WO2017006840A1 - 半導体装置、力学量測定装置および半導体装置の製造方法 - Google Patents
半導体装置、力学量測定装置および半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2017006840A1 WO2017006840A1 PCT/JP2016/069521 JP2016069521W WO2017006840A1 WO 2017006840 A1 WO2017006840 A1 WO 2017006840A1 JP 2016069521 W JP2016069521 W JP 2016069521W WO 2017006840 A1 WO2017006840 A1 WO 2017006840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- semiconductor device
- bonding
- bonding layer
- semiconductor chip
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000002184 metal Substances 0.000 claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 claims abstract description 74
- 239000000945 filler Substances 0.000 claims abstract description 61
- 239000011521 glass Substances 0.000 claims description 69
- 239000000463 material Substances 0.000 claims description 54
- 238000010304 firing Methods 0.000 claims description 10
- 239000000155 melt Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 239000007767 bonding agent Substances 0.000 description 10
- 238000002844 melting Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000005304 joining Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910016570 AlCu Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0055—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/50—Devices controlled by mechanical forces, e.g. pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/2901—Shape
- H01L2224/29016—Shape in side view
- H01L2224/29018—Shape in side view comprising protrusions or indentations
- H01L2224/29019—Shape in side view comprising protrusions or indentations at the bonding interface of the layer connector, i.e. on the surface of the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29286—Material of the matrix with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2224/29288—Glasses, e.g. amorphous oxides, nitrides or fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/29386—Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2224/29387—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/2954—Coating
- H01L2224/2955—Shape
- H01L2224/29551—Shape being non uniform
- H01L2224/29552—Shape being non uniform comprising protrusions or indentations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/2954—Coating
- H01L2224/2957—Single coating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/2954—Coating
- H01L2224/29575—Plural coating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/2954—Coating
- H01L2224/29599—Material
- H01L2224/29686—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2224/29688—Glasses, e.g. amorphous oxides, nitrides or fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83194—Lateral distribution of the layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8389—Bonding techniques using an inorganic non metallic glass type adhesive, e.g. solder glass
Definitions
- the present invention relates to a semiconductor device, a mechanical quantity measuring device, and a semiconductor device manufacturing method.
- a semiconductor device in which a semiconductor chip having a sensor function is joined to a strain generating body such as a diaphragm to detect deformation of the strain generating body.
- a metal such as SUS is used as the strain generating body.
- the semiconductor chip may be peeled off or broken due to the difference in thermal expansion coefficient between the strain generating body and the bonding agent and between the semiconductor chip and the bonding agent.
- a pressure sensor using a bonding agent whose thermal expansion coefficient continuously changes from the semiconductor chip side to the strain generating body side is known.
- the thermal expansion coefficient of the bonding agent is adjusted by changing the amount of silica filler added to the glass as the main component (see, for example, Patent Document 1).
- the thermal expansion coefficient of the bonding agent is close to the thermal expansion coefficient of the semiconductor chip on the semiconductor chip side and close to the thermal expansion coefficient of the strain generating body on the strain generating body side.
- the amount of silica filler mixed is increased.
- the silica filler protrudes from the bonding agent, the bonding reliability with the semiconductor chip is reduced.
- a semiconductor device includes a metal body, a bonding layer disposed on the metal body, and a semiconductor chip disposed on the bonding layer.
- the bonding layer includes the metal body and the semiconductor.
- a mechanical quantity measuring device includes the semiconductor device, and the semiconductor chip includes a strain detector.
- a method for manufacturing a semiconductor device includes forming a first bonding layer containing a filler on a metal body, and heating the first bonding layer on the first bonding layer from the first bonding layer. Forming a second bonding layer having a large expansion coefficient and bonding a semiconductor chip to the second bonding layer;
- the bonding reliability between the bonding layer and the semiconductor chip can be increased.
- FIGS. 4A to 4D are cross-sectional views for explaining a method of manufacturing the semiconductor device shown in FIG. Sectional drawing of Embodiment 2 of the semiconductor device of this invention.
- Sectional drawing which shows the modification of the mechanical quantity measuring apparatus of FIG. Sectional drawing of Embodiment 2 of the mechanical quantity measuring apparatus of this invention.
- FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
- the semiconductor device 1 includes a metal body 2, a semiconductor chip 3, and a bonding layer 4 that bonds the metal body 2 and the semiconductor chip 3.
- the bonding layer 4 is formed on the metal body 2 and is interposed between the first layer 5 bonded to the surface 9 of the metal body 2 and the first layer 5 and the semiconductor chip 3.
- the metal body 2 is made of iron, SUS, or the like.
- the semiconductor chip 3 is an integrated circuit element obtained by dicing from a silicon wafer. As the semiconductor chip 3, a semiconductor chip having a built-in sensor element can be used.
- the thermal expansion coefficient of each constituent member constituting the semiconductor device 1 is as follows: metal body 2> second layer 6> first layer 5> semiconductor chip 3.
- the present invention is characterized in that the second layer 6 bonded to the semiconductor chip 3 has a larger coefficient of thermal expansion than the first layer 5 bonded to the metal body 2. This improves the bonding reliability between the semiconductor chip 3 and the bonding layer 4 as described below.
- the metal body 2 is made of iron, SUS, or the like.
- SUS420 has a thermal expansion coefficient of about 12 ppm / ° C.
- the thermal expansion coefficient of silicon forming the semiconductor chip 3 is about 3 ppm / ° C.
- the first layer 5 and the second layer 6 of the bonding layer 4 are each formed of a glass material to which a filler having a smaller thermal expansion coefficient than glass is added.
- the thermal expansion coefficients of the first layer 5 and the second layer 6 of the bonding layer 4 are both 3 to 12 ppm / ° C.
- the thermal expansion coefficient of the second layer 6 is larger than the thermal expansion coefficient of the first layer 5.
- the thermal expansion coefficient of the glass material decreases as the filler content, which has a smaller thermal expansion coefficient than glass, increases. Therefore, when the thermal expansion coefficients of the glass of the first layer 5 and the second layer 6 are equivalent, the thermal expansion coefficient of the second layer 6 is larger than the thermal expansion coefficient of the first layer 5. That is, the content of the filler contained in the second layer 6 is smaller than the amount of the filler contained in the first layer 5.
- the first is the firing temperature of the bonding agent.
- the second is the meltability and bondability of the bonding layer 4 to the metal body 2 and the semiconductor chip 3.
- the heat resistant temperature of the semiconductor chip 3 is about 450 ° C.
- the baking temperature of the glass material which is a bonding agent is 400 ° C. or lower.
- commercially available low-melting glass materials are mainly composed of oxides such as Pb, Bi, V, Sn, Zn, Te, P, and B, and these oxides.
- the glass material itself generally has a large thermal expansion coefficient, and in particular, peeling from the semiconductor chip 3 is likely to occur due to a difference in thermal expansion coefficient.
- a filler having a low thermal expansion coefficient is added to the glass material so as to obtain a bonding agent having a desired thermal expansion coefficient.
- the filler cordierite (thermal expansion coefficient is about 1.7 to 2 ppm / ° C.) made of Mg or Al oxide, Si oxide (thermal expansion coefficient is about 0.5 ppm / ° C.), or the like is used. be able to.
- the glass powder was put into a mold and pressed to form a disk-shaped green compact having a diameter of about 3 mm.
- the green compact was heated on the metal body 2 and the molten state was observed.
- the glass powder compact with no filler added, after melting, had a dome shape with rounded corners on the top and side surfaces, and the surface was smooth and glossy. That is, the meltability of the glass material to which no filler was added was good.
- a green compact obtained by adding a filler to glass powder of the same base is almost in the shape of a disk with a corner before melting, has no gloss on the surface, and has a large contact angle with the metal body 2. It was. That is, it was found that the glass material to which the filler was added has poor meltability.
- the metal body 2 and the semiconductor chip 3 were joined by a glass material to which no filler was added and a glass material to which a filler was added, and the joining properties of both materials were compared and examined.
- the semiconductor chip 3 was detached from the metal body 2 and could not be joined.
- the peeling state of the back surface 8 of the semiconductor chip 3 and the surface 9 of the metal body 2 was observed, the glass material adhered to both surfaces. This indicates that the glass material has broken in the layer. That is, the glass material to which no filler is added has good meltability, and once adheres to the front surface 9 of the metal body 2 and the back surface 8 of the semiconductor chip 3.
- the thermal expansion coefficient of the glass material is large, it is considered that the glass layer was broken after bonding and the semiconductor chip 3 was detached.
- the semiconductor chip 3 was detached from the metal body 2 and could not be joined.
- the peeling state of the back surface 8 of the semiconductor chip 3 and the surface of the metal body 2 was observed, in the glass material to which a large amount of filler was added, the glass material did not adhere to the entire back surface 8 of the semiconductor chip 3 and the bonding area was small. . That is, it was found that the adhesiveness of the glass material to the back surface 8 of the semiconductor chip 3 was lowered and the adhesion itself hardly occurred, that is, the wettability was poor.
- FIG. 2 is a schematic diagram of a cross section by SEM of the glass material 13 in which the filler is mixed.
- the filler 12 protrudes from the surface of the glass component 14 to form irregularities. It is considered that the unevenness is formed by the filler 12 in this way because the specific gravity of the filler 12 is generally lower than that of the glass component 14.
- the melting temperature of the filler 12 has a high melting point, and when the glass component 14 is softened and melted, the filler 12 remains solid and is likely to protrude onto the surface.
- Patent Document 1 it may be considered to have a structure in which the thermal expansion coefficient of the material of the glass layer is continuously changed between the semiconductor chip 3 and the metal body 2.
- the glass layer has a thermal expansion coefficient that is substantially the same as that of the semiconductor chip 3 at a portion in contact with the back surface 8 of the semiconductor chip 3.
- the thermal expansion coefficient of the entire glass material 13 is lowered.
- the meltability is lowered and it is difficult to ensure good bonding properties with the semiconductor chip 3. Considering variations in the manufacturing process and the like, there is a concern about an increase in the bonding defect rate.
- the thermal expansion coefficient of each component is metal body 2> second layer 6> first layer 5> semiconductor chip 3.
- the first layer 5 of the bonding layer 4 has a large amount of filler 12 added and a low thermal expansion coefficient.
- a second layer 6 having a slightly high thermal expansion coefficient but good meltability and a small amount of filler 12 added is formed.
- the second layer 6 is formed thinner than the first layer 5.
- the first layer 5 of the bonding layer 4 can be formed on the metal body 2 and fired before the semiconductor chip 3 is placed. For this reason, it is not necessary to consider the heat resistance of the semiconductor chip 3, and a material having a wide firing temperature can be selected as the material of the first layer 5. And even if the addition amount of the filler 12 is increased, there are few problems.
- the second layer 6 of the bonding layer 4 has a large coefficient of thermal expansion, that is, the amount of filler 12 added is small. Therefore, the second layer 6 has good meltability and good bondability with the semiconductor chip 3. Since the first layer 5 has a large amount of filler 12 added, irregularities are formed on the upper surface, but the second layer 6 has a low amount of filler 12 added and good meltability, so The upper surface of the layer 5 is filled so as to fill the unevenness. However, since the second layer 6 has a large coefficient of thermal expansion, it is necessary to pay attention to peeling and destruction after curing due to the difference in coefficient of thermal expansion. Here, by reducing the thickness of the second layer 6, the thermal expansion coefficient of the first layer 5 can be made dominant with respect to the thermal expansion system coefficient of the entire bonding layer 4.
- the amount of filler 12 added to the first layer 5 of the bonding layer 4 can be about 15 to 30 vol%.
- the amount of filler 12 added to the second layer 6 of the bonding layer 4 can be about 0 to 10 vol%.
- the thickness of the whole joining layer 4 can be about 200 micrometers or less, for example.
- the thickness of the second layer 6 is preferably about half or less than the thickness of the first layer 5.
- the thickness of the second layer 6 can be set to 5 to 20 ⁇ m, for example. In this case, the entire thickness of the bonding layer 4 can be about 20 to 80 ⁇ m.
- a method for manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS.
- a first layer 5 is formed on the metal body 2.
- the first layer 5 is a paste in which a glass component 14, a filler 12 for adjusting a thermal expansion coefficient, and an organic component such as a solvent and a synthetic resin are mixed in advance to form a slurry.
- This paste is supplied to a predetermined position by screen printing or the like so as to have a predetermined area, thickness, and supply amount. And it heats at high temperature and bakes.
- FIG. 3A shows a state of the first layer 5 after firing, and schematically shows a state in which the filler 12 protrudes to form irregularities on the upper surface.
- a drying process for removing the solvent component, a debinding process for leaving the binder component due to the resin at a high temperature, and a baking process for melting and integrating the glass components are sequentially performed.
- the second layer 6 is formed on the first layer 5.
- the second layer 6 is also made into a paste in which a glass component 14, a filler 12 for adjusting a thermal expansion coefficient, and organic components such as a solvent and a synthetic resin are mixed in advance to form a slurry.
- the second layer 6 is supplied to a predetermined position on the first layer 5 by screen printing or the like so as to have a predetermined area, thickness, and supply amount. And it forms by heating at high temperature.
- the heat treatment is a drying process for removing the solvent component, a binder removal process for leaving the binder component due to the resin, and a glass component 14 that is melted and integrated.
- the firing step is performed.
- the second layer 6 may omit the firing step.
- the semiconductor chip 3 is mounted on the second layer 6. And as shown in FIG.3 (d), the 2nd layer 6 is heated and fuse
- the firing step of the second layer 6 is omitted, the second layer 6 is fired in this step.
- the drying step and the binder removal step since the drying step and the binder removal step have been completed, only the main firing step of heating the glass component 14 to a temperature at which it can be softened and fired is performed.
- a weight or the like may be placed in order to obtain good bonding, or a spacer having a predetermined thickness may be used to make the thickness uniform. In this way, the semiconductor device 1 shown in FIG. 1 is obtained.
- the glass material 13 used is a glass paste mixed with a solvent, a resin binder, and the like, and is supplied by printing.
- the present invention is not limited to this method, and a green compact obtained by solidifying glass powder, and glass pellets obtained by heating the powder may be used.
- the drying step can be omitted, and the binder removal step may be unnecessary, which is effective in shortening the manufacturing time.
- variation in the amount of material supply can be reduced by the printing method.
- the back surface 8 of the semiconductor chip 3 may be an Si chip.
- a metallized layer such as Cr, W, Ti, Ni, Pt, Pd, Au, Al, or Cu may be formed.
- a metallized layer obtained by laminating some of these materials or a metallized layer made of an alloy such as AlCu may be formed by vapor deposition or sputtering. If a soft metallized layer such as Al is used, chip cracking resistance can be improved.
- the first embodiment of the present invention has the following effects. (1) In the semiconductor device 1 in which the metal body 2 and the semiconductor chip 3 are bonded by the bonding layer 4, the bonding layer 4 is bonded to the first layer 5 bonded to the metal body 2 and the semiconductor chip 3.
- the second layer 6 is used.
- the first layer 5 includes a filler 12, and the second layer 6 has a higher coefficient of thermal expansion than the first layer 5. Since the first layer 5 has a large amount of filler 12 added, irregularities are formed on the upper surface, but the second layer 6 has a small amount of filler 12 added and good meltability, so that the semiconductor chip 3 Can be improved.
- the first layer 5 of the bonding layer 4 can be formed on the metal body 2 and fired before the semiconductor chip 3 is placed. For this reason, it is not necessary to consider the heat resistance of the semiconductor chip 3, and a material having a wide firing temperature can be selected as the material of the first layer 5.
- the second layer 6 Since the second layer 6 has a large coefficient of thermal expansion, there is a possibility that the second layer 6 may be peeled off or destroyed after curing due to the difference in the coefficient of thermal expansion.
- the thickness of the second layer 6 less than about half the thickness of the first layer 5, the thermal expansion of the first layer 5 with respect to the thermal expansion coefficient of the entire bonding layer 4 is achieved. The coefficient can be dominant. By doing in this way, the thermal expansion coefficient of the joining layer 4 whole can be reduced, and peeling and destruction resulting from the difference in thermal expansion coefficient can be suppressed.
- the first layer 5 has a large amount of filler 12 added, and irregularities are formed on the upper surface, but the second layer 6 has a small amount of filler 12 added, so The irregularities on the upper surface of one layer 5 are filled. For this reason, the bonding properties of the first and second layers 5 and 6 are good.
- the second layer 6 is formed of a material that melts at a lower temperature than the first layer 5.
- the characteristics of the semiconductor chip 3 can be ensured and highly reliable bonding can be performed.
- the main component of the bonding layer 4 can be a material other than the glass component 14 such as ceramics.
- the main component is defined as a component in which at least one of volume and weight occupies half or more of the entire bonding layer 4.
- Embodiment 2 4 is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention.
- the semiconductor device 21 of the second embodiment is different from the semiconductor device 1 of the first embodiment in that a base layer 23 is provided between the metal body 2 and the first layer 5. That is, the bonding layer 22 of the second embodiment includes the first layer 5, the second layer 6, and the base layer 23.
- the underlayer 23 is provided in order to improve the bondability between the first layer 5 and the metal body 2.
- the underlayer 23 is formed of a material whose thermal expansion coefficient is intermediate between the first layer 5 and the metal body 2.
- the thermal expansion coefficient of each component of the semiconductor device 1 is metal body 2> second layer 6> first layer 5> semiconductor chip 3.
- the thermal expansion coefficient of each component of the semiconductor device 1 is metal body 2> underlayer 23> first layer 5. Either of the magnitudes of the thermal expansion coefficients of the second layer 6 and the underlayer 23 may be large. Also in the second embodiment, it is necessary to make the thickness of the second layer 6 thinner than that of the first layer 5. In particular, the thickness of the second layer 6 is set to the thickness of the first layer 5. It is preferable to make it half or less.
- the underlayer 23 can be formed of the glass material 13 in which the amount of filler 12 added is less than that of the first layer 5.
- the material of the underlayer 23 is not limited to glass.
- a metal layer having a low thermal expansion coefficient such as W or Mo, or ceramics can be used. Ceramics can also be formed by thermal spraying.
- the base layer 23 having a higher coefficient of thermal expansion than the first layer 5 is formed on the metal body 2.
- the semiconductor device 21 of the second embodiment can also achieve the effects (1) to (5) of the semiconductor device 1 of the first embodiment.
- the bondability between the metal body 2 and the bonding layer 22 can be further enhanced.
- FIG. 5 shows the evaluation results of the bondability of the semiconductor device according to the present invention.
- the material and the thermal expansion coefficient are shown, and the evaluation result of the bondability is shown.
- the base layer 23 and the first layer 5 shown in FIG. 5 are fired at a temperature higher than the heat resistance temperature 450 ° C. of the semiconductor chip 3, and the second layer 6 is fired at a temperature lower than the heat resistance temperature 450 ° C. of the semiconductor chip 3. did.
- the bonding of the semiconductor chip 3 by the second layer 6 was performed at 400 ° C. for 10 minutes. No. 1-No. It was confirmed that all the semiconductor devices 1 of No. 8 had good bonding properties.
- FIG. 6 is a perspective view of Embodiment 1 of the mechanical quantity measuring device 31 of the present invention.
- the mechanical quantity measuring device 31 includes a sensor chip 32, a bonding layer 40, a printed board 36, and a metal body 37.
- the sensor chip 32 is a semiconductor chip having a strain detector 34 that is a sensor element near the center of the device surface 33.
- the sensor chip 32 is a rectangular parallelepiped semiconductor chip of approximately 1 mm to 10 mm square and a thickness of 30 to 400 ⁇ m.
- the strain detector 34 detects a strain amount change caused by a mechanical amount change such as strain or pressure.
- the strain detector 34 is, for example, a Wheatstone bridge circuit formed by a resistor chip (not shown) formed by doping impurity ions on one surface of a silicon substrate. The resistance value of the impurity diffusion resistance is changed by the expansion and contraction generated in the plane direction of the sensor chip 32, and the strain is detected. If a temperature detection unit is formed in the sensor chip 32 to enable temperature correction of the measurement value, a more accurate strain amount can be measured.
- the electrode 35 which is an output terminal of the sensor chip 32 is connected to the electrode 38 of the printed board 36 by a bonding wire 39 such as an Au wire.
- the printed board 36 is a flexible board using a glass epoxy material, a polyimide material, or the like, or a hard board such as a ceramic board. Strain information detected by the strain detector 34 is supplied to the printed circuit board 63 via the electrode 35, the bonding wire 39, and the electrode 38.
- the metal body 37 has a function as a strain generating body.
- the metal body 37 can be formed by SUS, for example.
- the bonding layer 40 that bonds the metal body 37 and the semiconductor chip 3 has the same configuration as the bonding layer 22 of the second embodiment. That is, the bonding layer 40 includes the base layer 23, the first layer 5, and the second layer 6.
- the thermal expansion coefficient of each component of the mechanical quantity measuring device 31 is as follows: metal body 37> second layer 6> first layer 5> semiconductor chip 32.
- the thermal expansion coefficient of each component of the mechanical quantity measuring device 31 is metal body 37> underlayer 23> first layer 5. Either of the magnitudes of the thermal expansion coefficients of the second layer 6 and the underlayer 23 may be large.
- the thickness of the second layer 6 needs to be smaller than that of the first layer 5.
- the thickness of the second layer 6 is set to the thickness of the first layer 5. It is preferable to make it half or less.
- FIG. 7 shows a modification of the mechanical quantity measuring device 31 shown in FIG.
- the metal body 37 that is a strain generating body is a diaphragm in which a rectangular concave portion 41 is provided in the center in a plan view.
- the amount of deformation increases, which is effective when there is a concern about the destruction of the sensor chip 32 or when the amount of deformation is small and the sensitivity is not sufficient.
- the metal body 37 and the sensor chip 32 are joined by the joining layer 40 similar to that of the semiconductor device 1 of the second embodiment. For this reason, there exists an effect similar to the semiconductor device 1 of Embodiment 2.
- the mechanical quantity measuring devices 31 and 31A are reliable with respect to the heat resistance of the sensor chip 32. Bondability between the metal body 37 and the bonding layer 40 and bonding reliability between the bonding layer 40 and the sensor chip 32 are high. For this reason, it is possible to suppress deformation such as creep in the bonding layer 40, and accurate strain detection by the sensor chip 32 is possible.
- FIG. 8 is a cross-sectional view of Embodiment 2 of the mechanical quantity measuring device of the present invention.
- the mechanical quantity measuring device 50 of the second embodiment includes a container 51, a case 53, and a mechanical quantity measuring device 31A.
- the mechanical quantity measuring device 50 detects the pressure of the gas G that has flowed into the internal space 52 of the container 51.
- the mechanical quantity measuring device 31A shown in FIG. As described above, the mechanical quantity measuring device 31A has a structure in which the sensor chip 32 is fixed via the bonding layer 40 on the metal body 37 that is a diaphragm.
- the container 51 is formed in a substantially hollow cylindrical shape having an internal space 52.
- a gas inlet 55 that guides the gas G to the inner container 52 is formed on the lower side of the container 51.
- a metal body 37 that is a diaphragm is provided on the upper side of the container 51. The metal body 37 also functions as a lid for the container 51.
- the metal body 37 is fixed to the container 51 by integral molding, metal bonding, or mechanical coupling such as fastening, caulking, and screwing. That is, the mechanical quantity measuring device 50 fixes the metal body 37 to the container 51 by a high strength fixing method. As metal bonding, laser welding, ultrasonic welding, friction stir welding, soldering, brazing, or the like can be applied. In order to eliminate the joining process of the metal body 37 and the container 51 to the sensor chip 32 or the influence of the joining, it is desirable to form the metal body 37 and the container 51 integrally in advance. In order to form the metal body 37 and the container 51 integrally, for example, a method such as drawing or cutting may be used.
- the case 53 is formed of a resin or a metal member, and protects the mechanical quantity measuring device 31A fixed to the container 51.
- the mechanical quantity measuring device 50 is used as, for example, a pressure sensor that accurately controls the supply amount of fuel or the like.
- the mechanical quantity measuring device 50 is used in a high-temperature environment, particularly for applications such as in-vehicle use. For this reason, it is required to prevent the sensor characteristics from being deteriorated by creep deformation at a high temperature.
- the mechanical quantity measuring device 50 of the present embodiment includes a mechanical quantity measuring device 31A shown in FIGS. For this reason, as described above, deformation such as creep can be suppressed in the bonding layer 40, and accurate strain detection by the sensor chip 32 is possible.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Measuring Fluid Pressure (AREA)
- Laminated Bodies (AREA)
- Die Bonding (AREA)
- Pressure Sensors (AREA)
Abstract
Description
本発明の第2の態様によると、力学量測定装置は、上記半導体装置を備え、半導体チップはひずみ検出部を含む。
本発明の第3の態様によると、半導体装置の製造方法は、金属体上にフィラーを含んだ第1の接合層を形成することと、第1の接合層上に第1の接合層より熱膨張率が大きい第2の接合層を形成することと、第2の接合層に半導体チップを接合することとを有する。
以下、図面を参照して、本発明の半導体装置の実施形態1を説明する。
図1は、本発明の半導体装置の実施形態1の断面図である。
半導体装置1は、金属体2と、半導体チップ3と、金属体2と半導体チップ3とを接合する接合層4とを備える。
接合層4は、金属体2上に形成され、金属体2の表面9に接合された第1の層5と、第1の層5と半導体チップ3との間に介在し、半導体チップ3の裏面8に接合された第2の層6とを有する。金属体2は、鉄やSUS等により形成されている。半導体チップ3は、シリコンウエハからダイシングにより得られた集積回路素子である。半導体チップ3は、センサ素子を内蔵しているものを用いることもできる。
本発明は、半導体チップ3に接合する第2の層6が、金属体2に接合する第1の層5よりも熱膨張係数が大きい点に特徴を有する。このことにより、以下に説明するように、半導体チップ3と接合層4との接合信頼性を向上する。
金属体2は、鉄、SUS等により形成されている。例えば、SUS420は、その熱膨張係数が約12ppm/℃である。半導体チップ3を形成するシリコンの熱膨張係数は、約3ppm/℃である。
接合層4の第1の層5および第2の層6は、それぞれ、ガラスより熱膨張係数が小さいフィラーが添加されたガラス材料により形成されている。上記熱膨張係数の金属体2を用いた場合には、接合層4の第1の層5および第2の層6の熱膨張係数は、どちらも、3~12ppm/℃とされる。但し、第2の層6の熱膨張係数は、第1の層5の熱膨張係数より大きくされている。
第1は、接合剤の焼成温度である。
第2は、金属体2および半導体チップ3に対する接合層4の溶融性および接合性である。
これらの事項に関して、順次、検討を行った。
フィラーが添加されないガラス粉末の圧粉体は、溶融後、上面と側面は、角が取れたドーム形状となり、表面は滑らかで光沢もみられた。つまり、フィラーが添加されないガラス材料の溶融性は良好であった。
一方、同じベースのガラス粉末にフィラーが添加された圧粉体は、ほぼ、溶融前の角のある円盤形状のままであり、表面に光沢も見られず、金属体2との接触角も大きかった。つまり、フィラーが添加されたガラス材料は、溶融性が乏しいことが判った。
フィラー添加なしのガラス材料では半導体チップ3が金属体2から外れてしまい接合できなかった。半導体チップ3の裏面8および金属体2の表面9の剥離状態を観察したところ、どちらにもガラス材料が全面に付着していた。このことは、ガラス材料がその層中で壊れたことを示している。
即ち、フィラーを添加していないガラス材料では溶融性が良好であり、いったん金属体2の表面9および半導体チップ3の裏面8に接着はする。しかし、ガラス材料の熱膨張係数が大きいため、接着後、ガラス層が破壊し、半導体チップ3が外れたと考えられる。
この半導体装置1では、接合層4の第1の層5は、フィラー12の添加量が大きく、熱膨張係数が小さくされている。この第1の層5上に、熱膨張係数は若干高いが溶融性の良好な、フィラー12の添加量の少ない第2の層6が形成されている。第2の層6は、第1の層5よりも薄く形成される。
接合層4の第1の層5のフィラー12の添加量は、15~30vol%程度とすることができる。
接合層4の第2の層6のフィラー12の添加量は、0~10vol%程度とすることができる。
第2の層6の厚さは、第1の層5の厚さの半分程度以下とすることが好ましい。第2の層6の厚さは、例えば、5~20μmとすることができる。この場合、接合層4全体の厚さを、20~80μm程度とすることができる。
金属体2に第1の層5を形成する。この第1の層5は、予め、ガラス成分14と熱膨張係数調整用のフィラー12、及び、溶剤、合成樹脂などの有機成分などを混ぜ合わせ、スラリー状にしたペーストとされている。このペーストを、所定の位置に、所定の面積、厚み、供給量になるようにスクリーン印刷等により供給する。そして、高温で加熱して焼成する。図3(a)は、第1の層5の焼成後の状態を示しており、フィラー12が突出して上面に凹凸を形成している様子を模式的に示している。加熱処理は、溶剤成分を除去するための乾燥工程、樹脂によるバインダ成分を除去するために高温で放置する脱バインダ工程、およびガラス成分を溶融させて一体化させる焼成工程を順次行う。
(1)金属体2と半導体チップ3とを、接合層4により接合する半導体装置1において、接合層4を、金属体2に接合される第1の層5と、半導体チップ3に接合される第2の層6とにより構成した。第1の層5は、フィラー12を含み、第2の層6は第1の層5より熱膨張率が大きいものとした。第1の層5は、フィラー12の添加量が多いため、上面に凹凸が形成されるが、第2の層6は、フィラー12の添加量が少なく、溶融性が良好なため、半導体チップ3との接合性をよくすることができる。
図4は、本発明の半導体装置の実施形態2の断面図である。
実施形態2の半導体装置21は、金属体2と第1の層5との間に下地層23を有している点で、実施形態1の半導体装置1と相違する。
すなわち、実施形態2の接合層22は、第1の層5と、第2の層6と、下地層23とを有する。下地層23は、第1の層5と金属体2との接合性を向上するために設けられている。下地層23は、その熱膨張係数が第1の層5と金属体2との中間の材料により形成される。
実施形態2においても、第2の層6の厚さは、第1の層5よりも薄くする必要があり、特に、第2の層6の厚さを、第1の層5の厚さの半分以下とすることが好ましい。
但し、下地層23の材料は、ガラスに制限されない。下地層23の材料として、WやMo等の低熱膨張係数の金属層、またはセラミックスを用いることができる。セラミックスは溶射により形成することもできる。
金属体2上にフィラー12を含んだ第1の層5が形成される前に、金属体2上に第1の層5よりも熱膨張率が大きい下地層23が形成される。
図5は、本発明による半導体装置の接合性の評価結果を示すものである。金属体2、下地層23、第1の層5、第2の層6および半導体チップ3それぞれについて、材料および熱膨張係数が示され、接合性の評価結果が示されている。
図5に示された下地層23、第1の層5は、半導体チップ3の耐熱温度450℃より高温で焼成し、第2の層6は、半導体チップ3の耐熱温度450℃より低温で焼成した。例えば、No.5の半導体装置1においては、下地層23の形成は850℃で10分間行い、第1の層5の形成は470℃で10分間行った。また、第2の層6による半導体チップ3の接合は400℃で10分間行った。
No.1~No.8のすべての半導体装置1は、接合性が良好であることが確認された。
本発明の半導体装置1を、ひずみや圧力などの力学量を測定する力学量測定装置に組み込んだ例を示す。
図6は、本発明の力学量測定装置31の実施形態1の斜視図である。
力学量測定装置31は、センサチップ32と、接合層40と、プリント基板36と、金属体37とを備える。
センサチップ32は、デバイス面33の中央部付近に、センサ素子であるひずみ検出部34を有する半導体チップである。センサチップ32は、ほぼ1mm~10mm角、厚さ30~400μmの直方体形状の半導体チップである。ひずみ検出部34は、ひずみや圧力などの力学量変化により生じるひずみ量変化を検出する。ひずみ検出部34は、例えば、シリコン基板の一面に不純物イオンをドープして形成した抵抗チップ(図示せず)により形成されたホイートストンブリッジ回路である。センサチップ32の平面方向に生じた伸縮によって不純物拡散抵抗の抵抗値が変化し、ひずみが検出される。センサチップ32に温度検出部を形成しておくことで、計測値の温度補正を可能とすれば、より高精度なひずみ量が計測可能となる。
力学量測定装置31において、金属体37と半導体チップ3とを接合する接合層40は、実施形態2の接合層22と同一の構成を有する。すなわち、接合層40は、下地層23、第1の層5、第2の層6を有する。力学量測定装置31の各構成部材の熱膨張係数は、金属体37>第2の層6>第1の層5>半導体チップ32、となっている。また、力学量測定装置31の各構成部材の熱膨張係数は、金属体37>下地層23>第1の層5、となっている。第2の層6と、下地層23との熱膨張係数の大小は、どちらが大きくても構わない。
この実施形態においても、第2の層6の厚さは、第1の層5よりも薄くする必要があり、特に、第2の層6の厚さを、第1の層5の厚さの半分以下とすることが好ましい。
図7に図示されるように、変形例の力学量測定装置31Aでは、起歪体である金属体37には、中央部に平面視で矩形の凹部41が設けられたダイヤフラムとされている。ダイヤフラムとすることにより、変形量が大きくなるため、センサチップ32の破壊が懸念される場合や、変形量が小さく、感度が十分とれない場合に有効である。
図6、図7に示す力学量測定装置31、31Aは、金属体37とセンサチップ32とが実施形態2の半導体装置1と同様な接合層40により接合されている。このため、実施形態2の半導体装置1と同様な効果を奏する。
図8は、本発明の力学量測定装置の実施形態2の断面図である。
実施形態2の力学量測定装置50は、容器51と、ケース53と、力学量測定装置31Aとを有する。
力学量測定装置50は、容器51の内部空間52内に流入された気体Gの圧力を検出する。
容器51の上部には、図7に示された力学量測定装置31Aが取付けられている。上述したように、力学量測定装置31Aは、ダイヤフラムである金属体37上に、接合層40を介してセンサチップ32が固定された構造を有する。容器51は、内部空間52を有するほぼ中空円筒状に形成されている。容器51の下部側には、気体Gを内部容器52に導く気体取入口55が形成されている。容器51の上部側にダイヤフラムである金属体37を有する。金属体37は、容器51の蓋としての機能を兼用している。
本実施形態の力学量測定装置50は、図6、図7に示す力学量測定装置31Aを有している。このため、上述したように、接合層40にクリープなどの変形が生じることを抑制することができ、センサチップ32による正確なひずみ検出が可能となる。
日本国特許出願2015年第135899号(2015年7月7日出願)
2 金属体
3 半導体チップ
4 接合層
5 第1の層
6 第2の層
12 フィラー
13 ガラス材料
14 ガラス成分
21 半導体装置
22 接合層
23 下地層
31 力学量測定装置
31A 力学量測定装置
32 センサチップ
34 ひずみ検出部(センサ素子)
37 金属体
40 接合層
50 力学量測定装置
Claims (13)
- 金属体と、
前記金属体上に配置された接合層と、
前記接合層上に配置された半導体チップとを備え、
前記接合層は、前記金属体と前記半導体チップとの間に形成されたフィラーを含んだ第1の層と、前記第1の層と前記半導体チップとに接合され、前記第1の層より熱膨張率が大きい第2の層とを含む、半導体装置。 - 請求項1に記載の半導体装置において、
前記第2の層の厚さは、前記第1の層の厚さの半分以下である、半導体装置。 - 請求項1に記載の半導体装置において、
前記第1の層は、前記フィラーより比重が重い材料を主成分とする、半導体装置。 - 請求項1に記載の半導体装置において、
前記第1の層における前記第2の層との界面側に前記フィラーの突出による凹凸が形成され、前記第2の層は、前記第1の層の前記凹凸に充填されている、半導体装置。 - 請求項1に記載の半導体装置において、
前記第1の層および前記第2の層は、主成分がガラスである、半導体装置。 - 請求項5に記載の半導体装置において、
前記第2の層の主成分は、前記第1の層の主成分より低温で溶融するガラスである、半導体装置。 - 請求項1に記載の半導体装置において、
前記接合層は、前記第1の層と前記金属体との間に、前記第1の層よりも熱膨張率が大きい第3の層を備える、半導体装置。 - 請求項1に記載の半導体装置において、
前記の半導体チップはセンサ素子を含む、半導体装置。 - 請求項1乃至7のいずれか一項に記載の半導体装置を備え、前記半導体チップはひずみ検出部を含む、力学量測定装置。
- 金属体上にフィラーを含んだ第1の接合層を形成することと、
前記第1の接合層上に前記第1の接合層より熱膨張率が大きい第2の接合層を形成することと、
前記第2の接合層に半導体チップを接合することとを有する、半導体装置の製造方法。 - 請求項10に記載の半導体装置の製造方法において、
前記第2の接合層の形成は、前記第1の接合層を焼成した後に行い、前記第2の接合層に半導体チップを接合する工程は、前記第2の接合層上に前記半導体チップを配置した状態で、前記第2の接合層を焼成する工程を含む、半導体装置の製造方法。 - 請求項10に記載の半導体装置の製造方法において、
前記第1の接合層は、前記第2の接合層との界面側に前記フィラーの突出による凹凸が形成され、前記第2の接合層は、前記第1の接合層の前記凹凸を充填するように形成される、半導体装置の製造方法。 - 請求項10に記載の半導体装置の製造方法において、
前記金属体上に前記フィラーを含んだ前記第1の接合層を形成する前に、前記金属体上に前記第1の接合層よりも熱膨張率が大きい下地層を形成する、半導体装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017527416A JP6302142B2 (ja) | 2015-07-07 | 2016-06-30 | 半導体装置、力学量測定装置および半導体装置の製造方法 |
CN201680034237.9A CN107683406B (zh) | 2015-07-07 | 2016-06-30 | 半导体器件、力学量测量装置和半导体器件的制造方法 |
US15/742,809 US10247630B2 (en) | 2015-07-07 | 2016-06-30 | Semiconductor device, mechanical quantity measuring device, and semiconductor device fabricating method |
EP16821309.8A EP3321653B1 (en) | 2015-07-07 | 2016-06-30 | Semiconductor device, mechanical quantity measuring device and semiconductor device fabricating method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-135899 | 2015-07-07 | ||
JP2015135899 | 2015-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017006840A1 true WO2017006840A1 (ja) | 2017-01-12 |
Family
ID=57685254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069521 WO2017006840A1 (ja) | 2015-07-07 | 2016-06-30 | 半導体装置、力学量測定装置および半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10247630B2 (ja) |
EP (1) | EP3321653B1 (ja) |
JP (1) | JP6302142B2 (ja) |
CN (1) | CN107683406B (ja) |
WO (1) | WO2017006840A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018163632A1 (ja) * | 2017-03-10 | 2018-09-13 | 日立オートモティブシステムズ株式会社 | 物理量測定装置およびその製造方法ならびに物理量測定素子 |
JP2019060639A (ja) * | 2017-09-25 | 2019-04-18 | 日立金属株式会社 | 圧力センサ、圧力センサの製造方法及び質量流量制御装置 |
JP2022042992A (ja) * | 2020-09-03 | 2022-03-15 | メジャメント スペシャリティーズ, インコーポレイテッド | ひずみゲージおよびひずみ測定アセンブリ |
DE112017001287B4 (de) | 2016-05-27 | 2024-09-26 | Hitachi Astemo, Ltd. | Messvorrichtung für eine physikalische Größe, Verfahren zu ihrer Herstellung und Messelement für eine physikalische Größe |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019129411A1 (de) * | 2019-09-12 | 2021-03-18 | Wika Alexander Wiegand Se & Co. Kg | Aufnehmerkörper mit einem Messelement und Herstellungsverfahren für einen Aufnehmerkörper |
KR102561159B1 (ko) * | 2021-06-28 | 2023-07-27 | 오석환 | 전기전도성이 향상된 버스바의 결합 구조체, 결합 방법 및 이를 이용한 배전반 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711461B2 (ja) * | 1986-06-13 | 1995-02-08 | 株式会社日本自動車部品総合研究所 | 圧力検出器 |
JP2013234955A (ja) * | 2012-05-10 | 2013-11-21 | Nippon Soken Inc | 圧力センサおよびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62150131A (ja) * | 1985-12-24 | 1987-07-04 | Nippon Soken Inc | 圧力検出器 |
JP3948452B2 (ja) * | 2003-11-04 | 2007-07-25 | 松下電器産業株式会社 | 荷重センサ及びその製造方法 |
JP5243704B2 (ja) * | 2006-08-24 | 2013-07-24 | 本田技研工業株式会社 | 力覚センサ |
WO2012157584A1 (ja) * | 2011-05-13 | 2012-11-22 | 富士電機株式会社 | 半導体装置とその製造方法 |
JP2013036935A (ja) | 2011-08-10 | 2013-02-21 | Nippon Soken Inc | 圧力センサおよびその製造方法 |
JP5657145B2 (ja) * | 2012-01-18 | 2015-01-21 | 三菱電機株式会社 | 半導体装置 |
US9671362B2 (en) * | 2013-07-29 | 2017-06-06 | Honeywell International Inc. | ph sensor with bonding agent disposed in a pattern |
JP5975970B2 (ja) * | 2013-11-20 | 2016-08-23 | 日立オートモティブシステムズ株式会社 | 圧力センサ |
-
2016
- 2016-06-30 EP EP16821309.8A patent/EP3321653B1/en active Active
- 2016-06-30 JP JP2017527416A patent/JP6302142B2/ja active Active
- 2016-06-30 WO PCT/JP2016/069521 patent/WO2017006840A1/ja active Application Filing
- 2016-06-30 US US15/742,809 patent/US10247630B2/en active Active
- 2016-06-30 CN CN201680034237.9A patent/CN107683406B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711461B2 (ja) * | 1986-06-13 | 1995-02-08 | 株式会社日本自動車部品総合研究所 | 圧力検出器 |
JP2013234955A (ja) * | 2012-05-10 | 2013-11-21 | Nippon Soken Inc | 圧力センサおよびその製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112017001287B4 (de) | 2016-05-27 | 2024-09-26 | Hitachi Astemo, Ltd. | Messvorrichtung für eine physikalische Größe, Verfahren zu ihrer Herstellung und Messelement für eine physikalische Größe |
WO2018163632A1 (ja) * | 2017-03-10 | 2018-09-13 | 日立オートモティブシステムズ株式会社 | 物理量測定装置およびその製造方法ならびに物理量測定素子 |
JPWO2018163632A1 (ja) * | 2017-03-10 | 2019-11-07 | 日立オートモティブシステムズ株式会社 | 物理量測定装置およびその製造方法ならびに物理量測定素子 |
US20190371759A1 (en) * | 2017-03-10 | 2019-12-05 | Hitachi Automotive Systems, Ltd. | Physical quantity measurement device and method for manufacturing same, and physical quantity measurement element |
JP2019060639A (ja) * | 2017-09-25 | 2019-04-18 | 日立金属株式会社 | 圧力センサ、圧力センサの製造方法及び質量流量制御装置 |
JP2022042992A (ja) * | 2020-09-03 | 2022-03-15 | メジャメント スペシャリティーズ, インコーポレイテッド | ひずみゲージおよびひずみ測定アセンブリ |
JP7267359B2 (ja) | 2020-09-03 | 2023-05-01 | メジャメント スペシャリティーズ, インコーポレイテッド | ひずみゲージおよびひずみ測定アセンブリ |
US11933683B2 (en) | 2020-09-03 | 2024-03-19 | Te Connectivity Solutions Gmbh | Strain gauge and strain measurement assembly |
Also Published As
Publication number | Publication date |
---|---|
US10247630B2 (en) | 2019-04-02 |
EP3321653A1 (en) | 2018-05-16 |
CN107683406B (zh) | 2020-08-07 |
CN107683406A (zh) | 2018-02-09 |
US20180202883A1 (en) | 2018-07-19 |
EP3321653B1 (en) | 2020-03-11 |
JP6302142B2 (ja) | 2018-03-28 |
JPWO2017006840A1 (ja) | 2018-02-15 |
EP3321653A4 (en) | 2019-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6302142B2 (ja) | 半導体装置、力学量測定装置および半導体装置の製造方法 | |
JP6475703B2 (ja) | 金属/セラミックはんだ接続部を生成する方法 | |
JP4033331B2 (ja) | サーミスタおよびその製造方法 | |
JP3757985B2 (ja) | 圧力センサの取付け | |
US20070251938A1 (en) | Ceramic heater and method of securing a thermocouple thereto | |
JP5076166B2 (ja) | 圧電デバイス及びその封止方法 | |
JP6103661B2 (ja) | 力学量測定装置 | |
TW201003694A (en) | Ceramic electronic component and method for manufacturing the same | |
US10837839B2 (en) | Method for manufacturing a temperature sensor | |
CN104003347A (zh) | 半导体器件和制造器件的方法 | |
CN107453751B (zh) | 晶体振荡器及晶体振荡器的制造方法 | |
JP5870837B2 (ja) | 圧力センサおよびその製造方法 | |
JP6661466B2 (ja) | 取付支持体上にmecsデバイスを備えたコンポーネント | |
Kohler et al. | Assembly and interconnection technology for high-temperature bulk acoustic wave resonators | |
WO2014156273A1 (ja) | 力学量測定装置およびその製造方法 | |
JP6129980B2 (ja) | 力学量測定装置及びその製造方法 | |
JP2007281292A (ja) | 半導体デバイスの実装構造 | |
JP2018085421A (ja) | 半導体装置 | |
JP2014063905A (ja) | 半導体装置の製造方法、半導体装置 | |
JP2004207539A (ja) | 電子部品収納用容器および電子装置 | |
JP3752462B2 (ja) | 電子部品収納用容器 | |
JP2007096250A (ja) | 蓋体、電子部品収納用パッケージおよびこれを用いた電子装置 | |
WO2025105222A1 (ja) | 温度センサ及び温度センサを備えた装置 | |
CN118355730A (zh) | 加热器 | |
JP2016051742A (ja) | 半導体素子接続ユニットおよびそれを備えた力学量測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16821309 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017527416 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15742809 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016821309 Country of ref document: EP |