+

WO2016129499A1 - Dispositif de mesure de la réfraction oculaire - Google Patents

Dispositif de mesure de la réfraction oculaire Download PDF

Info

Publication number
WO2016129499A1
WO2016129499A1 PCT/JP2016/053387 JP2016053387W WO2016129499A1 WO 2016129499 A1 WO2016129499 A1 WO 2016129499A1 JP 2016053387 W JP2016053387 W JP 2016053387W WO 2016129499 A1 WO2016129499 A1 WO 2016129499A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
optical system
measurement
examined
refractive power
Prior art date
Application number
PCT/JP2016/053387
Other languages
English (en)
Japanese (ja)
Inventor
尋久 寺部
良二 柴田
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2016574767A priority Critical patent/JP6680216B2/ja
Publication of WO2016129499A1 publication Critical patent/WO2016129499A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes

Definitions

  • the objective lens 14 and the beam splitter 29 are shared with the fixation target presenting optical system 30, and the half mirror 35, the imaging lens 51, and a two-dimensional imaging element (hereinafter, referred to as an optical imaging system).
  • Imaging device 52 has an imaging surface arranged at a position substantially conjugate with the anterior eye portion of the eye E to be examined. By this two-dimensional imaging element 52, an anterior segment image of the eye E is captured. An output from the two-dimensional imaging device 52 is input to the control unit 100, and as a result, an anterior eye part image of the eye E to be imaged by the two-dimensional imaging device 52 is displayed on the monitor 70.
  • the control unit 100 executes detection processing of reflected light from the eye to be examined based on the imaging signal from the imaging element 52.
  • the reflected light from the eye to be examined may be, for example, reflected light from an alignment index projected onto the eye to be examined (for example, ring index R), or before the anterior segment image is formed by anterior segment illumination. It may be eye part reflected light (anterior eye part image Ea).
  • control unit 100 performs a process of detecting reflected light (for example, a corneal reflection bright spot) by an alignment index projected onto the eye to be examined, and determines whether or not the reflected light is detected. Also good.
  • control unit 100 performs a process of extracting a characteristic part (for example, pupil, iris, etc.) of the eye to be examined illuminated by the anterior segment illumination by image processing, and determines whether or not the characteristic part is detected. May be.
  • the control unit 100 may start detecting the position of the eye to be detected in the process of detecting the reflected light from the eye to be examined (details will be described later).
  • the control unit 100 uses this as a trigger to activate automatic alignment for the eye to be examined and to temporarily measure the eye refractive power by the measurement optical system. And fixation position control is started.
  • the automatic alignment and the temporary measurement may be started at the same time, or one of them may be started first.
  • the control unit 100 controls the driving unit 6 based on the detection result of the alignment state, and moves the measuring unit 3 toward the eye to be examined. More specifically, the control unit 100 detects a positional deviation amount with respect to the eye to be examined based on an imaging signal from the imaging element 52, and controls the driving unit 6 so that the detected positional deviation amount satisfies an allowable range. . In this case, the control unit 100 does not necessarily need to detect the amount of misalignment, and may detect the direction of misalignment and move the measurement unit 3 in the direction in which the misalignment is corrected.
  • the control unit 100 moves the fixation target presentation position according to the eye refraction value of the eye to be examined so that the fixation target is in a position conjugate with the fundus of the eye to be examined. Let This makes it possible to stabilize the fixation state even if the subject has high myopia or hyperopia. For example, the time until completion of automatic alignment can be shortened, and the main measurement of eye refractive power can be performed smoothly.
  • the control unit 100 determines whether or not the alignment state of the measurement unit 3 with respect to the eye to be examined is appropriate depending on whether or not the alignment states in the XYZ directions are within a predetermined allowable range. For example, a trigger signal (measurement start signal) is automatically issued to perform the main measurement of the eye refractive power measurement, and the measurement result of the main measurement is output to the display unit. In this case, the control unit may output the obtained measurement result to an external device (for example, a subjective optometer). Note that a subjective optometer may be a subjective refractor.
  • the measurement optical system of the present embodiment may be provided with a subjective measurement function, and the obtained measurement result may be used as an initial value when performing the subjective measurement.
  • the control unit 100 may display the measurement result with both eyes on the display unit 70.
  • the control unit 100 may output the obtained measurement result of both eyes to an external device (for example, a subjective optometer).
  • a subjective optometer may be a subjective refractor.
  • the measurement optical system of the present embodiment may be provided with a subjective measurement function, and the obtained measurement result may be used as an initial value when performing the subjective measurement.
  • a fixation target is presented in advance to the eye to be examined before the reflection from the eye to be detected is detected.
  • the fixation direction of the subject when looking through the examination window is guided, so that the measurement optical system is smoothly guided into the movable range.
  • a trigger for presenting the fixation target for example, the start or completion of the setting operation can be considered.
  • FIG. 4 is an explanatory diagram showing an example when the interpupillary distance is measured by the apparatus according to the present embodiment.
  • the interpupillary distance can be measured when the eye refractive power of one eye is measured.
  • the control unit 100 may measure the interpupillary distance of the eye to be examined based on the detection result from the position detection sensor 400 and the imaging result from the imaging element 202. Note that the obtained measurement result may be output to the display unit 70 or an external device, similarly to the measurement result of the eye refractive power.
  • the control unit detects the position of the measuring eye based on the detection result from the position detection sensor 400, and detects the position of the other eye based on the imaging result from the image sensor 202.
  • the control unit acquires the position of the measurement unit 3 in a state where the alignment with respect to the eye to be examined is completed by the automatic alignment control.
  • the control unit 100 images the other eye in a state where the alignment with respect to the eye to be examined is completed by the automatic alignment control.
  • the control unit 100 detects the position of the other eye based on the captured image.
  • a method for detecting the position of the other eye a method similar to the method for detecting the relative position of the measurement optical system with respect to the measurement eye can be used.
  • the distance B of the other eye when the other eye is detected at a position closer to the measurement eye than the optical axis of the imaging optical system 200, the distance B is subtracted from the distance A. On the other hand, when another eye is detected at a position farther from the measuring eye than the optical axis of the imaging optical system 200, the distance B is added to the distance A.
  • the interpupillary distance can be measured without using a binocular camera by using the detection result from the position detection sensor and the imaging result from the imaging device that images the other eye.
  • the position of the optical axis of the imaging optical system 200 is used as a reference.
  • the present invention is not limited to this.
  • any reference position may be set in the left-right direction of the subject. That is, if the relative positional relationship between the measurement unit 3 and the imaging optical system 200 is obtained in advance, both detection results can be associated to measure the interpupillary distance.
  • the other eye When obtaining the detection result from the position detection sensor and the imaging result from the image sensor, the other eye may be imaged simultaneously with obtaining the detection result from the position detection sensor with the completion of alignment as a trigger. Deviations in measurement results due to movement of the subject can be prevented.
  • the reflected light from the eye to be examined is detected using the reflected light from the anterior eye part of the eye to be examined looking through the examination window, but the present invention is not limited to this.
  • the reflected light from the eye to be examined may be detected using the reflected light from the fundus of the eye to be examined looking through the examination window.
  • the control unit projects the measurement light beam from the measurement optical system in advance, operates the automatic alignment for the eye to be inspected by using the measurement light beam from the fundus as received by the image sensor 22, and also measures the measurement optical system. Temporary measurement of eye refractive power and fixation position control may be started.
  • the fixation target presenting optical system 30 may include a plurality of fixation targets having different light flux diameters.
  • Fixation target presentation optical system 30 for example, a first projection optical system for projecting a first fixation target formed by a light beam diameter limited from the optical axis direction of the measurement optical system 10 onto the eye to be examined, and a first projection A second projection optical system that projects a second fixation target formed with a larger beam diameter than the optical system onto the eye to be examined.
  • an aperture for limiting the fixation light flux is arranged in the optical path.
  • a laser light source may also be used.
  • the control unit 100 may control the fixation target presenting optical system 30 to switch from the first fixation target to the second fixation target. For example, the control unit 100 switches the fixation target using the detection of eye reflection or an alignment completion signal as a trigger. Thereby, the fixation operation of the eye to be examined can be performed smoothly.
  • an optical system for objectively measuring the eye refractive power of the eye to be examined is used as the measuring optical system 10, but the present invention is not limited to this, and an optical system for examining the eye to be examined is used. If so, the application of this embodiment is possible.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

La présente invention concerne un dispositif de mesure de la réfraction oculaire qui mesure la réfraction oculaire d'un oeil examiné et qui comprend les éléments suivants : une fenêtre d'examen dans laquelle regarde un sujet testé ; un système optique de mesure pour mesurer objectivement la réfraction oculaire de l'oeil examiné à travers la fenêtre d'examen ; un système optique de présentation de cible de fixation pour présenter une cible de fixation à l'oeil examiné à travers la fenêtre d'examen ; un moyen de changement de la position de présentation pour changer, dans la direction de l'axe optique, la position de présentation de la cible de fixation présentée à l'oeil examiné ; un moyen de détection de position relative pour détecter la position relative du système optique de mesure par rapport à l'oeil examiné ; et un moyen de commande pour amener le système optique de mesure à se déplacer par rapport à l'oeil examiné en fonction des résultats de détection provenant du moyen de détection de la position relative, et provoquant ainsi l'auto-alignement à activer. Le dispositif de mesure de la réfraction oculaire est pourvu d'un moyen de détection oculaire pour détecter une réflexion de l'oeil examiné, et un moyen de commande pour déclencher l'activation de l'auto-alignement, par le moyen de commande, avec le signal de détection provenant du moyen de détection oculaire servant de déclencheur associé.
PCT/JP2016/053387 2015-02-09 2016-02-04 Dispositif de mesure de la réfraction oculaire WO2016129499A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574767A JP6680216B2 (ja) 2015-02-09 2016-02-04 眼屈折力測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-023733 2015-02-09
JP2015023733 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129499A1 true WO2016129499A1 (fr) 2016-08-18

Family

ID=56614351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053387 WO2016129499A1 (fr) 2015-02-09 2016-02-04 Dispositif de mesure de la réfraction oculaire

Country Status (2)

Country Link
JP (1) JP6680216B2 (fr)
WO (1) WO2016129499A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107788946A (zh) * 2016-09-05 2018-03-13 尼德克株式会社 主观式验光装置及主观式验光程序

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116090A (ja) * 2004-10-21 2006-05-11 Nidek Co Ltd 眼底カメラ
JP2006280612A (ja) * 2005-03-31 2006-10-19 Nidek Co Ltd 眼科装置
JP2013031767A (ja) * 2012-11-19 2013-02-14 Nidek Co Ltd 非接触式超音波眼圧計
JP2014150857A (ja) * 2013-02-06 2014-08-25 Nidek Co Ltd 眼科装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116090A (ja) * 2004-10-21 2006-05-11 Nidek Co Ltd 眼底カメラ
JP2006280612A (ja) * 2005-03-31 2006-10-19 Nidek Co Ltd 眼科装置
JP2013031767A (ja) * 2012-11-19 2013-02-14 Nidek Co Ltd 非接触式超音波眼圧計
JP2014150857A (ja) * 2013-02-06 2014-08-25 Nidek Co Ltd 眼科装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107788946A (zh) * 2016-09-05 2018-03-13 尼德克株式会社 主观式验光装置及主观式验光程序

Also Published As

Publication number Publication date
JP6680216B2 (ja) 2020-04-15
JPWO2016129499A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
CN106963335B (zh) 主观式检眼装置
JP6613103B2 (ja) 眼科装置
JP6641730B2 (ja) 眼科装置、および眼科装置用プログラム
JP5101370B2 (ja) 眼底撮影装置
JP2018110726A (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP2017184874A (ja) 眼科撮影装置
JP2020081469A (ja) 眼科装置
JP2018047049A (ja) 自覚式検眼装置、及び自覚式検眼プログラム
JP6853496B2 (ja) 検眼装置及び検眼プログラム
JP4987408B2 (ja) 眼科装置
JP6604020B2 (ja) 眼底撮像装置及び眼底撮像プログラム
CN107788946B (zh) 主观式验光装置及主观式验光程序
JP7459491B2 (ja) 眼科測定装置
JP6736356B2 (ja) 眼科装置
JP2019063265A (ja) 自覚式検眼装置
JP7266375B2 (ja) 眼科装置及びその作動方法
JP2018171139A (ja) 自覚式検眼装置
JP6421919B2 (ja) 眼科撮影装置
JP7143577B2 (ja) 眼科装置
JP6060525B2 (ja) 眼底検査装置
JP4739795B2 (ja) 眼屈折力測定装置
JP2016049368A (ja) 眼科撮影装置
JP6634765B2 (ja) 眼科装置、および眼科装置制御プログラム
JP2018171140A (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP2018038788A (ja) 自覚式検眼装置及び自覚式検眼プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749143

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载