, L3), (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
That is, as shown in FIG. 13, when the optical switches S12, S14, S42, and S44 are set to the bar state and the remaining optical switches are set to the cross state, (input → output) is (A1 → B4), (A2 → B3). , (A3 → B2), (A4 → B1) and (K1 → L4), (K2 → L3), (K3 → L2), (K4 → L1) input / output paths are formed, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) ) As an output pair, the first polarization component and the second polarization component can be synchronized. Further, among the optical switches S11 to S44, if any other four optical switches are set to the bar state and the remaining optical switches are set to the cross state, the relationship between the input pair and the output pair is not changed, and all four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized (for example, see FIGS. 7A, 7B, and 7C).
<第2実施形態>
前記光スイッチ装置の第2実施形態を図14及び図15を参照しつつ説明する。この第2実施形態は、前記光スイッチ装置を前記菱形格子型マトリクススイッチを用いた前記偏波ダイバーシティ光スイッチとして応用する場合の一実施形態に係る。なお、図14は、第2実施形態に係る光スイッチ装置の構成を説明する説明図であり、図15は、第2実施形態に係る光スイッチ装置の動作を説明する説明図である。 Second Embodiment
A second embodiment of the optical switch device will be described with reference to FIGS. The second embodiment relates to an embodiment in which the optical switch device is applied as the polarization diversity optical switch using the rhombus lattice matrix switch. FIG. 14 is an explanatory diagram illustrating the configuration of the optical switch device according to the second embodiment, and FIG. 15 is an explanatory diagram illustrating the operation of the optical switch device according to the second embodiment.
前記光スイッチ装置の第2実施形態を図14及び図15を参照しつつ説明する。この第2実施形態は、前記光スイッチ装置を前記菱形格子型マトリクススイッチを用いた前記偏波ダイバーシティ光スイッチとして応用する場合の一実施形態に係る。なお、図14は、第2実施形態に係る光スイッチ装置の構成を説明する説明図であり、図15は、第2実施形態に係る光スイッチ装置の動作を説明する説明図である。 Second Embodiment
A second embodiment of the optical switch device will be described with reference to FIGS. The second embodiment relates to an embodiment in which the optical switch device is applied as the polarization diversity optical switch using the rhombus lattice matrix switch. FIG. 14 is an explanatory diagram illustrating the configuration of the optical switch device according to the second embodiment, and FIG. 15 is an explanatory diagram illustrating the operation of the optical switch device according to the second embodiment.
第2実施形態に係る光スイッチは、図14に示すように第1実施形態に係る光スイッチにおいて、正方格子型マトリクススイッチに代えて、菱形格子型マトリクススイッチを用いること以外は、第1実施形態に係る光スイッチと同様の構成とされる。
即ち、再び図10を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、菱形格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
これら第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))は、第1実施形態に係る光スイッチ装置と同様の関係で、第1光入力手段、第2光入力手段、第1光出力手段及び第2光出力手段を介して偏波分離手段X1~X4、偏波結合手段Y1~Y4と接続される。 As shown in FIG. 14, the optical switch according to the second embodiment is the same as the first embodiment except that a rhomboid matrix switch is used instead of the square lattice matrix switch in the optical switch according to the first embodiment. It is set as the structure similar to the optical switch concerning.
That is, referring again to FIG. 10, based on the regularity described above, each input / output path ((A1-K1)) of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state. , (A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)) Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), (B2, Of L2), (B3, L3), and (B4, L4), the four pairs of the first half including the four original ports (A1 to A4) in the first row of the rhomboid matrix switch are the first. Input / output pair group ((A1, K1), (A2, K ), (A3, K3), (A4, K4)), and the remaining four pairs are the second input / output pair groups ((B1, L1), (B2, L2), (B3, L3)). , (B4, L4)).
These first input / output pair groups ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) are set, and the remaining four pairs are the second input / output pair groups. ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are the same as those in the optical switch device according to the first embodiment. The polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 are connected via the light input means, the first light output means and the second light output means.
即ち、再び図10を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、菱形格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
これら第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))は、第1実施形態に係る光スイッチ装置と同様の関係で、第1光入力手段、第2光入力手段、第1光出力手段及び第2光出力手段を介して偏波分離手段X1~X4、偏波結合手段Y1~Y4と接続される。 As shown in FIG. 14, the optical switch according to the second embodiment is the same as the first embodiment except that a rhomboid matrix switch is used instead of the square lattice matrix switch in the optical switch according to the first embodiment. It is set as the structure similar to the optical switch concerning.
That is, referring again to FIG. 10, based on the regularity described above, each input / output path ((A1-K1)) of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state. , (A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)) Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), (B2, Of L2), (B3, L3), and (B4, L4), the four pairs of the first half including the four original ports (A1 to A4) in the first row of the rhomboid matrix switch are the first. Input / output pair group ((A1, K1), (A2, K ), (A3, K3), (A4, K4)), and the remaining four pairs are the second input / output pair groups ((B1, L1), (B2, L2), (B3, L3)). , (B4, L4)).
These first input / output pair groups ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) are set, and the remaining four pairs are the second input / output pair groups. ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are the same as those in the optical switch device according to the first embodiment. The polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 are connected via the light input means, the first light output means and the second light output means.
このように構成される第2実施形態に係る光スイッチ装置では、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
即ち、図15に示すように、光スイッチS11,S21,S33,S44をバー状態とし、残りの光スイッチをクロス状態とすると、(入力→出力)が(A1→B4),(A2→B3),(A3→B2),(A4→B1)の入出力経路と、(K1→L4),(K2→L3),(K3→L2),(K4→L1)の入出力経路とが形成され、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。また、光スイッチS11~S44のうち、別の任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態としても、入力ペアと出力ペアのペア関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
なお、入力と出力の設定には任意性があり、第1実施形態に係る光スイッチ装置と同様に入出力関係を反転させることもできる。 In the optical switch device according to the second embodiment configured as described above, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1) , (B2, L2), (B3, L3), (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
That is, as shown in FIG. 15, when the optical switches S11, S21, S33, and S44 are set to the bar state and the remaining optical switches are set to the cross state, (input → output) is (A1 → B4), (A2 → B3). , (A3 → B2), (A4 → B1) and (K1 → L4), (K2 → L3), (K3 → L2), (K4 → L1) input / output paths are formed, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) ) As an output pair, the first polarization component and the second polarization component can be synchronized. Also, even if another arbitrary four optical switches among the optical switches S11 to S44 are set to the bar state and the remaining optical switches are set to the cross state, the pair relationship between the input pair and the output pair is not changed, and all four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
Note that the input and output settings are optional, and the input / output relationship can be inverted as in the optical switch device according to the first embodiment.
即ち、図15に示すように、光スイッチS11,S21,S33,S44をバー状態とし、残りの光スイッチをクロス状態とすると、(入力→出力)が(A1→B4),(A2→B3),(A3→B2),(A4→B1)の入出力経路と、(K1→L4),(K2→L3),(K3→L2),(K4→L1)の入出力経路とが形成され、(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。また、光スイッチS11~S44のうち、別の任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態としても、入力ペアと出力ペアのペア関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる。
なお、入力と出力の設定には任意性があり、第1実施形態に係る光スイッチ装置と同様に入出力関係を反転させることもできる。 In the optical switch device according to the second embodiment configured as described above, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1) , (B2, L2), (B3, L3), (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
That is, as shown in FIG. 15, when the optical switches S11, S21, S33, and S44 are set to the bar state and the remaining optical switches are set to the cross state, (input → output) is (A1 → B4), (A2 → B3). , (A3 → B2), (A4 → B1) and (K1 → L4), (K2 → L3), (K3 → L2), (K4 → L1) input / output paths are formed, (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs, and (B1, L1), (B2, L2), (B3, L3), (B4, L4) ) As an output pair, the first polarization component and the second polarization component can be synchronized. Also, even if another arbitrary four optical switches among the optical switches S11 to S44 are set to the bar state and the remaining optical switches are set to the cross state, the pair relationship between the input pair and the output pair is not changed, and all four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as output pairs, the first polarization component and the second polarization component can be synchronized.
Note that the input and output settings are optional, and the input / output relationship can be inverted as in the optical switch device according to the first embodiment.
<第3実施形態>
前記光スイッチ装置の第3実施形態を図16及び図17を参照しつつ説明する。この第3実施形態は、前記光スイッチ装置を前記正方格子型マトリクススイッチを用いた前記双方向光スイッチとして応用する場合の一実施形態に係る。なお、図16は、第3実施形態に係る光スイッチ装置の構成を説明する説明図であり、図17は、第3実施形態に係る光スイッチ装置の動作を説明する説明図である。 <Third Embodiment>
A third embodiment of the optical switch device will be described with reference to FIGS. The third embodiment relates to an embodiment in which the optical switch device is applied as the bidirectional optical switch using the square lattice matrix switch. FIG. 16 is an explanatory diagram illustrating the configuration of the optical switch device according to the third embodiment, and FIG. 17 is an explanatory diagram illustrating the operation of the optical switch device according to the third embodiment.
前記光スイッチ装置の第3実施形態を図16及び図17を参照しつつ説明する。この第3実施形態は、前記光スイッチ装置を前記正方格子型マトリクススイッチを用いた前記双方向光スイッチとして応用する場合の一実施形態に係る。なお、図16は、第3実施形態に係る光スイッチ装置の構成を説明する説明図であり、図17は、第3実施形態に係る光スイッチ装置の動作を説明する説明図である。 <Third Embodiment>
A third embodiment of the optical switch device will be described with reference to FIGS. The third embodiment relates to an embodiment in which the optical switch device is applied as the bidirectional optical switch using the square lattice matrix switch. FIG. 16 is an explanatory diagram illustrating the configuration of the optical switch device according to the third embodiment, and FIG. 17 is an explanatory diagram illustrating the operation of the optical switch device according to the third embodiment.
第3実施形態に係る光スイッチ装置は、第1実施形態に係る光スイッチ装置と異なり、光の偏波分離、偏波結合を行わず、(A1,K1),(A2,K2),(A3,K3),(A4,K4)の第1入出力ペア群と、(B1,L1),(B2,L2),(B3,L3),(B4,L4)の第2入出力ペア群と同期させた双方向光スイッチとして用いられる。
Unlike the optical switch device according to the first embodiment, the optical switch device according to the third embodiment does not perform polarization separation or polarization coupling of light, and (A1, K1), (A2, K2), (A3 , K3), (A4, K4) and the second input / output pair group (B1, L1), (B2, L2), (B3, L3), (B4, L4). Used as a bidirectional optical switch.
図16に示すように、第3実施形態に係る光スイッチ装置は、4行4列の正方格子型マトリクススイッチを有する。
この正方格子型マトリクススイッチでは、再び図8を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、正方格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのいずれを入力ペア群、出力ペア群とするかには任意性があるが、図16に示す例では、説明の便宜上、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))を入力ペア群とし、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))を出力ペア群とする。 As shown in FIG. 16, the optical switch device according to the third embodiment has a 4 × 4 square lattice matrix switch.
In this square lattice matrix switch, referring to FIG. 8 again, each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state based on the regularity described above. ((A1-K1), (A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)) Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, paired between two externally connectable input / output ports L1), (B2, L2), (B3, L3), (B4, L4), half of the four including the four original ports (A1 to A4) in the first row of the square lattice matrix switch Pair is the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining four pairs constitute the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)).
The first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the second input / output pair group ((B1, L1), (B2, L2) ), (B 3, L 3), (B 4, L 4)) is arbitrary as an input pair group or an output pair group, but in the example shown in FIG. The output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) is taken as the input pair group, and the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are set as an output pair group.
この正方格子型マトリクススイッチでは、再び図8を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路((A1-K1),(A2-K2),(A3-K3),(A4-K4),(B1-L1),(B2-L2),(B3-L3),(B4-L4))における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、正方格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))と、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))とのいずれを入力ペア群、出力ペア群とするかには任意性があるが、図16に示す例では、説明の便宜上、第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))を入力ペア群とし、第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))を出力ペア群とする。 As shown in FIG. 16, the optical switch device according to the third embodiment has a 4 × 4 square lattice matrix switch.
In this square lattice matrix switch, referring to FIG. 8 again, each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state based on the regularity described above. ((A1-K1), (A2-K2), (A3-K3), (A4-K4), (B1-L1), (B2-L2), (B3-L3), (B4-L4)) Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, paired between two externally connectable input / output ports L1), (B2, L2), (B3, L3), (B4, L4), half of the four including the four original ports (A1 to A4) in the first row of the square lattice matrix switch Pair is the first I / O pair ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining four pairs constitute the second input / output pair group ((B1, L1), (B2, L2), (B3, L3), (B4, L4)).
The first input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the second input / output pair group ((B1, L1), (B2, L2) ), (
このように入力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))及び出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))が設定される第3実施形態に係る光スイッチ装置では、入力ペア群のオリジナルポート(A1~A4)に接続される光ファイバ等の光入力手段が第1光入力手段とされ、入力ペア群のアイドルポート(K1~K4)に接続される光ファイバ等の光入力手段が第2光入力手段とされ、出力ペア群のオリジナルポート(B1~B4)に接続される光ファイバ等の光出力手段が第1光出力手段とされ、出力ペア群のアイドルポート(L1~L4)に接続される光ファイバ等の光出力手段が第2光出力手段とされる。
Thus, the input pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) and the output pair group ((B1, L1), (B2, L2), (B3 , L3), (B4, L4)) are set, the optical input device such as an optical fiber connected to the original ports (A1 to A4) of the input pair group is the first. Optical input means such as optical fiber connected to the idle ports (K1 to K4) of the input pair group as optical input means is used as the second optical input means and connected to the original ports (B1 to B4) of the output pair group The optical output means such as an optical fiber is the first optical output means, and the optical output means such as an optical fiber connected to the idle ports (L1 to L4) of the output pair group is the second optical output means.
4個の第1入出力源E~Hは、任意の一対の第1光入力手段(A1~A4のいずれかと接続)及び第2光出力手段(L1~L4のいずれかと接続)と接続可能され、これら一対の第1光入力手段及び第2光出力手段が第1入出力部を構成する。
図16では、1例として、第1光入力手段(A1~A4のいずれかと接続)及び第2光出力手段(L1~L4のいずれかと接続)を介して、第1入出力源Eが入力ポートA1及び出力ポートL1と接続され、第1入出力源Fが入力ポートA2及び出力ポートL2と接続され、第1入出力源Gが入力ポートA3及び出力ポートL3と接続され、第1入出力源Hが入力ポートA4及び出力ポートL4と接続される例を示している。 The four first input / output sources E to H can be connected to any pair of first light input means (connected to any one of A1 to A4) and second light output means (connected to any of L1 to L4). The pair of first light input means and second light output means constitute a first input / output unit.
In FIG. 16, as an example, the first input / output source E is connected to the input port via the first optical input means (connected to any of A1 to A4) and the second optical output means (connected to any of L1 to L4). The first input / output source F is connected to the input port A2 and the output port L2, the first input / output source G is connected to the input port A3 and the output port L3, and the first input / output source is connected to the A1 and the output port L1. In the example, H is connected to the input port A4 and the output port L4.
図16では、1例として、第1光入力手段(A1~A4のいずれかと接続)及び第2光出力手段(L1~L4のいずれかと接続)を介して、第1入出力源Eが入力ポートA1及び出力ポートL1と接続され、第1入出力源Fが入力ポートA2及び出力ポートL2と接続され、第1入出力源Gが入力ポートA3及び出力ポートL3と接続され、第1入出力源Hが入力ポートA4及び出力ポートL4と接続される例を示している。 The four first input / output sources E to H can be connected to any pair of first light input means (connected to any one of A1 to A4) and second light output means (connected to any of L1 to L4). The pair of first light input means and second light output means constitute a first input / output unit.
In FIG. 16, as an example, the first input / output source E is connected to the input port via the first optical input means (connected to any of A1 to A4) and the second optical output means (connected to any of L1 to L4). The first input / output source F is connected to the input port A2 and the output port L2, the first input / output source G is connected to the input port A3 and the output port L3, and the first input / output source is connected to the A1 and the output port L1. In the example, H is connected to the input port A4 and the output port L4.
また、4個の第2入出力源K~Nは、任意の一対の第2光入力手段(K1~K4のいずれかと接続)及び第1光出力手段(B1~B4のいずれかと接続)と接続可能され、これら一対の第2光入力手段及び第1光出力手段が第2入出力部を構成する。
図16では、1例として、第2光入力手段(K1~K4のいずれかと接続)及び第1光出力手段(B1~B4のいずれかと接続)を介して、第2入出力源Kが入力ポートK1及び出力ポートB1と接続され、第2入出力源Lが入力ポートK2及び出力ポートB2と接続され、第2入出力源Mが入力ポートK3及び出力ポートB3と接続され、第2入出力源Nが入力ポートK4及び出力ポートB4と接続される例を示している。
なお、入出力源には、操作者が操作するパーソナルコンピュータ等の信号の入出力装置や該入出力装置と光スイッチ装置との間に配される信号の中継器等、信号の入出力源となるものが該当する。 The four second input / output sources K to N are connected to an arbitrary pair of second light input means (connected to any one of K1 to K4) and first light output means (connected to any of B1 to B4). The pair of second light input means and first light output means constitute a second input / output unit.
In FIG. 16, as an example, the second input / output source K is connected to the input port via the second optical input means (connected to any of K1 to K4) and the first optical output means (connected to any of B1 to B4). K1 and the output port B1, the second input / output source L is connected to the input port K2 and the output port B2, the second input / output source M is connected to the input port K3 and the output port B3, and the second input / output source is connected. In the example, N is connected to the input port K4 and the output port B4.
The input / output source includes a signal input / output source such as a signal input / output device such as a personal computer operated by an operator and a signal repeater disposed between the input / output device and the optical switch device. This is true.
図16では、1例として、第2光入力手段(K1~K4のいずれかと接続)及び第1光出力手段(B1~B4のいずれかと接続)を介して、第2入出力源Kが入力ポートK1及び出力ポートB1と接続され、第2入出力源Lが入力ポートK2及び出力ポートB2と接続され、第2入出力源Mが入力ポートK3及び出力ポートB3と接続され、第2入出力源Nが入力ポートK4及び出力ポートB4と接続される例を示している。
なお、入出力源には、操作者が操作するパーソナルコンピュータ等の信号の入出力装置や該入出力装置と光スイッチ装置との間に配される信号の中継器等、信号の入出力源となるものが該当する。 The four second input / output sources K to N are connected to an arbitrary pair of second light input means (connected to any one of K1 to K4) and first light output means (connected to any of B1 to B4). The pair of second light input means and first light output means constitute a second input / output unit.
In FIG. 16, as an example, the second input / output source K is connected to the input port via the second optical input means (connected to any of K1 to K4) and the first optical output means (connected to any of B1 to B4). K1 and the output port B1, the second input / output source L is connected to the input port K2 and the output port B2, the second input / output source M is connected to the input port K3 and the output port B3, and the second input / output source is connected. In the example, N is connected to the input port K4 and the output port B4.
The input / output source includes a signal input / output source such as a signal input / output device such as a personal computer operated by an operator and a signal repeater disposed between the input / output device and the optical switch device. This is true.
ここで、説明のために、第1入出力源E~Hをそれぞれ1名ずつの男性ユーザが操作し、第2入出力源K~Nをそれぞれ1名ずつの女性ユーザが操作しているとすると、図17に示すように光スイッチS12,S14,S42,S44をバー状態とし、残りの光スイッチをクロス状態とした結線状態で、(1)第1入出力源Eの男性ユーザ(入力ポートA1、出力ポートL1を使用)と第2入出力源Nの女性ユーザ(入力ポートK4、出力ポートB4を使用)、(2)第1入出力源Fの男性ユーザ(入力ポートA2、出力ポートL2を使用)と第2入出力源Mの女性ユーザ(入力ポートK3、出力ポートB3を使用)、(3)第1入出力源Gの男性ユーザ(入力ポートA3、出力ポートL3を使用)と第2入出力源Lの女性ユーザ(入力ポートK2、出力ポートB2を使用)、(4)第1入出力源Hの男性ユーザ(入力ポートA4、出力ポートL4を使用)と第2入出力源Kの女性ユーザ(入力ポートK1、出力ポートB1を使用)の4組が、第3実施形態の光スイッチ装置を介して双方向接続され、入力(話す)と出力(聞く)により会話等を楽しむことができる。
また、各双方向接続は、(入力→出力)が(A1→B4),(A2→B3),(A3→B2),(A4→B1)の入出力経路と、この入出力経路と異なる、(入力→出力)が(K1→L4),(K2→L3),(K3→L2),(K4→L1)の入出力経路との2つの入出力経路で構成される。したがって、同じ入出力経路を対向伝搬させて双方向接続を形成する場合に比べて、使用可能な光の制約を少なくすることができる。例えば、光スイッチには動作可能な光の強さに上限が存在するが、同じ入出力経路を対向伝搬させる場合に比べて、2つの異なる入出力経路で双方向接続を形成する場合は、2倍の強さの光を用いることができる。 Here, for the sake of explanation, it is assumed that one male user operates each of the first input / output sources E to H, and one female user operates each of the second input / output sources K to N. Then, as shown in FIG. 17, in the connection state in which the optical switches S12, S14, S42, and S44 are in the bar state and the remaining optical switches are in the cross state, A1, using the output port L1) and a female user of the second input / output source N (using the input port K4, output port B4), (2) a male user of the first input / output source F (input port A2, output port L2) And a female user of the second input / output source M (using the input port K3 and the output port B3), (3) a male user of the first input / output source G (using the input port A3 and the output port L3) and the first 2 Female user of input / output source L (input port K2 using output port B2), (4) male user of first input / output source H (using input port A4 and output port L4) and female user of second input / output source K (input port K1, output port B1) Are used for two-way connection via the optical switch device of the third embodiment, and a conversation or the like can be enjoyed by input (speaking) and output (listening).
Each bidirectional connection has (input → output) different from the input / output path of (A1 → B4), (A2 → B3), (A3 → B2), (A4 → B1), (Input → Output) is composed of two input / output paths including (K1 → L4), (K2 → L3), (K3 → L2), and (K4 → L1). Therefore, it is possible to reduce restrictions on usable light as compared to the case where the same input / output path is propagated oppositely to form a bidirectional connection. For example, an optical switch has an upper limit on the intensity of light that can be operated. However, in the case where a bidirectional connection is formed by two different input / output paths as compared with the case where the same input / output path is propagated in the opposite direction, 2 Double light intensity can be used.
また、各双方向接続は、(入力→出力)が(A1→B4),(A2→B3),(A3→B2),(A4→B1)の入出力経路と、この入出力経路と異なる、(入力→出力)が(K1→L4),(K2→L3),(K3→L2),(K4→L1)の入出力経路との2つの入出力経路で構成される。したがって、同じ入出力経路を対向伝搬させて双方向接続を形成する場合に比べて、使用可能な光の制約を少なくすることができる。例えば、光スイッチには動作可能な光の強さに上限が存在するが、同じ入出力経路を対向伝搬させる場合に比べて、2つの異なる入出力経路で双方向接続を形成する場合は、2倍の強さの光を用いることができる。 Here, for the sake of explanation, it is assumed that one male user operates each of the first input / output sources E to H, and one female user operates each of the second input / output sources K to N. Then, as shown in FIG. 17, in the connection state in which the optical switches S12, S14, S42, and S44 are in the bar state and the remaining optical switches are in the cross state, A1, using the output port L1) and a female user of the second input / output source N (using the input port K4, output port B4), (2) a male user of the first input / output source F (input port A2, output port L2) And a female user of the second input / output source M (using the input port K3 and the output port B3), (3) a male user of the first input / output source G (using the input port A3 and the output port L3) and the first 2 Female user of input / output source L (input port K2 using output port B2), (4) male user of first input / output source H (using input port A4 and output port L4) and female user of second input / output source K (input port K1, output port B1) Are used for two-way connection via the optical switch device of the third embodiment, and a conversation or the like can be enjoyed by input (speaking) and output (listening).
Each bidirectional connection has (input → output) different from the input / output path of (A1 → B4), (A2 → B3), (A3 → B2), (A4 → B1), (Input → Output) is composed of two input / output paths including (K1 → L4), (K2 → L3), (K3 → L2), and (K4 → L1). Therefore, it is possible to reduce restrictions on usable light as compared to the case where the same input / output path is propagated oppositely to form a bidirectional connection. For example, an optical switch has an upper limit on the intensity of light that can be operated. However, in the case where a bidirectional connection is formed by two different input / output paths as compared with the case where the same input / output path is propagated in the opposite direction, 2 Double light intensity can be used.
今、正方格子型マトリクススイッチの結線状態を図7(a)と同様、光スイッチS22,S24,S32,S34のバー状態、残りの光スイッチをクロス状態にスイッチさせると各双方向接続は、(入力→出力)が(A1→B1),(A2→B2),(A3→B3),(A4→B4)の入出力経路と、(入力→出力)が(K1→L1),(K2→L2),(K3→L3),(K4→L4)の入出力経路との2つの入出力経路で構成され、(1)第1入出力源Eの男性ユーザ(入力ポートA1、出力ポートL1を使用)と第2入出力源Kの女性ユーザ(入力ポートK1、出力ポートB1を使用)、(2)第1入出力源Fの男性ユーザ(入力ポートA2、出力ポートL2を使用)と第2入出力源Lの女性ユーザ(入力ポートK2、出力ポートB2を使用)、(3)第1入出力源Gの男性ユーザ(入力ポートA3、出力ポートL3を使用)と第2入出力源Mの女性ユーザ(入力ポートK3、出力ポートB3を使用)、(4)第1入出力源Hの男性ユーザ(入力ポートA4、出力ポートL4を使用)と第2入出力源Nの女性ユーザ(入力ポートK4、出力ポートB4を使用)の4組が、第3実施形態の光スイッチ装置を介して双方向接続され、会話等を楽しむことができる。即ち、正方格子型マトリクススイッチの結線状態を変更しても、入力ペアと出力ペアのペア関係に変更がなく、延いては、各ユーザに割り当てられた1対の入力ポート及び出力ポートに変更がないため、1名の男性ユーザと1名の女性ユーザ間で入力(話す)と出力(聞く)とが同期した双方向接続が実現されることとなる。
そして、この双方向接続は、光スイッチS11~S44のうち、別の任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態としても、全4!通りの結線状態で実現することができる(図7(b),(c)等参照)。 Now, when the connection state of the square lattice matrix switch is switched to the bar state of the optical switches S22, S24, S32, S34 and the remaining optical switches to the cross state, as in FIG. (Input → Output) is (A1 → B1), (A2 → B2), (A3 → B3), (A4 → B4), and (Input → Output) is (K1 → L1), (K2 → L2) ), (K3 → L3), (K4 → L4) and two input / output paths, and (1) male user of the first input / output source E (input port A1, output port L1 is used) ) And a female user of the second input / output source K (using the input port K1 and output port B1), (2) a male user of the first input / output source F (using the input port A2 and output port L2) and the second input Female user of output source L (input port K2, output port B2 Use), (3) male user of first input / output source G (using input port A3 and output port L3) and female user of second input / output source M (using input port K3 and output port B3), (4 ) Four groups of male users of first input / output source H (using input port A4 and output port L4) and female users of second input / output source N (using input port K4 and output port B4) are in the third implementation. Two-way connection is made through the optical switch device of the form, and conversation can be enjoyed. That is, even if the connection state of the square lattice matrix switch is changed, there is no change in the pair relationship between the input pair and the output pair. As a result, the pair of input ports and output ports assigned to each user is changed. Therefore, a bidirectional connection in which input (speaking) and output (listening) are synchronized between one male user and one female user is realized.
In this bidirectional connection, all four of the optical switches S11 to S44 are set to the bar state and the remaining optical switches are set to the cross state. It can be realized in a street connection state (see FIGS. 7B, 7C, etc.).
そして、この双方向接続は、光スイッチS11~S44のうち、別の任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態としても、全4!通りの結線状態で実現することができる(図7(b),(c)等参照)。 Now, when the connection state of the square lattice matrix switch is switched to the bar state of the optical switches S22, S24, S32, S34 and the remaining optical switches to the cross state, as in FIG. (Input → Output) is (A1 → B1), (A2 → B2), (A3 → B3), (A4 → B4), and (Input → Output) is (K1 → L1), (K2 → L2) ), (K3 → L3), (K4 → L4) and two input / output paths, and (1) male user of the first input / output source E (input port A1, output port L1 is used) ) And a female user of the second input / output source K (using the input port K1 and output port B1), (2) a male user of the first input / output source F (using the input port A2 and output port L2) and the second input Female user of output source L (input port K2, output port B2 Use), (3) male user of first input / output source G (using input port A3 and output port L3) and female user of second input / output source M (using input port K3 and output port B3), (4 ) Four groups of male users of first input / output source H (using input port A4 and output port L4) and female users of second input / output source N (using input port K4 and output port B4) are in the third implementation. Two-way connection is made through the optical switch device of the form, and conversation can be enjoyed. That is, even if the connection state of the square lattice matrix switch is changed, there is no change in the pair relationship between the input pair and the output pair. As a result, the pair of input ports and output ports assigned to each user is changed. Therefore, a bidirectional connection in which input (speaking) and output (listening) are synchronized between one male user and one female user is realized.
In this bidirectional connection, all four of the optical switches S11 to S44 are set to the bar state and the remaining optical switches are set to the cross state. It can be realized in a street connection state (see FIGS. 7B, 7C, etc.).
<第4実施形態>
前記光スイッチ装置の第4実施形態を図18及び図19を参照しつつ説明する。この第4実施形態は、前記光スイッチ装置を前記菱形格子型マトリクススイッチを用いた前記双方向光スイッチとして応用する場合の一実施形態に係る。なお、図18は、第4実施形態に係る光スイッチ装置の構成を説明する説明図であり、図19は、第4実施形態に係る光スイッチ装置の動作を説明する説明図である。 <Fourth embodiment>
A fourth embodiment of the optical switch device will be described with reference to FIGS. The fourth embodiment relates to an embodiment in which the optical switch device is applied as the bidirectional optical switch using the rhombic lattice matrix switch. FIG. 18 is an explanatory diagram illustrating the configuration of the optical switch device according to the fourth embodiment, and FIG. 19 is an explanatory diagram illustrating the operation of the optical switch device according to the fourth embodiment.
前記光スイッチ装置の第4実施形態を図18及び図19を参照しつつ説明する。この第4実施形態は、前記光スイッチ装置を前記菱形格子型マトリクススイッチを用いた前記双方向光スイッチとして応用する場合の一実施形態に係る。なお、図18は、第4実施形態に係る光スイッチ装置の構成を説明する説明図であり、図19は、第4実施形態に係る光スイッチ装置の動作を説明する説明図である。 <Fourth embodiment>
A fourth embodiment of the optical switch device will be described with reference to FIGS. The fourth embodiment relates to an embodiment in which the optical switch device is applied as the bidirectional optical switch using the rhombic lattice matrix switch. FIG. 18 is an explanatory diagram illustrating the configuration of the optical switch device according to the fourth embodiment, and FIG. 19 is an explanatory diagram illustrating the operation of the optical switch device according to the fourth embodiment.
第4実施形態に係る光スイッチは、図18に示すように第3実施形態に係る光スイッチにおいて、正方格子型マトリクススイッチに代えて、菱形格子型マトリクススイッチを用いること以外は、第3実施形態に係る光スイッチと同様の構成とされる。
即ち、再び図10を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、菱形格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
これら第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))は、第3実施形態の光スイッチ装置と同様の関係で、第1光入力手段、第2光入力手段、第1光出力手段及び第2光出力手段を介して第1入出力源E~H及び第2入出力源K~Nの接続関係を設定することができる。
したがって、光スイッチS11~S44のうち、任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態として、全4!通りの結線状態で第1入出力源E~Hと第2入出力源K~Nとで入力と出力とを同期させた双方向接続を実現することができる。 As shown in FIG. 18, the optical switch according to the fourth embodiment is the same as the optical switch according to the third embodiment except that a rhombus lattice matrix switch is used instead of the square lattice matrix switch. It is set as the structure similar to the optical switch concerning.
That is, referring again to FIG. 10, on the basis of the above-mentioned regularity, external connection is possible in each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state. Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), (B2) , L2), (B3, L3), and (B4, L4), half of the four pairs including the four original ports (A1 to A4) in the first row of therhomboid matrix switch 1 input / output pair group ((A1, K1), (A2, K2), (A3, K3), (A4, K4)), and the remaining half of the four pairs are connected to the second input / output pair group (( B1, L1), (B2, L2), (B3 3) is set to (B4, L4)).
These first input / output pair groups ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) are set, and the remaining four pairs are the second input / output pair groups. ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are in the same relationship as the optical switch device of the third embodiment, and the first light input means and the second light The connection relationship between the first input / output sources E to H and the second input / output sources K to N can be set via the input means, the first light output means, and the second light output means.
Therefore, of the optical switches S11 to S44, any four optical switches are set to the bar state, and the remaining optical switches are set to the cross state so that all four! Bidirectional connection in which the input and output are synchronized between the first input / output sources E to H and the second input / output sources K to N can be realized in the normal connection state.
即ち、再び図10を参照すると、前述の規則性に基づき、全ての光スイッチ(S11~S44)をクロス状態にスイッチさせた状態で結線されるマトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポート同士でペアリングされる8個の入出力ポートのペア(A1,K1),(A2,K2),(A3,K3),(A4,K4),(B1,L1),(B2,L2),(B3,L3),(B4,L4)のうち、菱形格子型マトリクススイッチの1列目における4個のオリジナルポート(A1~A4)をペアに含む半数の4個のペアが第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))に設定される。
これら第1入出力ペア群((A1,K1),(A2,K2),(A3,K3),(A4,K4))に設定され、残り半数の4個のペアが第2入出力ペア群((B1,L1),(B2,L2),(B3,L3),(B4,L4))は、第3実施形態の光スイッチ装置と同様の関係で、第1光入力手段、第2光入力手段、第1光出力手段及び第2光出力手段を介して第1入出力源E~H及び第2入出力源K~Nの接続関係を設定することができる。
したがって、光スイッチS11~S44のうち、任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態として、全4!通りの結線状態で第1入出力源E~Hと第2入出力源K~Nとで入力と出力とを同期させた双方向接続を実現することができる。 As shown in FIG. 18, the optical switch according to the fourth embodiment is the same as the optical switch according to the third embodiment except that a rhombus lattice matrix switch is used instead of the square lattice matrix switch. It is set as the structure similar to the optical switch concerning.
That is, referring again to FIG. 10, on the basis of the above-mentioned regularity, external connection is possible in each input / output path of the matrix switch connected in a state where all the optical switches (S11 to S44) are switched to the cross state. Eight input / output port pairs (A1, K1), (A2, K2), (A3, K3), (A4, K4), (B1, L1), (B2) , L2), (B3, L3), and (B4, L4), half of the four pairs including the four original ports (A1 to A4) in the first row of the
These first input / output pair groups ((A1, K1), (A2, K2), (A3, K3), (A4, K4)) are set, and the remaining four pairs are the second input / output pair groups. ((B1, L1), (B2, L2), (B3, L3), (B4, L4)) are in the same relationship as the optical switch device of the third embodiment, and the first light input means and the second light The connection relationship between the first input / output sources E to H and the second input / output sources K to N can be set via the input means, the first light output means, and the second light output means.
Therefore, of the optical switches S11 to S44, any four optical switches are set to the bar state, and the remaining optical switches are set to the cross state so that all four! Bidirectional connection in which the input and output are synchronized between the first input / output sources E to H and the second input / output sources K to N can be realized in the normal connection state.
先に、偏波ダイバーシティ光スイッチへの応用例として第1実施形態及び第2実施形態に係る前記光スイッチ装置を挙げて説明を行ったが、これらの光スイッチ装置は、入出力経路を構成する配線を変更することで、配線長を同一とし、かつ、より回路規模を小さくすることができる。以下、図面を参照しつつ説明をする。
First, the optical switch device according to the first embodiment and the second embodiment has been described as an application example to the polarization diversity optical switch. However, these optical switch devices constitute an input / output path. By changing the wiring, the wiring length can be made the same and the circuit scale can be further reduced. Hereinafter, description will be given with reference to the drawings.
先ず、前記光スイッチ装置の第5実施形態を図20及び図21を参照しつつ説明する。なお、図20は、第5実施形態に係る光スイッチ装置の構成を説明する説明図であり、図21は、第5実施形態に係る光スイッチ装置の動作を説明する説明図である。
この第5実施形態は、第1実施形態に係る前記光スイッチ装置(図12,13参照)と入出力経路、入出力ポートのペア、第1入出力ペア群及び第2入出力ペア群の各設定、並びに、入力ペアと偏波分離手段との接続関係及び出力ペアと偏波結合手段との接続関係に変更を与えず、入出力経路を構成する配線等を変更することで、より回路規模を小さくし、回路レイアウトのコンパクト化したものである。即ち、任意の4個の光スイッチをバー状態とし(例えば、図21中のS12,S14,S42,S44)、残りの光スイッチをクロス状態として、入力ペアと出力ペアの関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる点で、第1実施形態に係る前記光スイッチ装置と同じである。以下、変更点について説明する。 First, a fifth embodiment of the optical switch device will be described with reference to FIGS. FIG. 20 is an explanatory diagram illustrating the configuration of the optical switch device according to the fifth embodiment, and FIG. 21 is an explanatory diagram illustrating the operation of the optical switch device according to the fifth embodiment.
In the fifth embodiment, the optical switch device according to the first embodiment (see FIGS. 12 and 13), input / output paths, input / output port pairs, first input / output pair groups, and second input / output pair groups are provided. By changing the wiring, etc. that make up the input / output path without changing the setting and the connection relationship between the input pair and the polarization separation means and the connection relationship between the output pair and the polarization coupling means, the circuit scale can be further increased. The circuit layout is made smaller and the circuit layout is made more compact. That is, any four optical switches are set to the bar state (for example, S12, S14, S42, S44 in FIG. 21), the remaining optical switches are set to the cross state, and the relationship between the input pair and the output pair is not changed. All four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as an output pair, the first polarization component and the second polarization component can be synchronized, which is the same as the optical switch device according to the first embodiment. Hereinafter, the changes will be described.
この第5実施形態は、第1実施形態に係る前記光スイッチ装置(図12,13参照)と入出力経路、入出力ポートのペア、第1入出力ペア群及び第2入出力ペア群の各設定、並びに、入力ペアと偏波分離手段との接続関係及び出力ペアと偏波結合手段との接続関係に変更を与えず、入出力経路を構成する配線等を変更することで、より回路規模を小さくし、回路レイアウトのコンパクト化したものである。即ち、任意の4個の光スイッチをバー状態とし(例えば、図21中のS12,S14,S42,S44)、残りの光スイッチをクロス状態として、入力ペアと出力ペアの関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる点で、第1実施形態に係る前記光スイッチ装置と同じである。以下、変更点について説明する。 First, a fifth embodiment of the optical switch device will be described with reference to FIGS. FIG. 20 is an explanatory diagram illustrating the configuration of the optical switch device according to the fifth embodiment, and FIG. 21 is an explanatory diagram illustrating the operation of the optical switch device according to the fifth embodiment.
In the fifth embodiment, the optical switch device according to the first embodiment (see FIGS. 12 and 13), input / output paths, input / output port pairs, first input / output pair groups, and second input / output pair groups are provided. By changing the wiring, etc. that make up the input / output path without changing the setting and the connection relationship between the input pair and the polarization separation means and the connection relationship between the output pair and the polarization coupling means, the circuit scale can be further increased. The circuit layout is made smaller and the circuit layout is made more compact. That is, any four optical switches are set to the bar state (for example, S12, S14, S42, S44 in FIG. 21), the remaining optical switches are set to the cross state, and the relationship between the input pair and the output pair is not changed. All four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as an output pair, the first polarization component and the second polarization component can be synchronized, which is the same as the optical switch device according to the first embodiment. Hereinafter, the changes will be described.
第5実施形態に係る光スイッチ装置では、N列目(4列目)からマトリクススイッチ外方に出る配線をマトリクススイッチ内を通過する態様で1列目に向けて折り返し、折り返された配線端部を1列目側のみに配された偏波分離手段X1~X4及び偏波結合手段Y1~Y4と接続することとして、回路規模を小さくし、回路レイアウトをコンパクト化することとしている。即ち、第5実施形態に係る光スイッチ装置では、第1実施形態に係る光スイッチ装置においてマトリクススイッチ外方に配される配線をマトリクススイッチ内に配すると同時に、第1実施形態に係る光スイッチ装置において配置先に選択性があった偏波分離手段X1~X4及び偏波結合手段Y1~Y4の配置先を1列目側にまとめることで、第1実施形態に係る光スイッチ装置よりも、回路規模が小さくされ、回路レイアウトがコンパクト化されている。
加えて、第5実施形態に係る光スイッチ装置では、次の規則性を持たせて構成されることで、配線長を同一にでき、偏波依存損失を小さくすることができる。 In the optical switch device according to the fifth embodiment, the wiring exiting from the Nth column (fourth column) to the outside of the matrix switch is folded back toward the first column in such a manner as to pass through the matrix switch, and the folded wiring end portion Is connected to the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 arranged only on the first column side, the circuit scale is reduced and the circuit layout is made compact. That is, in the optical switch device according to the fifth embodiment, the optical switch device according to the first embodiment is simultaneously provided in the optical switch device according to the first embodiment with wiring arranged outside the matrix switch in the matrix switch. The arrangement destinations of the polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 that have selectivity in the arrangement destinations are grouped on the first column side, so that the circuit is more effective than the optical switch device according to the first embodiment. The scale is reduced and the circuit layout is made compact.
In addition, since the optical switch device according to the fifth embodiment is configured with the following regularity, the wiring length can be made the same and the polarization dependent loss can be reduced.
加えて、第5実施形態に係る光スイッチ装置では、次の規則性を持たせて構成されることで、配線長を同一にでき、偏波依存損失を小さくすることができる。 In the optical switch device according to the fifth embodiment, the wiring exiting from the Nth column (fourth column) to the outside of the matrix switch is folded back toward the first column in such a manner as to pass through the matrix switch, and the folded wiring end portion Is connected to the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 arranged only on the first column side, the circuit scale is reduced and the circuit layout is made compact. That is, in the optical switch device according to the fifth embodiment, the optical switch device according to the first embodiment is simultaneously provided in the optical switch device according to the first embodiment with wiring arranged outside the matrix switch in the matrix switch. The arrangement destinations of the polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 that have selectivity in the arrangement destinations are grouped on the first column side, so that the circuit is more effective than the optical switch device according to the first embodiment. The scale is reduced and the circuit layout is made compact.
In addition, since the optical switch device according to the fifth embodiment is configured with the following regularity, the wiring length can be made the same and the polarization dependent loss can be reduced.
先ず、第5実施形態に係る光スイッチ装置の構成部として、図22に示す正方格子型マトリクススイッチを想定する。なお、図22は、第5実施形態に係る光スイッチ装置を構成する正方格子型マトリクススイッチの回路構成を示す図である。
この正方格子型マトリクススイッチは、1行目の1列からN-1列(4-1列=3列)までの各光スイッチ(S11~S13)が次列において1行の光スイッチ(S12~S14)及び次行の光スイッチ(S22~S24)と結線され、N行目(4行目)の1列からN-1列(4-1列=3列)までの各光スイッチ(S41~S43)が次列においてN行(4行)の光スイッチ(S42~S44)及び前行の光スイッチ(S32~S34)と結線され、2行目からN-1行目(4-1行=3行目)の1列からN-1列(4-1列=3列)までの各光スイッチ(S21~S23及びS31~S33)が次行において前行の光スイッチ(S12~S14及びS22~S24)及び次行の光スイッチ(S32~S34及びS42~S44)と結線され、全行における行の方向が並行とされ、かつ、全列における列の方向が並行とされる正方格子型マトリクススイッチとされる。 First, a square lattice matrix switch shown in FIG. 22 is assumed as a component of the optical switch device according to the fifth embodiment. FIG. 22 is a diagram showing a circuit configuration of a square lattice matrix switch constituting the optical switch device according to the fifth embodiment.
In this square lattice type matrix switch, each of the optical switches (S11 to S13) from the first column of the first row to the N-1 column (4-1 column = 3 columns) is replaced by one optical switch (S12 to S12). S14) and the optical switches (S22 to S24) in the next row and the optical switches (S41 to S4) from the first column of the Nth row (fourth row) to the N-1th column (4-1 column = 3 columns). S43) is connected to the optical switch (S42 to S44) in the Nth row (fourth row) and the optical switch (S32 to S34) in the previous row in the next column, and the second row to the N-1th row (4-1 row = 4th = The optical switches (S21 to S23 and S31 to S33) from the first column to the N-1 column (4-1 column = 3 columns) in the third row are the optical switches in the previous row (S12 to S14 and S22) in the next row. To S24) and the optical switches (S32 to S34 and S42 to S44) in the next row are connected. , The direction of the rows in all the rows are the parallel and the direction of the columns in the total column is a square lattice matrix switch are parallel.
この正方格子型マトリクススイッチは、1行目の1列からN-1列(4-1列=3列)までの各光スイッチ(S11~S13)が次列において1行の光スイッチ(S12~S14)及び次行の光スイッチ(S22~S24)と結線され、N行目(4行目)の1列からN-1列(4-1列=3列)までの各光スイッチ(S41~S43)が次列においてN行(4行)の光スイッチ(S42~S44)及び前行の光スイッチ(S32~S34)と結線され、2行目からN-1行目(4-1行=3行目)の1列からN-1列(4-1列=3列)までの各光スイッチ(S21~S23及びS31~S33)が次行において前行の光スイッチ(S12~S14及びS22~S24)及び次行の光スイッチ(S32~S34及びS42~S44)と結線され、全行における行の方向が並行とされ、かつ、全列における列の方向が並行とされる正方格子型マトリクススイッチとされる。 First, a square lattice matrix switch shown in FIG. 22 is assumed as a component of the optical switch device according to the fifth embodiment. FIG. 22 is a diagram showing a circuit configuration of a square lattice matrix switch constituting the optical switch device according to the fifth embodiment.
In this square lattice type matrix switch, each of the optical switches (S11 to S13) from the first column of the first row to the N-1 column (4-1 column = 3 columns) is replaced by one optical switch (S12 to S12). S14) and the optical switches (S22 to S24) in the next row and the optical switches (S41 to S4) from the first column of the Nth row (fourth row) to the N-1th column (4-1 column = 3 columns). S43) is connected to the optical switch (S42 to S44) in the Nth row (fourth row) and the optical switch (S32 to S34) in the previous row in the next column, and the second row to the N-1th row (4-1 row = 4th = The optical switches (S21 to S23 and S31 to S33) from the first column to the N-1 column (4-1 column = 3 columns) in the third row are the optical switches in the previous row (S12 to S14 and S22) in the next row. To S24) and the optical switches (S32 to S34 and S42 to S44) in the next row are connected. , The direction of the rows in all the rows are the parallel and the direction of the columns in the total column is a square lattice matrix switch are parallel.
次に、第5実施形態に係る光スイッチ装置の構成部として、図23に示す正方格子型配線を想定する。なお、図23は、第5実施形態に係る光スイッチ装置を構成する正方格子型配線の回路構成を示す図である。
この正方格子型配線は、前記正方格子型マトリクススイッチと同行同列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての前記光スイッチをクロス状態の結線に置換して結線される。
即ち、前記正方格子型配線は、前記正方格子型マトリクススイッチと同じ4行4列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての光スイッチ(S11~S44)がクロス状態の結線(C11~C44)に置換されて結線される点で前記正方格子型マトリクススイッチと異なる。 Next, a square lattice wiring shown in FIG. 23 is assumed as a component of the optical switch device according to the fifth embodiment. FIG. 23 is a diagram illustrating a circuit configuration of a square lattice type wiring included in the optical switch device according to the fifth embodiment.
This square lattice type wiring is substantially the same size in the same row and column as the square lattice type matrix switch, and is connected by replacing all the optical switches of the square lattice type matrix switch with the connection in the cross state.
That is, the square lattice type wiring is substantially the same size in 4 rows and 4 columns as the square lattice type matrix switch, and all the optical switches (S11 to S44) of the square lattice type matrix switch are in the cross state. This is different from the square lattice type matrix switch in that it is connected with the connection (C11 to C44).
この正方格子型配線は、前記正方格子型マトリクススイッチと同行同列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての前記光スイッチをクロス状態の結線に置換して結線される。
即ち、前記正方格子型配線は、前記正方格子型マトリクススイッチと同じ4行4列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての光スイッチ(S11~S44)がクロス状態の結線(C11~C44)に置換されて結線される点で前記正方格子型マトリクススイッチと異なる。 Next, a square lattice wiring shown in FIG. 23 is assumed as a component of the optical switch device according to the fifth embodiment. FIG. 23 is a diagram illustrating a circuit configuration of a square lattice type wiring included in the optical switch device according to the fifth embodiment.
This square lattice type wiring is substantially the same size in the same row and column as the square lattice type matrix switch, and is connected by replacing all the optical switches of the square lattice type matrix switch with the connection in the cross state.
That is, the square lattice type wiring is substantially the same size in 4 rows and 4 columns as the square lattice type matrix switch, and all the optical switches (S11 to S44) of the square lattice type matrix switch are in the cross state. This is different from the square lattice type matrix switch in that it is connected with the connection (C11 to C44).
次に、図24に示すように、平面視で前記正方格子型マトリクススイッチの個々の光スイッチ(S11~S44)に対して個々のクロス状の結線(C11~C44)が同行同列同士で1つの組をなすように列の方向に対向配置される状態で、この正方格子型配線を前記正方格子型マトリクススイッチの表裏いずれかの面上に配する。即ち、それぞれ行列方向に平面状で展開される前記正方格子型配線及び前記正方格子型マトリクススイッチのいずれか一方を他方に対し、先の状態で同一平面上に重ねて配する。なお、図24は、正方格子型マトリクススイッチ上に正方格子型配線を配した状態を説明する説明図(1)である。
Next, as shown in FIG. 24, each cross-shaped connection (C11 to C44) is one in the same row and the same column with respect to each optical switch (S11 to S44) of the square lattice matrix switch in a plan view. In a state of being opposed to each other in the column direction so as to form a set, this square lattice type wiring is arranged on either the front or back surface of the square lattice type matrix switch. That is, either one of the square lattice type wiring and the square lattice type matrix switch, which are developed in a planar shape in the matrix direction, is arranged on the same plane in the previous state with respect to the other. FIG. 24 is an explanatory diagram (1) for explaining a state in which square lattice wirings are arranged on a square lattice matrix switch.
次に、図25に示すように、N列目(4列目)における各組の光スイッチ(S14,S24,S34,S44)とクロス状の結線(C14,C24,C34,C44)とが、光スイッチ(S14,S24,S34,S44)のオリジナルポート(B1~B4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C14,C24,C34,C44)の前記オリジナルポートに相当するポート(B1~B4)とが結線され、かつ、光スイッチ(S14,S24,S34,S44)のアイドルポート(K1~K4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C14,C24,C34,C44)の前記アイドルポートに相当するポート(K1~K4)とが結線されるように、前記正方格子型配線を前記正方格子型マトリクススイッチと結線する。なお、図25は、正方格子型マトリクススイッチ上に正方格子型配線を配した状態を説明する説明図(2)である。
Next, as shown in FIG. 25, each set of optical switches (S14, S24, S34, S44) and cross-shaped connections (C14, C24, C34, C44) in the Nth row (fourth row) Cross connection (C14, C24, C34, C44) when the original ports (B1 to B4) of the optical switch (S14, S24, S34, S44) and the square lattice type wiring are regarded as the square lattice type matrix switch. Are connected to the ports (B1 to B4) corresponding to the original ports, and the idle ports (K1 to K4) of the optical switches (S14, S24, S34, S44) and the square lattice type wiring are connected to the square lattice type. A port (K1) corresponding to the idle port of the cross connection (C14, C24, C34, C44) when viewed as a matrix switch As K4) and is connected to the tetragonal lattice matrix switch and connecting the tetragonal lattice wires. FIG. 25 is an explanatory diagram (2) for explaining a state in which square lattice wirings are arranged on a square lattice matrix switch.
次に、1列目における各組(S11とC11の組、S21とC21の組、S31とC31の組、S41とC41の組)の光スイッチ(S11,S21,S31,S41)とクロス状の結線(C11,C21,C31,C41)とが、光スイッチ(S11,S21,S31,S41)のオリジナルポート(A1~A4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C11,C21,C31,C41)の前記オリジナルポートに相当するポート(A1~A4)とが第1光入力手段及び第2光入力手段を介して共通の偏波分離手段(X1~X4)に接続され、かつ、光スイッチ(S11,S21,S31,S41)のアイドルポート(L1~L4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C11,C21,C31,C41)の前記アイドルポートに相当するポート(L1~L4)とが第1光出力手段及び第2光出力手段を介して共通の偏波結合手段(Y1~Y4)に接続されるように、偏波分離手段(X1~X4)及び偏波結合手段(Y1~Y4)の配置(1列目側)、並びに、これら手段と配線との結線を行う。
なお、光の入出力関係には任意性があり、光スイッチ(S11,S21,S31,S41)のオリジナルポート(A1~A4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C11,C21,C31,C41)の前記オリジナルポートに相当するポート(A1~A4)とが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段(Y1~Y4)に接続され、かつ、光スイッチ(S11,S21,S31,S41)のアイドルポート(L1~L4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C11,C21,C31,C41)の前記アイドルポートに相当するポート(L1~L4)とが前記第1光入力手段及び前記第2光入力手段を介して共通の偏波分離手段(X1~X4)に接続されるように変更してもよい。
以上の次の規則性を持たせることで、偏波依存損失が小さい第5実施形態に係る光スイッチ装置を構成することができる(図20参照)。以下、具体的に説明を行う。 Next, the optical switches (S11, S21, S31, S41) of each pair (S11 and C11, S21 and C21, S31 and C31, S41 and C41) in the first row are cross-shaped. Connections (C11, C21, C31, C41) are when the original ports (A1 to A4) of the optical switch (S11, S21, S31, S41) and the square lattice type wiring are regarded as the square lattice type matrix switch. Ports (A1 to A4) corresponding to the original ports of the cross connection (C11, C21, C31, C41) are connected to the common polarization separation means (X1) via the first optical input means and the second optical input means. To X4), and the idle ports (L1 to L4) of the optical switches (S11, S21, S31, S41) and the square lattice type wiring are connected to the square lattice type matrix. The ports (L1 to L4) corresponding to the idle ports of the cross-like connection (C11, C21, C31, C41) when viewed as a switch are shared via the first light output means and the second light output means The polarization separation means (X1 to X4) and the polarization coupling means (Y1 to Y4) are arranged so as to be connected to the polarization coupling means (Y1 to Y4) (first row side), and Connect to the wiring.
The input / output relationship of light is arbitrary, and when the original ports (A1 to A4) of the optical switch (S11, S21, S31, S41) and the square lattice type wiring are regarded as the square lattice type matrix switch Polarization coupling common to the ports (A1 to A4) corresponding to the original ports of the cross-shaped connections (C11, C21, C31, C41) via the first light output means and the second light output means Cross when the idle ports (L1 to L4) of the optical switches (S11, S21, S31, and S41) and the square lattice type wiring are regarded as the square lattice type matrix switch connected to the means (Y1 to Y4) Ports (L1 to L4) corresponding to the idle ports of the C-shaped connections (C11, C21, C31, C41) and the first optical input means and the May be modified so as to be connected to a common polarization separating means via the second optical input means (X1 ~ X4).
By providing the following regularity, the optical switch device according to the fifth embodiment having a small polarization dependent loss can be configured (see FIG. 20). A specific description will be given below.
なお、光の入出力関係には任意性があり、光スイッチ(S11,S21,S31,S41)のオリジナルポート(A1~A4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C11,C21,C31,C41)の前記オリジナルポートに相当するポート(A1~A4)とが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段(Y1~Y4)に接続され、かつ、光スイッチ(S11,S21,S31,S41)のアイドルポート(L1~L4)と前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときのクロス状の結線(C11,C21,C31,C41)の前記アイドルポートに相当するポート(L1~L4)とが前記第1光入力手段及び前記第2光入力手段を介して共通の偏波分離手段(X1~X4)に接続されるように変更してもよい。
以上の次の規則性を持たせることで、偏波依存損失が小さい第5実施形態に係る光スイッチ装置を構成することができる(図20参照)。以下、具体的に説明を行う。 Next, the optical switches (S11, S21, S31, S41) of each pair (S11 and C11, S21 and C21, S31 and C31, S41 and C41) in the first row are cross-shaped. Connections (C11, C21, C31, C41) are when the original ports (A1 to A4) of the optical switch (S11, S21, S31, S41) and the square lattice type wiring are regarded as the square lattice type matrix switch. Ports (A1 to A4) corresponding to the original ports of the cross connection (C11, C21, C31, C41) are connected to the common polarization separation means (X1) via the first optical input means and the second optical input means. To X4), and the idle ports (L1 to L4) of the optical switches (S11, S21, S31, S41) and the square lattice type wiring are connected to the square lattice type matrix. The ports (L1 to L4) corresponding to the idle ports of the cross-like connection (C11, C21, C31, C41) when viewed as a switch are shared via the first light output means and the second light output means The polarization separation means (X1 to X4) and the polarization coupling means (Y1 to Y4) are arranged so as to be connected to the polarization coupling means (Y1 to Y4) (first row side), and Connect to the wiring.
The input / output relationship of light is arbitrary, and when the original ports (A1 to A4) of the optical switch (S11, S21, S31, S41) and the square lattice type wiring are regarded as the square lattice type matrix switch Polarization coupling common to the ports (A1 to A4) corresponding to the original ports of the cross-shaped connections (C11, C21, C31, C41) via the first light output means and the second light output means Cross when the idle ports (L1 to L4) of the optical switches (S11, S21, S31, and S41) and the square lattice type wiring are regarded as the square lattice type matrix switch connected to the means (Y1 to Y4) Ports (L1 to L4) corresponding to the idle ports of the C-shaped connections (C11, C21, C31, C41) and the first optical input means and the May be modified so as to be connected to a common polarization separating means via the second optical input means (X1 ~ X4).
By providing the following regularity, the optical switch device according to the fifth embodiment having a small polarization dependent loss can be configured (see FIG. 20). A specific description will be given below.
第5実施形態に係る光スイッチ装置では、基板100等の光回路基板上に入出力経路が配される(図20参照)。この入出力経路中、配線(例えば、光導波路)の長さは同一となり、配線長に比例する光信号の伝搬による損失は等しくなる。また、配線同士が跨ぐ箇所である交差点が必ず発生する。交差点では、光信号の損失が生じることとなる。
しかしながら、第5実施形態に係る光スイッチ装置では、前記規則性を持たせて構成されるため、基板100上において、バー状態の光スイッチの設定により任意に形成される8つの入出力経路の全てで交差点を通過する回数がいずれも20回となる。
したがって、第5実施形態に係る光スイッチ装置では、8つの入出力経路により伝達される光信号間での差がなくなり、損失が経路に依存しない態様となり、偏波依存損失を小さくすることができる。
なお、基板100の外方を含めると8つの入出力経路における交差回数に最大2回分の差が生じるものの、基板100上での交差回数に比べて基板100の外方における交差回数が十分に少ないことから、その損失が小さいものとして実質的に無視することができる。
また、図示の例では、入出力経路を構成する配線の一部が基板100の外方に延線されて基板100外方に存する偏波分離手段X1~X4及び偏波結合手段Y1~Y4と接続されているが、偏波分離手段X1~X4、偏波結合手段Y1~Y4及びこれら手段に至る配線が基板100上に配されるように構成されてもよい。 In the optical switch device according to the fifth embodiment, input / output paths are arranged on an optical circuit board such as the board 100 (see FIG. 20). In this input / output path, the length of the wiring (for example, the optical waveguide) is the same, and the loss due to the propagation of the optical signal proportional to the wiring length is equal. In addition, an intersection, which is a place where wirings straddle, always occurs. At the intersection, optical signal loss occurs.
However, since the optical switch device according to the fifth embodiment is configured with the regularity, all of the eight input / output paths arbitrarily formed on thesubstrate 100 by setting the optical switch in the bar state. In each case, the number of times of passing through the intersection is 20 times.
Therefore, in the optical switch device according to the fifth embodiment, there is no difference between the optical signals transmitted through the eight input / output paths, and the loss does not depend on the path, and the polarization dependent loss can be reduced. .
When the outside of thesubstrate 100 is included, the number of intersections in the eight input / output paths differs by a maximum of two times, but the number of intersections outside the substrate 100 is sufficiently smaller than the number of intersections on the substrate 100. Therefore, it can be substantially ignored as the loss is small.
Further, in the illustrated example, a part of the wiring constituting the input / output path is extended outward from thesubstrate 100, and the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 existing outside the substrate 100, Although connected, the polarization separating means X1 to X4, the polarization coupling means Y1 to Y4, and the wirings leading to these means may be arranged on the substrate 100.
しかしながら、第5実施形態に係る光スイッチ装置では、前記規則性を持たせて構成されるため、基板100上において、バー状態の光スイッチの設定により任意に形成される8つの入出力経路の全てで交差点を通過する回数がいずれも20回となる。
したがって、第5実施形態に係る光スイッチ装置では、8つの入出力経路により伝達される光信号間での差がなくなり、損失が経路に依存しない態様となり、偏波依存損失を小さくすることができる。
なお、基板100の外方を含めると8つの入出力経路における交差回数に最大2回分の差が生じるものの、基板100上での交差回数に比べて基板100の外方における交差回数が十分に少ないことから、その損失が小さいものとして実質的に無視することができる。
また、図示の例では、入出力経路を構成する配線の一部が基板100の外方に延線されて基板100外方に存する偏波分離手段X1~X4及び偏波結合手段Y1~Y4と接続されているが、偏波分離手段X1~X4、偏波結合手段Y1~Y4及びこれら手段に至る配線が基板100上に配されるように構成されてもよい。 In the optical switch device according to the fifth embodiment, input / output paths are arranged on an optical circuit board such as the board 100 (see FIG. 20). In this input / output path, the length of the wiring (for example, the optical waveguide) is the same, and the loss due to the propagation of the optical signal proportional to the wiring length is equal. In addition, an intersection, which is a place where wirings straddle, always occurs. At the intersection, optical signal loss occurs.
However, since the optical switch device according to the fifth embodiment is configured with the regularity, all of the eight input / output paths arbitrarily formed on the
Therefore, in the optical switch device according to the fifth embodiment, there is no difference between the optical signals transmitted through the eight input / output paths, and the loss does not depend on the path, and the polarization dependent loss can be reduced. .
When the outside of the
Further, in the illustrated example, a part of the wiring constituting the input / output path is extended outward from the
なお、第5実施形態に係る光スイッチ装置では、基板100上に配線を設ける場合に、回路規模の小型化に加え、配線の長さを同一とし、かつ配線同士の交差点の数を実質的に同一とすることで、光信号の損失によって生じる経路による損失の差を小さくし、偏波依存損失を低減することを目的とするが、次の変形例によっても実現することができる。
図26に第5実施形態に係る光スイッチ装置の変形例を示す。
この変形例は、マトリクス部分を上下2つの階層で分離し、黒い丸で示したポイント部分で上下2つの階層を行き来することができるようにしたものに係る。
即ち、この変形例では、上下2つの階層により、配線長は同一としたうえで、各階層を構成する平面内での交差回数を減らすことができるため、経路損失無依存を実現したまま、全体の損失を低減することができる。
なお、上下2つの階層で分離される限り、前記正方格子型マトリクススイッチと前記正方格子型配線とのいずれを上層とし下層とするかについては、任意である。 In the optical switch device according to the fifth embodiment, when wiring is provided on thesubstrate 100, in addition to downsizing the circuit scale, the length of the wiring is the same and the number of intersections between the wirings is substantially reduced. By aiming at the same, the purpose is to reduce the difference in loss caused by the loss of the optical signal and reduce the polarization dependent loss, but this can also be realized by the following modification.
FIG. 26 shows a modification of the optical switch device according to the fifth embodiment.
This modified example relates to a matrix portion that is separated into two upper and lower layers so that the two upper and lower layers can be moved back and forth at a point portion indicated by a black circle.
That is, in this modified example, the wiring length is the same between the upper and lower layers, and the number of intersections in the planes constituting each layer can be reduced. Loss can be reduced.
As long as the upper and lower layers are separated, it is arbitrary which of the square lattice type matrix switch and the square lattice type wiring is used as an upper layer or a lower layer.
図26に第5実施形態に係る光スイッチ装置の変形例を示す。
この変形例は、マトリクス部分を上下2つの階層で分離し、黒い丸で示したポイント部分で上下2つの階層を行き来することができるようにしたものに係る。
即ち、この変形例では、上下2つの階層により、配線長は同一としたうえで、各階層を構成する平面内での交差回数を減らすことができるため、経路損失無依存を実現したまま、全体の損失を低減することができる。
なお、上下2つの階層で分離される限り、前記正方格子型マトリクススイッチと前記正方格子型配線とのいずれを上層とし下層とするかについては、任意である。 In the optical switch device according to the fifth embodiment, when wiring is provided on the
FIG. 26 shows a modification of the optical switch device according to the fifth embodiment.
This modified example relates to a matrix portion that is separated into two upper and lower layers so that the two upper and lower layers can be moved back and forth at a point portion indicated by a black circle.
That is, in this modified example, the wiring length is the same between the upper and lower layers, and the number of intersections in the planes constituting each layer can be reduced. Loss can be reduced.
As long as the upper and lower layers are separated, it is arbitrary which of the square lattice type matrix switch and the square lattice type wiring is used as an upper layer or a lower layer.
次に、第6実施形態に係る光スイッチ装置として、第2実施形態に係る前記光スイッチ装置(菱形格子型マトリクススイッチ)の入出力経路を構成する配線を変更することで、より回路規模を小さくし、回路レイアウトのコンパクト化させた構成を図27,図28を参照しつつ説明する。なお、図27は、第6実施形態に係る光スイッチ装置の構成を説明する説明図であり、図28は、第6実施形態に係る光スイッチ装置の動作を説明する説明図である。
Next, as the optical switch device according to the sixth embodiment, the circuit scale can be further reduced by changing the wiring that constitutes the input / output path of the optical switch device (diamond-lattice matrix switch) according to the second embodiment. A configuration in which the circuit layout is made compact will be described with reference to FIGS. FIG. 27 is an explanatory diagram illustrating the configuration of the optical switch device according to the sixth embodiment, and FIG. 28 is an explanatory diagram illustrating the operation of the optical switch device according to the sixth embodiment.
この第6実施形態は、第2実施形態に係る前記光スイッチ装置(図14,15参照)と入出力経路、入出力ポートのペア、第1入出力ペア群及び第2入出力ペア群の各設定、並びに、入力ペアと偏波分離手段との接続関係及び出力ペアと偏波結合手段との接続関係に変更を与えず、入出力経路を構成する配線等を変更することで、より回路規模を小さくし、回路レイアウトのコンパクト化したものである。即ち、任意の4個の光スイッチをバー状態とし、残りの光スイッチをクロス状態として、入力ペアと出力ペアの関係に変更がなく、全4!通りの結線状態で(A1,K1),(A2,K2),(A3,K3),(A4,K4)を入力ペアとし、(B1,L1),(B2,L2),(B3,L3),(B4,L4)を出力ペアとして、第1偏波成分と第2偏波成分の同期をとることができる点で、第2実施形態に係る前記光スイッチ装置と同じである。以下、変更点について説明をする。
In the sixth embodiment, the optical switch device (see FIGS. 14 and 15) according to the second embodiment and each of the input / output path, the pair of input / output ports, the first input / output pair group, and the second input / output pair group. By changing the wiring, etc. that make up the input / output path without changing the setting and the connection relationship between the input pair and the polarization separation means and the connection relationship between the output pair and the polarization coupling means, the circuit scale can be further increased. The circuit layout is made smaller and the circuit layout is made more compact. That is, any four optical switches are set to the bar state and the remaining optical switches are set to the cross state, and the relationship between the input pair and the output pair is not changed, and all four! (A1, K1), (A2, K2), (A3, K3), (A4, K4) are input pairs in the street connection state, and (B1, L1), (B2, L2), (B3, L3) , (B4, L4) as an output pair, the first polarization component and the second polarization component can be synchronized, which is the same as the optical switch device according to the second embodiment. The changes will be described below.
第6実施形態に係る光スイッチ装置では、図27,28に示すように、N列目(4列目)からマトリクススイッチ外方に出る配線をマトリクススイッチ内を通過する態様で1列目に向けて折り返し、折り返された配線端部を1列目側のみに配された偏波分離手段X1~X4及び偏波結合手段Y1~Y4と接続することとして、回路規模を小さくし、回路レイアウトをコンパクト化することとしている。即ち、第6実施形態に係る光スイッチ装置では、第2実施形態に係る光スイッチ装置においてマトリクススイッチ外方に配される配線をマトリクススイッチ内に配すると同時に、第2実施形態に係る光スイッチ装置において配置先に選択性があった偏波分離手段X1~X4及び偏波結合手段Y1~Y4の配置先を1列目側にまとめることで、第2実施形態と同様に偏波無依存ではないものの、第2実施形態に係る光スイッチ装置よりも、回路規模が小さくされ、回路レイアウトがコンパクト化されている。なお、図28中の符号200は、基板を示す。
In the optical switch device according to the sixth embodiment, as shown in FIGS. 27 and 28, the wiring that goes out of the matrix switch from the Nth column (fourth column) passes through the matrix switch and is directed to the first column. By connecting the folded wiring end to the polarization separation means X1 to X4 and the polarization coupling means Y1 to Y4 arranged only on the first row side, the circuit scale is reduced and the circuit layout is compact. It is going to become. That is, in the optical switch device according to the sixth embodiment, the optical switch device according to the second embodiment is provided at the same time as the wiring arranged outside the matrix switch is arranged in the matrix switch in the optical switch device according to the second embodiment. The arrangement destinations of the polarization separating means X1 to X4 and the polarization coupling means Y1 to Y4 that have selectivity in the arrangement destinations are grouped on the first column side, so that they are not polarization independent as in the second embodiment. However, the circuit scale is smaller and the circuit layout is more compact than the optical switch device according to the second embodiment. In addition, the code | symbol 200 in FIG. 28 shows a board | substrate.
S11~S44 光スイッチ
A1~A4,K1~K4 入力ポート(オリジナルポート)
B1~B4,L1~L4 出力ポート(オリジナルポート)
* アイドルポート
100,200 基板 S11 to S44 Optical switch A1 to A4, K1 to K4 Input port (original port)
B1 to B4, L1 to L4 Output port (original port)
* Idle port 100, 200 board
A1~A4,K1~K4 入力ポート(オリジナルポート)
B1~B4,L1~L4 出力ポート(オリジナルポート)
* アイドルポート
100,200 基板 S11 to S44 Optical switch A1 to A4, K1 to K4 Input port (original port)
B1 to B4, L1 to L4 Output port (original port)
*
Claims (7)
- 2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされるマトリクススイッチと、
前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群とし、残り半数のN個の前記ペアを第2入出力ペア群としたとき、
前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における前記各オリジナルポートと1対1で接続されるN個の第1光入力手段と、
前記第1入出力ペア群及び前記第2入出力ペア群のいずれか一方における未接続の前記各オリジナルポートと1対1で接続されるN個の第1光出力手段と、
前記第1光入力手段と接続される前記オリジナルポートを前記ペアに含む前記各アイドルポートと1対1で接続されるN個の第2光入力手段と、
前記第1光出力手段と接続される前記オリジナルポートを前記ペアに含む未接続の前記各アイドルポートと1対1で接続されるN個の第2光出力手段と、
を有することを特徴とする光スイッチ装置。 2 input 2 switchable optical switch in one of two states: cross and bar output is disposed two N in a matrix of N rows and N columns where N is an integer of 2 or more, a square lattice matrix switch and rhombic lattice A matrix switch having a circuit configuration of any one of the matrix switches;
An original port that constitutes one of two externally connectable input / output ports in each input / output path of the matrix switch that is connected in a state where all the optical switches of the matrix switch are switched to the cross state, and the other Of the 2N input / output port pairs to be paired with the idle port constituting the first half, the N number of the pairs including the N original ports in the first column of the matrix switch in the pair is the first. When the input / output pair group is used and the remaining half of the N pairs are used as the second input / output pair group,
N first optical input means connected one-to-one with the original ports in either the first input / output pair group or the second input / output pair group;
N first optical output means connected one-to-one with the unconnected original ports in any one of the first input / output pair group and the second input / output pair group;
N second optical input means connected in a one-to-one relationship with each of the idle ports including the original port connected to the first optical input means in the pair;
N second optical output means connected in a one-to-one relationship with the unconnected idle ports including the original port connected to the first optical output means in the pair;
An optical switch device comprising: - マトリクススイッチが、正方格子型マトリクススイッチの回路構成とされる請求項1に記載の光スイッチ装置。 The optical switch device according to claim 1, wherein the matrix switch has a circuit configuration of a square lattice type matrix switch.
- 更に、光を第1偏波成分と第2偏波成分とに偏波分離して前記第1偏波成分を第1光入力手段に入力するとともに前記第2偏波成分を第2光入力手段に入力するN個の偏波分離手段と、
第1光出力手段及び第2光出力手段から片方ずつ出力される前記第1偏波成分と前記第2偏波成分とを偏波結合するN個の偏波結合手段と、
を有する請求項1から2のいずれかに記載の光スイッチ装置。 Further, the light is polarized into a first polarization component and a second polarization component, the first polarization component is input to the first light input means, and the second polarization component is input to the second light input means. N polarization splitting means input to
N polarization coupling means for polarization-coupling the first polarization component and the second polarization component output one by one from the first light output means and the second light output means,
The optical switch device according to claim 1, comprising: - 偏波分離手段が光を第1偏波成分と第2偏波成分とに偏波分離するビームスプリッタと、前記第1偏波成分及び前記第2偏波成分のいずれか一方の偏波軸を他方の偏波軸に回転させる第1偏波回転素子とを有し、
偏波結合手段が前記第1偏波回転素子で偏波軸を回転させた前記第1偏波成分及び前記第2偏波成分のいずれか一方の偏波軸を回転前の元の偏波軸に再回転させる第2偏波回転素子と、前記第2偏波回転素子で偏波軸を再回転させた前記第1偏波成分及び前記第2偏波成分のいずれか一方と他方とを偏波結合するビーム結合器と、を有する請求項3に記載の光スイッチ装置。 A polarization splitter that splits light into a first polarization component and a second polarization component; and a polarization axis of one of the first polarization component and the second polarization component; A first polarization rotating element that rotates around the other polarization axis;
An original polarization axis before rotation of any one polarization axis of the first polarization component and the second polarization component whose polarization coupling means has rotated the polarization axis by the first polarization rotation element A second polarization rotator to be rotated again, and one of the first polarization component and the second polarization component whose polarization axis is re-rotated by the second polarization rotator and the other. The optical switch device according to claim 3, further comprising: a beam combiner that performs wave coupling. - 正方格子型マトリクススイッチが、1行目の1列からN-1列までの各光スイッチが次列において1行の前記光スイッチ及び次行の前記光スイッチと結線され、N行目の1列からN-1列までの前記各光スイッチが次列においてN行の前記光スイッチ及び前行の前記光スイッチと結線され、2行目からN-1行目の1列からN-1列までの前記各光スイッチが次行において前行の前記光スイッチ及び次行の前記光スイッチと結線され、全行における行の方向が並行とされ、かつ、全列における列の方向が並行とされる正方格子型マトリクススイッチであり、
前記正方格子型マトリクススイッチと同行同列で略同等の大きさであり、前記正方格子型マトリクススイッチの全ての前記光スイッチをクロス状態の結線に置換して結線される正方格子型配線が、平面視で前記正方格子型マトリクススイッチの個々の前記光スイッチに対して個々の前記クロス状の結線が1つの組をなすように列の方向に対向配置される状態で、行列方向に平面状で展開される前記正方格子型マトリクススイッチの表裏いずれかの面上に配され、
N列目における各組の前記光スイッチと前記クロス状の結線とが、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが結線され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが結線され、
1列目における各組の前記光スイッチと前記クロス状の結線とが、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが第1光入力手段及び第2光入力手段を介して共通の偏波分離手段に接続され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段に接続されるか、又は、光の入出力関係を逆として、前記光スイッチのオリジナルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記オリジナルポートに相当するポートとが前記第1光出力手段及び前記第2光出力手段を介して共通の偏波結合手段に接続され、かつ、前記光スイッチのアイドルポートと前記正方格子型配線を前記正方格子型マトリクススイッチとして見立てたときの前記クロス状の結線の前記アイドルポートに相当するポートとが前記第1光入力手段及び前記第2光入力手段を介して共通の偏波分離手段に接続される請求項3から4のいずれかに記載の光スイッチ装置。 In the square lattice type matrix switch, each optical switch from the first column of the first row to the N−1 column is connected to the optical switch of the first row and the optical switch of the next row in the next column, and the first column of the N row From the second row to the (N-1) th column, the optical switches from the first row to the (N-1) th column are connected to the optical switch in the Nth row and the optical switch in the previous row. In the next row, the optical switches are connected to the optical switch in the previous row and the optical switch in the next row, the row directions in all rows are parallel, and the column directions in all columns are parallel. A square lattice matrix switch,
A square lattice-type wiring that is connected in the same row and in the same column as the square lattice-type matrix switch, and that is connected by replacing all the optical switches of the square lattice-type matrix switch with a cross-state connection. In the state in which the individual cross-shaped connections are arranged opposite to each other in the column direction so as to form one set with respect to the individual optical switches of the square lattice type matrix switch, Arranged on either side of the square lattice matrix switch
Each set of the optical switch and the cross-shaped connection in the N-th column is the cross-shaped connection when the original port of the optical switch and the square lattice type wiring are regarded as the square lattice type matrix switch. A port corresponding to the original port, and a port corresponding to the idle port of the cross-like connection when the idle port of the optical switch and the square lattice type wiring are regarded as the square lattice type matrix switch And are connected,
Each set of the optical switch and the cross-shaped connection in the first row is the cross-shaped connection when the original port of the optical switch and the square lattice type wiring are regarded as the square lattice type matrix switch. A port corresponding to the original port is connected to the common polarization separation means via the first optical input means and the second optical input means, and the idle port of the optical switch and the square lattice type wiring are connected to the square lattice A port corresponding to the idle port of the cross connection when viewed as a type matrix switch is connected to a common polarization coupling means via the first optical output means and the second optical output means Or, the optical input / output relationship is reversed, and the original port of the optical switch and the square lattice type wiring are connected to the square lattice type matrix switch. And the port corresponding to the original port of the cross-like connection when connected to the common polarization coupling means via the first light output means and the second light output means, and the light The idle port of the switch and the port corresponding to the idle port of the cross-like connection when the square lattice type wiring is regarded as the square lattice type matrix switch are the first optical input unit and the second optical input unit. The optical switch device according to any one of claims 3 to 4, wherein the optical switch device is connected to a common polarization separation means via a base. - 一対の第1光入力手段及び第2光出力手段をN個の第1入出力源と接続可能なN個の第1入出力部とし、一対の第2光入力手段及び第1光出力手段をN個の第2入出力源と接続可能なN個の第2入出力部とする請求項1から2のいずれかに記載の光スイッチ装置。 The pair of first light input means and second light output means are N first input / output units connectable to the N first input / output sources, and the pair of second light input means and first light output means are The optical switch device according to claim 1, wherein N second input / output units connectable to the N second input / output sources.
- 2入力2出力でクロス及びバーのいずれかの状態にスイッチ可能な光スイッチがNを2以上の整数としてN行N列のマトリクス上にN2個配され、正方格子型マトリクススイッチ及び菱形格子型マトリクススイッチのいずれかの回路構成とされるマトリクススイッチに対し、前記マトリクススイッチの全ての前記光スイッチを前記クロス状態にスイッチさせた状態で結線される前記マトリクススイッチの各入出力経路における外部接続可能な2つの入出力ポートの一方を構成するオリジナルポートと他方を構成するアイドルポートとでペアリングされる2N個の入出力ポートのペアのうち、前記マトリクススイッチの1列目におけるN個の前記オリジナルポートを前記ペアに含む半数のN個の前記ペアを第1入出力ペア群と設定し、残り半数のN個の前記ペアを第2入出力ペア群と設定する工程を含むことを特徴とする光スイッチ装置の設計方法。 2 input 2 switchable optical switch in one of two states: cross and bar output is disposed two N in a matrix of N rows and N columns where N is an integer of 2 or more, a square lattice matrix switch and rhombic lattice External connection is possible in each input / output path of the matrix switch that is connected in a state in which all the optical switches of the matrix switch are switched to the cross state with respect to the matrix switch having a circuit configuration of the matrix switch. Of the 2N input / output port pairs paired with the original port constituting one of the two input / output ports and the idle port constituting the other, the N originals in the first column of the matrix switch Half of the N pairs including ports in the pair are set as the first input / output pair group, and the remaining half A method for designing an optical switch device comprising the step of setting the N number of pairs as a second input / output pair group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017531046A JP6521072B2 (en) | 2015-07-27 | 2016-05-23 | Optical switch device and design method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-147385 | 2015-07-27 | ||
JP2015147385 | 2015-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018034A1 true WO2017018034A1 (en) | 2017-02-02 |
Family
ID=57884503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065173 WO2017018034A1 (en) | 2015-07-27 | 2016-05-23 | Optical switch device and design method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6521072B2 (en) |
WO (1) | WO2017018034A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318718A (en) * | 2017-12-26 | 2018-07-24 | 北京航天测控技术有限公司 | A method of it improving high-density matrix and switchs bandwidth performance |
JP2020098232A (en) * | 2018-12-17 | 2020-06-25 | 国立研究開発法人産業技術総合研究所 | Optical switch |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720331A (en) * | 1993-06-17 | 1995-01-24 | Oki Electric Ind Co Ltd | Optical switch module |
JPH09297230A (en) * | 1996-04-30 | 1997-11-18 | Nippon Telegr & Teleph Corp <Ntt> | Waveguide type modified 2x2 optical switch and waveguide type matrix optical switch |
JP2000197076A (en) * | 1998-12-25 | 2000-07-14 | Fujitsu Ltd | Crosspoint switch circuit and basic switch cell electronics |
JP2001257658A (en) * | 2000-01-06 | 2001-09-21 | Nippon Telegr & Teleph Corp <Ntt> | Dcma modem, dcma communication system, and wdm.cdma common use communication system |
JP2004135238A (en) * | 2002-10-15 | 2004-04-30 | Nippon Telegr & Teleph Corp <Ntt> | Optical branch and insertion device |
US20090028499A1 (en) * | 2004-06-14 | 2009-01-29 | Maki Jeffery J | Optical Switch Matrix |
-
2016
- 2016-05-23 WO PCT/JP2016/065173 patent/WO2017018034A1/en active Application Filing
- 2016-05-23 JP JP2017531046A patent/JP6521072B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720331A (en) * | 1993-06-17 | 1995-01-24 | Oki Electric Ind Co Ltd | Optical switch module |
JPH09297230A (en) * | 1996-04-30 | 1997-11-18 | Nippon Telegr & Teleph Corp <Ntt> | Waveguide type modified 2x2 optical switch and waveguide type matrix optical switch |
JP2000197076A (en) * | 1998-12-25 | 2000-07-14 | Fujitsu Ltd | Crosspoint switch circuit and basic switch cell electronics |
JP2001257658A (en) * | 2000-01-06 | 2001-09-21 | Nippon Telegr & Teleph Corp <Ntt> | Dcma modem, dcma communication system, and wdm.cdma common use communication system |
JP2004135238A (en) * | 2002-10-15 | 2004-04-30 | Nippon Telegr & Teleph Corp <Ntt> | Optical branch and insertion device |
US20090028499A1 (en) * | 2004-06-14 | 2009-01-29 | Maki Jeffery J | Optical Switch Matrix |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318718A (en) * | 2017-12-26 | 2018-07-24 | 北京航天测控技术有限公司 | A method of it improving high-density matrix and switchs bandwidth performance |
JP2020098232A (en) * | 2018-12-17 | 2020-06-25 | 国立研究開発法人産業技術総合研究所 | Optical switch |
JP7126259B2 (en) | 2018-12-17 | 2022-08-26 | 国立研究開発法人産業技術総合研究所 | light switch |
Also Published As
Publication number | Publication date |
---|---|
JP6521072B2 (en) | 2019-05-29 |
JPWO2017018034A1 (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5913139B2 (en) | Waveguide type optical switch | |
US10495819B2 (en) | Optical arrangement for managing diversity and isolation between ports in a wavelength selective switch | |
JP6380960B2 (en) | Scalable silicon photonic switching architecture for optical networks | |
CN106990481B (en) | 2×2 Multimode Optical Switch and Network-on-Chip | |
CN108061937A (en) | A kind of multimode optical switching structure for link switching | |
JP6533743B2 (en) | Optical cross connect device | |
WO2017018034A1 (en) | Optical switch device and design method therefor | |
US9366824B2 (en) | Optical circuit switch with integral circulators | |
JP6969849B2 (en) | Switch matrix with built-in polarization controller | |
WO2012137555A1 (en) | Waveguide optical switch | |
US10911844B2 (en) | Integrated high-radix non-blocking optical switching fabric | |
Wu et al. | Large-port-count MEMS silicon photonics switches | |
CN108761652B (en) | Multimode Optical Switch Architecture for Intra-Link Mode Switching and Link Switching | |
JP6950593B2 (en) | Optical input / output device and its manufacturing method | |
JP7126259B2 (en) | light switch | |
JP2000152293A (en) | Two-way optical transmitter, optical cross connector and optical network system | |
JP6890533B2 (en) | Optical input / output device | |
Zhang et al. | LOOP: A low-loss compact plasmonic router for ONoC | |
JP2016178513A (en) | Optical multiplexer, optical demultiplexer, and optical switch | |
Mellette et al. | Partially configurable optical switching for data center networks | |
Nakata et al. | A new pair-controlled photonic switch matrix | |
JPH0682866A (en) | Multi-terminal optical delay compensating circuit | |
JP2016178508A (en) | Light switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830139 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017531046 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16830139 Country of ref document: EP Kind code of ref document: A1 |