+

WO2017002777A1 - 空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。 - Google Patents

空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。 Download PDF

Info

Publication number
WO2017002777A1
WO2017002777A1 PCT/JP2016/069069 JP2016069069W WO2017002777A1 WO 2017002777 A1 WO2017002777 A1 WO 2017002777A1 JP 2016069069 W JP2016069069 W JP 2016069069W WO 2017002777 A1 WO2017002777 A1 WO 2017002777A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
cellulose
modified
air
air filtration
Prior art date
Application number
PCT/JP2016/069069
Other languages
English (en)
French (fr)
Inventor
哲男 近藤
訓二 永岡
Original Assignee
国立大学法人九州大学
永佐化工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 永佐化工株式会社 filed Critical 国立大学法人九州大学
Publication of WO2017002777A1 publication Critical patent/WO2017002777A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series

Definitions

  • the present invention relates to a modified nonwoven fabric for air filtration, an air filtration device such as a mask and a filter using the modified nonwoven fabric, and a method for producing the modified nonwoven fabric.
  • Patent Document 1 discloses a mask subjected to electret processing.
  • a technique for activating the fiber surface and improving the collection efficiency of dust and fine particles has been developed, and a representative one is an electret treatment (Japanese Patent Laid-Open No. 9-149944).
  • the fiber surface is charged with static electricity using corona discharge or the like, and fine particles such as dust and pollen are adsorbed and collected by electrostatic interaction.
  • Patent Document 2 a fiber spun from cellulose acetate or cellulose phthalate acetate is used as a filter for removing bacteria (Japanese Patent Publication No. 2008-508060).
  • Japanese Patent Application Laid-Open No. 2012-45021 relates to a mask filter having good air permeability without pressure loss and having good collection efficiency.
  • Patent Document 4 a PM2.5 removal mask is formed from a porous silk thread obtained by blasting a silkworm husk of a silkworm belonging to the scorpion family (Japanese Patent Laid-Open No. 2014-176541).
  • Patent Document 5 relates to a deodorizing filter for collecting pollen (Japanese Patent Laid-Open No. 2015-62862).
  • Patent Document 6 forms a PM2.5 removal mask by separating the medulla from the husk of rush to obtain a fine particle adsorbing material (Japanese Patent No. 5639302).
  • Patent Document 1 the processing technique is complicated, the product is subjected to the long-term stability of the surface performance, and the electret treatment is not suitable for natural fibers.
  • the technique of Patent Document 2 is not a versatile material and lacks chemical stability.
  • Patent Document 3 a combination of synthetic fibers having different fiber lengths must be prepared, and the preparation of the material is complicated.
  • the technique of Patent Document 4 is not suitable for mass production.
  • Patent Document 5 since it is composed of a plurality of layers, flexible processing is difficult, and a reduction in air permeability cannot be avoided.
  • Patent Document 6 the preparation of the material is complicated, the number of processes is large, and it is not suitable for flexible processing.
  • the present invention has been made in view of conventional problems, a modified nonwoven fabric excellent in fine particle collection ability, processability, stability, air permeability, and the like, an air filtration device such as a mask and a filter using the nonwoven fabric, and a modification. It aims at providing the manufacturing method of a nonwoven fabric.
  • Nonwoven fabrics are used as cloth, paper, and film because they are inexpensive and can be manufactured in large quantities. Moreover, the cloth, paper, and film which consist of a nonwoven fabric may be integrated in a sanitary mask, a filter, etc. However, on the other hand, a nonwoven fabric coated with cellulose nanofibers has not been known.
  • the present inventor discloses a method for imparting water repellency and oil resistance using cellulose nanofibers related to the use of a cellulose anti-collision treated product for coating on the surface of paper or the like.
  • the cellulose nanofiber-coated nonwoven fabric prepared by the facing collision treatment method has not been known so far, and for the first time in the present invention, the nonwoven fabric modified by the method collects dust and particulate matter very well. It was found that it was possible. Based on this, we have come to the invention of a modified nonwoven fabric that can be used in an air filtration device.
  • the nonwoven fabric of the present invention is characterized by being coated with cellulose nanofibers.
  • cellulose nanofibers are derived from bacterial cellulose or herbaceous plants.
  • the herbaceous plant is characterized by being a hardwood, a conifer or a bamboo.
  • the constituent material for an air filtration device of the present invention is characterized in that the modified nonwoven fabric is incorporated.
  • the method for producing a modified nonwoven fabric of the present invention is a method in which a pulp dispersion liquid is jetted from a pair of nozzles at a high pressure of 70 to 250 MPa, and the jet streams collide with each other (hereinafter referred to as opposing collision treatment). ) And a process liquid containing cellulose nanofibers by the method, impregnating the process liquid with a nonwoven fabric, and / or applying the process liquid to the nonwoven fabric, drying, and coating the cellulose nanofiber coating. It consists of the process of forming, It is characterized by the above-mentioned.
  • Cellulose nanofiber refers to a cellulose fiber having an average width and average thickness of 100 nm or less.
  • the average width and average thickness of the cellulose fiber can be measured by methods well known to those skilled in the art, such as a light scattering device, a laser microscope, and an electron microscope.
  • the average width is obtained by measuring the longer one of the measured lengths, for example, 10 to 200 points, preferably 30 to 80 points, and taking the average value.
  • the average thickness is obtained by measuring the shortest of the measured lengths at several points, for example, 10 to 200 points, preferably 30 to 80 points, and taking the average value.
  • Preferred examples of the cellulose nanofibers used in the present invention have an average width and an average thickness that are equal to or less than that of bacterial cellulose, for example, an average width of 25 nm or less, preferably 20 nm or less, more preferably 15 nm or less, and even more preferably 8 It is ⁇ 12 nm, and the average thickness is 8 ⁇ 12 nm.
  • Bacterial cellulose refers to cellulose produced by microorganisms (polysaccharides with ⁇ -1,4-glucoside bonds as the main binding form), and refers to those in the form of a gel-like film unless otherwise indicated.
  • Bacterial cellulose can be produced by methods well known to those skilled in the art.
  • Cellulose-producing bacteria include acetate bacteria such as Acetobactor (xylinum (also called Acetobactorlinxylinum or Gluconacetobactor xylinus), Acetobactor pasteurianum, Acetobactor rancens, etc. (Bacteirum xyloides), Pseudomonas spp., Agrobacterium spp., Etc. can be used. Those skilled in the art can appropriately determine the culture solution and culture conditions to be used.
  • the “herbaceous plant” refers to a plant body having a grassy or fleshy stem that does not develop much xylem, and the above-ground part often dies in one year. However, there are those with biennial and perennial stems and evergreen leaves that have been developed.
  • gramineous plants can be suitably used, and examples of preferred gramineous plants are bamboo and bamboo.
  • Phragmites communis (sometimes called reeds, reeds, reeds, reeds, reeds, reeds) is a herbaceous plant that belongs to the genus Reiaceae and is distributed in wetlands from tropical to temperate zones.
  • bamboo is a perennial herbaceous plant that belongs to the grass family bamboo and is distributed from the tropics to the temperate zone.
  • bamboo includes horaiiku, madake, mosouchiku, chishimasa, suzutake and medaka.
  • Opasite collision (treatment) refers to a wet pulverization method in which a dispersion of polysaccharides is sprayed from a pair of nozzles at a high pressure of 70 to 250 MPa, and the jet fibers collide with each other to pulverize cellulose fibers.
  • Cellulose nanofibers prepared by such a method have a hydrophilic portion derived from a hydroxyl group and a hydrophobic portion derived from a CH group. If the hydrophilic surface appears on a solid surface, the cellulose nanofiber has an affinity for water, and the hydrophobic surface. When arranged on the surface, it has water repellency.
  • Nonwoven fabric refers to a non-woven fabric in which a web is formed by weaving and using a heat or an adhesive, or fibers are entangled and superposed in three dimensions to form a sheet.
  • the air filtration apparatus using the same as a constituent material, and the method for producing the modified non-woven fabric, dust and particulate matter can be efficiently collected, and air permeability is improved.
  • An excellent and good air filtration device is provided.
  • FIG. 1 the conceptual diagram of the cellulose nanofiber process liquid manufacturing apparatus by a heel opposing collision process is shown.
  • FIG. 2 the conceptual diagram of the sanitary mask which is a kind of air filtration apparatus is shown.
  • FIG. 3 the SEM electric observation image (30 times) of the sanitary mask surface which apply
  • FIG. 4 shows an SEM observation image (400 magnifications) in a state where particulate matter larger than PM2.5 (broken arrows) is collected at the cellulose nanofiber-covered portion on the surface of the modified nonwoven fabric.
  • FIG. 4 shows an SEM observation image (400 magnifications) in a state where particulate matter larger than PM2.5 (broken arrows) is collected at the cellulose nanofiber-covered portion on the surface of the modified nonwoven fabric.
  • FIG. 5 shows a SEM in a state where particulate matter (solid line arrow) considered to be PM2.5 and particulate matter larger than PM2.5 (broken arrow) are collected in the cellulose nanofiber coating portion on the surface of the modified nonwoven fabric.
  • An observation image 1000 times is shown.
  • FIG. 6 the SEM observation image (5000 times) of the state by which the particulate matter (solid line arrow) considered to be PM2.5 was collected in the cellulose nanofiber covering part on the surface of the modified nonwoven fabric is shown.
  • FIG. 7 shows a SEM observation image (10,000 times) in a state in which particulate matter (solid arrow) and virus size substance (circles) considered to be PM2.5 are collected on the surface of the modified nonwoven fabric.
  • FIG. 8 shows an SEM electric observation image (30 times) of the sanitary mask surface not coated with the cellulose nanofiber preparation liquid.
  • FIG. 9 the SEM observation image (400 times) of the part by which cellulose nanofiber coating is not carried out on the surface of a modified nonwoven fabric is shown.
  • FIG. 10 shows an SEM observation image (1000 times) in a state where particulate matter larger than PM2.5 (broken arrow) is collected on the surface of the modified nonwoven fabric where the cellulose nanofiber coating is not applied.
  • FIG. 11 the SEM observation image (5000 times) of the part by which cellulose nanofiber coating is not carried out on the surface of a modified nonwoven fabric is shown.
  • FIG. 10 shows an SEM observation image (1000 times) in a state where particulate matter larger than PM2.5 (broken arrow) is collected on the surface of the modified nonwoven fabric where the cellulose nanofiber coating is not applied.
  • FIG. 11 the SEM observation image (5000 times) of the part by which cellulose nanofiber coating is not carried out on the
  • FIG. 12 shows the SEM observation image (35 times) of the nonwoven fabric surface processed with the cellulose cellulose nanofiber preparation liquid.
  • FIG. 13 shows an enlarged photograph when the microbialcellulose nanofiber suspension is applied and sprayed onto a nonwoven fabric.
  • FIG. 14 the method of coat
  • FIG. 15 shows an SEM observation image (10,000 times) in a state where particulate matter (solid arrow) considered to be PM2.5 is collected on the surface of the modified nonwoven fabric after the 24-hour exposure test.
  • FIG. 16 shows an SEM observation image (10,000 times) in a state where particulate matter (solid arrow) considered to be PM2.5 is collected on the surface of the modified nonwoven fabric after the 48-hour exposure test.
  • FIG. 17 shows an SEM observation image (10,000 times) in a state where particulate matter (solid arrow) considered to be PM2.5 is collected on the surface of the modified nonwoven fabric after the 72-hour exposure test.
  • FIG. 18 after the 24-hour exposure test, particulate matter that seems to be PM2.5 (solid line circles) and particulate matter larger than PM2.5 (broken arrows) are collected on the surface of the modified nonwoven fabric.
  • An SEM observation image (400 times) is shown.
  • the nano-sized natural fiber has a large specific surface area, and a strong interaction is possible at the interface with the partner substance.
  • the material surface is coated with cellulose nanofibers having amphipathic properties (hydrophilic and hydrophobic) that are likely to interact with each other, the fiber-side surface exhibiting similar properties is adsorbed on the material surface. That is, since the nonwoven fabric made of synthetic fibers is hydrophobic, it adheres to the cellulose nanofiber coating by hydrophobic interaction, and as a result, more hydrophilic portions of the cellulose nanofiber are exposed and modified on the coating surface in contact with the outside air. The surface of the nonwoven fabric becomes hydrophilic.
  • nanofibers obtained by subjecting cellulose to opposing collision treatment constitute a composite with an inorganic substance such as calcium carbonate, for example. It has been found that the adsorptive interaction acting between inorganic substances is strong.
  • the mechanism by which dust and particulate matter are adsorbed on the surface of the modified nonwoven fabric according to the present invention is unclear, but the cellulose of the present invention is used regardless of whether the surface state of the dust or particulate matter is hydrophilic or hydrophobic. It is presumed that not only fine particles typified by PM2.5 but also larger particles are well collected due to the amphiphilicity and strong adsorption interaction of nanofibers.
  • Methods other than the present invention for example, a method of chemically introducing a carboxyl group to the surface of cellulose microfibrils shown in Non-Patent Document 1 to fibrillate (Saito, T., et al., Cellulose Commun., 14 (2 ), 62 (2007)), the coating film is not formed on the nonwoven fabric itself, and dust and particulate matter are not collected better than the modified nonwoven fabric according to the present invention.
  • the object of the present invention is achieved only by the coating of cellulose nanofibers by the facing collision treatment.
  • the cellulose nanofibers can exist in the form of a gel-like liquid, it can be used in the form of the gel-like film as it is, and the fine network structure and good water retention can be utilized.
  • the counter collision treatment has various excellent advantages compared with other pulverization methods, such as a bead mill, a jet mill, a stirrer, and a high-pressure homogenizer.
  • pulverization methods such as a bead mill, a jet mill, a stirrer, and a high-pressure homogenizer.
  • no grinding media since no grinding media is used, there is no mixing of wear powder of the medium, and a uniform and sharp particle size distribution is obtained from the medium agitation type.Furthermore, continuous processing, large capacity is easy, contact time with the atmosphere is small, The point which can suppress the oxidation of a processed product as much as possible can be mentioned.
  • a high-pressure washing device or a high-pressure homogenizer device for pulverization / dispersion / emulsification can be used.
  • Natural cellulose fibers suspended in water are introduced into two nozzles (FIG. 1: 108) opposed to each other in the chamber (FIG. 1: 107), and jetted and collided from these nozzles toward one point (FIG. 1).
  • the suspension water of natural microcrystalline cellulose fibers for example, funacell
  • the surface is nanofibrillated and peeled off, and the affinity with water as a carrier is improved. In particular, it becomes possible to reach a state close to dissolution.
  • FIG. 1 is of a liquid circulation type, and has a tank (FIG. 1: 109), a plunger (FIG. 1: 110), two opposing nozzles (FIG. 1: 108a, 108b), and heat as needed.
  • An exchanger (FIG. 1: 111) is provided, and fine particles dispersed in water are introduced into two nozzles and sprayed from opposite nozzles (FIG. 1: 108) facing each other under high pressure to collide against each other in water.
  • a tank FIG. 1: 109
  • a plunger FIG. 1: 110
  • FIG. 1: 108a, 108b two opposing nozzles
  • FIG. 1: 111 An exchanger
  • fine particles dispersed in water are introduced into two nozzles and sprayed from opposite nozzles (FIG. 1: 108) facing each other under high pressure to collide against each other in water.
  • the average particle length of the cellulose fibers is 1 ⁇ 4 or less.
  • the cellulose raw material is dispersed in water.
  • the cellulose raw material may be pulverized in advance if necessary.
  • the dispersion concentration is preferably a concentration suitable for passing through the piping as a dispersion slurry, and preferably 0.1 to 10% by mass.
  • the dispersion concentration is high, the fluid viscosity becomes high, the pulp material is clogged with each part through which the fluid passes, causing troubles in operation of the apparatus, and uniform spraying becomes difficult during application.
  • the dispersion concentration is low, nanofibrillation does not proceed well because the fiber surface is hardly peeled off.
  • the dispersion concentration is below the above range, sufficient nanofibers that block the voids created by the entanglement of the nonwoven fabric fibers are not given to the nonwoven fabric surface, so that a good collection ability of dust or fine particles can be obtained. Absent.
  • the processed object once subjected to the collision process is cooled to 4 to 20 ° C. or 5 to 15 ° C. as necessary. Also good.
  • a cooling facility can be incorporated in the opposing collision processing apparatus.
  • the opposing collision treatment is performed by adjusting such treatment conditions (treatment pressure, number of treatments, other nozzle diameters, treatment temperature, etc.), and the average fiber width, average fiber length, transmittance, viscosity of the obtained cellulose nanofibers. Etc. can be adjusted.
  • bacterial cellulose fibers or herbaceous plant-derived cellulose fibers that are subjected to the counter-collision treatment are processed in the same manner as the preparation of pulp (aggregate of cellulose fibers taken apart) as a raw material for paper. It may be obtained.
  • the pulp preparation process is, for example, cooking by mixing raw materials with chemicals and treating them with high temperature and high heat, separating them into fibers and others (lignin components, etc.), and washing the fibers as necessary Including doing.
  • the nonwoven fabric in the present invention may be produced from any material, for example, any one or more of polyethylene, polypropylene, polyvinylidene chloride, polystyrene, polyvinyl acetate, polyvinyl chloride, nylon, polytetrafluoroethylene. What is formed by a combination is mention
  • the nonwoven fabric in the present invention may be produced by any method.
  • a web forming method includes a dry method, a wet method, a spunbond method, a melt blow method, an airlaid method, and a web fiber bonding method includes a chemical method. Examples include a bond method, a thermal bond method, a needle punch method, and a hydroentanglement method.
  • the treated product is centrifuged to obtain a cellulose nanofiber having an average fiber diameter of less than 1 ⁇ m by separating the supernatant. it can.
  • the cellulose nanofiber coating of the present invention is 100 ⁇ m or less, preferably 70 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 10 to 40 ⁇ m. If the thickness of the cellulose nanofiber coating exceeds this value, the amphiphilic property is not expressed well, and it becomes difficult for air to pass through, so the air permeability necessary for the sanitary mask cannot be ensured. If it falls below the above range, the non-woven fabric and the base material will not be well coated because of poor adhesion.
  • the method when the surface of the nonwoven fabric is coated with cellulose nanofibers, the method is not particularly limited, but the impregnation and coating may be performed in combination, or may be performed repeatedly.
  • the impregnation and coating may be performed in combination, or may be performed repeatedly.
  • it carries out with an air spray, a brush, or a roller, and spray is more preferable.
  • spray it is possible to easily cover the surface, and it is possible to cover only a portion where a person's mouth or nose contacts. Drying can be performed by room temperature drying, heat drying, or forced drying.
  • the nonwoven fabric in the present invention When the modified nonwoven fabric in the present invention is incorporated into an air filtration device, the nonwoven fabric may be used alone or may be combined so as to form a laminated structure such as a sandwich or laminate with another air permeable film or sheet.
  • the surface modification by the counter-collision treatment used in the present invention has the ability to collect dust or particulate matter that could not be achieved by conventional functions.
  • Cellulose is derived from natural products and has no burden on the environment or health.
  • the modified nonwoven fabric of the present invention is superior in harmfulness and safety.
  • the opposing collision treatment can modify the surface of the nonwoven fabric using materials other than synthetic fibers.
  • the modified nonwoven fabric according to the present invention can be incorporated in a sanitary mask for carrying, a ventilation device filter for air cleaning, an intake filter, and the like.
  • sanitary masks can remove dust and contaminants by collecting dust and particulate matter very well without impairing air permeability.
  • FIG. 2 The basic configuration is the same as that of a general mask, and a horizontally long rectangular mask body (FIG. 2: 1) covering the nostril and mouth, a pair of ear hooks (FIG. 2: 2) on both sides, and the mouth and nose in the center. It consists of a contact part (FIG. 2: 3).
  • Sanitary mask non-woven fabrics are either dust or fine particles, whether the mouth and nose are in contact with the modified surface, the surface in contact with the outside air is the modified surface, or both are the modified surface. The substance is collected effectively.
  • the tester is a Frazier method (for the sample of a certain area) for determining the amount of air passing through the sample (cm 3 / cm 2 / sec) under a constant pressure for a certain time ( JIS-L-1096 8.27A), KES method in which air with a constant air flow rate is sent to the sample and obtained from the air flow resistance of the sample, the number of seconds that a constant volume of air passes through a sample with a constant area under a constant pressure difference
  • the Gurley method for obtaining the air resistance from the above is used, but is not particularly limited in the present invention.
  • a normal mask has an air permeability of approximately 10 to 500 cm 3 / cm 2 / sec as evaluated by the Frazier method.
  • the evaluation is based on the time required to pass 100 mL of air, and a normal mask requires 1 to 200 seconds.
  • ISO air permeability it is 0.5 to 100 ⁇ m / Pa ⁇ s.
  • the sanitary mask using the modified nonwoven fabric according to the present invention has not only excellent dust or particulate matter collection ability, but also has the same level of air permeability as before.
  • the modified nonwoven fabric according to the present invention is used in homes such as air conditioners, air purifiers, humidifiers, dehumidifiers, air purifiers with a humidifying function, air purifiers with dehumidifying and humidifying functions, air washers, fans, ventilating fans, heaters, etc.
  • it can also be used as a filter sheet for a commercial air cleaner, a vehicle-mounted air cleaner mounted in a passenger compartment of an automobile or the like.
  • the gap between the non-woven fabrics of 2.5 ⁇ m or more originally possessed is blocked by the cellulose nanofiber coating, and the amphipathic property of the cellulose nanofiber improves the dust or the particulate matter. It is characterized by being adsorbed.
  • ⁇ Preparation of bamboo cellulose nanofiber suspension Cellulose nanofiber suspension obtained by suspending bamboo cellulose pulp in water and subjecting it to opposing collision (pressure 180 to 200 MPa, number of collisions 30 to 60) based on the method disclosed in Japanese Patent Application No. 2007-556933 A liquid (manufactured by Chuetsu Pulp Industries) was used.
  • cellulose nanofibers According to the observation of the morphology of cellulose nanofibers in suspension using a transmission electron microscope (TEM), they were nano-sized from microsize bamboo pulp and dispersed in water as single nanofibers. Furthermore, cellulose nanofibers are usually 40 to 60 nm in width and 10 nm in thickness, but according to the collision treatment, the width of the nanofibers is as small as about 20.4 to 20.7 ( ⁇ 7 to 8) nm and the cross section is small. It has a shape close to a square.
  • TEM transmission electron microscope
  • ⁇ Coating of nonwoven fabric surface with suspension> Commercially available spray of bamboo cellulose nanofiber suspension (Z-155-92PCV513, with sanitary mask (virus stopper solid type regular, manufactured by Hakugen Co., Ltd.) made of nonwoven fabric of polypropylene, polystyrene and polyester as the filter part. After coating once with Asai Glass Co., Ltd. and drying at room temperature, the coating amount was examined. The average area of the coated area was 2.3 cm 2 . After spray coating 10 times using the same spray, it was dried at room temperature to obtain a non-woven sanitary mask having a modified surface. The coating amount was 1 to 10 ⁇ 10 ⁇ 4 g / m 2 in terms of cellulose nanofiber weight. The thickness of the cellulose nanofiber coating was 23 ⁇ 8 ⁇ m.
  • modified non-woven sanitary mask prepared as described above was exposed for one day in the daytime in Beijing city area (December 9, 2014, 07: 00-18: 00), and the surface of the modified non-woven fabric after the exposure was examined by SEM. Observed. As a result, it was found that 4 to 5 PM2.5 were adsorbed to an arbitrary 25 ⁇ m 2 . This is equivalent to 160,000-200,000 pieces in terms of 1 mm 2 , which is 400-500 million adsorptions for a practical level of 25 cm 2 .
  • the virus-sized substance and the particulate matter considered to be PM2.5 were observed in 24 to 72 hours. ) Is adsorbed in large numbers.
  • particulate matter considered to be PM2.5 and particulate matter larger than PM2.5 were collected on the surface of the modified nonwoven fabric at 24 hours, 48 hours and 72 hours. You can see that
  • the coating of the cellulose nanofibers of the present invention blocks the voids of 2.5 ⁇ m or less as described above and imparts the properties of the coating surface.
  • a nonwoven fabric made of only polypropylene does not have a function of collecting particulate matter, but a sanitary mask using the modified nonwoven fabric is given a function of favorably collecting particulate matter.
  • FIG. 12 shows an image obtained by SEM observation of the surface of the nonwoven fabric after the treatment, and it can be seen that the surface is satisfactorily bonded similarly to the bamboo cellulose nanofiber.
  • ⁇ Comparative Example 1 Preparation of microbial cellulose nanofiber suspension> Based on the method disclosed in Japanese Patent Application No. 2007-556933, a gel-like pellicle (Nata de Coco) made of cellulose obtained by culturing acetic acid bacteria is cut, suspended in water, and then subjected to an oncoming collision (equipment used: ACC device, The pressure was 100 MPa, the number of collisions was 30 times, and the dispersion concentration was 0.38%. Thus, a cellulose nanofiber suspension was obtained and spray-coated on the nonwoven fabric in the same manner as in the examples. According to the observation of the morphology of cellulose nanofibers in suspension using a transmission electron microscope (TEM), the network structure of the nanofibers in the pellicle was destroyed and dispersed in water as a single fiber instead of the pellicle .
  • TEM transmission electron microscope
  • FIG. 1 A microphotograph is shown in FIG.
  • the nonwoven fabric surface showed water repellency, the cellulose nanofiber suspension was repelled, and the cellulose nanofiber could not be adhered to the nonwoven fabric surface as a coating.
  • the sanitary mask subjected to such treatment did not have sufficient ability to collect dust and fine particulate matter, compared to a sanitary mask incorporating a modified non-woven fabric made of bamboo cellulose-derived cellulose nanofibers.
  • the crystallinity of the cellulose nanofibers derived from acetic acid bacteria may exceed 80% as compared to the crystallinity of the bamboo-derived cellulose nanofibers of about 60%. It is known that this may be one of the causes of differences in the adhesion and adsorption properties of cellulose nanofibers depending on the plant from which it is derived.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】 両親媒性を備えた表面を有し、微粒子捕集能、加工性、安定性、通気性等に優れる改質不織布、及び、優れた空気濾過装置を提供する。 【解決手段】パルプ分散液を一対のノズルから高圧でそれぞれ噴射させると共に、その噴射流を互いに衝突させて粉砕する対向衝突処理方法からなる工程、及び、該方法によりセルロースナノ繊維を含む処理液を得て、不織布をセルロースナノ繊維被膜する工程からなる方法を用いて不織布を改質し、かかる改質不織布を構成材料とした、携行用衛生マスクや空気清浄用フィルター

Description

空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。
 この発明は、空気濾過用改質不織布、これを構成材料とするマスクやフィルター等の空気濾過装置、及び、改質不織布の製造方法に関する。
 近年、東アジア内陸部の砂漠、乾燥地域からの砂塵(黄砂)やPM2.5、スギ、ヒノキなどの花粉などの飛散から、快適環境を保護すべく、空気浄化装置の普及が進んでいる。家庭や職場、自動車などの空間の快適性向上への要望も強い。身近なものとしては家庭用空気清浄機や自動車のエアコン、集塵性能と脱臭性能の両者を有するフィルターなどのニーズがある。
このうち空気浄化用簡易マスクには、捕集効率と通気性が求められる。一般に、捕集効率をあがると通気性が低下する傾向がある。積層構造(複数の層からなる)の工夫で捕集効率を上げる試みが多い。
細菌、PM2.5、花粉等を除去するマスクやフィルターを提供する技術として多くが知られているが、例えば、以下があげられる。
 特許文献1には、エレクトレット処理されたマスクが開示されている。繊維表面を活性化させ、粉塵や微粒子物質の捕集効率を向上させる技術が開発されているが、その代表的なものは、エレクトレット化処理である(特開平9-149944)。例えば、コロナ放電等を用い、繊維表面を静電気で帯電させるものであり、静電相互作用により、粉塵、花粉等の微粒子が吸着し、捕集される。
特許文献2では、細菌を除去するフィルターに酢酸セルロースやフタル酸酢酸セルロースから紡糸した繊維を用いている(特表2008-508060)。
特許文献3は、圧力損失をともなわず通気性がよく、また、良好な捕集効率を有するマスク用フィルターにかかるものである(特開2012-45021)。
特許文献4では、ヤマユガ科に属する絹糸昆虫の繭殻を爆砕して得た多孔性繭糸から、PM2.5除去用マスクを構成している(特開2014-176541)。
特許文献5は、花粉捕集用脱臭フィルターにかかるものである(特開2015-62862)。
特許文献6は、イ草の外皮から髄を分離して微粒子吸着素材を得て、PM2.5除去マスクを構成している(特許第5639302号)。
特開平9-149944 特表2008-508060 特開2012-045021 特開2014-176541 特開2015-62862 特許第5639302号
Saito,T.,et al.,Cellulose Commun.,14(2),62(2007)
 しかしながら、上述の先行技術では、次のような問題があった。すなわち、特許文献1の技術では、加工技術が煩雑で、製品における表面性能の長期安定性にかけ、また、天然繊維にエレクトレット処理は不向きである。特許文献2の技術では、汎用性のある材料ではなく、化学的な安定性に欠ける。特許文献3の技術では、繊維長の異なる合成繊維の組み合わせを準備しなければならず、素材の調製が煩雑である。特許文献4の技術では、大量生産に向かない。特許文献5の技術では、複数の層から構成されるため、柔軟な加工が困難で、通気性の低下がさけられない。特許文献6の技術では、素材の調製が煩雑で工程数が多く、柔軟な加工に不向きである。
 このように、従来、微粒子捕集能、加工性、安定性等の観点から、必ずしも、総合的に見て優れた濾過機能といえるマスク及びフィルターの構成材料は見出されていなかった。
 本発明は、従来における問題点に鑑み、微粒子捕集能、加工性、安定性、通気性等に優れる改質不織布、これを構成材料とするマスクやフィルター等の空気濾過装置、及び、改質不織布の製造方法を提供することを目的とする。
 不織布は、安価で大量に製造できることから、布、紙、フィルムとして使用される。また、不織布からなる布、紙、フィルムは、衛生マスクやフィルター等に組み込まれることもある。しかし一方で、セルロースナノ繊維で被覆された不織布については知られていなかった。
 本発明者は、特願2007-556933において、セルロースの対向衝突処理物を、紙等の表面のコーティングに用いることに関するセルロースナノ繊維を用いる撥水性と耐油性の付与方法を開示している。対向衝突処理法により調製されたセルロースナノ繊維被膜の不織布については、従来、知られておらず、本発明において初めて、当該方法で改質された不織布がきわめて良好に粉塵や微粒子状物質を捕集できることが見出された。われわれはこれに基づき、空気濾過装置に用いられうる改質不織布の発明に至った。
 すなわち本発明の不織布は、セルロースナノ繊維で被覆されることを特徴とする。また、かかるセルロースナノ繊維としては、バクテリアセルロース又は草本植物を由来とすることを特徴とする。さらに、草本植物は広葉樹、針葉樹又は竹であることを特徴とする。
また本発明の空気濾過装置用構成材料は、前記改質不織布が組み込まれていることを特徴とする。
さらに本発明の改質不織布の製造方法は、パルプ分散液を一対のノズルから70~250MPaの高圧でそれぞれ噴射させると共に、その噴射流を互いに衝突させて粉砕する方法(以下、対向衝突処理という。)からなる工程、及び、該方法によりセルロースナノ繊維を含む処理液を得て、該処理液に不織布を含浸し、及び/又は該処理液を不織布に塗布し、乾燥し、セルロースナノ繊維被膜を形成する工程からなることを特徴とする。
「セルロースナノ繊維」とは、平均幅及び平均厚みが100nm以下であるセルロース繊維をいう。セルロース繊維の平均幅及び平均厚みは、光散乱装置、レーザー顕微鏡、電子顕微鏡等の当業者には周知の手法によって計測することができる。平均幅は、計測される長さのうち、長いほうのものを数点、例えば10~200点、好ましくは30~80点を測定し、その平均値をとったものである。平均厚みは、計測される長さのうち、短いほうのものを数点、例えば10~200点、好ましくは30~80点測定し、その平均値をとったものである。本発明において用いられるセルロースナノ繊維の好ましい例は、平均幅及び平均厚みが、バクテリアセルロースと同等か、それ以下、例えば平均幅25nm以下、好ましくは20nm以下、より好ましくは15nm以下、さらに好ましくは8~12nmあり、平均厚み8~12nmである。
「バクテリアセルロース」は、微生物が生産するセルロース(β-1,4-グルコシド結合を主たる結合形式とする多糖)をいい、特に示した場合を除き、ゲル状膜の形態のものを指す。バクテリアセルロースは、当業者にはよく知られた方法により、製造することができる。セルロース産生菌としては、アセトバクター キシリナム(Acetobactor xylinumあるいはGluconacetobactor xylinusとも呼ばれる)、アセトバクター パスツリアヌム(Acetobactor pasteurianum)、アセトバクター ランセンス(Acetobactor rancens)等の酢酸菌、サルシナベントキュリ(Sarcina ventriculi)、バクテリウム キシロイデス(Bacteirum xyloides)、シュードモナス(Pseudomonas)属菌、アグロバクテリウム(Agrobacterium)属菌等を用いることができる。用いる培養液及び培養条件等は、当業者であれば、適宜決定することができる。
「草本植物」とは、木部があまり発達しない草質又は多肉質の茎をもち,地上部は多くは1年で枯れる植物体をいう。しかし地下茎が発達して二年生・多年生のものや常緑葉のものもある。草本植物の中では、イネ科植物を好適に用いることができ、また、好ましいイネ科植物の例は、葦及び竹である。葦(Phragmites communis)(アシ、芦、蘆、葭、ヨシということもある。)は、イネ科ヨシ属に属し、熱帯から温帯にかけての湿地帯に分布する草本植物である。3~4の種に分ける場合があるが、一般的にはヨシ属に属する唯一の種とみなされている。竹は、イネ科タケ亜科に属し、熱帯から温帯にかけて分布する多年生草本植物である。竹には、ホウライチク、マダケ、モウソウチク、チシマザサ、スズタケ、メダケが含まれる。
「対向衝突(処理)」は、多糖類の分散液を一対のノズルから70~250MPaの高圧でそれぞれ噴射させると共に、その噴射流を互いに衝突させてセルロース繊維を粉砕する、湿式粉砕方法をいう。
かかる方法によって調製されるセルロースナノ繊維は、水酸基に由来する親水性部分、及び、C-H基に由来する疎水性部分が存在し、親水性面が固体表面に現れれば水と親和し、疎水性面が表面に配列した場合、撥水性を有する。
「不織布」は、繊維そのものを織ることなく重ねてウェッブを形成し、熱や接着剤を用いるか、繊維同士を絡ませて、三次元上に重ね合わせてシート状にしたものをいう。
 本発明の空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法によれば、効率よく粉塵や微粒子状物質を捕集することができ、通気性に優れ、あわせて良好な空気濾過装置が提供される。
図1に、 対向衝突処理によるセルロースナノ繊維処理液製造装置の概念図を示す。 図2に、空気濾過装置の一種である衛生マスクの概念図を示す。 図3に、セルロースナノ繊維調製液を塗布した衛生マスク表面のSEM電観察画像(30倍)を示す。 図4に、改質不織布表面のセルロースナノ繊維被覆部分で、PM2.5より大きな粒子状物質(破線矢印)が捕集された状態のSEM観察画像(400倍)を示す。 図5に、改質不織布表面のセルロースナノ繊維被覆部分で、PM2.5と思われる粒子状物質(実線矢印)及びPM2.5より大きな粒子状物質(破線矢印)が捕集された状態のSEM観察画像(1000倍)を示す。 図6に、改質不織布表面のセルロースナノ繊維被覆部分で、PM2.5と思われる粒子状物質(実線矢印)が捕集された状態のSEM観察画像(5000倍)を示す。 図7に、改質不織布表面で、PM2.5と思われる粒子状物質(実線矢印)及びウィルスサイズの物質(丸印)が捕集された状態のSEM観察画像(10000倍)を示す。 図8に、セルロースナノ繊維調製液による塗布のない衛生マスク表面のSEM電観察画像(30倍)を示す。 図9に、改質不織布表面で、セルロースナノ繊維被膜されていない部分のSEM観察画像(400倍)を示す。 図10に、改質不織布表面で、セルロースナノ繊維被膜されていない部分にPM2.5より大きな粒子状物質(破線矢印)が捕集された状態のSEM観察画像(1000倍)を示す。 図11に、改質不織布表面で、セルロースナノ繊維被膜されていない部分のSEM観察画像(5000倍)を示す。 図12に、葦セルロースナノ繊維調製液で処理した不織布表面のSEM観察画像(35倍)を示す。 図13に、マイクロビアルセルロースナノ繊維懸濁液を不織布に塗布スプレーしたときにおける拡大写真を示す。 図14に、市販のローラーを用いて、セルロースナノ繊維を不織布両面に被覆する方法を示す。 図15に、24時間暴露試験後に、改質不織布表面で、PM2.5と思われる粒子状物質(実線矢印)が捕集された状態のSEM観察画像(10000倍)を示す。 図16に、48時間暴露試験後に、改質不織布表面で、PM2.5と思われる粒子状物質(実線矢印)が捕集された状態のSEM観察画像(10000倍)を示す。 図17に、72時間暴露試験後に、改質不織布表面で、PM2.5と思われる粒子状物質(実線矢印)が捕集された状態のSEM観察画像(10000倍)を示す。 図18に、24時間暴露試験後に、改質不織布表面で、PM2.5と思われる粒子状物質(実線丸印)及びPM2.5より大きな粒子状物質(破線矢印)が捕集された状態のSEM観察画像(400倍)を示す。 図19に、48時間暴露試験後に、改質不織布表面で、PM2.5と思われる粒子状物質(実線丸印)及びPM2.5より大きな粒子状物質(破線矢印)が捕集された状態のSEM観察画像(400倍)を示す。 図20に、72時間暴露試験後に、改質不織布表面で、PM2.5と思われる粒子状物質(実線丸印)及びPM2.5より大きな粒子状物質(破線矢印)が捕集された状態のSEM観察画像(400倍)を示す。
ナノサイズの天然繊維においては、比表面積が大きく、相手物質との界面で、強い相互作用が可能になる。とくに、この両親媒性(親水と疎水)を有する界面相互作用しやすいセルロースナノ繊維で材料表面をコーティングすれば、似た性質を示す繊維側の面が材料表面に吸着する。すなわち、合成繊維からなる不織布は疎水性なので、セルロースナノ繊維被膜と疎水性相互作用により接着し、その結果、外気と接する被膜表面は、セルロースナノ繊維の親水性部分がより多く露出し、改質不織布の表面は親水性を示すようになる。 
また、本発明の発明者が特願2013-207978において開示したように、セルロースを対向衝突処理して得られるナノ繊維は、例えば、炭酸カルシウムといった無機物と複合体を構成し、かかるセルロースナノ繊維と無機物の間に働く吸着相互作用の強いことが見出されている。
現在のところ、粉塵や微粒子状物質が本発明による改質不織布表面に吸着する機構については不明であるが、粉塵や微粒子状物質の表面状態が親水性であれ疎水性であれ、本発明のセルロースナノ繊維の両親媒性及び強い吸着相互作用により、PM2.5に代表される微粒子のみならず、それより大きな粒子までも良好に捕集されるものと推測される。
本発明以外の方法、例えば非特許文献1に示されるセルロースミクロフィブリルの表面に化学的にカルボキシル基を導入して解繊する方法(Saito, T., et al., Cellulose Commun., 14(2),62(2007))により調製されたセルロースナノ繊維は、そもそも不織布自体に被膜が形成されず、本発明による改質不織布に比較して、粉塵や微粒子状物質が良好に捕集されない。対向衝突処理によるセルロースナノ繊維の被膜によって初めて、本発明の目的が達成される。
 さらに、セルロースナノ繊維はゲル状液の形態で存在しうるため、ゲル状膜そのままの形態で利用して、微細な網目構造や保水性の良さも生かすことができる。
対向衝突処理は、他の粉砕化方法、ビーズミル、ジェットミル、撹拌機、高圧ホモジナイザー等と比較し、様々な優れた利点を有する。例えば、粉砕媒体を使用しないため媒体の磨耗粉の混入がなく、また媒体攪拌式より均一でシャープな粒度分布が得られ、さらに連続処理、大容量化が容易、大気との接触時間が少なく、処理品の酸化を極力抑えることができる等の点を挙げることができる。
対向衝突処理のための装置としては、高圧洗浄装置又は粉砕・分散・乳化等のための高圧ホモジナイザー装置を利用することができる。水に懸濁した天然セルロース繊維をチャンバー(図1:107)内で相対する二つのノズル(図1:108)に導入し、これらのノズルから一点に向かって噴射、衝突させる(図1)。この手法によれば、天然微結晶セルロース繊維(例えば、フナセル)の懸濁水を対向衝突させ、その表面をナノフィブリル化させて引き剥がし、キャリアーである水との親和性を向上させることによって、最終的には溶解に近い状態に至らせることが可能となる。図1に示される装置は液体循環型となっており、タンク(図1:109)、プランジャ(図1:110)、対向する二つのノズル(図1:108a,108b)、必要に応じて熱交換器(図1:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図1:108)から噴射して水中で対向衝突させる。天然セルロース繊維の他には水しか使用せず、繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、セルロース繊維の平均粒子長を1/4以下又は10μmにまで粉砕することができる。一方で、対向衝突処理においては、加えられるエネルギーが共有結合を切断する
エネルギーには、はるかに及ばず(推定1/300以下)、セルロースの重合度の低下は生じない。
対向衝突処理の際、セルロース原料は水に分散される。セルロース原料は、必要に応じ、予め粉砕してもよい。分散濃度は、分散スラリーとして配管を通過するのに適当な濃度であることが好ましく、0.1~10質量%が好ましい。分散濃度が高いと、流体粘度が高くなり、流体の通過する各部所でパルプ原料による閉塞が生じ、装置作動トラブルの原因となるうえ、塗布に際し均一な吹付が困難になる。分散濃度が低い場合、繊維表面の引きはがしが生じにくいためか、ナノフィブリル化が良好に進行しない。また、分散濃度が上述範囲を下回ると、不織布繊維の絡み合いで生じた空隙を塞ぐだけの十分なナノ繊維が不織布表面に与えられないため、粉塵又は微粒子状物質の良好な捕集能は得られない。
 対向衝突処理は、回数を重ねるに従い、処理物の温度が上昇するので、一度衝突処理された後の処理物は、必要に応じ、例えば、4~20℃、又は5~15℃に冷却してもよい。また、対向衝突処理装置に、冷却のための設備を組み込むこともできる。
対向衝突処理は、このような処理条件(処理圧力、処理回数、その他ノズル径、処理温度等)を調節することにより、得られるセルロースナノファイバーの平均繊維幅、平均繊維長さ、透過率、粘度等を調節できる。
本発明において対向衝突処理に供されるバクテリアセルロース繊維又は草本植物由来のセルロース繊維は、紙の原料としてのパルプ(セルロース繊維をばらばらにして取り出したものの集合物)を調製するのと同様の工程により得たものでもよい。パルプの調製工程は、例えば、原料を薬品と混合して高温高熱で処理することにより蒸解し、繊維分とそれ以外(リグニン成分等)とに分離し、そして、繊維分を、必要に応じ洗浄することを含む。
本発明における不織布は、いかなる素材から製造されてもよく、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリ塩化ビニル、ナイロン、ポリテトラフルオロエチレンのうち、いずれか一つまたは複数の組み合わせにより形成されるものがあげられる。
本発明における不織布は、いかなる方法で製造されてもよく、例えば、ウェッブの形成方法に、乾式法、湿式法、スパンボンド法、メルトブロー法、エアレイド法があげられ、ウェッブの繊維結合方式に、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、水流交絡法があげられる。
本発明において、処理物から特にセルロース繊維が細かくなった部分だけを取り出す方法として、処理物を遠心分離して、上澄みを分取することにより、平均繊維径1μm未満のセルロースナノ繊維を得ることができる。
本発明のセルロースナノ繊維被覆は、100μm以下、好ましくは70μm以下、より好ましくは50μm以下、さらに好ましくは10~40μmである。セルロースナノ繊維被膜の厚みが、厚みがこれより上回ると両親媒性が良好に発現されなくなるうえ、空気を通しにくくなるので、衛生マスクに必要な通気性を確保できない。上述範囲より下回れば、不織布と基材の接着不良のため、良好に被覆されない。
本発明においてセルロースナノ繊維で不織布表面を被覆するさい、その方法に特に制限はないが、含浸と塗布とは、組み合わせて行ってもよく、それぞれを繰り返して行ってもよい。塗布手段に、特に制限はなく、好ましくは、エアスプレー、ハケ、又は、ローラーで行い、スプレーがより好ましい。スプレーによれば、簡便に被覆が行え、人の口や鼻が接触する部分のみに限って被覆することが可能となる。乾燥は、常温乾燥、加熱乾燥、又は、強制乾燥により行うことができる。
本発明における改質不織布は空気濾過装置に組み込む場合、当該不織布を単独で使用しても、他の通気性フィルム又はシートとのサンドイッチやラミネート等の積層構造をなすように組み合わせてもよい。
本発明で用いる対向衝突処理による表面改質は、従来の機能では果たせなかった粉塵又は微粒子状物質捕集能を有する。また、セルロースは天然物由来で環境や健康への負荷がなく、有機薬品を用いた表面改質に比し、本発明の改質不織布は有害性や安全性にすぐれる。さらに、エレクトレット処理と異なり、対向衝突処理は合成繊維以外による不織布の表面改質が可能である。
本発明による改質不織布は、携行用衛生マスク、空気清浄用換気装置フィルター、吸気フィルター等に組み込むことができる。例えば、衛生マスクでは、通気性を損なうことなく、きわめて良好に粉塵や微粒子物質を捕集して、汚染物除去が可能である。かかる衛生マスクを図2により説明する。一般的なマスクと同様の基本構成で、鼻孔及び口を覆う横長の矩形のマスク本体(図2:1)と、その両側に一対の耳掛け部(図2:2)と中央の口及び鼻当て部(図2:3)からなる。
衛生マスクの不織布は、口及び鼻の接触する部分が改質面であっても、外気に接する面が改質面であっても、両方が改質面であっても、いずれも粉塵又は微粒子状物質が有効に捕集される。
衛生マスクについては、粉塵又は微粒子状物質の捕集能のみならず、良好な通気性を備えることが欠かせない。通気性の評価については、官能試験、試験機は一定面積の試料について、一定時間に、一定の圧力下で、試料を通過する通気量(cm/cm/sec)を求めるフラジール形法(JIS-L-1096 8.27A)、一定通気量の空気を試料に送り、試料の通気抵抗から求めるKES法、一定圧力差のもとで一定体積の空気が一定面積のサンプルを通過する秒数から透気抵抗度を求めるガーレー法などが用いられるが、本発明においては、特に限定されない。通常のマスクは、フラジール形法で評価して、およそ10~500cm/cm/secの通気性を有する。また、ガーレー法においては、100mLの空気を通過する時間で評価し、通常のマスクで1~200秒を要する。ISO透気度で表すと、0.5~100μm/Pa・sである。
  本発明による改質不織布を用いた衛生マスクは、優れた粉塵又は微粒子状物質の捕集能を有するのみならず、従来と同水準の通気性を有する。
また、本発明による改質不織布は、エアコン、空気清浄器、加湿機、除湿機、加湿機能付き空気清浄器、除湿及び加湿機能付き空気清浄器、エアワッシャー、扇風機、換気扇、ヒーター等の家庭用又は業務用の空気清浄機、自動車等の車室内に搭載される車載用空気清浄機等のフィルターシートとしても用いることができる。
すなわち、本発明の改質不織布では、当初有していた2.5μ以上の不織布繊維間空隙がセルロースナノ繊維被膜により塞がれ、セルロースナノ繊維の両親媒性により粉塵又は微粒子状物質が良好に吸着されることに特徴がある。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
<竹セルロースナノ繊維懸濁液の調製>
特願2007-556933に開示の方法に基づき、竹セルロースパルプを水に懸濁させた後、対向衝突(圧力180~200MPa、衝突回数30~60回)に供することで得られるセルロースナノ繊維懸濁液(中越パルプ工業製)を用いた。
透過型電子顕微鏡(TEM)を用いた懸濁液中のセルロースナノ繊維の形態観察によれば、マイクロサイズの竹パルプからナノ化され、単独のナノ繊維として水中に分散されていた。さらに、セルロースナノ繊維は通常幅40~60nm、厚み10nmであるが、衝突処理によれば、このナノ繊維の幅は約20.4~20.7(±7~8)nmと小さく、断面が正方形に近い形状を持つ。
<懸濁液による不織布表面のコーティング>
フィルター部分がポリプロプレン、ポリスチレン、ポリエステルの不織布からなる衛生マスク(ウイルスストッパー立体タイプレギュラー、株式会社白元製)を基材に、竹セルロースナノ繊維懸濁液を市販スプレー(Z-155-92PCV513,浅井硝子株式会社製)で1回塗布し、室温で乾燥した後被覆量を調べた。被覆面積で、平均2.3cmであった。同じスプレーを用いて10回吹付コーティングした後、室温で乾燥し、表面の改質された不織布衛生マスクを得た。コーティング量は、セルロースナノ繊維重量で、1~10×10-4g/mであった。また、セルロースナノ繊維被膜の厚みは、23±8μmであった。
上述のTEM観察とコーティングの状態から、純粋にナノ繊維表面と不織布表面との間の相互作用のみによる不織布表面への繊維吸着は、ペリクルを形成しているバクテリアナノ繊維の場合よりも著しく向上しており、不織布は疎水性であることから、その表面にナノ繊維の疎水性サイドが吸着し、親水サイドは空気と接触する側に向くことになるので、改質不織布の表面には親水性が付与されていると考えられる。
図3のセルロースナノ繊維を塗布した衛生マスク表面、図8の塗布のない衛生マスク表面、ふたつのSEM電観察画像(いずれも30倍)の対比より、不織布繊維の絡み合いがセルロースナノ繊維によって被覆されている様子が見て取れる。
また、図4から図7までのSEM観察より、セルロースナノ繊維被覆部分ではウィルスサイズの物質、PM2.5と思われる粒子状物質及びPM2.5より大きな粒子状物質が捕集されることがわかる。一方、図9から図11までのSEM観察からは、セルロースナノ繊維被覆されていない部分では、PM2.5よりサイズオーダーが100倍程度以上の物質しか捕集されないことがわかる。
<改質不織布衛生マスクの暴露試験>         
上述のごとく作成した改質不織布衛生マスクを、北京都市部において、昼間1日暴露し(2014年12月9日、07:00~18:00)、暴露後の改質不織布表面をSEMにて観察した。その結果、PM2.5が任意の25μmに対し4-5個吸着されていることが分かった。これは1mmに換算し、160,000-200,000個にあたり、実用レベルの25cmに対し、4億-5億個の吸着である。
<改質不織布の通気性試験>
10回又は20回吹付した場合について、ガーレー試験機で測定した空気100mLの透過秒数(t)から求めたISO透気度を以下に示す。ここにおいて、ISO透気度P/μm/Pa・sは、P=135.5/tで求められる。
Figure JPOXMLDOC01-appb-T000001
<改質不織布衛生マスクの暴露試験2> 
前記竹セルロースナノ繊維懸濁液及び前記基材(不織布)と同一のものを使用して、不織布両面にCNFを被膜し、北京都市部において、72時間暴露し、24時間毎に改質不織布の表面をSEMにて観察した。
<懸濁液による不織布表面のコーティング>
 図14に示すように、容器6に前記竹セルロースナノ繊維懸濁液(CNF0.5%)を不織布5が浸るように入れ、前記不織布5を前記竹セルロースナノ繊維懸濁液中に浸した後、市販のローラー4を用いて前記不織布5を押さえ、数回、往復させて、前記不織布に前記竹セルロースナノ繊維を浸透させた後、室温で24時間程度乾燥し、不織布両面が改質された衛生マスクを得た。竹セルロースナノ被覆の厚みはスプレーを用いて得られた改質不織布の厚さと略同じであった。
測定結果を表2に示し、24時間毎の顕微鏡拡大写真を図15~図20に示す。    
Figure JPOXMLDOC01-appb-T000002
表2の測定結果により、実用レベルの25cm/個の24時間経過後から72時間経過後迄の全ての測定において、スプレーを用いて被覆した場合と比べて、約6倍~75倍もの吸着量を示した。加えて、72時間経過後においても、吸着量は減らず、むしろ増加していることから、本改質不織布へのPM2.5の吸着は、72時間もの間続いているといえる。
また、図15から図17までのSEM観察より、セルロースナノ繊維被覆部では、24時間から72時間において、ウィルスサイズの物質及びPM2.5と思われる粒子状物質(特に、500nm以下のPM2.5)が数多く吸着していることがわかる。
一方、図18から図20までのSEM観察より、改質不織布表面で、24時間、48時間及び72時間において、PM2.5と思われる粒子状物質及びPM2.5より大きな粒子状物質が捕集されることがわかる。
 
本発明のセルロースナノ繊維の被覆により、このように2.5μm以下の空隙が塞がれること、かつ、被膜表面の特性が付与されることが判明している。本来、ポリプロピレンのみからなる不織布には、微粒子状物質を捕集する機能は認められないが、改質不織布を用いた衛生マスクに、微粒子状物質を良好に捕集する機能が付与される。
 <葦セルロースナノ繊維懸濁液の調製>
特願2007-556933に開示の方法に基づき、琵琶湖に生育する葦由来のセルロースを水に懸濁させた後、対向衝突(使用機器:ACC装置、圧力:180MPa、衝突回数:30回、分散濃度:0.38%)に供することで、セルロースナノ繊維懸濁液を得て、実施例と同様の方法で不織布にスプレー塗布した。
図12に処理後の不織布表面をSEM観察で得られた画像を示すが、竹セルロースナノ繊維と同様に、良好に接着していることがわかる。
<比較例1:マイクロビアルセルロースナノ繊維懸濁液の調製>
特願2007-556933に開示の方法に基づき、酢酸菌の培養により得られたセルロースからなるゲル状ペリクル(ナタデココ)を裁断し、水に懸濁させた後、対向衝突(使用機器:ACC装置、圧力:100MPa、衝突回数:30回、分散濃度:0.38%)に供することで、セルロースナノ繊維懸濁液を得て、実施例と同様の方法で不織布にスプレー塗布した。透過型電子顕微鏡(TEM)を用いた懸濁液中のセルロースナノ繊維の形態観察によれば、ペリクル中のナノ繊維のネットワーク構造が破壊され、ペリクルでなく単独の繊維として水中に分散されていた。
顕微鏡拡大写真を図13に示す。不織布表面が撥水性を示し、セルロースナノ繊維懸濁液がはじかれてしまい、セルロースナノ繊維を被膜として不織布表面に接着させることができなかった。かかる処理をほどこした衛生マスクは、竹セルロース由来のセルロースナノ繊維による改質不織布を組み込んだ衛生マスクに比し、粉塵や微粒子状物質について十分な捕集能を有しなかった。
この結果について、いまだ詳細に解明されていないが、竹由来セルロースナノ繊維の結晶化度が60%程度であるのに比し、酢酸菌由来セルロースナノ繊維の結晶化度は80%を超えることが知られており、このことが由来とする植物によってセルロースナノ繊維の接着性、吸着性に差のある原因のひとつとなっているのではないかと推測される。
 

Claims (6)

  1. セルロースナノ繊維で被覆することを特徴とする不織布。
  2. 前記セルロースナノ繊維がバクテリアセルロース又は草本植物由来であることを特徴とする請求項1記載の不織布。
  3. 前記草本植物が、広葉樹、針葉樹、又は、竹であることを特徴とする請求項2記載の不織布。
  4. 請求項1乃至請求項3のいずれか一の不織布を構成材料とする空気濾過装置。
  5. パルプ分散液を一対のノズルからそれぞれ噴射させると共に、その噴射流を互いに衝突させて粉砕する方法(以下、対向衝突処理という。)からなる工程、及び、該方法によりセルロースナノ繊維を含む処理液を得て、該処理液に不織布を含浸し、及び/又は該処理液を不織布に塗布し、乾燥し、セルロースナノ繊維被膜を形成する工程からなることを特徴とする改質不織布の製造方法。
  6. セルロースナノ繊維を含む処理液を不織布にスプレー被覆する工程を含むことを特徴とする請求項5記載の改質不織布の製造方法。 

     
PCT/JP2016/069069 2015-06-30 2016-06-28 空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。 WO2017002777A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130530A JP2017014643A (ja) 2015-06-30 2015-06-30 空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。
JP2015-130530 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002777A1 true WO2017002777A1 (ja) 2017-01-05

Family

ID=57608898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069069 WO2017002777A1 (ja) 2015-06-30 2016-06-28 空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。

Country Status (2)

Country Link
JP (1) JP2017014643A (ja)
WO (1) WO2017002777A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153737A (ja) * 2017-03-16 2018-10-04 北越コーポレーション株式会社 エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
JP2020073271A (ja) * 2017-03-16 2020-05-14 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法、並びにエアフィルタ
CN112716080A (zh) * 2021-02-02 2021-04-30 北京大学深圳医院 疾病预防保健口罩
CN114570114A (zh) * 2022-04-02 2022-06-03 武汉纺织大学 灯心草空气过滤材料及其制备方法
WO2023180277A1 (en) * 2022-03-21 2023-09-28 Fiberlean Technologies Limited Porous surface coated with nanocellulose
WO2024076979A1 (en) * 2022-10-03 2024-04-11 Board Of Regents, The University Of Texas System Cellulose nanofiber-based compositions for ehnanced filtration efficiency and methods of use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862050B2 (ja) * 2017-04-21 2021-04-21 株式会社和田電業社 被曝予防剤塗布装置及び被曝予防剤塗布方法
JP2020152755A (ja) * 2019-03-18 2020-09-24 大王製紙株式会社 スプレー用溶液及びスプレー容器
JP7284608B2 (ja) * 2019-03-27 2023-05-31 大王製紙株式会社 マスク及びその製造方法
JP7635597B2 (ja) 2020-03-26 2025-02-26 王子ホールディングス株式会社 粉塵飛散防止剤及び粉塵飛散防止方法
JP6948733B1 (ja) * 2020-11-25 2021-10-13 株式会社 サンエース ガスフィルタ機能向上剤
JP6948734B1 (ja) * 2020-11-25 2021-10-13 株式会社 サンエース ガスフィルタ機能向上剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088974A1 (ja) * 2006-02-02 2007-08-09 Kyushu University, National University Corporation セルロースナノ繊維を用いる撥水性と耐油性の付与方法
WO2008065748A1 (fr) * 2006-11-28 2008-06-05 Tomoegawa Co., Ltd. Feuille perméable à l'air et résistante à l'eau et article absorbant utilisant celle-ci
JP2010531899A (ja) * 2007-06-22 2010-09-30 キンバリー クラーク ワールドワイド インコーポレイテッド 多機能性シリコーン混合物本出願の出願人は、現在係属中の、2007年6月22日に出願された米国仮出願第60/937009号に基づく優先権を主張する。米国仮出願第60/937009号は、参照によりその全文が本明細書に含まれるものとする。
JP2011056456A (ja) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology バイオナノファイバーの製造方法
JP2011125494A (ja) * 2009-12-17 2011-06-30 Japan Absorbent Technology Institute マスク
US20110198282A1 (en) * 2008-10-07 2011-08-18 The Research Foundation Of State University Of New York High flux high efficiency nanofiber membranes and methods of production thereof
JP2012232518A (ja) * 2011-05-02 2012-11-29 Daicel Corp 不織繊維積層体及びその製造方法並びにセパレータ
JP2015157796A (ja) * 2014-01-21 2015-09-03 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088974A1 (ja) * 2006-02-02 2007-08-09 Kyushu University, National University Corporation セルロースナノ繊維を用いる撥水性と耐油性の付与方法
WO2008065748A1 (fr) * 2006-11-28 2008-06-05 Tomoegawa Co., Ltd. Feuille perméable à l'air et résistante à l'eau et article absorbant utilisant celle-ci
JP2010531899A (ja) * 2007-06-22 2010-09-30 キンバリー クラーク ワールドワイド インコーポレイテッド 多機能性シリコーン混合物本出願の出願人は、現在係属中の、2007年6月22日に出願された米国仮出願第60/937009号に基づく優先権を主張する。米国仮出願第60/937009号は、参照によりその全文が本明細書に含まれるものとする。
US20110198282A1 (en) * 2008-10-07 2011-08-18 The Research Foundation Of State University Of New York High flux high efficiency nanofiber membranes and methods of production thereof
JP2011056456A (ja) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology バイオナノファイバーの製造方法
JP2011125494A (ja) * 2009-12-17 2011-06-30 Japan Absorbent Technology Institute マスク
JP2012232518A (ja) * 2011-05-02 2012-11-29 Daicel Corp 不織繊維積層体及びその製造方法並びにセパレータ
JP2015157796A (ja) * 2014-01-21 2015-09-03 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153737A (ja) * 2017-03-16 2018-10-04 北越コーポレーション株式会社 エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
JP2020073271A (ja) * 2017-03-16 2020-05-14 北越コーポレーション株式会社 エアフィルタ用濾材及びその製造方法、並びにエアフィルタ
CN112716080A (zh) * 2021-02-02 2021-04-30 北京大学深圳医院 疾病预防保健口罩
WO2023180277A1 (en) * 2022-03-21 2023-09-28 Fiberlean Technologies Limited Porous surface coated with nanocellulose
CN114570114A (zh) * 2022-04-02 2022-06-03 武汉纺织大学 灯心草空气过滤材料及其制备方法
CN114570114B (zh) * 2022-04-02 2024-02-27 武汉纺织大学 灯心草空气过滤材料及其制备方法
WO2024076979A1 (en) * 2022-10-03 2024-04-11 Board Of Regents, The University Of Texas System Cellulose nanofiber-based compositions for ehnanced filtration efficiency and methods of use thereof

Also Published As

Publication number Publication date
JP2017014643A (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2017002777A1 (ja) 空気濾過用改質不織布、これを構成材料とする空気濾過装置、及び、改質不織布の製造方法。
Barhate et al. Nanofibrous filtering media: Filtration problems and solutions from tiny materials
CN104815483B (zh) 复合抗菌空气过滤材料、制备方法及其应用
JP6592518B2 (ja) エアフィルタ用濾材の製造方法
JP6951482B2 (ja) エアフィルタ用濾材及びその製造方法、並びにエアフィルタ
JP2010115574A (ja) 機能性フィルター
JP2017150117A (ja) 抗ウイルス性素材
JP2011132628A (ja) 抗菌性メルトブロー不織布
TWI807276B (zh) 空氣過濾系統、抗病毒面罩、將溶液乾燥而獲得之塗料及被鍍物
JP6691497B2 (ja) エアフィルタ用濾材の製造方法及びエアフィルタの製造方法
de Almeida et al. Air pollution control for indoor environments using nanofiber filters: A brief review and post-pandemic perspectives
WO2016130596A1 (en) Filter medium and filters made therefrom
US20250128195A1 (en) A biodegradable filter assembly for an electrical appliance
Owens et al. Performance Factors for Filtration of Air Using Cellulosic Fiber-based Media: A Review.
KR20080009668A (ko) 자동차 공기유입필터 증착용 항균, 유해 유기물제거 조성물및 자동차용 기능성 에어필터
Agrawal et al. A closed-loop sustainable method for the fabrication of electrospun nanofiber using food waste for filtration of particulate matters (PMs) and volatile organic matter (VOCs) from air
KR101674051B1 (ko) 왕겨 부산물로부터 다층 필터를 제조하는 방법 및 상기 제조방법으로 제조된 왕겨 부산물을 포함하는 다층 필터
JP2004243233A (ja) 生分解性濾材
RU2349368C1 (ru) Фильтрующий материал для очистки воздуха и способ его получения
WO2022152974A1 (en) Active filter layers, filter constructs and methods for improving a filter's capacity of capturing particles and neutralizing pathogenic particles
Al Matroushi et al. Application of cellulose acetate fibrous membranes in the removal of micro-and submicron solid particulates in drinking water media
Fahma et al. Production of cellulose and chitin/chitosan nanofibers-based masks for protecting against coronavirus: A new approach
JP2016174997A (ja) エアフィルター濾材及びエアフィルター
Prokopchuk et al. Formation of polyacrylonitrile nanofibers for air filtration by electrospinning method
US20240252964A1 (en) Filter media with biodegradable fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817885

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载