WO2017047820A1 - Lesion blood flow feature value visualization device, method, and computer software program - Google Patents
Lesion blood flow feature value visualization device, method, and computer software program Download PDFInfo
- Publication number
- WO2017047820A1 WO2017047820A1 PCT/JP2016/077755 JP2016077755W WO2017047820A1 WO 2017047820 A1 WO2017047820 A1 WO 2017047820A1 JP 2016077755 W JP2016077755 W JP 2016077755W WO 2017047820 A1 WO2017047820 A1 WO 2017047820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lesion
- coordinate system
- blood flow
- aneurysm
- computer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
Definitions
- the present invention relates to a device for automatically analyzing vascular lesions by a computer, a method thereof, and a computer software program thereof, and more particularly, a blood flow feature amount visualization device for visualizing a flow state in a blood inflow portion of an aneurysm, a method thereof, and the like. It relates to the computer software program.
- a cerebral aneurysm refers to a part of a vascular wall of a cerebral artery that is locally raised and changed into a lumbar shape.
- This cerebral aneurysm ruptures, it often results in subarachnoid hemorrhage and death. Therefore, for a cerebral aneurysm that is highly likely to rupture, it is necessary to perform appropriate preventive treatment such as stent or coil treatment.
- the risk of rupture is said to be about 1% from conventional clinical studies. Rather, taking into account that the preventive treatment itself as described above is also associated with a life risk, it should always be treated aggressively. However, in medical practice, it is required to appropriately determine only cerebral aneurysms that are likely to rupture and to treat them.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to enable a computer to intuitively and easily understand a state quantity of blood flow in a vascular lesion, particularly a cerebral aneurysm.
- An apparatus, a method thereof, and a computer software program thereof are provided. *
- a computer calculates a medical image including a target blood vessel site and a predetermined coordinate system calculated from the medical image by numerical fluid analysis.
- An input unit that reads a pressure field and a velocity field at each position of the target vascular site, a computer that determines a vascular lesion site from the medical image, and a computer that acquires the geometry of the acquired vascular lesion site
- a lesion coordinate system calculation unit that calculates a lesion coordinate system based on the scientific information, and the computer that converts the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system
- a system flow conversion unit, a lesion blood flow feature amount calculation unit for calculating a lesion blood flow feature amount based on a velocity field and a pressure field coordinate-converted into the lesion coordinate system, a computer Yuta is, blood flow visualization device is provided having an output section for outputting the lesion blood flow characteristic quantity.
- the lesion coordinate system when the vascular lesion site is an aneurysm, the lesion coordinate system has a point on the neck surface of the aneurysm as an origin. In this case, it is desirable that the lesion coordinate system has the center of gravity of the aneurysm neck surface of the aneurysm as the origin. Furthermore, in this case, it is desirable that the lesion coordinate system is a local coordinate system in which the center of mass of the aneurysm neck surface is the origin and the direction of aneurysm generation is the normal direction.
- the apparatus further includes a blood flow calculation unit for calculating the pressure field and the velocity field by the computer.
- the lesion blood flow characteristic amount includes an intra-aneurysmic inflow velocity, an intra-aneurysmic inflow flow rate, an intra-aneurysmal velocity isosurface, an intra-aneurysmal inflow and outflow velocity distribution, an intraaneurysmal streamline. , Including one or more pieces of information on the inner wall shear stress, the pressure in the aneurysm, and the energy loss in the aneurysm.
- the lesion portion determination unit determines the vascular lesion site from a three-dimensional blood vessel shape constructed from the medical image.
- a computer uses a medical image including a target blood vessel part, and a pressure at each position of the target blood vessel part calculated from the medical image by a numerical fluid analysis in a predetermined coordinate system.
- a lesion coordinate system calculating step for calculating a system, a computer for converting the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system, and a computer,
- a lesion blood flow feature amount calculating step for calculating a lesion blood flow feature amount based on a velocity field and a pressure field coordinate system transformed into the lesion coordinate system; Blood flow visualization method and an output step of outputting the lesion blood flow characteristic amount is provided.
- a computer calculates a medical image including a target blood vessel site and a numerical value from the medical image
- An input step of reading a pressure field and a velocity field at each position of the target blood vessel site calculated in a predetermined coordinate system by fluid analysis and a lesion site determination step in which a computer determines a blood vessel lesion site from the medical image
- a lesion coordinate system calculating step in which a computer calculates a lesion coordinate system based on the acquired geometric information of the vascular lesion site; and the computer calculates the calculated pressure field and velocity field from the predetermined coordinate system.
- the coordinate system converting step for converting to the calculated lesion coordinate system, and a computer that converts the velocity field converted into the lesion coordinate system into the coordinate system;
- a computer software comprising: a lesion blood flow feature amount calculating step for calculating a lesion blood flow feature amount based on a force field; and a computer for executing an output step for outputting the lesion blood flow feature amount.
- FIG. 1 is a schematic configuration diagram of a lesion blood flow feature amount visualization device 10 according to an embodiment of the present invention.
- FIG. 2 is a diagram showing a lesion blood flow feature amount visualization flow according to an embodiment of the present invention.
- 3A to 3H are diagrams for explaining processing in the blood flow calculation unit.
- FIG. 4 is a diagram for explaining determination of a lesioned part.
- FIG. 5 is a diagram for explaining the determination of the neck surface.
- 6A and 6B are diagrams for explaining a lesion coordinate system.
- FIG. 7 is a diagram illustrating coordinate system conversion.
- FIG. 8 is a diagram illustrating an example of a user graphical interface.
- FIGS. 9A and 9B are diagrams showing the velocity distribution on the ankle neck surface before and after coordinate conversion.
- FIG. 10 is a diagram showing a lesion blood flow feature amount visualization flow according to another embodiment of the present invention.
- the first aspect of the present invention is a blood flow feature amount visualizing device, which is used for the state of blood flow in a vascular lesion, for example, blood flow in a cerebral aneurysm in a patient's brain. It provides an interface for the user to easily understand the status.
- the present invention separates and displays the flow of blood flowing in a normal blood vessel and the flow of blood flowing in a cerebral aneurysm. Velocity and pressure are used as physical values that serve as the basis for expressing this “flow”.
- the component of the velocity which is a vector quantity, varies depending on the coordinate axis to be installed. The present invention uses this characteristic to separate and display the flow in the cerebral aneurysm.
- the apparatus of the present invention automatically converts velocity field / pressure field information, which is a blood flow analysis result by computer simulation, into a lesion coordinate system, and automatically calculates a lesion blood flow feature amount in the lesion coordinate system.
- the lesion coordinate system is preferably a local coordinate system in which the center of gravity of the aneurysm neck surface is the origin and the aneurysm generation direction is the normal direction.
- a cerebral aneurysm neck surface can be defined, and a cerebral aneurysm coordinate system can be set in which the top of the cerebral aneurysm is normal from the center of gravity of the neck surface.
- FIG. 1 is a schematic configuration diagram of a lesion blood flow feature amount visualization device 10 according to an embodiment of the present invention.
- the lesion blood flow feature amount visualization device 10 has a program storage unit 60 and data storage units 70 and 71 connected to a bus 50 to which a CPU 11, a RAM 12 and an input / output IF 13 are connected.
- the bus 50 may be further connected to other devices and / or communication ports that store various external reference data.
- an input device such as a mouse, a keyboard, or a touch screen, a display (not shown), or another output device can be connected to the input / output IF 13 of the apparatus 10.
- the program storage unit 60 includes an input unit 14, a blood flow calculation unit 15, a lesion part determination unit 16, a lesion coordinate system calculation unit 17, a coordinate system conversion unit 18, a lesion blood flow feature amount calculation unit 19, and a display unit 20. ing.
- the data storage unit 70 stores medical images input from an input device or a communication port.
- the data storage unit 71 stores a velocity field / pressure field 25, a vascular lesion part 26, and a lesion feature 27.
- the above configuration (input unit 14, blood flow calculation unit 15, lesion part determination unit 16, lesion coordinate system calculation unit 17, coordinate system conversion unit 18, lesion blood flow feature amount calculation unit 19, and display unit 20) Is configured by computer software stored in the storage area of the hard disk, and is configured to function as each component of the present embodiment by being called by the CPU 11 and expanded and executed on the RAM 12. It has become.
- FIG. 2 is a diagram showing a lesion blood flow feature amount visualization flow of the apparatus 10 in the present embodiment.
- the input is a medical image.
- the apparatus 10 performs blood flow calculation, determines a lesion coordinate system, performs coordinate conversion, and then automatically calculates and outputs a lesion blood flow feature amount.
- the function of each part of the above configuration will be described together with the respective processes.
- the input unit 14 reads a medical image or the like (step S1).
- the input medical image is a device capable of acquiring a tomographic image of a target blood vessel site such as MRA (magnetic resonance image), CTA (X-ray computed tomography image), DSA (angiographic image), or the like.
- MRA magnetic resonance image
- CTA X-ray computed tomography image
- DSA angiographic image
- it may be obtained by various apparatuses capable of acquiring image data in a target blood vessel site, such as US (ultrasonic image), IVUS (intravascular ultrasonic image), OCT (near infrared image).
- the target blood vessel site may be, for example, a cerebral artery, a coronary artery, a carotid artery, an aorta, or another target blood vessel site of a subject.
- the medical image is once recorded in the data storage unit 70 via the input / output IF 13 or by a communication port (not shown) or other transfer means, and then input to the blood flow calculation unit 15.
- the blood flow calculation unit 15 performs blood flow simulation using computational fluid dynamics (CFD) (step S2).
- CFD computational fluid dynamics
- the flow of blood flow simulation adopts the generalized method shown in FIG. A specific flow will be described below.
- the blood flow calculation unit 15 When the blood flow calculation unit 15 acquires the medical image including the target blood vessel site, the blood flow calculation unit 15 first constructs a blood vessel shape (surface mesh) from the medical image (FIG. 3B). Next, a calculation grid (volume mesh) is generated inside (FIG. 3C). Next, blood physical properties and boundary conditions (wall surface, inlet, outlet) are set (FIG. 3D). Next, based on pre-defined calculation conditions, (1) the continuous equation and (2) the Navier-Stokes equation, which are the governing equations, are sequentially calculated to obtain the pressure field and the velocity field ( An approximate solution of the velocity field is acquired and output (FIGS. 3E to 3G). In the following steps, the flow is visualized by extracting feature values from the numerical information of the pressure field and velocity field acquired here.
- the blood flow calculation unit 15 may correct the blood vessel shape constructed from the medical image and obtain approximate solutions of the blood flow pressure field and the velocity field for the corrected blood vessel shape. it can.
- the correction process there is a correction for reproducing the blood vessel shape after treatment.
- the post-process (steps S2 to S6) is performed on the corrected blood vessel shape.
- the lesion site determination unit 16 determines a blood vessel lesion site using the blood vessel shape constructed from the medical image (step S2).
- the blood vessel shape of the target blood vessel and its center line are analyzed, and the change rate of the blood vessel shape along the center line is within the normal range as the normal part.
- the normal part and the abnormal part are divided.
- the cerebral aneurysm shown here is an enlargement of a local blood vessel shape and becomes an abnormal part. That is, a cerebral aneurysm is accompanied by reversal of curvature from a parent blood vessel, and an abnormal portion (lesioned portion) is specified by tracking this curvature reversal portion.
- the parent blood vessel B which is a normal blood vessel has a convex curvature, while The converted portion A has a concave curvature, and the portion of the cerebral aneurysm is determined by tracking this boundary surface.
- the shape of the divided abnormal part may be further analyzed so that the aneurysm is determined only when the shape of the abnormal part satisfies a predetermined criterion.
- This shape analysis measures geometrical features by measuring some or all of the volume, surface area, spherical shape, representative length, and vascular site where the anomaly is located, or other geometric parameters. This can be done by calculating.
- the lesion site determination unit 16 may receive an input of further information for specifying the vascular lesion site and determine the lesion site based on the further information.
- the determination of the vascular lesion is performed in parallel with the subsequent calculation processing (FIGS. 3C to 3H) in the blood flow calculation unit 15 after the vascular shape shown in FIG. 3B is constructed. This is possible, but is not limited to this.
- the lesion coordinate system calculation unit 17 calculates a lesion coordinate system based on the acquired vascular lesion part information (step S3). Hereinafter, the processing of the lesion coordinate system calculation unit 17 will be described in detail.
- the blood vessel lesion data acquired by the lesion determination unit 16 is based on a three-dimensional absolute coordinate system (X, Y, Z).
- the absolute coordinate system corresponds to an image coordinate system. That is, it is a machine coordinate system of a device capable of acquiring the image data, for example, a medical image capturing device such as a CT.
- the Z axis is arranged in the body axis direction, and the Y axis and the X axis are set in the orthogonal direction to the front, rear, left and right.
- the origin of the machine coordinate system is the origin of the imaging device and is unique to the device. Therefore, the lesion coordinate system calculation unit 17 calculates a three-dimensional lesion coordinate system (X ′, Y ′, Z ′) based on the information on the vascular lesion part expressed in the absolute coordinate system.
- the lesion coordinate system calculation unit 17 first determines the neck surface N for the vascular lesion part determined by the lesion part determination unit 16, that is, the cerebral aneurysm A. This determination is automatically performed by detecting the boundary surface between the normal part and the abnormal part described above as the neck surface N.
- the lesion coordinate system calculation unit 17 may further include means for allowing the user to manually set the neck surface in addition to the above automatic setting.
- the manual setting is performed by allowing the user to select three points including the neck surface.
- the center of gravity (G) of the determined neck surface N of the cerebral aneurysm A is the origin, and the direction perpendicular to the aneurysm neck surface N is Z ′.
- the lesion coordinate system Cerebral aneurysm
- the direction of the normal vector is the normal direction in the direction in which the aneurysm is generated.
- an inflow normal velocity which will be described later, has a plus component
- an outflow normal velocity has a minus component.
- the center of gravity of the neck surface is used as the origin as a suitable lesion coordinate system calculation.
- the present invention is not limited to this, and other positions on the neck surface are used as the origin, for example. Also good.
- the coordinate system conversion unit 18 converts the velocity field and pressure field based on the absolute coordinate system acquired by the blood flow calculation unit 15 into the lesion coordinate system calculated by the lesion coordinate system calculation unit 17. (Step S4). That is, in the case of a cerebral aneurysm, a cerebral aneurysm coordinate system corresponding to the target aneurysm is set. This cerebral aneurysm coordinate system is set in order to calculate the flow property of the target cerebral aneurysm from the viewpoint of the aneurysm in a later step.
- the coordinate system conversion unit 18 calculates a coordinate system conversion matrix and performs multiplication with the velocity field and the pressure field acquired by the blood flow calculation unit 15 to obtain a velocity field after the coordinate system conversion. , Output pressure field.
- the coordinate system conversion line example includes parallel movement and rotational movement.
- the conversion from the velocity (U, V, W) in the absolute coordinate system to the velocity (U ′, V ′, W ′) in the lesion coordinate system is performed using the coordinate system conversion example M. It is expressed by a formula.
- U, V and W are velocity components in the respective directions of the absolute coordinate systems X, Y and Z
- U ′, V ′ and W ′ are the respective velocity components in the lesion coordinate systems X ′, Y ′ and Z ′. It is the velocity component in the direction.
- the lesion blood flow feature amount calculation unit 19 calculates the lesion blood flow feature amount from the velocity field and pressure field based on the lesion coordinate system acquired by the coordinate system conversion unit 18 (step S5).
- the calculation target is determined according to the type of vascular lesion and is stored in advance in the computer. In the present embodiment, the following feature amounts are calculated in the case of a cerebral aneurysm.
- Inlet flow rate (2) Inlet flow rate (3) Intracranial velocity isosurface (4) Inlet flow / outflow velocity distribution (5) Inlet flow line (6) Inner wall shear stress (7 ) Pressure inside the aneurysm (8) Energy loss within the aneurysm
- the inflow component is expressed as plus and the outflow component is expressed as minus.
- the display unit 20 generates a display screen for displaying necessary information such as the feature amount acquired by the lesion blood flow feature amount calculation unit 19 and displays it on the user interface displayed on the display (S6).
- FIG. 8 shows an example of the user graphical interface 40.
- the velocity distribution after coordinate conversion is displayed superimposed on the three-dimensional shape of the blood vessel including the aneurysm.
- the velocity distribution after the coordinate system conversion on the neck surface of the aneurysm is displayed.
- the pressure distribution, the direction of the wall shear stress, the magnitude of the wall shear stress, and the fluctuation value of the direction of the wall shear stress are respectively displayed in the lower portions 43, 44, 45, and 46 in FIG.
- a display format selection button may be displayed on the user interface 40 so that the user can select a desired display format, and various information is displayed on the user interface 40 according to the selected display format. To be able to.
- FIG. 9 shows an example of the velocity distribution (UMMagnitude [m / s]) in the machine absolute coordinate system.
- UMagnitude [m / s] shows larger values than the P3 region.
- FIG. 9B shows a velocity distribution after coordinate transformation (cerebral aneurysm coordinate system), specifically, a velocity component (UZ ′ [m] in a direction Z ′ orthogonal to the neck surface and having a positive inflow direction. / S]).
- the speed UZ ′ shows almost 0 in the P3 ′ region, whereas the P1 ′ region has a lower negative value (a value less than ⁇ 0.1) compared to the P3 ′ region. That is, the outflow shows a higher positive value (value exceeding +0.05), that is, inflow in the P2 ′ region than in the P3 ′ region.
- the cerebral aneurysm coordinate system by analyzing the velocity vector at each position, it is possible to easily and easily identify the inflow and outflow locations in the cerebral aneurysm that could not be observed before coordinate conversion. It can be visually recognized.
- the viewpoint on the vascular lesion and calculating and visualizing the lesion blood flow feature in the lesion coordinate system by placing the viewpoint on the vascular lesion and calculating and visualizing the lesion blood flow feature in the lesion coordinate system, the location of the inflow and outflow in the cerebral aneurysm can be specified, and the blood flow in the aneurysm can be identified.
- the state can be easily and intuitively understood. This will be effective in elucidating the causal relationship between aneurysm rupture and the state of blood flow.
- the lesion blood flow characteristic amount visualization device 10 includes the blood flow calculation process 15 and the lesion part determination unit 16 and performs the calculation of the velocity field / pressure field and the determination of the lesion part.
- the present invention is not limited to this.
- at least one of a velocity field / pressure field and a vascular lesion part calculated and specified by another apparatus may be input to the visualization apparatus of the present invention.
- a velocity field / pressure field obtained by blood flow analysis based on a medical image by another apparatus, a specified lesioned part or a blood vessel shape including the lesioned part, etc. Can be input.
- the lesion coordinate system calculation unit 17, the coordinate system conversion unit 18, the lesion blood flow feature amount calculation unit 19, and the display unit 20 perform each process ( Steps S12 to S15) are performed in the same manner as in the lesion blood flow feature amount visualization apparatus 10 described above.
- a velocity field / pressure field obtained by blood flow analysis based on a medical image by another apparatus and a medical image or blood vessel shape that is the basis of the blood flow analysis can be input. .
- the lesion determination unit 16 when the input data is read into the input unit 14 (step S11), the lesion determination unit 16, the lesion coordinate system calculation unit 17, the coordinate system conversion unit 18, the lesion blood flow feature amount calculation unit 19, and the display unit. 20 performs each process in the same manner as the above-mentioned lesion blood flow characteristic amount visualization apparatus 10.
- the present invention is limited to this.
- the desired feature amount can be calculated as long as substantially the same operation is achieved. For example, at least one of the velocity field and the pressure field is calculated, coordinate-converted, and some desired lesion blood flow feature quantities among the lesion blood flow feature quantities (1) to (8) as described above Can be calculated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Image Processing (AREA)
Abstract
Description
本発明は、血管病変をコンピュータにより自動分析する装置、その方法、及びそのコンピュータソフトウェアプログラムに関し、特に、動脈瘤の血液流入部における流れの状態を可視化する血流特徴量可視化装置、その方法、及びそのコンピュータソフトウェアプログラムに関する。 The present invention relates to a device for automatically analyzing vascular lesions by a computer, a method thereof, and a computer software program thereof, and more particularly, a blood flow feature amount visualization device for visualizing a flow state in a blood inflow portion of an aneurysm, a method thereof, and the like. It relates to the computer software program.
血管病変の1つに脳動脈瘤が挙げられる。脳動脈瘤とは脳動脈の血管壁の一部が局所的に隆起して瘤状に変化したものをいう。この脳動脈瘤が破裂すると、クモ膜下出血を来たし死に至ることも少なくない。従って、破裂する可能性の高い脳動脈瘤については、ステントやコイル治療等の適切な予防治療を行う必要がある。しかしながら、その破裂リスクは従来の臨床研究から1%程度であると言われており、むしろ上述したような予防治療自体にも生命の危険を伴うことを考慮すると、必ずしも積極的に治療を行うことが適切とは言えず、医療現場では、破裂する可能性の高い脳動脈瘤のみを適正に判別して治療対象とすることが求められている。 An example of a vascular lesion is a cerebral aneurysm. A cerebral aneurysm refers to a part of a vascular wall of a cerebral artery that is locally raised and changed into a lumbar shape. When this cerebral aneurysm ruptures, it often results in subarachnoid hemorrhage and death. Therefore, for a cerebral aneurysm that is highly likely to rupture, it is necessary to perform appropriate preventive treatment such as stent or coil treatment. However, the risk of rupture is said to be about 1% from conventional clinical studies. Rather, taking into account that the preventive treatment itself as described above is also associated with a life risk, it should always be treated aggressively. However, in medical practice, it is required to appropriately determine only cerebral aneurysms that are likely to rupture and to treat them.
破裂する可能性の高い脳動脈瘤を判別するのに脳動脈瘤が破裂するメカニズムを解明することは重要である。近年の研究より、この破裂に関連する要素に脳動脈瘤内の血流があることが知られている。例えば、破裂した脳動脈瘤ではその破裂前の瘤内において血流の衝突が頻繁に観察されたという報告がある。また、特許第5596865号には、脳動脈瘤等の対象血管部位における血流の性状をコンピュータシミュレーションにより自動解析する技術が開示されている。脳動脈瘤内の血流の状態と瘤破裂との因果関係については未だ不明な点が多いが、当該因果関係については、脳動脈瘤に関するビックデータのデータベース化や特許第5596865号のような自動解析技術の活用・進展により、明らかにできることが期待される。 解 明 It is important to elucidate the mechanism of cerebral aneurysm rupture in order to identify cerebral aneurysms that are likely to rupture. From recent studies, it is known that blood flow in the cerebral aneurysm is a factor related to this rupture. For example, it has been reported that in a ruptured cerebral aneurysm, collisions of blood flow were frequently observed in the aneurysm before the rupture. Japanese Patent No. 5596865 discloses a technique for automatically analyzing the characteristics of blood flow in a target blood vessel site such as a cerebral aneurysm by computer simulation. There are still many unclear points about the causal relationship between the state of blood flow in the cerebral aneurysm and the rupture of the aneurysm. However, regarding the causal relationship, the big data database related to the cerebral aneurysm and automatic processing such as patent 5596865 It is expected to be clarified by utilizing and developing analysis technology.
しかしながら、動脈瘤内の血流は極めて複雑であり、そのため、流体力学に精通していない一般の医学者等にとって上記のような血流解析結果が得られたとしてもその理解が困難な場合があった。 However, the blood flow in the aneurysm is extremely complicated, and therefore it may be difficult for general medical practitioners who are not familiar with fluid dynamics to understand the blood flow analysis results as described above. there were.
本発明は、上述した事情に鑑みて成されたものであり、その目的は、コンピュータが、血管病変、特に脳動脈瘤における血流の状態量を直観的に容易に理解することを可能とする装置、その方法、及びそのコンピュータソフトウェアプログラムを提供することである。 The present invention has been made in view of the above-described circumstances, and an object thereof is to enable a computer to intuitively and easily understand a state quantity of blood flow in a vascular lesion, particularly a cerebral aneurysm. An apparatus, a method thereof, and a computer software program thereof are provided. *
上記課題を解決するために、本発明の第1の主要な観点によれば、コンピュータが、対象血管部位を含む医用画像と、当該医用画像から数値流体解析により所定の座標系で算出された前記対象血管部位の各位置における圧力場および速度場とを読み込む入力部と、コンピュータが、前記医用画像から血管病変部位を決定する病変部決定部と、コンピュータが、取得された前記血管病変部位の幾何学的情報に基づいて病変座標系を算出する病変座標系算出部と、コンピュータが、前記算出された圧力場および速度場を前記所定の座標系から前記算出された病変座標系に変換する前記座標系変換部と、コンピュータが、前記病変座標系に座標系変換された速度場および圧力場に基づいて病変血流特徴量を計算する病変血流特徴量計算部と、コンピュータが、前記病変血流特徴量を出力する出力部とを有する血流可視化装置が提供される。 In order to solve the above-described problem, according to a first main aspect of the present invention, a computer calculates a medical image including a target blood vessel site and a predetermined coordinate system calculated from the medical image by numerical fluid analysis. An input unit that reads a pressure field and a velocity field at each position of the target vascular site, a computer that determines a vascular lesion site from the medical image, and a computer that acquires the geometry of the acquired vascular lesion site A lesion coordinate system calculation unit that calculates a lesion coordinate system based on the scientific information, and the computer that converts the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system A system flow conversion unit, a lesion blood flow feature amount calculation unit for calculating a lesion blood flow feature amount based on a velocity field and a pressure field coordinate-converted into the lesion coordinate system, a computer Yuta is, blood flow visualization device is provided having an output section for outputting the lesion blood flow characteristic quantity.
ここで、この発明の一の実施態様によれば、前記血管病変部位が動脈瘤である場合、前記病変座標系は、該動脈瘤の瘤ネック面上の点を原点とする。この場合、前記病変座標系は、該動脈瘤の瘤ネック面重心を原点とすることが望ましい。さらに、この場合、前記病変座標系は、該動脈瘤の瘤ネック面重心を原点として、瘤発生方向を法線方向とした局所座標系であることが望ましい。 Here, according to one embodiment of the present invention, when the vascular lesion site is an aneurysm, the lesion coordinate system has a point on the neck surface of the aneurysm as an origin. In this case, it is desirable that the lesion coordinate system has the center of gravity of the aneurysm neck surface of the aneurysm as the origin. Furthermore, in this case, it is desirable that the lesion coordinate system is a local coordinate system in which the center of mass of the aneurysm neck surface is the origin and the direction of aneurysm generation is the normal direction.
また、別の一実施態様によれば、この装置は、さらに、コンピュータが、前記圧力場および速度場を算出する血流計算部を有するものである。 Further, according to another embodiment, the apparatus further includes a blood flow calculation unit for calculating the pressure field and the velocity field by the computer.
また、更なる別の一実施態様によれば、前記病変血流特徴量は、瘤内流入速度、瘤内流入流量、瘤内速度等値面、瘤内流入および流出速度分布、瘤内流線、瘤内壁面せん断応力、瘤内圧力、瘤内エネルギー損失の1若しくはそれ以上の情報を含むものである。 According to still another embodiment, the lesion blood flow characteristic amount includes an intra-aneurysmic inflow velocity, an intra-aneurysmic inflow flow rate, an intra-aneurysmal velocity isosurface, an intra-aneurysmal inflow and outflow velocity distribution, an intraaneurysmal streamline. , Including one or more pieces of information on the inner wall shear stress, the pressure in the aneurysm, and the energy loss in the aneurysm.
また、更なる別の一実施形態によれば、前記病変部決定部は、前記医用画像から構築された3次元血管形状から前記血管病変部位を決定するものである。 According to still another embodiment, the lesion portion determination unit determines the vascular lesion site from a three-dimensional blood vessel shape constructed from the medical image.
この発明の第2の主要な観点によれば、コンピュータが、対象血管部位を含む医用画像と、当該医用画像から数値流体解析により所定の座標系で算出された前記対象血管部位の各位置における圧力場および速度場とを読み込む入力工程と、コンピュータが、前記医用画像から血管病変部位を決定する病変部決定工程と、コンピュータが、取得された前記血管病変部位の幾何学的情報に基づいて病変座標系を算出する病変座標系算出工程と、コンピュータが、前記算出された圧力場および速度場を前記所定の座標系から前記算出された病変座標系に変換する前記座標系変換工程と、コンピュータが、前記病変座標系に座標系変換された速度場および圧力場に基づいて病変血流特徴量を計算する病変血流特徴量計算工程と、コンピュータが、前記病変血流特徴量を出力する出力工程とを有する血流可視化方法が提供される。 According to a second main aspect of the present invention, a computer uses a medical image including a target blood vessel part, and a pressure at each position of the target blood vessel part calculated from the medical image by a numerical fluid analysis in a predetermined coordinate system. An input step for reading a field and a velocity field; a lesion determination step in which a computer determines a vascular lesion site from the medical image; and a lesion coordinate based on the acquired geometric information of the vascular lesion site. A lesion coordinate system calculating step for calculating a system, a computer for converting the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system, and a computer, A lesion blood flow feature amount calculating step for calculating a lesion blood flow feature amount based on a velocity field and a pressure field coordinate system transformed into the lesion coordinate system; Blood flow visualization method and an output step of outputting the lesion blood flow characteristic amount is provided.
また、この発明の第3の主要な観点によれば、血流を可視化するためのコンピュータソフトウェアプログラムであって、以下の工程:コンピュータが、対象血管部位を含む医用画像と、当該医用画像から数値流体解析により所定の座標系で算出された前記対象血管部位の各位置における圧力場および速度場とを読み込む入力工程と、コンピュータが、前記医用画像から血管病変部位を決定する病変部決定工程と、コンピュータが、取得された前記血管病変部位の幾何学的情報に基づいて病変座標系を算出する病変座標系算出工程と、コンピュータが、前記算出された圧力場および速度場を前記所定の座標系から前記算出された病変座標系に変換する前記座標系変換工程と、コンピュータが、前記病変座標系に座標系変換された速度場および圧力場に基づいて病変血流特徴量を計算する病変血流特徴量計算工程と、コンピュータが、前記病変血流特徴量を出力する出力工程とを実行させる命令を含むことを特徴とするコンピュータソフトウェアプログラムが提供される。 Moreover, according to a third main aspect of the present invention, there is provided a computer software program for visualizing blood flow, the following steps: a computer calculates a medical image including a target blood vessel site and a numerical value from the medical image An input step of reading a pressure field and a velocity field at each position of the target blood vessel site calculated in a predetermined coordinate system by fluid analysis; and a lesion site determination step in which a computer determines a blood vessel lesion site from the medical image; A lesion coordinate system calculating step in which a computer calculates a lesion coordinate system based on the acquired geometric information of the vascular lesion site; and the computer calculates the calculated pressure field and velocity field from the predetermined coordinate system. The coordinate system converting step for converting to the calculated lesion coordinate system, and a computer that converts the velocity field converted into the lesion coordinate system into the coordinate system; A computer software comprising: a lesion blood flow feature amount calculating step for calculating a lesion blood flow feature amount based on a force field; and a computer for executing an output step for outputting the lesion blood flow feature amount. A program is provided.
なお、この発明の上記述べた以外の他の特徴については、次に説明する「発明を実施するための形態」及び図面を参照することにより当業者にとって容易に理解することができる。 It should be noted that other features of the present invention other than those described above can be easily understood by those skilled in the art by referring to the “Description of Embodiments” and the drawings described below.
以下、図面を参照して本発明の実施の形態を詳細に説明する。尚、以下では好適な例として、脳動脈瘤の場合をもって説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, a case of a cerebral aneurysm will be described as a preferred example.
まず、本発明の基礎となる概念について説明する。前述したように、本発明の第1の側面は、血流特徴量可視化装置であり、この装置は、血管病変部の血流の状態、例えば患者の脳にある脳動脈瘤内の血流の状態をユーザーが容易に理解するためのインターフェースを提供するものである。本発明は、正常な血管内を流れる血液の流れと脳動脈瘤内に流れる血液の流れを分離して表示する。この「流れ」を表すための基礎となる物理値としては速度と圧力を用いる。ベクトル量である速度は設置する座標軸に応じて成分が変化するが、本発明はこの特性を利用して脳動脈瘤内の流れを分離して表示するものである。より具体的には、この発明の装置は、コンピュータシミュレーションによる血流解析結果である速度場・圧力場の情報を病変座標系に自動変換し、当該病変座標系における病変血流特徴量を自動計算する。上記病変座標系は、脳動脈瘤の場合には、瘤ネック面の重心を原点とし、瘤発生方向を法線方向とした局所座標系であることが好ましい。例えば、脳動脈瘤ネック面を定義し、ネック面重心から当該脳動脈瘤の頭頂部を法線とする脳動脈瘤座標系を設定することができる。 First, the concept underlying the present invention will be described. As described above, the first aspect of the present invention is a blood flow feature amount visualizing device, which is used for the state of blood flow in a vascular lesion, for example, blood flow in a cerebral aneurysm in a patient's brain. It provides an interface for the user to easily understand the status. The present invention separates and displays the flow of blood flowing in a normal blood vessel and the flow of blood flowing in a cerebral aneurysm. Velocity and pressure are used as physical values that serve as the basis for expressing this “flow”. The component of the velocity, which is a vector quantity, varies depending on the coordinate axis to be installed. The present invention uses this characteristic to separate and display the flow in the cerebral aneurysm. More specifically, the apparatus of the present invention automatically converts velocity field / pressure field information, which is a blood flow analysis result by computer simulation, into a lesion coordinate system, and automatically calculates a lesion blood flow feature amount in the lesion coordinate system. To do. In the case of a cerebral aneurysm, the lesion coordinate system is preferably a local coordinate system in which the center of gravity of the aneurysm neck surface is the origin and the aneurysm generation direction is the normal direction. For example, a cerebral aneurysm neck surface can be defined, and a cerebral aneurysm coordinate system can be set in which the top of the cerebral aneurysm is normal from the center of gravity of the neck surface.
以下、本発明の一実施形態について具体的に説明する。 Hereinafter, an embodiment of the present invention will be specifically described.
図1は、本発明の一実施形態における病変血流特徴量可視化装置10の概略構成図である。
FIG. 1 is a schematic configuration diagram of a lesion blood flow feature
病変血流特徴量可視化装置10は、CPU11、RAM12及び入力/出力IF13が接続されたバス50に、プログラム格納部60とデータ格納部70、71が接続されている。この装置10は、さらに、各種外部参照データを格納するその他の機器および/または通信ポートに前記バス50が接続されてもよい。また、この装置10の入力/出力IF13には、マウスやキーボード、タッチスクリーンなどの入力デバイス(不図示)や、ディスプレイ(不図示)又はその他の出力デバイスを接続することができる。
The lesion blood flow feature
プログラム格納部60は、入力部14、血流計算部15、病変部決定部16、病変座標系算出部17、座標系変換部18、病変血流特徴量計算部19、及び表示部20を備えている。
The
データ格納部70は入力デバイスまたは通信ポートから入力された医用画像を格納する。データ格納部71は、速度場・圧力場25と、血管病変部26と、病変特徴量27とを格納する。
The
前記構成(入力部14、血流計算部15と、病変部決定部16と、病変座標系算出部17と、座標系変換部18と、病変血流特徴量計算部19と、表示部20)は、実際にはハードディスクの記憶領域に格納されたコンピュータソフトウエアによって構成され、前記CPU11によって呼び出されRAM12上に展開され実行されることによって、本実施形態の各構成要素として構成され機能するようになっている。
The above configuration (
図2は、本実施形態における装置10の病変血流特徴量可視化フローを示す図である。入力は医用画像とする。装置10は、医用画像が入力されると、血流計算を行うと共に病変座標系を決定し、座標変換を行い、その後、病変血流特徴量を自動計算し出力する。以下に、前記構成の各部の機能についてそれぞれの受け持つ工程とともに述べる。
FIG. 2 is a diagram showing a lesion blood flow feature amount visualization flow of the
(入力部)
入力部14は医用画像等を読み込む(ステップS1)。この実施形態において、入力される医用画像は、例えばMRA(磁気共鳴画像)、CTA(X線コンピュータ断層撮影画像)、DSA(血管造影画像)などの対象血管部位の断層画像を取得可能な装置の他、US(超音波画像)、IVUS(血管内超音波画像)、OCT(近赤外画像)など、対象血管部位における画像データを取得可能な種々の装置により得られたものであってよい。また、対象血管部位としては、例えば脳動脈、冠動脈、頚動脈、大動脈、または被験者のその他の対象血管部位であってよい。
(Input section)
The
当該医用画像は、入力/出力IF13を介して、または不図示の通信ポートやその他の転送手段により一旦データ格納部70に記録された後、血流計算部15に入力される。
The medical image is once recorded in the
(血流計算部)
血流計算部15は、数値流体力学(CFD)を用いて血流シミュレーションを行う(ステップS2)。この実施形態では、血流シミュレーションの流れは図3に示す一般化した方法を採用している。以下に具体的な流れを説明する。
(Blood flow calculator)
The blood
血流計算部15は、対象血管部位を含む前記医用画像を取得すると、まず当該医用画像から血管形状(サーフェスメッシュ)を構築する(図3(b))。次に、内部に計算格子(ボリュームメッシュ)を生成する(図3(c))。次に、血液物性と境界条件(壁面、入口、出口)を設定する(図3(d))。次に、あらかじめ規定された計算条件に基づいて、支配方程式である(1)連続の式、(2)ナビエ・ストークス方程式を連立逐次演算することで各メッシュにおける血流の圧力場および流速場(速度場)の近似解を取得し出力する(図3(e)~(g))。以下の工程では、ここで取得された圧力場および速度場の数値情報から特徴量を抽出して流れの可視化を行う。
When the blood
尚、血流計算部15は、上記医用画像から構築された血管形状を修正処理して、当該修正された血管形状に対してその血流の圧力場および速度場の近似解を取得することもできる。修正処理の一例としては、治療後の血管形状を再現するための修正が挙げられる。修正処理をする場合、後工程(ステップS2~ステップS6)は、当該修正された血管形状に対して行う。
The blood
(病変部決定部)
病変部決定部16は、医用画像から構築した血管形状を用いて血管病変部を決定する(ステップS2)。
(Lesion determination part)
The lesion
本実施形態では、血管病変部が脳動脈瘤の場合、対象血管の血管形状およびその中心線を分析して、当該中心線に沿って血管形状の変化率が正常範囲にあるものを正常部と判定し、前記正常部に入らない血管領域を異常部と判定することで、正常部と異常部の分割を行う。ここで示す脳動脈瘤は局所的な血管形状の拡大であり異常部となる。すなわち、脳動脈瘤は、親血管からの曲率の反転を伴うものであり、この曲率反転箇所をトラッキングすることで異常部(病変部)を特定する。図4を参照して説明すると、脳動脈瘤Aを含む血管について、中心線lに沿って血管形状の変化率を分析すると、正常血管である親血管Bは凸型の曲率となる一方、瘤化した部分Aは凹型の曲率を伴うものであり、この境界面をトラッキングすることで脳動脈瘤の部分を決定する。
In the present embodiment, when the vascular lesion is a cerebral aneurysm, the blood vessel shape of the target blood vessel and its center line are analyzed, and the change rate of the blood vessel shape along the center line is within the normal range as the normal part. By determining and determining the blood vessel region that does not enter the normal part as an abnormal part, the normal part and the abnormal part are divided. The cerebral aneurysm shown here is an enlargement of a local blood vessel shape and becomes an abnormal part. That is, a cerebral aneurysm is accompanied by reversal of curvature from a parent blood vessel, and an abnormal portion (lesioned portion) is specified by tracking this curvature reversal portion. Referring to FIG. 4, when the change rate of the blood vessel shape is analyzed along the
他の実施例では、上記分割処理後、さらに、分割された異常部の形状を分析して、前記異常部の形状が所定の基準を満たす場合にのみ脳動脈瘤と判定するようにしてもよい。この形状の分析は、異常部の体積、表面積、球形状、代表長さ、および異常部が位置する血管部位、またはその他の幾何学的形状パラメータの幾つかまたは全てを計測し幾何学的特徴を算出することで行うことができる。 In another embodiment, after the dividing process, the shape of the divided abnormal part may be further analyzed so that the aneurysm is determined only when the shape of the abnormal part satisfies a predetermined criterion. . This shape analysis measures geometrical features by measuring some or all of the volume, surface area, spherical shape, representative length, and vascular site where the anomaly is located, or other geometric parameters. This can be done by calculating.
一方、病変部決定部16の上記処理で血管病変部が特定されない場合は、この装置はその旨を表示して処理を終了し、以下に説明する座標系変換部18および病変血流特徴量計算部19の各処理を行わない。代替的に、病変部決定部16は、血管病変部を特定するための更なる情報の入力を受け付けて、当該更なる情報に基づいて上記病変部の決定を行なってもよい。
On the other hand, if a vascular lesion is not identified by the above processing of the
尚、この血管病変部の決定は、図3(b)に示す血管形状の構築後、上記血流計算部15におけるその後の計算処理(図3(c)~(h))と並行して行うことができるが、これに限られるものではない。
The determination of the vascular lesion is performed in parallel with the subsequent calculation processing (FIGS. 3C to 3H) in the blood
(病変座標系算出部)
病変座標系算出部17は、取得した血管病変部情報をもとに病変座標系を算出する(ステップS3)。以下、この病変座標系算出部17の処理を詳しく説明する。
(Lesion coordinate system calculation unit)
The lesion coordinate
本実施形態において、病変部決定部16で取得された血管病変部のデータは3次元絶対座標系(X,Y,Z)に基づいている。絶対座標系とは画像座標系に相当する。すなわち、上記画像データを取得可能な装置、例えばCT等の医用画像撮像装置のもつ機械座標系である。多くの機械座標系は体軸方向にZ軸を配置し、それと直行方向に、前後、左右に対してY軸、X軸を設定している。機械座標系の原点は撮像機器の原点であり機器固有なものである。そこで、病変座標系算出部17は、前記絶対座標系で表現されている血管病変部の情報をもとに3次元病変座標系(X',Y',Z')を算出する。
In the present embodiment, the blood vessel lesion data acquired by the
例えば脳動脈瘤の場合、図5に示すように、病変座標系算出部17は、まず病変部決定部16で決定された血管病変部すなわち脳動脈瘤Aに対してネック面Nを決定する。この決定は、上述した正常部と異常部の境界面をネック面Nとして検知することで自動的に行う。
For example, in the case of a cerebral aneurysm, as shown in FIG. 5, the lesion coordinate
病変座標系算出部17は、上記自動設定の他に、さらに、ユーザーに手動でネック面を設定させる手段を有してもよい。一実施例として、手動設定は、ユーザーにネック面を含む3点を選択させることにより行う。
The lesion coordinate
その後、図6(a)(b)に示すように、決定した脳動脈瘤Aのネック面Nに対して、その重心(G)を原点とし、瘤ネック面Nに対して垂直方向をZ'軸、ネック面短軸方向をX'軸、当該X'軸を起点として90度の位置にある軸をY'軸とするように法線ベクトルを配置することで、病変座標系(脳動脈瘤座標系)を算出する。本実施形態では、法線ベクトルの向きは、瘤発生方向を法線方向とする。これにより、脳動脈瘤座標系において、後述する流入法線速度はプラス成分を、流出法線速度はマイナス成分を持つ。尚、この実施形態では、好適な病変座標系算出としてネック面の重心を原点とする場合を説明したが、本発明はこれに限られるものではなく、例えばネック面上のその他の位置を原点としてもよい。 Thereafter, as shown in FIGS. 6A and 6B, the center of gravity (G) of the determined neck surface N of the cerebral aneurysm A is the origin, and the direction perpendicular to the aneurysm neck surface N is Z ′. By arranging normal vectors so that the axis and the short axis direction of the neck surface are the X ′ axis, and the axis at the 90 ° position starting from the X ′ axis is the Y ′ axis, the lesion coordinate system (cerebral aneurysm) (Coordinate system) is calculated. In the present embodiment, the direction of the normal vector is the normal direction in the direction in which the aneurysm is generated. Thereby, in the cerebral aneurysm coordinate system, an inflow normal velocity, which will be described later, has a plus component, and an outflow normal velocity has a minus component. In this embodiment, the case where the center of gravity of the neck surface is used as the origin as a suitable lesion coordinate system calculation has been described. However, the present invention is not limited to this, and other positions on the neck surface are used as the origin, for example. Also good.
(座標系変換部)
座標系変換部18は、図7に示すように、血流計算部15で取得された絶対座標系に基づく速度場および圧力場を、病変座標系算出部17で算出された病変座標系へ変換する(ステップS4)。すなわち、脳動脈瘤の場合では、対象とする瘤に対応した脳動脈瘤座標系を設定する。この脳動脈瘤座標系は、後工程において対象の脳動脈瘤の流れ性質を当該瘤の視点から算出するために設定するものである。
(Coordinate system conversion unit)
As shown in FIG. 7, the coordinate
具体的には、座標系変換部18は、座標系変換行列を算出して上記血流計算部15で取得された速度場、圧力場との乗算を行うことで、座標系変換後の速度場、圧力場を出力する。座標系変換行例は、平行移動と回転移動から構成される。この実施形態において、絶対座標系での速度(U,V,W)から病変座標系での速度(U',V',W')への変換は、座標系変換行例Mを用いて下式で表される。尚、U,V,Wは、絶対座標系X,Y,Zのそれぞれの方向の速度成分であり、U',V',W'は病変座標系X',Y',Z'のそれぞれの方向の速度成分である。
Specifically, the coordinate
(病変血流特徴量計算部)
病変血流特徴量計算部19は、座標系変換部18で取得された病変座標系に基づく速度場および圧力場より病変血流特徴量を計算する(ステップS5)。計算対象は血管病変の種別に応じて決められており、あらかじめコンピュータ内部に記憶されている。本実施形態では、脳動脈瘤の場合には以下の特徴量を計算する。
(1)瘤内流入速度
(2)瘤内流入流量
(3)瘤内速度等値面
(4)瘤内流入・流出速度分布
(5)瘤内流線
(6)瘤内壁面せん断応力
(7)瘤内圧力
(8)瘤内エネルギー損失
病変血流特徴量計算部19は、例えば脳動脈瘤座標系すなわち病変座標系に基づく速度場および圧力場により流入速度を計算する場合、脳動脈瘤への流入成分をプラス、流出成分をマイナスに表現する。
(Lesion blood flow feature calculation unit)
The lesion blood flow feature
(1) Inlet flow rate (2) Inlet flow rate (3) Intracranial velocity isosurface (4) Inlet flow / outflow velocity distribution (5) Inlet flow line (6) Inner wall shear stress (7 ) Pressure inside the aneurysm (8) Energy loss within the aneurysm When the inflow velocity is calculated by the velocity field and the pressure field based on the cerebral aneurysm coordinate system, that is, the lesion coordinate system, for example, The inflow component is expressed as plus and the outflow component is expressed as minus.
(表示部)
表示部20は、病変血流特徴量計算部19で取得された特徴量などの必要な情報を表示するための表示画面を生成し、ディスプレイ上に表示されたユーザーインターフェースに表示する(S6)。
(Display section)
The
図8は、ユーザーグラフィカルインターフェース40の一例を示す。図8の左上41には、動脈瘤を含む血管3次元形状に座標変換後の速度分布が重ねられて表示されている。また、図8の左上42には、その動脈瘤のネック面における座標系変換後の速度分布が表示されている。また、図8の下方43、44、45、46にはそれぞれ、圧力分布、壁面せん断応力の向き、壁面せん断応力の大きさ、壁面せん断応力の方向の変動値が表示されている。
FIG. 8 shows an example of the user
このように、ユーザーグラフィカルインターフェース40上には、上記特徴量(1)~(8)およびその他の対象動脈瘤に関する情報のうちの1またはそれ以上の情報を一括表示することができる。これらの表示は、例えば、ユーザーインターフェース40上に表示形式選択ボタンを表示してユーザーが所望の表示形式を選択できるようにしてもよく、当該選択された表示形式に従ってユーザーインターフェース40に諸情報を表示するようにすることができる。
As described above, on the user
ここで、図9を参照して、座標変換前と座標変換後での瘤ネック面における速度分布の違いを説明する。座標変換前(機械絶対座標系)における速度は、大きさのみが評価可能となる。すなわち、速度はベクトル量であるが、動脈瘤における血流の状態を分析するに当たり、上記機械絶対座標系での速度ベクトルの成分分析は有効でない状態にある。図9(a)に、前記機械絶対座標系での速度分布(UMagnitude[m/s])の一例を示す。図9(a)では、P1、P2の領域は共にP3領域に比べて大きい値を示している。 Here, with reference to FIG. 9, the difference in velocity distribution on the ankle neck surface before and after coordinate transformation will be described. Only the magnitude of the speed before coordinate transformation (machine absolute coordinate system) can be evaluated. That is, the velocity is a vector quantity, but the component analysis of the velocity vector in the machine absolute coordinate system is not effective in analyzing the blood flow state in the aneurysm. FIG. 9 (a) shows an example of the velocity distribution (UMMagnitude [m / s]) in the machine absolute coordinate system. In FIG. 9A, both the P1 and P2 regions show larger values than the P3 region.
一方、図9(b)は、座標変換後(脳動脈瘤座標系)での速度分布、具体的にはネック面に直交し流入方向をプラスとする方向Z'の速度成分(UZ'[m/s])を示す。図9(b)において、速度UZ'は、P3'領域ではほぼ0を示しているのに対して、P1'領域ではP3'領域に比べて低い負の値(-0.1を下回る値)すなわち流出を、P2'領域ではP3'領域に比べて高い正の値(+0.05を上回る値)すなわち流入を示している。このように、脳動脈瘤座標系では、各位置における速度ベクトルを成分分析することによって、座標変換前に観察することができなかった脳動脈瘤における流入、流出の場所を確実に容易に特定・視認することができる。 On the other hand, FIG. 9B shows a velocity distribution after coordinate transformation (cerebral aneurysm coordinate system), specifically, a velocity component (UZ ′ [m] in a direction Z ′ orthogonal to the neck surface and having a positive inflow direction. / S]). In FIG. 9B, the speed UZ ′ shows almost 0 in the P3 ′ region, whereas the P1 ′ region has a lower negative value (a value less than −0.1) compared to the P3 ′ region. That is, the outflow shows a higher positive value (value exceeding +0.05), that is, inflow in the P2 ′ region than in the P3 ′ region. In this way, in the cerebral aneurysm coordinate system, by analyzing the velocity vector at each position, it is possible to easily and easily identify the inflow and outflow locations in the cerebral aneurysm that could not be observed before coordinate conversion. It can be visually recognized.
以上によれば、血管病変部に視点を置き病変座標系における病変血流特徴量の算出・可視化を行うことにより、脳動脈瘤における流入、流出の場所の特定をはじめ、瘤内の血流の状態を容易に直感的に理解することができる。これは、動脈瘤破裂と血流の状態との因果関係を解明する上で有効であろう。また、コイル塞栓術等の治療方針の検討、例えばどのような種類のコイルを用いるか、またはどのような姿勢でコイルを配置するかなどの検討においても、有用な手段であろう。 According to the above, by placing the viewpoint on the vascular lesion and calculating and visualizing the lesion blood flow feature in the lesion coordinate system, the location of the inflow and outflow in the cerebral aneurysm can be specified, and the blood flow in the aneurysm can be identified. The state can be easily and intuitively understood. This will be effective in elucidating the causal relationship between aneurysm rupture and the state of blood flow. In addition, it may be a useful means in examining a treatment policy such as coil embolization, for example, what kind of coil is used or in what posture the coil is placed.
尚、上記実施形態においては、病変血流特徴量可視化装置10が血流計算処理15・病変部決定部16を有し、速度場・圧力場の算出および病変部の決定を行う場合を説明したが、本発明はこれに限られるものではない。例えば、他の一実施形態では、別の装置で計算・特定した速度場・圧力場および血管病変部の少なくともいずれか一方を本発明の可視化装置の入力としても良い。例えば、図10に示すように、別の装置で医用画像に基づいて血流解析された速度場・圧力場、および特定された病変部または当該病変部を含む血管形状等を、この装置への入力とすることができる。この場合、例えば入力部14に上記入力データが読み込まれると(ステップS11)、病変座標系算出部17、座標系変換部18、病変血流特徴量計算部19、表示部20は、各処理(ステップS12~S15)を上記病変血流特徴量可視化装置10と同様の様態で行う。また、他の実施例では、別の装置で医用画像に基づいて血流解析された速度場・圧力場と当該血流解析の元となった医用画像または血管形状とを入力とすることができる。この場合、例えば入力部14に上記入力データが読み込まれると(ステップS11)、病変部決定部16、病変座標系算出部17、座標系変換部18、病変血流特徴量計算部19、表示部20は、各処理を上記病変血流特徴量可視化装置10と同様の様態で行う。
In the above embodiment, the case where the lesion blood flow characteristic
また、上記実施形態においては、動脈瘤の場合を説明してきたが、これに限られるものではなく、実質的に同様の作用を奏する限りにおいて、その他の病変部に適用することが可能である。 In the above-described embodiment, the case of an aneurysm has been described. However, the present invention is not limited to this, and the present invention can be applied to other lesions as long as the same effect is obtained.
また、上記実施形態においては、速度場および圧力場の両方を算出し、座標変換し、上記(1)~(8)の特徴量を計算する場合を説明したが、本発明はこれに限られるものではなく、実質的に同様の作用を奏する限りにおいて所望の特徴量を算出することができる。例えば少なくとも速度場および圧力場の何れか一方を算出、座標変換し、上述したような(1)~(8)の病変部血流特徴量のうちの幾つかの所望の病変部血流特徴量を算出することができる。 In the above embodiment, the case has been described in which both the velocity field and the pressure field are calculated, coordinate conversion is performed, and the feature quantities (1) to (8) are calculated. However, the present invention is limited to this. The desired feature amount can be calculated as long as substantially the same operation is achieved. For example, at least one of the velocity field and the pressure field is calculated, coordinate-converted, and some desired lesion blood flow feature quantities among the lesion blood flow feature quantities (1) to (8) as described above Can be calculated.
その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。 In addition, the configuration of each part of the apparatus according to the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.
Claims (21)
コンピュータが、前記医用画像から血管病変部位を決定する病変部決定部と、
コンピュータが、取得された前記血管病変部位の幾何学的情報に基づいて病変座標系を算出する病変座標系算出部と、
コンピュータが、前記算出された圧力場および速度場を前記所定の座標系から前記算出された病変座標系に変換する前記座標系変換部と、
コンピュータが、前記病変座標系に座標系変換された速度場および圧力場に基づいて病変血流特徴量を計算する病変血流特徴量計算部と、
コンピュータが、前記病変血流特徴量を出力する出力部と
を有する血流可視化装置。 An input unit for reading a medical image including a target blood vessel part, and a pressure field and a velocity field at each position of the target blood vessel part calculated from the medical image by a numerical fluid analysis in a predetermined coordinate system;
A computer, a lesion site determination unit that determines a vascular lesion site from the medical image;
A lesion coordinate system calculation unit that calculates a lesion coordinate system based on the acquired geometric information of the vascular lesion site;
The computer converts the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system;
A lesion blood flow feature amount calculation unit that calculates a lesion blood flow feature amount based on a velocity field and a pressure field that are coordinate system transformed into the lesion coordinate system;
A blood flow visualization apparatus, comprising: an output unit that outputs the lesion blood flow characteristic amount.
前記病変部決定部は、前記医用画像から構築された3次元血管形状から前記血管病変部位を決定することを特徴とする、装置。 The blood flow visualization device according to claim 1,
The lesion part determining unit determines the vascular lesion part from a three-dimensional blood vessel shape constructed from the medical image.
コンピュータが、前記医用画像から血管病変部位を決定する病変部決定工程と、
コンピュータが、取得された前記血管病変部位の幾何学的情報に基づいて病変座標系を算出する病変座標系算出工程と、
コンピュータが、前記算出された圧力場および速度場を前記所定の座標系から前記算出された病変座標系に変換する前記座標系変換工程と、
コンピュータが、前記病変座標系に座標系変換された速度場および圧力場に基づいて病変血流特徴量を計算する病変血流特徴量計算工程と、
コンピュータが、前記病変血流特徴量を出力する出力工程と
を有する血流可視化方法。 An input process in which a computer reads a medical image including a target blood vessel part, and a pressure field and a velocity field at each position of the target blood vessel part calculated from the medical image by a numerical fluid analysis in a predetermined coordinate system;
A lesion determination step in which a computer determines a vascular lesion site from the medical image;
A lesion coordinate system calculating step in which a computer calculates a lesion coordinate system based on the acquired geometric information of the vascular lesion site;
The coordinate system converting step in which the computer converts the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system;
A lesion blood flow feature amount calculating step in which a computer calculates a lesion blood flow feature amount based on a velocity field and a pressure field coordinate system transformed into the lesion coordinate system;
A blood flow visualization method, comprising: an output step in which a computer outputs the lesion blood flow characteristic amount.
前記病変部決定工程は、前記医用画像から構築された3次元血管形状から前記血管病変部位を決定することを特徴とする、方法。 The blood flow visualization method according to claim 8,
The method according to claim 1, wherein the lesion site determination step determines the vascular lesion site from a three-dimensional blood vessel shape constructed from the medical image.
コンピュータが、対象血管部位を含む医用画像と、当該医用画像から数値流体解析により所定の座標系で算出された前記対象血管部位の各位置における圧力場および速度場とを読み込む入力工程と、
コンピュータが、前記医用画像から血管病変部位を決定する病変部決定工程と、
コンピュータが、取得された前記血管病変部位の幾何学的情報に基づいて病変座標系を算出する病変座標系算出工程と、
コンピュータが、前記算出された圧力場および速度場を前記所定の座標系から前記算出された病変座標系に変換する前記座標系変換工程と、
コンピュータが、前記病変座標系に座標系変換された速度場および圧力場に基づいて病変血流特徴量を計算する病変血流特徴量計算工程と、
コンピュータが、前記病変血流特徴量を出力する出力工程と
を実行させる命令を含むことを特徴とするコンピュータソフトウェアプログラム。 A computer software program for visualizing blood flow comprising the following steps:
An input process in which a computer reads a medical image including a target blood vessel part, and a pressure field and a velocity field at each position of the target blood vessel part calculated from the medical image by a numerical fluid analysis in a predetermined coordinate system;
A lesion determination step in which a computer determines a vascular lesion site from the medical image;
A lesion coordinate system calculating step in which a computer calculates a lesion coordinate system based on the acquired geometric information of the vascular lesion site;
The coordinate system converting step in which the computer converts the calculated pressure field and velocity field from the predetermined coordinate system to the calculated lesion coordinate system;
A lesion blood flow feature amount calculating step in which a computer calculates a lesion blood flow feature amount based on a velocity field and a pressure field coordinate system transformed into the lesion coordinate system;
A computer software program comprising: an instruction for causing a computer to execute the output step of outputting the lesion blood flow characteristic amount.
前記病変部決定工程は、前記医用画像から構築された3次元血管形状から前記血管病変部位を決定することを特徴とする、コンピュータソフトウェアプログラム。 The computer software program according to claim 15, wherein
A computer software program characterized in that the lesion site determination step determines the vascular lesion site from a three-dimensional blood vessel shape constructed from the medical image.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017540052A JP6791507B2 (en) | 2015-09-18 | 2016-09-20 | Lesion blood flow feature visualization device, its method, and its computer software program |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562220602P | 2015-09-18 | 2015-09-18 | |
| US62/220,602 | 2015-09-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017047820A1 true WO2017047820A1 (en) | 2017-03-23 |
Family
ID=58289376
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2016/077755 Ceased WO2017047820A1 (en) | 2015-09-18 | 2016-09-20 | Lesion blood flow feature value visualization device, method, and computer software program |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6791507B2 (en) |
| WO (1) | WO2017047820A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200069305A (en) * | 2017-10-06 | 2020-06-16 | 에모리 유니버시티 | Methods and systems for determining hemodynamic information for one or more arterial segments |
| WO2022176874A1 (en) | 2021-02-22 | 2022-08-25 | 富士フイルム株式会社 | Medical image processing device, medical image processing method, and program |
| CN120392039A (en) * | 2025-07-03 | 2025-08-01 | 北京紫云智能科技有限公司 | Traumatic bleeding detection method and system based on infrared thermal imaging and ultrasound multimodality |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010207531A (en) * | 2009-03-12 | 2010-09-24 | Toshiba Corp | Mri apparatus and data processor |
| WO2013031741A1 (en) * | 2011-08-26 | 2013-03-07 | イービーエム株式会社 | System for diagnosing bloodflow characteristics, method thereof, and computer software program |
| JP2015097759A (en) * | 2013-11-20 | 2015-05-28 | 株式会社東芝 | Blood vessel analysis device and blood vessel analysis method |
-
2016
- 2016-09-20 JP JP2017540052A patent/JP6791507B2/en active Active
- 2016-09-20 WO PCT/JP2016/077755 patent/WO2017047820A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010207531A (en) * | 2009-03-12 | 2010-09-24 | Toshiba Corp | Mri apparatus and data processor |
| WO2013031741A1 (en) * | 2011-08-26 | 2013-03-07 | イービーエム株式会社 | System for diagnosing bloodflow characteristics, method thereof, and computer software program |
| JP2015097759A (en) * | 2013-11-20 | 2015-05-28 | 株式会社東芝 | Blood vessel analysis device and blood vessel analysis method |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200069305A (en) * | 2017-10-06 | 2020-06-16 | 에모리 유니버시티 | Methods and systems for determining hemodynamic information for one or more arterial segments |
| JP2020536620A (en) * | 2017-10-06 | 2020-12-17 | エモリー ユニバーシティー | Methods and systems for determining hemodynamic information of one or more arterial segments |
| JP2023113673A (en) * | 2017-10-06 | 2023-08-16 | エモリー ユニバーシティー | Methods and systems for determining hemodynamic information for one or more arterial segments |
| US11813104B2 (en) | 2017-10-06 | 2023-11-14 | Emory University | Methods and systems for determining hemodynamic information for one or more arterial segments |
| JP7570136B2 (en) | 2017-10-06 | 2024-10-21 | エモリー ユニバーシティー | Method and system for determining hemodynamic information of one or more arterial segments - Patents.com |
| KR102744520B1 (en) | 2017-10-06 | 2024-12-20 | 에모리 유니버시티 | Method and system for determining hemodynamic information for one or more arterial segments |
| WO2022176874A1 (en) | 2021-02-22 | 2022-08-25 | 富士フイルム株式会社 | Medical image processing device, medical image processing method, and program |
| CN120392039A (en) * | 2025-07-03 | 2025-08-01 | 北京紫云智能科技有限公司 | Traumatic bleeding detection method and system based on infrared thermal imaging and ultrasound multimodality |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6791507B2 (en) | 2020-11-25 |
| JPWO2017047820A1 (en) | 2018-07-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6524290B2 (en) | Method and system for providing patient-specific information from blood flow models | |
| JP6162452B2 (en) | Blood flow analysis device and blood flow analysis program | |
| CN103930036B (en) | For the system of blood flow character diagnosis | |
| CN107427268B (en) | Methods and systems for pure geometric machine learning based fractional flow reserve | |
| US9830427B2 (en) | Method for intracranial aneurysm analysis and endovascular intervention planning | |
| JP2008126070A5 (en) | ||
| EP3416581A1 (en) | Systems and methods for routing a vessel line such as a catheter within a vessel | |
| US11727570B2 (en) | Methods and systems for determining coronary hemodynamic characteristic(s) that is predictive of myocardial infarction | |
| Sen et al. | Image segmentation methods for intracranial aneurysm haemodynamic research | |
| JP6873981B2 (en) | Mobile FFR simulation | |
| JP6751184B2 (en) | Medical image processing apparatus, medical image processing system, and medical image processing method | |
| JP6791507B2 (en) | Lesion blood flow feature visualization device, its method, and its computer software program | |
| US10390782B2 (en) | Device and method for ascertaining at least one individual fluid-dynamic characteristic parameter of a stenosis in a vascular segment having serial stenoses | |
| JP2015171486A (en) | Blood flow analysis system and blood flow analysis program | |
| Algabri et al. | Visualization of blood flow in aaa patient-specific geometry: 3-d reconstruction and simulation procedures | |
| JP6561347B2 (en) | Blood flow analysis device for blood flow simulation, method and computer software program | |
| JP2015036084A (en) | Image processing system | |
| JPWO2017047822A1 (en) | Apparatus and method for predicting vascular lesion onset / growth | |
| Geers et al. | Reproducibility of image-based computational hemodynamics in intracranial aneurysms: comparison of CTA and 3DRA | |
| JP5047686B2 (en) | Blood vessel image display method and apparatus | |
| JP6865468B2 (en) | Endovascular treatment simulation device and method | |
| JP6103829B2 (en) | Image diagnosis support apparatus, image diagnosis support method, image diagnosis support system, and program | |
| Ilea et al. | A Gui for Computing Aneurysm Geometry, a Possible Tool to Predict the Risk of Rupture of Blood Vessels. | |
| JP2024158140A (en) | Computer simulation system for analyzing blood flow conditions | |
| Subramanian et al. | A prototype virtual reality system for preoperative planning of neuro-endovascular interventions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846691 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017540052 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16846691 Country of ref document: EP Kind code of ref document: A1 |