WO2017013968A1 - 弾性波装置 - Google Patents
弾性波装置 Download PDFInfo
- Publication number
- WO2017013968A1 WO2017013968A1 PCT/JP2016/067749 JP2016067749W WO2017013968A1 WO 2017013968 A1 WO2017013968 A1 WO 2017013968A1 JP 2016067749 W JP2016067749 W JP 2016067749W WO 2017013968 A1 WO2017013968 A1 WO 2017013968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- wave device
- low
- sound velocity
- thin film
- Prior art date
Links
- 239000010408 film Substances 0.000 claims abstract description 126
- 239000010409 thin film Substances 0.000 claims abstract description 86
- 230000010287 polarization Effects 0.000 claims abstract description 27
- 239000013078 crystal Substances 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 29
- 239000012790 adhesive layer Substances 0.000 claims description 20
- 230000001902 propagating effect Effects 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 7
- 230000001070 adhesive effect Effects 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910052839 forsterite Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- -1 potassium nitride Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders or supports
- H03H9/0595—Holders or supports the holder support and resonator being formed in one body
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14544—Transducers of particular shape or position
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6483—Ladder SAW filters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/877—Conductive materials
Definitions
- the present invention relates to an elastic wave device using a laminated structure having a high sound velocity member, a low sound velocity film, and a piezoelectric thin film.
- a low acoustic velocity film and a piezoelectric thin film are laminated on a high acoustic velocity member.
- An IDT electrode is provided on the piezoelectric thin film.
- the acoustic velocity of the bulk wave propagating through the high acoustic velocity member is made higher than the acoustic velocity of the main mode elastic wave propagating through the piezoelectric thin film.
- the acoustic velocity of the bulk wave propagating through the low acoustic velocity film is set lower than the acoustic velocity of the main mode acoustic wave propagating through the piezoelectric thin film.
- An object of the present invention is to provide an elastic wave device having a structure in which a thin piezoelectric thin film, a low acoustic velocity film, and a high acoustic velocity member are laminated, with less variation in characteristics.
- the present invention relates to an elastic wave device having a piezoelectric thin film, wherein a high sound speed member in which a sound velocity of a propagating bulk wave is higher than a sound speed of an elastic wave in a main mode propagating through the piezoelectric thin film, and the high sound velocity member A low-velocity film laminated on the piezoelectric thin film and having a lower acoustic velocity than the acoustic wave of the main mode propagating through the piezoelectric thin film, and the piezoelectric provided on the low-sonic velocity film.
- a thin film and an IDT electrode provided on the piezoelectric thin film wherein the piezoelectric thin film is made of a piezoelectric single crystal, the main surface on the low sound velocity film side is a plus surface in the polarization axis direction, and the IDT electrode side
- the thickness of the piezoelectric thin film when the wavelength determined by the electrode finger pitch of the IDT electrode is ⁇ , the thickness of the piezoelectric thin film is 3.5 ⁇ or less. In this case, the Q value can be increased. Preferably, the thickness of the piezoelectric thin film is 2.5 ⁇ or less. In that case, the absolute value of TCF can be reduced. More preferably, the thickness of the piezoelectric thin film is 1.5 ⁇ or less. In that case, the speed of sound can be easily controlled.
- the low sound velocity film is made of an oxide other than the piezoelectric single crystal.
- the oxide is an inorganic oxide.
- the inorganic oxide is preferably made of one material selected from the group consisting of silicon oxide, silicon oxynitride, tantalum oxide, and a compound obtained by adding fluorine, carbon or boron to silicon oxide. In this case, the absolute value of the frequency temperature coefficient TCF can be reduced.
- the piezoelectric single crystal is LiNbO 3 or LiTaO 3
- the low sound velocity film contains Li.
- the adhesion between the low sound velocity film and the piezoelectric thin film can be improved more effectively.
- the high sound velocity member is a high sound velocity support substrate.
- the acoustic wave device further includes a support substrate, the high-sonic member is a high-sonic film, and the high-sonic film is laminated between the support substrate and the low-sonic film. Has been.
- the low sound velocity film includes a first low sound velocity layer and a second low sound velocity layer, and the first low sound velocity layer and the The second low sound velocity layer is joined via the first adhesive layer.
- the first adhesive layer is joined via the first adhesive layer.
- a second low-sonic film laminated between the high-sonic film and the support substrate is further provided.
- the influence of the bulk wave can be further effectively reduced.
- the second low sound velocity film includes a third low sound velocity layer and a fourth low sound velocity layer, and the third low sound velocity layer.
- the layer and the fourth low sound velocity layer are joined via the second adhesive layer. In this case, what is necessary is just to join the laminated part of the one side of a 2nd adhesive material layer, and the laminated part of the other side through a 2nd adhesive bond layer.
- a third low-sonic film is provided on the second main surface of the piezoelectric thin film, and the second low-sonic film is formed on the second low-sonic film.
- An IDT electrode is provided. In this case, unnecessary bulk waves can be leaked to the third low-speed film side.
- the adhesion between the piezoelectric thin film and the low sound velocity film can be enhanced, and variations in electrical characteristics such as temperature characteristics and filter characteristics can be reduced.
- FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view for explaining a negative surface and a positive surface in the polarization axis direction of the piezoelectric thin film.
- FIG. 3 is a diagram showing return loss characteristics of the acoustic wave resonator as the acoustic wave device according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing an impedance Smith chart of the acoustic wave resonator as the acoustic wave device according to the first embodiment of the present invention.
- FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view for explaining a negative surface and a positive surface in the polarization axis direction of the piezoelectric thin film.
- FIG. 3 is a diagram showing return loss characteristics of the
- FIG. 5 is a diagram showing the magnitude of the in-band ripple when the piezoelectric thin film and the minus surface in the polarization axis direction are laminated on the low-speed film and when the plus surface in the polarization axis direction is laminated on the piezoelectric thin film.
- FIG. 6 is a diagram showing the relationship between the position in the depth direction from the low acoustic velocity film made of SiO 2 and the piezoelectric thin film made of LiTaO 3 and the concentrations of Li and Ta in the acoustic wave device.
- FIG. 7 is a front sectional view of the acoustic wave device according to the second embodiment of the present invention.
- FIG. 8 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
- FIG. 9 is a front sectional view of an acoustic wave device according to a fourth embodiment of the present invention.
- FIG. 10 is a front sectional view of an acoustic wave device according to a fifth embodiment of the present invention.
- FIG. 11 is a front sectional view of an acoustic wave device according to a sixth embodiment of the present invention.
- FIG. 12 is a front sectional view of an acoustic wave device according to a seventh embodiment of the present invention.
- FIG. 13 is a front sectional view of an acoustic wave device according to an eighth embodiment of the present invention.
- FIG. 14 is a front sectional view of an acoustic wave device according to a ninth embodiment of the present invention.
- FIG. 15 is a diagram showing the relationship between the thickness of the LiTaO 3 film and Q in the acoustic wave device.
- FIG. 16 is a diagram showing the relationship between the LiTaO 3 film thickness and the frequency temperature coefficient TCF in the acoustic wave device.
- FIG. 17 is a diagram showing the relationship between the film thickness of the LiTaO 3 film and the sound speed in the acoustic wave device.
- FIG. 18 is a diagram showing the relationship between the thickness of the piezoelectric thin film made of LiTaO 3 and the specific bandwidth.
- FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
- the acoustic wave device 1 has a support substrate 2 and a low-sonic film 3 laminated on the support substrate 2.
- a piezoelectric thin film 4 is laminated on the low acoustic velocity film 3.
- the piezoelectric thin film 4 has a first main surface 4a and a second main surface 4b.
- the piezoelectric thin film 4 is laminated on the low sound velocity film 3 so that the first main surface 4 a is in contact with the low sound velocity film 3.
- An IDT electrode 5 is provided directly on the second main surface 4 b of the piezoelectric thin film 4.
- the support substrate 2 is made of an appropriate rigid material.
- a piezoelectric body examples include a piezoelectric body, a dielectric body, a semiconductor, and a synthetic resin.
- the piezoelectric body examples include sapphire, lithium tantalate, lithium niobate, and quartz.
- the dielectric examples include alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, ceramics such as mullite and forsterite, and glass.
- the semiconductor examples include silicon and potassium nitride.
- a high sonic support substrate is used as the support substrate 2.
- the high sound velocity support substrate is made of a material that propagates bulk waves faster than the main mode elastic waves propagating through the piezoelectric thin film 4.
- the elastic wave of the main mode refers to the elastic wave of the mode used in the elastic wave device 1, and is not limited to the fundamental mode.
- a material for example, aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, silicon nitride, DLC, diamond or the like can be suitably used.
- piezoelectric materials such as sapphire, lithium tantalate, lithium niobate, and quartz, which are high sound speed support substrate materials, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, and cord
- Various ceramics such as light, mullite, steatite, and forsterite, dielectric materials such as glass, semiconductors such as silicon and gallium nitride, resin substrates, and the like are used.
- the low acoustic velocity film 3 is made of a material in which the acoustic velocity of the propagating bulk wave is lower than the acoustic velocity of the main mode elastic wave propagating through the piezoelectric thin film 4.
- an oxide other than the piezoelectric single crystal constituting the piezoelectric thin film 4 can be suitably used.
- it is not limited to oxide as long as the above-mentioned sound speed relationship is satisfied.
- the oxide may be an inorganic oxide or an organic oxide.
- an inorganic oxide is preferable because it can increase mechanical strength and further reduce variation in characteristics.
- examples of the inorganic oxide include silicon oxide, silicon oxynitride, tantalum oxide, and a compound obtained by adding fluorine, carbon, or boron to silicon oxide.
- the low acoustic velocity film 3 is made of silicon oxide.
- the piezoelectric thin film 4 is made of a piezoelectric single crystal.
- the piezoelectric single crystal to be used is not particularly limited, but preferably lithium tantalate (LiTaO 3 ) or lithium niobate (LiNbO 3 ) is used.
- the piezoelectric thin film 4 has a negative surface and a positive surface in the polarization axis direction. As shown in FIG. 1, in the piezoelectric thin film 4, the first main surface 4a is a plus surface in the polarization axis direction, and the second main surface 4b is a minus surface in the polarization axis direction.
- the piezoelectric thin film 4 is laminated on the low sound velocity film 3 from the first main surface 4a side which is a plus surface in the polarization axis direction.
- the polarization component 12 in the piezoelectric thin film 4 extends in the polarization axis direction.
- the minus surface in the polarization axis direction refers to a surface in a direction in which the minus side of the polarization component 12 in the piezoelectric thin film 4 faces.
- the plus plane in the polarization axis direction refers to a plane in the direction in which the plus side of the polarization component 12 in the piezoelectric thin film 4 faces.
- the IDT electrode 5 is made of an appropriate metal.
- a metal such as Al, Cu, Pt, Au, Ag, Ti, Ni, Cr, Mo, W, or an alloy containing these metals as a main component can be used.
- the IDT electrode 5 may be formed of a laminated metal film formed by laminating a plurality of metal films.
- an elastic wave resonator including the IDT electrode 5 is configured.
- the elastic wave resonance of the comparative example is the same as that of the above example except that the piezoelectric thin film 4 is laminated on the low acoustic velocity film 3 from the negative surface side in the polarization axis direction of the piezoelectric thin film 4. A child was made.
- the solid line in FIG. 3 shows the return loss characteristics of the elastic wave resonator of the above example.
- the broken line shows the return loss characteristic of the comparative example.
- the solid line in FIG. 4 shows the impedance Smith chart of the elastic wave resonator of the above embodiment
- the broken line shows the impedance Smith chart of the elastic wave resonator of the comparative example.
- the frequency range between the resonance frequency and the anti-resonance frequency that is, the ratio band is narrow, and a large ripple is present in this frequency range. Appears.
- the maximum ripple in the above frequency range is the maximum ripple.
- FIG. 5 the magnitude of the maximum ripple of the above-described examples and comparative examples is shown.
- the ripple in the frequency range can be significantly reduced, and the variation in characteristics can be reduced.
- the IDT electrode 5 is not only provided on the minus surface in the polarization axis direction of the piezoelectric thin film 4, but also the first main surface 4a of the piezoelectric thin film 4, that is, the plus surface in the polarization axis direction is This is considered to be due to being laminated.
- a chemical reaction is likely to occur at the interface between the plus surface in the polarization axis direction of the piezoelectric thin film 4 and the surface of the inorganic oxide film such as silicon oxide, and a chemical reaction occurs at the interface between the minus surface in the polarization axis direction and the inorganic oxide film. It seems unlikely to occur.
- FIG. 6 is a diagram showing the relationship between the position in the depth direction of the portion where the low acoustic velocity film made of SiO 2 and the piezoelectric thin film made of LiTaO 3 are laminated, and the concentrations of Li and Ta.
- the degree of diffusion of Li into the low sound velocity film is large. It is considered that Li ions on the LiTaO 3 side diffuse to the low sound velocity film 3 side made of an inorganic oxide, and the adhesion between them is also enhanced. In the case of LiNbO 3 as well, the adhesion degree is similarly increased by the diffusion of Li ions.
- the adhesion between the low sound velocity film 3 and the piezoelectric thin film 4 is improved as compared with the comparative example, the ripple in the frequency range is reduced and the variation thereof is also reduced. It is thought that there is.
- the Q value can be increased.
- the thickness of the piezoelectric thin film 4 is preferably in the range of 3.5 ⁇ or less.
- FIG. 15 shows a piezoelectric thin film 4 made of LiTaO 3 with Euler angles (0 °, 140.0 °, 0 °) on a support substrate 2 made of silicon and a low sound velocity film 3 made of SiO 2 film having a thickness of 0.35 ⁇ . and the thickness of the LiTaO 3 in the acoustic wave device obtained by stacking a diagram showing the relationship between the Q value.
- the vertical axis in FIG. 15 is the product of the Q characteristic of the resonator and the ratio band ( ⁇ f), and is generally used as one index for judging whether the device characteristic is good or bad.
- FIG. 16 is a diagram showing the relationship between the LiTaO 3 film thickness and the frequency temperature coefficient TCF.
- the film thickness of LiTaO 3 is a diagram showing the relationship between the film thickness of LiTaO 3 and the sound speed. As can be seen from FIG. 15, when the LiTaO 3 film thickness is 3.5 ⁇ or less, the Q value is higher and the Q characteristic is better than when the film thickness exceeds 3.5 ⁇ . More preferably, in order to further increase the Q value, the film thickness of LiTaO 3 is desirably 2.5 ⁇ or less.
- FIG. 16 also shows that when the LiTaO 3 film thickness is 2.5 ⁇ or less, the absolute value of the frequency temperature coefficient TCF can be made smaller than when the absolute value exceeds 2.5 ⁇ . More preferably, in the range of 2.5 ⁇ or less, the absolute value of the frequency temperature coefficient TCF can be ⁇ 10 ppm / ° C. or less, which is desirable.
- the film thickness of LiTaO 3 is 1.5 ⁇ or less, the speed of sound can be easily adjusted by controlling the film thickness. Therefore, more preferably, the film thickness of LiTaO 3 is more desirably 1.5 ⁇ or less.
- FIG. 18 is a diagram showing a change in the ratio band when the thickness of the piezoelectric thin film made of LiTaO 3 is changed.
- the thickness of LiTaO 3 is 1.5 ⁇ or more, the specific band is not substantially changed. This is because the energy of the surface acoustic wave is confined in the piezoelectric thin film and is not distributed on the low sound velocity film 3 or the high sound velocity support substrate side. Therefore, when the thickness of the piezoelectric thin film is 1.5 ⁇ or less, it is considered that the surface acoustic wave energy can be sufficiently distributed in the low acoustic velocity film 3 and the Q value can be further increased.
- the low acoustic velocity film 3, the piezoelectric thin film 4 and the IDT electrode 5 are laminated on the support substrate 2, but the laminated structure in the elastic wave device of the present invention is limited to this. Is not to be done. Deformation of the laminated structure will be described with reference to second to ninth embodiments shown in FIGS.
- a low acoustic velocity film 23 is used instead of the low acoustic velocity membrane 3 in the first embodiment.
- the low sound velocity film 23 includes a first low sound velocity layer 23a and a second low sound velocity layer 23b.
- the first low sound velocity layer 23 a and the second low sound velocity layer 23 b are joined via the first adhesive layer 22.
- the first low sound velocity layer 23a and the second low sound velocity layer 23b can be formed of an appropriate material constituting the low sound velocity film 3 described above.
- the material of the first low acoustic velocity layer 23a and the material of the second low acoustic velocity layer 23b are the same.
- the material of the first low acoustic velocity layer 23a and the material of the second low acoustic velocity layer 23b are the same when the main component is the same by 50% or more. In addition, it is more preferable if the main component is equal to 75% or more. Furthermore, it is even more preferable if the main components are 100% the same.
- the first adhesive layer 22 is made of an appropriate adhesive.
- examples of such an adhesive include polyimide and an epoxy resin adhesive.
- the piezoelectric thin film 4 is laminated on the low sound velocity film 23 so that the first main surface 4 a which is a plus surface in the polarization axis direction of the piezoelectric thin film 4 is in contact with the low sound velocity film 23. Therefore, the same effect as the first embodiment can be obtained.
- the first low sound velocity layer 23 a is laminated on the first main surface 4 a of the piezoelectric thin film 4 and the first laminated body in which the second low sound velocity layer 23 b is laminated on the support substrate 2.
- the second laminated body in which the IDT electrode 5 is formed on the second main surface 4 b may be bonded via the first adhesive layer 22.
- a high sonic film 2B as a high sonic member is laminated on the support substrate 2A.
- a low acoustic velocity film 3 and a piezoelectric thin film 4 are laminated on the high acoustic velocity film 2B.
- the same material as that constituting the support substrate 2 can be used.
- a material constituting the high acoustic velocity film 2 ⁇ / b> B an appropriate material in which the bulk wave propagating through the high acoustic velocity film 2 ⁇ / b> B is faster than the main mode elastic wave propagating through the piezoelectric thin film 4 can be used.
- the piezoelectric thin film 4 is laminated on the low sound velocity film 3 from the first main surface 4a side, the same effect as in the first embodiment can be obtained.
- the support substrate 2 is a high sound speed support substrate
- the elastic wave can be effectively confined.
- the high sound speed film 2B allows the elastic wave to be confined. Can be effectively confined to the piezoelectric thin film 4 side rather than the high acoustic velocity film 2B.
- the low acoustic velocity film 3 in the acoustic wave device 31 is replaced with a structure having the low acoustic velocity film 23 and the first adhesive layer 22 in the acoustic wave device 21. It corresponds to a thing. Therefore, also in the acoustic wave device 41, as in the first to third embodiments, the degree of adhesion between the low acoustic velocity film 23 and the piezoelectric thin film 4 can be increased, and variation in characteristics can be reduced.
- the laminated body on one side of the first adhesive layer 22 is joined to the laminated body on the other side via the first adhesive layer 22. That's fine.
- the elastic wave device 51 of the fifth embodiment shown in FIG. 10 is the elastic wave device except that a second low acoustic velocity film 53 is further added to the elastic wave device 31 shown in FIG. 31.
- the second low acoustic velocity film 53 is laminated between the support substrate 2A and the high acoustic velocity film 2B. In this way, the second low sound velocity film 53 may be laminated on the surface of the high sound velocity film 2B opposite to the low sound velocity film 3.
- the second low sound velocity film 53 can also be formed of the same material as that of the low sound velocity film 3.
- the material of the low sound velocity film 3 and the material of the second low sound velocity film 53 are the same.
- the material of the low sound velocity film 3 and the material of the second low sound velocity film 53 are the same when the main component is 50% or more. In addition, it is more preferable if the main component is equal to 75% or more. Furthermore, it is even more preferable if the main components are 100% the same.
- the piezoelectric thin film 4 is laminated on the low acoustic velocity film 3 from the first main surface 4a side of the piezoelectric thin film 4, the same operation as the acoustic wave device of the first to fourth embodiments is performed. There is an effect.
- the second low sound velocity film 53 in the elastic wave device 51 has a third low sound velocity layer 53a and a fourth low sound velocity layer 53b.
- the third low sound velocity layer 53 a and the fourth low sound velocity layer 53 b are joined via the second adhesive layer 54. Otherwise, the elastic wave device 61 is the same as the elastic wave device 51. Therefore, the elastic wave device 61 has the same effect as the elastic wave device 51.
- the laminated portion on one side of the second adhesive layer 54 and the laminated portion on the other side may be joined via the second adhesive layer 54.
- an appropriate adhesive such as polyimide or epoxy resin can be used for the second adhesive layer 54.
- a third low-sonic film 72 is laminated on the piezoelectric thin film 4, and the IDT electrode 5 is provided on the third low-sonic film 72.
- the IDT electrode 5 may be provided indirectly on the piezoelectric thin film 4.
- the third low sound velocity film 72 the same material as that of the low sound velocity film 3 can be used.
- the IDT electrode 5 may be indirectly laminated on the second main surface 4 b which is the minus surface in the polarization axis direction of the piezoelectric thin film 4 via the third low-speed sound film 72.
- the elastic wave device 71 has the same functions and effects as those of the first embodiment because the other configurations are the same as those of the first embodiment.
- the absolute value of the frequency temperature coefficient TCF can be reduced more effectively.
- the elastic wave device 81 of the eighth embodiment shown in FIG. 13 corresponds to a structure in which the third low acoustic velocity film 72 is provided in the elastic wave device 31 of the third embodiment shown in FIG. Therefore, there exists an effect similar to the elastic wave apparatus 31 of 3rd Embodiment.
- the third low acoustic velocity film 72 is provided, the absolute value of the frequency temperature coefficient TCF can be further reduced.
- the elastic wave device 91 of the ninth embodiment shown in FIG. 14 corresponds to a structure in which the third low acoustic velocity film 72 is added to the elastic wave device 51 of the fifth embodiment shown in FIG. Therefore, the elastic wave device 91 has the same effects as the elastic wave device 51. In addition, the presence of the third low acoustic velocity film 72 can effectively reduce the absolute value of the frequency temperature coefficient TCF. Also in the elastic wave devices 71, 81, 91 according to the seventh to ninth embodiments, the first adhesive layer and the second adhesive layer described above may be provided.
- the acoustic wave resonator has been described.
- the acoustic wave device according to the present invention is not limited to the acoustic wave resonator, and is widely used in various acoustic wave devices such as a longitudinally coupled resonator type acoustic wave filter. Applicable.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
2,2A…支持基板
2B…高音速膜
3…低音速膜
4…圧電薄膜
4a…第1の主面
4b…第2の主面
5…IDT電極
12…分極成分
22…第1の接着剤層
23…低音速膜
23a…第1の低音速層
23b…第2の低音速層
53…第2の低音速膜
53a…第3の低音速層
53b…第4の低音速層
54…第2の接着剤層
72…第3の低音速膜
Claims (14)
- 圧電薄膜を有する弾性波装置であって、
前記圧電薄膜を伝搬するメインモードの弾性波の音速よりも、伝搬するバルク波の音速が高速である高音速部材と、
前記高音速部材上に積層されており、前記圧電薄膜を伝搬するメインモードの弾性波の音速よりも、伝搬するバルク波の音速が低速である低音速膜と、
前記低音速膜上に設けられている前記圧電薄膜と、
前記圧電薄膜上に設けられているIDT電極と、
を備え、
前記圧電薄膜は、圧電単結晶からなり、前記低音速膜側の主面が分極軸方向におけるプラス面、前記IDT電極側の主面が分極軸方向におけるマイナス面とされている、弾性波装置。 - 前記IDT電極の電極指ピッチで定まる波長をλとしたときに、前記圧電薄膜の厚みが3.5λ以下である、請求項1に記載の弾性波装置。
- 前記圧電薄膜の厚みが、2.5λ以下である、請求項2に記載の弾性波装置。
- 前記圧電薄膜の厚みが、1.5λ以下である、請求項3に記載の弾性波装置。
- 前記低音速膜が、前記圧電単結晶以外の酸化物からなる、請求項1~4のいずれか1項に記載の弾性波装置。
- 前記酸化物が無機酸化物である、請求項5に記載の弾性波装置。
- 前記無機酸化物が、酸化ケイ素、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素、炭素もしくはホウ素を添加してなる化合物からなる群から選択された、1種の材料からなる、請求項6に記載の弾性波装置。
- 前記圧電単結晶がLiNbO3またはLiTaO3であり、前記低音速膜が、Liを含有している、請求項1~7のいずれか1項に記載の弾性波装置。
- 前記高音速部材が、高音速支持基板である、請求項1~8のいずれか1項に記載の弾性波装置。
- 支持基板をさらに備え、前記高音速部材が高音速膜であり、前記高音速膜が前記支持基板と前記低音速膜との間に積層されている、請求項1~8のいずれか1項に記載の弾性波装置。
- 前記低音速膜が、第1の低音速層と、第2の低音速層とを有し、前記第1の低音速層と前記第2の低音速層とが第1の接着剤層を介して接合されている、請求項1~10のいずれか1項に記載の弾性波装置。
- 前記高音速膜と前記支持基板との間に積層された第2の低音速膜をさらに備える、請求項10に記載の弾性波装置。
- 前記第2の低音速膜が、第3の低音速層と、第4の低音速層とを有し、前記第3の低音速層と前記第4の低音速層とが第2の接着剤層を介して接合されている、請求項12に記載の弾性波装置。
- 前記圧電薄膜の前記第2の主面上に第3の低音速膜が設けられており、前記第2の低音速膜上に前記IDT電極が設けられている、請求項1~10のいずれか1項に記載の弾性波装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680027017.3A CN107615653B (zh) | 2015-07-17 | 2016-06-15 | 弹性波装置 |
KR1020177029552A KR102029744B1 (ko) | 2015-07-17 | 2016-06-15 | 탄성파 장치 |
US15/834,206 US10862455B2 (en) | 2015-07-17 | 2017-12-07 | Elastic wave device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-142974 | 2015-07-17 | ||
JP2015142974 | 2015-07-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/834,206 Continuation US10862455B2 (en) | 2015-07-17 | 2017-12-07 | Elastic wave device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013968A1 true WO2017013968A1 (ja) | 2017-01-26 |
Family
ID=57835026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067749 WO2017013968A1 (ja) | 2015-07-17 | 2016-06-15 | 弾性波装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10862455B2 (ja) |
KR (1) | KR102029744B1 (ja) |
CN (1) | CN107615653B (ja) |
WO (1) | WO2017013968A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018146883A1 (ja) * | 2017-02-10 | 2018-08-16 | 株式会社村田製作所 | 弾性波装置、高周波フロントエンド回路及び通信装置 |
WO2018235605A1 (ja) * | 2017-06-23 | 2018-12-27 | 株式会社村田製作所 | 弾性波装置、高周波フロントエンド回路および通信装置 |
KR20190054916A (ko) * | 2017-11-13 | 2019-05-22 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
KR20190056293A (ko) * | 2017-11-16 | 2019-05-24 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
WO2019163842A1 (ja) * | 2018-02-26 | 2019-08-29 | 京セラ株式会社 | 弾性波素子 |
WO2019197086A1 (en) * | 2018-04-12 | 2019-10-17 | RF360 Europe GmbH | Thin film surface acoustic wave transducer with improved characteristics, electroacoustic filter and rf filter |
JPWO2018163841A1 (ja) * | 2017-03-09 | 2019-11-21 | 株式会社村田製作所 | 弾性波装置、弾性波装置パッケージ、マルチプレクサ、高周波フロントエンド回路及び通信装置 |
JPWO2018235876A1 (ja) * | 2017-06-23 | 2020-04-09 | 株式会社村田製作所 | 弾性波装置、フロントエンド回路及び通信装置 |
WO2020184624A1 (ja) * | 2019-03-11 | 2020-09-17 | 株式会社村田製作所 | 弾性波装置 |
CN112737537A (zh) * | 2020-12-25 | 2021-04-30 | 广东广纳芯科技有限公司 | 一种双层poi结构声表面波谐振器及制造方法 |
WO2021125013A1 (ja) * | 2019-12-19 | 2021-06-24 | 株式会社村田製作所 | 弾性波装置 |
WO2021241681A1 (ja) * | 2020-05-28 | 2021-12-02 | 株式会社村田製作所 | 弾性波装置 |
WO2021241355A1 (ja) * | 2020-05-28 | 2021-12-02 | 株式会社村田製作所 | 弾性波装置 |
JP2022512700A (ja) * | 2018-10-16 | 2022-02-07 | 国立大学法人東北大学 | 弾性波デバイス |
US12267061B2 (en) | 2019-02-27 | 2025-04-01 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019130857A1 (ja) * | 2017-12-28 | 2019-07-04 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体およびその製造方法 |
WO2019130852A1 (ja) * | 2017-12-28 | 2019-07-04 | 日本碍子株式会社 | 圧電性材料基板と支持基板との接合体およびその製造方法 |
JP2019145895A (ja) * | 2018-02-16 | 2019-08-29 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置 |
CN108631747A (zh) * | 2018-04-12 | 2018-10-09 | 无锡市好达电子有限公司 | 一种声表面波材料 |
DE102018108961A1 (de) * | 2018-04-16 | 2019-10-17 | RF360 Europe GmbH | TF-SAW-Resonator mit verbessertem Gütefaktor, HF-Filter und Verfahren zur Herstellung eines TF-SAW-Resonators |
CN113940002A (zh) * | 2019-07-05 | 2022-01-14 | 株式会社村田制作所 | 弹性波装置、高频前端电路以及通信装置 |
JP7505548B2 (ja) * | 2020-04-27 | 2024-06-25 | 株式会社村田製作所 | 弾性波装置 |
CN112564662B (zh) * | 2020-12-11 | 2023-01-20 | 济南晶正电子科技有限公司 | 复合衬底及其制备方法、电子元器件 |
CN112688658B (zh) * | 2020-12-25 | 2021-11-26 | 济南晶正电子科技有限公司 | 一种压电衬底、制备方法及电子元器件 |
CN113872557B (zh) * | 2021-09-29 | 2022-07-12 | 北京超材信息科技有限公司 | 用于声表面波器件的复合衬底及制造方法、声表面波器件 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004186938A (ja) * | 2002-12-03 | 2004-07-02 | Matsushita Electric Ind Co Ltd | 弾性表面波素子、弾性表面波装置、電子回路装置、弾性表面波素子の製造方法、および弾性表面波装置の製造方法 |
WO2015012005A1 (ja) * | 2013-07-25 | 2015-01-29 | 日本碍子株式会社 | 複合基板及びその製法 |
JP2015073331A (ja) * | 2010-12-24 | 2015-04-16 | 株式会社村田製作所 | 弾性波装置 |
JP2015122566A (ja) * | 2013-12-20 | 2015-07-02 | 株式会社村田製作所 | 弾性波装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013061926A1 (ja) * | 2011-10-24 | 2013-05-02 | 株式会社村田製作所 | 弾性表面波装置 |
CN104205629B (zh) * | 2012-03-23 | 2016-12-28 | 株式会社村田制作所 | 弹性波装置及其制造方法 |
JP6409785B2 (ja) * | 2013-12-27 | 2018-10-24 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
US10148245B2 (en) * | 2015-06-25 | 2018-12-04 | Murata Manufacturing Co., Ltd. | Elastic wave device |
-
2016
- 2016-06-15 KR KR1020177029552A patent/KR102029744B1/ko active Active
- 2016-06-15 WO PCT/JP2016/067749 patent/WO2017013968A1/ja active Application Filing
- 2016-06-15 CN CN201680027017.3A patent/CN107615653B/zh active Active
-
2017
- 2017-12-07 US US15/834,206 patent/US10862455B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004186938A (ja) * | 2002-12-03 | 2004-07-02 | Matsushita Electric Ind Co Ltd | 弾性表面波素子、弾性表面波装置、電子回路装置、弾性表面波素子の製造方法、および弾性表面波装置の製造方法 |
JP2015073331A (ja) * | 2010-12-24 | 2015-04-16 | 株式会社村田製作所 | 弾性波装置 |
WO2015012005A1 (ja) * | 2013-07-25 | 2015-01-29 | 日本碍子株式会社 | 複合基板及びその製法 |
JP2015122566A (ja) * | 2013-12-20 | 2015-07-02 | 株式会社村田製作所 | 弾性波装置 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018146883A1 (ja) * | 2017-02-10 | 2019-12-12 | 株式会社村田製作所 | 弾性波装置、高周波フロントエンド回路及び通信装置 |
CN110268629B (zh) * | 2017-02-10 | 2023-11-03 | 株式会社村田制作所 | 弹性波装置、高频前端电路以及通信装置 |
WO2018146883A1 (ja) * | 2017-02-10 | 2018-08-16 | 株式会社村田製作所 | 弾性波装置、高周波フロントエンド回路及び通信装置 |
KR102272692B1 (ko) * | 2017-02-10 | 2021-07-05 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
KR20190099065A (ko) * | 2017-02-10 | 2019-08-23 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
US10886896B2 (en) | 2017-02-10 | 2021-01-05 | Murata Manufacturing Co., Ltd. | Acoustic wave device, high-frequency front-end circuit, and communication device |
CN110268629A (zh) * | 2017-02-10 | 2019-09-20 | 株式会社村田制作所 | 弹性波装置、高频前端电路以及通信装置 |
JP7136293B2 (ja) | 2017-03-09 | 2022-09-13 | 株式会社村田製作所 | 弾性波装置、弾性波装置パッケージ及びマルチプレクサ |
JPWO2018163841A1 (ja) * | 2017-03-09 | 2019-11-21 | 株式会社村田製作所 | 弾性波装置、弾性波装置パッケージ、マルチプレクサ、高周波フロントエンド回路及び通信装置 |
JP7042796B2 (ja) | 2017-03-09 | 2022-03-28 | 株式会社村田製作所 | 弾性波装置、弾性波装置パッケージ及びマルチプレクサ |
JP2021192523A (ja) * | 2017-03-09 | 2021-12-16 | 株式会社村田製作所 | 弾性波装置、弾性波装置パッケージ及びマルチプレクサ |
US11588467B2 (en) | 2017-03-09 | 2023-02-21 | Murata Manufacturing Co., Ltd. | Acoustic wave device, acoustic wave device package, multiplexer, radio-frequency front-end circuit, and communication device |
WO2018235605A1 (ja) * | 2017-06-23 | 2018-12-27 | 株式会社村田製作所 | 弾性波装置、高周波フロントエンド回路および通信装置 |
JPWO2018235876A1 (ja) * | 2017-06-23 | 2020-04-09 | 株式会社村田製作所 | 弾性波装置、フロントエンド回路及び通信装置 |
US11695389B2 (en) | 2017-06-23 | 2023-07-04 | Murata Manufacturing Co., Ltd. | Acoustic wave device, front-end circuit, and communication apparatus |
US11469737B2 (en) | 2017-11-13 | 2022-10-11 | Murata Manufacturing Co., Ltd. | Elastic wave device, high-frequency front-end circuit, and communication apparatus |
KR102142868B1 (ko) * | 2017-11-13 | 2020-08-10 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
KR20190054916A (ko) * | 2017-11-13 | 2019-05-22 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
US10951192B2 (en) | 2017-11-16 | 2021-03-16 | Murata Manufacturing Co., Ltd. | Elastic wave device, high-frequency front-end circuit, and communication apparatus |
KR102142866B1 (ko) * | 2017-11-16 | 2020-08-10 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
KR20190056293A (ko) * | 2017-11-16 | 2019-05-24 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
JPWO2019163842A1 (ja) * | 2018-02-26 | 2021-03-04 | 京セラ株式会社 | 弾性波素子 |
WO2019163842A1 (ja) * | 2018-02-26 | 2019-08-29 | 京セラ株式会社 | 弾性波素子 |
WO2019197086A1 (en) * | 2018-04-12 | 2019-10-17 | RF360 Europe GmbH | Thin film surface acoustic wave transducer with improved characteristics, electroacoustic filter and rf filter |
JP2022512700A (ja) * | 2018-10-16 | 2022-02-07 | 国立大学法人東北大学 | 弾性波デバイス |
US12081188B2 (en) | 2018-10-16 | 2024-09-03 | Skyworks Solutions, Inc. | Acoustic wave devices |
US12074581B2 (en) | 2018-10-16 | 2024-08-27 | Skyworks Solutions, Inc. | Methods and assemblies related to fabrication of acoustic wave devices |
US12267061B2 (en) | 2019-02-27 | 2025-04-01 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
WO2020184624A1 (ja) * | 2019-03-11 | 2020-09-17 | 株式会社村田製作所 | 弾性波装置 |
JPWO2021125013A1 (ja) * | 2019-12-19 | 2021-06-24 | ||
WO2021125013A1 (ja) * | 2019-12-19 | 2021-06-24 | 株式会社村田製作所 | 弾性波装置 |
JP7464062B2 (ja) | 2019-12-19 | 2024-04-09 | 株式会社村田製作所 | 弾性波装置 |
KR20220082034A (ko) * | 2019-12-19 | 2022-06-16 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치 |
KR102722448B1 (ko) | 2019-12-19 | 2024-10-25 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치 |
WO2021241355A1 (ja) * | 2020-05-28 | 2021-12-02 | 株式会社村田製作所 | 弾性波装置 |
WO2021241681A1 (ja) * | 2020-05-28 | 2021-12-02 | 株式会社村田製作所 | 弾性波装置 |
CN112737537A (zh) * | 2020-12-25 | 2021-04-30 | 广东广纳芯科技有限公司 | 一种双层poi结构声表面波谐振器及制造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102029744B1 (ko) | 2019-10-08 |
KR20170128505A (ko) | 2017-11-22 |
CN107615653B (zh) | 2021-04-27 |
CN107615653A (zh) | 2018-01-19 |
US20180102761A1 (en) | 2018-04-12 |
US10862455B2 (en) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017013968A1 (ja) | 弾性波装置 | |
JP6481687B2 (ja) | 弾性波装置 | |
KR102250789B1 (ko) | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 | |
JP5648695B2 (ja) | 弾性波装置及びその製造方法 | |
JP5910763B2 (ja) | 弾性波装置 | |
JP6519655B2 (ja) | 弾性波装置 | |
JP6516005B2 (ja) | 弾性波装置 | |
JP5833239B2 (ja) | 複合基板、圧電デバイス及び複合基板の製法 | |
WO2016208428A1 (ja) | 弾性波装置 | |
WO2014020876A1 (ja) | 弾性波素子とこれを用いたアンテナ共用器 | |
WO2006114930A1 (ja) | 弾性境界波装置 | |
US8773000B2 (en) | Acoustic wave device | |
US20210175871A1 (en) | Acoustic wave resonator, filter, multiplexer, and wafer | |
WO2019009246A1 (ja) | 弾性波装置、分波器および通信装置 | |
JP6658957B2 (ja) | 弾性波装置、高周波フロントエンド回路及び通信装置 | |
JPWO2005086345A1 (ja) | 弾性境界波装置 | |
JP2011087079A (ja) | 弾性表面波素子 | |
JP4956569B2 (ja) | 弾性表面波素子 | |
WO2013172287A1 (ja) | 弾性波装置 | |
JPWO2020209190A1 (ja) | 弾性波装置及びマルチプレクサ | |
JP2007036344A (ja) | 弾性境界波装置 | |
JP6198536B2 (ja) | 弾性波素子とこれを用いた電子機器 | |
WO2020241776A1 (ja) | 弾性波装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827532 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177029552 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827532 Country of ref document: EP Kind code of ref document: A1 |