+

WO2016125605A1 - 単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法 - Google Patents

単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法 Download PDF

Info

Publication number
WO2016125605A1
WO2016125605A1 PCT/JP2016/051815 JP2016051815W WO2016125605A1 WO 2016125605 A1 WO2016125605 A1 WO 2016125605A1 JP 2016051815 W JP2016051815 W JP 2016051815W WO 2016125605 A1 WO2016125605 A1 WO 2016125605A1
Authority
WO
WIPO (PCT)
Prior art keywords
dummy
chamber
cleaning
single crystal
crucible
Prior art date
Application number
PCT/JP2016/051815
Other languages
English (en)
French (fr)
Inventor
憲治 沖田
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020177019779A priority Critical patent/KR101937779B1/ko
Priority to DE112016000581.4T priority patent/DE112016000581B4/de
Priority to CN201680007916.7A priority patent/CN107208306B/zh
Priority to JP2016573278A priority patent/JP6428796B2/ja
Priority to US15/544,364 priority patent/US10000863B2/en
Publication of WO2016125605A1 publication Critical patent/WO2016125605A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto
    • B08B9/08Cleaning containers, e.g. tanks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a cleaning method of a single crystal pulling apparatus used for manufacturing a single crystal by the Czochralski method (hereinafter referred to as CZ method), and in particular, small dust remaining in a chamber that cannot be removed by normal dismantling cleaning,
  • CZ method Czochralski method
  • the present invention relates to a method for cleaning foreign matter such as dust.
  • the present invention also relates to a cleaning tool used in the cleaning method and a method for producing a single crystal employing the cleaning method.
  • Patent Document 1 proposes a cleaning device for cleaning the inner surface of a pull chamber and a wire suspended in the pull chamber, which are difficult to clean manually. Further, Patent Document 2 proposes a method of evacuating the chamber after dismantling and cleaning the single crystal pulling apparatus and setting the components in the chamber and before charging the raw material into the quartz crucible.
  • one of the objects of the present invention is to provide a cleaning method for a single crystal pulling apparatus capable of removing foreign substances in the chamber and suppressing the dislocation of the single crystal.
  • Another object of the present invention is to provide a cleaning tool used in such a cleaning method.
  • Still another object of the present invention is to provide a method for producing a single crystal including such a cleaning method.
  • a cleaning method for a single crystal pulling apparatus includes a dummy liquid level imitating a liquid level of a raw material melt in a crucible, A dummy crucible simulating the crucible including a first dummy ingot simulating a single crystal ingot being pulled is prepared, and gas is supplied in a state where the dummy crucible is installed in a decompressed chamber of the single crystal pulling apparatus.
  • the method further comprises a cleaning step of generating a gas flow affected by the dummy crucible and removing foreign matter adhering to the wall surface of the chamber or the components in the chamber.
  • the structure in the chamber during the pulling of the single crystal is simulated and a strong gas flow or turbulent flow is intentionally generated to remove the foreign matter adhering to the chamber wall or the components in the chamber. It can be detached, and foreign matters such as small dust and dust remaining in the chamber that could not be removed by normal dismantling cleaning can be removed in advance. Therefore, the separation of foreign matters in the subsequent pulling process can be reduced, and the occurrence rate of single crystal dislocation due to the adhesion of foreign matters can be reduced.
  • the single crystal pulling apparatus includes a rotation support shaft that supports the crucible to be movable up and down in the chamber, and a heat shield disposed above the rotation support shaft, and the dummy liquid surface
  • the first gap width between the heat shield and the lower end of the heat shield is substantially equal to the second gap width between the liquid surface of the raw material melt and the lower end of the heat shield in the actual single crystal pulling step. It is preferable to carry out the cleaning step by adjusting the height of the dummy crucible so as to be equal to each other, that is, to obtain a gap width that can be obtained in actual single crystal pulling.
  • the dummy crucible is preferably swung up and down in the cleaning step.
  • the flow of gas in the chamber can be intentionally changed by swinging the dummy crucible up and down. Accordingly, dust generation during actual pulling can be prevented, and the rate of occurrence of dislocations in the single crystal due to adhesion of foreign matters can be reduced.
  • the first dummy ingot has a shoulder portion with a gradually increasing diameter and a body portion with a constant diameter, and when the dummy crucible is raised, the first dummy ingot is lower than the lower end of the heat shield.
  • the first dummy ingot is raised together with the dummy crucible so that the lower end of the shoulder portion moves from a height position of 1 to a second height position above the lower end of the heat shield.
  • the dummy crucible is preferably made of resin.
  • the entire dummy crucible including the dummy liquid surface and the first dummy ingot is made of resin, it can be manufactured at a very low cost and is easy to handle.
  • the dummy crucible is made of a white material, when a black foreign substance such as carbon scrap falls and adheres to the dummy crucible, it can be visually recognized, and the dummy crucible can also function as a foreign substance collection / confirmation device.
  • a second dummy ingot simulating a single crystal ingot is prepared, and in the cleaning step, gas is supplied in a state where the second dummy ingot is suspended in the chamber, Preferably, the gas flow affected by the dummy ingot of No. 2 is generated to remove the foreign matter adhering to the wall surface of the chamber or the components in the chamber.
  • the structure in the chamber during the pulling of the single crystal is further reproduced, and a strong gas flow or turbulent flow is intentionally generated to remove the foreign matter adhering to the wall surface of the chamber or the components in the chamber.
  • foreign matters such as small dust and dust remaining in the chamber that could not be removed by normal dismantling cleaning can be removed in advance. Therefore, the separation of foreign matters in the subsequent pulling process can be reduced, and the occurrence rate of single crystal dislocation due to the adhesion of foreign matters can be reduced.
  • the cleaning step is performed in a state where the second dummy ingot is connected to the first dummy ingot.
  • the chamber includes a main chamber and a pull chamber connected to an upper opening of the main chamber, and the cleaning step is performed in a state where the second dummy ingot is disposed in the pull chamber. It is preferable to do. According to this, a narrow gap width between the pull chamber and the single crystal ingot can be reproduced, and a strong gas flow can be generated in the pull chamber. Accordingly, the foreign matter that separates from the pull chamber during actual pulling can be removed in advance, and the rate of occurrence of dislocations in the single crystal due to the attachment of the foreign matter can be reduced.
  • the cleaning step is performed in a state where the second dummy ingot is swung up and down independently of the dummy crucible.
  • the gas flow can be intentionally changed by swinging the second dummy ingot up and down. Therefore, the amount of dust generated during actual pulling can be reduced, and the rate of occurrence of dislocations in the single crystal due to the adhesion of foreign matters can be reduced.
  • the single crystal pulling device further includes a wire disposed coaxially with the rotation support shaft and having a hook attached to a tip portion thereof, and a ring metal fitting is provided on a tip portion of the second dummy ingot.
  • the second dummy ingot is connected to the lower end portion of the wire by engaging the hook with the ring fitting and allowing play in the engagement. According to this, when the second dummy ingot is mounted on and connected to the first dummy ingot, the occurrence of bending of the wire can be avoided, and the second dummy ingot is replaced with the first dummy ingot. Can be lifted and lowered together.
  • the second dummy ingot is preferably made of resin. According to this, the second dummy ingot can be manufactured at low cost, and handling at the time of installation is easy. Further, when the second dummy ingot is made of a white material, when a black foreign substance such as carbon dust adheres to the second dummy ingot, the second dummy ingot can be visually recognized and can function as a foreign substance collection / confirmation device.
  • a cleaning method for a single crystal pulling apparatus provides a dummy ingot that imitates a single crystal ingot, and gas is used while the dummy ingot is suspended in a decompressed chamber of the single crystal pulling apparatus. And a cleaning step of causing the gas flow affected by the dummy ingot to be generated to drop off foreign substances adhering to the wall surface of the chamber or the components in the chamber.
  • the structure in the chamber during the pulling of the single crystal is simulated and a strong gas flow or turbulent flow is intentionally generated to remove the foreign matter adhering to the chamber wall or the components in the chamber. It can be detached, and foreign matters such as small dust and dust remaining in the chamber that could not be removed by normal dismantling cleaning can be removed in advance. Therefore, the separation of foreign matters in the subsequent pulling process can be reduced, and the occurrence rate of single crystal dislocation due to the adhesion of foreign matters can be reduced.
  • the dummy ingot is made of resin, and the cleaning step is performed by setting the temperature in the chamber to a normal temperature.
  • the dummy ingot has a shoulder portion whose diameter gradually increases and a body portion whose diameter is kept constant below the shoulder portion.
  • the lower end of the shoulder portion is It is preferable to pull up the dummy ingot so as to pass through the opening at the lower end of the heat shield installed above the crucible.
  • a dummy ingot is connected to the lower end of the pulling shaft for pulling up the single crystal, and the lower end of the shoulder portion (body portion) from the height position below the lower end of the heat shield to the height position above the lower end of the heat shield.
  • a crucible for supporting the raw material melt is installed in the chamber, and the raw material melt is actually stored in the crucible in the chamber at a high temperature.
  • a cleaning process may be performed.
  • the crucible is preferably made of quartz, and the dummy ingot is preferably made of at least one material selected from silicon, quartz, carbon, silicon carbide and molybdenum. In this way, the foreign matter in the chamber can be sufficiently removed by performing the cleaning at a high temperature immediately before starting the single crystal pulling step.
  • the dummy ingot has a shoulder portion whose diameter gradually increases and a body portion whose diameter is kept constant below the shoulder portion, and in the cleaning step, a lower end of the shoulder portion.
  • the dummy ingot is pulled up so as to pass through the opening at the lower end of the heat shield installed above the crucible.
  • a dummy ingot is connected to the lower end of the pulling shaft for pulling up the single crystal, and the lower end of the shoulder portion (body portion) from the height position below the lower end of the heat shield to the height position above the lower end of the heat shield.
  • the height of the crucible is adjusted so that the height position of the crucible when starting the cleaning process is lower than the height position of the crucible when starting the single crystal pulling process. It is preferred that Furthermore, the height of the crucible is such that when the lower end of the shoulder portion is the same height as the lower end of the thermal shield in the cleaning step, the liquid surface of the raw material melt and the lower end of the thermal shield So that the first gap width between the two is substantially equal to the second gap width between the liquid surface of the raw material melt and the lower end of the heat shield in the actual single crystal pulling step, that is, It is preferable that the gap width is adjusted so as to be obtained in actual single crystal pulling. By doing in this way, the flow velocity of the gas introduced into the chamber can be further increased. In particular, by reproducing the conditions as close as possible to the actual single crystal pulling process, foreign substances in the chamber can be reliably removed.
  • the cleaning step is performed after the raw material is additionally charged in the crucible.
  • the fine powder of the raw material diffuses and adheres in the chamber and falls off during the pulling process. May cause dislocation.
  • the occurrence rate of dislocations in the single crystal can be further reduced.
  • the dummy ingot preferably has a hollow structure.
  • the dummy ingot is in a lump shape, cracks and ruptures are likely to occur due to thermal expansion in a high temperature chamber.
  • the dummy ingot has a hollow structure, it is possible to suppress the heat storage and prevent the occurrence of cracks and ruptures.
  • the cleaning tool of the silicon single crystal pulling apparatus includes a dummy crucible imitating a crucible used for pulling a single crystal, a dummy liquid level imitating the liquid level of the raw material melt in the crucible, And a first dummy ingot simulating a single crystal ingot being pulled upward from the liquid surface of the raw material melt.
  • the cleaning tool according to the present invention further includes a second dummy ingot simulating a single crystal ingot, the upper end portion of the first dummy ingot has a conical convex portion, and the lower end portion of the second dummy ingot. Preferably has a conical recess that can be fitted to the upper end of the first dummy ingot. According to this configuration, the second dummy ingot can be connected to the first dummy ingot, and a long single crystal ingot can be reproduced in the chamber.
  • the cleaning tool of the single crystal pulling apparatus is a dummy ingot that imitates a single crystal ingot, and the lower end of the dummy ingot has a conical recess.
  • a dummy ingot can be used to reproduce the same environment as that during actual pulling, and a strong gas flow or turbulent flow is generated in the chamber to remove foreign matters that are detached during the actual pulling in advance. It can be removed, and the rate of occurrence of dislocations in the single crystal due to the adhesion of foreign substances can be reduced.
  • a long single crystal ingot can be reproduced in the chamber by connecting the dummy ingot.
  • the method for producing a single crystal according to the fifth aspect of the present invention includes a step of dismantling and cleaning the chamber of the single crystal pulling apparatus and the components in the chamber, and the cleaning method after the disassembly cleaning of the single crystal pulling apparatus.
  • the method includes a step of performing finish cleaning, and a step of pulling up the single crystal using the single crystal pulling device after the completion of the finish cleaning.
  • the structure in the chamber during the pulling of the single crystal is simulated and a strong gas flow or turbulent flow is intentionally generated to remove the foreign matter adhering to the chamber wall or the components in the chamber. It can be detached, and foreign matters such as small dust and dust remaining in the chamber that could not be removed by normal dismantling cleaning can be removed in advance. Therefore, the separation of foreign matters in the subsequent pulling process can be reduced, and the occurrence rate of single crystal dislocation due to the adhesion of foreign matters can be reduced.
  • the cleaning method of the single crystal pulling apparatus which can remove the foreign material in the chamber which could not be removed by normal dismantling cleaning, and can suppress the dislocation of a single crystal can be provided. Moreover, according to this invention, the cleaning tool used in such a cleaning method can be provided. Furthermore, according to the present invention, it is possible to provide a method for producing a single crystal in which the yield of the single crystal is increased by employing such a cleaning method.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a single crystal pulling apparatus 1 to be cleaned according to the present invention.
  • FIG. 2 is a cross-sectional view for explaining a cleaning method (finish cleaning step) of the single crystal pulling apparatus 1 according to the first embodiment of the present invention.
  • FIG. 3 is a schematic perspective view showing the structure of the dummy crucible 30 and the dummy ingot 40.
  • FIG. 4 is a cross-sectional view for explaining the operation of the dummy crucible 30.
  • FIG. 5 is a view for explaining an example of the arrangement of the dummy crucible 30 and the second dummy ingot 40 during the cleaning.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a single crystal pulling apparatus 1 to be cleaned according to the present invention.
  • FIG. 2 is a cross-sectional view for explaining a cleaning method (finish cleaning step) of the single crystal pulling apparatus 1 according to the first embodiment of the present invention.
  • FIG. 3 is a schematic
  • FIG. 6 is a diagram for explaining another example of the arrangement of the dummy crucible 30 and the second dummy ingot 40 during the cleaning.
  • FIG. 7 is a cross-sectional view for explaining a cleaning method of the single crystal pulling apparatus 1 according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for explaining the cleaning method of the single crystal pulling apparatus 1 together with FIG.
  • FIG. 9 is a cross-sectional view for explaining the cleaning method of the single crystal pulling apparatus 1 together with FIGS.
  • FIG. 10 is a sectional view for explaining a cleaning method of the single crystal pulling apparatus 1 together with FIGS.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a single crystal pulling apparatus 1 to be cleaned according to the present invention.
  • this single crystal pulling apparatus 1 is an apparatus for manufacturing a silicon single crystal for semiconductors by a CZ method, and includes a chamber 10, a heat insulating material 11 disposed inside the chamber 10, a chamber A susceptor 13 that supports the quartz crucible 12 housed in the susceptor 13, a rotation support shaft 14 that supports the susceptor 13 so as to be movable up and down, a heater 15 that is disposed so as to surround the periphery of the susceptor 13, and a susceptor 13.
  • the chamber 10 includes a main chamber 10A and a pull chamber 10B connected to an upper opening of the main chamber 10A.
  • the quartz crucible 12, the susceptor 13, the rotation support shaft 14, the heater 15, and the heat shield 16 described above. Is provided in the main chamber 10A.
  • the winding mechanism 18 is disposed above the pull chamber 10B, the wire 17 extends downward from the winding mechanism 18 through the pull chamber 10B, and the tip of the wire 17 extends to the internal space of the main chamber 10A. Has reached.
  • FIG. 1 shows a state in which the silicon single crystal 2 is suspended from the tip of the wire 17.
  • the heat shield 16 suppresses temperature fluctuation of the silicon melt 2 to form an appropriate hot zone in the vicinity of the crystal growth interface, and prevents the silicon single crystal 2 from being heated by radiant heat from the heater 15 and the quartz crucible 12. It is provided for.
  • the heat shield 16 is a carbon member that covers a region above the silicon melt 2 excluding the pulling path of the silicon single crystal 2, and has an inverted truncated cone shape in which the opening size increases in particular from the lower end toward the upper end. Have.
  • the diameter of the opening at the lower end of the heat shield 16 is larger than the diameter of the silicon single crystal 2, thereby securing a pulling path for the silicon single crystal 2.
  • the diameter of the opening at the lower end of the heat shield 16 is smaller than the diameter of the quartz crucible 12, and the lower end of the heat shield 16 is located inside the quartz crucible 12.
  • the heat shield 16 does not interfere with the quartz crucible 12 even if it is raised above the lower end.
  • the quartz crucible 12 is set in the susceptor 13, the silicon raw material is filled in the quartz crucible 12, and a seed crystal is attached to the tip of the wire 17.
  • the silicon raw material is heated by the heater 15 to generate the silicon melt 3, and the seed crystal is lowered to be deposited on the silicon melt 3.
  • the seed crystal is slowly raised while rotating the quartz crucible 12 to grow a substantially cylindrical silicon single crystal 2.
  • the inside of the chamber 10 is kept at a constant reduced pressure.
  • Argon gas is supplied from a gas intake port 19A provided at the upper part of the pull chamber 10B, and argon gas is exhausted from a gas exhaust port 19B provided at the lower part of the main chamber 10A.
  • the flow of argon gas is generated, and this flow (gas flow) constantly changes depending on the growth state of the single crystal.
  • the atmospheric gas in the chamber 10 is not limited to argon gas, and other inert gas may be used.
  • the diameter of the silicon single crystal 2 is controlled by controlling the pulling speed and the temperature of the heater 15.
  • the shoulder portion is formed by expanding the crystal diameter into a conical shape.
  • the body is continuously pulled up to a predetermined diameter, and the body portion is formed.
  • the diameter is narrowed to form the tail portion, and finally separated from the liquid surface.
  • Cleaning of the single crystal pulling apparatus 1 includes dismantling cleaning and finishing cleaning after dismantling cleaning.
  • Dismantling cleaning is a process of disassembling the apparatus after completion of the batch, cleaning each part, and removing powder and deposits attached to the inner wall of the chamber 10 and parts in the chamber 10.
  • the finish cleaning is a cleaning process performed after such disassembly cleaning and before starting the next silicon single crystal pulling process. This finish cleaning makes it possible to remove foreign matter in the chamber 10 that could not be removed by dismantling cleaning.
  • FIG. 2 is a cross-sectional view for explaining a cleaning method (finish cleaning step) of the single crystal pulling apparatus 1 according to the first embodiment of the present invention.
  • two types of cleaning tools are used in the finish cleaning in order to reproduce the environment in the chamber 10 during the pulling of the single crystal.
  • One is a dummy crucible 30 simulating the shape of an actual quartz crucible 12, and the other is a dummy ingot 40 simulating the shape of a single crystal ingot.
  • FIG. 3 is a schematic perspective view showing the structure of the dummy crucible 30 and the dummy ingot 40.
  • the dummy crucible 30 is a resin member having substantially the same size (caliber) as the quartz crucible 12 actually used.
  • the shape of the dummy crucible 30 only needs to be similar to the quartz crucible 12 actually used, and strict identity is not required.
  • a dummy liquid surface 31 simulating the liquid surface of the silicon melt 3 is formed integrally with the dummy crucible 30, and the shape of the silicon single crystal pulled upward from the liquid surface of the silicon melt 3 is further formed.
  • a dummy ingot 32 (first dummy ingot) simulating the dummy liquid surface 31 is formed integrally. That is, the dummy crucible 30 is a single structure including the dummy liquid surface 31 and the dummy ingot 32.
  • the dummy crucible 30 is directly installed on the upper end of the rotation support shaft 14. That is, the susceptor 13 is not used. This is because the quartz crucible 12 softened at a high temperature needs to be supported by the susceptor 13 in the actual pulling process, but the cleaning process is performed at room temperature and there is no need to consider the deformation of the dummy crucible 30. . Further, the preparation of the cleaning process can be simplified by omitting the installation of the susceptor 13. Note that the bottom of the dummy crucible 30 needs to have a shape that can be installed on the rotation support shaft 14.
  • the dummy ingot 40 (second dummy ingot) is a resin member having substantially the same diameter as the silicon single crystal ingot that is actually pulled up, and a shoulder portion 40a whose diameter gradually increases downward, A body portion 40b having a constant diameter.
  • a ring metal fitting 40d is provided at the upper end portion of the shoulder portion 40a, and a hook 17a provided at the tip end portion of the wire 17 is engaged with the ring metal fitting 40d, whereby the dummy ingot 40 is hung up and down freely.
  • the dummy ingot 40 can be fitted into a dummy ingot 32 integrated with the dummy crucible 30. Since the upper end portion of the dummy ingot 32 has a conical convex portion 32a (shoulder portion) and the lower end portion of the dummy ingot 40 has a conical concave portion 40c, the dummy ingot 40 is simply lowered. The dummy ingot 32 can be fitted. Even when the dummy ingot 40 is swung by receiving the wind pressure of the argon gas, it can be connected to the dummy ingot 32 while correcting the misalignment of the central axis in a self-aligning manner. A long single crystal (see FIG. 5) can be reproduced by connecting the dummy ingot 40 to the dummy ingot 32.
  • the dummy ingot 32 is integrated with the dummy crucible 30 and plays a role of changing the flow of argon gas below the heat shield 16. Further, the dummy ingot 40 plays a role of changing the flow of the argon gas above the heat shield 16 and narrows the opening area of various portions in the chamber 10 in a state where the single crystal is actually pulled up. To change the flow of argon gas.
  • the material of the dummy crucible 30 and the dummy ingot 40 is not particularly limited, but it is preferable to use a resin such as polypropylene. When a resin is used, it is easy to process and can be manufactured at low cost. Further, in the case of a white material, for example, when a black foreign substance such as carbon scrap falls and adheres to the dummy ingot 40 or the dummy crucible 30, it can be grasped visually, and functions as a foreign substance collection / confirmation device. You can also
  • an argon gas of a predetermined flow rate is supplied into the chamber 10, and the inside of the chamber 10 is brought to an argon atmosphere at room temperature and under reduced pressure.
  • Argon gas is supplied from a gas intake port 19a provided in the upper part of the pull chamber 10B, and exhausted from a gas exhaust port 19b provided in the lower part of the main chamber 10A through the pull chamber 10B and the main chamber 10A.
  • the atmospheric pressure in the chamber 10 is preferably 20 to 30 Torr, and the supply amount of argon gas can be 130 L / min, for example.
  • the atmospheric pressure in the chamber 10 is measured by a pressure gauge, and the amount of argon gas exhausted from the gas exhaust port 19b is controlled so that the atmospheric pressure in the chamber 10 is constant.
  • the finish cleaning is performed at room temperature. Although it is possible to raise the temperature in the chamber 10 to the same temperature as in the actual single crystal pulling process and perform cleaning at a high temperature, the time for raising the temperature in the chamber 10 or cooling it after cleaning Is not efficient. Further, the dummy ingot 40 and the dummy crucible 30 cannot be made of resin. For these reasons, the finish cleaning is preferably performed at room temperature.
  • the cleaning time is not particularly limited, but is preferably about 2 to 8 hours.
  • FIG. 4 is a cross-sectional view for explaining the operation of the dummy crucible 30.
  • the dummy crucible 30 is raised and brought close to the heat shield 16, and the dummy ingot 31 is inserted into the opening 16 a of the heat shield 16. At that time, the dummy crucible 30 may be raised while being rotated, or may be raised without being rotated.
  • the diameter of the opening 16a of the heat shield 16 is slightly larger than the diameter of the single crystal.
  • argon gas flows smoothly because the opening area is large.
  • the shoulder portion of the dummy ingot 32 enters the opening portion 16a due to the rising of the dummy crucible 30, the opening area rapidly decreases, and the dummy crucible 30 and the heat shield 16
  • the flow rate of argon gas that attempts to pass through the narrow gaps between them increases.
  • the gas flow in the chamber 10 changes and turbulent flow is likely to occur, so that fine foreign substances adhering to the corners and recesses in the chamber 10 can be dropped off and lifted up. Foreign matter can be exhausted and removed.
  • the gap width (first gap width) G between the dummy liquid surface 31 and the lower end of the heat shield 16 is the quartz crucible in the actual single crystal pulling process.
  • 12 is preferably substantially equal to the gap width (second gap width) between the liquid surface of the silicon melt 3 in the inner surface 12 and the lower end of the heat shield 16, that is, the actual single crystal pulling. It is preferable that the gap width is adjusted so as to be able to be obtained in step 1, and it is more preferable to maintain this state for a certain period of time.
  • the flow rate of the argon gas that attempts to pass through the narrow gap between the heat shield 16 and the dummy liquid surface 31 is further increased, so that the gas flow in the chamber 10 changes and turbulence occurs. It becomes easy to do. Therefore, the foreign matter adhering to the inside of the chamber 10 can be dropped and lifted up, and these foreign matters can be exhausted and removed together with the gas flow.
  • FIG. 5 is a diagram for explaining an example of the arrangement of the dummy crucible 30 and the dummy ingot 40 during the cleaning.
  • the dummy ingot 40 may be connected to the dummy crucible 30. Although the dummy crucible 30 and the dummy ingot 40 are not connected at the beginning, they can be connected by lowering the dummy ingot 40, and a longer single crystal can be reproduced in the chamber 10. .
  • the dummy ingot 40 is preferably maintained in a state where it is connected to the dummy crucible 30 for a certain period of time. By doing in this way, a state closer to the actual pulling can be reproduced, and the flow and flow velocity of the argon gas can be further changed.
  • the wire 17 is greatly bent when the dummy ingot 40 is mounted on the dummy ingot 32 and connected.
  • the dummy ingot 40 can be lifted and lowered together with the dummy ingot 32.
  • the dummy ingot 40 may be connected to the dummy crucible 30 or may be separated from the dummy crucible 30.
  • a turbulent flow of argon gas can be generated in the chamber 10 and foreign matters in the chamber 10 can be removed. Can do.
  • the dummy ingot 40 In finishing cleaning, it is also preferable to separate the dummy ingot 40 from the dummy crucible 30 and swing the dummy ingot 40 up and down independently of the dummy crucible 30.
  • the position in the height direction of the dummy crucible 30 may be fixed, and only the dummy ingot 40 may be moved up or down, or the dummy ingot 40 may be fixed and the dummy crucible 30 may be moved up or down. May be.
  • the gas flow in the chamber 10 can be changed by greatly changing the position in the height direction of the dummy ingot 40, and the dummy ingot 40 only remains at a fixed position. Foreign objects that could not be raised can be raised.
  • FIG. 6 is a diagram for explaining another example of the arrangement of the dummy crucible 30 and the dummy ingot 40 during the cleaning.
  • the dummy ingot 40 may be disposed in the dummy crucible 30 pull chamber 10B.
  • argon gas passes through a narrow gap between the dummy ingot 40 and the inner wall surface of the pull chamber 10B, thereby increasing the wind speed of the gas flow.
  • the pull chamber 10B has an uneven surface such as a gate valve and a sensor on the upper part, and foreign matter is likely to adhere to it.
  • the gas flow in the pull chamber 10B becomes strong, the foreign matter in the pull chamber 10B should be removed. Can do.
  • the wind speed of the gas flow is increased, the wind speed of the gas flow in the main chamber 10A is also increased, and turbulent flow is easily generated, so that foreign substances in the main chamber 10A can be removed.
  • the chamber 10 is opened to the atmosphere, the dummy crucible 30 and the dummy ingot 40 are taken out, the susceptor 13 and the quartz crucible 12 are set on the rotation support shaft 14, and the quartz crucible 12 is filled with a silicon raw material. Thereafter, the normal single crystal pulling step described above is performed. As described above, in the present embodiment, since the finish cleaning is performed, it is possible to reduce the probability of occurrence of dislocation due to the influence of foreign matters remaining in the chamber 10 in the single crystal pulling process.
  • the cleaning method of the single crystal pulling apparatus 1 reproduces the structure in the chamber when pulling the single crystal, and the argon gas generated in the chamber due to the presence of the quartz crucible or the single crystal ingot. Since a strong flow and turbulent flow are artificially created, the flow rate of the inert gas is intentionally changed, and foreign substances adhering to the corners and recesses in the chamber are removed and removed in advance. The amount of dust generated in the pulling process can be reduced, and the rate of occurrence of dislocations in the single crystal due to the adhesion of foreign matters can be reduced.
  • FIG. 7 to 10 are cross-sectional views for explaining a cleaning method of the single crystal pulling apparatus according to the second embodiment of the present invention.
  • this cleaning method is characterized in that cleaning is performed using a dummy ingot 50 in a state where the silicon melt 3 is stored in the quartz crucible 12 immediately before starting the single crystal pulling process. is there. Therefore, unlike the first embodiment, not a dummy crucible but a quartz crucible 12 actually used in the single crystal pulling process is installed in the chamber 10, the quartz crucible 12 is heated by the heater 15, and the chamber 10 is heated to a high temperature. It is kept.
  • the cleaning method according to the first embodiment has a certain effect as a cleaning method before starting the single crystal growth process.
  • the silicon raw material 5 is additionally charged into the quartz crucible 12 using the charge tube 60 as shown in FIG. 8, the silicon fine powder adhering to the surface of the charge tube 60 is generated in the chamber 10.
  • silicon raw material in the charge tube 60 is dropped and thrown into the quartz crucible 12 and dropped into the quartz crucible 12
  • silicon fine particles adhering to the inner surface of the charge tube 60 and the silicon raw material 5 rise up. It adheres to in-furnace structures such as the shield 16 and causes dislocation of the single crystal.
  • cleaning using a dummy ingot is performed in the chamber 10 at a high temperature immediately before the single crystal pulling step is started to further clean the chamber 10.
  • the dummy ingot 50 used for cleaning needs to have heat resistance and does not contaminate the silicon melt 3.
  • the material of the dummy ingot 50 is preferably silicon, quartz, carbon, silicon carbide (SiC), carbon whose surface is coated with SiC, molybdenum, or the like.
  • the dummy ingot 50 for example, a silicon single crystal ingot that has been pulled using a single crystal pulling apparatus of the same type as the object to be cleaned and then not processed as a wafer product can be used. In this way, by using a silicon single crystal ingot that has not been commercialized as the dummy ingot 50, it is possible to eliminate the trouble of manufacturing the dummy ingot from the beginning and to effectively use resources.
  • the shape of the dummy ingot 50 is the same as the shape of the top side of the silicon single crystal ingot actually grown by the CZ method, and the shoulder portion 50a whose diameter gradually increases from the top to the bottom, and below the shoulder portion 50a. It is only necessary to have the body portion 50b whose diameter is maintained constant.
  • the dummy ingot 50 may have a hollow structure having a cavity therein, or may be a block having no cavity. In the case of the dummy ingot 50 having a hollow structure, an opening may be formed at the bottom thereof. In the case where the dummy ingot has a hollow structure, it is possible to suppress heat accumulation and prevent the occurrence of cracks and ruptures. Since the dummy ingot 50 must not come into contact with the silicon melt 3 during the cleaning process, the length of the body portion 50b of the dummy ingot 50 takes into account the height of the silicon melt in the quartz crucible 12. Must be set.
  • additional charging of the silicon raw material 5 is performed using the charge tube 60.
  • the additional charging may be performed in order to pull up the second and subsequent silicon single crystal ingots in a so-called multiple pulling method.
  • the multiple pulling method after pulling up the silicon single crystal, the silicon raw material is additionally supplied and melted in the same quartz crucible, and the silicon single crystal is pulled up from the obtained silicon melt.
  • the single crystal pulling step By repeating the single crystal pulling step, a plurality of silicon single crystals are manufactured from one quartz crucible. According to the multiple pulling method, the cost of the quartz crucible per silicon single crystal can be reduced.
  • the frequency with which the chamber is disassembled and the quartz crucible is replaced can be reduced, it is possible to improve operational efficiency.
  • the additional charge may also be performed in order to replenish the silicon raw material in the quartz crucible in a so-called single pulling method.
  • the silicon raw material is additionally supplied. According to this method, a long silicon single crystal can be pulled up, and the operation efficiency can be improved.
  • the charge tube 60 is a cylindrical quartz glass container having a bottom lid 61 that can be opened and closed.
  • the charge tube 60 is suspended from the lower end of the wire 17, and the charge tube 60 is lowered from the position of the pull chamber 10B to approach the melt surface. Thereafter, by opening the bottom cover 61, the additional silicon raw material 5 in the charge tube 60 falls and is put into the quartz crucible 12.
  • silicon fine powder is likely to adhere to the inner wall of the chamber 10 and the in-furnace structure such as the heat shield 16, which causes the dislocation of the single crystal. There is a risk of becoming. Therefore, in this embodiment, a cleaning process in the chamber 10 using the dummy ingot 50 is performed after the silicon material adding process.
  • the empty charge tube 60 attached to the lower end of the wire 17 is removed and replaced with the dummy ingot 50, and then the dummy ingot 50 is lowered to the vicinity of the melt surface as shown in FIG.
  • the quartz crucible 12 is lowered as much as possible. That is, the height of the quartz crucible 12 is adjusted so that the height position of the quartz crucible 12 when starting the cleaning process is lower than the height position of the quartz crucible 12 when starting the single crystal pulling process. .
  • FIG. 9 shows a state at the start of the cleaning process in which the quartz crucible 12 and the dummy ingot 50 are sufficiently lowered.
  • the state during the cleaning process may be such a state.
  • the lower end of the shoulder portion 50a of the dummy ingot 50 (the upper end of the body portion 50b) is disposed below the lower end of the heat shield body 16.
  • FIG. 7 shows a state in which the quartz crucible 12 and the dummy ingot 50 are raised from the position shown in FIG.
  • the lower end of the shoulder portion 50 a of the dummy ingot 50 is at the same height as the lower end of the heat shield 16. This is the same as the state shown in FIG.
  • the gas flow increases rapidly, and the crystal is likely to be disturbed. Since this embodiment can also reproduce such a situation, it is possible to generate a turbulent flow in the chamber 10 and remove foreign matters such as silicon fine powder.
  • the gap width between the liquid surface of the silicon melt 3 and the lower end of the heat shield is substantially equal to the gap width (second gap width) between the liquid surface of the raw material melt and the lower end of the thermal shield in the actual single crystal pulling step, that is, It is preferable to adjust so as to obtain a gap width that can be obtained in actual single crystal pulling. By doing in this way, the same situation as an actual single crystal pulling process can be reproduced.
  • FIG. 10 shows a state where the dummy ingot 50 is further raised.
  • the foreign matter in the pull chamber 10B can be removed, and the occurrence rate of single crystal dislocation due to the adhesion of the foreign matter can be reduced.
  • the quartz crucible 12 may be raised / lowered together.
  • the dummy ingot 50 moves up and down below the lower end of the heat shield 16
  • the dummy crucible 12 is moved up and down in accordance with the lifting operation, so that the dummy ingot 50 is not brought into contact with the silicon melt 3.
  • 50 can be disposed at an appropriate position, and the gap width (first gap width) between the lower end of the heat shield 16 and the silicon melt 3 is set to the gap width (second gap width) during the actual pulling process. ).
  • the cleaning method of the single crystal pulling apparatus 1 also reproduces the structure in the chamber at the time of pulling the single crystal, and the argon gas generated in the chamber due to the presence of the quartz crucible and the single crystal ingot. Since a strong flow and turbulent flow are artificially created, the flow rate of the inert gas is intentionally changed, and foreign substances such as silicon fine particles adhering to the chamber are removed and removed in advance. The amount of dust generated in the pulling process can be reduced, and the rate of occurrence of dislocations in the single crystal due to the adhesion of foreign matters can be reduced.
  • the dummy crucible 30 and the dummy ingot 40 are used for cleaning at the same time.
  • the cleaning may be performed using only the dummy crucible 30 or only the dummy ingot 40 may be used for cleaning. You may go.
  • the material of the dummy crucible 30 and the dummy ingot 40 is not limited to resin,
  • the shapes of the dummy crucible 30 and the dummy ingots 40 and 50 only have to be similar to the actual ones, and the degree of similarity is not particularly limited as long as the effects of the invention can be exhibited. Therefore, for example, the dummy crucible 30 may be notched or eccentric. Further, the dummy ingots 40 and 50 may be elliptical cylinders instead of regular cylinders, irregularities may be formed on the outer peripheral surface of the cylinders, or irregular shapes having crystal wall lines may be formed.
  • the inside of the chamber can be cleaned by the flow of gas, and the cleaning effect can be promoted by increasing the turbulence. Is possible.
  • argon gas is used as the gas supplied into the chamber.
  • other inert gas may be used instead of argon gas, or air may be used.
  • the silicon single crystal pulling apparatus is described as an example.
  • the present invention is not limited to this, and various single crystal pulling apparatuses such as SiC and sapphire can be targeted.
  • SiO evaporated from a silicon melt is likely to adhere to the chamber, but the apparatus is large and difficult to dismantle and clean every corner of the chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】チャンバー内の異物を除去して有転位化を抑制することが可能な単結晶引き上げ装置のクリーニング方法を提供する。 【解決手段】本発明による単結晶引き上げ装置のクリーニング方法は、ルツボ内の原料融液の液面を模したダミー液面と、前記原料融液の液面から上方に引き上げ途中の単結晶インゴットを模した第1のダミーインゴットとを含む前記ルツボを模したダミールツボを用意し、単結晶引き上げ装置の減圧されたチャンバー内に前記ダミールツボを設置した状態で不活性ガスを供給し、前記ダミールツボの影響を受けた不活性ガスの流れを発生させて、前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させる。

Description

単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法
 本発明は、チョクラルスキー法(以下、CZ法という)による単結晶の製造に用いる単結晶引き上げ装置のクリーニング方法に関し、特に、通常の解体清掃では除去しきれないチャンバー内に残留する小さなゴミ、チリ等の異物をクリーニングする方法に関する。また、本発明は、上記クリーニング方法で用いられるクリーニング用具、並びに上記クリーニング方法を採用する単結晶の製造方法に関する。
 CZ法によるシリコン単結晶の製造において、引き上げ工程終了後の単結晶引き上げ装置内の各所には、引き上げ時のベーパー、ワイヤーの摩耗粉、カーボン部品の劣化によるカーボンダスト、結晶冷却時の石英ルツボの割れによる石英の欠片及びシリコン残の欠片など、様々な異物が付着している。これらの掃除をせずに次の引き上げ工程に移ると、上記異物が離脱して育成中の単結晶に付着し、有転位化が起こるため、ふき取り、バキューム、エアブロー等によるチャンバー及びチャンバー内の部品の解体清掃が引き上げ工程の終了毎に行われている。
 しかし、単結晶引き上げ装置の構造は複雑であるため、単結晶引き上げ装置の隅々まで完全な掃除を行うことは難しい。そのため、解体清掃だけでは単結晶の有転位化の発生率を低減することはできない。
 上記問題を解決するため、特許文献1では、人手による掃除が難しいプルチャンバーの内面及びプルチャンバー内に垂下されたワイヤーを掃除するためのクリーニング装置が提案されている。また特許文献2では、単結晶引き上げ装置を解体清掃し、チャンバー内に部品をセットした後であって石英ルツボ内に原料を仕込む前に、チャンバー内を真空引きする方法が提案されている。
特開2001-348293号公報 特開2013-147406号公報
 しかしながら、上記特許文献2に記載されたクリーニング方法でも、チャンバーの内壁やチャンバー内の部品に付着する細かな異物を十分に除去することができず、クリーニング方法のさらなる改善が望まれている。
 したがって、本発明の目的の一つは、チャンバー内の異物を除去して単結晶の有転位化を抑制することが可能な単結晶引き上げ装置のクリーニング方法を提供することにある。また、本発明の他の目的は、そのようなクリーニング方法に用いられるクリーニング用具を提供することにある。本発明のさらに他の目的は、そのようなクリーニング方法を含む単結晶の製造方法を提供することにある。
 上記課題を解決するため、本発明の第1の側面による単結晶引き上げ装置のクリーニング方法は、ルツボ内の原料融液の液面を模したダミー液面と、前記原料融液の液面から上方に引き上げ途中の単結晶インゴットを模した第1のダミーインゴットとを含む前記ルツボを模したダミールツボを用意し、単結晶引き上げ装置の減圧されたチャンバー内に前記ダミールツボを設置した状態でガスを供給し、前記ダミールツボの影響を受けた前記ガスの流れを発生させて、前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させるクリーニング工程を有することを特徴とする。
 本発明によれば、単結晶引き上げ中のチャンバー内の構造を模擬的に再現し、ガスの強い流れや乱流を意図的に発生させて、チャンバーの壁面又はチャンバー内の部品に付着した異物を離脱させることができ、通常の解体清掃では除去しきれなかったチャンバー内に残留する小さなゴミ、チリ等の異物を事前に除去することができる。したがって、その後の引き上げ工程での異物の離脱を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明において、前記単結晶引き上げ装置は、前記チャンバー内において前記ルツボを昇降可能に支持する回転支持軸と、前記回転支持軸の上方に配置された熱遮蔽体とを有し、前記ダミー液面と前記熱遮蔽体の下端との間の第1のギャップ幅が、実際の単結晶引き上げ工程における前記原料融液の液面と前記熱遮蔽体の下端との間の第2のギャップ幅と実質的に等しくなるように、すなわち、実際の単結晶引き上げにおいて取り得るギャップ幅になるように、前記ダミールツボの高さを調整して前記クリーニング工程を実施することが好ましい。このように、熱遮蔽体と原料融液の液面との間の狭いギャップ幅をクリーニング工程中において再現することにより、ガスの強い流れや乱流を再現することができる。したがって、実際の引き上げ時に離脱する異物を事前に除去することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明によるクリーニング方法は、前記クリーニング工程において前記ダミールツボを上下に揺動させることが好ましい。このように、ダミールツボを上下に揺動させることにより、チャンバー内のガスの流れを意図的に変化させることができる。したがって、実際の引き上げ中の発塵を防止することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 前記第1のダミーインゴットは、直径が徐々に大きくなるショルダー部と、直径が一定に維持されたボディー部とを有し、前記ダミールツボを上昇させる際、前記熱遮蔽体の下端よりも下方の第1の高さ位置から前記熱遮蔽体の前記下端よりも上方の第2の高さ位置まで前記ショルダー部の下端が移動するように前記第1のダミーインゴットを前記ダミールツボと共に上昇させることが好ましい。ショルダー部の下端(ボディー部の上端)が熱遮蔽体の下端と同じ高さになったときにガスの流れが急激に強くなるので、チャンバー内の異物を除去することができる。
 本発明において、前記ダミールツボは樹脂製であることが好ましい。ダミー液面及び第1のダミーインゴットを含むダミールツボ全体が樹脂からなる場合には、非常に低コストで作製でき、取り扱いも容易である。またダミールツボが白い素材である場合には、カーボン屑などの黒い異物が落下してダミールツボに付着したときにそれを目視で捉えることができ、異物の回収・確認装置として機能させることもできる。
 本発明によるクリーニング方法は、単結晶インゴットを模した第2のダミーインゴットを用意し、前記クリーニング工程において、前記チャンバー内に前記第2のダミーインゴットを吊設した状態でガスを供給し、前記第2のダミーインゴットの影響を受けた前記ガスの流れを発生させて前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させることが好ましい。本発明によれば、単結晶引き上げ中のチャンバー内の構造をさらに再現し、ガスの強い流れや乱流を意図的に発生させて、チャンバーの壁面又はチャンバー内の部品に付着した異物を離脱させることができ、通常の解体清掃では除去しきれなかったチャンバー内に残留する小さなゴミ、チリ等の異物を事前に除去することができる。したがって、その後の引き上げ工程での異物の離脱を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明によるクリーニング方法は、前記第2のダミーインゴットを前記第1のダミーインゴットに連結させた状態で前記クリーニング工程を実施することが好ましい。このようにすることでチャンバー内に長尺な単結晶インゴットを再現することができ、実際の引き上げ工程中に発生するガスの強い流れや乱流を再現することができる。したがって、チャンバー内に残留する異物を事前に除去することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明において、前記チャンバーは、メインチャンバーと、前記メインチャンバーの上部開口に連結されたプルチャンバーとを有し、前記第2のダミーインゴットを前記プルチャンバー内に配置した状態で前記クリーニング工程を実施することが好ましい。これによれば、プルチャンバーと単結晶インゴットとの間の狭いギャップ幅を再現することができ、プルチャンバー内にガスの強い流れを発生させることができる。したがって、実際の引き上げ時にプルチャンバーから離脱する異物を事前に除去することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明によるクリーニング方法は、前記ダミールツボとは独立に前記第2のダミーインゴットを上下に揺動させた状態で前記クリーニング工程を実施することが好ましい。第2のダミーインゴットを上下に揺動させることにより、ガスの流れを意図的に変化させることができる。したがって、実際の引き上げ時の発塵量を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明において、前記単結晶引き上げ装置は、前記回転支持軸と同軸上に配置され、先端部にフックが取り付けられたワイヤーをさらに有し、前記第2のダミーインゴットの先端部にはリング金具が取り付けられており、前記フックを前記リング金具に係合させると共に前記係合に遊びを持たせることにより、前記第2のダミーインゴットを前記ワイヤーの下端部に連結することが好ましい。これによれば、第2のダミーインゴットを第1のダミーインゴット上に搭載して連結させたときに、ワイヤーの撓みの発生を回避することができ、第2のダミーインゴットを第1のダミーインゴットと一緒に昇降させることができる。
 本発明において、前記第2のダミーインゴットは樹脂製であることが好ましい。これによれば、第2のダミーインゴットを低コストで作製でき、設置時の取り扱いも容易である。また第2のダミーインゴットが白い素材である場合には、カーボン屑などの黒い異物が付着したときにそれを目視で捉えることができ、異物の回収・確認装置として機能させることもできる。
 本発明の第2の側面による単結晶引き上げ装置のクリーニング方法は、単結晶インゴットを模したダミーインゴットを用意し、単結晶引き上げ装置の減圧されたチャンバー内に前記ダミーインゴットを吊設した状態でガスを供給し、前記ダミーインゴットの影響を受けた前記ガスの流れを発生させて、前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させるクリーニング工程を有することを特徴とする。
 本発明によれば、単結晶引き上げ中のチャンバー内の構造を模擬的に再現し、ガスの強い流れや乱流を意図的に発生させて、チャンバーの壁面又はチャンバー内の部品に付着した異物を離脱させることができ、通常の解体清掃では除去しきれなかったチャンバー内に残留する小さなゴミ、チリ等の異物を事前に除去することができる。したがって、その後の引き上げ工程での異物の離脱を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明の第2の側面によるクリーニング方法において、前記ダミーインゴットは樹脂製であり、前記チャンバー内の温度を常温に設定して前記クリーニング工程を実施することが好ましい。
 本発明において、前記ダミーインゴットは、直径が徐々に大きくなるショルダー部と、前記ショルダー部の下方において直径が一定に維持されたボディー部とを有し、前記クリーニング工程では、前記ショルダー部の下端が前記ルツボの上方に設置された熱遮蔽体の下端の開口を通過するように前記ダミーインゴットを引き上げることが好ましい。単結晶を引き上げるための引き上げ軸の下端にダミーインゴットを接続し、熱遮蔽体の下端よりも下方の高さ位置から熱遮蔽体の下端よりも上方の高さ位置までショルダー部の下端(ボディー部の上端)を移動させた場合、ショルダー部の下端が熱遮蔽体の下端と同じ高さになったときにガスの流れが急激に強くなるので、チャンバー内の異物を除去することができる。
 本発明の第2の側面によるクリーニング方法はまた、原料融液を支持するルツボを前記チャンバー内に設置し、前記ルツボ内に前記原料融液が実際に溜められた高温下の前記チャンバー内で前記クリーニング工程を実施してもよい。この場合、前記ルツボは石英からなり、前記ダミーインゴットは、シリコン、石英、カーボン、炭化ケイ素及びモリブデンから選ばれた少なくとも一つの材料からなることが好ましい。このように、単結晶引き上げ工程を開始する直前の高温下でクリーニングを行うことにより、チャンバー内の異物を十分に除去することができる。
 本発明おいて、前記ダミーインゴットは、直径が徐々に大きくなるショルダー部と、前記ショルダー部の下方において直径が一定に維持されたボディー部とを有し、前記クリーニング工程では、前記ショルダー部の下端が前記ルツボの上方に設置された熱遮蔽体の下端の開口を通過するように前記ダミーインゴットを引き上げることが好ましい。単結晶を引き上げるための引き上げ軸の下端にダミーインゴットを接続し、熱遮蔽体の下端よりも下方の高さ位置から熱遮蔽体の下端よりも上方の高さ位置までショルダー部の下端(ボディー部の上端)を移動させた場合、ショルダー部の下端が熱遮蔽体の下端と同じ高さになったときにガスの流れが急激に強くなるので、チャンバー内の異物を除去することができる。
 本発明において、前記ルツボの高さは、前記クリーニング工程を開始するときの前記ルツボの高さ位置が、前記単結晶引き上げ工程を開始するときの前記ルツボの高さ位置よりも低くなるように調整されることが好ましい。さらに、前記ルツボの高さは、前記クリーニング工程において前記ショルダー部の前記下端が前記熱遮蔽体の前記下端と同じ高さのときに、前記原料融液の液面と前記熱遮蔽体の下端との間の第1のギャップ幅が、実際の単結晶引き上げ工程における前記原料融液の液面と前記熱遮蔽体の下端との間の第2のギャップ幅と実質的に等しくなるように、すなわち、実際の単結晶引き上げにおいて取り得るギャップ幅になるように調整されることが好ましい。このようにすることで、チャンバー内に導入されるガスの流速をさらに早めることができる。特に、実際の単結晶引き上げ工程にできるだけ近い条件を再現することで、チャンバー内の異物を確実に除去することができる。
 本発明の第2の側面によるクリーニング方法は、前記ルツボ内に原料を追加チャージした後、前記クリーニング工程を行うことが好ましい。この場合、単結晶を引き上げるための引き上げ軸の下端に接続されたチャージ管を用いて前記原料を追加チャージした後、前記チャージ管から前記ダミーインゴットに付け替えて前記クリーニング工程を行うことが好ましい。原料を追加補充する場合やリチャージや新たな単結晶引き上げ工程で使用する原料を追加チャージする場合、原料の微粉がチャンバー内で拡散して付着し、引き上げ工程中に脱落することにより、単結晶の有転位化の原因となるおそれがある。しかし、追加チャージ後であって引き上げ工程前に仕上げクリーニングを実施することにより、単結晶の有転位化の発生率をより一層低減することができる。
 本発明において、前記ダミーインゴットは中空構造を有することが好ましい。ダミーインゴットが塊状である場合には、高温のチャンバー内で熱膨張することによって亀裂や破裂が生じやすい。しかし、ダミーインゴットが中空構造の場合には蓄熱を抑えて亀裂や破裂の発生を防止することができる。
 本発明の第3の側面によるシリコン単結晶引き上げ装置のクリーニング用具は、単結晶の引き上げに用いるルツボを模したダミールツボと、前記ルツボ内の原料融液の液面を模したダミー液面と、前記原料融液の液面から上方に引き上げ途中の単結晶インゴットを模した第1のダミーインゴットとを備えることを特徴とする。
 本発明によるクリーニング用具は、単結晶インゴットを模した第2のダミーインゴットをさらに備え、前記第1のダミーインゴットの上端部は円錐形状の凸部を有し、前記第2のダミーインゴットの下端部は前記第1のダミーインゴットの前記上端部に嵌合可能な円錐形状の凹部を有することが好ましい。この構成によれば、第2のダミーインゴットを第1のダミーインゴット上に連結させることができ、チャンバー内に長尺な単結晶インゴットを再現することができる。
 本発明の第4の側面による単結晶引き上げ装置のクリーニング用具は、単結晶インゴットを模したダミーインゴットからなり、前記ダミーインゴットの下端部は円錐形状の凹部を有することを特徴とする。本発明によれば、ダミーインゴットを用いて実際の引き上げ時と同様の環境を再現することができ、チャンバー内にガスの強い流れや乱流を発生させて実際の引き上げ時に離脱する異物を事前に除去することができ、異物の付着に起因する単結晶の有転位化の発生率を低減させることができる。また、ダミーインゴットを連結させることでチャンバー内に長尺な単結晶インゴットを再現することができる。
 本発明の第5の側面による単結晶の製造方法は、単結晶引き上げ装置のチャンバー及び前記チャンバー内の部品を解体清掃する工程と、前記解体清掃後、上述のクリーニング方法で前記単結晶引き上げ装置の仕上げクリーニングを実施する工程と、前記仕上げクリーニングの完了後、前記単結晶引き上げ装置を用いて単結晶を引き上げる工程とを備えることを特徴とする。
 本発明によれば、単結晶引き上げ中のチャンバー内の構造を模擬的に再現し、ガスの強い流れや乱流を意図的に発生させて、チャンバーの壁面又はチャンバー内の部品に付着した異物を離脱させることができ、通常の解体清掃では除去しきれなかったチャンバー内に残留する小さなゴミ、チリ等の異物を事前に除去することができる。したがって、その後の引き上げ工程での異物の離脱を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 本発明によれば、通常の解体清掃では除去しきれなかったチャンバー内の異物を除去して単結晶の有転位化を抑制することが可能な単結晶引き上げ装置のクリーニング方法を提供することができる。また本発明によれば、そのようなクリーニング方法において用いられるクリーニング用具を提供することができる。さらに、本発明によれば、そのようなクリーニング方法を採用することで単結晶収率が高められた単結晶の製造方法を提供することができる。
図1は、本発明によるクリーニングの対象となる単結晶引き上げ装置1の構造を示す略断面図である。 図2は、本発明の第1の実施の形態による単結晶引き上げ装置1のクリーニング方法(仕上げクリーニング工程)を説明するための断面図である。 図3は、ダミールツボ30及びダミーインゴット40の構造を示す略斜視図である。 図4は、ダミールツボ30の作用を説明するための断面図である。 図5は、クリーニング中におけるダミールツボ30及び第2のダミーインゴット40の配置の一例を説明するための図である。 図6は、クリーニング中におけるダミールツボ30及び第2のダミーインゴット40の配置の他の例を説明するための図である。 図7は、本発明の第2の実施の形態による単結晶引き上げ装置1のクリーニング方法を説明するための断面図である。 図8は、図7と共に単結晶引き上げ装置1のクリーニング方法を説明するため断面図である。 図9は、図7及び図8と共に単結晶引き上げ装置1のクリーニング方法を説明するため断面図である。 図10は、図7乃至図9と共に単結晶引き上げ装置1のクリーニング方法を説明するための断面図である。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明によるクリーニングの対象となる単結晶引き上げ装置1の構造を示す略断面図である。
 図1に示すように、この単結晶引き上げ装置1は半導体用シリコン単結晶をCZ法により製造するための装置であって、チャンバー10と、チャンバー10の内側に配置された断熱材11と、チャンバー10内に収容される石英ルツボ12を支持するサセプタ13と、サセプタ13を昇降可能に支持する回転支持軸14と、サセプタ13の周囲を取り囲むように配置されたヒーター15と、サセプタ13の上方に配置された熱遮蔽体16と、サセプタ13の上方であって回転支持軸14と同軸上に配置された単結晶引き上げ用ワイヤー17と、チャンバー10の上方に配置されたワイヤー巻き取り機構18とを備えている。
 チャンバー10は、メインチャンバー10Aと、メインチャンバー10Aの上部開口に連結されたプルチャンバー10Bとで構成されており、上述の石英ルツボ12、サセプタ13、回転支持軸14、ヒーター15及び熱遮蔽体16はメインチャンバー10A内に設けられている。巻き取り機構18はプルチャンバー10Bの上方に配置されており、ワイヤー17は巻き取り機構18からプルチャンバー10B内を通って下方に延びており、ワイヤー17の先端部はメインチャンバー10Aの内部空間まで達している。図1には、ワイヤー17の先端部にシリコン単結晶2が吊設された状態が示されている。
 熱遮蔽体16は、シリコン融液2の温度変動を抑制して結晶成長界面近傍に適切なホットゾーンを形成するとともに、ヒーター15及び石英ルツボ12からの輻射熱によるシリコン単結晶2の加熱を防止するために設けられている。熱遮蔽体16は、シリコン単結晶2の引き上げ経路を除いたシリコン融液2の上方の領域を覆うカーボン製の部材であり、特に下端から上端に向かって開口サイズが大きくなる逆円錐台形状を有している。熱遮蔽体16の下端の開口の直径はシリコン単結晶2の直径よりも大きく、これによりシリコン単結晶2の引き上げ経路が確保されている。また熱遮蔽体16の下端の開口の直径は石英ルツボ12の口径よりも小さく、熱遮蔽体16の下端部は石英ルツボ12の内側に位置するので、石英ルツボ12のリム上端を熱遮蔽体16の下端よりも上方まで上昇させても熱遮蔽体16が石英ルツボ12と干渉することはない。
 以上の構成において、シリコン単結晶の引き上げ工程では、まずサセプタ13内に石英ルツボ12をセットし、石英ルツボ12内にシリコン原料を充填し、ワイヤー17の先端部に種結晶を取り付ける。次にシリコン原料をヒーター15で加熱してシリコン融液3を生成し、種結晶を降下させてシリコン融液3に着液させる。その後、石英ルツボ12を回転させながら種結晶をゆっくりと上昇させることにより、略円柱状のシリコン単結晶2を成長させる。
 単結晶引き上げ中、チャンバー10内は一定の減圧状態に保たれている。プルチャンバー10Bの上部に設けられたガス吸気口19Aからアルゴンガスが供給され、メインチャンバー10Aの下部に設けられたガス排気口19Bからアルゴンガスが排気されることで、チャンバー10内には破線矢印のようなアルゴンガスの流れが発生しており、この流れ(ガスフロー)は単結晶の成長状態により常に変化している。なおチャンバー10内の雰囲気ガスはアルゴンガスに限定されず、他の不活性ガスを用いてもよい。
 シリコン単結晶2の直径は、その引き上げ速度やヒーター15の温度を制御することにより制御される。シリコン単結晶2の育成では、結晶径が細く絞られたネック部を形成した後、結晶径を円錐状に広げてショルダー部を形成する。規定の直径まで単結晶が成長した時点で一定の直径で引き上げを継続してボディー部を形成し、引き上げ終了時には直径を細く絞ってテール部を形成し、最終的に液面から切り離す。以上により、ショルダー部及びボディー部を有するシリコン単結晶インゴットが完成する。
 以上が単結晶引き上げ装置1の構成及び動作についての説明である。次に、このような単結晶引き上げ装置1のクリーニング方法について説明する。単結晶引き上げ装置1のクリーニングとしては、解体清掃と解体清掃後の仕上げクリーニングがある。解体清掃は、バッチ終了後に装置を解体し、各部の清掃を行い、チャンバー10の内壁やチャンバー10内の部品に付着した粉体や堆積物の除去などを行う工程である。
 一方、仕上げクリーニングは、このような解体清掃後であって、次のシリコン単結晶の引き上げ工程を開始する前に行われるクリーニング工程である。この仕上げクリーニングにより、解体清掃では除去しきれなかったチャンバー10内の異物を除去することが可能となる。
 図2は、本発明の第1の実施の形態による単結晶引き上げ装置1のクリーニング方法(仕上げクリーニング工程)を説明するための断面図である。
 図2に示すように、仕上げクリーニングでは、単結晶引き上げ中のチャンバー10内の環境を再現するため、2種類のクリーニング用具が用いられる。一つは実際の石英ルツボ12の形状を模したダミールツボ30であり、もう一つは単結晶インゴットの形状を模したダミーインゴット40である。
 図3は、ダミールツボ30及びダミーインゴット40の構造を示す略斜視図である。
 図3に示すように、ダミールツボ30は、実際に使用される石英ルツボ12と実質的に同一のサイズ(口径)を有する樹脂製の部材である。ダミールツボ30の形状は、実際に使用される石英ルツボ12と類似していればよく、厳密な同一性は要求されない。ダミールツボ30内にはシリコン融液3の液面を模したダミー液面31がダミールツボ30と一体的に形成されており、さらにシリコン融液3の液面から上方に引き上げられたシリコン単結晶の形状を模したダミーインゴット32(第1のダミーインゴット)がダミー液面31と一体的に形成されている。すなわち、ダミールツボ30はダミー液面31及びダミーインゴット32を含む単一の構造体である。
 ダミールツボ30は回転支持軸14の上端部に直接設置される。すなわち、サセプタ13は使用されない。これは、実際の引き上げ工程では高温下で軟化した石英ルツボ12をサセプタ13で支持する必要があるが、クリーニング工程は常温で行われ、ダミールツボ30の変形を考慮する必要がないことによるものである。また、サセプタ13の設置を省略することでクリーニング工程の準備を簡素化することができる。なお、ダミールツボ30の底部は、回転支持軸14に設置可能な形状であることが必要である。
 ダミーインゴット40(第2のダミーインゴット)は、実際に引き上げられるシリコン単結晶インゴットと実質的に同じ直径を有する樹脂製の部材であり、下方に向かって直径が徐々に大きくなるショルダー部40aと、直径が一定のボディー部40bとを有している。ショルダー部40aの上端部にはリング金具40dが設けられており、ワイヤー17の先端部に設けられたフック17aはこのリング金具40dに係合され、これによりダミーインゴット40は昇降自在に吊設される。さらに、フック17aとリング金具40dとの係合に遊びを持たせているので、後述するダミーインゴット40がダミーインゴット32上に搭載された状態においてワイヤー17の大きな撓みを回避することができる。
 ダミーインゴット40はダミールツボ30と一体化されたダミーインゴット32に嵌合可能である。ダミーインゴット32の上端部は円錐形状の凸部32a(ショルダー部)を有しており、ダミーインゴット40の下端部は円錐形状の凹部40cを有しているので、ダミーインゴット40を降下させるだけでダミーインゴット32に嵌合させることができる。ダミーインゴット40がアルゴンガスの風圧を受けて揺れ動いた場合でもその中心軸の位置ずれを自己整合的に修正しながらダミーインゴット32と連結させることができる。そして、ダミーインゴット40をダミーインゴット32に連結させることで長尺な単結晶(図5参照)を再現することができる。
 本実施形態においては2つダミーインゴットが用いられている。ダミーインゴット32はダミールツボ30と一体化されたものであり、熱遮蔽体16よりも下方におけるアルゴンガスの流れに変化を与える役割を果たすものである。また、ダミーインゴット40は、熱遮蔽体16よりも上方のアルゴンガスの流れに変化を与える役割を果たし、単結晶を実際に引き上げている状態でチャンバー10内の色々な部分の開口面積を狭くしてアルゴンガスの流れを変化させる。
 ダミールツボ30及びダミーインゴット40の材料は特に限定されないが、ポリプロピレン等の樹脂を用いることが好ましい。樹脂を用いた場合には加工が容易であり、安価に作製できる。また、白い素材である場合には、例えばカーボン屑などの黒い異物が落下してダミーインゴット40やダミールツボ30に付着したときにそれを目視で捉えることができ、異物の回収・確認装置として機能させることもできる。
 仕上げクリーニング工程では、ダミールツボ30及びダミーインゴット40をチャンバー10内にセットした後、チャンバー10内に所定流量のアルゴンガスを供給し、チャンバー10内を常温・減圧下のアルゴン雰囲気にする。アルゴンガスはプルチャンバー10Bの上部に設けられたガス吸気口19aから供給され、プルチャンバー10B及びメインチャンバー10Aを通ってメインチャンバー10Aの下部に設けられたガス排気口19bから排気される。チャンバー10内の気圧は20~30Torrとすることが好ましく、またアルゴンガスの供給量は例えば130L/minとすることができる。チャンバー10内の気圧は圧力計によって測定され、ガス排気口19bからのアルゴンガスの排気量はチャンバー10内の気圧が一定となるように制御される。
 本実施形態において、仕上げクリーニングは常温下で行われる。チャンバー10内の温度を実際の単結晶引き上げ工程と同じ温度まで上昇させて高温下でクリーニングを行うことも可能であるが、チャンバー10内の温度を高くしたりクリーニング後に冷却したりするための時間がかかるため効率的ではない。また、ダミーインゴット40やダミールツボ30として樹脂製のものを用いることができない。このような理由から、仕上げクリーニングは常温下で行われることが好ましい。
 仕上げクリーニングでは、上述したチャンバー内の常温・減圧状態が一定時間保持される。クリーニング時間は特に限定されないが、2~8時間程度が好ましい。
 図4は、ダミールツボ30の作用を説明するための断面図である。
 仕上げクリーニングでは、ダミールツボ30を上昇させて熱遮蔽体16に近づけ、ダミーインゴット31を熱遮蔽体16の開口部16aに挿入する。その際、ダミールツボ30を回転させながら上昇させてもよく、回転させずに上昇させてもよい。
 単結晶の乱れは、単結晶のショルダー部が熱遮蔽体16の開口部に入ったところで多発することが知られている。これは、今まで広かった熱遮蔽体16の開口部16aに単結晶のショルダー部が入ってくることで開口面積が狭くなり、単結晶がアルゴンガスの流れを妨げる抵抗となることでアルゴンガスの流速が強まり、いままでチャンバー10の壁体又は部品に付着していた異物が離脱して単結晶に付着するからであると考えられる。そこで、仕上げクリーニングでは、単結晶のショルダー部を熱遮蔽体16の開口部に意図的に挿入することで異物が離脱しやすい環境を再現する。
 熱遮蔽体16の開口部16aの直径は、単結晶の直径よりも少し大きい程度である。初めは開口面積が広いためアルゴンガスもスムーズに流れるが、ダミールツボ30の上昇によってダミーインゴット32のショルダー部が開口部16aに進入すると開口面積が急激に狭くなり、ダミールツボ30と熱遮蔽体16との間の狭い隙間を通過しようとするアルゴンガスの流速が強まる。これにより、チャンバー10内のガスフローが変化し、乱流が発生しやすくなるので、チャンバー10内の隅や凹部に付着する微細な異物を脱落させて舞い上がらせることができ、ガスフローと共にこれらの異物を排気除去することができる。
 ダミールツボ30を上昇させると、熱遮蔽体16とダミーインゴット32との間の隙間が狭くなるだけでなく、熱遮蔽体16とダミールツボ30のリム上端との間の隙間も狭くなる。そのため、熱遮蔽体16とダミールツボ30との間の狭い隙間を通過しようとするアルゴンガスの流速がさらに強まり、チャンバー10内のガスフローが変化して乱流が発生しやすくなる。
 ダミールツボ30を上昇させて熱遮蔽体16に近づける場合、ダミー液面31と熱遮蔽体16の下端との間のギャップ幅(第1のギャップ幅)Gが、実際の単結晶引き上げ工程における石英ルツボ12内のシリコン融液3の液面と熱遮蔽体16の下端との間のギャップ幅(第2のギャップ幅)と実質的に等しくなるようにすることが好ましく、すなわち、実際の単結晶引き上げにおいて取り得るギャップ幅になるように調整されることが好ましく、この状態を一定時間保持することがより好ましい。このようにすることで、熱遮蔽体16とダミー液面31との間の狭い隙間を通過しようとするアルゴンガスの流速がさらに強まるので、チャンバー10内のガスフローが変化して乱流が発生しやすくなる。したがって、チャンバー10内に付着する異物を脱落させて舞い上がらせることができ、ガスフローと共にこれらの異物を排気除去することができる。
 図5は、クリーニング中におけるダミールツボ30及びダミーインゴット40の配置の一例を説明するための図である。
 図5に示すように、ダミーインゴット40はダミールツボ30に連結されてもよい。ダミールツボ30及びダミーインゴット40の設置当初、両者は連結されていないが、ダミーインゴット40を降下させることで両者を連結させることができ、チャンバー10内でより長尺な単結晶を再現することができる。そしてクリーニング中において、ダミーインゴット40がダミールツボ30に連結された状態を一定時間保持することが好ましい。このようにすることで、実際の引き上げにより近い状態を再現でき、アルゴンガスの流れ及び流速をさらに変化させることができる。
 さらに、本実施形態においては、フック17aとリング金具40dとの係合に遊びを持たせているので、ダミーインゴット40をダミーインゴット32上に搭載して連結させたときにワイヤー17の大きな撓みを回避することができ、ダミーインゴット40をダミーインゴット32と一緒に昇降させることができる。
 仕上げクリーニング中は、ダミールツボ30を上下に揺動させることもまた好ましい。このとき、ダミーインゴット40はダミールツボ30に連結していてもよく、ダミールツボ30から分離していてもよい。いずれにしても、ダミールツボ30を上下動させることでチャンバー10内のガスフローがさらに変化するので、チャンバー10内にアルゴンガスの乱流を発生させることができ、チャンバー10内の異物を除去することができる。
 仕上げクリーニングでは、ダミーインゴット40をダミールツボ30から分離し、ダミールツボ30とは独立にダミーインゴット40を上下に揺動させることもまた好ましい。この場合、ダミールツボ30の高さ方向の位置を固定し、ダミーインゴット40だけを上下に動かしても良く、ダミーインゴット40を固定してダミールツボ30を上下に動かしても良く、両方をそれぞれ上下に動かしても良い。ダミールツボ30からダミーインゴット40を分離する場合、ダミーインゴット40の高さ方向の位置を大きく変えることでチャンバー10内のガスフローを変化させることができ、ダミーインゴット40が一定位置に留まっているだけでは舞い上がらせることができなかった異物を舞い上がらせることができる。
 図6は、クリーニング中におけるダミールツボ30及びダミーインゴット40の配置の他の例を説明するための図である。
 図6に示すように、ダミーインゴット40はダミールツボ30プルチャンバー10B内に配置されてもよい。ダミーインゴット40がプルチャンバー10B内にあるとき、ダミーインゴット40とプルチャンバー10Bの内壁面との間の狭い隙間をアルゴンガスが通過することでガスフローの風速が強くなる。プルチャンバー10Bの上部にはゲート弁やセンサなどの凹凸面をなす部材があり、異物が付着しやすいが、プルチャンバー10B内のガスフローが強くなるので、プルチャンバー10B内の異物を除去することができる。また、ガスフローの風速が強くなることでメインチャンバー10A内のガスフローの風速も強くなり、乱流が発生しやすくなるので、メインチャンバー10A内の異物の除去も可能となる。
 仕上げクリーニングの完了後は、チャンバー10を大気開放し、ダミールツボ30及びダミーインゴット40を取り出し、回転支持軸14上にサセプタ13及び石英ルツボ12をセットし、石英ルツボ12内にシリコン原料を充填する。その後、上述した通常の単結晶引き上げ工程を行う。以上のように、本実施形態においては、仕上げクリーニングを行っているので、単結晶引き上げ工程においてチャンバー10内に残存する異物の影響による有転位化の発生確率を低減することができる。
 以上説明したように、本実施形態による単結晶引き上げ装置1のクリーニング方法は、単結晶引き上げ時のチャンバー内の構造を再現し、石英ルツボや単結晶インゴットがあることによってチャンバー内に発生するアルゴンガスの強い流れや乱流を人為的に作り出して、これにより不活性ガスの流量を意図的に変化させて、チャンバー内の隅や凹部に付着した異物を離脱させて事前に除去するので、その後の引き上げ工程での発塵量を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 図7~図10は、本発明の第2の実施の形態による単結晶引き上げ装置のクリーニング方法を説明するための断面図である。
 図7に示すように、このクリーニング方法の特徴は、単結晶引き上げ工程を開始する直前の石英ルツボ12内にシリコン融液3が溜められた状態でダミーインゴット50を用いたクリーニングを実施する点にある。そのため、第1の実施の形態と異なり、チャンバー10内にはダミールツボではなく単結晶引き上げ工程で実際に用いる石英ルツボ12が設置され、石英ルツボ12はヒーター15によって加熱され、チャンバー10内は高温に保たれている。
 第1の実施の形態によるクリーニング方法は単結晶育成工程を開始する前のクリーニング方法として一定の効果が認められる。しかし、例えば図8に示すようにチャージ管60を用いて石英ルツボ12内にシリコン原料5を追加チャージするような場合には、チャージ管60の表面に付着しているシリコン微粉がチャンバー10内で離脱して舞い上がったり、チャージ管60内のシリコン原料を落下させて石英ルツボ12内に投入するときにチャージ管60の内面やシリコン原料5に付着しているシリコン微紛が舞い上がったりして、熱遮蔽体16などの炉内構造物に付着し、単結晶の有転位化の原因となってしまう。そのため、本実施形態においては、単結晶引き上げ工程を開始する直前の高温下のチャンバー10内においてダミーインゴットを用いたクリーニングを実施してチャンバー10内のさらなる清浄化を図るものである。
 チャンバー10内は高温であり、石英ルツボ12はシリコン融液3を保持しているため、クリーニングで使用されるダミーインゴット50は耐熱性を有し、シリコン融液3を汚染しないことが必要である。そのため、ダミーインゴット50の素材は、シリコン、石英、カーボン、炭化ケイ素(SiC)、表面がSiCで被覆されたカーボン、モリブデンなどが好ましい。ダミーインゴット50としては、例えば、クリーニング対象と同種の単結晶引き上げ装置を用いて引き上げられた後、ウェーハ製品として加工されなかったシリコン単結晶インゴットを所定の形状に加工したものを用いることができる。このように、製品化されなかったシリコン単結晶インゴットをダミーインゴット50として使用することにより、ダミーインゴットを最初から作製する手間を省略し、資源の有効活用を図ることができる。
 ダミーインゴット50の形状は、CZ法により実際に育成されるシリコン単結晶インゴットのトップ側の形状と同様、上から下に向かって直径が徐々に大きくなるショルダー部50aと、ショルダー部50aの下方において直径が一定に維持されたボディー部50bとを有していればよい。またダミーインゴット50はその内部に空洞を有する中空構造であってもよく、空洞がないブロックであってもよい。中空構造のダミーインゴット50の場合、その底部に開口が形成されていてもよい。ダミーインゴットが中空構造の場合には蓄熱を抑えて亀裂や破裂の発生を防止することができる。クリーニング工程中、ダミーインゴット50がシリコン融液3に接触してはいけないので、ダミーインゴット50のボディー部50bの長さは、石英ルツボ12内のシリコン融液の液面の高さを考慮して設定する必要がある。
 次に、図7~図10を参照しながらクリーニング工程について説明する。
 始めに、図8に示すように、チャージ管60を用いてシリコン原料5の追加チャージを行う。追加チャージは、いわゆるマルチプリング法における二本目以降のシリコン単結晶インゴットを引き上げるために行われるものであってもよい。マルチプリング法では、シリコン単結晶を引き上げた後、同一の石英ルツボ内にシリコン原料を追加供給して融解し、得られたシリコン融液からシリコン単結晶の引き上げを行い、このような原料供給工程と単結晶引き上げ工程を繰り返すことにより、一つの石英ルツボから複数本のシリコン単結晶を製造する。マルチプリング法によれば、シリコン単結晶一本当たりの石英ルツボの原価コストを低減することできる。またチャンバーを解体して石英ルツボを交換する頻度を低減できるため、操業効率を向上させることが可能である。
 追加チャージはまた、いわゆるシングルプリング法において石英ルツボ内にシリコン原料を補充するために行われるものであってもよい。この場合、常温下で石英ルツボ12内に予め仕込んでおいた多結晶シリコンをチャンバー10内で加熱してシリコン融液3を生成した後、シリコン原料が追加供給される。この方法によれば長尺なシリコン単結晶を引き上げることができ、操業効率を向上させることができる。
 チャージ管60は開閉可能な底蓋61を有する円筒状の石英ガラス製の容器である。チャージ管60はワイヤー17の下端に吊設されており、プルチャンバー10Bの位置からチャージ管60を降下させて融液面付近まで近づけられる。その後、底蓋61を開くことにより、チャージ管60内の追加のシリコン原料5が落下して石英ルツボ12内に投入される。
 上記のように、チャージ管60を用いたシリコン原料の追加工程では、チャンバー10の壁面や熱遮蔽体16などの炉内構造物にシリコン微粉が付着しやすく、これが単結晶の有転位化の原因となるおそれがある。そこで、本実施形態ではシリコン原料の追加工程後にダミーインゴット50を用いたチャンバー10内のクリーニング工程を実施する。
 クリーニング工程では、ワイヤー17の下端に取り付けられた空のチャージ管60を取り外し、ダミーインゴット50に付け替えた後、図9に示すようにダミーインゴット50を融液面の近くまで降下させる。このとき、石英ルツボ12もできるだけ下方に降下させることが好ましい。すなわち、クリーニング工程を開始するときの石英ルツボ12の高さ位置が単結晶引き上げ工程を開始するときの石英ルツボ12の高さ位置よりも低くなるように、石英ルツボ12の高さが調整される。
 図9は、石英ルツボ12及びダミーインゴット50を十分に降下させたクリーニング工程の開始時の状態を示している。なおクリーニング工程の途中の状態がこのような状態であってもかまわない。このように、ダミーインゴット50の降下位置では、ダミーインゴット50のショルダー部50aの下端(ボディー部50bの上端)が、熱遮蔽体16の下端よりも下方に配置されることが好ましい。この位置にあるダミーインゴット50を上昇させることにより、シリコン単結晶2がシリコン融液3から徐々に引き上げられたときと同じ状況を再現することができる。
 図7は、図9に示す位置よりも石英ルツボ12及びダミーインゴット50を上昇させた状態を示している。ダミーインゴット50のショルダー部50aの下端は、熱遮蔽体16の下端とちょうど同じ高さ位置となっている。これは図4(b)に示した状態と同じである。実際の単結晶引き上げ工程では、シリコン単結晶のショルダー部の位置が熱遮蔽体16の下端にさしかかったときにガスの流れが急激に強くなり、結晶の乱れが生じやすい。本実施形態もこのような状況を再現することができるので、チャンバー10内に乱流を発生させてシリコン微粉等の異物を離脱させることができる。
 図示のようにダミーインゴット50のショルダー部50aの下端が熱遮蔽体16の下端と同じ高さのとき、シリコン融液3の液面と熱遮蔽体の下端との間のギャップ幅(第1のギャップ幅)は、実際の単結晶引き上げ工程における前記原料融液の液面と前記熱遮蔽体の下端との間のギャップ幅(第2のギャップ幅)と実質的に等しくなるように、すなわち、実際の単結晶引き上げにおいて取り得るギャップ幅になるように調整することが好ましい。このようにすることで、実際の単結晶引き上げ工程と同様の状況を再現することができる。すなわち、熱遮蔽体16とダミーインゴット32との間の横方向の隙間が狭くなるだけでなく、熱遮蔽体16と融液面との間の縦方向の隙間も狭くなるため、熱遮蔽体16とダミールツボ30との間の狭い隙間を通過しようとするアルゴンガスの流速がさらに強まり、チャンバー10内のガスフローが変化して乱流が発生しやすくなる。
 図10は、ダミーインゴット50をさらに上昇させた状態を示している。この場合、図6と同様、プルチャンバー10B内の異物を除去することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 ダミーインゴット50の昇降動作中には石英ルツボ12も一緒に昇降させてもよい。ダミーインゴット50が熱遮蔽体16の下端よりも下方で昇降動作を行うときには、その昇降動作に合わせて石英ルツボ12を昇降させることで、ダミーインゴット50をシリコン融液3に接触させることなくダミーインゴット50を適切な位置に配置することができ、また熱遮蔽体16の下端とシリコン融液3とのギャップ幅(第1のギャップ幅)を実際の引き上げ工程中のギャップ幅(第2のギャップ幅)に近づけることができる。
 以上説明したように、本実施形態による単結晶引き上げ装置1のクリーニング方法も、単結晶引き上げ時のチャンバー内の構造を再現し、石英ルツボや単結晶インゴットがあることによってチャンバー内に発生するアルゴンガスの強い流れや乱流を人為的に作り出して、これにより不活性ガスの流量を意図的に変化させて、チャンバー内に付着したシリコン微粉等の異物を離脱させて事前に除去するので、その後の引き上げ工程での発塵量を低減することができ、異物の付着に起因する単結晶の有転位化の発生率を低減することができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記実施形態においては、ダミールツボ30及びダミーインゴット40を同時に使用してクリーニングを行っているが、ダミールツボ30のみを使用してクリーニングを行っても良く、ダミーインゴット40のみを使用してクリーニングを行ってもよい。
 また、上記実施形態においては、ダミールツボ30及びダミーインゴット40の材料として樹脂を挙げたが、本発明においてダミールツボ30及びダミーインゴット40の材料は樹脂に限定されず、例えばカーボン材料を用いることも可能である。
 また上述したように、ダミールツボ30及びダミーインゴット40及び50の形状は実際のものと類似していればよく、類似の程度も発明の効果を発揮できる限りにおいて特に限定されない。したがって、例えばダミールツボ30に切り欠きをつけてもよく、偏芯させてもよい。またダミーインゴット40及び50の形状を正円柱ではなく楕円柱にしてもよく、円柱の外周面に凹凸を形成してもよく、晶壁線を持ついびつな形状にしてもよい。このようにダミールツボ30やダミーインゴット40、50の形状が実際のものとは大きく異なる場合でも、ガスの流れによりチャンバー内をクリーニングすることができ、むしろ乱流の増加によりクリーニング効果を促進させることが可能である。
 また、上記実施形態においては、チャンバー内に供給する気体としてアルゴンガスを挙げたが、アルゴンガスの代わりに他の不活性ガスを用いてもよく、あるいは空気を用いることも可能である。
 また、上記実施形態においては、シリコン単結晶の引き上げ装置を例に挙げたが、本発明はこれに限定されず、SiC、サファイヤ等の種々の単結晶の引き上げ装置を対象とすることができる。ただし、CZ法による半導体用シリコン単結晶の製造ではシリコン融液から蒸発したSiOがチャンバー内に付着しやすい反面、装置が大型でチャンバー内の隅々まで解体清掃することが難しいことから、本発明はCZ法による半導体用シリコン単結晶の製造に用いる引き上げ装置のクリーニングに好ましく適用することができる。
1  単結晶引き上げ装置
2  シリコン単結晶
3  シリコン融液
5  追加のシリコン原料
10  チャンバー
10A  メインチャンバー
10B  プルチャンバー
11  断熱材
12  石英ルツボ
13  サセプタ
14  回転支持軸
15  ヒーター
16  熱遮蔽体
16a  開口部
17  ワイヤー
17a  フック
18  巻き取り機構
19a  ガス吸気口
19b  ガス排気口
30  ダミールツボ
31  ダミー液面
32  ダミーインゴット(第1のダミーインゴット)
32a  ダミーインゴットの凸部
40  ダミーインゴット(第2のダミーインゴット)
40a  ダミーインゴットのショルダー部
40b  ダミーインゴットのボディー部
40c  ダミーインゴットの凹部
40d  リング金具
50  ダミーインゴット
60  チャージ管

Claims (29)

  1.  ルツボ内の原料融液の液面を模したダミー液面と、前記原料融液の液面から上方に引き上げ途中の単結晶インゴットを模した第1のダミーインゴットとを含む前記ルツボを模したダミールツボを用意し、単結晶引き上げ装置の減圧されたチャンバー内に前記ダミールツボを設置した状態でガスを供給し、前記ダミールツボの影響を受けた前記ガスの流れを発生させて、前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させるクリーニング工程を有することを特徴とする単結晶引き上げ装置のクリーニング方法。
  2.  前記単結晶引き上げ装置は、
     前記チャンバー内において前記ルツボを昇降可能に支持する回転支持軸と、
     前記回転支持軸の上方に配置された熱遮蔽体とを有し、
     前記ダミー液面と前記熱遮蔽体の下端との間の第1のギャップ幅が、実際の単結晶引き上げ工程における前記原料融液の液面と前記熱遮蔽体の下端との間の第2のギャップ幅と実質的に等しくなるように前記ダミールツボの高さを調整して前記クリーニング工程を実施する、請求項1に記載のクリーニング方法。
  3.  前記クリーニング工程において前記ダミールツボを上下に揺動させる、請求項1又は2に記載のクリーニング方法。
  4.  前記ダミールツボは樹脂製である、請求項1乃至3のいずれか一項に記載のクリーニング方法。
  5.  単結晶インゴットを模した第2のダミーインゴットを用意し、前記クリーニング工程において、前記チャンバー内に前記第2のダミーインゴットを吊設した状態で前記ガスを供給し、前記第2のダミーインゴットの影響を受けた前記ガスの流れを発生させて前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させる、請求項1乃至4のいずれか一項に記載のクリーニング方法。
  6.  前記第2のダミーインゴットを前記第1のダミーインゴットに連結させた状態で前記クリーニング工程を実施する、請求項5に記載のクリーニング方法。
  7.  前記チャンバーは、
     メインチャンバーと、
     前記メインチャンバーの上部開口に連結されたプルチャンバーとを有し、
     前記第2のダミーインゴットを前記プルチャンバー内に配置した状態で前記クリーニング工程を実施する、請求項5に記載のクリーニング方法。
  8.  前記ダミールツボとは独立に前記第2のダミーインゴットを上下に揺動させた状態で前記クリーニング工程を実施する、請求項7に記載のクリーニング方法。
  9.  前記単結晶引き上げ装置は、
     前記回転支持軸と同軸上に配置され、先端部にフックが取り付けられたワイヤーをさらに有し、
     前記第2のダミーインゴットの先端部にはリング金具が取り付けられており、
     前記フックを前記リング金具に係合させると共に前記係合に遊びを持たせることにより、前記第2のダミーインゴットを前記ワイヤーの下端部に連結する、請求項5に記載のクリーニング方法。
  10.  前記第2のダミーインゴットは樹脂製である、請求項5乃至9のいずれか一項に記載のクリーニング方法。
  11.  単結晶インゴットを模したダミーインゴットを用意し、単結晶引き上げ装置の減圧されたチャンバー内に前記ダミーインゴットを吊設した状態でガスを供給し、前記ダミーインゴットの影響を受けた前記ガスの流れを発生させて、前記チャンバーの壁面又は前記チャンバー内の部品に付着した異物を脱落させるクリーニング工程を有することを特徴とする単結晶引き上げ装置のクリーニング方法。
  12.  前記ダミーインゴットを上下に揺動させた状態で前記クリーニング工程を実施する、請求項11に記載のクリーニング方法。
  13.  前記ダミーインゴットは樹脂製である、請求項11又は12に記載のクリーニング方法。
  14.  前記チャンバー内の温度を常温に設定して前記クリーニング工程を実施する、請求項11乃至13のいずれか一項に記載のクリーニング方法。
  15.  前記ダミーインゴットは、
     直径が徐々に大きくなるショルダー部と、
     前記ショルダー部の下方において直径が一定に維持されたボディー部とを有し、
     前記クリーニング工程では、前記ショルダー部の下端が前記チャンバー内に設置された熱遮蔽体の下端の開口を通過するように前記ダミーインゴットを引き上げる、請求項11乃至14のいずれか一項に記載のクリーニング方法。
  16.  前記チャンバーは、
     メインチャンバーと、
     前記メインチャンバーの上部開口に連結されたプルチャンバーとを有し、
     前記ダミーインゴットを前記プルチャンバー内に配置した状態で前記クリーニング工程を実施する、請求項11乃至15のいずれか一項に記載のクリーニング方法。
  17.  原料融液を支持するルツボを前記チャンバー内に設置し、前記ルツボ内に前記原料融液が実際に溜められた高温下の前記チャンバー内で前記クリーニング工程を実施する、請求項11に記載のクリーニング方法。
  18.  前記ダミーインゴットを上下に揺動させた状態で前記クリーニング工程を実施する、請求項17に記載のクリーニング方法。
  19.  前記ダミーインゴットは、
     直径が徐々に大きくなるショルダー部と、
     前記ショルダー部の下方において直径が一定に維持されたボディー部とを有し、
     前記クリーニング工程では、前記ショルダー部の下端が前記ルツボの上方に設置された熱遮蔽体の下端の開口を通過するように前記ダミーインゴットを引き上げる、請求項17又は18に記載のクリーニング方法。
  20.  前記クリーニング工程を開始するときの前記ルツボの高さ位置が、前記単結晶引き上げ工程を開始するときの前記ルツボの高さ位置よりも低くなるように、前記ルツボの高さを調整する、請求項19に記載のクリーニング方法。
  21.  前記クリーニング工程において前記ショルダー部の前記下端が前記熱遮蔽体の前記下端と同じ高さのときに、前記原料融液の液面と前記熱遮蔽体の下端との間の第1のギャップ幅が、実際の単結晶引き上げ工程における前記原料融液の液面と前記熱遮蔽体の下端との間の第2のギャップ幅と実質的に等しくなるように、前記ルツボの高さを調整する、請求項19又は20に記載のクリーニング方法。
  22.  前記ルツボ内に原料を追加チャージした後、前記クリーニング工程を行う、請求項17乃至21のいずれか一項に記載のクリーニング方法。
  23.  単結晶を引き上げるための引き上げ軸の下端に接続されたチャージ管を用いて前記原料を追加チャージした後、前記チャージ管から前記ダミーインゴットに付け替えて前記クリーニング工程を行う、請求項22に記載のクリーニング方法。
  24.  前記ルツボは石英からなり、
     前記ダミーインゴットは、シリコン、石英、カーボン、炭化ケイ素及びモリブデンから選ばれた少なくとも一つの材料からなる、請求項17乃至23のいずれか一項に記載のクリーニング方法。
  25.  前記ダミーインゴットは中空構造を有する、請求項17乃至24のいずれか一項に記載のクリーニング方法。
  26.  単結晶の引き上げに用いるルツボを模したダミールツボと、
     前記ルツボ内の原料融液の液面を模したダミー液面と、
     前記原料融液の液面から上方に引き上げ途中の単結晶インゴットを模した第1のダミーインゴットとを備えることを特徴とする単結晶引き上げ装置のクリーニング用具。
  27.  単結晶インゴットを模した第2のダミーインゴットをさらに備え、
     前記第1のダミーインゴットの上端部は円錐形状の凸部を有し、
     前記第2のダミーインゴットの下端部は前記第1のダミーインゴットの前記上端部に嵌合可能な円錐形状の凹部を有する、請求項26に記載のクリーニング用具。
  28.  単結晶インゴットを模したダミーインゴットからなり、
     前記ダミーインゴットの下端部は円錐形状の凹部を有することを特徴とするシリコン単結晶引き上げ装置のクリーニング用具。
  29.  単結晶引き上げ装置のチャンバー及び前記チャンバー内の部品を解体清掃する工程と、
     前記解体清掃後、請求項1乃至25のいずれか一項に記載のクリーニング方法で前記単結晶引き上げ装置の仕上げクリーニングを実施する工程と、
     前記仕上げクリーニングの完了後、前記単結晶引き上げ装置を用いて単結晶を引き上げる工程とを備えることを特徴とする単結晶の製造方法。
PCT/JP2016/051815 2015-02-03 2016-01-22 単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法 WO2016125605A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177019779A KR101937779B1 (ko) 2015-02-03 2016-01-22 단결정 인상 장치의 클리닝 방법 및 이것에 이용하는 클리닝 용구 그리고 단결정의 제조 방법
DE112016000581.4T DE112016000581B4 (de) 2015-02-03 2016-01-22 Verfahren zum Reinigen einer Einkristallziehvorrichtung, Reinigungswerkzeug zur Verwendung darin und Verfahren zur Herstellung eines Einkristalls
CN201680007916.7A CN107208306B (zh) 2015-02-03 2016-01-22 单晶提拉装置的清洗方法及其清洗用具和单晶的制造方法
JP2016573278A JP6428796B2 (ja) 2015-02-03 2016-01-22 単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法
US15/544,364 US10000863B2 (en) 2015-02-03 2016-01-22 Method for cleaning single crystal pulling apparatus, cleaning tool for use therein, and method for manufacturing single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-019151 2015-02-03
JP2015019151 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016125605A1 true WO2016125605A1 (ja) 2016-08-11

Family

ID=56563956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051815 WO2016125605A1 (ja) 2015-02-03 2016-01-22 単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法

Country Status (7)

Country Link
US (1) US10000863B2 (ja)
JP (1) JP6428796B2 (ja)
KR (1) KR101937779B1 (ja)
CN (1) CN107208306B (ja)
DE (1) DE112016000581B4 (ja)
TW (1) TWI591216B (ja)
WO (1) WO2016125605A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190100322A (ko) * 2017-02-02 2019-08-28 가부시키가이샤 사무코 단결정 인상 장치의 클리닝 장치
KR20190103309A (ko) * 2017-02-02 2019-09-04 가부시키가이샤 사무코 단결정 인상 장치의 클리닝 장치, 클리닝 방법
US11426775B2 (en) * 2017-12-20 2022-08-30 Sumco Corporation Cleaning method, method for producing silicon single crystal, and cleaning device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014927B1 (ko) * 2018-02-07 2019-08-27 에스케이실트론 주식회사 실리콘 공급부, 이를 포함하는 실리콘 단결정 잉곳의 성장 장치 및 방법
CN111621843A (zh) * 2019-02-28 2020-09-04 上海新昇半导体科技有限公司 一种晶体提拉机构及晶体生长装置
CN111636096A (zh) * 2019-03-01 2020-09-08 上海新昇半导体科技有限公司 一种晶体提拉机构及晶体生长装置
CN111690979A (zh) * 2020-07-27 2020-09-22 邢台晶龙电子材料有限公司 一种水冷热屏用清洁装置
CN114289408B (zh) * 2021-11-23 2022-11-22 浙江晶盛机电股份有限公司 一种硬轴单晶炉的主轴氧化物清理装置
CN114232076B (zh) * 2021-12-28 2023-05-26 西安奕斯伟材料科技有限公司 拉晶炉软轴清理装置、拉晶炉及其软轴清理方法
US12202017B2 (en) 2022-04-27 2025-01-21 Globalwafers Co., Ltd. Cleaning tools and methods for cleaning the pull cable of an ingot puller apparatus
US12291795B2 (en) 2022-09-07 2025-05-06 Globalwafers Co., Ltd. Single crystal growth susceptor assembly with sacrifice ring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354489A (ja) * 2000-06-06 2001-12-25 Mitsubishi Materials Silicon Corp 単結晶引上装置のクリーニング装置及びクリーニング方法
JP2002160994A (ja) * 2000-11-22 2002-06-04 Mitsubishi Materials Silicon Corp 単結晶引上装置のクリーニング装置
JP2004123407A (ja) * 2002-09-30 2004-04-22 Dowa Mining Co Ltd 結晶成長装置及び結晶成長方法
JP2012066948A (ja) * 2010-09-21 2012-04-05 Covalent Materials Corp シリコン単結晶引上装置のクリーニング方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW440613B (en) * 1996-01-11 2001-06-16 Mitsubishi Material Silicon Method for pulling single crystal
JP3552401B2 (ja) * 1996-03-22 2004-08-11 信越半導体株式会社 ルツボの洗浄方法
US6503594B2 (en) * 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
EP0889215B1 (en) * 1997-07-04 2005-11-02 Nissan Motor Company, Limited Control system for internal combustion engine
JPH1131639A (ja) * 1997-07-10 1999-02-02 Kokusai Electric Co Ltd 半導体製造装置
US6402834B1 (en) * 1998-05-29 2002-06-11 Toyo Communication Equipment Co., Ltd. Apparatus and method for manufacturing monocrystals
JP4092859B2 (ja) 2000-06-06 2008-05-28 株式会社Sumco 単結晶引上装置のクリーニング装置
CN1486374A (zh) * 2000-12-22 2004-03-31 Memc 监测用于半导体生长的拉晶机中气态环境的方法
JP2004023407A (ja) * 2002-06-14 2004-01-22 Kyocera Corp 携帯無線機
US20060005761A1 (en) * 2004-06-07 2006-01-12 Memc Electronic Materials, Inc. Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
KR100840751B1 (ko) * 2005-07-26 2008-06-24 주식회사 실트론 고품질 실리콘 단결정 잉곳 제조 방법, 성장 장치 및그로부터 제조된 잉곳 , 웨이퍼
JP2007051026A (ja) * 2005-08-18 2007-03-01 Sumco Solar Corp シリコン多結晶の鋳造方法
CN201241193Y (zh) * 2008-08-13 2009-05-20 浙江碧晶科技有限公司 硅晶体生长设备的尾气导走装置
CN201624607U (zh) * 2009-11-27 2010-11-10 北京有色金属研究总院 一种用于直拉法生长硅单晶车间内外吸尘器管道的插口
JPWO2011105255A1 (ja) * 2010-02-26 2013-06-20 株式会社Sumco 半導体ウェーハの製造方法
JP2013147406A (ja) 2012-01-23 2013-08-01 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354489A (ja) * 2000-06-06 2001-12-25 Mitsubishi Materials Silicon Corp 単結晶引上装置のクリーニング装置及びクリーニング方法
JP2002160994A (ja) * 2000-11-22 2002-06-04 Mitsubishi Materials Silicon Corp 単結晶引上装置のクリーニング装置
JP2004123407A (ja) * 2002-09-30 2004-04-22 Dowa Mining Co Ltd 結晶成長装置及び結晶成長方法
JP2012066948A (ja) * 2010-09-21 2012-04-05 Covalent Materials Corp シリコン単結晶引上装置のクリーニング方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190100322A (ko) * 2017-02-02 2019-08-28 가부시키가이샤 사무코 단결정 인상 장치의 클리닝 장치
KR20190103309A (ko) * 2017-02-02 2019-09-04 가부시키가이샤 사무코 단결정 인상 장치의 클리닝 장치, 클리닝 방법
CN110382749A (zh) * 2017-02-02 2019-10-25 胜高股份有限公司 单晶提拉装置的清洁装置
KR102253593B1 (ko) 2017-02-02 2021-05-18 가부시키가이샤 사무코 단결정 인상 장치의 클리닝 장치
KR102330870B1 (ko) 2017-02-02 2021-11-24 가부시키가이샤 사무코 단결정 인상 장치의 클리닝 장치, 클리닝 방법
US11198161B2 (en) 2017-02-02 2021-12-14 Sumco Corporation Cleaning device for monocrystal pulling apparatus
US11305319B2 (en) 2017-02-02 2022-04-19 Sumco Corporation Device and method for cleaning monocrystalline pulling apparatus
US11426775B2 (en) * 2017-12-20 2022-08-30 Sumco Corporation Cleaning method, method for producing silicon single crystal, and cleaning device

Also Published As

Publication number Publication date
DE112016000581T5 (de) 2017-12-21
DE112016000581B4 (de) 2020-10-22
TWI591216B (zh) 2017-07-11
US20180016701A1 (en) 2018-01-18
JPWO2016125605A1 (ja) 2017-10-19
US10000863B2 (en) 2018-06-19
CN107208306A (zh) 2017-09-26
CN107208306B (zh) 2020-07-14
JP6428796B2 (ja) 2018-11-28
KR101937779B1 (ko) 2019-01-11
KR20170099950A (ko) 2017-09-01
TW201708628A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6428796B2 (ja) 単結晶引き上げ装置のクリーニング方法及びこれに用いるクリーニング用具並びに単結晶の製造方法
JP5413354B2 (ja) シリコン単結晶引き上げ装置及びシリコン単結晶の製造方法
JP6067146B2 (ja) シリコン単結晶の製造方法及び製造システム
US10494734B2 (en) Method for producing silicon single crystals
JPWO2002068732A1 (ja) 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
JPH09142988A (ja) シリコン単結晶の生成方法及び装置
JP5169814B2 (ja) シリコン単結晶の育成方法及びその方法で育成されたシリコン単結晶
JP6458590B2 (ja) シリコン単結晶の製造方法
JP6471700B2 (ja) リチャージ装置を用いたシリコン原料の融解方法
EP2045371B1 (en) Method and apparatus for manufacturing an ultra low defect semiconductor single crystalline ingot
JP6485286B2 (ja) シリコン単結晶の製造方法
JP7184029B2 (ja) 単結晶シリコンインゴットの製造方法
JP6834831B2 (ja) シリコン単結晶の製造方法
JP4702266B2 (ja) 単結晶の引上げ方法
JP2990661B2 (ja) 単結晶成長方法
TWI568898B (zh) Silicon single crystal manufacturing method
JP7094487B2 (ja) シリカガラスルツボの製造装置およびシリカガラスルツボの製造方法
JP3870646B2 (ja) 単結晶引上装置
JP2740569B2 (ja) 単結晶の製造方法および装置
JP4907396B2 (ja) 単結晶の製造方法
JP2007197300A (ja) シリコン単結晶引上方法
KR101962175B1 (ko) 단결정 잉곳 성장을 위한 용융액을 형성하는 방법
JP2007031235A (ja) 単結晶製造装置
JPH09227274A (ja) 連続チャージ法による半導体単結晶製造装置および製造方法
CN118871629A (zh) 单晶硅的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573278

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177019779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544364

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000581

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746436

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载