+

WO2016129075A1 - Control system and relay device - Google Patents

Control system and relay device Download PDF

Info

Publication number
WO2016129075A1
WO2016129075A1 PCT/JP2015/053787 JP2015053787W WO2016129075A1 WO 2016129075 A1 WO2016129075 A1 WO 2016129075A1 JP 2015053787 W JP2015053787 W JP 2015053787W WO 2016129075 A1 WO2016129075 A1 WO 2016129075A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring data
control
communication
relay
network
Prior art date
Application number
PCT/JP2015/053787
Other languages
French (fr)
Japanese (ja)
Inventor
史彦 藤田
浩一 坂上
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to PCT/JP2015/053787 priority Critical patent/WO2016129075A1/en
Priority to KR1020167002173A priority patent/KR101815202B1/en
Priority to CN201580001548.0A priority patent/CN105519050B/en
Priority to TW104140781A priority patent/TWI674488B/en
Publication of WO2016129075A1 publication Critical patent/WO2016129075A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0695Management of faults, events, alarms or notifications the faulty arrangement being the maintenance, administration or management system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a control system including an active system and a standby system control apparatus and its relay apparatus.
  • the control system includes a control device that collects monitoring data from sensors installed in an industrial facility and performs drive control of an electric motor or the like according to the collection result.
  • a control device a DCS (Distributed Control System) or a programmable logic controller is used.
  • a device to be controlled by a control device such as an electric motor is referred to as a “control target device”, and a device to be monitored by a control device such as the sensor and a control target device are referred to as an “IO slave device”. Call it.
  • the IO slave device is connected to a network called an IO network or a serial bus.
  • the control device is connected to the IO network via a network device such as a relay device.
  • a network device such as a relay device.
  • An example of this relay device is a gateway device.
  • the programmable logic controller is referred to as “PLC”.
  • PLC programmable logic controller
  • FA Vectory Automation
  • DCS DCS
  • Redundant control device means that two control devices are provided and one of them is operated as an active system and the other as a standby system. Each of these two control devices collects monitoring data and performs a predetermined calculation for device control using the collected monitoring data or using the collected monitoring data and past calculation results. The active control device performs control based on the calculation result, and the standby control device prepares for the stop of the active control device. Then, the standby control device operates as an active system when the active system stops or stops, and continues device control.
  • the standby control device provides for both of these two types of stops.
  • Duplexing of data transmission paths means that, for example, a data transmission path from an IO slave device to one of the duplexed control devices and a data transmission path to the other are provided separately.
  • a control system in which both the control device and the data transmission path are duplicated is referred to as a “redundant control system”.
  • FIG. 18 is a diagram illustrating a configuration example of a redundant control system.
  • the system shown in FIG. 18 collects monitoring data output from IO slave devices S1 to Sn such as various sensors installed in an industrial facility, and based on the monitoring data or the monitoring data and past calculation results.
  • n is a natural number of 2 or more.
  • This control system has two control devices, a control device 10A and a control device 10B, and two network devices, a network device 20A and a network device 20B.
  • FIG. 18 collects monitoring data output from IO slave devices S1 to Sn such as various sensors installed in an industrial facility, and based on the monitoring data or the monitoring data and past calculation results.
  • n is a natural number of 2 or more
  • one of the control device 10 ⁇ / b> A and the control device 10 ⁇ / b> B is an active system, and the other is a standby system to prepare for the stop of the active system.
  • a monitoring system 50 for monitoring the operating state of the control device 10A and the control device 10B is connected to the control device 10A and the control device 10B.
  • the control device 10A is connected to the IO network 30A via the network device 20A
  • the control device 10B is connected to the IO network 30B via the network device 20B.
  • Each of the IO slave devices S1 to Sn is connected to both the IO network 30A and the IO network 30B.
  • each of the control device 10A and the control device 10B is connected by an equalization cable 40 so that the other state can be monitored.
  • the standby control device prepares for an unexpected stop caused by a failure or a planned stop such as a maintenance for the active control device. Let's take an example.
  • Each of the control device 10A and the control device 10B transmits the status data indicating the presence or absence of the failure, that is, the status of the own device, to the other via the equalization cable 40.
  • the control device 10B which is a standby system refers to the state data transmitted from the control device 10A via the equalization cable 40 and a failure occurs in the control device 10A. To monitor.
  • control device 10B When the control device 10B detects a failure of the control device 10A from the state data received via the equalization cable 40, the control device 10B starts operation as an active system thereafter. On the other hand, the control device 10A detects that the control device 10B has started operation as an active system by communication via the equalization cable 40, and thereafter operates as a standby system.
  • processing such as equalization of monitoring data transmitted from each of the IO slave devices S1 to Sn to each control device and equalization of calculation results is performed. Is generally executed by each control device.
  • Equalization of monitoring data means that monitoring data received by the active control device via the network device is transmitted to the standby control device via the equalization cable 40, and the standby control device is used as the monitoring data. Says to overwrite the monitoring data received via the network.
  • the equalization of the calculation result means that data indicating the calculation result in the active system is transmitted to the standby control device via the equalization cable 40, and the calculation result in the standby system is overwritten with the data.
  • Patent Document 1 and Patent Document 2 there are techniques disclosed in Patent Document 1 and Patent Document 2.
  • the present invention has been made in view of the problems described above, and in a redundant control system, even if the amount of monitoring data transferred to each control device via a network increases, It is an object of the present invention to provide a technique that makes it possible to equalize monitoring data without causing any trouble in the execution of computations and without causing a decrease in switching speed between the active system and the standby system.
  • the present invention provides a control system that collects monitoring data from one or a plurality of devices connected to the first and second networks, and performs control based on the monitoring data.
  • a control system having first and second control devices and first and second relay devices.
  • the first control device and the second control device are connected via communication means between control devices.
  • the communication device between control devices is, for example, an equalization cable, and mediates communication between the first control device and the second control device.
  • One of the first and second control devices is an active system and performs the control, and the other is a standby system.
  • Specific examples of the first and second relay devices include the network devices described above.
  • the first relay device is connected to the first control device and the first network
  • the second relay device is connected to the second control device and the second network.
  • the first and second relay devices are connected to the inter-relay device communication means.
  • the inter-relay device communication means is, for example, an equalization cable, and mediates communication between the first relay device and the second relay device.
  • the first and second relay devices include a determination unit that determines whether communication is possible via the inter-relay device communication unit.
  • Each of the first and second relay apparatuses transfers the monitoring data received from one or more devices to the connection destination control apparatus, and when the determination means determines that communication is possible, the inter-relay apparatus communication means
  • the monitoring data is equalized by communication via.
  • the first and second relay devices perform monitoring data equalization by communication via the inter-control device communication unit.
  • equalization of monitoring data transmitted from each device to the first and second control devices is performed by the first and second relay devices. Therefore, even if the amount of monitoring data increases, the processing load of each of the first and second control devices does not become excessive due to the equalization of the monitoring data, and the first and second control devices There is no problem in the execution of the above calculation in each of the above.
  • Each of the first and second control devices is given data that has been equalized by the first and second relay devices. For this reason, when one of the first and second control devices functions as an active system and the other functions as a standby system, the monitoring data is switched when the active system / standby system is switched due to the stop of the active system. There is no need to wait for the equalization to be completed, and switching between the active system and the standby system can be performed quickly.
  • the communication means that mediates data communication for equalization of the monitoring data is duplicated by the communication means between the control devices and the communication means between the relay devices. If communication via the network is possible, the monitoring data can be equalized without any problem.
  • the first and second control devices are allowed to determine whether or not communication via the inter-control device communication means is possible, and if possible, state data indicating the presence or absence of a failure in the own device is transmitted to the control device.
  • the relay device pair included in the control system of the present invention that is, the relay device pair consisting of the first and second relay devices communicating via the inter-relay device communication means is not limited to one, There may be more than one.
  • a plurality of first relay devices connected to a plurality of first networks to which different devices are respectively connected and connected to a first control device, respectively, and a plurality of first relay devices
  • a plurality of second relay devices paired with each of the relay devices, each of which is connected to a plurality of second networks to which the respective devices are connected, and is connected to a second control device. It is possible to consider a mode in which a plurality of first relay devices and a plurality of second relay devices communicate with each other via inter-relay device communication means.
  • Monitoring data is transmitted from one of the first relay device and the second relay device to the other, and the other relay device receives the monitoring data received via the network via the inter-relay device communication means.
  • a mode in which a process of overwriting with monitoring data that is, a process of replacing the former monitoring data with the latter monitoring data is considered.
  • the monitoring data is transmitted from the relay device connected to the active control device to the other relay device, and the monitoring data received via the network is transmitted to the other relay device. It is overwritten with the monitoring data received via the inter-controller communication means.
  • the first processing means transfers the monitoring data received from the connection destination network to the other relay device. More specifically, the first processing means transfers the monitoring data to the other relay apparatus via the inter-relay apparatus communication means when the determination means determines that communication is possible, and determines that communication is impossible. In the case of monitoring, the monitoring data is transmitted to the other relay device via the communication device between control devices.
  • the second processing means checks whether or not communication with the monitoring data transmission source device received from the other relay device is possible, and if the communication is impossible, the second processing means should receive from the device concerned.
  • the existing monitoring data is supplemented with the monitoring data received from the other relay device.
  • a third network is connected to one of the first and second relay devices.
  • the relay device connected to the third network collects the monitoring data from the devices connected to the third network, transfers the collected monitoring data to the connection destination control device, and the other relay. Transfer to the device to perform equalization.
  • the first and second relay devices include load measuring means for measuring a processing load applied to a connection destination control device, and the first and second relay devices are When the processing load measured by the load measuring means is equal to or greater than a predetermined threshold value and the determination means determines that communication is possible, the monitoring data is equalized by communication via the inter-relay device communication means. In other cases, the monitoring data is equalized by communication through the communication means between the control devices. According to such an aspect, it is possible to duplicate data communication for equalizing monitoring data while distributing the processing load applied to each of the first and second control devices.
  • the present invention is connected to one of the first and second control devices, one of which is an active system and the other is a standby system, and transmits monitoring data.
  • the following communication interface unit and control unit are connected to a relay device that is connected to a first network to which one or more devices are connected, and that transfers monitoring data transmitted from the one or more devices to a connected control device. Is provided.
  • the communication interface unit is connected to another relay device via the communication device between relay devices.
  • the other relay device is connected to a second network to which one or more devices are connected and the other of the first and second control devices.
  • the control unit is, for example, a CPU (Central Processing Unit). This control unit executes the following relay processing, determination processing, and equalization processing.
  • the relay process is a process for transferring monitoring data received from one or more devices via the first network to a connection destination control device.
  • the determination process is a process for determining whether communication is possible via the inter-relay device communication means.
  • communication for equalizing the monitoring data is performed via the inter-relay device communication unit, while it is determined that communication is impossible. In this case, the communication is performed through the inter-control device communication means.
  • a program for causing a general computer such as a CPU to function as the relay device is conceivable. This is because by operating a general computer according to such a program, the computer can function as the relay device of the present invention.
  • a mode of distribution by downloading via an electric communication line such as the Internet, a computer-readable recording medium such as a CD-ROM (Compact Disk-Read Memory) or a flash ROM It is possible to write in and distribute in
  • the present invention in the redundant control system, even if the amount of monitoring data transferred to each control device via the network increases, there is no problem in the execution of the original operation of the control device. It is possible to equalize the monitoring data without reducing the switching speed of the active system / standby system.
  • FIG. 10 is a diagram for explaining an operation executed by the control unit 210 of the network device 200 according to a relay control program 2542. It is a figure for demonstrating the effect of 1st Embodiment. It is a figure for demonstrating the modification of 1st Embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration and an operation example of a communication system including the network device 200 ′. It is a figure for demonstrating 3rd Embodiment of this invention. It is a figure for demonstrating 4th Embodiment of this invention. It is a figure which shows the structural example of network device 200 '' 'of the 4th embodiment. It is a figure for demonstrating the operation
  • FIG. 1 is a diagram showing a configuration example of a communication system 1A according to the first embodiment of the present invention.
  • This communication system 1A is a control system laid in an industrial facility, like the system shown in FIG. In FIG. 1, the same components as those in FIG. 18 are denoted by the same reference numerals.
  • the communication system 1A is different from the conventional redundant control system shown in FIG. 18 in the following three points. First, it has a control device 100A and a control device 100B instead of the control device 10A and the control device 10B. Second, the network device 200A and the network device 200B are provided instead of the network device 20A and the network device 20B. Third, the network device 200A and the network device 200B are connected by an equalization cable 400.
  • Each of the network device 200A and the network device 200B is an embodiment of the relay device of the present invention, and the equalization cable 400 serves as a communication device between relay devices that mediates communication between the relay devices.
  • the network device 200A and the network device 200B are gateway devices like the network device 20A and the network device 20B in FIG.
  • monitoring data transmitted from each of the IO slave devices S1, S2,... Sn is transmitted to the control device 100A via the IO network 30A and the network device 200A, and the IO network. It is transmitted to the control device 100B via 30B and the network device 200B.
  • Each of the control device 100A and the control device 100B is similar to the control device 10A and the control device 10B in FIG. 18, and uses the monitoring data collected from the IO slave devices S1, S2,. In other words, calculations for device control and storage of the calculation results are performed.
  • the control device 100A and the control device 100B may be PLCs or DCSs.
  • one of the control device 100A and the control device 100B becomes an active system to execute control of other devices based on the calculation result, and the other becomes a standby system. Prepare for the suspension.
  • the active system there are two types of stoppages of the active system: an unexpected stop due to the occurrence of some failure or malfunction and a planned stoppage due to maintenance or the like.
  • the control device that has been in the standby system thereafter operates as the active system. Note that switching between the active system and the standby system may be realized by the same method as in the conventional redundant control system.
  • the control device 10A and the control device 10B are made to equalize the monitoring data and the calculation result.
  • the control device 100A and the control device 100B execute equalization of the calculation result is the same as the conventional redundant control system shown in FIG. More specifically, the active one of the control device 100A and the control device 100B performs calculation for device control using the monitoring data received from the network device of the connection destination, and the calculation result is obtained. The indicated data is transferred to the other control device via the equalization cable 40 to equalize the calculation result.
  • the standby control device overwrites the data of the operation result in the own device with the data received via the equalization cable 40.
  • the difference between the communication system 1A of the present embodiment and the conventional redundant control system shown in FIG. 18 is that the network device 200A and the network device 200B perform equalization of the monitoring data.
  • the network device 200 ⁇ / b> A and the network device 200 ⁇ / b> B that clearly show the features of the present embodiment will be mainly described. Since the network device 200A and the network device 200B have the same configuration, the following description will be referred to as “network device 200” when it is not necessary to distinguish between them.
  • the network device 200 is also distinguished from an active system and a standby system. More specifically, the network device 200 communicates with its own connection destination control device, and determines whether or not the connection destination control device is an active system. The network device 200 behaves as an active network device if the connection destination control device is an active system, and conversely behaves as a standby network device if the connection destination control device is a standby system. That is, in the present embodiment, of the network device 200A and the network device 200B, the one connected to the active control device is the active system, and the one connected to the standby control device is the standby system.
  • the network system 200 is also switched between the active system and the standby system depending on the switching.
  • the switching to the active / standby system for the network device 200 is subordinate to the switching of the active / standby system for the control device.
  • transmission / reception of state data via the equalization cable 400 is described.
  • the other state may be monitored, and the active / standby system may be switched according to the result of the state monitoring independently of the switching of the active / standby system for the control device.
  • FIG. 2 is a block diagram illustrating a configuration example of the network device 200.
  • the network device 200 includes a control unit 210, a first communication interface (hereinafter abbreviated as “I / F”) unit 220, a second communication I / F unit 230, and a third communication I / F unit. 240, a storage unit 250, and a bus 260 that mediates data exchange between these components.
  • I / F first communication interface
  • the control unit 210 is, for example, a CPU.
  • the control unit 210 functions as a control center of the network device 200 by executing the relay control program 2542 stored in the storage unit 250. More precisely, the relay control program 2542 is stored in the nonvolatile storage unit 254.
  • the non-volatile storage unit 254 is one of a plurality of components constituting the storage unit 250. Details of processing executed by the control unit 210 in accordance with the relay control program 2542 will be clarified later.
  • Each of the first communication I / F unit 220, the second communication I / F unit 230, and the third communication I / F unit 240 is, for example, a NIC (Network Interface Card). The role of each of these communication I / F units is as follows.
  • the first communication I / F unit 220 is connected to the IO network. More specifically, the first communication I / F unit 220 of the network device 200A is connected to the IO network 30A, and the first communication I / F unit 220 of the network device 200B is connected to the IO network 30B.
  • the first communication I / F unit 220 receives data transmitted from the connection destination IO network and sends data to the connection destination IO network.
  • the first communication I / F unit 220 has a communication buffer that accumulates data received from the IO network to which it is connected. In FIG. 2, the communication buffer is not shown.
  • the second communication I / F unit 230 is connected to the control device via a communication line. More specifically, the second communication I / F unit 230 of the network device 200A is connected to the control device 100A, and the second communication I / F unit 230 of the network device 200B is connected to the control device 100B.
  • the second communication I / F unit 230 receives data transmitted from the connection destination control device and transmits data to the connection destination control device.
  • the second communication I / F unit 230 has a communication buffer that accumulates data to be transmitted to the connected control device. In FIG. 2, the communication buffer is not shown.
  • the third communication I / F unit 240 has a port to which an equalization cable is connected, and the equalization cable 400 is connected to the port.
  • the third communication I / F unit 240 performs communication for equalization of monitoring data with the other network device via the equalization cable 400.
  • the storage unit 250 includes a volatile storage unit 252 and a non-volatile storage unit 254 as shown in FIG.
  • the volatile storage unit 252 is, for example, a RAM (Random Access Memory).
  • the volatile storage unit 252 is used as a work area for executing the relay control program 2542.
  • the volatile storage unit 252 also serves as a monitoring data buffer 2522 that temporarily accumulates monitoring data to be transmitted to the control device. Further, the volatile storage unit 252 stores an operation / standby flag indicating whether the network device 200 having the volatile storage unit 252 is operating as an active system or a standby system.
  • the nonvolatile storage unit 254 is, for example, a flash ROM.
  • the non-volatile storage unit 254 stores a relay control program 2542 in advance.
  • the control unit 210 reads the relay control program 2542 from the nonvolatile storage unit 254 to the volatile storage unit 252 when the network device 200 is turned on or reset, and starts executing the relay control program 2542. In FIG. 2, the power supply of the network device 200 is not shown.
  • the control unit 210 operating in accordance with the relay control program 2542 monitors the operation state of the connected control device and executes a process of setting an operation / standby flag according to the monitoring result, as well as the relay process 2542a.
  • the value processing 2542b is executed. Details of the relay process 2542a and the equalization process 2542b will be made clear in the operation example, but the outline is as follows.
  • the equalization process 2542b is a process for equalizing the monitoring data collected from each of the IO slave devices S1 to Sn by communication via the equalization cable 400.
  • FIG. 3 is a flowchart showing the flow of the equalization process 2542b. As is apparent from FIG. 3, the processing content of the equalization processing 2542b differs between when operating as an active system and when operating as a standby system. Details of the processing content of the equalization processing 2542b will be made clear in the description of the operation example.
  • the relay process 2542a is a process of transferring the monitoring data equalized by the equalization process 2542b to the control device connected to the second communication I / F unit 230. The above is the configuration of the network device 200.
  • the operation of the network device 200 will be described with reference to FIGS.
  • the control device 100A and the network device 200A are active, and the control device 100B and the network device 200B are standby.
  • the monitoring data buffer 2522 of each of the network device 200A and the network device 200B is empty at the start of the operation.
  • Each of IO slave devices S1 to Sn samples input signals or output signals such as sensors to generate monitoring data to be transmitted to each of control device 100A and control device 100B, and to each of IO network 30A and IO network 30B.
  • the monitoring data transmitted by the IO slave devices S1 to Sn is provided with a header including information indicating the transmission destination and transmission source of the monitoring data, an identifier uniquely indicating the monitoring data, and the like. Specific examples of the information indicating the transmission destination of the monitoring data include the communication address and node number of the transmission destination device. The same applies to information indicating the transmission source of the monitoring data.
  • the monitoring data transmitted from each of the IO slave devices S1 to Sn is transmitted to each of the network device 200A and the network device 200B via each of the IO network 30A and the IO network 30B.
  • the monitoring data transmitted to the network device 200A is referred to as “monitoring data A”
  • the monitoring data transmitted to the network device 200B is referred to as “monitoring data B”.
  • the monitoring data A and the monitoring data B are basically the same data, they may be slightly different depending on the sampling timing shift when sampling each.
  • the first communication I / F unit 220 of the network device 200A When receiving the monitoring data transmitted from the IO network 30A, the first communication I / F unit 220 of the network device 200A writes the received monitoring data in the communication buffer in the first communication I / F unit 220. Similarly, in the network device 200B, the monitoring data received from the IO network 30B is written in the communication buffer of the first communication I / F unit 220 of the network device 200B. That is, in this operation example, the monitoring data A is stored in the communication buffer in the first communication I / F unit 220 of the network device 200A, and the communication buffer in the first communication I / F unit 220 of the network device 200B is stored in the communication buffer. Monitoring data B is stored.
  • the control unit 210 of the network device 200A is triggered by the writing of the monitoring data to the communication buffer in the first communication I / F unit 220. In other words, the control unit 210 is triggered by the reception of the monitoring data from the connected IO network 30A. Then, the relay processing 2542a is executed. As shown in FIG. 4, in the relay process 2542a, the control unit 210 reads the monitoring data from the communication buffer in the first communication I / F unit 220 (FIG. 4A: S100), and sends the monitoring data to the monitoring data buffer 2522. The monitoring data is written (FIG. 4A: S110). For this reason, in this operation example, the monitoring data A is stored in the monitoring data buffer 2522 of the network device 200A.
  • the network device 200B executes the processing of S100 and S110 (see FIG. 4B), and the monitoring data buffer 2522 stores the monitoring data B.
  • the control unit 210 sets a first value indicating that equalization has not been performed in a flag indicating whether or not equalization has been performed. Then, a flag having the first value set is added to the monitoring data and written to the monitoring data buffer 2522.
  • a specific example of this first value is 0.
  • the control unit 210 executes the equalization processing 2542b in response to the writing of the monitoring data to which the flag indicating that the equalization has not been performed is written to the monitoring data buffer 2522.
  • the control unit 210 first determines whether or not the own apparatus is operating as an active system (step SA100). Specifically, the control unit 210 refers to the operation / standby flag stored in the volatile storage unit 252, and if the value of the flag indicates the operation system, the control unit 210 operates as the operation system. It is determined that If the determination result of step SA100 is “Yes”, the control unit 210 executes the process of step SA110.
  • step SA100 determines whether the determination result of step SA100 is “No” or not. If the determination result of step SA100 is “No”, the control unit 210 performs step SA120 and subsequent steps. Execute the process. As described above, in this operation example, the network device 200A operates as an active system. Therefore, in the equalization process 2542b executed by the control unit 210 of the network device 200A, the determination result in step SA100 is “Yes”, and the process in step SA110 is executed.
  • step SA110 which is executed when the determination result in step SA100 is “Yes”
  • the control unit 210 reads monitoring data to which a flag indicating that the equalization has not been performed is added from the monitoring data buffer 2522 (FIG. 4 ( A): S120), the monitoring data is transferred to the connected network device via the third communication I / F unit 240 (FIG. 4A: S130).
  • the monitoring data buffer 2522 of the network device 200A stores the monitoring data A as monitoring data to which a flag indicating that the equalization has not been performed is added. Therefore, in this operation example, the monitoring data A is transferred from the network device 200A to the network device 200B via the equalization cable 400.
  • the control unit 210 executes the equalization processing 2542b when the third communication I / F unit 240 receives data transmitted via the equalization cable 400.
  • the determination at Step SA100 described above is performed.
  • the determination result in step SA100 of the equalization processing 2542b executed by the control unit 210 of the network device 200B is “No”, and the processing after step SA120 Is executed.
  • the control unit 210 acquires the monitoring data received by the third communication I / F unit 240 from the third communication I / F unit 240 (FIG. 4B: S140), and uses the monitoring data.
  • the corresponding monitoring data stored in the monitoring data buffer 2522 is overwritten (FIG. 4B: S150), and the flag assigned to the monitoring data is rewritten with a second value indicating that the equalization has been performed.
  • the relevant monitoring data is monitoring data having the same transmission source and the same identifier as the monitoring data acquired in S140 of FIG. 4B.
  • a specific example of the second value is 1.
  • the monitoring data stored in the monitoring data buffer 2522 of the network device 200B is updated from the monitoring data B to the monitoring data A.
  • the control unit 210 of the network device 200B When the control unit 210 of the network device 200B completes the equalization of the monitoring data as described above, the control unit 210 notifies the network device 200A of the completion of the equalization via the equalization cable 400 (FIG. 3: step SA130).
  • the control unit 210 of the network device 200A updates the monitoring data flag transferred in S130 of FIG. 4A to the second value, triggered by the reception of the notification.
  • the monitoring data buffer 2522 of each of the network device 200A and the network device 200B stores the monitoring data A, and the monitoring data A is given a flag indicating equalization. It becomes a state.
  • the control unit 210 of the network device 200A restarts the relay processing 2542a when the flag assigned to the monitoring data stored in the monitoring data buffer 2522 is updated to a value indicating equalization.
  • the processes of S160 and S170 of 4 (A) are executed.
  • the control unit 210 reads monitoring data to which a flag indicating equalization has been assigned from the monitoring data buffer 2522.
  • the control unit 210 writes the monitoring data read out in S160 into the communication buffer of the second communication I / F unit 230.
  • the relay process 2542a is restarted when the notification of equalization completion is transmitted, and the processes of S160 and S170 in FIG. 4B are executed.
  • the second communication I / F unit 230 of the network device 200A transmits the monitoring data written in the communication buffer as described above to the connection destination control device.
  • the second communication I / F unit 230 of the network device 200B transmits the monitoring data written in the communication buffer in the above manner to the control device connected thereto.
  • the monitoring data A is transmitted from the network device 200A to the control device 100A, and the monitoring data A is also transmitted from the network device 200B to the control device 100B.
  • the notification can be transmitted and received sufficiently faster than the transmission and reception of monitoring data
  • the update of the flag in each of the network device 200A and the network device 200B is executed substantially synchronously, and the processes in S160 and S170 are performed. Are also executed almost synchronously. For this reason, the transmission of the monitoring data A from the network device 200A to the control device 100A and the transmission of the monitoring data A from the network device 200B to the control device 100B are executed almost synchronously.
  • the above is the operation of this embodiment.
  • FIG. 5 is a schematic diagram of the communication system 1A of the present embodiment.
  • the equalization of the calculation result is executed by the control device 100A and the control device 100B by communication via the equalization cable 40 in FIG. 5, but the equalization of the monitoring data is performed in FIG. It is executed by the network device 200A and the network device 200B by communication via the equalization cable 400.
  • control device 100A and the control device 100B are affected.
  • the processing load is not increased by the equalization, and there is no trouble in executing the original calculation.
  • the equalized monitoring data is transferred from the network device 200A to the control device 100A via the communication line LA in FIG. 5, and the equalized monitoring data is transmitted via the communication line LB in FIG. Data is transferred from the network device 200B to the control device 100B. Then, the equalization of the calculation result based on the monitoring data is realized by communication via the equalization cable 40 in FIG. Since the equalized monitoring data is transferred to the control device 100A and the control device 100B, even when the active / standby system is switched due to the stop of the active control device. The control device does not need to wait for the equalization of the monitoring data, and can be switched immediately. That is, according to the present embodiment, the switching speed of the active system / standby system is not reduced.
  • the control system that collects monitoring data from one or a plurality of devices connected to the first and second networks and performs control based on the monitoring data.
  • the first and second control devices one of which is the active system and the other is the standby system, the first control device and the first relay device connected to the first network, A second relay device connected to the second control device, a second relay device connected to the second network, an inter-control device communication means that mediates communication between the first control device and the second control device, a first relay device, and a second relay device.
  • inter-relay device communication means that mediate communication between the two relay devices, and each of the first and second relay devices transfers the monitoring data received from one or more devices to the connection destination control device.
  • monitoring data Communication for valuation is performed via the inter-relay device communication means, and the one of the first control device and the second control device, which is the active system, receives the monitoring data received from the connected relay device.
  • a control system characterized in that a calculation for control is performed and the calculation result is transferred to a standby control device via communication means between control devices to equalize the calculation result. Is done.
  • the one of the first control device and the second control device that is the active system performs the calculation for control using the monitoring data received from the connection destination relay device, and the calculation result Is transferred to the control device serving as a standby system via the inter-control device communication means. Therefore, it is possible to equalize only calculation results that do not include monitoring data between control devices.
  • the means for mediating data communication between the active system and the standby system is an equalization cable which is a communication means between control devices that mediates communication between control devices. Therefore, when the equalization cable 40 is disconnected, data communication between the active system and the standby system becomes impossible, and communication for monitoring each other's state cannot be performed. For this reason, in the conventional redundant control system, when the equalization cable 40 is disconnected, the active system / standby system cannot be switched anymore, and multiple faults occur such that a fault occurs in the active system control device. Then, there was a problem that the device could not be controlled at all.
  • the means for mediating data communication between the active system and the standby system is duplexed by the equalization cable 40 and the equalization cable 400. Even if the disconnection occurs, communication for monitoring each other's state will not be disabled. For example, even when the equalization cable 40 is disconnected at the position indicated by the symbol B in FIG. 6, the control system according to the present embodiment is in a state along the path C1 indicated by the dotted arrow in FIG. Data can be sent and received. Specifically, the control device 100A transmits state data indicating the state of the device itself to the control device 100B via the communication line LA, the network device 200A, the equalization cable 400, the network device 200B, and the communication line LB.
  • the control device 100B sends the status data indicating the status of its own device to the control device 100A via the communication line LB, the network device 200B, the equalization cable 400, the network device 200A, and the communication line LA. What is necessary is just to make it perform the process to transmit.
  • one network device is connected to one control device.
  • a plurality of network devices are connected to one control device. It may be deformed.
  • two network devices are connected to one control device.
  • a conventional redundant control system when a plurality of network devices are connected to a control device, the amount of monitoring data transferred to the control device increases, resulting in problems in the execution of calculations inherent in the control device, This is because problems such as a decrease in the standby system switching speed have occurred, but in the present embodiment, such problems do not occur.
  • the network device 200A and the network device 200B respectively transfer to each of the control device 100A and the control device 100B.
  • the equalization of the monitoring data to be performed is performed by these network devices by communication via the equalization cable 400A, and transferred to each of the control device 100A and the control device 100B via each of the network device 200C and the network device 200D.
  • the equalization of the monitoring data to be performed is executed by these network devices by communication via the equalization cable 400B. For this reason, even if the amount of monitoring data transferred to a control device increases by connecting a plurality of network devices to a single control device, the processing load of the control device is increased by the equalization. It will not be high.
  • the network device 200A and the network device 200B are made to equalize the monitoring data by communication via the equalization cable 400.
  • the network device 200A ′ and the network device 200B ′ of the present embodiment are intended to solve this problem.
  • the network device 200A ′ and the network device 200B ′ of the present embodiment determine whether or not data communication via the equalization cable 400 is possible, and if a determination result indicating that it is possible is obtained The monitoring data is equalized by data communication via the equalization cable 400.
  • the network device 200A ′ and the network device 200B ′ are monitored by communication via the control device 100A, the equalization cable 40, and the control device 100B. Perform data equalization.
  • the network device 200A ′ is referred to as “network device 200 ′”.
  • FIG. 8 is a diagram illustrating a configuration example of the network device 200 ′.
  • the configuration of the network device 200 ′ is that the relay control program 2542 ′ is stored in the nonvolatile storage unit 254 instead of the relay control program 2542.
  • the configuration is different.
  • the relay control program 2542 ′ is a program that causes the control unit 210 to execute the relay process 2542a, the equalization process 2542b ′, and the determination process 2542c.
  • the determination process 2542c is a process of determining whether or not communication via the inter-relay device communication unit, that is, the equalization cable 400 is possible.
  • the equalization processing 2542b ′ determines that communication is not possible while performing communication for equalizing the monitoring data via the inter-relay device communication means when the determination processing 2542c determines that communication is possible.
  • the communication is performed through the communication device between the control devices, that is, the equalization cable 40.
  • the control unit 210 operating according to the relay control program 2542 ′ includes a relay unit that executes the relay process 2542a, a determination unit that executes the determination process 2542c, and an equalization unit that executes the equalization process 2542b ′. Function as.
  • FIG. 9 is a diagram illustrating a schematic configuration and an operation example of a control system including the network device 200 ′.
  • the network device is abbreviated as “NW device”.
  • the network device 200 ′ has a determination unit so that the feature of the present embodiment becomes clear.
  • the network device 200A ′ and the network device 200B ′ cannot communicate via the equalization cable 400.
  • the network device 200A ′ and the network device 200B ′ perform data communication along the communication path C2 indicated by the dotted arrow in FIG. 9, and equalize the monitoring data.
  • the network device 200A ′ uses the monitoring data received from the IO network 30A as a transfer path that solves the communication line LA, the control device 100A, the equalization cable 40, the control device 100B, and the communication line LB in this order.
  • the network device 200B ′ receives the monitoring data, overwrites the corresponding monitoring data of the own device with the monitoring data, and returns an equalization completion notification.
  • the equalization completion notification sent back from the network device 200B ′ in this way follows the communication line LB, the control device 100B, the equalization cable 40, the control device 100A, and the communication line LA in this order to the network device 200A ′. Is transferred, and the equalization of the monitoring data is completed.
  • control device 100A and the control device 100B function only as a data transmission path that mediates data communication for equalization, so that these controls are performed as compared with the conventional redundant control system.
  • the processing load on the apparatus can be reduced.
  • the determination process 2542c a process of transmitting a ping to the partner apparatus via the equalization cable 400, determining that communication is possible if there is a response within a predetermined time, and determining that communication is impossible if there is a response Is mentioned.
  • the transmission / reception of state data between the control device 100A and the control device 100B may be switched according to the availability of data communication via the equalization cable 40.
  • the status data is transmitted to the other control device via the equalization cable 40, If this is not possible, processing for transmitting status data to the other control device via the equalization cable 400 may be executed.
  • Switching between data communication for equalization of monitoring data via the equalization cable 400 or via the equalization cable 40 depends on whether data communication via the equalization cable 400 is possible. Instead of switching, the mode may be switched according to the processing load of the control device. For example, when the network device 200 ′ measures the processing load of the connected control device, and the measured processing load is less than a predetermined threshold, each control device and equalization cable of the active system and the standby system The monitoring data is equalized by data communication via 40, and when the processing load of the control device is equal to or greater than a predetermined threshold, the monitoring data is equalized by data communication via the equalization cable 400.
  • the control unit of each of the active and standby network devices may be executed.
  • the network device 200 executes processing for acquiring data representing the CPU usage rate, the memory usage rate, and the like in the control device from the connected control device. Conceivable. Furthermore, the transfer route of the monitoring data may be switched using both the availability of data communication via the equalization cable 400 and the processing load of the control device. Specifically, when it is determined that the processing load of the control device is equal to or greater than a predetermined threshold and communication via the equalization cable 400 is possible, the monitoring data is transmitted via communication via the equalization cable 400.
  • the processing load of the control device is less than the predetermined threshold value, or the processing load is equal to or higher than the predetermined threshold value, communication via the equalization cable 400 is impossible.
  • the monitoring data should be equalized by communication via the equalization cable 40.
  • the distribution pattern of whether the monitoring data is equalized on the control device side or on the relay device side, that is, on the network device side is determined in advance, It is also conceivable to distribute the processing load related to the equalization of the monitoring data between the control device and the network device. For example, the monitoring data transmitted from the IO slave device S1 is equalized on the control device side, and the monitoring data transmitted from the IO slave device S2 is monitored on the network device side. This is because the control device 100A stores a distribution pattern table that stores a flag indicating whether the control device side or the network device side equalizes the monitoring data in association with the communication address of each IO slave device.
  • the network devices 200A ′ and 200B ′ perform equalization on the monitoring data determined to be equalized on the relay device side in the distribution table, and the control devices 100A and 100B perform control in the distribution table. What is necessary is just to make it equalize about the monitoring data determined to equalize on the apparatus side.
  • a plurality of distribution tables may be prepared in accordance with the processing load of the control device, and the stored content in which the monitoring data to be equalized on the relay device side increases as the table corresponding to the higher processing load. .
  • FIG. 10 is a diagram illustrating a configuration example of a communication system 1C according to the third embodiment of this invention.
  • This communication system 1C is also a control system laid in an industrial facility. 10, the same elements as those in FIG. 1 are denoted by the same reference numerals.
  • the communication system 1C is different from the communication system 1A in the following three points. First, a control device 100A ′ and a control device 100B ′ are provided in place of the control device 100A and the control device 100B. Second, a network device 200A ′′ and a network device 200B ′′ are provided instead of the network device 200A and the network device 200B. Thirdly, the IO network 30C is connected to the network device 200A ′′.
  • the IO slave devices S1 ′ to Sn ′ are connected to the IO network 30C.
  • the IO network 30C mediates data communication between the IO slave devices S1 ′ to Sn ′ and the network device 200A ′′.
  • the network that transmits the data transmitted from the IO slave devices S1 to Sn to the control device is duplexed by the IO network 30A and the IO network 30B, but is transmitted from the IO slave devices S1 ′ to Sn ′.
  • Such duplication is not applied to the network for transmitting data to the control device. That is, the network device 200A ′′ is connected to a duplex network and a non-duplex network.
  • a network that is not duplicated is referred to as a “single network”.
  • the network device 200A ′′ relays data communication between the IO network 30A and the control device 100A ′ in the same manner as the network device 200A in the first embodiment. Similarly to the network device 200B in the first embodiment, the network device 200B ′′ relays data communication between the IO network 30B and the control device 100B ′. Further, the network device 200A ′′ and the network device 200B ′′ can equalize monitoring data by data communication via the equalization cable 400, similarly to the network device 200A ′ and the network device 200B ′ in the second embodiment. I do. However, the network device 200A ′′ and the network device 200B ′′ perform switching between the active system and the standby system by monitoring each other regardless of whether the connection destination control device is the active system or the standby system. Different from the network device 200.
  • the network device 200A ′′ and the network device 200B ′′ perform the same processing as the above equalization on the monitoring data received from the IO network 30C. That is, the control unit of the network device 200A ′′ transmits the monitoring data received from the IO network 30C to the network device 200B ′′ via the equalization cable 400, and the control unit of the network device 200B ′′ transmits the monitoring data. Is written to the monitoring data buffer. Then, each of the network device 200A ′′ and the network device 200B ′′ transmits the monitoring data transmitted from the IO network 30C to each connection destination control device.
  • the control device 100A ′ and the control device 100B ′ are triggered by the reception of data transmitted from the IO slave devices S1 to Sn, and the devices according to the first calculation using the data and the calculation result of the first calculation Execute the control.
  • the active control device executes a second calculation using the data, triggered by reception of data transmitted from the IO slave devices S1 ′ to Sn ′. That is, the active control device in the present embodiment collects data from the IO slave devices S1 to Sn and performs the first calculation, and collects data from the IO slave devices S1 ′ to Sn ′ and performs the second operation. It also has the role of performing the operation.
  • control device that collects data from the IO slave device via the duplexed network in the redundant control system and performs some operation can also serve as a role to collect data via the single network and execute other operations.
  • the redundant network and single network There is no need to construct separate systems for the redundant network and single network, and it is expected that the system development and operation costs can be reduced.
  • the conventional redundant control system can meet such expectations. was difficult. The reason is as follows.
  • the data received from the single network and the data received from the duplicated network are given from the network device 20A to the control device 10A, while the data received from the duplicated network is received from the network device 20B to the control device 10B. Only the processed data is given. If there is a discrepancy between the data given to the control device 10A and the control device 10B, some redundant control systems determine that there is an error. In such a system, the above connection form cannot be adopted in the first place. .
  • the monitoring data received from the single network is continuously given to the active control device after the switching, The monitoring data can be collected and the calculation can be continued using the data without any problem.
  • the network device 200A ′′ is still an active relay device, and the network device 200B ′′ is still This is a standby relay device.
  • the monitoring data transmitted from each of the IO slave devices S1 ′ to Sn ′ is, for example, IO network 30C ⁇ network device 200A ′′ ⁇ equalization cable 400 ⁇ network device 200B ′′ ⁇ control device 100B ′. It is transmitted to the control device 100B ′.
  • data is collected from the IO slave device via the redundant network in the redundant control system, and the control device that performs some computation collects the data via the single network and performs other computations.
  • the system development cost can be reduced as compared with the case where the duplex network system and the single network system are constructed separately.
  • the network device connected to the single network is the active network device.
  • the monitoring data received via the single network is transferred to the other network device via the inter-relay device communication means or the control device communication means, and the monitoring data is equalized. It is sufficient to execute the processing to be executed.
  • FIG. 11 is a diagram illustrating a configuration example of a communication system 1D according to the fourth embodiment of the present invention.
  • This communication system 1D is also a control system laid in an industrial facility.
  • FIG. 11 shows a detailed connection mode of the IO slave devices S1 to S3 to the IO networks 30A and 30B, which is different from FIG.
  • FIG. 11 shows a detailed connection mode of the IO slave devices S1 to S3 to the IO networks 30A and 30B, which is different from FIG.
  • FIG. 11 shows a detailed connection mode of the IO slave devices S1
  • the IO master is abbreviated as “IOM”.
  • the IO master MAn sends the monitoring data output from the IO slave device Sn to the IO network 30A.
  • the IO master MBn sends the monitoring data output from the IO slave device Sn to the IO network 30B.
  • FIG. 1 the detailed connection configuration of the IO slave devices S1 to Sn is omitted, but is the same as that in FIG.
  • the communication system 1D is provided with a network device 200A ′′ and a network device 200B ′′ instead of the network device 200A and the network device 200B in the first embodiment. Is different from the communication system 1A.
  • One of the network device 200A “" and the network device 200B “” according to the present embodiment also behaves as an active system, and the other behaves as a standby system.
  • the network device 200A ′′ and the network device 200B ′′ behaves as an active system.
  • the network device 200A ′′ is described as “network device 200 ′′”.
  • FIG. 12 is a diagram illustrating a configuration example of the network device 200 ′ ′′.
  • the same components as those in FIG. 2 are denoted by the same reference numerals.
  • the configuration of the network device 200 ′′ ′′ is that the relay control program 2542 ′′ ′′ is stored in the nonvolatile storage unit 254 instead of the relay control program 2542.
  • the relay control program 2542 ′′ ′′ differs from the relay control program 2542 of the first embodiment in that the control unit 210 executes an equalization transmission process 2542 b 1 and an equalization reception process 2542 b 2 instead of the equalization process 2542 b. .
  • the control unit 210 of the network device 200 ′′ ′′ is a relay control program 2542 ′′ ′′ from the nonvolatile storage unit 254 to the volatile storage unit 252 when the power (not shown) of the network device 200 ′′ ′′ is turned on or reset. And start executing.
  • FIG. 13 is a diagram for explaining an operation executed by the control unit 210 of the network device 200 ′′ ′′ according to the relay control program 2542 ′′ ′′. In FIG. 13, the same processes as those in FIG. 4 are denoted by the same reference numerals.
  • the control unit 210 operating according to the relay control program 2542 ′′ ′′ writes the monitoring data to the communication buffer in the first communication I / F unit 220 in the same manner as the control unit 210 in the first embodiment described above.
  • the relay processing 2542a is executed as a trigger, that is, triggered by reception of monitoring data from the connection destination IO network 30.
  • the control unit 210 reads the monitoring data from the communication buffer in the first communication I / F unit 220 (FIG. 13: S100) and writes the monitoring data to the monitoring data buffer 2522 (FIG. 13). : S110). Note that when monitoring data is written to the monitoring data buffer 2522, the first value indicating that the equalization has not been performed is set, a flag is added, and the monitoring data buffer 2522 is written to the first embodiment. It is the same.
  • the combination of the equalization transmission process 2542b1 and the equalization reception process 2542b2 corresponds to the equalization process 2542b.
  • the execution trigger of the equalization processing 2542b in the first embodiment is different between the active network device and the standby network device.
  • the equalization processing 2542b is executed in response to the writing of the monitoring data to which the flag indicating that the equalization is not completed in the active system to the monitoring data buffer 2522, and the equalization cable 400 is performed in the standby system.
  • the equalization processing 2542b is executed when the monitoring data is received via the network.
  • the execution timing of the equalization transmission processing 2542b1 is not different between the active network device and the standby network device, and the execution timing of the equalization reception processing 2542b2 is not different.
  • the control unit 210 of the network device 200 ′ ′′ is provided with a monitoring data buffer of monitoring data to which a flag indicating that the equalization has not been performed is assigned regardless of whether or not the network device 200 ′′ is operating as an active system.
  • the equalization transmission processing 2542b1 is executed in response to the writing to 2522.
  • the control unit 210 reads the monitoring data to which the flag indicating that the equalization has not been completed is read from the monitoring data buffer 2522 (FIG. 13: S120), and the monitoring data is transmitted to the third communication I / O. This is given to the F unit 240 (FIG. 13: S130) and transferred to the other network device.
  • the monitoring data A received by the network device 200A ′′ from the IO network 30A is transferred to the network device 200B ′′ through the equalization cable 400, and the network device 200B ′′ is The monitoring data B received from the IO network 30B is also transferred to the network device 200A ′′ ′ via the equalization cable 400.
  • FIG. 14 is a flowchart showing the flow of the equalization reception process 2542b2.
  • the control unit 210 can first communicate with the IO slave device that is the transmission source of the monitoring data received from the other network device 200 ′′ ′′ via the equalization cable 400. It is determined whether or not (step SB100). As a specific determination method for determining whether or not communication with the IO slave device that is the transmission source of the monitoring data is possible, a method using an existing technology such as ping is conceivable.
  • step SB100 When the determination result of step SB100 is “No”, that is, when communication is impossible, the control unit 210 receives the monitoring data received from the other network device 200 ′′ ′′ via the equalization cable 400.
  • the monitoring data that should have been received via the IO network 30 to which the own device is connected that is, the monitoring data transmitted to the control device 100 connected to the own device is supplemented (step SB110). Since communication with the IO slave device is impossible, no monitoring data is received from the IO slave device, and step SB110 is a process for compensating for the lack of this monitoring data. More specifically, in step SB110, the control unit 210 provides information indicating the transmission destination of the header portion of the monitoring data received via the equalization cable 400 to the control device 100 connected to the own device.
  • Step SB150 the determination result in step SB100 is “No” as described above, monitoring data is not transferred to the other network device 200 ′ ′′ via the equalization cable 400.
  • the other network device may detect the completion of equalization triggered by the reception of the notification and update the flag of the corresponding monitoring data.
  • step SB100 determines whether or not its own device is an active system, as in step SA100 described above. Is determined (step SB120).
  • the control unit 210 receives from the other network device 200 ′′ ′′ via the equalization cable 400.
  • the monitoring data is discarded (step SB130), and the equalization flag of the monitoring data written in the monitoring data buffer 2522 as corresponding to the monitoring data is updated to the second value (step SB150).
  • the equalization reception process 2542b2 ends.
  • step SB120 determines whether the own apparatus is a standby system. If the determination result in step SB120 is “No”, that is, if the own apparatus is a standby system, the control unit 210 removes the equalization cable 400 in the same manner as the processing in step SA120 described above.
  • the monitoring data received from the other network device 200 "" is replaced with the monitoring data written in the monitoring data buffer 2522 as corresponding to the monitoring data (step SB140), and then the processing of step SB150 is executed. Then, the equalization reception process 2542b2 is completed.
  • the above is the configuration of the network device 200 ′ ′′.
  • the control device 100A is the active system and the control device 100B is the standby system, that is, the network device 200A ′′ is the active system and the network device 200B ′′ is the standby system is taken as an example.
  • the operation of the embodiment will be described.
  • the relay processing 2542a is executed when the monitoring data is received via the first communication I / F unit 220.
  • the monitoring data An is stored in the monitoring data buffer 2522 of the network device 200A ′′
  • the monitoring data Bn is stored in the monitoring data buffer 2522 of the network device 200B ′′.
  • the equalization transmission process 2542b1 is executed in the network device 200 ′′ when the monitoring data that has not been equalized is written to the monitoring data buffer 2522. As a result, as shown in FIG.
  • the monitoring data An is transferred from the network device 200A ′′ to the network device 200B ′′ via the equalization cable 400, and the network device 200B ′′ is transferred to the network device 200A ′.
  • Monitoring data Bn is transferred to ′′ via the equalization cable 400.
  • the control unit 210 of the network device 200 ′ ′′ executes the equalization reception process 2542b2 every time monitoring data is received via the third communication I / F unit 240. Specifically, the control unit 210 of the network device 200A ′′ ′′ executes the equalization reception process 2542b2 every time the monitoring data Bn is received via the third communication I / F unit 240.
  • step SB120 Since the network device 200A ′′ is an active system, the determination result in step SB120 is “Yes”, and the process in step SB130 is executed. That is, all the monitoring data Bn received by the network device 200A ′′ ′′ via the third communication I / F unit 240 is discarded.
  • the equalization reception process 2542b2 is executed every time the monitoring data An is received via the third communication I / F unit 240. Also in the equalization reception processing 2542b2 executed by the control unit 210 of the network device 200B ′′, the determination result in step SB100 is “Yes”, and the processing after step SB120 is executed. Since the network device 200B ′′ is a standby system, the determination result of step SB120 is “No”, and the process of step SB140 is executed. That is, all the monitoring data Bn stored in the monitoring data buffer 2522 of the network device 200B ′′ is replaced with the monitoring data An received from the network device 200A ′′ ′′ via the third communication I / F unit 240 ( (See FIG. 15B). As a result, the monitoring data An is transferred to the control device 100A via the network device 200A ′′, and the monitoring data An is also transferred to the control device 100B via the network device 200B ′′.
  • the monitoring data A1 that the network device 200A ′′ was supposed to receive is missing.
  • the monitoring data B2 that the network device 200B ′′ was supposed to receive is also lost.
  • NULL in FIG. 16A means that monitoring data is missing.
  • the monitoring data A2 and A3 are transferred from the network device 200A "" to the network device 200B "" via the equalization cable 400, and from the network device 200B ".
  • the monitoring data B1 and B3 are transferred to the network device 200A ′′ ′′ via the equalization cable 400.
  • step SB100 is “No”.
  • the process of step SB110 is executed.
  • the monitoring data A1 that should have been received by the network device 200A ′′ ′′ is complemented with the monitoring data B1.
  • the determination result in step SB100 is “No”. ", And the process of step SB110 is executed.
  • the determination result in step SB100 is “No”. ", And the process of step SB110 is executed.
  • monitoring data B2 that the network device 200B ′′ was supposed to receive is supplemented with the monitoring data A2.
  • monitoring data B1, monitoring data A2, and monitoring data A3 are transferred from the network device 200A ′′ to the control device 100A as equalized monitoring data, and equalized to the control device 100B.
  • monitoring data B1, monitoring data A2, and monitoring data A3 are transferred from the network device 200B ′′.
  • the equalized monitoring data is transferred from the network device 200A ′′ to the control device 100A, which is the active control device, so that the control of the control target device is continued without any problem. be able to.
  • the present embodiment even if a failure occurs in either the IO network connected to the active control device via the network device or a plurality of IO masters connected to the IO network. Thus, there is no need to switch the active / standby system for the control device, and the frequency of occurrence of switching of the active / standby system in the redundant control system can be reduced. Furthermore, according to the present embodiment, a failure occurs in the IO master connected to the IO network connected to the active control device via the network device, and the standby control device passes through the network device. Even if multiple failures occur, such as when a failure also occurs in an IO master connected to the connected IO network, control is not performed unless those IO masters are connected to the same IO device.
  • the standby network device transfers all the monitoring data received from the IO network to the active network device via the equalization cable 400 between the network devices. Only missing monitoring data may be transferred.
  • the standby network device transmits a list of identifier information of the received monitoring data to the standby network device via the equalization cable between the active network device, and based on the list What is necessary is just to make the standby network device detect the missing monitoring data in the active system.
  • the standby network device may determine that the monitoring data in the active system is missing.
  • the result of the calculation based on the calculation data transmitted from the control device 100 to the control target device, that is, the equalized monitoring data is represented.
  • the data transfer control may be performed in the same manner depending on whether or not the IO master that connects the control target device to the IO network 30 has failed. For example, if each of the IO slave devices S1 to S3 in FIG. 16B is a device to be controlled, the control device 100A ⁇ the network device 200A ′′ ′′ ⁇ the equalization cable for the IO slave device S1. Operation data may be transferred along a transmission path such as 400 ⁇ network device 200B ′′ ′′ ⁇ IO network 30B. Similarly, arithmetic data may be transferred to the IO slave devices S2 and S3 along a transmission path such as the control device 100A ⁇ the network device 200A ′′ ⁇ the IO network 30A.
  • the equalization of the monitoring data is performed by the network device 200 ′ ′′, the amount of monitoring data transferred to the control device increases as in the first embodiment described above. However, there is an effect that it is possible to prevent any trouble in the execution of the original calculation of the control device and to prevent the switching speed of the active system / standby system from being lowered. Of course.
  • identification information indicating the transmission source determined to be incapable of communication in step SB100 is written in a predetermined storage area of the volatile storage unit 252, and thereafter, from the device in which the identification information is stored in the storage area.
  • the monitoring data is always complemented or replaced by the monitoring data received via the equalization cable 400, and the process of initializing the storage area triggered by the power-off or reset of the own device is controlled by the network device 200 ′′. You may make it make the part 210 perform.
  • the network device 200 ′′ ′′ is turned off or reset.
  • the data transfer route from the IO slave device to the active control device 100 is not switched to a route that is not supplemented as described above, and the influence caused by the route switching can be avoided.
  • each of the network device 200A ′′ and the network device 200B ′′ determines whether or not data communication via the equalization cable 400 is possible, and, if possible, the other device via the equalization cable 400. If the monitoring data is transmitted to the network device, and if impossible, the process of transmitting the monitoring data to the other network device via the equalization cable 40 may be executed.
  • the second embodiment and the fourth embodiment may be combined, and the second, third, and fourth embodiments may be combined.
  • the application example of the present invention to the gateway device that transfers the monitoring data collected from the IO slave device to the control device has been described.
  • the application target of the present invention is not limited to the gateway device, and may be another type of relay device such as a router, a repeater, or a switching hub.
  • the network connected to the relay device of the present invention is not limited to a control network such as an IO network or a serial bus, but is a general information system that mediates data communication according to a general-purpose communication protocol such as TCP. It may be a network.
  • control device that collects monitoring data and executes operations using the monitoring data
  • network connected to a device that outputs the monitoring data, and controls the data received via the network.
  • the present invention can be applied to any relay device that transfers data to the device.
  • a mode in which a network device included in the communication system of each of the above embodiments, that is, a relay device is provided alone, that is, a mode in which the relay device is manufactured and sold may be employed.
  • Such a network device is replaced with a network device in a conventional redundancy control system, and the network devices are connected to each other by an equalization cable between relay devices, thereby making the conventional redundancy control system a communication system of each of the above embodiments. This is because it becomes possible to function as.
  • the relay processing 2542a and the equalization processing 2542b (in the fourth embodiment, the equalization transmission processing 2542b1 and the equalization reception processing 2542b2) that clearly show the features of the present invention are performed by software. It was realized.
  • each of the relay means for executing the relay process 2542a and the equalization means for executing the equalization process 2542b are configured by electronic circuits, and the networks of the first to third embodiments are combined by combining these electronic circuits.
  • An apparatus may be configured. The same applies to the network device 200 ′ ′′ of the fourth embodiment.
  • the equalization cable is used as the communication device between relay devices.
  • a wireless communication device such as a wireless LAN interface may be used as the communication device between relay devices.
  • a bus connected to both devices may be used as a communication device between relay devices. The same applies to the inter-control device communication means.
  • the warm standby control system is the same as the hot standby control system in that one of the redundant control devices becomes the active system and executes the above calculation, and the other becomes the standby system to prepare for failure of the active system. However, a difference is that the above calculation is not executed in the standby control device.
  • the monitoring data received by the first communication I / F unit 220 is written into the monitoring data buffer 2522 (FIG. 4B: S100 and Each process of S110) is executed, but the process may be omitted in the standby network device. This is because the monitoring data written by the monitoring data buffer 2522 by the processes of S100 and S110 in FIG. 4B is overwritten by the process of step SA120 of the equalization process 2542b.
  • 1A, 1C, 1D ... communication system 10A, 10B, 100A, 100B, 100A ', 100B' ... control device, 20A, 20B, 200A, 200B, 200A ', 200B', 200A ", 200B", 200A " "..., 200B” "... relay device, 210 ... control unit, 220 ... first communication I / F unit, 230 ... second communication I / F unit, 240 ... third communication I / F unit, 250 ... storage unit , 252 ... Volatile storage unit, 2522 ... Monitoring data buffer, 254 ... Nonvolatile storage unit, 2542, 2542 ', 2542 "' ... Relay control program, 2542a ... Relay process, 2542b ...
  • Equalization process 260 ... Bus 30A, 30B, 30C ... IO network, 40,400,400A, 400B ... equivalent cable, 50 ... monitoring system, S1 to Sn, S1 'to Sn' ... IO Slave device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Data Mining & Analysis (AREA)
  • Safety Devices In Control Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Hardware Redundancy (AREA)

Abstract

Provided is a control system with redundant control devices and data transfer paths, with which it is possible to carry out equalization of monitor data without affecting computations executed by the control devices and without causing a degradation in speed of switchover between an active system and a backup system even if the volume of data transferred to the control devices increases. The respective control devices of the active system and the backup system are connected by a first equalizing cable, and respective network devices of the active system and the backup system are connected to each other by a second equalizing cable. Each of the network devices transfers monitor data which is received from I/O slave devices to the control device to which the respective network device is connected, and determines whether communication via the second equalizing cable is possible. If the said communication is possible, equalization of the monitor data is carried out upon each of the respective network devices by communication via the second equalizing cable, and if the said communication is not possible, the equalization of the monitor data is carried out upon each of the respective network devices by communication via the second equalizing cable.

Description

制御システム、および中継装置Control system and relay device
 本発明は、稼働系と待機系の制御装置を含む制御システム、その中継装置に関する。 The present invention relates to a control system including an active system and a standby system control apparatus and its relay apparatus.
 工場や各種プラント等の産業施設においては、各種操業を制御するために制御システムと呼ばれる通信システムが構築されることが多い。制御システムには、産業施設内に設置されたセンサからの監視データの収集やその収集結果に応じて電動機等の駆動制御を行う制御装置が含まれている。このような制御装置としては、DCS(Distributed Control System)やプログラマブルロジックコントローラが用いられる。以下では、電動機等の制御装置による制御対象となる装置を「制御対象装置」と呼び、上記センサのように制御装置による監視データの収集対象となる装置と制御対象装置とを「IOスレーブ装置」と呼ぶ。IOスレーブ装置は、IOネットワークと呼ばれるネットワーク或いはシリアルバスに接続される。制御装置は、中継装置等のネットワーク装置を介してIOネットワークに接続される。この中継装置の一例としては、ゲートウェイ装置が挙げられる。また、以下では、プログラマブルロジックコントローラを「PLC」と表記する。一般的なFA(Factory Automation)システムでは制御装置としてPLCが用いられることが多く、高信頼性を要求されるプラント設備では制御装置としてDCSが用いられることが多い。DCSはPLCに比較して信頼性が高いからである。 In industrial facilities such as factories and various plants, a communication system called a control system is often constructed to control various operations. The control system includes a control device that collects monitoring data from sensors installed in an industrial facility and performs drive control of an electric motor or the like according to the collection result. As such a control device, a DCS (Distributed Control System) or a programmable logic controller is used. Hereinafter, a device to be controlled by a control device such as an electric motor is referred to as a “control target device”, and a device to be monitored by a control device such as the sensor and a control target device are referred to as an “IO slave device”. Call it. The IO slave device is connected to a network called an IO network or a serial bus. The control device is connected to the IO network via a network device such as a relay device. An example of this relay device is a gateway device. Hereinafter, the programmable logic controller is referred to as “PLC”. In a general FA (Factory Automation) system, a PLC is often used as a control device, and in plant facilities that require high reliability, a DCS is often used as a control device. This is because DCS is more reliable than PLC.
 この種の制御システムでは、制御装置等の故障に起因する操業停止を回避するために、制御装置の二重化および監視データのデータ伝送経路の二重化が行われることが一般的である。制御装置の二重化とは、2台の制御装置を設け、その一方を稼働系、他方を待機系として動作させることを言う。これら2台の制御装置の各々は、監視データを収集し、収集した監視データを用いて、或いは収集した監視データと過去の演算結果を用いて、機器制御のための所定の演算を行う。稼働系の制御装置は当該演算結果に基づく制御を行い、待機系の制御装置は、稼働系の制御装置の停止に備える。そして、待機系の制御装置は、稼働系が停止するとき、或いは停止したときには、稼働系として動作し、機器制御を継続する。ここで、稼働系の制御装置の停止の具体例としては、何らかの故障や不具合の発生に起因する予期せぬ停止や、保守メンテナンス等による予め計画された停止などが考えられる。待機系の制御装置はこれら2種類の停止の両方に備える。データ伝送経路の二重化とは、例えばIOスレーブ装置から二重化された制御装置の一方へ至るデータ伝送経路と、他方へ至るデータ伝送経路とを各々別個に設けることを言う。以下では、制御装置とデータ伝送経路の両方が二重化された制御システムのことを「冗長化制御システム」と呼ぶ。 In this type of control system, in order to avoid operation stoppage due to a failure of the control device or the like, it is common to double the control device and the data transmission path of the monitoring data. Redundant control device means that two control devices are provided and one of them is operated as an active system and the other as a standby system. Each of these two control devices collects monitoring data and performs a predetermined calculation for device control using the collected monitoring data or using the collected monitoring data and past calculation results. The active control device performs control based on the calculation result, and the standby control device prepares for the stop of the active control device. Then, the standby control device operates as an active system when the active system stops or stops, and continues device control. Here, as a specific example of the stop of the active control device, an unexpected stop due to the occurrence of some failure or malfunction, a pre-scheduled stop due to maintenance, or the like can be considered. The standby control device provides for both of these two types of stops. Duplexing of data transmission paths means that, for example, a data transmission path from an IO slave device to one of the duplexed control devices and a data transmission path to the other are provided separately. Hereinafter, a control system in which both the control device and the data transmission path are duplicated is referred to as a “redundant control system”.
 図18は、冗長化制御システムの構成例を示す図である。図18に示すシステムは、産業施設内に設置された各種センサなどのIOスレーブ装置S1~Snから出力される監視データを収集し、それら監視データに基づいて、或いは当該監視データと過去の演算結果とを用いて所定の演算を行い、その演算結果に応じて電動機等の作動制御を行う制御システムである。なお、nは2以上の自然数である。この制御システムは、制御装置10Aおよび制御装置10Bの2台の制御装置と、ネットワーク装置20Aおよびネットワーク装置20Bの2台のネットワーク装置とを有している。図18に示すシステムでは、制御装置10Aと制御装置10Bのうちの一方が稼働系となり、他方は待機系となって稼働系の停止に備える。制御装置10Aおよび制御装置10Bには、制御装置10Aおよび制御装置10Bの稼働状態等の監視を行うための監視システム50が接続されている。また、制御装置10Aはネットワーク装置20Aを介してIOネットワーク30Aに接続されており、制御装置10Bはネットワーク装置20Bを介してIOネットワーク30Bに接続されている。IOスレーブ装置S1~Snの各々は、IOネットワーク30AおよびIOネットワーク30Bの両方に接続されている。 FIG. 18 is a diagram illustrating a configuration example of a redundant control system. The system shown in FIG. 18 collects monitoring data output from IO slave devices S1 to Sn such as various sensors installed in an industrial facility, and based on the monitoring data or the monitoring data and past calculation results. Is a control system that performs a predetermined calculation using and and controls the operation of an electric motor or the like according to the calculation result. Note that n is a natural number of 2 or more. This control system has two control devices, a control device 10A and a control device 10B, and two network devices, a network device 20A and a network device 20B. In the system shown in FIG. 18, one of the control device 10 </ b> A and the control device 10 </ b> B is an active system, and the other is a standby system to prepare for the stop of the active system. A monitoring system 50 for monitoring the operating state of the control device 10A and the control device 10B is connected to the control device 10A and the control device 10B. The control device 10A is connected to the IO network 30A via the network device 20A, and the control device 10B is connected to the IO network 30B via the network device 20B. Each of the IO slave devices S1 to Sn is connected to both the IO network 30A and the IO network 30B.
 図18に示すシステムでは、制御装置10Aと制御装置10Bの各々は、他方の状態監視を行えるようにするために、等値化ケーブル40により接続されている。前述したように待機系の制御装置は、稼働系の制御装置について故障等に起因する予期せぬ停止や保守メンテナンス等の計画的な停止などに備えるのであるが、以下では故障により停止する場合を例にとって説明する。制御装置10Aと制御装置10Bの各々は、故障の有無、すなわち、自装置の状態を示す状態データを等値化ケーブル40を介して他方に送信する。例えば、制御装置10Aが稼働系となっている場合、待機系である制御装置10Bは等値化ケーブル40を介して制御装置10Aから送信されてくる状態データを参照して制御装置10Aにおける故障発生を監視する。そして、制御装置10Bは、等値化ケーブル40を介して受信した状態データから制御装置10Aの故障発生を検出すると、以降、稼働系としての動作を開始する。一方、制御装置10Aは制御装置10Bが稼働系としての動作を開始したことを等値化ケーブル40を介した通信により検出し、以降、待機系として動作する。 In the system shown in FIG. 18, each of the control device 10A and the control device 10B is connected by an equalization cable 40 so that the other state can be monitored. As described above, the standby control device prepares for an unexpected stop caused by a failure or a planned stop such as a maintenance for the active control device. Let's take an example. Each of the control device 10A and the control device 10B transmits the status data indicating the presence or absence of the failure, that is, the status of the own device, to the other via the equalization cable 40. For example, when the control device 10A is an active system, the control device 10B which is a standby system refers to the state data transmitted from the control device 10A via the equalization cable 40 and a failure occurs in the control device 10A. To monitor. When the control device 10B detects a failure of the control device 10A from the state data received via the equalization cable 40, the control device 10B starts operation as an active system thereafter. On the other hand, the control device 10A detects that the control device 10B has started operation as an active system by communication via the equalization cable 40, and thereafter operates as a standby system.
 冗長化制御システムでは、稼働系の制御装置に故障が発生しても稼働系/待機系の切り替えを行うことで、IOスレーブ装置S1~Snの各々からのデータ収集、その収集結果に応じた演算、およびその演算結果に応じた制御を継続することができる。しかし、単に稼働系/待機系の切り替えを行うだけでは、その切り替え前後で上記演算結果が突変するなどの不具合が発生する場合がある。これは、IOスレーブ装置S1~Snの各々から制御装置10Aと制御装置10Bに送られる監視データが完全に同一であるとは限らないことに起因している。 In a redundant control system, even if a failure occurs in the active control device, data is collected from each of the IO slave devices S1 to Sn and calculation according to the result of collection is performed by switching between the active and standby systems. And the control according to the calculation result can be continued. However, simply switching the active / standby system may cause problems such as sudden changes in the calculation result before and after the switching. This is due to the fact that the monitoring data sent from each of the IO slave devices S1 to Sn to the control device 10A and the control device 10B is not completely the same.
 このような不具合の発生を回避するため、冗長化制御システムでは、IOスレーブ装置S1~Snの各々から各制御装置へ送信されてくる監視データの等値化や、演算結果の等値化といった処理を各制御装置に実行させることが一般的である。監視データの等値化とは、稼働系の制御装置がネットワーク装置経由で受信した監視データを等値化ケーブル40を介して待機系の制御装置へ送信し、当該監視データで待機系の制御装置がネットワーク経由で受信した監視データを上書きすることを言う。また、演算結果の等値化とは、稼働系における演算結果を示すデータを等値化ケーブル40を介して待機系の制御装置に送信し、当該データで待機系における演算結果を上書きすることを言う。このような冗長化制御システムおよび等値化に関する従来技術の一例としては特許文献1や特許文献2に開示の技術が挙げられる。 In order to avoid the occurrence of such a problem, in the redundant control system, processing such as equalization of monitoring data transmitted from each of the IO slave devices S1 to Sn to each control device and equalization of calculation results is performed. Is generally executed by each control device. Equalization of monitoring data means that monitoring data received by the active control device via the network device is transmitted to the standby control device via the equalization cable 40, and the standby control device is used as the monitoring data. Says to overwrite the monitoring data received via the network. The equalization of the calculation result means that data indicating the calculation result in the active system is transmitted to the standby control device via the equalization cable 40, and the calculation result in the standby system is overwritten with the data. To tell. As an example of the prior art relating to such a redundant control system and equalization, there are techniques disclosed in Patent Document 1 and Patent Document 2.
特開2013-12094号公報JP 2013-12094 A 特開2013-152631号公報JP 2013-152631 A
 近年では、制御システムに含まれるIOスレーブ装置の多様化や数の増加、IOネットワークにおけるデータ伝送速度の向上に伴い、単位時間当たりにネットワーク装置経由で制御装置に送信されてくる監視データのデータ量が大幅に増加している。ネットワーク装置経由で制御装置が受信する監視データのデータ量が増加すると、それら監視データについての等値化処理の処理負荷が高くなり、制御装置の本来の役割である機器制御のための演算の実行やその演算結果に応じた機器制御に充分なリソースを割り当てることが困難になる場合がある。また、近年では、1台の制御装置に複数のネットワーク装置を接続したいといったニーズが高まっているが、制御装置に接続するネットワーク装置の数が増えると同様の問題が発生する。さらに、ネットワーク装置経由で制御装置が受信する単位時間当たりの監視データのデータ量が増えると、稼働系の故障発生時に稼働系/待機系の切り替えを迅速に行えなくなるといった問題もある。前述したように、ネットワーク装置経由で制御装置が受信する監視データについての等値化が完了した後でなければ、演算結果の突変の発生を回避しつつ稼働系/待機系の切り替えを行うことはできないからである。 In recent years, with the diversification and increase in the number of IO slave devices included in the control system and the improvement in data transmission speed in the IO network, the amount of monitoring data transmitted to the control device via the network device per unit time Has increased significantly. When the amount of monitoring data received by the control device via the network device increases, the processing load of equalization processing on the monitoring data increases, and execution of operations for device control that is the original role of the control device It may be difficult to allocate sufficient resources for device control according to the calculation result. In recent years, there has been an increasing need to connect a plurality of network devices to one control device, but the same problem occurs when the number of network devices connected to the control device increases. Furthermore, when the amount of monitoring data per unit time received by the control device via the network device increases, there is a problem that switching between the active system and the standby system cannot be performed quickly when a failure occurs in the active system. As described above, the switching between the active system and the standby system is performed while avoiding the occurrence of a sudden change in the operation result unless the equalization of the monitoring data received by the control device via the network device is completed. Because you can't.
 本発明は以上に説明した課題に鑑みて為されたものであり、冗長化制御システムにおいて、ネットワーク経由で各制御装置に転送されてくる監視データのデータ量が増加しても、制御装置本来の演算の実行に何ら支障を発生させず、かつ稼働系/待機系の切り替えスピードの低下を招くことなく、監視データの等値化を行えるようにする技術を提供することを目的とする。 The present invention has been made in view of the problems described above, and in a redundant control system, even if the amount of monitoring data transferred to each control device via a network increases, It is an object of the present invention to provide a technique that makes it possible to equalize monitoring data without causing any trouble in the execution of computations and without causing a decrease in switching speed between the active system and the standby system.
 上記課題を解決するために本発明は、第1および第2のネットワークに接続された1または複数の機器から監視データを収集し、該監視データに基づいて制御を行う制御システムとして、以下の第1および第2の制御装置と、第1および第2の中継装置とを有する制御システムを提供する。第1の制御装置と第2の制御装置は、制御装置間通信手段を介して接続されている。制御装置間通信手段は、例えば等値化ケーブルであり、第1の制御装置と第2の制御装置との間の通信を仲介する。第1および第2の制御装置は、一方が稼働系となって前記制御を行い、他方は待機系となる。第1および第2の中継装置の具体例としては前述したネットワーク装置が挙げられる。第1の中継装置は第1の制御装置と第1のネットワークに接続されており、第2の中継装置は第2の制御装置と第2のネットワークに接続されている。第1および第2の中継装置は、中継装置間通信手段に接続されている。中継装置間通信手段は、例えば等値化ケーブルであり、第1の中継装置と第2の中継装置との間の通信を仲介する。第1および第2の中継装置は、中継装置間通信手段を介した通信の可否を判定する判定手段を備える。第1および第2の中継装置の各々は、1または複数の機器から受信した監視データを接続先の制御装置へ転送するとともに、判定手段により通信可能と判定された場合には中継装置間通信手段を介した通信により監視データの等値化を行う。これに対して、判定手段により通信不能と判定された場合には、第1および第2の中継装置は、制御装置間通信手段を介した通信により監視データの等値化を行う。 In order to solve the above problems, the present invention provides a control system that collects monitoring data from one or a plurality of devices connected to the first and second networks, and performs control based on the monitoring data. Provided is a control system having first and second control devices and first and second relay devices. The first control device and the second control device are connected via communication means between control devices. The communication device between control devices is, for example, an equalization cable, and mediates communication between the first control device and the second control device. One of the first and second control devices is an active system and performs the control, and the other is a standby system. Specific examples of the first and second relay devices include the network devices described above. The first relay device is connected to the first control device and the first network, and the second relay device is connected to the second control device and the second network. The first and second relay devices are connected to the inter-relay device communication means. The inter-relay device communication means is, for example, an equalization cable, and mediates communication between the first relay device and the second relay device. The first and second relay devices include a determination unit that determines whether communication is possible via the inter-relay device communication unit. Each of the first and second relay apparatuses transfers the monitoring data received from one or more devices to the connection destination control apparatus, and when the determination means determines that communication is possible, the inter-relay apparatus communication means The monitoring data is equalized by communication via. On the other hand, when it is determined that communication is impossible by the determination unit, the first and second relay devices perform monitoring data equalization by communication via the inter-control device communication unit.
 本発明の制御システムにおいては、各機器から第1および第2の制御装置へ送信される監視データの等値化は第1および第2の中継装置によって行われる。したがって、監視データのデータ量が増加しても、監視データの等値化によって第1および第2の制御装置の各々の処理負荷が過剰に高くなることはなく、第1および第2の制御装置の各々における上記演算の実行に何らの支障が生じることはない。また、第1および第2の制御装置の各々には第1および第2の中継装置により等値化済のデータが与えられる。このため、第1および第2の制御装置の一方を稼働系として機能させ、他方を待機系として機能させるとともに、稼働系の停止に起因して稼働系/待機系の切り替えを行う場合に監視データの等値化完了を待つ必要はなく、稼働系/待機系の切り替えを迅速に行うことができる。 In the control system of the present invention, equalization of monitoring data transmitted from each device to the first and second control devices is performed by the first and second relay devices. Therefore, even if the amount of monitoring data increases, the processing load of each of the first and second control devices does not become excessive due to the equalization of the monitoring data, and the first and second control devices There is no problem in the execution of the above calculation in each of the above. Each of the first and second control devices is given data that has been equalized by the first and second relay devices. For this reason, when one of the first and second control devices functions as an active system and the other functions as a standby system, the monitoring data is switched when the active system / standby system is switched due to the stop of the active system. There is no need to wait for the equalization to be completed, and switching between the active system and the standby system can be performed quickly.
 図18に示す従来の冗長化制御システムでは、制御装置10Aおよび制御装置10Bを互いに接続する等値化ケーブル40の切断が発生すると、監視データの等値化を全く行えなくなる。これに対して本発明の制御システムでは、監視データの等値化のためのデータ通信を仲介する通信手段が制御装置間通信手段と中継装置間通信手段により二重化されているため、何れか一方を介した通信が可能であれば、何ら問題なく監視データの等値化を行うことができる。なお、第1および第2の制御装置に、制御装置間通信手段を介した通信が可能であるか否かを判定させ、可能であれば、自装置における故障の有無を示す状態データを制御装置間通信手段を介して送受信することより他方の故障の有無を監視し、不可能であれば、中継装置間通信手段を介して状態データを送受信することにより他方の故障の有無を監視する処理を実行させても良い。また、本発明の制御システムに含まれる中継装置対、すなわち、中継装置間通信手段を介して通信する第1および第2の中継装置よりなる中継装置対は1つに限定される訳ではなく、複数であっても良い。具体的には、各々異なる機器が接続された複数の第1のネットワークに各々接続されるとともに第1の制御装置に各々接続される複数の第1の中継装置と、各々が複数の第1の中継装置の各々と対になる複数の第2の中継装置であって、上記各機器が接続される複数の第2のネットワークに各々接続されるとともに第2の制御装置に各々接続される複数の第2の中継装置と、を有し、複数の第1の中継装置と複数の第2の中継装置は、互いに対になるもの同士が中継装置間通信手段を介して通信する態様が考えられる。 In the conventional redundant control system shown in FIG. 18, when the equalization cable 40 that connects the control device 10A and the control device 10B is disconnected, the monitoring data cannot be equalized at all. On the other hand, in the control system of the present invention, the communication means that mediates data communication for equalization of the monitoring data is duplicated by the communication means between the control devices and the communication means between the relay devices. If communication via the network is possible, the monitoring data can be equalized without any problem. The first and second control devices are allowed to determine whether or not communication via the inter-control device communication means is possible, and if possible, state data indicating the presence or absence of a failure in the own device is transmitted to the control device. The process of monitoring the presence / absence of the other failure by monitoring the presence / absence of the other failure by transmitting / receiving status data via the communication device between relay devices, if not possible. It may be executed. Further, the relay device pair included in the control system of the present invention, that is, the relay device pair consisting of the first and second relay devices communicating via the inter-relay device communication means is not limited to one, There may be more than one. Specifically, a plurality of first relay devices connected to a plurality of first networks to which different devices are respectively connected and connected to a first control device, respectively, and a plurality of first relay devices A plurality of second relay devices paired with each of the relay devices, each of which is connected to a plurality of second networks to which the respective devices are connected, and is connected to a second control device. It is possible to consider a mode in which a plurality of first relay devices and a plurality of second relay devices communicate with each other via inter-relay device communication means.
 ここで、中継装置間通信手段を介した通信による監視データの等値化の具体的な実現方法としては、種々の態様が考えられる。第1の中継装置と第2の中継装置のうちの一方から他方へ監視データを送信し、当該他方の中継装置には、ネットワーク経由で受信した監視データを中継装置間通信手段を介して受信した監視データで上書きする処理、すなわち、前者の監視データを後者の監視データで置き換える処理を実行させる態様が考えられる。例えば、稼働系の制御装置に接続されている方の中継装置から他方の中継装置へ監視データを送信し、当該他方の中継装置には、ネットワーク経由で受信した監視データを中継装置間通信手段或いは制御装置間通信手段を介して受信した監視データで上書きさせるのである。 Here, various modes are conceivable as specific implementation methods for the equalization of the monitoring data by communication via the inter-relay device communication means. Monitoring data is transmitted from one of the first relay device and the second relay device to the other, and the other relay device receives the monitoring data received via the network via the inter-relay device communication means. A mode in which a process of overwriting with monitoring data, that is, a process of replacing the former monitoring data with the latter monitoring data is considered. For example, the monitoring data is transmitted from the relay device connected to the active control device to the other relay device, and the monitoring data received via the network is transmitted to the other relay device. It is overwritten with the monitoring data received via the inter-controller communication means.
 また別の好ましい態様においては、第1および第2の中継装置の各々に以下の第1および第2の処理手段を設ける態様が考えられる。第1の処理手段は、接続先のネットワークから受信した監視データを他方の中継装置へ転送する。より詳細に説明すると、第1の処理手段は、上記判定手段により通信可能と判定された場合には中継装置間通信手段を介して監視データを他方の中継装置へ転送し、通信不能と判定された場合には制御装置間通信手段を介して監視データを他方の中継装置へ送信する。第2の処理手段は、他方の中継装置から受信した監視データの送信元の機器との通信が可能であるか否かを確認し、通信不能であった場合には当該機器から受信するはずであった監視データを他方の中継装置から受信した監視データで補完する。従来の冗長化制御システムにおいては、稼働系の制御装置へ監視データを転送する中継装置に接続されているネットワークに故障が発生した場合、或いは各機器を当該ネットワークに接続するためのIOマスタに故障が発生した場合も、稼働系/待機系の切り替えを行う必要があった。これに対して本態様によれば、上記ネットワーク等の故障に起因して稼働系/待機系の切り替えを行う必要はなく、稼働系/待機系の切り替えの発生頻度を低減させることが可能になる。この点については本発明の第4実施形態にて詳細に説明する。 In another preferred mode, a mode in which the following first and second processing means are provided in each of the first and second relay devices is conceivable. The first processing means transfers the monitoring data received from the connection destination network to the other relay device. More specifically, the first processing means transfers the monitoring data to the other relay apparatus via the inter-relay apparatus communication means when the determination means determines that communication is possible, and determines that communication is impossible. In the case of monitoring, the monitoring data is transmitted to the other relay device via the communication device between control devices. The second processing means checks whether or not communication with the monitoring data transmission source device received from the other relay device is possible, and if the communication is impossible, the second processing means should receive from the device concerned. The existing monitoring data is supplemented with the monitoring data received from the other relay device. In a conventional redundant control system, when a failure occurs in a network connected to a relay device that transfers monitoring data to an active control device, or a failure occurs in an IO master for connecting each device to the network. Even when this occurred, it was necessary to switch between the active system and the standby system. On the other hand, according to this aspect, it is not necessary to switch the active system / standby system due to the failure of the network or the like, and it is possible to reduce the frequency of occurrence of switching between the active system / standby system. . This point will be described in detail in the fourth embodiment of the present invention.
 より好ましい態様においては、第1および第2の中継装置の何れか一方には、第3のネットワークが接続されている。そして、第3のネットワークに接続された中継装置は、当該第3のネットワークに接続されている機器から監視データを収集し、収集した監視データを接続先の制御装置に転送するとともに、他方の中継装置に転送して等値化を行わせる。詳細については本発明の第3実施形態の説明において明らかにするが、図18に示す従来の冗長化制御システムの中継装置に二重化されていないネットワークを接続することには様々な問題があり、このような接続形態を簡便に採用することはできなかった。これに対して本態様によれば、このような中継装置に二重化されていないネットワークを簡便に接続することが可能になる。 In a more preferred aspect, a third network is connected to one of the first and second relay devices. The relay device connected to the third network collects the monitoring data from the devices connected to the third network, transfers the collected monitoring data to the connection destination control device, and the other relay. Transfer to the device to perform equalization. Although details will be clarified in the description of the third embodiment of the present invention, there are various problems in connecting a non-redundant network to the relay device of the conventional redundant control system shown in FIG. Such a connection form could not be easily adopted. On the other hand, according to this aspect, it becomes possible to easily connect a network that is not duplicated to such a relay device.
 また、別の好ましい態様においては、前記第1および第2の中継装置は、接続先の制御装置にかかっている処理負荷を計測する負荷計測手段を備え、前記第1および第2の中継装置は、負荷計測手段により計測された処理負荷が所定の閾値以上であり、かつ判定手段により通信可能と判定された場合には、中継装置間通信手段を介した通信により監視データの等値化を行い、その他の場合は制御装置間通信手段を介した通信により監視データの等値化を行うことを特徴とする。このような態様によれば、第1および第2の制御装置の各々にかかる処理負荷を分散しつつ、監視データの等値化のためのデータ通信を二重化することが可能になる。 In another preferred embodiment, the first and second relay devices include load measuring means for measuring a processing load applied to a connection destination control device, and the first and second relay devices are When the processing load measured by the load measuring means is equal to or greater than a predetermined threshold value and the determination means determines that communication is possible, the monitoring data is equalized by communication via the inter-relay device communication means. In other cases, the monitoring data is equalized by communication through the communication means between the control devices. According to such an aspect, it is possible to duplicate data communication for equalizing monitoring data while distributing the processing load applied to each of the first and second control devices.
 また、上記課題を解決するために本発明は、一方が稼働系となって制御を行い他方が待機系となる第1および第2の制御装置の一方に接続されるとともに、監視データを送信する1または複数の機器が接続された第1のネットワークに接続され、前記1または複数の機器から送信される監視データを接続先の制御装置へ転送する中継装置に以下の通信インタフェース部と制御部とを設ける。通信インタフェース部は、中継装置間通信手段を介して他の中継装置に接続されている。当該他の中継装置は、1または複数の機器が接続された第2のネットワークと第1および第2の制御装置のうちの他方とに接続されている。制御部は、例えば、CPU(Central Processing Unit)である。この制御部は、以下の中継処理、判定処理および等値化処理を実行する。中継処理は、第1のネットワークを介して1または複数の機器から受信した監視データを接続先の制御装置へ転送する処理である。判定処理は、中継装置間通信手段を介した通信の可否を判定する処理である。そして、等値化処理は、判定処理にて通信可能と判定された場合には当該監視データを等値化するための通信を中継装置間通信手段を介して行う一方、通信不能と判定された場合には制御装置間通信手段を介して当該通信を行う処理である。冗長化制御システムにおいて制御装置とデータ伝送路とを接続する中継装置、すなわち、図18に示すシステム例におけるネットワーク装置20Aおよびネットワーク装置20Bを、本発明の中継装置に置き換えることで、当該既存の冗長化制御システムを本発明の制御システムとして機能させることが可能になる。 In order to solve the above problem, the present invention is connected to one of the first and second control devices, one of which is an active system and the other is a standby system, and transmits monitoring data. The following communication interface unit and control unit are connected to a relay device that is connected to a first network to which one or more devices are connected, and that transfers monitoring data transmitted from the one or more devices to a connected control device. Is provided. The communication interface unit is connected to another relay device via the communication device between relay devices. The other relay device is connected to a second network to which one or more devices are connected and the other of the first and second control devices. The control unit is, for example, a CPU (Central Processing Unit). This control unit executes the following relay processing, determination processing, and equalization processing. The relay process is a process for transferring monitoring data received from one or more devices via the first network to a connection destination control device. The determination process is a process for determining whether communication is possible via the inter-relay device communication means. In the equalization processing, when it is determined that communication is possible in the determination processing, communication for equalizing the monitoring data is performed via the inter-relay device communication unit, while it is determined that communication is impossible. In this case, the communication is performed through the inter-control device communication means. By replacing the relay device that connects the control device and the data transmission path in the redundant control system, that is, the network device 20A and the network device 20B in the system example shown in FIG. The control system can be made to function as the control system of the present invention.
 また、上記課題を解決するための他の態様としては、CPUなどの一般的なコンピュータを上記中継装置として機能させるプログラムを提供する態様が考えられる。このようなプログラムにしたがって一般的なコンピュータを作動させることで、当該コンピュータを本発明の中継装置として機能させることができるからである。なお、上記プログラムの具体的な提供態様としては、インターネットなどの電気通信回線経由のダウンロードにより配布する態様や、CD-ROM(Compact Disk-Read Only Memory)やフラッシュROMなどのコンピュータ読み取り可能な記録媒体に書き込んで配布する態様が考えられる。 Also, as another aspect for solving the above-described problem, an aspect in which a program for causing a general computer such as a CPU to function as the relay device is conceivable. This is because by operating a general computer according to such a program, the computer can function as the relay device of the present invention. As a specific provision mode of the above program, a mode of distribution by downloading via an electric communication line such as the Internet, a computer-readable recording medium such as a CD-ROM (Compact Disk-Read Memory) or a flash ROM It is possible to write in and distribute in
 以上説明したように本発明によれば、冗長化制御システムにおいて、ネットワーク経由で各制御装置に転送される監視データのデータ量が増加しても、制御装置本来の演算の実行に何ら支障を発生させず、かつ稼働系/待機系の切り替えスピードの低下を招くことなく、監視データの等値化を行うことが可能になる。 As described above, according to the present invention, in the redundant control system, even if the amount of monitoring data transferred to each control device via the network increases, there is no problem in the execution of the original operation of the control device. It is possible to equalize the monitoring data without reducing the switching speed of the active system / standby system.
本発明の中継装置の一例のネットワーク装置200を含む通信システム1A、すなわち、本発明の第1実施形態の通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system 1A containing the network apparatus 200 of an example of the relay apparatus of this invention, ie, the communication system of 1st Embodiment of this invention. 同通信システム1Aに含まれるネットワーク装置200の構成例を示す図である。It is a figure which shows the structural example of the network device 200 contained in the communication system 1A. 同ネットワーク装置200の制御部210が中継制御プログラム2542にしたがって実行する等値化処理2542bの流れを示すフローチャートである。7 is a flowchart showing a flow of equalization processing 2542b executed by the control unit 210 of the network device 200 in accordance with the relay control program 2542. 同ネットワーク装置200の制御部210が中継制御プログラム2542にしたがって実行する動作を説明するための図である。FIG. 10 is a diagram for explaining an operation executed by the control unit 210 of the network device 200 according to a relay control program 2542. 第1実施形態の効果を説明するための図である。It is a figure for demonstrating the effect of 1st Embodiment. 第1実施形態の変形例を説明するための図である。It is a figure for demonstrating the modification of 1st Embodiment. 第1実施形態の他の変形例を説明するための図である。It is a figure for demonstrating the other modification of 1st Embodiment. 本発明の第2実施形態のネットワーク装置200´の構成例を示す図である。It is a figure which shows the structural example of network apparatus 200 'of 2nd Embodiment of this invention. 同ネットワーク装置200´を含む通信システムの概略構成および動作例を示す図である。FIG. 2 is a diagram illustrating a schematic configuration and an operation example of a communication system including the network device 200 ′. 本発明の第3実施形態を説明するための図である。It is a figure for demonstrating 3rd Embodiment of this invention. 本発明の第4実施形態を説明するための図である。It is a figure for demonstrating 4th Embodiment of this invention. 同第4実施形態のネットワーク装置200´´´の構成例を示す図である。It is a figure which shows the structural example of network device 200 '' 'of the 4th embodiment. 同ネットワーク装置200´´´の制御部210が中継制御プログラム2542´´´にしたがって実行する動作を説明するための図である。It is a figure for demonstrating the operation | movement which the control part 210 of the same network apparatus 200 '' '' performs according to relay control program 2542 ''. 同制御部210が中継制御プログラム2542´´´にしたがって実行する等値化受信処理2542b2の流れを示すフローチャートである。It is a flowchart which shows the flow of the equalization reception process 2542b2 which the same control part 210 performs according to the relay control program 2542 "". 同第4実施形態の効果を説明するための図である。It is a figure for demonstrating the effect of the 4th Embodiment. 同第4実施形態の効果を説明するための図である。It is a figure for demonstrating the effect of the 4th Embodiment. 同第4実施形態の変形例を説明するための図である。It is a figure for demonstrating the modification of the 4th Embodiment. 制御システムの従来例を示す図である。It is a figure which shows the prior art example of a control system.
 以下、図面を参照しつつ本発明の実施形態を説明する。
(A:第1実施形態)
 図1は本発明の第1実施形態の通信システム1Aの構成例を示す図である。
 この通信システム1Aは、前掲図18に示したシステムと同様、産業施設内に敷設された制御システムである。図1では図18におけるものと同一の構成要素には同一の符号が付されている。図1と図18とを対比すれば明らかなように、通信システム1Aは、以下の3つの点が図18に示す従来の冗長化制御システムと異なる。第1に、制御装置10Aおよび制御装置10Bの代わりに制御装置100Aおよび制御装置100Bを有する点である。第2に、ネットワーク装置20Aおよびネットワーク装置20Bの代わりにネットワーク装置200Aおよびネットワーク装置200Bを有する点である。そして、第3に、ネットワーク装置200Aとネットワーク装置200Bが等値化ケーブル400により接続されている点である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(A: 1st Embodiment)
FIG. 1 is a diagram showing a configuration example of a communication system 1A according to the first embodiment of the present invention.
This communication system 1A is a control system laid in an industrial facility, like the system shown in FIG. In FIG. 1, the same components as those in FIG. 18 are denoted by the same reference numerals. As is clear from the comparison between FIG. 1 and FIG. 18, the communication system 1A is different from the conventional redundant control system shown in FIG. 18 in the following three points. First, it has a control device 100A and a control device 100B instead of the control device 10A and the control device 10B. Second, the network device 200A and the network device 200B are provided instead of the network device 20A and the network device 20B. Third, the network device 200A and the network device 200B are connected by an equalization cable 400.
 ネットワーク装置200Aとネットワーク装置200Bの各々は本発明の中継装置の一実施形態であり、等値化ケーブル400は当該中継装置同士の通信を仲介する中継装置間通信手段の役割を果たす。ネットワーク装置200Aおよびネットワーク装置200Bは、図18におけるネットワーク装置20Aやネットワーク装置20Bと同様にゲートウェイ装置である。図1に示す通信システム1Aでは、IOスレーブ装置S1、S2・・・Snの各々から送信された監視データは、IOネットワーク30Aおよびネットワーク装置200Aを介して制御装置100Aに伝送されるとともに、IOネットワーク30Bおよびネットワーク装置200Bを介して制御装置100Bに伝送される。制御装置100Aおよび制御装置100Bの各々は、図18における制御装置10Aおよび制御装置10Bと同様に、IOスレーブ装置S1、S2・・・Snから収集した監視データおよび過去の演算結果を使用した演算、すなわち機器制御のための演算、およびその演算結果の記憶を行う。制御装置100Aおよび制御装置100Bは、PLCであっても良いし、DCSであっても良い。 Each of the network device 200A and the network device 200B is an embodiment of the relay device of the present invention, and the equalization cable 400 serves as a communication device between relay devices that mediates communication between the relay devices. The network device 200A and the network device 200B are gateway devices like the network device 20A and the network device 20B in FIG. In the communication system 1A shown in FIG. 1, monitoring data transmitted from each of the IO slave devices S1, S2,... Sn is transmitted to the control device 100A via the IO network 30A and the network device 200A, and the IO network. It is transmitted to the control device 100B via 30B and the network device 200B. Each of the control device 100A and the control device 100B is similar to the control device 10A and the control device 10B in FIG. 18, and uses the monitoring data collected from the IO slave devices S1, S2,. In other words, calculations for device control and storage of the calculation results are performed. The control device 100A and the control device 100B may be PLCs or DCSs.
 図1に示す通信システム1Aでは、制御装置100Aと制御装置100Bのうちの一方が稼動系となって上記演算結果に基づく他の機器の制御を実行し、他方は待機系となって、稼動系の停止に備える。前述したように稼働系の停止には、何らかの故障や不具合の発生に起因する予期せぬ停止と保守メンテナンス等による予め計画された停止の2種類がある。そして、稼動系が停止するときには、待機系となっていた制御装置は、以降、稼動系として動作する。なお、稼動系と待機系の切り替えについては、従来の冗長化制御システムと同様の方法により実現すれば良い。 In the communication system 1A shown in FIG. 1, one of the control device 100A and the control device 100B becomes an active system to execute control of other devices based on the calculation result, and the other becomes a standby system. Prepare for the suspension. As described above, there are two types of stoppages of the active system: an unexpected stop due to the occurrence of some failure or malfunction and a planned stoppage due to maintenance or the like. When the active system stops, the control device that has been in the standby system thereafter operates as the active system. Note that switching between the active system and the standby system may be realized by the same method as in the conventional redundant control system.
 前述したように、稼動系/待機系の切り替えの際には、演算結果の突変を回避するために監視データの等値化と演算結果の等値化が必要となる。図18に示す従来の冗長化制御システムでは、監視データの等値化と演算結果の等値化を制御装置10Aと制御装置10Bに行わせていた。本実施形態においても演算結果の等値化を制御装置100Aと制御装置100Bとが実行する点は図18に示す従来の冗長化制御システムと変わりはない。より詳細に説明すると、制御装置100Aと制御装置100Bのうち稼働系となっている方は、接続先のネットワーク装置から受信した監視データを用いて機器制御のための演算を行い、当該演算結果を示すデータを等値化ケーブル40を介して他方の制御装置に転送して演算結果を等値化する。すなわち、待機系の制御装置は、自装置における演算結果のデータを等値化ケーブル40を介して受信したデータで上書きする。本実施形態の通信システム1Aと図18に示す従来の冗長化制御システムとで異なる点は、監視データの等値化をネットワーク装置200Aおよびネットワーク装置200Bに行わせる点である。以下、本実施形態の特徴を顕著に示すネットワーク装置200Aおよびネットワーク装置200Bを中心に説明する。なお、ネットワーク装置200Aおよびネットワーク装置200Bは同一の構成を有しているため、以下では両者を区別する必要がない場合には「ネットワーク装置200」と表記する。 As described above, when switching between the active system and the standby system, it is necessary to equalize the monitoring data and equalize the calculation results in order to avoid sudden changes in the calculation results. In the conventional redundant control system shown in FIG. 18, the control device 10A and the control device 10B are made to equalize the monitoring data and the calculation result. Also in this embodiment, the control device 100A and the control device 100B execute equalization of the calculation result is the same as the conventional redundant control system shown in FIG. More specifically, the active one of the control device 100A and the control device 100B performs calculation for device control using the monitoring data received from the network device of the connection destination, and the calculation result is obtained. The indicated data is transferred to the other control device via the equalization cable 40 to equalize the calculation result. That is, the standby control device overwrites the data of the operation result in the own device with the data received via the equalization cable 40. The difference between the communication system 1A of the present embodiment and the conventional redundant control system shown in FIG. 18 is that the network device 200A and the network device 200B perform equalization of the monitoring data. Hereinafter, the network device 200 </ b> A and the network device 200 </ b> B that clearly show the features of the present embodiment will be mainly described. Since the network device 200A and the network device 200B have the same configuration, the following description will be referred to as “network device 200” when it is not necessary to distinguish between them.
 本実施形態では、ネットワーク装置200についても稼動系と待機系の区別がある。より詳細に説明すると、ネットワーク装置200は自身の接続先の制御装置と通信し、接続先の制御装置が稼動系であるか否かを判定する。そして、ネットワーク装置200は、接続先の制御装置が稼動系であれば、稼動系のネットワーク装置として振る舞い、逆に接続先の制御装置が待機系であれば、待機系のネットワーク装置として振る舞う。つまり、本実施形態では、ネットワーク装置200Aとネットワーク装置200Bのうち、稼動系の制御装置に接続されている方が稼動系となり、待機系の制御装置に接続されている方が待機系となる。そして、制御装置についての稼動系/待機系の切り替えが発生すると、ネットワーク装置200についても、その切り替えに従属して稼動系と待機系とが切り替えられる。本実施形態では、ネットワーク装置200についての稼働系/待機系に切り替えを制御装置についての稼動系/待機系の切り替えに従属させる場合について説明するが、等値化ケーブル400を介した状態データの送受信により他方の状態を監視し、制御装置についての稼働系/待機系の切り替えとは独立に、この状態監視の結果に応じて稼働系/待機系を切り替えるようにしても良い。 In this embodiment, the network device 200 is also distinguished from an active system and a standby system. More specifically, the network device 200 communicates with its own connection destination control device, and determines whether or not the connection destination control device is an active system. The network device 200 behaves as an active network device if the connection destination control device is an active system, and conversely behaves as a standby network device if the connection destination control device is a standby system. That is, in the present embodiment, of the network device 200A and the network device 200B, the one connected to the active control device is the active system, and the one connected to the standby control device is the standby system. When the switching of the active system / standby system occurs for the control device, the network system 200 is also switched between the active system and the standby system depending on the switching. In the present embodiment, the case where the switching to the active / standby system for the network device 200 is subordinate to the switching of the active / standby system for the control device will be described. However, transmission / reception of state data via the equalization cable 400 is described. The other state may be monitored, and the active / standby system may be switched according to the result of the state monitoring independently of the switching of the active / standby system for the control device.
 図2は、ネットワーク装置200の構成例を示すブロック図である。
 ネットワーク装置200は、図2に示すように、制御部210、第1通信インタフェース(以下、「I/F」と略記)部220、第2通信I/F部230、第3通信I/F部240、記憶部250、およびこれら構成要素間のデータ授受を仲介するバス260を含んでいる。
FIG. 2 is a block diagram illustrating a configuration example of the network device 200.
As shown in FIG. 2, the network device 200 includes a control unit 210, a first communication interface (hereinafter abbreviated as “I / F”) unit 220, a second communication I / F unit 230, and a third communication I / F unit. 240, a storage unit 250, and a bus 260 that mediates data exchange between these components.
 制御部210は、例えばCPUである。制御部210は、記憶部250に記憶されている中継制御プログラム2542を実行することにより、ネットワーク装置200の制御中枢として機能する。より正確に説明すると、中継制御プログラム2542は、不揮発性記憶部254に記憶されている。不揮発性記憶部254は記憶部250を構成する複数の構成要素のうちの一つである。制御部210が中継制御プログラム2542にしたがって実行する処理の詳細については後に明らかにする。第1通信I/F部220、第2通信I/F部230および第3通信I/F部240の各々は、例えばNIC(Network Interface Card)である。これら各通信I/F部の役割は以下の通りである。 The control unit 210 is, for example, a CPU. The control unit 210 functions as a control center of the network device 200 by executing the relay control program 2542 stored in the storage unit 250. More precisely, the relay control program 2542 is stored in the nonvolatile storage unit 254. The non-volatile storage unit 254 is one of a plurality of components constituting the storage unit 250. Details of processing executed by the control unit 210 in accordance with the relay control program 2542 will be clarified later. Each of the first communication I / F unit 220, the second communication I / F unit 230, and the third communication I / F unit 240 is, for example, a NIC (Network Interface Card). The role of each of these communication I / F units is as follows.
 第1通信I/F部220はIOネットワークに接続されている。より詳細に説明すると、ネットワーク装置200Aの第1通信I/F部220はIOネットワーク30Aに接続されており、ネットワーク装置200Bの第1通信I/F部220はIOネットワーク30Bに接続されている。第1通信I/F部220は、接続先のIOネットワークから送信されてくるデータの受信、および接続先のIOネットワークへのデータの送出を行う。第1通信I/F部220は、接続先のIOネットワークから受信したデータを蓄積する通信バッファを有している。図2では、当該通信バッファの図示は省略されている。 The first communication I / F unit 220 is connected to the IO network. More specifically, the first communication I / F unit 220 of the network device 200A is connected to the IO network 30A, and the first communication I / F unit 220 of the network device 200B is connected to the IO network 30B. The first communication I / F unit 220 receives data transmitted from the connection destination IO network and sends data to the connection destination IO network. The first communication I / F unit 220 has a communication buffer that accumulates data received from the IO network to which it is connected. In FIG. 2, the communication buffer is not shown.
 第2通信I/F部230は通信線を介して制御装置に接続されている。より詳細に説明すると、ネットワーク装置200Aの第2通信I/F部230は制御装置100Aに接続されており、ネットワーク装置200Bの第2通信I/F部230は制御装置100Bに接続されている。第2通信I/F部230は、その接続先の制御装置から送信されてくるデータの受信、および接続先の制御装置へのデータの送出を行う。第2通信I/F部230は、接続先の制御装置へ送信するデータを蓄積する通信バッファを有している。図2では、当該通信バッファの図示は省略されている。 The second communication I / F unit 230 is connected to the control device via a communication line. More specifically, the second communication I / F unit 230 of the network device 200A is connected to the control device 100A, and the second communication I / F unit 230 of the network device 200B is connected to the control device 100B. The second communication I / F unit 230 receives data transmitted from the connection destination control device and transmits data to the connection destination control device. The second communication I / F unit 230 has a communication buffer that accumulates data to be transmitted to the connected control device. In FIG. 2, the communication buffer is not shown.
 第3通信I/F部240は等値化ケーブルの接続されるポートを有しており、当該ポートには等値化ケーブル400が接続される。第3通信I/F部240は、等値化ケーブル400を介して他方のネットワーク装置と監視データの等値化のための通信を行う。 The third communication I / F unit 240 has a port to which an equalization cable is connected, and the equalization cable 400 is connected to the port. The third communication I / F unit 240 performs communication for equalization of monitoring data with the other network device via the equalization cable 400.
 記憶部250は、図2に示すように揮発性記憶部252と不揮発性記憶部254とを有している。揮発性記憶部252は、例えばRAM(Random Access Memory)である。揮発性記憶部252は、中継制御プログラム2542を実行するためのワークエリアとして使用される。また、揮発性記憶部252は、制御装置へ伝送する監視データを一時的に蓄積する監視データバッファ2522の役割も果たす。さらに、揮発性記憶部252には、当該揮発性記憶部252を有するネットワーク装置200が稼働系として動作しているのか、それとも待機系として動作しているのかを示す稼働/待機フラグが格納される。不揮発性記憶部254は例えばフラッシュROMである。不揮発性記憶部254には中継制御プログラム2542が予め格納されている。 The storage unit 250 includes a volatile storage unit 252 and a non-volatile storage unit 254 as shown in FIG. The volatile storage unit 252 is, for example, a RAM (Random Access Memory). The volatile storage unit 252 is used as a work area for executing the relay control program 2542. The volatile storage unit 252 also serves as a monitoring data buffer 2522 that temporarily accumulates monitoring data to be transmitted to the control device. Further, the volatile storage unit 252 stores an operation / standby flag indicating whether the network device 200 having the volatile storage unit 252 is operating as an active system or a standby system. . The nonvolatile storage unit 254 is, for example, a flash ROM. The non-volatile storage unit 254 stores a relay control program 2542 in advance.
 制御部210は、ネットワーク装置200の電源の投入或いはリセットを契機として不揮発性記憶部254から揮発性記憶部252へ中継制御プログラム2542を読み出し、その実行を開始する。図2では、ネットワーク装置200の電源の図示は省略されている。中継制御プログラム2542にしたがって作動している制御部210は、接続先の制御装置の動作状態を監視しその監視結果に応じて稼働/待機フラグを設定する処理を実行する他、中継処理2542aと等値化処理2542bを実行する。中継処理2542aおよび等値化処理2542bの詳細については動作例において明らかにするが概略は以下の通りである。等値化処理2542bは、IOスレーブ装置S1~Snの各々から収集した監視データを、等値化ケーブル400を介した通信により等値化する処理である。図3は、等値化処理2542bの流れを示すフローチャートである。図3を参照すれば明らかなように、等値化処理2542bの処理内容は、稼働系として動作している場合と待機系として動作している場合とで異なっている。この等値化処理2542bの処理内容の詳細については動作例の説明において明らかにする。中継処理2542aは、等値化処理2542bにより等値化された監視データを、第2通信I/F部230に接続されている制御装置へ転送する処理である。
 以上がネットワーク装置200の構成である。
The control unit 210 reads the relay control program 2542 from the nonvolatile storage unit 254 to the volatile storage unit 252 when the network device 200 is turned on or reset, and starts executing the relay control program 2542. In FIG. 2, the power supply of the network device 200 is not shown. The control unit 210 operating in accordance with the relay control program 2542 monitors the operation state of the connected control device and executes a process of setting an operation / standby flag according to the monitoring result, as well as the relay process 2542a. The value processing 2542b is executed. Details of the relay process 2542a and the equalization process 2542b will be made clear in the operation example, but the outline is as follows. The equalization process 2542b is a process for equalizing the monitoring data collected from each of the IO slave devices S1 to Sn by communication via the equalization cable 400. FIG. 3 is a flowchart showing the flow of the equalization process 2542b. As is apparent from FIG. 3, the processing content of the equalization processing 2542b differs between when operating as an active system and when operating as a standby system. Details of the processing content of the equalization processing 2542b will be made clear in the description of the operation example. The relay process 2542a is a process of transferring the monitoring data equalized by the equalization process 2542b to the control device connected to the second communication I / F unit 230.
The above is the configuration of the network device 200.
 次いで、図3および図4を参照しつつネットワーク装置200の動作を説明する。なお、以下に説明する動作例では制御装置100Aおよびネットワーク装置200Aが稼働系であり、制御装置100Bおよびネットワーク装置200Bが待機系であるとする。また、以下に説明する動作例では、動作開始時点ではネットワーク装置200Aおよびネットワーク装置200Bの各々の監視データバッファ2522が空である場合について説明する。 Next, the operation of the network device 200 will be described with reference to FIGS. In the operation example described below, it is assumed that the control device 100A and the network device 200A are active, and the control device 100B and the network device 200B are standby. In the operation example described below, a case will be described in which the monitoring data buffer 2522 of each of the network device 200A and the network device 200B is empty at the start of the operation.
 IOスレーブ装置S1~Snの各々は、入力信号若しくはセンサ等の出力信号をサンプリングして制御装置100Aおよび制御装置100Bの各々に送信する監視データを生成し、IOネットワーク30AおよびIOネットワーク30Bの各々へ送信する。IOスレーブ装置S1~Snが送信する監視データには、当該監視データの送信先および送信元を示す情報と当該監視データを一意に示す識別子等とを含むヘッダが付与されている。監視データの送信先を示す情報の具体例としては、送信先の機器の通信アドレスやノード番号が挙げられる。監視データの送信元を示す情報についても同様である。IOスレーブ装置S1~Snの各々から送信された監視データは、IOネットワーク30AおよびIOネットワーク30Bの各々を介してネットワーク装置200Aおよびネットワーク装置200Bの各々へと伝送される。以下ではネットワーク装置200Aに伝送される監視データを「監視データA」と呼び、ネットワーク装置200Bに伝送される監視データを「監視データB」と呼ぶ。監視データAと監視データBは基本的には同一のデータであるが、各々をサンプリングする際のサンプリングタイミングのズレにより微妙に異なる場合がある。 Each of IO slave devices S1 to Sn samples input signals or output signals such as sensors to generate monitoring data to be transmitted to each of control device 100A and control device 100B, and to each of IO network 30A and IO network 30B. Send. The monitoring data transmitted by the IO slave devices S1 to Sn is provided with a header including information indicating the transmission destination and transmission source of the monitoring data, an identifier uniquely indicating the monitoring data, and the like. Specific examples of the information indicating the transmission destination of the monitoring data include the communication address and node number of the transmission destination device. The same applies to information indicating the transmission source of the monitoring data. The monitoring data transmitted from each of the IO slave devices S1 to Sn is transmitted to each of the network device 200A and the network device 200B via each of the IO network 30A and the IO network 30B. Hereinafter, the monitoring data transmitted to the network device 200A is referred to as “monitoring data A”, and the monitoring data transmitted to the network device 200B is referred to as “monitoring data B”. Although the monitoring data A and the monitoring data B are basically the same data, they may be slightly different depending on the sampling timing shift when sampling each.
 ネットワーク装置200Aの第1通信I/F部220はIOネットワーク30Aから送信されてくる監視データを受信すると、当該受信した監視データを第1通信I/F部220内の通信バッファに書き込む。ネットワーク装置200Bにおいても同様に、ネットワーク装置200Bの第1通信I/F部220の通信バッファには、IOネットワーク30Bから受信した監視データが書き込まれる。つまり、本動作例では、ネットワーク装置200Aの第1通信I/F部220内の通信バッファには監視データAが格納され、ネットワーク装置200Bの第1通信I/F部220内の通信バッファには監視データBが格納される。 When receiving the monitoring data transmitted from the IO network 30A, the first communication I / F unit 220 of the network device 200A writes the received monitoring data in the communication buffer in the first communication I / F unit 220. Similarly, in the network device 200B, the monitoring data received from the IO network 30B is written in the communication buffer of the first communication I / F unit 220 of the network device 200B. That is, in this operation example, the monitoring data A is stored in the communication buffer in the first communication I / F unit 220 of the network device 200A, and the communication buffer in the first communication I / F unit 220 of the network device 200B is stored in the communication buffer. Monitoring data B is stored.
 ネットワーク装置200Aの制御部210は、第1通信I/F部220内の通信バッファへの監視データの書き込みを契機として、換言すれば、接続先のIOネットワーク30Aからの監視データの受信を契機として、中継処理2542aを実行する。図4に示すように、中継処理2542aでは、制御部210は、第1通信I/F部220内の通信バッファから監視データを読み出し(図4(A):S100)、監視データバッファ2522へ当該監視データを書き込む(図4(A):S110)。このため、本動作例では、ネットワーク装置200Aの監視データバッファ2522には監視データAが格納される。ネットワーク装置200Bにおいても同様にS100およびS110の処理が実行され(図4(B)参照)、監視データバッファ2522には監視データBが格納される。なお、監視データバッファ2522への監視データの書き込みを行う際には、制御部210は、等値化済であるか否かを示すフラグに等値化済でないことを示す第1の値をセットし、当該第1の値をセット済のフラグを上記監視データに付与して監視データバッファ2522に書き込む。この第1の値の具体例としては、0が挙げられる。 The control unit 210 of the network device 200A is triggered by the writing of the monitoring data to the communication buffer in the first communication I / F unit 220. In other words, the control unit 210 is triggered by the reception of the monitoring data from the connected IO network 30A. Then, the relay processing 2542a is executed. As shown in FIG. 4, in the relay process 2542a, the control unit 210 reads the monitoring data from the communication buffer in the first communication I / F unit 220 (FIG. 4A: S100), and sends the monitoring data to the monitoring data buffer 2522. The monitoring data is written (FIG. 4A: S110). For this reason, in this operation example, the monitoring data A is stored in the monitoring data buffer 2522 of the network device 200A. Similarly, the network device 200B executes the processing of S100 and S110 (see FIG. 4B), and the monitoring data buffer 2522 stores the monitoring data B. When writing monitoring data to the monitoring data buffer 2522, the control unit 210 sets a first value indicating that equalization has not been performed in a flag indicating whether or not equalization has been performed. Then, a flag having the first value set is added to the monitoring data and written to the monitoring data buffer 2522. A specific example of this first value is 0.
 ネットワーク装置200Aでは、制御部210は、等値化済でないことを示すフラグを付与された監視データの監視データバッファ2522への書き込みを契機として、等値化処理2542bを実行する。図3に示すように、等値化処理2542bでは、制御部210は、まず、自装置が稼働系として動作しているのか否かを判定する(ステップSA100)。具体的には、制御部210は、揮発性記憶部252に格納されている稼働/待機フラグを参照し、当該フラグの値が稼働系を示す値であれば、自装置は稼働系として動作していると判定する。そして、ステップSA100の判定結果が“Yes”であれば、制御部210は、ステップSA110の処理を実行し、逆にステップSA100の判定結果が“No”であれば、制御部210はステップSA120以降の処理を実行する。前述したように、本動作例では、ネットワーク装置200Aは稼働系として動作している。このため、ネットワーク装置200Aの制御部210が実行する等値化処理2542bではステップSA100の判定結果は“Yes”となり、ステップSA110の処理が実行される。 In the network device 200A, the control unit 210 executes the equalization processing 2542b in response to the writing of the monitoring data to which the flag indicating that the equalization has not been performed is written to the monitoring data buffer 2522. As shown in FIG. 3, in the equalization process 2542b, the control unit 210 first determines whether or not the own apparatus is operating as an active system (step SA100). Specifically, the control unit 210 refers to the operation / standby flag stored in the volatile storage unit 252, and if the value of the flag indicates the operation system, the control unit 210 operates as the operation system. It is determined that If the determination result of step SA100 is “Yes”, the control unit 210 executes the process of step SA110. Conversely, if the determination result of step SA100 is “No”, the control unit 210 performs step SA120 and subsequent steps. Execute the process. As described above, in this operation example, the network device 200A operates as an active system. Therefore, in the equalization process 2542b executed by the control unit 210 of the network device 200A, the determination result in step SA100 is “Yes”, and the process in step SA110 is executed.
 ステップSA100の判定結果が“Yes”である場合に実行されるステップSA110では、制御部210は監視データバッファ2522から等値化済でないことを示すフラグを付与された監視データを読み出し(図4(A):S120)、当該監視データを第3通信I/F部240を介してその接続先のネットワーク装置へ転送する(図4(A):S130)。前述したように、ネットワーク装置200Aの監視データバッファ2522には、等値化済でないことを示すフラグを付与された監視データとして監視データAが格納されている。このため、本動作例では、等値化ケーブル400を介してネットワーク装置200Aからネットワーク装置200Bへ監視データAが転送される。 In step SA110, which is executed when the determination result in step SA100 is “Yes”, the control unit 210 reads monitoring data to which a flag indicating that the equalization has not been performed is added from the monitoring data buffer 2522 (FIG. 4 ( A): S120), the monitoring data is transferred to the connected network device via the third communication I / F unit 240 (FIG. 4A: S130). As described above, the monitoring data buffer 2522 of the network device 200A stores the monitoring data A as monitoring data to which a flag indicating that the equalization has not been performed is added. Therefore, in this operation example, the monitoring data A is transferred from the network device 200A to the network device 200B via the equalization cable 400.
 ネットワーク装置200Bでは、制御部210は、等値化ケーブル400を介して送信されてくるデータを第3通信I/F部240により受信したことを契機として、等値化処理2542bを実行する。ネットワーク装置200Bの制御部210が実行する等値化処理2542bにおいても前述したステップSA100の判定が行われる。本動作例ではネットワーク装置200Bは待機系として動作しているため、ネットワーク装置200Bの制御部210が実行する等値化処理2542bのステップSA100の判定結果は“No”になり、ステップSA120以降の処理が実行される。ステップSA120では、制御部210は、第3通信I/F部240により受信された監視データを当該第3通信I/F部240から取得し(図4(B):S140)、当該監視データで監視データバッファ2522に格納されている該当監視データを上書きし(図4(B):S150)、当該監視データに付与されているフラグを等値化済であることを示す第2の値に書き換える。上記該当監視データとは、図4(B)のS140にて取得した監視データと送信元が同一であり、かつ識別子が一致する監視データのことである。また、上記第2の値の具体例としては、1が挙げられる。これにより、ネットワーク装置200Bの監視データバッファ2522に格納されている監視データは監視データBから監視データAに更新される。 In the network device 200B, the control unit 210 executes the equalization processing 2542b when the third communication I / F unit 240 receives data transmitted via the equalization cable 400. In the equalization process 2542b executed by the control unit 210 of the network device 200B, the determination at Step SA100 described above is performed. In this operation example, since the network device 200B operates as a standby system, the determination result in step SA100 of the equalization processing 2542b executed by the control unit 210 of the network device 200B is “No”, and the processing after step SA120 Is executed. In step SA120, the control unit 210 acquires the monitoring data received by the third communication I / F unit 240 from the third communication I / F unit 240 (FIG. 4B: S140), and uses the monitoring data. The corresponding monitoring data stored in the monitoring data buffer 2522 is overwritten (FIG. 4B: S150), and the flag assigned to the monitoring data is rewritten with a second value indicating that the equalization has been performed. . The relevant monitoring data is monitoring data having the same transmission source and the same identifier as the monitoring data acquired in S140 of FIG. 4B. A specific example of the second value is 1. As a result, the monitoring data stored in the monitoring data buffer 2522 of the network device 200B is updated from the monitoring data B to the monitoring data A.
 ネットワーク装置200Bの制御部210は、上記の要領で監視データの等値化を完了すると、等値化ケーブル400を介して等値化完了をネットワーク装置200Aへ通知する(図3:ステップSA130)。ネットワーク装置200Aの制御部210は、上記通知の受信を契機として、図4(A)のS130にて転送した監視データのフラグを上記第2の値に更新する。以上の動作が為される結果、ネットワーク装置200Aおよびネットワーク装置200Bの各々の監視データバッファ2522には、監視データAが格納され、当該監視データAには等値化済を示すフラグが付与された状態となる。 When the control unit 210 of the network device 200B completes the equalization of the monitoring data as described above, the control unit 210 notifies the network device 200A of the completion of the equalization via the equalization cable 400 (FIG. 3: step SA130). The control unit 210 of the network device 200A updates the monitoring data flag transferred in S130 of FIG. 4A to the second value, triggered by the reception of the notification. As a result of the above operation, the monitoring data buffer 2522 of each of the network device 200A and the network device 200B stores the monitoring data A, and the monitoring data A is given a flag indicating equalization. It becomes a state.
 ネットワーク装置200Aの制御部210は、監視データバッファ2522に格納されている監視データに付与されているフラグが等値化済を示す値に更新されたことを契機として中継処理2542aを再開し、図4(A)のS160およびS170の各処理を実行する。S160の処理では、制御部210は、等値化済を示すフラグを付与されている監視データを監視データバッファ2522から読み出す。そして、S170の処理では、制御部210は、S160で読み出した監視データを第2通信I/F部230の通信バッファに書き込む。ネットワーク装置200Bにおいても、等値化完了の通知を送信したことを契機として中継処理2542aが再開され、図4(B)のS160およびS170の各処理が実行される。 The control unit 210 of the network device 200A restarts the relay processing 2542a when the flag assigned to the monitoring data stored in the monitoring data buffer 2522 is updated to a value indicating equalization. The processes of S160 and S170 of 4 (A) are executed. In the process of S160, the control unit 210 reads monitoring data to which a flag indicating equalization has been assigned from the monitoring data buffer 2522. In the process of S170, the control unit 210 writes the monitoring data read out in S160 into the communication buffer of the second communication I / F unit 230. Also in the network device 200B, the relay process 2542a is restarted when the notification of equalization completion is transmitted, and the processes of S160 and S170 in FIG. 4B are executed.
 ネットワーク装置200Aの第2通信I/F部230は、上記の要領で通信バッファに書き込まれた監視データをその接続先の制御装置へ送信する。ネットワーク装置200Bの第2通信I/F部230も、同様に、上記の要領で通信バッファに書き込まれた監視データをその接続先の制御装置へ送信する。このため、本動作例では、ネットワーク装置200Aから制御装置100Aへは監視データAが送信され、ネットワーク装置200Bから制御装置100Bへも監視データAが送信される。なお、監視データの送受信に比較して上記通知の送受信は十分に高速に行えるため、ネットワーク装置200Aおよびネットワーク装置200Bの各々における上記フラグの更新は略同期して実行され、S160およびS170の各処理も略同期して実行される。このため、ネットワーク装置200Aから制御装置100Aへの監視データAの送信と、ネットワーク装置200Bから制御装置100Bへの監視データAの送信はほぼ同期して実行される。
 以上が本実施形態の動作である。
The second communication I / F unit 230 of the network device 200A transmits the monitoring data written in the communication buffer as described above to the connection destination control device. Similarly, the second communication I / F unit 230 of the network device 200B transmits the monitoring data written in the communication buffer in the above manner to the control device connected thereto. For this reason, in this operation example, the monitoring data A is transmitted from the network device 200A to the control device 100A, and the monitoring data A is also transmitted from the network device 200B to the control device 100B. Since the notification can be transmitted and received sufficiently faster than the transmission and reception of monitoring data, the update of the flag in each of the network device 200A and the network device 200B is executed substantially synchronously, and the processes in S160 and S170 are performed. Are also executed almost synchronously. For this reason, the transmission of the monitoring data A from the network device 200A to the control device 100A and the transmission of the monitoring data A from the network device 200B to the control device 100B are executed almost synchronously.
The above is the operation of this embodiment.
 図18に示す従来の冗長化制御システムでは、監視データの等値化を制御装置、すなわち、制御装置10Aおよび制御装置10Bに行わせていたため、監視データのデータ量が増えると、その等値化の分だけ制御装置の処理負荷が高くなり、本来の演算の高速実行に支障が生じるといった問題があった。図5は、本実施形態の通信システム1Aの概略図である。本実施形態では、演算結果の等値化は、図5における等値化ケーブル40を介した通信により制御装置100Aおよび制御装置100Bによって実行されるものの、監視データの等値化は、図5における等値化ケーブル400を介した通信によりネットワーク装置200Aおよびネットワーク装置200Bによって実行される。このため、IOネットワークに接続されるIOスレーブ装置の増加等に起因して制御装置100Aおよび制御装置100Bへ転送される監視データのデータ量が増えたとしても、制御装置100Aおよび制御装置100Bにかかる処理負荷がその等値化の分だけ高くなることはなく、本来の演算の実行に何ら支障が発生することはない。 In the conventional redundant control system shown in FIG. 18, since the control device, that is, the control device 10A and the control device 10B perform equalization of the monitoring data, when the data amount of the monitoring data increases, the equalization is performed. As a result, the processing load of the control device increases, and there is a problem in that it hinders high-speed execution of the original calculation. FIG. 5 is a schematic diagram of the communication system 1A of the present embodiment. In the present embodiment, the equalization of the calculation result is executed by the control device 100A and the control device 100B by communication via the equalization cable 40 in FIG. 5, but the equalization of the monitoring data is performed in FIG. It is executed by the network device 200A and the network device 200B by communication via the equalization cable 400. For this reason, even if the amount of monitoring data transferred to the control device 100A and the control device 100B increases due to an increase in the number of IO slave devices connected to the IO network, the control device 100A and the control device 100B are affected. The processing load is not increased by the equalization, and there is no trouble in executing the original calculation.
 さらに、本実施形態では、図5における通信線LAを介して等値化済の監視データがネットワーク装置200Aから制御装置100Aに転送され、図5における通信線LBを介して等値化済の監視データがネットワーク装置200Bから制御装置100Bに転送される。そして、監視データに基づく演算結果の等値化は図5における等値化ケーブル40を介した通信により実現される。制御装置100Aおよび制御装置100Bには等値化済の監視データが転送されてくるのであるから、稼働系の制御装置の停止に起因して稼働系/待機系の切り替えを行う場合であっても、制御装置において監視データの等値化完了を待つ必要はなく、即座に切り替えを行うことができる。つまり、本実施形態によれば、稼働系/待機系の切り替えスピードの低下を招くこともない。 Further, in the present embodiment, the equalized monitoring data is transferred from the network device 200A to the control device 100A via the communication line LA in FIG. 5, and the equalized monitoring data is transmitted via the communication line LB in FIG. Data is transferred from the network device 200B to the control device 100B. Then, the equalization of the calculation result based on the monitoring data is realized by communication via the equalization cable 40 in FIG. Since the equalized monitoring data is transferred to the control device 100A and the control device 100B, even when the active / standby system is switched due to the stop of the active control device. The control device does not need to wait for the equalization of the monitoring data, and can be switched immediately. That is, according to the present embodiment, the switching speed of the active system / standby system is not reduced.
 以上説明したことをまとめると、本実施形態によれば、第1および第2のネットワークに接続された1または複数の機器から監視データを収集し、該監視データに基づいて制御を行う制御システムにおいて、一方は稼働系となって制御を行い、他方は待機系となる第1および第2の制御装置と、第1の制御装置と第1のネットワークに接続された第1の中継装置と、第2の制御装置と第2のネットワークに接続された第2の中継装置と、第1の制御装置と第2の制御装置の通信を仲介する制御装置間通信手段と、第1の中継装置と第2の中継装置の通信を仲介する中継装置間通信手段と、を有し、第1および第2の中継装置の各々は、1または複数の機器から受信した監視データを接続先の制御装置へ転送するとともに、当該監視データを等値化するための通信を中継装置間通信手段を介して行い、第1の制御装置と第2の制御装置のうち稼働系となっている方は、接続先の中継装置から受信した監視データを用いて制御のための演算を行い、該演算結果を制御装置間通信手段を介して待機系となっている制御装置に転送して演算結果を等値化することを特徴とする制御システムが提供される。つまり本発明では第1の制御装置と第2の制御装置のうち稼働系となっている方が、接続先の中継装置から受信した監視データを用いて制御のための演算を行い、該演算結果を制御装置間通信手段を介して待機系となっている制御装置に転送する。よって、制御装置間では監視データを含まない演算結果のみを等値化することができる。付言すると、本発明の制御装置間では演算結果のみを等値化することができる。このため、本実施形態によれば、冗長化制御システムにおいて、制御装置に転送される監視データのデータ量が増加しても、制御装置本来の演算の実行に何ら支障を発生させず、かつ稼働系/待機系の切り替えスピードの低下を招かないようにすることが可能になる。 To summarize the above description, according to the present embodiment, in the control system that collects monitoring data from one or a plurality of devices connected to the first and second networks and performs control based on the monitoring data. The first and second control devices, one of which is the active system and the other is the standby system, the first control device and the first relay device connected to the first network, A second relay device connected to the second control device, a second relay device connected to the second network, an inter-control device communication means that mediates communication between the first control device and the second control device, a first relay device, and a second relay device. And inter-relay device communication means that mediate communication between the two relay devices, and each of the first and second relay devices transfers the monitoring data received from one or more devices to the connection destination control device. And monitoring data Communication for valuation is performed via the inter-relay device communication means, and the one of the first control device and the second control device, which is the active system, receives the monitoring data received from the connected relay device. Provided is a control system characterized in that a calculation for control is performed and the calculation result is transferred to a standby control device via communication means between control devices to equalize the calculation result. Is done. In other words, in the present invention, the one of the first control device and the second control device that is the active system performs the calculation for control using the monitoring data received from the connection destination relay device, and the calculation result Is transferred to the control device serving as a standby system via the inter-control device communication means. Therefore, it is possible to equalize only calculation results that do not include monitoring data between control devices. In addition, only the calculation result can be equalized between the control devices of the present invention. For this reason, according to the present embodiment, in the redundant control system, even if the amount of monitoring data transferred to the control device increases, it does not cause any trouble in the execution of the original operation of the control device and operates. It is possible to prevent the switching speed of the system / standby system from being lowered.
 また、図18に示す従来の冗長化制御システムでは、稼動系と待機系との間のデータ通信を仲介する手段は、制御装置同士の通信を仲介する制御装置間通信手段である等値化ケーブル40のみであるため、等値化ケーブル40の切断が発生すると稼動系と待機系のデータ通信が不能となり、互いの状態監視のための通信すら行えなくなった。このため、従来の冗長化制御システムでは、等値化ケーブル40の切断が発生すると、最早、稼動系/待機系の切り替えを行えず、さらに稼動系の制御装置に故障が発生するといった多重故障発生すると、機器の制御を全く行えなくなるといった問題があった。 In the conventional redundant control system shown in FIG. 18, the means for mediating data communication between the active system and the standby system is an equalization cable which is a communication means between control devices that mediates communication between control devices. Therefore, when the equalization cable 40 is disconnected, data communication between the active system and the standby system becomes impossible, and communication for monitoring each other's state cannot be performed. For this reason, in the conventional redundant control system, when the equalization cable 40 is disconnected, the active system / standby system cannot be switched anymore, and multiple faults occur such that a fault occurs in the active system control device. Then, there was a problem that the device could not be controlled at all.
 これに対して、本実施形態では、稼動系と待機系との間のデータ通信を仲介する手段は等値化ケーブル40と等値化ケーブル400により二重化されているため、等値化ケーブル40の切断が発生したとしても、互いの状態監視のための通信を行えなくなることはない。例えば、図6にて符号Bの示す位置において等値化ケーブル40に切断が発生した場合であっても、本実施形態の制御システムにおいては図6にて点線矢印で示す経路C1に沿って状態データの送受信を行うことが可能である。具体的には、制御装置100Aには、自装置の状態を示す状態データを通信線LA、ネットワーク装置200A、等値化ケーブル400、ネットワーク装置200B、および通信線LBを介して制御装置100Bに送信する処理を実行させ、制御装置100Bには、自装置の状態を示す状態データを、通信線LB、ネットワーク装置200B、等値化ケーブル400、ネットワーク装置200Aおよび通信線LAを介して制御装置100Aに送信する処理を実行させるようにすれば良い。 On the other hand, in this embodiment, the means for mediating data communication between the active system and the standby system is duplexed by the equalization cable 40 and the equalization cable 400. Even if the disconnection occurs, communication for monitoring each other's state will not be disabled. For example, even when the equalization cable 40 is disconnected at the position indicated by the symbol B in FIG. 6, the control system according to the present embodiment is in a state along the path C1 indicated by the dotted arrow in FIG. Data can be sent and received. Specifically, the control device 100A transmits state data indicating the state of the device itself to the control device 100B via the communication line LA, the network device 200A, the equalization cable 400, the network device 200B, and the communication line LB. The control device 100B sends the status data indicating the status of its own device to the control device 100A via the communication line LB, the network device 200B, the equalization cable 400, the network device 200A, and the communication line LA. What is necessary is just to make it perform the process to transmit.
 なお、以上説明した実施形態では、1台の制御装置に1台のネットワーク装置が接続されていたが、図7に示すように、1台の制御装置に複数台のネットワーク装置を接続するように変形しても良い。図7に示すシステムには1台の制御装置に2台のネットワーク装置が接続されている。従来の冗長化制御システムでは、制御装置に複数のネットワーク装置を接続すると、制御装置に転送される監視データのデータ量が増加し、制御装置本来の演算の実行に支障が生じたり、稼働系/待機系の切り替えスピードが低下するなどの不具合が発生したが、本実施形態では、このような不具合が発生することはないからである。 In the embodiment described above, one network device is connected to one control device. However, as shown in FIG. 7, a plurality of network devices are connected to one control device. It may be deformed. In the system shown in FIG. 7, two network devices are connected to one control device. In a conventional redundant control system, when a plurality of network devices are connected to a control device, the amount of monitoring data transferred to the control device increases, resulting in problems in the execution of calculations inherent in the control device, This is because problems such as a decrease in the standby system switching speed have occurred, but in the present embodiment, such problems do not occur.
 図7に示すように、1台の制御装置に複数台のネットワーク装置200が接続される場合であっても、ネットワーク装置200Aおよびネットワーク装置200Bの各々により制御装置100Aおよび制御装置100Bの各々へ転送される監視データの等値化は、等値化ケーブル400Aを介した通信によってこれらネットワーク装置によって実行され、ネットワーク装置200Cおよびネットワーク装置200Dの各々を介して制御装置100Aおよび制御装置100Bの各々へ転送される監視データの等値化は、等値化ケーブル400Bを介した通信によってこれらネットワーク装置によって実行される。このため、1台の制御装置に複数台のネットワーク装置を接続することで制御装置に転送される監視データのデータ量が増加したとしても、その等値化の分だけ当該制御装置の処理負荷が高くなることはないのである。 As shown in FIG. 7, even when a plurality of network devices 200 are connected to one control device, the network device 200A and the network device 200B respectively transfer to each of the control device 100A and the control device 100B. The equalization of the monitoring data to be performed is performed by these network devices by communication via the equalization cable 400A, and transferred to each of the control device 100A and the control device 100B via each of the network device 200C and the network device 200D. The equalization of the monitoring data to be performed is executed by these network devices by communication via the equalization cable 400B. For this reason, even if the amount of monitoring data transferred to a control device increases by connecting a plurality of network devices to a single control device, the processing load of the control device is increased by the equalization. It will not be high.
(B:第2実施形態)
 上記第1実施形態では、等値化ケーブル400を介した通信によりネットワーク装置200Aとネットワーク装置200Bに監視データの等値化を行わせる場合について説明した。しかし、このような態様では等値化ケーブル400の切断が発生すると、監視データの等値化を行えなくなるといった問題がある。本実施形態のネットワーク装置200A´およびネットワーク装置200B´は、この問題の解決を目的としたものである。本実施形態のネットワーク装置200A´とネットワーク装置200B´は、等値化ケーブル400を介したデータ通信が可能であるか否かを判定し、可能であるとの判定結果が得られた場合には等値化ケーブル400を介したデータ通信により監視データの等値化を行う。これに対して、不能であるとの判定結果が得られた場合には、ネットワーク装置200A´とネットワーク装置200B´は、制御装置100A、等値化ケーブル40および制御装置100Bを介した通信により監視データの等値化を行う。以下、ネットワーク装置200A´とネットワーク装置200B´とを区別する必要がない場合には、「ネットワーク装置200´」と表記する。
(B: Second embodiment)
In the first embodiment, the case has been described in which the network device 200A and the network device 200B are made to equalize the monitoring data by communication via the equalization cable 400. However, in such an aspect, there is a problem that when the equalization cable 400 is disconnected, the monitoring data cannot be equalized. The network device 200A ′ and the network device 200B ′ of the present embodiment are intended to solve this problem. The network device 200A ′ and the network device 200B ′ of the present embodiment determine whether or not data communication via the equalization cable 400 is possible, and if a determination result indicating that it is possible is obtained The monitoring data is equalized by data communication via the equalization cable 400. On the other hand, when a determination result that it is impossible is obtained, the network device 200A ′ and the network device 200B ′ are monitored by communication via the control device 100A, the equalization cable 40, and the control device 100B. Perform data equalization. Hereinafter, when it is not necessary to distinguish between the network device 200A ′ and the network device 200B ′, the network device 200A ′ is referred to as “network device 200 ′”.
 図8は、ネットワーク装置200´の構成例を示す図である。図8と図2とを対比すれば明らかように、ネットワーク装置200´の構成は、中継制御プログラム2542に代えて中継制御プログラム2542´が不揮発性記憶部254に記憶されている点がネットワーク装置200の構成と異なる。中継制御プログラム2542´は、中継処理2542a、等値化処理2542b´、および判定処理2542cを制御部210に実行させるプログラムである。判定処理2542cは、中継装置間通信手段、すなわち等値化ケーブル400を介した通信の可否を判定する処理である。等値化処理2542b´は、判定処理2542cにて通信可能と判定された場合には監視データを等値化するための通信を中継装置間通信手段を介して行う一方、通信不能と判定された場合には制御装置間通信手段、すなわち等値化ケーブル40を介して当該通信を行う処理である。つまり、中継制御プログラム2542´にしたがって作動している制御部210は、中継処理2542aを実行する中継手段、判定処理2542cを実行する判定手段、および等値化処理2542b´を実行する等値化手段として機能する。 FIG. 8 is a diagram illustrating a configuration example of the network device 200 ′. As apparent from a comparison between FIG. 8 and FIG. 2, the configuration of the network device 200 ′ is that the relay control program 2542 ′ is stored in the nonvolatile storage unit 254 instead of the relay control program 2542. The configuration is different. The relay control program 2542 ′ is a program that causes the control unit 210 to execute the relay process 2542a, the equalization process 2542b ′, and the determination process 2542c. The determination process 2542c is a process of determining whether or not communication via the inter-relay device communication unit, that is, the equalization cable 400 is possible. The equalization processing 2542b ′ determines that communication is not possible while performing communication for equalizing the monitoring data via the inter-relay device communication means when the determination processing 2542c determines that communication is possible. In this case, the communication is performed through the communication device between the control devices, that is, the equalization cable 40. That is, the control unit 210 operating according to the relay control program 2542 ′ includes a relay unit that executes the relay process 2542a, a determination unit that executes the determination process 2542c, and an equalization unit that executes the equalization process 2542b ′. Function as.
 図9は、ネットワーク装置200´を含む制御システムの概略構成および動作例を示す図である。なお、図9では、ネットワーク装置は「NW装置」と略記されている。また、図9では、本実施形態の特徴が明確となるよう、ネットワーク装置200´が判定手段を有する点が明示されている。図9にて符号Bの示す位置において等値化ケーブル400に断線が発生すると、ネットワーク装置200A´とネットワーク装置200B´は、等値化ケーブル400を介した通信を行えなくなる。この場合、ネットワーク装置200A´とネットワーク装置200B´は、図9にて点線矢印で示す通信経路C2に沿ったデータ通信を行い、監視データの等値化を行う。より詳細に説明すると、ネットワーク装置200A´は、IOネットワーク30Aから受信した監視データを通信線LA、制御装置100A、等値化ケーブル40、制御装置100Bおよび通信線LBをこの順に解する転送経路に沿ってネットワーク装置200B´に送信する。ネットワーク装置200B´は、上記監視データを受信し、この監視データで自装置の該当監視データを上書きし、等値化完了通知を返信する。このようにしてネットワーク装置200B´から返信された等値化完了通知は、通信線LB、制御装置100B、等値化ケーブル40、制御装置100Aおよび通信線LAをこの順に辿ってネットワーク装置200A´に転送され、監視データの等値化が完了する。 FIG. 9 is a diagram illustrating a schematic configuration and an operation example of a control system including the network device 200 ′. In FIG. 9, the network device is abbreviated as “NW device”. In addition, in FIG. 9, it is clearly shown that the network device 200 ′ has a determination unit so that the feature of the present embodiment becomes clear. When the disconnection occurs in the equalization cable 400 at the position indicated by the symbol B in FIG. 9, the network device 200A ′ and the network device 200B ′ cannot communicate via the equalization cable 400. In this case, the network device 200A ′ and the network device 200B ′ perform data communication along the communication path C2 indicated by the dotted arrow in FIG. 9, and equalize the monitoring data. More specifically, the network device 200A ′ uses the monitoring data received from the IO network 30A as a transfer path that solves the communication line LA, the control device 100A, the equalization cable 40, the control device 100B, and the communication line LB in this order. To the network device 200B ′. The network device 200B ′ receives the monitoring data, overwrites the corresponding monitoring data of the own device with the monitoring data, and returns an equalization completion notification. The equalization completion notification sent back from the network device 200B ′ in this way follows the communication line LB, the control device 100B, the equalization cable 40, the control device 100A, and the communication line LA in this order to the network device 200A ′. Is transferred, and the equalization of the monitoring data is completed.
 本実施形態において制御装置100Aおよび制御装置100Bは、等値化のためのデータ通信を仲介する単なるデータ伝送路として機能するだけであるから、従来の冗長化制御システムにおける場合に比較してこれら制御装置にかかる処理負荷を軽減できる。上記判定処理2542cの具体例としては、等値化ケーブル400を介して相手装置へpingを送信し、所定時間内に応答があれば通信可能と判定し、応答がなれば通信不能と判定する処理が挙げられる。なお、制御装置100Aと制御装置100Bとの間の状態データの送受信についても、等値化ケーブル40を介したデータ通信の可否に応じて伝送経路を切り替えるようにしても良い。具体的には、制御装置100Aおよび制御装置100Bの各々に、等値化ケーブル40を介したデータ通信が可能であれば等値化ケーブル40を介して他方の制御装置へ状態データを送信し、不可能であれば等値化ケーブル400を介して他方の制御装置へ状態データを送信する処理を実行させても良い。 In the present embodiment, the control device 100A and the control device 100B function only as a data transmission path that mediates data communication for equalization, so that these controls are performed as compared with the conventional redundant control system. The processing load on the apparatus can be reduced. As a specific example of the determination process 2542c, a process of transmitting a ping to the partner apparatus via the equalization cable 400, determining that communication is possible if there is a response within a predetermined time, and determining that communication is impossible if there is a response Is mentioned. Note that the transmission / reception of state data between the control device 100A and the control device 100B may be switched according to the availability of data communication via the equalization cable 40. Specifically, if data communication via the equalization cable 40 is possible to each of the control device 100A and the control device 100B, the status data is transmitted to the other control device via the equalization cable 40, If this is not possible, processing for transmitting status data to the other control device via the equalization cable 400 may be executed.
 監視データの等値化のためのデータ通信を等値化ケーブル400経由で行うのか、それとも等値化ケーブル40経由で行うのかの切り替えを、等値化ケーブル400を介したデータ通信の可否に応じて切り替えるのではなく、制御装置の処理負荷に応じて切り替える態様であっても良い。例えば、ネットワーク装置200´にその接続先の制御装置の処理負荷を計測させ、計測された処理負荷が所定の閾値未満である場合には、稼動系および待機系の各制御装置および等値化ケーブル40経由のデータ通信により監視データの等値化を行い、制御装置の処理負荷が所定の閾値以上である場合には等値化ケーブル400経由のデータ通信により監視データの等値化を行う処理を、稼動系および待機系の各ネットワーク装置の制御部に実行させるようにしても良い。ここで、制御装置の処理負荷の具体的な計測方法としては、制御装置におけるCPU使用率やメモリ使用率等を表すデータを接続先の制御装置から取得する処理をネットワーク装置200に実行させる態様が考えられる。さらに、等値化ケーブル400を介したデータ通信の可否と制御装置の処理負荷とを併用して監視データの転送経路を切り替えるようにしても良い。具体的には、制御装置の処理負荷が所定の閾値以上であり、かつ等値化ケーブル400を介した通信が可能と判定された場合には、等値化ケーブル400を介した通信により監視データの等値化を行い、その他の場合、すなわち、制御装置の処理負荷が所定の閾値未満である場合、または処理負荷が所定の閾値以上であるものの等値化ケーブル400を介した通信が不能の場合には、等値化ケーブル40を介した通信により監視データの等値化を行うようにすれば良い。 Switching between data communication for equalization of monitoring data via the equalization cable 400 or via the equalization cable 40 depends on whether data communication via the equalization cable 400 is possible. Instead of switching, the mode may be switched according to the processing load of the control device. For example, when the network device 200 ′ measures the processing load of the connected control device, and the measured processing load is less than a predetermined threshold, each control device and equalization cable of the active system and the standby system The monitoring data is equalized by data communication via 40, and when the processing load of the control device is equal to or greater than a predetermined threshold, the monitoring data is equalized by data communication via the equalization cable 400. The control unit of each of the active and standby network devices may be executed. Here, as a specific method for measuring the processing load of the control device, there is an aspect in which the network device 200 executes processing for acquiring data representing the CPU usage rate, the memory usage rate, and the like in the control device from the connected control device. Conceivable. Furthermore, the transfer route of the monitoring data may be switched using both the availability of data communication via the equalization cable 400 and the processing load of the control device. Specifically, when it is determined that the processing load of the control device is equal to or greater than a predetermined threshold and communication via the equalization cable 400 is possible, the monitoring data is transmitted via communication via the equalization cable 400. In other cases, that is, when the processing load of the control device is less than the predetermined threshold value, or the processing load is equal to or higher than the predetermined threshold value, communication via the equalization cable 400 is impossible. In this case, the monitoring data should be equalized by communication via the equalization cable 40.
 また、監視データの送信元となるIOスレーブ装置毎に、監視データの等値化を制御装置側で行うのか、それとも中継装置側、すなわちネットワーク装置側で行うのかの振り分けパターンを予め定めて置き、監視データの等値化に関する処理負荷を制御装置とネットワーク装置との間で分散することも考えられる。例えば、IOスレーブ装置S1から送信された監視データについては制御装置側で等値化を行い、IOスレーブ装置S2から送信された監視データについてはネットワーク装置側で監視を行う、といった具合である。このようなことは、各IOスレーブ装置の通信アドレスに対応付けて、制御装置側とネットワーク装置側の何れで監視データの等値化を行うのかを示すフラグを格納した振り分けパターンテーブルを制御装置100Aおよび100Bとネットワーク装置200A´および200B´に予め記憶させておく。そして、ネットワーク装置200A´および200B´には当該振り分けテーブルにおいて中継装置側で等値化を行うと定められた監視データについて等値化を行わせ、制御装置100Aおよび100Bには当該振り分けテーブルにおいて制御装置側で等値化を行うと定められた監視データについて等値化を行わせるようにすれば良い。また、上記振り分けテーブルを制御装置の処理負荷に応じて複数用意しておき、高い処理負荷に対応するテーブルほど、中継装置側で等値化を行う監視データが多くなる格納内容としておいても良い。 In addition, for each IO slave device that is the transmission source of the monitoring data, the distribution pattern of whether the monitoring data is equalized on the control device side or on the relay device side, that is, on the network device side is determined in advance, It is also conceivable to distribute the processing load related to the equalization of the monitoring data between the control device and the network device. For example, the monitoring data transmitted from the IO slave device S1 is equalized on the control device side, and the monitoring data transmitted from the IO slave device S2 is monitored on the network device side. This is because the control device 100A stores a distribution pattern table that stores a flag indicating whether the control device side or the network device side equalizes the monitoring data in association with the communication address of each IO slave device. And 100B and network devices 200A ′ and 200B ′. Then, the network devices 200A ′ and 200B ′ perform equalization on the monitoring data determined to be equalized on the relay device side in the distribution table, and the control devices 100A and 100B perform control in the distribution table. What is necessary is just to make it equalize about the monitoring data determined to equalize on the apparatus side. Also, a plurality of distribution tables may be prepared in accordance with the processing load of the control device, and the stored content in which the monitoring data to be equalized on the relay device side increases as the table corresponding to the higher processing load. .
(C:第3実施形態)
 図10は、本発明の第3実施形態の通信システム1Cの構成例を示す図である。
 この通信システム1Cも産業施設内に敷設される制御システムである。図10では、図1におけるものと同一の要素には同一の符号が付されている。図10と図1を対比すれば明らかように、通信システム1Cは、以下の3つの点で通信システム1Aと異なる。第1に、制御装置100Aおよび制御装置100Bに替えて制御装置100A´および制御装置100B´を設けた点である。第2にネットワーク装置200Aおよびネットワーク装置200Bに代えてネットワーク装置200A´´およびネットワーク装置200B´´を設けた点である。そして、第3にネットワーク装置200A´´にはIOネットワーク30Cが接続されている点である。
(C: Third embodiment)
FIG. 10 is a diagram illustrating a configuration example of a communication system 1C according to the third embodiment of this invention.
This communication system 1C is also a control system laid in an industrial facility. 10, the same elements as those in FIG. 1 are denoted by the same reference numerals. As is clear from a comparison between FIG. 10 and FIG. 1, the communication system 1C is different from the communication system 1A in the following three points. First, a control device 100A ′ and a control device 100B ′ are provided in place of the control device 100A and the control device 100B. Second, a network device 200A ″ and a network device 200B ″ are provided instead of the network device 200A and the network device 200B. Thirdly, the IO network 30C is connected to the network device 200A ″.
 IOネットワーク30Cには、IOスレーブ装置S1´~Sn´が接続されている。IOネットワーク30Cは、IOスレーブ装置S1´~Sn´とネットワーク装置200A´´の間のデータ通信を仲介する。前述したように、IOスレーブ装置S1~Snから送信されたデータを制御装置へ伝送するネットワークはIOネットワーク30AおよびIOネットワーク30Bにより二重化されていたが、IOスレーブ装置S1´~Sn´から送信されたデータを制御装置へ伝送するネットワークについてはこのような二重化は施されていない。つまり、ネットワーク装置200A´´は二重化されたネットワークと二重化されていないネットワークに接続されている。以下では、二重化されていないネットワークを「シングルネットワーク」と呼ぶ。 The IO slave devices S1 ′ to Sn ′ are connected to the IO network 30C. The IO network 30C mediates data communication between the IO slave devices S1 ′ to Sn ′ and the network device 200A ″. As described above, the network that transmits the data transmitted from the IO slave devices S1 to Sn to the control device is duplexed by the IO network 30A and the IO network 30B, but is transmitted from the IO slave devices S1 ′ to Sn ′. Such duplication is not applied to the network for transmitting data to the control device. That is, the network device 200A ″ is connected to a duplex network and a non-duplex network. Hereinafter, a network that is not duplicated is referred to as a “single network”.
 ネットワーク装置200A´´は第1実施形態におけるネットワーク装置200Aと同様にIOネットワーク30Aと制御装置100A´との間のデータ通信を中継する。ネットワーク装置200B´´も第1実施形態におけるネットワーク装置200Bと同様にIOネットワーク30Bと制御装置100B´との間のデータ通信を中継する。また、ネットワーク装置200A´´とネットワーク装置200B´´は、第2実施形態におけるネットワーク装置200A´およびネットワーク装置200B´と同様に、等値化ケーブル400を介したデータ通信により監視データの等値化を行う。ただし、ネットワーク装置200A´´とネットワーク装置200B´´は、接続先の制御装置が稼働系であるか待機系であるかとは無関係に互いの状態監視により稼働系/待機系の切り替えを行う点がネットワーク装置200と異なる。 The network device 200A ″ relays data communication between the IO network 30A and the control device 100A ′ in the same manner as the network device 200A in the first embodiment. Similarly to the network device 200B in the first embodiment, the network device 200B ″ relays data communication between the IO network 30B and the control device 100B ′. Further, the network device 200A ″ and the network device 200B ″ can equalize monitoring data by data communication via the equalization cable 400, similarly to the network device 200A ′ and the network device 200B ′ in the second embodiment. I do. However, the network device 200A ″ and the network device 200B ″ perform switching between the active system and the standby system by monitoring each other regardless of whether the connection destination control device is the active system or the standby system. Different from the network device 200.
 これに加えて、ネットワーク装置200A´´とネットワーク装置200B´´は、IOネットワーク30Cから受信した監視データについても上記等値化と同様の処理を行う。すなわち、ネットワーク装置200A´´の制御部は、IOネットワーク30Cから受信した監視データを等値化ケーブル400を介してネットワーク装置200B´´へ送信し、ネットワーク装置200B´´の制御部は当該監視データを監視データバッファに書き込む。そして、ネットワーク装置200A´´とネットワーク装置200B´´の各々は、IOネットワーク30Cから送信されてきた監視データを各々の接続先の制御装置へ送信する。 In addition to this, the network device 200A ″ and the network device 200B ″ perform the same processing as the above equalization on the monitoring data received from the IO network 30C. That is, the control unit of the network device 200A ″ transmits the monitoring data received from the IO network 30C to the network device 200B ″ via the equalization cable 400, and the control unit of the network device 200B ″ transmits the monitoring data. Is written to the monitoring data buffer. Then, each of the network device 200A ″ and the network device 200B ″ transmits the monitoring data transmitted from the IO network 30C to each connection destination control device.
 制御装置100A´と制御装置100B´は、IOスレーブ装置S1~Snから送信されたデータの受信を契機として、そのデータを使用した第1の演算および当該第1の演算の演算結果に応じた機器の制御を実行する。これに加えて、稼動系の制御装置は、IOスレーブ装置S1´~Sn´から送信されたデータの受信を契機として、そのデータを使用した第2の演算を実行する。つまり、本実施形態における稼動系の制御装置は、IOスレーブ装置S1~Snからデータを収集して第1の演算を行う役割と、IOスレーブ装置S1´~Sn´からデータを収集して第2の演算を行う役割とを兼ねている。 The control device 100A ′ and the control device 100B ′ are triggered by the reception of data transmitted from the IO slave devices S1 to Sn, and the devices according to the first calculation using the data and the calculation result of the first calculation Execute the control. In addition, the active control device executes a second calculation using the data, triggered by reception of data transmitted from the IO slave devices S1 ′ to Sn ′. That is, the active control device in the present embodiment collects data from the IO slave devices S1 to Sn and performs the first calculation, and collects data from the IO slave devices S1 ′ to Sn ′ and performs the second operation. It also has the role of performing the operation.
 冗長化制御システムにおいて二重化されたネットワーク経由でIOスレーブ装置からデータを収集し何らかの演算を行う制御装置に、シングルネットワーク経由でデータを収集して他の演算を実行する役割を兼ねさせることができれば、二重化ネットワーク用とシングルネットワーク用のシステムを各々別個に構築する必要がなく、システムの開発運用コストを低減できると期待されるのであるが、従来の冗長化制御システムではこのような期待に応えることは難しかった。その理由は以下の通りである。 If the control device that collects data from the IO slave device via the duplexed network in the redundant control system and performs some operation can also serve as a role to collect data via the single network and execute other operations, There is no need to construct separate systems for the redundant network and single network, and it is expected that the system development and operation costs can be reduced. However, the conventional redundant control system can meet such expectations. was difficult. The reason is as follows.
 例えば、図18におけるネットワーク装置20Aにのみシングルネットワークが接続されていたとする。この場合、ネットワーク装置20Aから制御装置10Aには、シングルネットワークから受信したデータと二重化されたネットワークから受信したデータとが与えられる一方、ネットワーク装置20Bから制御装置10Bには、二重化されたネットワークから受信したデータのみが与えられる。制御装置10Aと制御装置10Bに与えられるデータに不一致があると、冗長化制御システムのなかにはエラーと判定するものもあり、このようなシステムでは、そもそも上記のような接続形態を採用することはできない。 For example, assume that a single network is connected only to the network device 20A in FIG. In this case, the data received from the single network and the data received from the duplicated network are given from the network device 20A to the control device 10A, while the data received from the duplicated network is received from the network device 20B to the control device 10B. Only the processed data is given. If there is a discrepancy between the data given to the control device 10A and the control device 10B, some redundant control systems determine that there is an error. In such a system, the above connection form cannot be adopted in the first place. .
 また、上記のような不一致がエラーと判定されない場合であっても、上記のような接続形態において稼働系の制御装置の故障等により稼動系/待機系の切り替えが発生すると、切り替え後の稼動系の制御装置にはシングルネットワークからの受信データが与えられることはなく、シングルネットワークから送信されてくるデータの収集およびそのデータを用いた演算を継続することはできなくなる。つまり、従来の冗長化制御システムに含まれる二重化された制御装置の一方にシングルネットワーク経由のデータを与えて所定の演算を行わせることが仮にできたとしても、演算の安定実行を保証できないのである。 Even if the above mismatch is not determined to be an error, if the active system / standby system is switched due to a failure of the active system control device or the like in the above connection mode, the active system after the switching Data received from the single network is not given to the control device, and the collection of data transmitted from the single network and the calculation using the data cannot be continued. That is, even if one of the redundant control devices included in the conventional redundant control system can be given data via a single network to perform a predetermined operation, stable operation cannot be guaranteed. .
 これに対して本実施形態によれば、制御装置についての稼動系/待機系の切り替えが発生しても、切り替え後の稼動系の制御装置には引き続きシングルネットワークから受信した監視データが与えられ、当該監視データの収集およびそのデータを用いて演算を何ら問題なく継続することができる。例えば、図10に示す通信システム1Cにおいて制御装置100A´から制御装置100B´に稼働系が切り替わったとしても、ネットワーク装置200A´´は依然として稼働系の中継装置であり、ネットワーク装置200B´´は依然として待機系の中継装置である。このため、IOスレーブ装置S1´~Sn´の各々から送信された監視データは、IOネットワーク30C→ネットワーク装置200A´´→等値化ケーブル400→ネットワーク装置200B´´→制御装置100B´といった具合に制御装置100B´へ伝送される。つまり、本実施形態によれば、冗長化制御システムにおいて二重化されたネットワーク経由でIOスレーブ装置からデータを収集し何等かの演算を行う制御装置にシングルネットワーク経由でデータを収集して他の演算を実行する役割を兼ねさせることが可能になり、二重化ネットワーク用とシングルネットワーク用のシステムを各々別個に構築する場合に比較してシステムの開発運用コストを低減させることができる。なお、ネットワーク装置についての稼働系/待機系の切り替えを制御装置についての稼働系/待機系の切り替えに従属させる場合には、シングルネットワークに接続されたネットワーク装置には、当該ネットワーク装置が稼働系であるか否かを問わずに当該シングルネットワークを介して受信した監視データを中継装置間通信手段或いは制御装置間通信手段を介して他方のネットワーク装置へ転送し、当該監視データの等値化を行わせる処理を実行させるようにすれば良い。 On the other hand, according to the present embodiment, even if the active / standby switching of the control device occurs, the monitoring data received from the single network is continuously given to the active control device after the switching, The monitoring data can be collected and the calculation can be continued using the data without any problem. For example, even if the active system is switched from the control device 100A ′ to the control device 100B ′ in the communication system 1C shown in FIG. 10, the network device 200A ″ is still an active relay device, and the network device 200B ″ is still This is a standby relay device. Therefore, the monitoring data transmitted from each of the IO slave devices S1 ′ to Sn ′ is, for example, IO network 30C → network device 200A ″ → equalization cable 400 → network device 200B ″ → control device 100B ′. It is transmitted to the control device 100B ′. In other words, according to the present embodiment, data is collected from the IO slave device via the redundant network in the redundant control system, and the control device that performs some computation collects the data via the single network and performs other computations. As a result, the system development cost can be reduced as compared with the case where the duplex network system and the single network system are constructed separately. When switching the active / standby system for a network device is subordinate to switching the active / standby system for a control device, the network device connected to the single network is the active network device. Regardless of whether or not there is, the monitoring data received via the single network is transferred to the other network device via the inter-relay device communication means or the control device communication means, and the monitoring data is equalized. It is sufficient to execute the processing to be executed.
(D:第4実施形態)
 図11は、本発明の第4実施形態の通信システム1Dの構成例を示す図である。
 この通信システム1Dも産業施設内に敷設された制御システムである。図11では、図1におけるものと同一の要素には同一の符号が付されている。図11ではIOネットワーク30Aおよび30Bに対するIOスレーブ装置S1~S3の詳細な接続態様が図示されており、この点が図1と異なる。図11に示すように、IOスレーブ装置Sn(n=1~3)の各々はIOマスタMAnを介してIOネットワーク30Aに接続されており、IOマスタMBnを介してIOネットワーク30Bに接続されている。なお、図11では、IOマスタは「IOM」と略記されている。IOマスタMAnは、IOスレーブ装置Snの出力する監視データをIOネットワーク30Aに送出する。IOマスタMBnは、IOスレーブ装置Snの出力する監視データをIOネットワーク30Bに送出する。なお、図1では、IOスレーブ装置S1~Snの詳細な接続形態の図示は省略されていたが、図11におけるものと同一である。
(D: 4th Embodiment)
FIG. 11 is a diagram illustrating a configuration example of a communication system 1D according to the fourth embodiment of the present invention.
This communication system 1D is also a control system laid in an industrial facility. In FIG. 11, the same elements as those in FIG. 1 are denoted by the same reference numerals. FIG. 11 shows a detailed connection mode of the IO slave devices S1 to S3 to the IO networks 30A and 30B, which is different from FIG. As shown in FIG. 11, each of the IO slave devices Sn (n = 1 to 3) is connected to the IO network 30A via the IO master MAn, and is connected to the IO network 30B via the IO master MBn. . In FIG. 11, the IO master is abbreviated as “IOM”. The IO master MAn sends the monitoring data output from the IO slave device Sn to the IO network 30A. The IO master MBn sends the monitoring data output from the IO slave device Sn to the IO network 30B. In FIG. 1, the detailed connection configuration of the IO slave devices S1 to Sn is omitted, but is the same as that in FIG.
 図11と図1を対比すれば明らかように、通信システム1Dは、ネットワーク装置200Aおよびネットワーク装置200Bに代えてネットワーク装置200A´´´およびネットワーク装置200B´´´を設けた点が第1実施形態の通信システム1Aと異なる。本実施形態のネットワーク装置200A´´´およびネットワーク装置200B´´´も、一方は稼働系として振る舞い、他方は待機系として振る舞う。本実施形態では、前述した第1実施形態と同様に、ネットワーク装置200A´´´およびネットワーク装置200B´´´のうち、稼働系の制御装置100に接続されている方が稼働系として振る舞う。以下では、第1実施形態についての説明と同様にネットワーク装置200A´´´とネットワーク装置200B´´´とを区別する必要がない場合には、「ネットワーク装置200´´´」と表記する。 As is clear from a comparison between FIG. 11 and FIG. 1, the communication system 1D is provided with a network device 200A ″ and a network device 200B ″ instead of the network device 200A and the network device 200B in the first embodiment. Is different from the communication system 1A. One of the network device 200A "" and the network device 200B "" according to the present embodiment also behaves as an active system, and the other behaves as a standby system. In the present embodiment, as in the first embodiment described above, of the network device 200A ″ and the network device 200B ″, the one connected to the active control device 100 behaves as an active system. Hereinafter, as in the description of the first embodiment, when it is not necessary to distinguish between the network device 200A ″ and the network device 200B ″, the network device 200A ″ is described as “network device 200 ″”.
 図18に示す従来の冗長化制御システムでは、稼働系の制御装置に何らかの障害が発生した場合は勿論、ネットワーク装置を介して稼働系の制御装置に接続されているIOネットワークや当該IOネットワークにIOスレーブ装置を接続するIOマスタに何らかの障害が発生した場合も稼働系/待機系の切り替えを行う必要があった。上記IOネットワークやIOマスタに障害が発生すると、そのIOネットワークまたはIOマスタ経由の監視データは稼働系の制御装置に届かなくなるからである。これに対して本実施形態では、ネットワーク装置200´´´に本実施形態特有の処理を実行させることで、上記IOネットワークやIOマスタに何らかの障害が発生したとしても、稼働系/待機系の切り替えを行うことなく制御対象装置の制御を継続できるように構成されており、この点に本実施形態の特徴がある。以下、本実施形態の特徴を顕著に示すネットワーク装置200´´´について説明する。 In the conventional redundant control system shown in FIG. 18, not only when a failure occurs in the active control device, but also an IO network connected to the active control device via the network device or the IO network is connected to the IO network. Even when some failure occurs in the IO master to which the slave device is connected, it is necessary to switch between the active system and the standby system. This is because, when a failure occurs in the IO network or the IO master, monitoring data via the IO network or the IO master cannot reach the active control device. On the other hand, in this embodiment, even if a failure occurs in the IO network or the IO master by causing the network device 200 ″ to execute processing unique to the present embodiment, switching between the active system and the standby system. It is comprised so that control of a control object apparatus can be continued, without performing this, The feature of this embodiment exists in this point. Hereinafter, the network device 200 ′ ″ that clearly shows the features of the present embodiment will be described.
 図12は、ネットワーク装置200´´´の構成例を示す図である。図12では、図2におけるものと同一の構成要素には同一の符号が付されている。図12と図2を対比すれば明らかように、ネットワーク装置200´´´の構成は、中継制御プログラム2542に代えて中継制御プログラム2542´´´が不揮発性記憶部254に記憶されている点がネットワーク装置200の構成と異なる。中継制御プログラム2542´´´は、等値化処理2542bに代えて等値化送信処理2542b1および等値化受信処理2542b2を制御部210に実行させる点が第1実施形態の中継制御プログラム2542と異なる。 FIG. 12 is a diagram illustrating a configuration example of the network device 200 ′ ″. In FIG. 12, the same components as those in FIG. 2 are denoted by the same reference numerals. As is clear from comparison between FIG. 12 and FIG. 2, the configuration of the network device 200 ″ ″ is that the relay control program 2542 ″ ″ is stored in the nonvolatile storage unit 254 instead of the relay control program 2542. Different from the configuration of the network device 200. The relay control program 2542 ″ ″ differs from the relay control program 2542 of the first embodiment in that the control unit 210 executes an equalization transmission process 2542 b 1 and an equalization reception process 2542 b 2 instead of the equalization process 2542 b. .
 ネットワーク装置200´´´の制御部210は、ネットワーク装置200´´´の電源(図示略)の投入或いはリセットを契機として不揮発性記憶部254から揮発性記憶部252へ中継制御プログラム2542´´´を読み出し、その実行を開始する。図13は、ネットワーク装置200´´´の制御部210が中継制御プログラム2542´´´にしたがって実行する動作を説明するための図である。図13では、図4におけるものと同一の処理には同一の符号が付されている。中継制御プログラム2542´´´にしたがって作動している制御部210は、前述した第1実施形態における制御部210と同様に第1通信I/F部220内の通信バッファへの監視データの書き込みを契機として、すなわち接続先のIOネットワーク30からの監視データの受信を契機として、中継処理2542aを実行する。前述したように中継処理2542aでは、制御部210は第1通信I/F部220内の通信バッファから監視データを読み出し(図13:S100)、監視データバッファ2522へ当該監視データを書き込む(図13:S110)。なお、監視データバッファ2522への監視データの書き込みを行う際に、等値化済でないことを示す第1の値をセットしフラグを付与して監視データバッファ2522に書き込む点も第1実施形態と同様である。 The control unit 210 of the network device 200 ″ ″ is a relay control program 2542 ″ ″ from the nonvolatile storage unit 254 to the volatile storage unit 252 when the power (not shown) of the network device 200 ″ ″ is turned on or reset. And start executing. FIG. 13 is a diagram for explaining an operation executed by the control unit 210 of the network device 200 ″ ″ according to the relay control program 2542 ″ ″. In FIG. 13, the same processes as those in FIG. 4 are denoted by the same reference numerals. The control unit 210 operating according to the relay control program 2542 ″ ″ writes the monitoring data to the communication buffer in the first communication I / F unit 220 in the same manner as the control unit 210 in the first embodiment described above. The relay processing 2542a is executed as a trigger, that is, triggered by reception of monitoring data from the connection destination IO network 30. As described above, in the relay process 2542a, the control unit 210 reads the monitoring data from the communication buffer in the first communication I / F unit 220 (FIG. 13: S100) and writes the monitoring data to the monitoring data buffer 2522 (FIG. 13). : S110). Note that when monitoring data is written to the monitoring data buffer 2522, the first value indicating that the equalization has not been performed is set, a flag is added, and the monitoring data buffer 2522 is written to the first embodiment. It is the same.
 図13と図4とを対比すれば明らかように、等値化送信処理2542b1と等値化受信処理2542b2との組み合わせは、等値化処理2542bに対応する。第1実施形態における等値化処理2542bの実行契機は、稼働系のネットワーク装置と待機系のネットワーク装置とで異なっていた。例えば、稼働系においては等値化済でないことを示すフラグを付与された監視データの監視データバッファ2522への書き込みを契機として等値化処理2542bが実行され、待機系においては等値化ケーブル400を介して監視データを受信したことを契機として等値化処理2542bが実行された。これに対して等値化送信処理2542b1の実行契機は稼働系のネットワーク装置と待機系のネットワーク装置とで違いはなく、等値化受信処理2542b2の実行契機にも違いはない。 As is clear from comparison between FIG. 13 and FIG. 4, the combination of the equalization transmission process 2542b1 and the equalization reception process 2542b2 corresponds to the equalization process 2542b. The execution trigger of the equalization processing 2542b in the first embodiment is different between the active network device and the standby network device. For example, the equalization processing 2542b is executed in response to the writing of the monitoring data to which the flag indicating that the equalization is not completed in the active system to the monitoring data buffer 2522, and the equalization cable 400 is performed in the standby system. The equalization processing 2542b is executed when the monitoring data is received via the network. In contrast, the execution timing of the equalization transmission processing 2542b1 is not different between the active network device and the standby network device, and the execution timing of the equalization reception processing 2542b2 is not different.
 より詳細に説明すると、ネットワーク装置200´´´の制御部210は、稼働系として動作しているか否かを問わず、等値化済でないことを示すフラグを付与された監視データの監視データバッファ2522への書き込みを契機として等値化送信処理2542b1を実行する。等値化送信処理2542b1では、制御部210は監視データバッファ2522から等値化済でないことを示すフラグを付与された監視データを読み出し(図13:S120)、当該監視データを第3通信I/F部240に与え(図13:S130)、他方のネットワーク装置へ転送する。このため、本実施形態では、ネットワーク装置200A´´´がIOネットワーク30Aから受信した監視データAは等値化ケーブル400を介してネットワーク装置200B´´´に転送され、ネットワーク装置200B´´´がIOネットワーク30Bから受信した監視データBも等値化ケーブル400を介してネットワーク装置200A´´´に転送される。 More specifically, the control unit 210 of the network device 200 ′ ″ is provided with a monitoring data buffer of monitoring data to which a flag indicating that the equalization has not been performed is assigned regardless of whether or not the network device 200 ″ is operating as an active system. The equalization transmission processing 2542b1 is executed in response to the writing to 2522. In the equalization transmission processing 2542b1, the control unit 210 reads the monitoring data to which the flag indicating that the equalization has not been completed is read from the monitoring data buffer 2522 (FIG. 13: S120), and the monitoring data is transmitted to the third communication I / O. This is given to the F unit 240 (FIG. 13: S130) and transferred to the other network device. Therefore, in this embodiment, the monitoring data A received by the network device 200A ″ from the IO network 30A is transferred to the network device 200B ″ through the equalization cable 400, and the network device 200B ″ is The monitoring data B received from the IO network 30B is also transferred to the network device 200A ″ ′ via the equalization cable 400.
 中継制御プログラム2542´´´にしたがって作動している制御部210は、等値化ケーブル400を介して他方のネットワーク装置200´´´から監視データを受信したことを契機として等値化受信処理2542b2を実行する。図14は、等値化受信処理2542b2の流れを示すフローチャートである。図14に示すように、制御部210は、まず、等値化ケーブル400を介して他方のネットワーク装置200´´´から受信した監視データの送信元のIOスレーブ装置との通信が可能であるか否かを判定する(ステップSB100)。上記監視データの送信元のIOスレーブ装置との通信が可能であるか否かの具体的な判定方法としては、例えばpingなどの既存技術を利用する方法が考えられる。 The control unit 210 operating in accordance with the relay control program 2542 ″ ″ receives the monitoring data from the other network device 200 ″ ″ via the equalization cable 400 as an opportunity to receive the equalization reception processing 2542 b 2. Execute. FIG. 14 is a flowchart showing the flow of the equalization reception process 2542b2. As shown in FIG. 14, the control unit 210 can first communicate with the IO slave device that is the transmission source of the monitoring data received from the other network device 200 ″ ″ via the equalization cable 400. It is determined whether or not (step SB100). As a specific determination method for determining whether or not communication with the IO slave device that is the transmission source of the monitoring data is possible, a method using an existing technology such as ping is conceivable.
 ステップSB100の判定結果が“No”であった場合、すなわち通信不能であった場合には、制御部210は、等値化ケーブル400を介して他方のネットワーク装置200´´´から受信した監視データで、自装置の接続先のIOネットワーク30を介して受信するはずであった監視データ、すなわち自装置に接続されている制御装置100へ宛てて送信された監視データを補完する(ステップSB110)。IOスレーブ装置との通信が不能であるため、そのIOスレーブ装置からの監視データを受信することはなく、ステップSB110はこの監視データの欠落を補うための処理である。より詳細に説明すると、ステップSB110では、制御部210は、等値化ケーブル400を介して受信した監視データのヘッダ部の送信先を示す情報を自装置に接続されている制御装置100を示す情報に書き換え、等値化済でないことを示す第1の値をセットしたフラグを付与して監視データバッファ2522に書き込む。次いで、制御部210は、ステップSB110にて監視データバッファ2522に書き込んだ監視データのフラグを等値化済を示す第2の値に更新するとともに等値化完了を他方のネットワーク装置へ通知し(ステップSB150)、等値化受信処理2542b2を完了する。なお、上記のようにステップSB100の判定結果が“No”となる場合には、他方のネットワーク装置200´´´に対して等値化ケーブル400経由の監視データの転送が行われることはないため、当該他方のネットワーク装置では上記通知の受信を契機として等値化完了を検出し、該当する監視データのフラグを更新するようにすれば良い。 When the determination result of step SB100 is “No”, that is, when communication is impossible, the control unit 210 receives the monitoring data received from the other network device 200 ″ ″ via the equalization cable 400. Thus, the monitoring data that should have been received via the IO network 30 to which the own device is connected, that is, the monitoring data transmitted to the control device 100 connected to the own device is supplemented (step SB110). Since communication with the IO slave device is impossible, no monitoring data is received from the IO slave device, and step SB110 is a process for compensating for the lack of this monitoring data. More specifically, in step SB110, the control unit 210 provides information indicating the transmission destination of the header portion of the monitoring data received via the equalization cable 400 to the control device 100 connected to the own device. To the monitoring data buffer 2522 with a flag set with a first value indicating that it has not been equalized. Next, the control unit 210 updates the flag of the monitoring data written in the monitoring data buffer 2522 in step SB110 to the second value indicating that the equalization has been completed and notifies the other network device of the completion of equalization ( Step SB150) and the equalization reception processing 2542b2 are completed. Note that when the determination result in step SB100 is “No” as described above, monitoring data is not transferred to the other network device 200 ′ ″ via the equalization cable 400. The other network device may detect the completion of equalization triggered by the reception of the notification and update the flag of the corresponding monitoring data.
 これに対してステップSB100の判定結果が“Yes”であった場合、すなわち通信可能であった場合には、制御部210は、前述したステップSA100と同様に、自装置が稼働系であるか否かを判定する(ステップSB120)。ステップSB120の判定結果が“Yes”であった場合、すなわち自装置が稼働系であった場合には、制御部210は、等値化ケーブル400を介して他方のネットワーク装置200´´´から受信した監視データを破棄し(ステップSB130)、さらに、当該監視データに対応するものとして監視データバッファ2522に書き込まれている監視データの等値化フラグを第2の値に更新(ステップSB150)して等値化受信処理2542b2を終了する。逆にステップSB120の判定結果が“No”であった場合、すなわち自装置が待機系であった場合には、制御部210は、前述したステップSA120の処理と同様に、等値化ケーブル400を介して他方のネットワーク装置200´´´から受信した監視データで当該監視データに対応するものとして監視データバッファ2522に書き込まれている監視データを置き換え(ステップSB140)、その後、ステップSB150の処理を実行して等値化受信処理2542b2を終了する。
 以上がネットワーク装置200´´´の構成である。
On the other hand, if the determination result in step SB100 is “Yes”, that is, if communication is possible, the controller 210 determines whether or not its own device is an active system, as in step SA100 described above. Is determined (step SB120). When the determination result of step SB120 is “Yes”, that is, when the own device is an active system, the control unit 210 receives from the other network device 200 ″ ″ via the equalization cable 400. The monitoring data is discarded (step SB130), and the equalization flag of the monitoring data written in the monitoring data buffer 2522 as corresponding to the monitoring data is updated to the second value (step SB150). The equalization reception process 2542b2 ends. On the other hand, if the determination result in step SB120 is “No”, that is, if the own apparatus is a standby system, the control unit 210 removes the equalization cable 400 in the same manner as the processing in step SA120 described above. The monitoring data received from the other network device 200 "" is replaced with the monitoring data written in the monitoring data buffer 2522 as corresponding to the monitoring data (step SB140), and then the processing of step SB150 is executed. Then, the equalization reception process 2542b2 is completed.
The above is the configuration of the network device 200 ′ ″.
 次いで、制御装置100Aが稼働系であり、制御装置100Bが待機系である場合、すなわちネットワーク装置200A´´´が稼働系であり、ネットワーク装置200B´´´が待機系である場合を例にとって本実施形態の動作を説明する。IOマスタMAn(n=1~3)とIOマスタMBn(n=1~3)が全て健全に動作しており、かつ、IOネットワーク30AおよびIOネットワーク30Bの何れにも断線等の障害が発生していなければ、IOスレーブ装置Sn(n=1~3)から送信された監視データAnは、IOネットワーク30Aを介してネットワーク装置200A´´´に到達し、同IOスレーブ装置Snから送信された監視データBnは、IOネットワーク30Bを介してネットワーク装置200B´´´に到達する。 Next, the case where the control device 100A is the active system and the control device 100B is the standby system, that is, the network device 200A ″ is the active system and the network device 200B ″ is the standby system is taken as an example. The operation of the embodiment will be described. The IO master MAn (n = 1 to 3) and the IO master MBn (n = 1 to 3) are all operating smoothly, and a failure such as disconnection occurs in either the IO network 30A or the IO network 30B. If not, the monitoring data An transmitted from the IO slave device Sn (n = 1 to 3) reaches the network device 200A ′ ″ via the IO network 30A, and the monitoring data transmitted from the IO slave device Sn. The data Bn reaches the network device 200B ′ ″ via the IO network 30B.
 前述したようにネットワーク装置200A´´´およびネットワーク装置200B´´´の各々では、第1通信I/F部220を介して監視データを受信したことを契機として中継処理2542aが実行される。その結果、図15(A)に示すように、ネットワーク装置200A´´´の監視データバッファ2522には監視データAnが格納され、ネットワーク装置200B´´´の監視データバッファ2522には監視データBnが格納される。また、等値化済でない監視データの監視データバッファ2522への書き込みを契機としてネットワーク装置200´´´では等値化送信処理2542b1が実行される。その結果、図15(A)に示すように、ネットワーク装置200A´´からネットワーク装置200B´´へ等値化ケーブル400経由で監視データAnが転送され、ネットワーク装置200B´´´からネットワーク装置200A´´´へ等値化ケーブル400経由で監視データBnが転送される。 As described above, in each of the network device 200A ″ and the network device 200B ″, the relay processing 2542a is executed when the monitoring data is received via the first communication I / F unit 220. As a result, as shown in FIG. 15A, the monitoring data An is stored in the monitoring data buffer 2522 of the network device 200A ″, and the monitoring data Bn is stored in the monitoring data buffer 2522 of the network device 200B ″. Stored. Further, the equalization transmission process 2542b1 is executed in the network device 200 ″ when the monitoring data that has not been equalized is written to the monitoring data buffer 2522. As a result, as shown in FIG. 15A, the monitoring data An is transferred from the network device 200A ″ to the network device 200B ″ via the equalization cable 400, and the network device 200B ″ is transferred to the network device 200A ′. Monitoring data Bn is transferred to ″ via the equalization cable 400.
 前述したようにネットワーク装置200´´´の制御部210は第3通信I/F部240を介して監視データを受信する毎に等値化受信処理2542b2を実行する。具体的には、ネットワーク装置200A´´´の制御部210は、第3通信I/F部240を介して監視データBnを受信する毎に等値化受信処理2542b2を実行する。本動作例では、IOマスタMAn(n=1~3)は全て健全に動作しており、かつ、IOネットワーク30Aに断線等の障害は発生していない。このため、ネットワーク装置200A´´´の制御部210の実行する等値化受信処理2542b2では、ステップSB100の判定結果は“Yes”となり、ステップSB120以降の処理が実行される。ネットワーク装置200A´´´は稼働系であるため、ステップSB120の判定結果は“Yes”となり、ステップSB130の処理が実行される。すなわち、第3通信I/F部240を介してネットワーク装置200A´´´が受信した監視データBnは全て破棄される。 As described above, the control unit 210 of the network device 200 ′ ″ executes the equalization reception process 2542b2 every time monitoring data is received via the third communication I / F unit 240. Specifically, the control unit 210 of the network device 200A ″ ″ executes the equalization reception process 2542b2 every time the monitoring data Bn is received via the third communication I / F unit 240. In this operation example, the IO master MAn (n = 1 to 3) are all operating soundly, and no failure such as disconnection occurs in the IO network 30A. For this reason, in the equalization reception process 2542b2 executed by the control unit 210 of the network device 200A ″, the determination result in step SB100 is “Yes”, and the processes after step SB120 are executed. Since the network device 200A ″ is an active system, the determination result in step SB120 is “Yes”, and the process in step SB130 is executed. That is, all the monitoring data Bn received by the network device 200A ″ ″ via the third communication I / F unit 240 is discarded.
 ネットワーク装置200B´´´においても同様に第3通信I/F部240を介して監視データAnを受信する毎に等値化受信処理2542b2が実行される。ネットワーク装置200B´´´の制御部210の実行する等値化受信処理2542b2においてもステップSB100の判定結果は“Yes”となり、ステップSB120以降の処理が実行される。ネットワーク装置200B´´´は待機系であるため、ステップSB120の判定結果は“No”となり、ステップSB140の処理が実行される。すなわち、ネットワーク装置200B´´´の監視データバッファ2522に格納されていた監視データBnは全て第3通信I/F部240を介してネットワーク装置200A´´´から受信した監視データAnに置き換えられる(図15(B)参照)。その結果、制御装置100Aにはネットワーク装置200A´´´経由で監視データAnが転送され、制御装置100Bにもネットワーク装置200B´´´経由で監視データAnが転送される。 Similarly, in the network device 200B ″, the equalization reception process 2542b2 is executed every time the monitoring data An is received via the third communication I / F unit 240. Also in the equalization reception processing 2542b2 executed by the control unit 210 of the network device 200B ″, the determination result in step SB100 is “Yes”, and the processing after step SB120 is executed. Since the network device 200B ″ is a standby system, the determination result of step SB120 is “No”, and the process of step SB140 is executed. That is, all the monitoring data Bn stored in the monitoring data buffer 2522 of the network device 200B ″ is replaced with the monitoring data An received from the network device 200A ″ ″ via the third communication I / F unit 240 ( (See FIG. 15B). As a result, the monitoring data An is transferred to the control device 100A via the network device 200A ″, and the monitoring data An is also transferred to the control device 100B via the network device 200B ″.
 これに対して、IOマスタMA1とIOマスタMB2になんらかの障害が発生した場合には、図16(A)に示すように、ネットワーク装置200A´´´が受信するはずであった監視データA1は欠落し、ネットワーク装置200B´´´が受信するはずであった監視データB2も欠落する。なお、図16(A)におけるNULLは監視データの欠落を意味している。この場合、図16(A)に示すように、ネットワーク装置200A´´´からネットワーク装置200B´´´へ等値化ケーブル400経由で監視データA2およびA3が転送され、ネットワーク装置200B´´´からネットワーク装置200A´´´へ等値化ケーブル400経由で監視データB1およびB3が転送される。 On the other hand, when any failure occurs in the IO master MA1 and the IO master MB2, as shown in FIG. 16A, the monitoring data A1 that the network device 200A ″ was supposed to receive is missing. However, the monitoring data B2 that the network device 200B ″ was supposed to receive is also lost. Note that NULL in FIG. 16A means that monitoring data is missing. In this case, as shown in FIG. 16A, the monitoring data A2 and A3 are transferred from the network device 200A "" to the network device 200B "" via the equalization cable 400, and from the network device 200B ". The monitoring data B1 and B3 are transferred to the network device 200A ″ ″ via the equalization cable 400.
 第3通信I/F部240を介して監視データB1を受信したことを契機としてネットワーク装置200A´´´において実行される等値化受信処理2542b2では、ステップSB100の判定結果は“No”となり、ステップSB110の処理が実行される。その結果、図16(B)に示すように、ネットワーク装置200A´´´が受信するはずであった監視データA1は監視データB1で補完される。同様に、第3通信I/F部240を介して監視データA2を受信したことを契機としてネットワーク装置200B´´´で実行される等値化受信処理2542b2においてもステップSB100の判定結果は“No”となり、ステップSB110の処理が実行される。その結果、図16(B)に示すように、ネットワーク装置200B´´´が受信するはずであった監視データB2は監視データA2で補完される。本動作例では、制御装置100Aには、等値化済の監視データとして監視データB1、監視データA2および監視データA3がネットワーク装置200A´´´から転送され、制御装置100Bには等値化済の監視データとして監視データB1、監視データA2および監視データA3がネットワーク装置200B´´´から転送される。本動作例において稼働系の制御装置である制御装置100Aには、ネットワーク装置200A´´´から等値化済みの監視データが転送されてくるので、何ら問題なく制御対象装置の制御等を継続することができる。 In the equalization reception processing 2542b2 that is executed in the network device 200A ″ when the monitoring data B1 is received via the third communication I / F unit 240, the determination result in step SB100 is “No”. The process of step SB110 is executed. As a result, as shown in FIG. 16B, the monitoring data A1 that should have been received by the network device 200A ″ ″ is complemented with the monitoring data B1. Similarly, in the equalization reception processing 2542b2 executed by the network device 200B ″ when the monitoring data A2 is received via the third communication I / F unit 240, the determination result in step SB100 is “No”. ", And the process of step SB110 is executed. As a result, as shown in FIG. 16B, the monitoring data B2 that the network device 200B ″ was supposed to receive is supplemented with the monitoring data A2. In this operation example, monitoring data B1, monitoring data A2, and monitoring data A3 are transferred from the network device 200A ″ to the control device 100A as equalized monitoring data, and equalized to the control device 100B. As the monitoring data, monitoring data B1, monitoring data A2, and monitoring data A3 are transferred from the network device 200B ″. In this operation example, the equalized monitoring data is transferred from the network device 200A ″ to the control device 100A, which is the active control device, so that the control of the control target device is continued without any problem. be able to.
 このように本実施形態によれば、ネットワーク装置を介して稼働系の制御装置に接続されているIOネットワーク或いは当該IOネットワークに接続されている複数のIOマスタの何れかに故障が発生したとしても、制御装置についての稼働系/待機系の切り替えを行う必要はなく、冗長化制御システムにおける稼働系/待機系の切り替えの発生頻度を低減させることができる、といった効果が奏される。さらに、本実施形態によれば、ネットワーク装置を介して稼働系の制御装置に接続されているIOネットワークに接続されているIOマスタに故障が発生し、ネットワーク装置を介して待機系の制御装置に接続されているIOネットワークに接続されているIOマスタにも故障が発生するといった、多重故障が発生した場合であっても、それらIOマスタが同一のIO機器に接続されているものでない限り、制御対象装置の制御を継続することができ、前述した第1実施形態に比較して多重故障に対する耐性をさらに高めることができる、といった効果が奏される。なお、本実施形態では、待機系のネットワーク装置には、IOネットワークから受信した全ての監視データをネットワーク装置間の等値化ケーブル400経由で稼働系のネットワーク装置へ転送させたが、稼働系において欠落した監視データのみを転送するようにしても良い。稼働系における監視データの欠落を待機系のネットワーク装置に検出させる方法については種々の方法が考えられる。例えば、稼働系のネットワーク装置からネットワーク装置間の等値化ケーブル経由で待機系のネットワーク装置へ当該稼働系のネットワーク装置が受信済の監視データの識別子情報のリストを送信し、当該リストに基づいて稼働系における監視データの欠落を待機系のネットワーク装置に検出させるようにすれば良い。また、待機系のネットワーク装置がIOネットワーク経由で監視データを受信してから所定時間が経過しても当該監視データに対応するデータをネットワーク装置間の等値化ケーブル経由で受信しなかった場合に、稼働系における監視データの欠落が発生したと待機系のネットワーク装置に判定させても良い。 As described above, according to the present embodiment, even if a failure occurs in either the IO network connected to the active control device via the network device or a plurality of IO masters connected to the IO network. Thus, there is no need to switch the active / standby system for the control device, and the frequency of occurrence of switching of the active / standby system in the redundant control system can be reduced. Furthermore, according to the present embodiment, a failure occurs in the IO master connected to the IO network connected to the active control device via the network device, and the standby control device passes through the network device. Even if multiple failures occur, such as when a failure also occurs in an IO master connected to the connected IO network, control is not performed unless those IO masters are connected to the same IO device. The control of the target device can be continued, and the effect that the tolerance against multiple failures can be further enhanced as compared with the first embodiment described above is achieved. In this embodiment, the standby network device transfers all the monitoring data received from the IO network to the active network device via the equalization cable 400 between the network devices. Only missing monitoring data may be transferred. Various methods are conceivable for causing the standby network device to detect missing monitoring data in the active system. For example, the active network device transmits a list of identifier information of the received monitoring data to the standby network device via the equalization cable between the active network device, and based on the list What is necessary is just to make the standby network device detect the missing monitoring data in the active system. Further, when the data corresponding to the monitoring data is not received via the equalization cable between the network devices even after a predetermined time has elapsed since the standby network device received the monitoring data via the IO network. The standby network device may determine that the monitoring data in the active system is missing.
 また、IOスレーブ装置S1~S3に制御対象装置が含まれている場合には、制御装置100から制御対象装置へ送信された演算データ、すなわち等値化済の監視データに基づく演算の結果を表すデータの転送制御についても、その制御対象装置をIOネットワーク30に接続するIOマスタの故障の有無に応じて同様に行えば良い。例えば図16(B)におけるIOスレーブ装置S1~S3の其々が制御対象装置である場合には、IOスレーブ装置S1に対しては、制御装置100A→ネットワーク装置200A´´´→等値化ケーブル400→ネットワーク装置200B´´´→IOネットワーク30Bといった伝送経路に沿って演算データを転送すれば良い。同様に、IOスレーブ装置S2およびS3に対しては、制御装置100A→ネットワーク装置200A´´→IOネットワーク30Aといった伝送経路に沿って演算データを転送すれば良い。 Further, in the case where the IO slave devices S1 to S3 include control target devices, the result of the calculation based on the calculation data transmitted from the control device 100 to the control target device, that is, the equalized monitoring data is represented. The data transfer control may be performed in the same manner depending on whether or not the IO master that connects the control target device to the IO network 30 has failed. For example, if each of the IO slave devices S1 to S3 in FIG. 16B is a device to be controlled, the control device 100A → the network device 200A ″ ″ → the equalization cable for the IO slave device S1. Operation data may be transferred along a transmission path such as 400 → network device 200B ″ ″ → IO network 30B. Similarly, arithmetic data may be transferred to the IO slave devices S2 and S3 along a transmission path such as the control device 100A → the network device 200A ″ → the IO network 30A.
 加えて、本実施形態においても、監視データの等値化はネットワーク装置200´´´で行われるため、前述した第1実施形態と同様に、制御装置に転送される監視データのデータ量が増加しても、制御装置本来の演算の実行に何ら支障を発生させず、かつ稼働系/待機系の切り替えスピードの低下を招かないようにすることが可能になる、といった効果が奏されることは勿論である。 In addition, in this embodiment, since the equalization of the monitoring data is performed by the network device 200 ′ ″, the amount of monitoring data transferred to the control device increases as in the first embodiment described above. However, there is an effect that it is possible to prevent any trouble in the execution of the original calculation of the control device and to prevent the switching speed of the active system / standby system from being lowered. Of course.
 上記実施形態では、IOマスタに何らかの障害が発生した場合について説明したが、IOネットワーク30に断線等の障害が発生した場合、或いはIOネットワーク30とネットワーク装置200´´´とを接続する通信線に断線等の障害が発生した場合には、当該IOネットワーク30経由で受信するはずであった全ての監視データについて上記補完が行われることは言うまでもない。また、上記実施形態では、ネットワーク装置200´´´に二重化されたIOネットワークが1つだけ接続されていたが、図17に示すように二重化されたIOネットワークが複数接続されていても良い。例えば、図17には、ネットワーク装置200´´´に二重化されたIOネットワークが2つ接続されている場合について例示されている。 In the above-described embodiment, a case where a failure occurs in the IO master has been described. However, when a failure such as a disconnection occurs in the IO network 30, or a communication line that connects the IO network 30 and the network device 200 ′ ″. Needless to say, when a failure such as disconnection occurs, the above-described supplementation is performed for all monitoring data that should have been received via the IO network 30. In the above embodiment, only one duplicated IO network is connected to the network device 200 ′ ″. However, as shown in FIG. 17, a plurality of duplicated IO networks may be connected. For example, FIG. 17 illustrates a case where two duplicated IO networks are connected to the network device 200 ′ ″.
 一般に冗長化制御システムにおいては、IOスレーブ装置から稼働系の制御装置100に至るデータの転送経路或いは逆方向の転送経路が変動することは好ましくない。そこで、ステップSB100にて通信不能であると判定された送信元を示す識別情報を揮発性記憶部252の所定の記憶領域に書き込み、以降、当該記憶領域に識別情報が記憶されてくる機器からの監視データについては常に等値化ケーブル400経由で受信した監視データによる補完または置き換えを行い、自装置の電源断またはリセットを契機として上記記憶領域を初期化する処理をネットワーク装置200´´´の制御部210に実行させるようにしても良い。このような態様によれば、上記補完等の発生後にIOマスタ等の修理が行われ、補完等を行う必要がなくなったとしても、ネットワーク装置200´´´の電源断またはリセットが為されるまでは、IOスレーブ装置から稼働系の制御装置100に至るデータの転送経路が上記補完等の行われない経路に切り替えられることはなく、経路切り替えに起因する影響を回避することができる。 Generally, in a redundant control system, it is not preferable that the data transfer path from the IO slave apparatus to the active control apparatus 100 or the transfer path in the reverse direction fluctuate. Therefore, identification information indicating the transmission source determined to be incapable of communication in step SB100 is written in a predetermined storage area of the volatile storage unit 252, and thereafter, from the device in which the identification information is stored in the storage area. The monitoring data is always complemented or replaced by the monitoring data received via the equalization cable 400, and the process of initializing the storage area triggered by the power-off or reset of the own device is controlled by the network device 200 ″. You may make it make the part 210 perform. According to such an aspect, even if the IO master or the like is repaired after the occurrence of the above complementation and the necessity for the complementation or the like is eliminated, the network device 200 ″ ″ is turned off or reset. The data transfer route from the IO slave device to the active control device 100 is not switched to a route that is not supplemented as described above, and the influence caused by the route switching can be avoided.
(E:変形)
 以上本発明の第1、第2、第3および第4実施形態について説明したが、これら実施形態に以下の変形を加えても勿論良い。
(1)上記第1実施形態では、ネットワーク装置200Aとネットワーク装置200Bのうちの稼働系のネットワーク装置から待機系のネットワーク装置へ等値化ケーブル400を介して監視データを送信し記憶させるといったプッシュ型のデータ通信で監視データの等値化を実現する場合について説明した。しかし、等値化ケーブル400経由で稼働系のネットワーク装置から監視データを取得して自装置の監視データを更新する処理を待機系のネットワーク装置に実行させるプル型のデータ通信で監視データの等値化を実現しても良い。他の実施形態についても同様である。
(E: deformation)
Although the first, second, third, and fourth embodiments of the present invention have been described above, the following modifications may of course be added to these embodiments.
(1) In the first embodiment, the push type in which the monitoring data is transmitted and stored via the equalization cable 400 from the active network device of the network devices 200A and 200B to the standby network device. The case where the equalization of the monitoring data is realized by the data communication in the above is described. However, the equivalence of the monitoring data is obtained by pull-type data communication that causes the standby network device to execute the process of acquiring the monitoring data from the active network device via the equalization cable 400 and updating the monitoring data of the own device. May be realized. The same applies to other embodiments.
(2)上記第2実施形態と第3実施形態とを組み合わせても良い。具体的には、ネットワーク装置200A´´およびネットワーク装置200B´´の各々に、等値化ケーブル400を介したデータ通信の可否を判定させ、可能であれば等値化ケーブル400を介して他方のネットワーク装置に監視データを送信し、不能であれば等値化ケーブル40を介して他方のネットワーク装置に監視データを送信する処理を実行させるようにすれば良い。同様に第2実施形態と第4実施形態とを組み合わせても良く、また、第2、第3および第4実施形態を組み合わせても良い。 (2) The second embodiment and the third embodiment may be combined. Specifically, each of the network device 200A ″ and the network device 200B ″ determines whether or not data communication via the equalization cable 400 is possible, and, if possible, the other device via the equalization cable 400. If the monitoring data is transmitted to the network device, and if impossible, the process of transmitting the monitoring data to the other network device via the equalization cable 40 may be executed. Similarly, the second embodiment and the fourth embodiment may be combined, and the second, third, and fourth embodiments may be combined.
(3)上記各実施形態では、IOスレーブ装置から収集した監視データを制御装置へ転送するゲートウェイ装置への本発明の適用例を説明した。しかし、本発明の適用対象はゲートウェイ装置に限定される訳ではなく、ルータやリピータ、スイッチングハブなどの他の種類の中継装置であっても良い。さらに、本発明の中継装置に接続されるネットワークはIOネットワークなどの制御系ネットワークやシリアルバスに限定される訳ではなく、TCPなどの汎用通信プロトコルにしたがったデータ通信を仲介する一般的な情報系ネットワークであっても良い。要は、監視データを収集し、当該監視データを使用した演算を実行する制御装置と、監視データを出力する機器に接続されたネットワークとに接続され、当該ネットワークを介して受信したデータを当該制御装置へ転送する中継装置であれば、本発明を適用可能である。 (3) In each of the above embodiments, the application example of the present invention to the gateway device that transfers the monitoring data collected from the IO slave device to the control device has been described. However, the application target of the present invention is not limited to the gateway device, and may be another type of relay device such as a router, a repeater, or a switching hub. Further, the network connected to the relay device of the present invention is not limited to a control network such as an IO network or a serial bus, but is a general information system that mediates data communication according to a general-purpose communication protocol such as TCP. It may be a network. In short, it is connected to a control device that collects monitoring data and executes operations using the monitoring data, and a network connected to a device that outputs the monitoring data, and controls the data received via the network. The present invention can be applied to any relay device that transfers data to the device.
(4)上記各実施形態の通信システムに含まれるネットワーク装置、すなわち中継装置を単体で提供する態様、すなわち、中継装置単体を製造・販売する態様であっても良い。このようなネットワーク装置を従来の冗長化制御システムにおけるネットワーク装置と置き換え、中継装置間等値化ケーブルでそれらネットワーク装置を互いに接続することで、従来の冗長化制御システムを上記各実施形態の通信システムとして機能させることが可能になるからである。 (4) A mode in which a network device included in the communication system of each of the above embodiments, that is, a relay device is provided alone, that is, a mode in which the relay device is manufactured and sold may be employed. Such a network device is replaced with a network device in a conventional redundancy control system, and the network devices are connected to each other by an equalization cable between relay devices, thereby making the conventional redundancy control system a communication system of each of the above embodiments. This is because it becomes possible to function as.
(5)上記各実施形態では、本発明の特徴を顕著に示す中継処理2542aおよび等値化処理2542b(第4実施形態では、等値化送信処理2542b1および等値化受信処理2542b2)をソフトウェアにより実現した。しかし、中継処理2542aを実行する中継手段と等値化処理2542bを実行する等値化手段の各々を電子回路で構成し、これら電子回路を組み合わせて上記第1~第3の各実施形態のネットワーク装置を構成しても良い。第4実施形態のネットワーク装置200´´´についても同様である。また、上記実施形態では中継装置間通信手段として等値化ケーブルを用いたが、無線LANインタフェースなどの無線通信手段を中継装置間通信手段として用いても良い。また、ネットワーク装置200Aとネットワーク装置200Bとが1つの筐体に実装される場合には、両装置の接続されるバスを中継装置間通信手段として用いても良い。制御装置間通信手段についても同様である。 (5) In each of the above embodiments, the relay processing 2542a and the equalization processing 2542b (in the fourth embodiment, the equalization transmission processing 2542b1 and the equalization reception processing 2542b2) that clearly show the features of the present invention are performed by software. It was realized. However, each of the relay means for executing the relay process 2542a and the equalization means for executing the equalization process 2542b are configured by electronic circuits, and the networks of the first to third embodiments are combined by combining these electronic circuits. An apparatus may be configured. The same applies to the network device 200 ′ ″ of the fourth embodiment. In the above embodiment, the equalization cable is used as the communication device between relay devices. However, a wireless communication device such as a wireless LAN interface may be used as the communication device between relay devices. Further, when the network device 200A and the network device 200B are mounted in one housing, a bus connected to both devices may be used as a communication device between relay devices. The same applies to the inter-control device communication means.
(6)上記各実施形態では、制御装置100Aおよび制御装置100Bの各々、或いは制御装置100A´および制御装置100B´の各々が、稼働系であるか待機系であるかを問わずに、接続先のネットワーク装置を介して受信した監視データを使用して機器制御のための演算を行う場合、すなわちホットスタンバイ方式の制御システムに本発明を適用した場合について説明した。しかし、本発明の適用対象はホットスタンバイ方式の制御システムに限定されるものではなく、ウォームスタンバイ方式の制御システムに本発明を適用しても良い。ウォームスタンバイ方式の制御システムは、二重化された制御装置の一方が稼働系となって上記演算を実行し、他方は待機系となって稼働系の故障に備える点ではホットスタンバイ方式の制御システムと同一であるが、待機系の制御装置では上記演算が実行されない点が異なる。また、上記第1~第3実施形態では、待機系のネットワーク装置においても、第1通信I/F部220により受信した監視データを監視データバッファ2522に書き込む処理(図4(B):S100およびS110の各処理)を実行したが、待機系のネットワーク装置においては当該処理を省略しても良い。図4(B)のS100およびS110の各処理により監視データバッファ2522により書き込まれた監視データは、等値化処理2542bのステップSA120の処理で上書きされてしまうからである。 (6) In each of the above embodiments, regardless of whether each of the control device 100A and the control device 100B or each of the control device 100A ′ and the control device 100B ′ is an active system or a standby system, the connection destination In the above description, the case where the calculation for device control is performed using the monitoring data received via the network device, that is, the case where the present invention is applied to a hot standby control system has been described. However, the application target of the present invention is not limited to a hot standby control system, and the present invention may be applied to a warm standby control system. The warm standby control system is the same as the hot standby control system in that one of the redundant control devices becomes the active system and executes the above calculation, and the other becomes the standby system to prepare for failure of the active system. However, a difference is that the above calculation is not executed in the standby control device. In the first to third embodiments, even in the standby network device, the monitoring data received by the first communication I / F unit 220 is written into the monitoring data buffer 2522 (FIG. 4B: S100 and Each process of S110) is executed, but the process may be omitted in the standby network device. This is because the monitoring data written by the monitoring data buffer 2522 by the processes of S100 and S110 in FIG. 4B is overwritten by the process of step SA120 of the equalization process 2542b.
1A,1C,1D…通信システム、10A,10B,100A,100B,100A´,100B´…制御装置、20A,20B,200A,200B,200A´,200B´,200A´´,200B´´,200A´´´,200B´´´…中継装置、210…制御部、220…第1通信I/F部、230…第2通信I/F部、240…第3通信I/F部、250…記憶部、252…揮発性記憶部、2522…監視データバッファ、254…不揮発性記憶部、2542,2542´,2542´´´…中継制御プログラム、2542a…中継処理、2542b…等値化処理、260…バス、30A,30B,30C…IOネットワーク、40,400,400A,400B…等値化ケーブル、50…監視システム、S1~Sn,S1´~Sn´…IOスレーブ装置。 1A, 1C, 1D ... communication system, 10A, 10B, 100A, 100B, 100A ', 100B' ... control device, 20A, 20B, 200A, 200B, 200A ', 200B', 200A ", 200B", 200A " "..., 200B" "... relay device, 210 ... control unit, 220 ... first communication I / F unit, 230 ... second communication I / F unit, 240 ... third communication I / F unit, 250 ... storage unit , 252 ... Volatile storage unit, 2522 ... Monitoring data buffer, 254 ... Nonvolatile storage unit, 2542, 2542 ', 2542 "' ... Relay control program, 2542a ... Relay process, 2542b ... Equalization process, 260 ... Bus 30A, 30B, 30C ... IO network, 40,400,400A, 400B ... equivalent cable, 50 ... monitoring system, S1 to Sn, S1 'to Sn' ... IO Slave device.

Claims (11)

  1.  第1および第2のネットワークに接続された1または複数の機器から監視データを収集し、該監視データに基づいて制御を行う制御システムにおいて、
     一方は稼働系となって前記制御を行い、他方は待機系となる第1および第2の制御装置と、
     前記第1の制御装置と前記第1のネットワークに接続された第1の中継装置と、
     前記第2の制御装置と前記第2のネットワークに接続された第2の中継装置と、
     前記第1の中継装置と前記第2の中継装置の通信を仲介する中継装置間通信手段と、
     前記第1の制御装置と前記第2の制御装置の通信を仲介する制御装置間通信手段と、
     を備え、
     前記第1および第2の中継装置は、
     前記中継装置間通信手段を介した通信の可否を判定する判定手段を備え、
     前記第1および第2の中継装置の各々は、
     前記1または複数の機器から受信した監視データを接続先の制御装置へ転送するとともに、前記判定手段により通信可能と判定された場合には前記中継装置間通信手段を介した通信により監視データの等値化を行う一方、前記判定手段により通信不能と判定された場合には前記制御装置間通信手段を介した通信により監視データの等値化を行い、
     前記第1の制御装置と前記第2の制御装置のうち稼働系となっている方は、接続先の中継装置から受信した監視データを用いて前記制御を行う
     ことを特徴とする制御システム。
    In a control system that collects monitoring data from one or more devices connected to the first and second networks and performs control based on the monitoring data,
    The first and second control devices, one of which is an active system and performing the control, and the other is a standby system;
    A first relay device connected to the first control device and the first network;
    A second relay device connected to the second control device and the second network;
    Inter-relay device communication means for mediating communication between the first relay device and the second relay device;
    Communication means between control devices that mediates communication between the first control device and the second control device;
    With
    The first and second relay devices are
    A determination unit that determines whether communication is possible via the inter-relay device communication unit;
    Each of the first and second relay devices is
    The monitoring data received from the one or more devices is transferred to the connection destination control device, and when it is determined by the determination means that communication is possible, the monitoring data etc. is transmitted by communication via the inter-relay device communication means. On the other hand, when it is determined that communication is impossible by the determination unit, the monitoring data is equalized by communication via the control unit communication unit,
    One of the first control device and the second control device, which is an active system, performs the control using monitoring data received from a connection destination relay device.
  2.  前記第1および第2の中継装置のうちの一方は、
     監視データを等値化する処理として、接続先のネットワークから受信した監視データを他方の中継装置へ転送する処理を実行し、
     前記第1および第2の中継装置のうちの他方は、監視データを等値化する処理として、接続先のネットワークから受信した監視データを当該監視データに対応するものとして前記一方の中継装置から受信した監視データで置き換える処理を実行する
     ことを特徴とする請求項1に記載の制御システム。
    One of the first and second relay devices is
    As processing to equalize the monitoring data, execute processing to transfer the monitoring data received from the connected network to the other relay device,
    The other of the first and second relay devices receives the monitoring data received from the connection destination network as the processing corresponding to the monitoring data as the process of equalizing the monitoring data from the one relay device. The control system according to claim 1, wherein a process of replacing with the monitored data is executed.
  3.  前記第1および第2の制御装置は、
     前記制御装置間通信手段を介した通信が可能であるか否かを判定し、可能であれば、自装置における故障の有無を示す状態データを前記制御装置間通信手段を介して送受信することにより他方の故障の有無を監視し、不可能であれば、前記中継装置間通信手段を介して前記状態データを送受信することにより他方の故障の有無を監視する
     ことを特徴とする請求項1または請求項2に記載の制御システム。
    The first and second control devices are:
    It is determined whether or not communication via the inter-control device communication means is possible, and if possible, status data indicating the presence or absence of a failure in the own device is transmitted and received via the inter-control device communication means. The presence or absence of the other failure is monitored, and if it is not possible, the presence or absence of the other failure is monitored by transmitting and receiving the status data via the inter-relay device communication means. Item 3. The control system according to Item 2.
  4.  前記第1および第2の中継装置は、複数の機器の各々から送信された監視データを受信し、
     前記複数の機器の各々について、当該機器から送信された監視データの等値化を中継装置側で行うのかそれとも制御装置側で行うのかが予め定められており、
     前記第1および第2の中継装置の各々は、中継装置側で等値化を行うと定められている機器から受信した監視データの等値化を行い、
     前記第1および第2の制御装置の各々は、接続先の中継装置を介して受信した監視データのうち制御装置側で等値化を行うと定められている機器から送信された監視データの等値化を行う
     ことを特徴とする請求項1に記載の制御システム。
    The first and second relay devices receive monitoring data transmitted from each of a plurality of devices,
    For each of the plurality of devices, whether to perform equalization of the monitoring data transmitted from the device on the relay device side or the control device side is predetermined,
    Each of the first and second relay devices equalizes monitoring data received from a device that is determined to perform equalization on the relay device side,
    Each of the first and second control devices includes monitoring data transmitted from a device that is determined to perform equalization on the control device side among the monitoring data received via the connection destination relay device, etc. The control system according to claim 1, wherein the control system performs valuation.
  5.  前記第1および第2の中継装置の各々は、
     接続先のネットワークから受信した監視データを他方の中継装置へ転送する第1の処理手段と、
     他方の中継装置から受信した監視データの送信元の機器との通信が可能であるか否かを判定し、通信不能と判定された機器から受信するはずであった監視データを当該他方の中継装置から受信した監視データで補完する第2の処理手段と、
     を有することを特徴とする請求項1に記載の制御システム。
    Each of the first and second relay devices is
    First processing means for transferring the monitoring data received from the connection destination network to the other relay device;
    It is determined whether or not communication with the device that is the transmission source of the monitoring data received from the other relay device is possible, and the monitoring data that should have been received from the device determined to be unable to communicate is the other relay device. Second processing means for complementing with the monitoring data received from
    The control system according to claim 1, comprising:
  6.  前記第2の処理手段は、
     通信不能であると判定した機器を示す識別情報を記憶装置に記憶させ、当該記憶装置に識別情報が記憶されている機器については他方の中継装置から受信した監視データによる補完または置き換えを行う一方、自装置の電源断またはリセットを契機として前記記憶装置の記憶内容を初期化する
     ことを特徴とする請求項5に記載の制御システム。
    The second processing means includes
    While storing the identification information indicating the device determined to be incapable of communication in the storage device, the device having the identification information stored in the storage device is complemented or replaced by the monitoring data received from the other relay device, The control system according to claim 5, wherein the storage content of the storage device is initialized in response to power-off or reset of the device itself.
  7.  前記第1および第2の中継装置は、
     接続先の制御装置にかかっている処理負荷を計測する負荷計測手段を備え、
     前記第1および第2の中継装置の各々は、
     前記負荷計測手段により計測された処理負荷が所定の閾値以上であり、かつ前記判定手段により通信可能と判定された場合には、前記中継装置間通信手段を介した通信により監視データの等値化を行い、その他の場合は前記制御装置間通信手段を介した通信により監視データの等値化を行う
     ことを特徴とする請求項1に記載の制御システム。
    The first and second relay devices are
    Load measuring means for measuring the processing load applied to the connected control device,
    Each of the first and second relay devices is
    When the processing load measured by the load measuring means is equal to or greater than a predetermined threshold and the determination means determines that communication is possible, the monitoring data is equalized by communication via the inter-relay device communication means. The control system according to claim 1, wherein in other cases, the monitoring data is equalized by communication via the inter-controller communication means.
  8.  前記第1および第2の中継装置は、接続先の制御装置にかかっている処理負荷を計測する負荷計測手段を備えるとともに、
     前記第1および第2の制御装置の処理負荷が高いほど中継装置側で等値化を行う監視データが多くなるように、監視データの等値化を中継装置側で行うのかそれとも制御装置側で行うのかの振り分けパターンが前記処理負荷に応じて複数通り定められており、
     前記第1および第2の中継装置の各々は、前記負荷計測手段により計測された処理負荷に応じた振り分けパターンにおいて中継装置側で等値化を行うと定められている監視データの等値化を行い、
     前記第1および第2の制御装置の各々は、自装置の処理負荷に応じた振り分けパターンにおいて制御装置側で等値化を行うと定められている監視データの等値化を行う
     ことを特徴とする請求項1に記載の制御システム。
    The first and second relay devices include load measuring means for measuring a processing load applied to a connection destination control device, and
    Whether the monitoring data is equalized on the relay device side so that the monitoring data to be equalized on the relay device side increases as the processing load on the first and second control devices increases, or on the control device side A plurality of distribution patterns are determined according to the processing load,
    Each of the first and second relay devices performs equalization of monitoring data that is determined to be equalized on the relay device side in a distribution pattern according to the processing load measured by the load measuring means. Done
    Each of the first control device and the second control device performs equalization of monitoring data which is determined to be equalized on the control device side in a distribution pattern according to the processing load of the own device. The control system according to claim 1.
  9.  前記第1および第2の中継装置の何れか一方には、第3のネットワークが接続されており、
     前記第3のネットワークに接続された中継装置は、前記第3のネットワークに接続されている機器から監視データを収集し、収集した監視データを自装置に接続されている制御装置に転送するとともに他方の中継装置に転送する
     ことを特徴とする請求項1に記載の制御システム。
    A third network is connected to one of the first and second relay devices,
    The relay device connected to the third network collects monitoring data from a device connected to the third network, transfers the collected monitoring data to a control device connected to the own device, and The control system according to claim 1, wherein the control system is transferred to the relay device.
  10.  前記中継装置間通信手段を介して通信する前記第1の中継装置および前記第2の中継装置よりなる中継装置対を複数有することを特徴とする請求項1に記載の制御システム。 2. The control system according to claim 1, comprising a plurality of relay device pairs including the first relay device and the second relay device that communicate via the inter-relay device communication means.
  11.  制御装置間通信手段に接続された第1および第2の制御装置であって、一方が稼働系となって制御を行い他方が待機系となる第1および第2の制御装置の一方に接続されるとともに、監視データを送信する1または複数の機器が接続された第1のネットワークに接続され、前記1または複数の機器から送信される監視データを接続先の制御装置へ転送する中継装置において、
     前記1または複数の機器が接続された第2のネットワークと前記第1および第2の制御装置のうちの他方とに接続される他の中継装置との通信を仲介する中継装置間通信手段に接続される通信インタフェース部と、
     前記第1のネットワークを介して前記1または複数の機器から受信した監視データを接続先の制御装置へ転送する中継処理と、前記中継装置間通信手段を介した通信の可否を判定する判定処理と、前記判定処理にて通信可能と判定された場合には当該監視データを等値化するための通信を前記中継装置間通信手段を介して行う一方、通信不能と判定された場合には前記制御装置間通信手段を介して当該通信を行う等値化処理と、を実行する制御部と、
     を有することを特徴とする中継装置。
    1st and 2nd control apparatus connected to the communication means between control apparatuses, Comprising: One side becomes an active system and controls, and the other is connected to one of the 1st and 2nd control apparatus which becomes a standby system. And a relay device that is connected to a first network to which one or more devices that transmit monitoring data are connected, and that transfers monitoring data transmitted from the one or more devices to a connected control device,
    Connected to inter-relay device communication means that mediates communication between the second network to which the one or more devices are connected and the other relay device connected to the other of the first and second control devices. A communication interface unit,
    Relay processing for transferring monitoring data received from the one or more devices via the first network to a connection destination control device, and determination processing for determining whether communication is possible via the inter-relay device communication means. When it is determined that communication is possible in the determination process, communication for equalizing the monitoring data is performed via the inter-relay device communication unit, and when it is determined that communication is impossible, the control is performed. An equalization process for performing the communication via the inter-device communication means;
    A relay apparatus comprising:
PCT/JP2015/053787 2015-02-12 2015-02-12 Control system and relay device WO2016129075A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/053787 WO2016129075A1 (en) 2015-02-12 2015-02-12 Control system and relay device
KR1020167002173A KR101815202B1 (en) 2015-02-12 2015-02-12 Control system and relay apparatus
CN201580001548.0A CN105519050B (en) 2015-02-12 2015-02-12 Control system and relay
TW104140781A TWI674488B (en) 2015-02-12 2015-12-04 Control system, and relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053787 WO2016129075A1 (en) 2015-02-12 2015-02-12 Control system and relay device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/316,643 A-371-Of-International US10620347B2 (en) 2014-06-13 2015-05-13 Light-distribution adjustment sheet and display unit
US16/809,090 Continuation US11237303B2 (en) 2014-06-13 2020-03-04 Light-distribution adjustment sheet and display unit

Publications (1)

Publication Number Publication Date
WO2016129075A1 true WO2016129075A1 (en) 2016-08-18

Family

ID=55725066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053787 WO2016129075A1 (en) 2015-02-12 2015-02-12 Control system and relay device

Country Status (4)

Country Link
KR (1) KR101815202B1 (en)
CN (1) CN105519050B (en)
TW (1) TWI674488B (en)
WO (1) WO2016129075A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106537A (en) * 2016-12-27 2018-07-05 サイレックス・テクノロジー株式会社 Communication control system, device server, communication control method, and program
JP2019036313A (en) * 2017-08-21 2019-03-07 フィッシャー−ローズマウント システムズ,インコーポレイテッド High performance control server system
JP2019083441A (en) * 2017-10-31 2019-05-30 村田機械株式会社 Control system, control device, conversion device, control method of control system, control method of control device, and control method of conversion device
JP7563907B2 (en) 2020-07-13 2024-10-08 Necプラットフォームズ株式会社 Event processing system, processing device, processing method, and program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6920828B2 (en) * 2017-02-17 2021-08-18 三菱パワー株式会社 Plant diagnostic equipment and diagnostic methods
JP7186565B2 (en) * 2018-09-26 2022-12-09 住友重機械工業株式会社 injection molding system, injection molding machine
JP7264098B2 (en) * 2020-03-26 2023-04-25 横河電機株式会社 control system
KR102717304B1 (en) * 2021-12-24 2024-10-15 한국전자기술연구원 Sensor connection method and device of radar RFIC using network bus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522637A (en) * 2002-04-08 2005-07-28 ピルツ ゲーエムベーハー アンド コー. Device for fail-safe disconnection of electrical loads
JP2009294961A (en) * 2008-06-06 2009-12-17 Yokogawa Electric Corp Multiplex input/output module
JP2013012094A (en) * 2011-06-30 2013-01-17 Mitsubishi Electric Corp Duplex control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861769B2 (en) 2002-08-13 2006-12-20 富士電機システムズ株式会社 Duplex switching method for duplex control system
TW594497B (en) * 2003-02-25 2004-06-21 Icp Electronics Inc Information processing device including network automatic duplicating function and method thereof
EP2218010B1 (en) * 2007-12-01 2019-07-03 Alcatel-Lucent USA Inc. Ims diameter router with load balancing
JP2011203941A (en) * 2010-03-25 2011-10-13 Nec Corp Information processing apparatus, monitoring method and monitoring program
TW201513625A (en) * 2011-03-06 2015-04-01 Pcn Technology Inc Data management system, method of providing secure communications, digital data signal management device, computer-implemented method and data monitoring system
TW201329739A (en) * 2012-01-10 2013-07-16 Synology Inc File synchronization sharing device and file synchronization sharing method
JP5706347B2 (en) 2012-01-25 2015-04-22 株式会社東芝 Redundant control system
JP5601353B2 (en) * 2012-06-29 2014-10-08 横河電機株式会社 Network management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522637A (en) * 2002-04-08 2005-07-28 ピルツ ゲーエムベーハー アンド コー. Device for fail-safe disconnection of electrical loads
JP2009294961A (en) * 2008-06-06 2009-12-17 Yokogawa Electric Corp Multiplex input/output module
JP2013012094A (en) * 2011-06-30 2013-01-17 Mitsubishi Electric Corp Duplex control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106537A (en) * 2016-12-27 2018-07-05 サイレックス・テクノロジー株式会社 Communication control system, device server, communication control method, and program
JP2019036313A (en) * 2017-08-21 2019-03-07 フィッシャー−ローズマウント システムズ,インコーポレイテッド High performance control server system
JP7321684B2 (en) 2017-08-21 2023-08-07 フィッシャー-ローズマウント システムズ,インコーポレイテッド High performance control server system
JP2019083441A (en) * 2017-10-31 2019-05-30 村田機械株式会社 Control system, control device, conversion device, control method of control system, control method of control device, and control method of conversion device
US10728367B2 (en) 2017-10-31 2020-07-28 Murata Machinery, Ltd. Control system, control device, conversion device, method for controlling control system, method for controlling control device, and method for controlling conversion device
JP7563907B2 (en) 2020-07-13 2024-10-08 Necプラットフォームズ株式会社 Event processing system, processing device, processing method, and program

Also Published As

Publication number Publication date
CN105519050B (en) 2018-09-04
KR101815202B1 (en) 2018-01-05
KR20160110346A (en) 2016-09-21
TWI674488B (en) 2019-10-11
TW201640243A (en) 2016-11-16
CN105519050A (en) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2016129075A1 (en) Control system and relay device
JP6558882B2 (en) Control system and relay device
JP4776374B2 (en) Redundant supervisory control system and redundant switching method for the same system
EP3189647B1 (en) Apparatus and method for on-process migration of industrial control and automation system across disparate network types
CN104378291B (en) Method and communication equipment for the information transmission for carrying out redundancy in industrial communication network
US8780702B2 (en) Adaptive multi-redundant ring network system and method for selecting detour
CN102394787A (en) Dual-link redundancy control method based on EPA switch
US20180157233A1 (en) Communication system, communication device, and communication program
JP3882783B2 (en) Programmable controller, CPU unit, communication unit and communication unit control method
JP5395450B2 (en) Ring type switch and ring type switch control method
JP6299640B2 (en) Communication device
US8510402B2 (en) Management of redundant addresses in standby systems
JP5852267B2 (en) Relay interface module for distributed control systems
JP2019179361A (en) Safety control system and safety control unit
JP2008181240A (en) Redundant distributing control system
JP3908596B2 (en) Call server and its port switching method
WO2015037116A1 (en) Control device and control system
JP6269404B2 (en) Control system, relay device, and control device
JP2012208706A (en) Redundant controller
JP6350154B2 (en) Control system
JP2007334668A (en) Memory dumping method, cluster system, node constituting the system, and program
JP2008197907A (en) Monitoring network system and data backup method
JP7326239B2 (en) Controller and controller system
JP2017073592A (en) Control system and relay device
JP2016058011A (en) Control system and relay device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167002173

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016/01287

Country of ref document: TR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载