WO2017013297A1 - Déshydratation de sorbitol en isosorbide en l'absence de dissolvant par catalyse hétérogène à l'aide de résines sulfoniques en tant que catalyseurs - Google Patents
Déshydratation de sorbitol en isosorbide en l'absence de dissolvant par catalyse hétérogène à l'aide de résines sulfoniques en tant que catalyseurs Download PDFInfo
- Publication number
- WO2017013297A1 WO2017013297A1 PCT/ES2016/070550 ES2016070550W WO2017013297A1 WO 2017013297 A1 WO2017013297 A1 WO 2017013297A1 ES 2016070550 W ES2016070550 W ES 2016070550W WO 2017013297 A1 WO2017013297 A1 WO 2017013297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sorbitol
- range
- catalyst
- isosorbide
- reaction
- Prior art date
Links
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 title claims abstract description 77
- 239000000600 sorbitol Substances 0.000 title claims abstract description 77
- 239000003054 catalyst Substances 0.000 title claims abstract description 76
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 title claims abstract description 52
- 229960002479 isosorbide Drugs 0.000 title claims abstract description 51
- 229920005989 resin Polymers 0.000 title claims abstract description 49
- 239000011347 resin Substances 0.000 title claims abstract description 49
- 238000006297 dehydration reaction Methods 0.000 title claims abstract description 32
- 230000018044 dehydration Effects 0.000 title claims abstract description 30
- 239000002904 solvent Substances 0.000 title claims abstract description 7
- 238000007210 heterogeneous catalysis Methods 0.000 title abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 45
- 230000003197 catalytic effect Effects 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 32
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000011973 solid acid Substances 0.000 claims abstract description 15
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000004793 Polystyrene Substances 0.000 claims abstract description 9
- 229920002223 polystyrene Polymers 0.000 claims abstract description 9
- 235000000346 sugar Nutrition 0.000 claims abstract description 8
- 150000008163 sugars Chemical class 0.000 claims abstract description 8
- 238000001471 micro-filtration Methods 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 69
- 239000011148 porous material Substances 0.000 claims description 19
- 230000035484 reaction time Effects 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 5
- 238000010790 dilution Methods 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims 2
- 238000011084 recovery Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 5
- 238000007172 homogeneous catalysis Methods 0.000 abstract description 3
- 239000000155 melt Substances 0.000 abstract description 2
- 238000007865 diluting Methods 0.000 abstract 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 60
- 239000000126 substance Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000002028 Biomass Substances 0.000 description 12
- 239000001913 cellulose Substances 0.000 description 10
- 229920002678 cellulose Polymers 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- -1 sorbitol Chemical class 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000002159 adsorption--desorption isotherm Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002551 biofuel Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 239000002029 lignocellulosic biomass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000012429 reaction media Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 229940084778 1,4-sorbitan Drugs 0.000 description 2
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007171 acid catalysis Methods 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229960000201 isosorbide dinitrate Drugs 0.000 description 2
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- MCHWWJLLPNDHGL-JGWLITMVSA-N (2s,3s,4s,5r)-2,5-bis(hydroxymethyl)oxolane-3,4-diol Chemical compound OC[C@H]1O[C@@H](CO)[C@@H](O)[C@@H]1O MCHWWJLLPNDHGL-JGWLITMVSA-N 0.000 description 1
- MEJYDZQQVZJMPP-ULAWRXDQSA-N (3s,3ar,6r,6ar)-3,6-dimethoxy-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan Chemical compound CO[C@H]1CO[C@@H]2[C@H](OC)CO[C@@H]21 MEJYDZQQVZJMPP-ULAWRXDQSA-N 0.000 description 1
- MPCAJMNYNOGXPB-UHFFFAOYSA-N 1,5-Anhydro-mannit Natural products OCC1OCC(O)C(O)C1O MPCAJMNYNOGXPB-UHFFFAOYSA-N 0.000 description 1
- MPCAJMNYNOGXPB-SLPGGIOYSA-N 1,5-anhydro-D-glucitol Chemical compound OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O MPCAJMNYNOGXPB-SLPGGIOYSA-N 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 244000138286 Sorghum saccharatum Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical class O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical class O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000018927 edible plant Nutrition 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229960003827 isosorbide mononitrate Drugs 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/08—Ion-exchange resins
- B01J31/10—Ion-exchange resins sulfonated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/48—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
- C07C29/50—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
Definitions
- the present invention relates to catalytic processes aimed at the transformation of biomass, in particular lignocellulose, into high value-added chemicals and biofuels. More particularly it refers to the dehydration of sorbitol to isosorbide by heterogeneous catalysis, using as a catalyst a sulfonic resin.
- biomass processing is carried out. sustainable and integrated way, for conversion into a broad spectrum of chemicals and energy.
- Two categories of biomass-derived resources are distinguished: those of first generation from high-starch edible plant crops such as sugar cane, beets, sweet sorghum, and vegetable oils, animal fats, etc., and the second generation that use lignocellulosic biomass, Jatropha oil, microalgae, etc.
- a very important aspect is the use of lignocellulose present in forest, agricultural, agri-food, urban and industrial waste, since it is the main component of biomass.
- Lignocellulosic biomass is a molecular complex consisting primarily of cellulose, hemicellulose, and lignin. The latter prevents access to sugars Being around the cellulose and hemicellulose present in the biomass, it is necessary to take a slow retratam of it in order for the carbohydrates to be affordable.
- Iignocellulosic biomass can be treated by two procedures: thermal and hydrolysis,
- thermochemical route implies a treatment at high temperatures and pressures.
- the strategies to highlight in this way are gasification, pyrolysis and liquefaction. It is the process commonly used for catalytic conversion or fuel production, as is the case of the Fischer-Tropsch or hydro-oxygenation process.
- o In the case of performing a hydrolysis or fractionation of the Iignocellulosic biomass, it is possible to isolate lignin and sugars to be treated through biological (enzymatic catalysis) or chemical processes (acid catalysis).
- hydrolysis can be favored by increasing the system temperature above 225 ° C, combining it with the use of acidic metal catalysts.
- One of the most attractive routes of cellulose transformation is its conversion to glucose.
- Glucose is an important precursor to a broad spectrum of chemicals with high added value.
- sorbitol stands out, one of the polyalcohols obtained by reduction, being a very important product from an industrial point of view.
- Sorbitol is one of the most important platform products, which is obtained by reducing the glucose present in the lignocellulose composition, in particular in hernicellulose and cellulose.
- Sorbitol is the hydrogenated form of glucose. It can be easily obtained from cellulose with very low production costs, being an ideal compound for the synthesis of derivatives of great interest in the industry, cellulose hydrolysis and subsequent catalytic hydrogenation of the resulting glucose can also lead to products of degradation of the resulting sorbitol.
- Isosorbide is a versatile platform chemical, due to its high stability and the two functional hydroxyl groups that allow various chemical modifications, since which can be converted into other functional groups, being able to generate different monomers used for the production of polymeric materials.
- Isosorbide has excellent physical-chemical properties applicable to different fields of industry, being an extraordinary pharmaceutical intermediate (diuretic, and mainly to treat hydrocephalus and glaucoma), it is used as an additive to improve the resistance and stiffness of polymers such as polyethylene terephthalate (PET), and as a monomer for the production of biodegradable polymers.
- polymers such as polyethylene terephthalate (PET)
- PET polyethylene terephthalate
- the compounds derived from isosorbide are isosorbide dinitrate and mononitrate, the latter being a compound widely used as a vasodilator for angina pectoris and congestive heart failure.
- Isosorbide derivatives also find applications such as fuels or fuel additives, due to the high energy content that aiphatic substituents can provide (dimethyl isosorbide (DMI)).
- DMI dimethyl isosorbide
- Dehydration of sorbitol to isosorbide takes place through two consecutive stages. It begins with a first cyclization with loss of a water molecule where the chemical intermediates can be formed: 2,5-sorbitan and 1,5-sorbitan, which do not evolve to isosorbide, so they can be considered reaction byproducts, and the 1,4-sorbitan and 3,6-sorbitan, which progress to isosorbide. Subsequently, the second dehydration occurs, with a new cyclization that generates the isosorbide molecule.
- this reaction is carried out using homogeneous acid catalysis, in the presence of liquid mineral acids, which leads to problems with corrosion of the reactors, neutralization stages and catalyst separation that cannot be reused.
- solid catalysts represent a more sustainable alternative from an economic and environmental point of view, in addition to allowing in some cases a modulation of selectivity.
- one of the objectives of Green Chemistry is the substitution of liquid mineral acids used in homogeneous catalytic processes by solid acid catalysts.
- reaction systems aqueous solutions in gas and liquid phase, use of molten sorbitol have been studied in the presence of a broad spectrum of solid acid catalysts.
- solid acid catalysts such as zeolites (Andrews et al. WO2001092266 A2, 2001; Liu et al., EP2146998 Al, 2010), tetravalent metal phosphates (Gu et al. ., Catal. Lett. 133 (2009) 214-220), heteropolyacids supported on silica (Sun et al., Korean J. Chem. Eng. 28 (2011) 99-105), sulfated copper oxide (Xia et al. , Catal. Commun. 12 (2011) 544-547), silicotungstic acid (Oltmanns et al., Appl. Catal.
- sulfonic resins also used as ion exchangers.
- These ionic exchange resins may have acidic or basic gnipos, in the event that cationic or ammonium exchange is pursued, respectively.
- cation exchange resins become important, since they have strong acidic sulfonic gnipos (-S03H). They can also be used in a wide pH range.
- the present invention relates to the development of a heterogeneous catalytic process for the dehydration of sorbitol, obtained from glucose from lignocellulosic biomass, to isosorbide, in a sustainable and efficient way, by proposing the replacement of liquid acid catalysts by solid acid catalysts that subside. the environmental, corrosion and separation problems involved in homogeneous catalysis.
- styrene-divinylbenzene resins with acidic sulfonic groups whose polymeric structure consists of macroporous polystyrene cross-linked with divinylbenzene, with an acidity of 5.2 eq / kg, with a percentage of residual moisture of the 3%, with a particle size in the range 425-1200 micrometers, a specific area in the range 20-50 m 2 / g, a pore volume in the range 0.2-0.6 ml / g, an average diameter of the pore in the range 23-70 nm, and a thermal stability that extends to a maximum temperature of 180 ° C, as a solid acid catalyst in a heterogeneous catalytic process for the dehydration of sorbitol to isosorbide.
- the invention relates to the use of styrene-divinylbenzene resins with acidic sulfonic groups whose polymeric structure consists of macroporous polystyrene cross-linked with divinylbenzene, with an acidity of 5.2 eq / kg, with a moisture percentage 3% residual, with a particle size in the range 425-1200 micrometers, a specific area in the range 35-50 m 2 / g, a pore volume in the range 0.2-0.5 ml / g, a average pore diameter in the range 23.1-42.5 nm, and a thermal stability that extends to a maximum temperature of 180 ° C, as a solid acid catalyst in a heterogeneous catalytic process for the dehydration of sorbitol to isosorbide.
- the invention relates to the use of styrene-divinylbenzene resins with acidic sulfonic groups whose polymeric structure consists of macroporous polystyrene crosslinked with divinylbenzene, with an acidity of 5.2 eq / kg, with a moisture percentage 3% residual, with a particle size in the range 600-850 micrometers, a specific area in the range 20-40 m 2 / g, a pore volume in the range 0.2-0.6 ml / g, a average pore diameter in the range 40-70 nm, and a thermal stability that extends to a maximum temperature of 180 ° C, as a solid acid catalyst in a heterogeneous catalytic process for the dehydration of sorbitol to isosorbide.
- a second object of the invention relates to a heterogeneous catalytic process for the dehydration of sorbitol to isosorbide which comprises the use of a styrene divinylbenzene resin with acid sulfonic groups as a solid acid catalyst according to the first object of the invention.
- the process comprises (i) the addition to a reactor of the catalyst and sorbitol in a ratio sorbitol mass: catalyst in the range 10: 1-20: 1, preferably 20: 1; (ii) the reaction of the sorbitol mixture: catalyst under stirring, in the absence of solvent, and at a temperature in the range 140-180 ° C, preferably in the range 140-160 ° C, more preferably at 140 ° C, during a reaction time in the range 90 minutes - 12 hours, preferably in the range 10-12 hours, more preferably for 10 hours; (iii) dilution of the volume of melt resulting from the reaction with distilled water; and (iv) the separation of the catalyst from the sugars by microfiltration of the volume of molten diluted in water.
- the reaction is carried out at atmospheric pressure without an inert atmosphere.
- the reaction is carried out at atmospheric pressure but in an inert atmosphere by introducing a stream of an inert gas, for example N 2 .
- the reaction is carried out under vacuum conditions.
- the catalytic process comprises, after the step of separating the catalyst from the sugars formed by the dehydration of sorbitol, a step of recovering the catalyst for subsequent reuse, said step comprising washing the catalyst and its drying.
- the present invention refers to the "S of sulphonic resins, different (among others) from Amberlyst-type resins (which have differences in porosity level, particularly having a smaller average pore diameter than resins whose use is referred to in the present invention), as solid acid catalysts for the dehydration of sorbitol to isosorbide, yields in isosorbide being reached close to 70%, with a total conversion of sorbitol, when molten sorbitol is used at 140 ° C, in the absence of solvent, then 10-hour reaction, when a sorbitolxatalizer mass ratio of 20: 1 is used.
- the reaction is carried out by melting the sorbitol (mp 95 ° C) at 140 ° C, and conversions close to 100% are achieved after 3 hours of reaction, with yields to isosorbide of 43% which increases to 74.8% at 12 hours.
- This evolution is justified by the formation of sorbitan, monobit dehydration products of sorbitol, of which 1,4- and 3,6-sorbitan are the only ones that evolve towards isosorbide.
- catalysts can be reused, being stable in the reaction medium without loss. significant of its catalytic activity.
- the remaining sorbitol and reaction products are dissolved in water to separate them from the catalyst.
- the present invention allows the process to be carried out either at atmospheric pressure or under vacuum conditions.
- the proposed catalysts require lower reaction temperatures to achieve yield values comparable to the data described in the state of the art on dehydration of sorbitol to isosorbide.
- Figure 4 FTIR spectra of the Purolite CT269DR and CT269DR * (after reaction).
- Figure 5 Comparison of conversion, selectivity, performance of catalytic resins for 10 hours at 140 ° C.
- Figure 6 Catalytic activity of Purolite CT269DR as a function of reaction temperature.
- Figure 7 Kinetic study of sorbitol dehydration at 140 ° C, up to 12 h of reaction time.
- Figure 8 Kinetic study of sorbitol dehydration at 140 ° C, up to 44 h of reaction time
- Figure 10 Study of the influence of the size of Purolite CT269DR at 140 ° C, during 90 min with 2 g sorbitol.
- styrene-divinylbenzene resins with acid sulfonic groups are styrene-divinylbenzene resins with acid sulfonic groups.
- Three commercial Purolite resins have been used: CT275DR, CT269DR and PD206. These types of resins have large diameter pores, which facilitate access to acid sites and avoid diffusional limitations that could appear with microporous materials. Be It deals with resins with a high concentration of acid centers. Its rnacroporous skeleton is formed by polyvinylbenzenesulfonic groups.
- This technique allows the determination of the percentage composition of C, N, H and S of the resins studied. It is based on the complete oxidation of the sample by combustion with pure oxygen, in a controlled atmosphere, at a temperature of up to 1100 ° C.
- the different resulting combustion products, C () 2, i and 2 O. 802 and N2 are subsequently quantified by IR and thermal conductivity sensor.
- the percentages of carbon range between 35 and 45% with respect to the weight of the sample, while the mass C / S ratios indicate that the degree of sulfonation of these resins is different (Table 3).
- Table 3 the lowest values are found for reams that have higher specific surfaces, that is, the CT269DR and CT275DR purolites, so it is expected that this suitable combination of high acidity and high surface area results in optimal catalytic behavior.
- ATD-TG Differential and thermogravimetric thermal analysis
- FTIR Fourier transform infrared spectroscopy
- This technique consists in the study of the interaction of infrared radiation with matter. This spectroscopy allows to identify chemical species through the determination of the frequency at which the different functional groups have characteristic absorption bands in the IR spectrum. The concentration of the species is determined from the intensities and areas of the sample bands.
- Figure 4 shows, as an example, the FTIR spectrum of the CT269DR resin, before and after the reaction. Both spectra are identical, indicating that the resin resists thermally, maintaining its structural integrity after the catalytic process.
- the vibration modes associated with the sulphonic groups, with symmetric and asymmetric tensions of the S 0 to 620 and 1220 e and the voltage vibration CS at 1050 enr ⁇ , are masked by the intense bands of the organic skeleton of the Purolite resin , formed by divinylbenzene groups.
- This reaction system consists of a discontinuous hatch reactor immersed in a silicone bath.
- the reaction is carried out by introducing 2 g of sorbitol and 100 mg of catalyst into the reactor, which in turn is immersed in a liquid bath located on a heating plate, with magnetic stirring at 600 rpm, at 140 ° C for 10 hours, as standard reaction conditions.
- the reaction time measurement starts once the bath thermometer reaches that temperature, and the reaction is interrupted by cooling the reactor in a cold water bath
- the melt volume is diluted to 100 ml with distilled water. A fraction is taken from this solution, which is microfiltered and analyzed.
- ICP-OES inductively coupled plasma emission spectrometry
- this resin has been screened to obtain particle sizes in the ranges: [0.40-0.50], [0.50-, 71], [0.71-1.00] and [1.00- 1.18] mm.
- the catalytic data demonstrate an improvement in performance with the use of the catalyst with the smallest particle size, between 0.4-0.5 mm, for which the highest sorbitol conversion is obtained.
- the study was carried out at 140 ° C with the same sorbitol / catalyst mass ratio, but at 90 minutes of reaction in all cases ( Figure 10).
- the catalytic activity data obtained in each cycle is shown in the bar chart of Figure 11. A slight decrease in conversion is observed after the first cycle. However, it is possible to maintain an average yield of 27-29% in isosorbide in the first 3 cycles.
- measures CHNS chemical composition of the catalysts used were made after 2 and 4 or or reaction cycles. The data obtained are shown in Table 6 where no loss of sulfonic groups is observed. The C and H content increases slightly over the 4 cycles, corresponding to the possible carbonaceous residues. This increase in the amount of carbon leads to a continuous increase in the mass C / S ratio, after each cycle or catalytic.
- Melt reaction system by an inert atmosphere stream
- a stream of N2 is introduced into a flask with three mouths and an outlet, with the intention of removing the water vapor generated during the dehydration reaction.
- the temperature is controlled by an external thermometer immersed in the silicone bath at 140 ° C, but in turn a thermometer is introduced through one of the mouths to know the thermal gradient when an inert gas is used.
- Both the temperature and the reaction time are kept constant, 140 ° C for 10 hours; however, it is necessary to increase the initial sorbitol mass in the system to 4 g to provide a sufficient mass in the reactor, although the sorbitol / catalyst mass ratio of 20: 1 is maintained.
- the nitrogen injection removes the water formed, but also causes a decrease in the reaction temperature, by removing heat from the medium, observing a difference of up to 30 ° C between the heating bath and the reaction atmosphere, with a negative effect on the evolution of the catalytic dehydration process.
- CT269DR resin exhibits greater mechanical stability, which ensures its structural integrity in the reaction conditions.
- reaction temperature was evaluated in the range between 100 and 160 ° C, 140 ° C being the optimum value, sufficiently far from the degradation temperature of the CT269DR resin (180 ° C).
- the kinetic study showed that a complete conversion of sorbitol is achieved after 3 hours of reaction, but with an isosorbide yield of 43.2%, requiring 10 hours to obtain maximum yield (68.9%).
- the catalyst is stable under the reaction conditions, as can be inferred from the sulfur analysis of the catalyst used and in the reaction medium.
- the optimum catalyst loading and particle size have been 100 mg of catalyst panicles with sizes between 0.4 and 0.5 mm.
- the chemical analysis of the catalysts used confirmed the stability of the catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
L'invention concerne la déshydratation de sorbitol en isosorbide en l'absence de dissolvant par catalyse hétérogène à l'aide de résines sulfoniques en tant que catalyseurs. La présente invention, qui permet de résoudre des problèmes liés à la catalyse homogène et aux besoins associés à d'autres résines sulfoniques et d'autres catalyseurs, concerne l'utilisation de différentes résines de styrène-divinylbenzène, dont la structure polymère comprend du polystyrène macroporeux entrecroisé avec du divinylbenzène, en tant que catalyseurs acides solides dans un procédé catalytique hétérogène pour la déshydratation de sorbitol en isosorbide. L'invention concerne des procédés catalytiques hétérogènes pour la déshydratation de sorbitol en isosorbide en l'absence de dissolvant, dans des conditions de pression atmosphérique et de vide, qui consistent : à ajouter lesdites résines utilisées en tant que catalyseurs selon un rapport de masse sorbitol : catalyseur compris dans la plage 10:1 - 10:2 ; à provoquer une réaction à 140-180 °C pendant 1h30-12 heures ; à procéder à une dilution du volume de fusion ; et à séparer le catalyseur et les sucres par microfiltration.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201500549A ES2548483B2 (es) | 2015-07-20 | 2015-07-20 | Deshidratación de sorbitol a isosorbida en ausencia de disolvente mediante catálisis heterogénea usando resinas sulfónicas como catalizadores |
ESP201500549 | 2015-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013297A1 true WO2017013297A1 (fr) | 2017-01-26 |
Family
ID=54290163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2016/070550 WO2017013297A1 (fr) | 2015-07-20 | 2016-07-20 | Déshydratation de sorbitol en isosorbide en l'absence de dissolvant par catalyse hétérogène à l'aide de résines sulfoniques en tant que catalyseurs |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2548483B2 (fr) |
WO (1) | WO2017013297A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109261202A (zh) * | 2018-09-30 | 2019-01-25 | 中国科学院山西煤炭化学研究所 | 一种用于山梨醇脱水制备异山梨醇的催化剂及其制法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002036598A1 (fr) * | 2000-11-01 | 2002-05-10 | Archer-Daniels-Midland Company | Procédé de production d'alcools de sucre anhydres |
WO2009155020A2 (fr) * | 2008-05-28 | 2009-12-23 | Archer Daniels Midland Company | Production d'esters cycliques de polyols à 5 éléments et à 6 éléments |
WO2014070371A1 (fr) * | 2012-10-31 | 2014-05-08 | Archer Daniels Midland Company | Procédé perfectionné de fabrication de produits de déshydratation interne d'alcools de sucre |
-
2015
- 2015-07-20 ES ES201500549A patent/ES2548483B2/es active Active
-
2016
- 2016-07-20 WO PCT/ES2016/070550 patent/WO2017013297A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002036598A1 (fr) * | 2000-11-01 | 2002-05-10 | Archer-Daniels-Midland Company | Procédé de production d'alcools de sucre anhydres |
WO2009155020A2 (fr) * | 2008-05-28 | 2009-12-23 | Archer Daniels Midland Company | Production d'esters cycliques de polyols à 5 éléments et à 6 éléments |
WO2014070371A1 (fr) * | 2012-10-31 | 2014-05-08 | Archer Daniels Midland Company | Procédé perfectionné de fabrication de produits de déshydratation interne d'alcools de sucre |
Non-Patent Citations (2)
Title |
---|
I. POLAERT ET AL.: "A greener process for isosorbide production: Kinetic study of the catalyticdehydration of pure sorbitol under microwave", CHEMICAL ENGINEERING JOURNAL, vol. 222, 2013, pages 228 - 239, XP055348016 * |
M. HART ET AL.: "Acidities and catalytic activities of persulfonated poly(styrene-co-divinylbenzene)ion-exchange resins", CATALYSIS LETTERS, vol. 72, no. 3, 2001, pages 135 - 139, XP055348014 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109261202A (zh) * | 2018-09-30 | 2019-01-25 | 中国科学院山西煤炭化学研究所 | 一种用于山梨醇脱水制备异山梨醇的催化剂及其制法和应用 |
Also Published As
Publication number | Publication date |
---|---|
ES2548483B2 (es) | 2016-04-13 |
ES2548483A1 (es) | 2015-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Effective dispersion of MgO nanostructure on biochar support as a basic catalyst for glucose isomerization | |
Cao et al. | Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural | |
Agirrezabal-Telleria et al. | Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts | |
Upare et al. | Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts | |
Chen et al. | Selective glucose isomerization to fructose via a nitrogen-doped solid base catalyst derived from spent coffee grounds | |
Kaiprommarat et al. | Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent | |
Gao et al. | Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid | |
Dou et al. | 5-Hydroxymethylfurfural production from dehydration of fructose catalyzed by Aquivion@ silica solid acid | |
Zainol et al. | Ethyl levulinate synthesis from biomass derivative chemicals using iron doped sulfonated carbon cryogel catalyst | |
Qiu et al. | Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose | |
Jiménez-Morales et al. | Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural | |
Zhou et al. | Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose | |
Upare et al. | Direct chemical conversion of xylan into furfural over sulfonated graphene oxide | |
Zheng et al. | Overcoming biomass recalcitrance for enhancing sugar production from fast pyrolysis of biomass by microwave pretreatment in glycerol | |
Liu et al. | Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups | |
Chu et al. | The influence of pore structure and Si/Al ratio of HZSM-5 zeolites on the product distributions of α-cellulose hydrolysis | |
Ji et al. | Niobium-doped TiO2 solid acid catalysts: Strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production | |
Dulie et al. | Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural | |
Bhaumik et al. | Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural | |
Niakan et al. | Catalytic fructose dehydration to 5-hydroxymethylfurfural on the surface of sulfonic acid modified ordered mesoporous SBA-16 | |
Xiang et al. | Efficient synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over sulfonated organic polymer catalyst | |
Hossain et al. | Catalytic isomerization of dihydroxyacetone to lactic acid by heat treated zeolites | |
Romero et al. | Supercritical water hydrolysis of cellulosic biomass as effective pretreatment to catalytic production of hexitols and ethylene glycol over Ru/MCM-48 | |
Manjunathan et al. | Catalytic etherification of glycerol to tert-butyl glycerol ethers using tert-butanol over sulfonic acid functionalized mesoporous polymer | |
Pizzolitto et al. | Effect of grafting solvent in the optimisation of Sba-15 acidity for levulinIc acid production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827307 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827307 Country of ref document: EP Kind code of ref document: A1 |