+

WO2016117842A1 - Super-absorbent polymer and method for preparing same - Google Patents

Super-absorbent polymer and method for preparing same Download PDF

Info

Publication number
WO2016117842A1
WO2016117842A1 PCT/KR2015/014428 KR2015014428W WO2016117842A1 WO 2016117842 A1 WO2016117842 A1 WO 2016117842A1 KR 2015014428 W KR2015014428 W KR 2015014428W WO 2016117842 A1 WO2016117842 A1 WO 2016117842A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
inorganic particles
group
cross
weight
Prior art date
Application number
PCT/KR2015/014428
Other languages
French (fr)
Korean (ko)
Inventor
박성수
김기철
김주은
최현
주효숙
박성현
최희정
윤기열
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150187758A external-priority patent/KR101799091B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580061336.1A priority Critical patent/CN107108904B/en
Priority to US15/524,697 priority patent/US10981146B2/en
Priority to EP15879096.4A priority patent/EP3196231B1/en
Publication of WO2016117842A1 publication Critical patent/WO2016117842A1/en
Priority to US17/193,601 priority patent/US11654416B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a superabsorbent polymer having improved water-retaining capacity (CRC), pressure-absorbing capacity (AUP) and water permeability by introducing a surface crosslinked layer crosslinked with surface-modified inorganic particles, and a method for producing the same.
  • CRC water-retaining capacity
  • AUP pressure-absorbing capacity
  • water permeability by introducing a surface crosslinked layer crosslinked with surface-modified inorganic particles, and a method for producing the same.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. Absorbent Gel Mater ial), they are named differently. Such super absorbent polymers have been put into practical use as sanitary instruments, and are currently used in sanitary products such as paper diapers and sanitary napkins for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, and food fresheners. , And widely used as a material for steaming.
  • these superabsorbent polymers are widely used in the field of sanitary products such as diapers and sanitary napkins.
  • the superabsorbent polymers need to exhibit high absorption of moisture and must not escape moisture absorbed by external pressure.
  • it is necessary to maintain a good shape even in the state of volume expansion (swelling) by absorbing water to show excellent permeabi li ty.
  • the present invention is to provide a superabsorbent polymer exhibiting excellent physical properties by improving the water-retaining capacity (CRC), pressure-absorbing capacity (AUP) and water permeability by crosslinking the surface with the surface-modified inorganic particles.
  • the present invention also provides a method for producing the superabsorbent polymer.
  • the present invention provides a resin composition
  • a resin composition comprising: a base resin powder comprising a crosslinked polymer in which a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups is thickened in the presence of an internal crosslinker; And a surface crosslinking layer in which the crosslinked polymer is further crosslinked in the presence of surface modified inorganic particles, and formed on the base resin powder, wherein the crosslinked polymer included in the surface crosslinking layer contains an oxygen-containing bond or a nitrogen-containing bond.
  • a superabsorbent polymer in which inorganic particles are chemically bonded through a bond.
  • the present invention comprises the steps of cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acidic group in the presence of an internal crosslinking agent to form a hydrogel polymer; Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And epoxy, hydroxy, isocyanate and amine groups.
  • a method for producing the superabsorbent polymer comprising the step of further crosslinking the surface of the base resin powder to form a surface crosslinking layer.
  • At least a portion of the base resin powder containing a crosslinked polymer polymerized in the presence of an internal crosslinking agent is a water-soluble ethylenically unsaturated monomer having a neutralized acid group;
  • a superabsorbent polymer in which inorganic particles are chemically bonded through a containing bond is provided.
  • the surface of the base resin powder is further crosslinked in the presence of inorganic particles surface-modified with at least one functional group selected from the group consisting of an epoxy group, a hydroxyl group, an isocyanate group, and an amine group to form a surface crosslinking layer
  • the inorganic particles are chemically bonded to the crosslinked polymer included in the surface crosslinking layer to prevent the inorganic particles from being separated from the superabsorbent polymer during the manufacturing and transport of the superabsorbent polymer, as well as the pressure absorbing ability and the permeability (permeabi li ty).
  • the invention was completed, confirming that improved superabsorbent polymer) can be prepared and provided.
  • the superabsorbent polymer thus prepared includes, for example, a base resin powder in which the polymer chains polymerized with the water-soluble ethylenically unsaturated monomer include a crosslinked crosslinked crosslinked through a crosslinkable functional group of an internal crosslinker.
  • Two or more crosslinking polymers per particle Possible functional groups will include a surface crosslinked layer that is further crosslinked with surface-modified inorganic particles.
  • the super absorbent polymer of one embodiment has a surface crosslinked layer in which the crosslinked polymers present on the surface are cross-linked through the surface-modified inorganic particles, and the crosslinked polymer and the inorganic particles can crosslink the inorganic particles in the surface crosslinked layer. It has a structure that is chemically linked through an oxygen-containing bond or a nitrogen-containing bond derived from a functional group. More specifically, the crosslinked polymer and the inorganic particles in the surface crosslinking layer are oxygen-containing bonds such as -0- or -coo- or-
  • It may have a structure chemically linked through a nitrogen-containing bond, such as C0NR- or -NR- (R is hydrogen or an alkyl group having 1 to 3 carbon atoms).
  • the superabsorbent resin of one embodiment is basically difficult to form between particles, so that the superabsorbent resin absorbs moisture in the air and aggregates into a large mass. Caking phenomenon can be effectively prevented.
  • the inorganic particles occupy a certain space between the surface crosslinked structures. For this reason, the superabsorbent polymer exhibits an improved water absorption rate and can maintain excellent shape even in the state of volume expansion (swelling) by absorbing water, thereby exhibiting excellent permeability.
  • the superabsorbent polymers have all excellent properties such as water-retaining capacity and pressure-absorbing capacity. Can be represented.
  • the super absorbent polymer of one embodiment fundamentally solves the problems of the existing superabsorbent polymers and technical requirements in the art, and may exhibit more excellent physical properties.
  • the super absorbent polymer of the embodiment basically includes a crosslinked polymer obtained by crosslinking and polymerizing the water-soluble ethylenically unsaturated monomer as a base resin powder, and includes a surface crosslinked layer formed on the base resin powder. .
  • the superabsorbent polymer of the embodiment may be crosslinkable as described above in the process for surface crosslinking of the crosslinked polymer and the base resin powder.
  • the inorganic particles surface-modified with functional groups are used, the inorganic particles are chemically bonded to the polymer chains of the crosslinked polymer in which the inorganic particles are present on the surface of the base resin powder through an oxygen-containing or nitrogen-containing bond derived from the crosslinkable functional group (for example, a covalent bond or a crosslinking bond) is carried out.
  • an oxygen-containing or nitrogen-containing bond derived from the crosslinkable functional group
  • the water-soluble ethylenically unsaturated monomer acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid ⁇ 2-methacryloyl
  • Nonionic hydrophilic-containing monomers of meth) acrylate and an amino group-containing unsaturated monomer of ( ⁇ , ⁇ ) -dimethylaminoe
  • alkali metal salts such as acrylic acid or salts thereof, for example, acrylic acid and / or sodium salts of which at least a part of acrylic acid is neutralized may be used.
  • the production of superabsorbent polymers having superior physical properties using such monomers may be used.
  • acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • NaOH caustic soda
  • the degree of neutralization of the water-soluble ethylenically unsaturated monomer may be adjusted to about 50 to 95% or about 70 to 85%, and can provide a super absorbent polymer having excellent water retention capability without fear of precipitation during neutralization within this range. have.
  • any internal crosslinking agent having a crosslinkable functional group which has been conventionally used for the production of superabsorbent polymers, can be used without particular limitation.
  • a plurality of ethylene oxide groups may be used in order to introduce an appropriate crosslinked structure into the crosslinked polymer and the base resin powder to further improve the physical properties of the super absorbent polymer.
  • the polyfunctional acrylate compound having can be used as the internal crosslinking agent.
  • Such internal crosslinking agents include polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, glycerin triacrylate, unmodified or ethylated trimethylolpropane triacrylate (TMPTA), nucleic acid didi diacrylate, And triethyleneglycol diacrylate.
  • PEGDA polyethylene glycol diacrylate
  • TMPTA ethylated trimethylolpropane triacrylate
  • nucleic acid didi diacrylate ethylated trimethylolpropane triacrylate
  • triethyleneglycol diacrylate ethylated trimethylolpropane triacrylate
  • the surface-modified inorganic particles for forming the surface crosslinked layer formed on the base resin powder may use inorganic particles surface-modified with the above-mentioned crosslinkable functional groups.
  • the inorganic particles may have a specific surface area of 5 to 600 m 2 / g or 100 to 300 m 2 / g. Within this range the inorganic particles may be surface modified with an appropriate number of crosslinkable functional groups. And, the inorganic particles have a diameter of 5 to 500nm, it is economical because the inorganic particles of the appropriate number of particles compared to the same weight can be well dispersed in the surface crosslinking layer.
  • such inorganic particles may be used, such as silica particles or alumina particles.
  • the above-described inorganic particles may be bonded to about 0.01 to 2 parts by weight based on 100 parts by weight of the super absorbent polymer.
  • a crosslinked structure including an appropriate amount of inorganic particles may be introduced into the surface crosslinking layer, so that the superabsorbent polymer of one embodiment may have more improved physical properties, for example, water retention and absorption under pressure.
  • the more specific kind of the above-mentioned surface-modified inorganic particles, a manufacturing method thereof, and the like reference may be made to the contents described in the manufacturing method described later.
  • the surface crosslinked layer formed on the base resin powder may be formed using a surface crosslinking agent that has been used in the conventional production of superabsorbent polymer together with the surface modified inorganic particles.
  • a surface crosslinking agent that has been used in the conventional production of superabsorbent polymer together with the surface modified inorganic particles.
  • the surface crosslinking agent all known in the art may be used without any particular limitation.
  • More specific examples thereof include ethylene glycol, 1,4-butanediol, 1,6-nucleic acid dipropylene, propylene glycol, 1,2-nucleic acid diol, 1,3-nucleic acid diol, 2-methyl ⁇ 1, 3-propanediol, 2,5-nucleic acid diol, 2 ⁇ methyl-1, 3-pentanediol, 2-methyl-2,4-pentanedi, tripropylene glycol, glycerol, ethylene carbonate and propylene carbonate 1 or more types are mentioned.
  • the superabsorbent polymer of the above-described embodiment has a centrifugal water retention capacity (CRC) of about 30 to 40 g / g for physiological saline, and a pressure absorption capacity (AUP) of 0.7 psi to physiological saline about 10 to 26. g / g or about 20 to 26 g / g, and a free swelling gel bet permeability (GBP; gel bed permeabi 1ity) may be about 5 to 120 darcy or about 9 to 120 darcy.
  • CRC centrifugal water retention capacity
  • AUP pressure absorption capacity
  • GBP gel bed permeabi 1ity
  • the superabsorbent polymer of the above-described embodiment may exhibit excellent water-retaining ability with improved penetration and pressure-absorbing ability. Therefore, such a super absorbent polymer may be preferably applied to various sanitary articles such as diapers, and may exhibit very excellent physical properties as a whole.
  • the centrifugal water retention capacity (CRC) for the physiological saline can be measured according to the method of the EDANA method WSP 241.2. More specifically, the water retention capacity can be calculated by the following formula 1 after absorbing the super absorbent polymer in physiological saline over 30 minutes:
  • W0 (g) is the initial weight (g) of the superabsorbent polymer
  • Wl (g) is the bag measured after immersing an empty bag in physiological saline for 30 minutes at room temperature and then dehydrating it at 250 G for 3 minutes using a centrifuge.
  • W2 (g) is the weight of the bag containing the superabsorbent polymer, measured after immersing the bag containing superabsorbent polymer at room temperature in physiological saline for 30 minutes and then dehydrating it for 3 minutes at 250 G using a centrifuge. .
  • the pressure absorption capacity (AUP) of 0.7 psi can be measured according to the method of the EDANA method WSP 242.2. More specifically, the pressure-absorbing capacity may be calculated according to the following formula 2 after absorbing the superabsorbent polymer in physiological saline under a pressure of about 0.7 ps i over 1 hour:
  • AUP (g / g) [W4 (g)-W3 (g)] / W0 (g)
  • W0 ( g ) is the initial weight (g) of the superabsorbent polymer
  • W3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device that can be applied to the superabsorbent polymer
  • W4 (g) is the load After absorbing physiological saline to the superabsorbent resin for 1 hour under (0.7 psi), the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin.
  • W0 (g) described in Formulas 1 to 2 corresponds to an initial weight (g) before the superabsorbent polymer is absorbed into physiological saline, and may be the same or different.
  • the gel bed permeability (GBP) for physiological saline can be measured in units of Darcy or cm 2 according to the following method described in Patent Application No. 2014-7018005.
  • Ldarcy means that a liquid with a viscosity of lcP flows through 1 cm 2 per second under a pressure gradient of 1 atmosphere per cm .
  • Gel bed permeability has the same units as area ldarcy are as 0.98692 x 10 ⁇ 12 m 2 or 0.98692 X 10- 8 cm 2.
  • GBP herein refers to the penetration (or permeability) of the gel layer (or bed) swelled under a condition called free swelling of 0 ps i (Gel Bed Permeabi li ty (GBP) Under Opsi Swel l Pressure Test), and the GBP may be measured using the apparatus shown in FIGS. 1 to 3.
  • the test device assembly 528 in the apparatus 500 for measuring GBP includes a sample container 530 and a plunger 536.
  • the plunger includes a shaft 538 having a cylinder hole drilled down the longitudinal axis and a head 550 located at the bottom of the shaft. The diameter of the shaft hole 562 is about 16 mm.
  • the plunger head is attached to the shaft by an adhesive, for example. Twelve holes 544 are drilled in the radial axis of the shaft, and the diameter of three holes located every 90 ° is about 6.4 mm.
  • the shaft 538 is machined from a LEXAN rod or equivalent material and has an outer diameter of about 2.2 cm and an inner diameter of about 16 mm 3.
  • Plunger head 550 has seven inner holes 560 and fourteen outer holes 554, all of which are about 8.8 mm in diameter. In addition, a hole of about 16 mm is aligned with the shaft.
  • the plunger head 550 is machined from a LEXAN rod or equivalent material, is about 16 mm high, and has a diameter that fits inside the cylinder 534 with a minimum wall gap (wal lc learance) but still It's sized to move freely.
  • the total length of the plunger head 550 and shaft 538 is about 8.25 cm, but can be machined at the top of the shaft to obtain the desired size of the plunger 536.
  • the plunger 536 is biaxially stretched and includes a 100 mesh stainless steel cloth screen 564 attached to the bottom of the plunger 536.
  • the sample vessel 530 includes a cylinder 534 and a 400 mesh stainless steel cloth screen 566 which is biaxially stretched and taut and attached to the bottom of the cylinder 534.
  • the screen is attached to the cylinder using a suitable solvent to securely adhere to the cylinder. Care must be taken to avoid excess solvent moving into the openings of the screen, reducing the pore area for liquid flow.
  • Acrylic solvent Weld-on 4 from IPS Corporat ion (place of business, Gardena, California, USA) may suitably be used.
  • the gel particle sample (swelled superabsorbent resin), indicated at 568 in FIG. 2, was supported on the screen 566 inside the cylinder 534 during the test.
  • the cylinder 534 may be drilled in a transparent LEXAN rod or even material, or cut into a LEXAN tubing or even material, having an inner diameter of about 6 cm (e.g., about 28.27 cm 2 in cross-section) and a wall thickness. About 0.5 cm, about 7.95 cm high.
  • the step may be formed by machining the outer diameter of the cylinder 534 such that the portion 534a having an outer diameter of 66 mm is present at the bottom 31 mm of the cylinder 534.
  • An o-ring 540 may be placed at the top of the step to match the diameter of the region 534a.
  • the annul ar weight 548 has counter-bored holes of about 2.2 cm in diameter and 1.3 cm in depth, so it freely slides onto the shaft 538.
  • the annular weight also has a thru-bore 548a of about 16 mm 3.
  • the annular weight 548 can be made of stainless steel or other suitable material that can resist corrosion by 0.9 weight percent physiological saline (aqueous sodium chloride solution).
  • the combined increase of the plunger 536 and the annular weight 548 is equal to about 596 g, which means that the pressure applied to the sample 568 is about 0.3 psi or over a sample area of about 28.27 cm 2 .
  • the sample vessel 530 is generally placed on a weir 600.
  • the purpose of the weir is to divert the overflowing liquid at the top of the sample vessel 530, and the overflow liquid is diverted to a separate collection device 601.
  • the weir may be placed on the balance 602 in which the beaker 603 is placed to collect physiological saline passing through the swollen sample 568.
  • a plunger 536 equipped with a weight 548 is placed in an empty sample vessel 530 and a weight of 548 up to 0.01 mm with a suitable gauge. The height from the top of the c) to the bottom of the sample vessel 530 is measured. The force exerted by the thickness gauge during the measurement should be as small as possible, preferably less than about 0.74 N. When using a multiple test apparatus, it is important to maintain each empty sample container 530, plunger 536 and weight 548 and the tracks in which they are used.
  • the base on which the sample container 530 is placed is flat, and the surface of the weight 548 is preferably parallel to the bottom surface of the sample container 530.
  • a test sample is prepared from a superabsorbent resin having a particle size of about 300 to about 600 m that passes through a US standard 30 mesh screen and is maintained on a US standard 50 mesh screen.
  • About 2.0 g of sample is placed in sample vessel 530 and evenly spread over the bottom of the sample vessel.
  • the vessel containing 2.0 g of sample without the puller 536 and weight 548 was immersed in 0.9 weight percent physiological saline for about 60 minutes to allow the sample to swell under pressure.
  • the sample vessel 530 is placed on a mesh located in the liquid reservoir so that the sample vessel 530 is slightly above the bottom of the liquid reservoir.
  • the mesh may be one that does not affect the movement of physiological saline to the sample container 530.
  • Such mesh may be part number 7308 from Eagle Supply and Pl ast ic, Appleton, Wisconsin, USA.
  • the height of physiological saline during saturation can be adjusted such that the surface in the sample container is defined by the sample, not physiological saline.
  • the assembly of the plunger 536 and the weight 548 is removed from the sample container 530.
  • the sample container 530, the plunger 536, the weight 548 and the sample 568 are removed from the solution after resting on the saturated sample 568 in the chamber.
  • the sample vessel 530, plunger 536, weight 548 and sample 568 are then left on a flat, large grid, uniform thickness, non-deformation plate for about 30 seconds, prior to GBP measurements.
  • the plate will prevent liquid in the sample vessel from releasing onto a flat surface due to surface tension.
  • This plate has a total dimension of 7.6 cm x 7.6 cm and each grid dimension may be 1.59 cm long by 1.59 cm wide by 1.12 cm deep.
  • a suitable plate material is a parabolic diffuser, catalog number 1624K27, available from McMaster Carr Sup ly Company (place of business, Chicago, Illinois, USA), which can be cut to suitable dimensions and used.
  • the height from the top of the weight 548 to the bottom of the sample vessel 530 is measured again using the same thickness gauge as previously used. Height measurements should be made as soon as possible after the thickness gauge is fitted.
  • the height measurement of the empty assembly with the plunger 536 and weight 548 positioned in the empty sample container 530 should be subtracted from the height measurement obtained after saturating the sample 568. The resulting value is the thickness or height ' ⁇ ' of the saturated sample 568.
  • the plate is also included in the height measurement of the empty assembly. The height shall be measured.
  • the GBP measurement begins with delivering 0.9% physiological saline into the sample vessel 530 containing the saturated sample 568, plunger 536 and weight 548. Adjust the f low rate of physiological saline into the vessel so that the physiological saline overflows to the top of the cylinder 534, thereby resulting in a consistent head pressure equivalent to the height of the sample vessel 530.
  • Physiological saline can be added by any means sufficient to ensure a small but consistent amount of overflow from the top of the cylinder with instrument pump 604 or the like.
  • the overflow liquid is diverted into a separate collection device 601. Using a balance 602 and beaker 603, the amount versus time of solution passing through sample 568 is measured gravimetrically.
  • the flow rate Q through the swollen sample 568 is in g / sec by the linear least-square fit of liquid (g) versus time (sec) passing through the sample 568. Decide on
  • the GBP (cm 2 ) can be calculated according to the following Equation 3 to confirm the gel bed transmittance.
  • is the gel bed transmission (cm 2 )
  • H is the height (cm) of the swollen sample
  • y is the liquid viscosity (P) (the viscosity of the test solution used in this test is about lcP),
  • A is the cross-sectional area for the liquid flow (28.27 ciif for the sample vessel used in this test),
  • p is the liquid density (g / cm 3 ) (about 1 g / cm 3 for the test solution used in this test),
  • P is the hydrostatic pressure (dyne / cm 2) (normally approximately 7, 797dyne / cm 2).
  • the superabsorbent polymer of the above-described embodiment may have a particle shape such as spherical or amorphous having a particle diameter of about 150 to 850.
  • a method for preparing such a super absorbent polymer may include crosslinking and polymerizing a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups in the presence of an internal crosslinking agent to form a hydrogel polymer; Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And in the presence of inorganic particles surface-modified with at least one functional group selected from the group consisting of an epoxy group, a hydroxyl group, an isocyanate group and an amine group, Further crosslinking the surface to form a surface crosslinking layer.
  • the crosslinking polymerization of the water-soluble ethylenically unsaturated monomer in the presence of an internal crosslinking agent and dried, pulverized and classified to form a base resin powder
  • the superabsorbent polymer may be prepared by further crosslinking the surface of the base resin powder using inorganic particles that are surface-modified with a crosslinkable functional group such as an epoxy group, a hydroxyl group, an isocyanate group, or an amine group.
  • the surface-modified inorganic particles are used in the surface crosslinking
  • the conventional manufacturing method of the superabsorbent polymer hereinafter the surface-modified inorganic particles first And after specifically salping about the manufacturing method thereof, it will be briefly examined for each step for the manufacturing method of the super absorbent polymer using the same.
  • the surface modified inorganic particles may be prepared by reacting a surface modifier having the crosslinkable functional group with inorganic particles such as silica particles or alumina particles.
  • a surface modifier having the crosslinkable functional group such as silica particles or alumina particles.
  • specific examples of the surface modifier may include a compound represented by Formula 1 below.
  • R i to are each independently an alkyl group of 1 to 10 carbon atoms, an alkoxy group or halogen of 1 to 10 carbon atoms, at least one of which is not an alkyl group, 4 is an epoxy group, a hydroxyl group, an isocyanate group and an amine group And a substituent having 2 to 10 carbon atoms having at least one functional group selected from the group consisting of.
  • the surface-modified inorganic particles about 2 to 200, or about 10 to 150, or about 20 to 100 crosslinkable functional groups are introduced based on one of the inorganic particles, and thus surface modified.
  • An appropriate crosslinked structure may be introduced into the super absorbent polymer finally prepared by the above manufacturing method.
  • the surface-modified inorganic particles may be prepared by reacting the inorganic particles and the surface modifier with an appropriate content ratio.
  • silica particles such as fumed silica or colloidal silica may be representatively used.
  • the surface may be modified due to the crosslinkable functional groups at a ratio of about 0.008 to 0.8 umol / m 2 , or about 0.04 to 0.4 umol / m 2 , based on 1 m 2 of the surface area of the silica particles.
  • the inorganic particles and the surface modifiers can be reacted to make them.
  • the surface-modified due to the crosslinkable functional group at a ratio of about 0.014 to 1.4 umol / m 2 , or about 0.07 to 0.7 umol / m 2 based on the surface area of the silica particles 1 m 2
  • the inorganic particles and the surface modifier may be reacted to make it possible.
  • the method of preparing a super absorbent polymer of another embodiment first, in the presence of an internal crosslinking agent, at least part of the water-soluble ethylenically unsaturated monomer having a neutralized acidic group may be cross-polymerized to form a hydrogel polymer.
  • the concentration of the water-soluble ethylenically unsaturated monomer is about 20 to about 60% by weight relative to the total monomer composition including each of the above-described raw materials and solvents
  • the black may be about 40 to about 50% by weight, and may be in an appropriate concentration in consideration of polymerization time and reaction conditions.
  • concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics.
  • the concentration is too high, a part of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
  • the monomer composition may further include a polymerization initiator generally used in the preparation of a super absorbent polymer.
  • the polymerization initiator may be a thermal polymerization initiator or The photoinitiator according to uv irradiation can be used.
  • the photopolymerization method since a certain amount of heat is generated by irradiation of ultraviolet radiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone can be used at least one selected from the group consisting of.
  • acylphosphine may be used as the photopolymerization initiator, and diphenyl (2,4,6_trimethylbenzoyl) phosphine oxide and phenylbis (2,4,6-trimethylbenzoyl) force may be used as the acylphosphine.
  • the photopolymerization initiator may be included in a concentration of about 0.001 to about 1.0 wt% based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 3 ⁇ 40 8 ), potassium persulfate ( 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ), and examples of azo initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-320 ⁇ 3 (2-amidinopropane) di hydrochloride), 2 , 2-1-azobis- (1 dimethylene) isobutyramidine dihydrochloride
  • the thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer is low, and The higher the ratio, the lower the pressure-absorbing capacity of the final superabsorbent polymer product.
  • the type of the internal crosslinking agent included in the monomer composition is the same as described above, and the internal crosslinking agent is included at a concentration of about 0.01 to about 0.5% by weight relative to the monomer composition to crosslink the polymerized polymer.
  • the internal crosslinking agent is included at a concentration of about 0.01 to about 0.5% by weight relative to the monomer composition to crosslink the polymerized polymer.
  • Such an internal crosslinking agent is used in an amount of about 0.3 parts by weight or more, and about 0.3 to 0.6 parts by weight with respect to 100 parts by weight of the aforementioned monomer, for example, unneutralized acrylic acid, the physical properties of the above-described embodiments are Superabsorbent resins that more suitably meet can be produced.
  • the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-mentioned components, for example, water, ethane, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butane Diul, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, 1 type selected from cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene xylene, butyrolactone, carbyl, methyl cellosolve acetate, and ⁇ , ⁇ -dimethylacetamide
  • the above can be used in combination.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the photopolymerization, Although it can be carried out in a semi-unggi equipped with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the monomer composition may be thermally polymerized by supplying hot air to a reaction device such as a kneader having a stirring shaft or by heating the reaction device.
  • a reaction device such as a kneader having a stirring shaft or by heating the reaction device.
  • the hydrogel polymer obtained by thermal polymerization is discharged to the outlet of the reaction vessel, and may have a size of several centimeters to several millimeters depending on the shape of the stirring shaft provided in the reaction vessel.
  • the size of the hydrous gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, it is usually the weight average .
  • a hydrogel polymer having a particle diameter of about 2 to 50 mm can be obtained.
  • the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the production efficiency is low, which is not preferable, and when the thickness of the polymer on the sheet exceeds 5 cm, due to the excessively thick thickness, The polymerization reaction may not occur evenly over the entire thickness.
  • the light source that can be used in the photopolymerization method is not particularly limited, and as a non-limiting example, a light source such as an Xe lamp, a mercury lamp, or a metal halide lamp may be used.
  • the monomer composition may be thermally polymerized after photopolymerization.
  • a movable conveyor belt, an ultraviolet light source, and a semi-unggi capable of supplying hot air may be used, and the photopolymerization and thermal polymerization methods may be sequentially performed.
  • Typical water content of the hydrogel polymer obtained in this manner may be about 40 to about 80 weight 3 ⁇ 4>.
  • water content is the amount of water to the total weight of the hydrogel gel polymer means the weight of the hydrogel polymer minus the weight of the dry polymer. It is defined as a value calculated by measuring the weight loss according to the water evaporation in the polymer during drying by drying the temperature of the polymer, wherein the drying condition is raised to about 180 ° C at room temperature and then maintained at 180 ° C. In this way, the total drying time is set to 20 minutes, including 5 minutes of silver rising step, and the moisture content is measured.
  • the base resin powder and the super absorbent polymer obtained therefrom Suitably manufactured and provided with a particle size of about 150 to 850. More specifically, at least about 95% by weight or more of the base resin powder and the superabsorbent polymer obtained therefrom will have a particle size of about 150 to 850 / ⁇ , and the fine powder having a particle size of less than about 150 will be less than about 3 weight 3 ⁇ 4. Can be.
  • the superabsorbent resin thus prepared may exhibit the above-described physical properties and better water permeability.
  • the grinder used is not limited in configuration, specifically, the vertical type Vertical pulverizer, Turbo cutter, Turbo grinder, Rotary cutter mill, Cutter mill, Disc mill, Piece shredder ( It may include any one selected from the group of crushing devices consisting of a shred crusher, a crusher, a chopper, and a disc cutter, but is not limited thereto.
  • the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10 ⁇ .
  • drying is performed on the hydrogel polymer immediately after polymerization which is coarsely pulverized or not subjected to the coarsely pulverized step.
  • the drying temperature of the drying step may be about 100 to about 250 ° C.
  • drying temperature is less than about 100 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds about 250 ' C, only the polymer surface may be excessively dried. Fine powder may generate
  • drying step is also commonly used as a drying step of the hydrogel polymer, can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The moisture content of the polymer after such a drying step is about
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850 mm 3. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. A jog mill or the like may be used. It is not limited to the example.
  • the super absorbent polymer powder to be finalized after such a grinding step it may be subjected to a separate process of classifying the polymer powder obtained after the grinding according to the particle size.
  • a polymer having a particle size of about 150 to about 850 may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step. Since the particle size distribution of the base resin powder obtained through the above process has already been described above, further detailed description thereof will be omitted.
  • the surface of the base resin powder can be further crosslinked to form a surface crosslinking layer, thereby superabsorbent resin Can be prepared.
  • the surface-modified inorganic particles may be used in an amount of 0.01 to 10 parts by weight, 0.01 to 5 parts by weight, or 0.01 to 3 parts by weight based on 100 parts by weight of the base resin powder. Within this range, it is possible to produce a super absorbent polymer having excellent water holding capacity and pressure absorbing ability, and having improved permeability.
  • the surface crosslinking structure of the superabsorbent polymer may be further optimized. This is expected because this metal cation can further reduce the crosslinking distance by forming a chelate with the carboxyl group (C00H) of the superabsorbent resin.
  • the structure is not limited about the method of adding the said surface modified inorganic particle to a base resin powder.
  • the surface-modified inorganic particles and the base resin powder may be mixed in a semi-aperture, or may be surface-modified on the base resin powder.
  • a method of spraying inorganic particles, a method of continuously supplying and mixing a base resin powder and surface modified inorganic particles to a mixer that is continuously operated, and the like can be used.
  • water and methanol may be additionally mixed together.
  • the addition of water and methanol has the advantage that the surface modified inorganic particles can be evenly dispersed in the base resin powder.
  • the added water and the content of methane may be appropriately adjusted to induce even dispersion of the surface-modified inorganic particles and to prevent aggregation of the base resin powder and to optimize the surface penetration depth of the inorganic particles.
  • the surface-modified inorganic particles When the surface-modified inorganic particles are added to the base resin powder, they may be heated at about 100 ° C. to 200 ° C. for about 1 minute to 120 minutes to perform surface crosslinking reaction. More specifically, the surface crosslinking reaction may be performed for about 1 minute to 120 minutes, about 5 minutes to 100 minutes, or about 10 minutes to 80 minutes after reaching the target temperature for the reaction. If the crosslinking reaction time is too short than the above-mentioned range, a sufficient degree of crosslinking reaction may not occur. If the crosslinking reaction time is too long, the physical properties of the superabsorbent polymer may be deteriorated due to excessive surface crosslinking reaction. Prolonged residence in the reaction period can lead to polymer crushing.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied may be a means of heating medium, a rate of temperature increase, and a target temperature for heating. Consideration can be made as appropriate.
  • the heat source directly supplied may be a heating method through electricity, a gas heating method, but is not limited to the above examples.
  • the superabsorbent polymer obtained according to the above-described manufacturing method may exhibit very excellent properties with improved physical properties such as water retention capacity and pressure absorption capacity, and may exhibit excellent general properties that can be suitably used for hygiene products such as diapers.
  • the water holding capacity and the pressure absorbing capacity are inversely related to each other.
  • a super absorbent polymer and a method for producing the same may be provided in which all physical properties such as water-retaining capacity and pressure-absorbing capacity are improved together to exhibit excellent properties.
  • the superabsorbent polymer of the present invention fundamentally solves the problems of the existing superabsorbent polymers and the technical demands of the art, and may exhibit more excellent physical properties, and can be very preferably applied to various sanitary products. [Brief Description of Drawings]
  • Figure 1 to Figure '3 is a schematic view of the components included in the exemplary device and the device for measuring the gel layer chimtudo.
  • IPA iso-propyl alcohol
  • 12 g of (3- (glycidyloxy) propyl) trimethoxysilane were added to 100 g of Ludox HSA (silica content 30 wt%).
  • 70 g of 1 ⁇ bead (Zr0 2 ) was added to the resulting solution, followed by mixing for about 24 hours to modify the surface of the inorganic particles. Thereafter, the obtained product was washed with n-butyl acetate to obtain surface-modified inorganic particles.
  • the monomer composition was prepared by adding 18 g and 0.35 g of polyethyleneglycol diacrylate as an internal crosslinking agent. The temperature of the monomer composition was maintained at 40 ° C. using a thermostat.
  • the monomer composition to photopolymerization and thermal polymerization and is provided with a mercury lamp, located on a second rotary axis silicone belt and the belt, and then ultraviolet radiation was used as an apparatus which can supply hot air to the heat-insulating space.
  • the temperature-controlled monomer composition in the thermostat was injected into the belt of the device, and the monomer composition placed on the belt was irradiated with ultraviolet light for 60 seconds at an intensity of 10 mW through a mercury lamp located above the belt. After ultraviolet irradiation, hot air was supplied to the photopolymerized polymer to maintain the temperature at 90 ° C. to conduct a thermal polymerization reaction. Then, the hydrogel polymer discharged through the cutter was dried in a hot air dryer at 180 ° C for 1 hour.
  • the dried hydrogel polymer was pulverized with a pin mill grinder. Then, sieve was used to classify the polymer having a particle size of less than about 150 rn and the polymer having a particle size of about 150 to 850 mm 3.
  • the surface treatment solution was sprayed containing 1.0 part by weight of 1, 3-propanedi, 1 part by weight of water and 0.01 part by weight of the surface-modified inorganic particles prepared in Preparation Example 1, based on 100 parts by weight of the prepared base resin powder.
  • the mixture was stirred at room temperature and mixed to uniformly distribute the surface crosslinking agent and the surface treatment solution in the base resin powder.
  • the mixture was placed in a surface crosslinking reactor set at about 180 ° C., and the surface crosslinking reaction was performed.
  • the base resin powder was found to gradually increase in temperature at an initial temperature near about 160 ° C., and after about 30 minutes, the maximum reaction temperature of about 180 ° C. was reached. After reaching this maximum reaction temperature, a further reaction was performed for about 20 minutes before the final prepared superabsorbent polymer sample was taken.
  • a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 / m was obtained using sieve. The content of fine powder having a particle diameter of about 150 ⁇ or less contained in the superabsorbent polymer was less than about 2 wt% 3 ⁇ 4.
  • a superabsorbent polymer was prepared in the same manner as in Example 1, except that the content of the surface-modified inorganic particles was adjusted to 0.3 parts by weight based on 100 parts by weight of the base resin powder. The content of fine powder having a particle diameter of about 150 m or less contained in the superabsorbent polymer was less than about 2% by weight. Comparative Example 1: Preparation of Super Absorbent Polymer
  • Superabsorbent polymer was prepared in the same manner as in Example 1, except that the surface-modified inorganic particles were not used in Example 1. Comparative Example 2: Preparation of Super Absorbent Polymer
  • the resin WO (g, about 0.2 g) was uniformly placed in a non-woven bag and sealed, and then immersed in physiological saline, which is a 0.9 wt% aqueous sodium chloride solution at room temperature. After 30 minutes, the bag was drained at 250 G for 3 minutes using a centrifugal separator, and then the mass W2 (g) of the bag was measured. Moreover, after carrying out the same operation without using resin, the mass W1 (g) at that time was measured.
  • W0 (g) is the initial weight (g) of the superabsorbent polymer,.
  • Wl (g) is the weight of the bag measured after immersing an empty bag in physiological saline for 30 minutes at room temperature and then dehydrating it at 250 G for 3 minutes using a centrifuge.
  • W2 ( g ) is the weight of the bag containing the superabsorbent polymer, measured after immersing the bag containing the superabsorbent polymer at room temperature in physiological saline for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge.
  • AUP Absorbing under Pressure
  • AUP Absorbency under Pressure
  • a stainless steel 400 mesh wire mesh was mounted on the bottom of a 60 mm diameter plastic cylinder.
  • the phase was evenly sprayed with a superabsorbent resin W0 (g, 0.90 g) to measure the pressure absorbency on the wire mesh under a humidity of 5OT.
  • a piston was added to the superabsorbent polymer to uniformly impart a load of 4.83 kPa (0.7 psi).
  • the outer diameter of the piston is slightly smaller than 60 ⁇ , there is no gap with the inner wall of the cylinder, was used to be able to move freely up and down.
  • the weight W3 (g) of the device thus prepared was measured.
  • a glass filter of 90 mm in diameter and 5 mm in thickness was placed inside a 150 mm diameter petri dish, and physiological saline (0.9 wt% aqueous sodium chloride solution) was poured into the petri dish. At this time, physiological saline was poured until the surface of physiological saline became horizontal with the upper surface of the glass filter. Then, one sheet of filter paper having a diameter of 90 mm was placed on the glass filter.
  • the prepared device was placed on the filter paper so that the superabsorbent resin in the device was swollen by physiological saline under load. After 1 hour, the weight W 4 (g) of the device containing the swollen superabsorbent polymer was measured.
  • AUP (g / g) [W4 (g)-W3 (g)] / W0 (g)
  • W0 (g) is the initial weight (g) of the superabsorbent polymer
  • W3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W4 (g) is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for one hour under a load (0.7 psi).
  • the free swelling gel bed permeability (GBP) of the superabsorbent resin to physiological saline was measured according to the following method described in Tokken application 2014-7018005.
  • a plunger 536 equipped with a weight 548 is placed in an empty sample container 530, and with a suitable gauge to an accuracy of 0.01 mm, from the top of the weight 548 to the bottom of the sample container 530. The height was measured. During the measurement, the force applied by the thickness gauge was adjusted to less than about 0.74 N.
  • the super absorbent polymer passed through the US standard 30 mesh screen and maintained on the US standard 50 mesh screen Screening was carried out to obtain a super absorbent polymer having a particle diameter of 300 to 600 / m.
  • the sample container 530 was placed in the sample container 530 and evenly spread on the bottom of the sample container. Subsequently, the vessel without the plunger 536 and the weight 548 was immersed in 0.9 wt% aqueous sodium chloride solution for about 60 minutes to swell the superabsorbent polymer under no pressure. At this time, the sample vessel 530 was overlaid on a mesh positioned in the liquid reservoir so that the sample vessel 530 was slightly above the bottom of the liquid reservoir, and the mesh did not affect the movement of physiological saline to the sample vessel 530. Not used. During saturation the height of the physiological saline was adjusted so that the surface in the sample vessel was defined by the swollen superabsorbent resin, not physiological saline.
  • the assembly of the plunger 536 and the weight 8 is laid down on the swollen superabsorbent resin 568 in the sample container 530, and then the sample container 530, plunger 536, weight 548 and the swollen superabsorbent resin 568 were removed from the solution.
  • the sample vessel 530, plunger 536, weight 548 and swollen superabsorbent resin 568 were then placed on a flat, large grid, uniform thickness, non-deformable plate, prior to GBP measurements. Leave it on for a while. Then, using the same thickness gauge as previously used, the height from the top of the weight 548 to the bottom of the sample container 530 was measured again.
  • the height measurement of the device in which the plunger 536 equipped with the weight 548 is placed in the empty sample container 530 is subtracted from the height measurement of the device containing the swollen superabsorbent resin 568.
  • the thickness or height ' ⁇ ' of the superabsorbent polymer was obtained.
  • a 0.9 weight> aqueous sodium chloride solution of physiological saline was flowed into the sample vessel 530 containing the swollen superabsorbent resin 568, plunger 536 and weight 548.
  • the f low rate of physiological saline into the sample vessel 530 was adjusted so that the physiological saline overflowed to the top of the cylinder 534 so that a consistent head pressure equal to the height of the sample vessel 530 was shown.
  • the balance 602 and the beaker 603 the amount versus time of the solution passing through the swollen superabsorbent resin 568 was measured gravimetrically once the overflow began,
  • the GBP (cm 2 ) was calculated according to the following equation 3 using the data values thus obtained.
  • is the gel bed transmission (cm 2 )
  • H is the height (cm) of the swollen superabsorbent resin
  • is the liquid viscosity ( ⁇ ) (in this test : the viscosity of the saline solution used is about lcP),
  • A is the cross-sectional area for the liquid flow (28.27cuf for the sample vessel used in this test)
  • p is the liquid density (g / cm 3 ) (about 1 g / cm 3 for the saline solution used in this test),
  • P is the hydrostatic pressure (dyne / cm 2) (normally approximately 7,797dyne / cm 2).
  • the super absorbent polymer according to the embodiment of the present invention has excellent water retention, pressure absorption and water permeability.
  • the superabsorbent polymers of Comparative Examples 1 to 3 are excellent in any one of water-retaining ability, pressure-absorbing ability, and water permeability, at least the other physical property is poor.
  • the superabsorbent polymers of Examples 1 and 2 do not release inorganic particles even after the dedusting process to maintain excellent physical properties, whereas the superabsorbent resins of Comparative Examples 2 and 3 exhibit physical property degradation.
  • the superabsorbent polymer according to the embodiment of the present invention has a surface crosslinked structure with surface-modified inorganic particles, thereby minimizing physical property deterioration in the manufacturing and transporting process of the superabsorbent polymer as well as excellent physical properties. .
  • 534a a part having an outer diameter of 66 mm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a super-absorbent polymer having excellent properties, both centrifugal retention capacity (CRC) and absorption under pressure (AUP) having been improved by introducing a surface crosslinked layer crosslinked by surface-modified inorganic particles, and to a method for preparing the same. The super-absorbent polymer comprises: a base resin powder containing a crosslinked polymer of water-soluble ethylene-based unsaturated monomers having an at least partially neutralized acidic group; and a surface crosslinked layer formed on the base resin powder, wherein inorganic particles may be chemically bound to the crosslinked polymer contained in the surface crosslinked layer, via an oxygen-containing bond or a nitrogen-containing bond.

Description

【발명의 명칭】  [Name of invention]
고흡수성 수지 및 이의 제조 방법  Super Absorbent Resin and Method for Making the Same
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2015년 1월 23일자 한국 특허 출원 제 10-2015-0011037 호 및 2015년 12월 28일자 한국 특허 출원 제 10-2015-0187758 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0011037 dated January 23, 2015 and Korean Patent Application No. 10-2015-0187758 dated December 28, 2015. All content disclosed in the literature is included as part of this specification.
【기술분야】  Technical Field
본 발명은 표면 개질된 무기물 입자로 가교된 표면 가교층을 도입하여 보수능 (CRC) , 가압 흡수능 (AUP) 및 투수성이 함께 향상된 고흡수성 수지 및 이의 제조 방법에 관한 것이다.  The present invention relates to a superabsorbent polymer having improved water-retaining capacity (CRC), pressure-absorbing capacity (AUP) and water permeability by introducing a surface crosslinked layer crosslinked with surface-modified inorganic particles, and a method for producing the same.
【배경기술】  Background Art
고흡수성 수지 (Super Absorbent Polymer , SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM (Super Absorbency Mater i al ) , AGM(Absorbent Gel Mater ial ) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀나 생리대 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. Absorbent Gel Mater ial), they are named differently. Such super absorbent polymers have been put into practical use as sanitary instruments, and are currently used in sanitary products such as paper diapers and sanitary napkins for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, and food fresheners. , And widely used as a material for steaming.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를 잘 유지하여 우수한 투수성 (permeabi l i ty)을 나타낼 필요가 있다.  In most cases, these superabsorbent polymers are widely used in the field of sanitary products such as diapers and sanitary napkins. For this purpose, the superabsorbent polymers need to exhibit high absorption of moisture and must not escape moisture absorbed by external pressure. In addition, it is necessary to maintain a good shape even in the state of volume expansion (swelling) by absorbing water to show excellent permeabi li ty.
그런데, 상기 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능 (CRC)과, 외부의 압력에도 흡수된 수분을 잘 보유하는 특성을 나타내는 가압하 흡수능 (AUP)은 함께 향상시키기 어려운 것으로 알려져 있다. 이는 고흡수성 수지의 전체적인 가교 밀도가 낮게 제어될 경우, 보수능은 상대적으로 높아질 수 있지만 가교 구조가 성기게 되고 겔 강도가 낮아져 가압하 흡수능은 저하될 수 있기 때문이다. 반대로, 가교 밀도를 높게 제어하여 가압하 흡수능을 향상시키는 경우, 백빽한 가교 구조 사이로 수분이 흡수되기 어려운 상태로 되어 기본적인 보수능이 저하될 수 있다. 상술한 이유로 인해, 보수능 및 가압하 흡수능이 함께 향상된 고흡수성 수지를 제공하는데 한계가 있었다. By the way, it is known that the water retention capacity (CRC), which is a physical property indicating the basic absorption power and water retention capacity of the superabsorbent polymer, and the absorption power under pressure (AUP), which exhibits a property of retaining moisture absorbed well by external pressure, are difficult to improve together. . This is because, when the overall crosslinking density of the superabsorbent polymer is controlled to be low, the water-retaining ability can be relatively high, but the crosslinking structure is coarse and the gel strength is lowered, so that the absorbency under pressure can be reduced. Conversely, by controlling the crosslinking density high When the absorption ability under pressure is improved, moisture is hardly absorbed between the dense crosslinked structures, and the basic water holding ability may be lowered. For the reasons mentioned above, there has been a limitation in providing a super absorbent polymer having both a water-retaining capacity and a water-absorbing capacity under pressure.
한편, 고흡수성 수지가 습도가 높은 상태에 노출되면, 고흡수성 수지가 공기 중의 수분을 흡수하여 큰 덩어리로 웅집되는 caking 현상이 나타난다. 이러한 caking 현상을 방지하기 위하여 고흡수성 수지에 실리카와 같은 무기물 첨가제를 흔합하여 사용하고 있다.  On the other hand, when the superabsorbent polymer is exposed to a high humidity state, a caking phenomenon occurs in which the superabsorbent polymer absorbs moisture in the air and collects into large lumps. In order to prevent such caking phenomenon, inorganic additives such as silica are mixed with the superabsorbent polymer.
하지만, 고흡수성 수지에 무기물 첨가제를 효과적으로 분산시키기가 어려워 무기물 첨가제에 의한 효과가 기대 이하이며, 고흡수성 수지와 물리적으로 배합된 무기물 첨가제의 이탈로 인하여 분진 발생 및 물성 변화 등의 문제가 초래되고 있다.  However, it is difficult to effectively disperse the inorganic additives in the superabsorbent polymer, so the effect of the inorganic additives is less than expected, and the separation of the inorganic additives physically blended with the superabsorbent polymer causes problems such as dust generation and physical property changes. .
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
이에 본 발명은 표면 개질된 무기물 입자로 표면을 가교하여 보수능 (CRC) , 가압 흡수능 (AUP) 및 투수성이 함께 향상된 우수한 물성을 나타내는 고흡수성 수지를 제공하는 것이다.  Accordingly, the present invention is to provide a superabsorbent polymer exhibiting excellent physical properties by improving the water-retaining capacity (CRC), pressure-absorbing capacity (AUP) and water permeability by crosslinking the surface with the surface-modified inorganic particles.
본 발명은 또한, 상기 고흡수성 수지의 제조 방법을 제공하는 것이다.  The present invention also provides a method for producing the superabsorbent polymer.
【과제의 해결 수단】  [Measures of problem]
본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체가 내부 가교제 존재 하에 증합된 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 가교 중합체가 표면 개질된 무기물 입자의 존재 하에 추가 가교되어 있고, 상기 베이스 수지 분말 상에 형성되어 있는 표면 가교층을 포함하고, 상기 표면 가교층에 포함된 가교 중합체에는 산소 함유 결합 또는 질소 함유 결합을 매개로 무기물 입자가 화학적으로 결합되어 있는 고흡수성 수지를 제공한다.  The present invention provides a resin composition comprising: a base resin powder comprising a crosslinked polymer in which a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups is thickened in the presence of an internal crosslinker; And a surface crosslinking layer in which the crosslinked polymer is further crosslinked in the presence of surface modified inorganic particles, and formed on the base resin powder, wherein the crosslinked polymer included in the surface crosslinking layer contains an oxygen-containing bond or a nitrogen-containing bond. Provided is a superabsorbent polymer in which inorganic particles are chemically bonded through a bond.
또한, 본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 내부 가교제의 존재 하에 가교 중합하여 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계 ; 및 에폭시기, 히드록시기, 이소시아네이트기 및 아민기로 이루어진 군에서 선택된 적어도 1종 이상의 작용기로 표면 개질된 무기물 입자의 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하는 상기 고흡수성 수지의 제조 방법을 제공한다. In addition, the present invention comprises the steps of cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acidic group in the presence of an internal crosslinking agent to form a hydrogel polymer; Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And epoxy, hydroxy, isocyanate and amine groups. In the presence of at least one inorganic particles surface-modified with at least one functional group selected from the group consisting of, providing a method for producing the superabsorbent polymer comprising the step of further crosslinking the surface of the base resin powder to form a surface crosslinking layer.
이하, 발명의 구체적인 구현예에 따른 고흡수성 수지 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다. 추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.  Hereinafter, a super absorbent polymer according to a specific embodiment of the present invention and a manufacturing method thereof will be described in detail. However, this is presented as an example of the invention, thereby not limited to the scope of the invention, it is apparent to those skilled in the art that various modifications to the embodiment is possible within the scope of the invention. In addition, unless otherwise indicated throughout the specification, "including" or "containing" refers to the inclusion of any component (or component) without particular limitation, and the addition of another component (or component) It cannot be interpreted as excluding.
발명의 일 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체가 내부 가교제의 존재 하에 중합된 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 가교 중합체가 표면 개질된 무기물 입자의 존재 하에 추가 가교되어 있고, 상기 베이스 수지 분말 상에 형성되어 있는 표면 가교층을 포함하고, 상기 표면 가교층에 포함된 가교 중합체에는, 산소 함유 결합 또는 질소 함유 결합을 매개로 무기물 입자가 화학적으로 결합되어 있는 고흡수성 수지가 제공된다.  According to one embodiment of the invention, at least a portion of the base resin powder containing a crosslinked polymer polymerized in the presence of an internal crosslinking agent is a water-soluble ethylenically unsaturated monomer having a neutralized acid group; And a surface crosslinking layer in which the crosslinked polymer is further crosslinked in the presence of surface modified inorganic particles, and formed on the base resin powder, wherein the crosslinked polymer included in the surface crosslinking layer includes an oxygen-containing bond or nitrogen Provided is a superabsorbent polymer in which inorganic particles are chemically bonded through a containing bond.
본 발명자들의 실험 결과 에폭시기, 히드록시기, 이소시아네이트기 및 아민기로 이루어진 군에서 선택된 적어도 1종 이상의 작용기로 표면 개질된 무기물 입자의 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하면, 표면 가교층에 포함된 가교 중합체에 무기물 입자가 화학적으로 결합되어 고흡수성 수지의 제조 및 이송 과정에서 고흡수성 수지에서 무기물 입자가 이탈되는 것을 방지할 수 있을 뿐 아니라 가압 흡수능과 투수성 (permeabi l i ty)이 향상된 고흡수성 수지가 제조 및 제공될 수 있음을 확인하고 발명을 완성하였다.  According to the experiments of the present inventors, when the surface of the base resin powder is further crosslinked in the presence of inorganic particles surface-modified with at least one functional group selected from the group consisting of an epoxy group, a hydroxyl group, an isocyanate group, and an amine group to form a surface crosslinking layer, The inorganic particles are chemically bonded to the crosslinked polymer included in the surface crosslinking layer to prevent the inorganic particles from being separated from the superabsorbent polymer during the manufacturing and transport of the superabsorbent polymer, as well as the pressure absorbing ability and the permeability (permeabi li ty). The invention was completed, confirming that improved superabsorbent polymer) can be prepared and provided.
이렇게 제조된 고흡수성 수지는, 예를 들어, 상기 수용성 에틸렌계 불포화 단량체가 중합된 고분자 쇄들이 내부 가교제의 가교성 작용기를 매개로 가교 결합된 가교 증합체를 포함하는 베이스 수지 분말을 포함하고, 상기 베이스 수지 분말의 표면에 존재하는 가교 중합체들이 입자 하나 당 2 이상의 가교 가능한 작용기로 표면 개질된 무기물 입자로 추가 가교 결합된 표면 가교층을 포함하게 된다. The superabsorbent polymer thus prepared includes, for example, a base resin powder in which the polymer chains polymerized with the water-soluble ethylenically unsaturated monomer include a crosslinked crosslinked crosslinked through a crosslinkable functional group of an internal crosslinker. Two or more crosslinking polymers per particle Possible functional groups will include a surface crosslinked layer that is further crosslinked with surface-modified inorganic particles.
이에 따라, 일 구현예의 고흡수성 수지는 표면에 존재하는 가교 중합체들이 표면 개질된 무기물 입자를 매개로 가교 결합된 표면 가교층을 가지며, 상기 표면 가교층 내에 가교 중합체와 무기물 입자가 무기물 입자의 가교 가능한 작용기에서 유래하는 산소 함유 결합 또는 질소 함유 결합을 통해 화학적으로 연결된 구조를 가지게 된다. 보다 구체적으로, 상기 표면 가교층 내의 가교 증합체와 무기물 입자는 -0- 또는 -coo- 등의 산소 함유 결합 혹은 - Accordingly, the super absorbent polymer of one embodiment has a surface crosslinked layer in which the crosslinked polymers present on the surface are cross-linked through the surface-modified inorganic particles, and the crosslinked polymer and the inorganic particles can crosslink the inorganic particles in the surface crosslinked layer. It has a structure that is chemically linked through an oxygen-containing bond or a nitrogen-containing bond derived from a functional group. More specifically, the crosslinked polymer and the inorganic particles in the surface crosslinking layer are oxygen-containing bonds such as -0- or -coo- or-
C0NR- 또는 -NR- (R은 수소 또는 탄소수 1 내지 3의 알킬기) 등의 질소 함유 결합을 통해 화학적으로 연결된 구조를 가질 수 있다. It may have a structure chemically linked through a nitrogen-containing bond, such as C0NR- or -NR- (R is hydrogen or an alkyl group having 1 to 3 carbon atoms).
이러한 무기물 입자를 포함하는 표면 가교 구조로 인해, 일 구현예의 고흡수성 수지는 기본적으로 입자 간의 웅집이 어려워 고흡수성 수지가 공기 중의 수분을 흡수하여 큰 덩어리로 응집되는. caking 현상을 효과적으로 방지할 수 있다. 또한, 상기 표면 가교 구조 사이에서 무기물 입자는 일정 공간을 점유하게 된다. 이 때문에, 상기 고흡수성 수지는 향상된 수분 흡수 속도를 나타내며, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를 잘 유지하여 우수한 투수성 (permeabi l i ty)을 나타낼 수 있다. 특히, 상기 고흡수성 수지는 상술한 신규 표면 가교 구조로 인해 보수능 및 가압 흡수능이 서로 반비례 관계에 있다는 기존의 상식과는 달리, 보수능 및 가압 흡수능 등의 제반 물성이 함께 향상되어 모두 우수한 특성을 나타낼 수 있다. 결국, 일 구현예의 고흡수성 수지는 기존의 고흡수성 수지가 갖던 문제점과 당업계의 기술적 요구를 근본적으로 해결하고, 보다 뛰어난 제반 물성을 나타낼 수 있다.  Due to the surface cross-linking structure comprising such inorganic particles, the superabsorbent resin of one embodiment is basically difficult to form between particles, so that the superabsorbent resin absorbs moisture in the air and aggregates into a large mass. Caking phenomenon can be effectively prevented. In addition, the inorganic particles occupy a certain space between the surface crosslinked structures. For this reason, the superabsorbent polymer exhibits an improved water absorption rate and can maintain excellent shape even in the state of volume expansion (swelling) by absorbing water, thereby exhibiting excellent permeability. In particular, unlike the conventional common knowledge that the water-absorbing capacity and the water-absorbing capacity are inversely related to each other due to the new surface-crosslinked structure described above, the superabsorbent polymers have all excellent properties such as water-retaining capacity and pressure-absorbing capacity. Can be represented. As a result, the super absorbent polymer of one embodiment fundamentally solves the problems of the existing superabsorbent polymers and technical requirements in the art, and may exhibit more excellent physical properties.
이하, 일 구현예의 고흡수성 수지의 구조 및 제조 방법 등에 대해 보다 구체적으로 설명하기로 한다.  Hereinafter, a structure and a manufacturing method of the super absorbent polymer of one embodiment will be described in more detail.
상기 일 구현예의 고흡수성 수지는 기본적으로 이전의 고흡수성 수지와 마찬가지로 상기 수용성 에틸렌계 불포화 단량체가 가교 중합된 가교 중합체를 베이스 수지 분말로서 포함하며, 이러한 베이스 수지 분말 상에 형성된 표면 가교층을 포함한다.  The super absorbent polymer of the embodiment basically includes a crosslinked polymer obtained by crosslinking and polymerizing the water-soluble ethylenically unsaturated monomer as a base resin powder, and includes a surface crosslinked layer formed on the base resin powder. .
이에 더하여, 상기 일 구현예의 고흡수성 수지는 가교 중합체 및 베이스 수지 분말의 표면 가교를 위한 과정에서, 상술한 바와 같은 가교 가능한 작용기로 표면 개질된 무기물 입자가 사용됨에 따라, 상기 가교 가능한 작용기에서 유래한 산소 함유 결합 또는 질소 함유 결합을 매개로 무기물 입자가 상기 베이스 수지 분말의 표면에 존재하는 가교 중합체의 고분자 쇄들에 화학적 결합 (예를 들어, 공유 결합 내지 가교 결합 등)되어 있다. 이로써, 이미 상술한 바와 같은 전반적으로 우수한 물성 (특히, 동시에 향상된 보수능 및 가압 흡수능 등)을 나타낼 수 있다. In addition, the superabsorbent polymer of the embodiment may be crosslinkable as described above in the process for surface crosslinking of the crosslinked polymer and the base resin powder. As the inorganic particles surface-modified with functional groups are used, the inorganic particles are chemically bonded to the polymer chains of the crosslinked polymer in which the inorganic particles are present on the surface of the base resin powder through an oxygen-containing or nitrogen-containing bond derived from the crosslinkable functional group ( For example, a covalent bond or a crosslinking bond) is carried out. Thereby, it is possible to exhibit the overall excellent physical properties as described above (especially at the same time improved water holding capacity and pressure absorption capacity).
이러한 일 구현예의 고흡수성 수지에서, 상기 수용성 에틸렌계 불포화 단량체로는, 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄술폰산ᅳ 2-메타크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N- 치환 (메트)아크릴아미드, 2-히드록시에틸 (메트)아크릴레이트, 2- 히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν , Ν)-디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν ,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 이중에서도, 아크릴산 또는 이의 염, 예를 들어, 아크릴산의 적어도 일부가 중화된 아크릴산 및 /또는 이의 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다. 이때, 상기 수용성 에틸렌계 불포화 단량체의 중화 정도는 약 50 내지 95% 혹은 약 70 내지 85%로 조절될 수 있으며, 이러한 범위 내에서 중화 시 석출의 우려 없이 보수능이 뛰어난 고흡수성 수지를 제공할 수 있다.  In the super absorbent polymer of this embodiment, the water-soluble ethylenically unsaturated monomer, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid ᅳ 2-methacryloyl Anionic monomers of ethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate or polyethylene glycol ( Nonionic hydrophilic-containing monomers of meth) acrylate; And an amino group-containing unsaturated monomer of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and its quaternized product; Can be used. Among these, alkali metal salts such as acrylic acid or salts thereof, for example, acrylic acid and / or sodium salts of which at least a part of acrylic acid is neutralized may be used. The production of superabsorbent polymers having superior physical properties using such monomers may be used. Becomes possible. When the alkali metal salt of acrylic acid is used as a monomer, acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH). In this case, the degree of neutralization of the water-soluble ethylenically unsaturated monomer may be adjusted to about 50 to 95% or about 70 to 85%, and can provide a super absorbent polymer having excellent water retention capability without fear of precipitation during neutralization within this range. have.
또한, 상기 가교 중합체 및 베이스 수지 분말에 기본적인 가교 구조를 도입하기 위한 내부 가교제로는, 기존부터 고흡수성 수지의 제조에 사용되던 가교성 작용기를 갖는 내부 가교제를 별다른 제한 없이 모두 사용할 수 있다. 다만, 상기 가교 중합체 및 베이스 수지 분말에 적절한 가교 구조를 도입하여 고흡수성 수지의 물성을 보다 향상시키기 위해, 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물이 내부 가교제로 사용될 수 있다. 이러한 내부 가교제의 보다 구체적인 예로는, 폴리에틸렌글리콜 디아크릴레이트 (PEGDA) , 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 비개질 또는 에특실화된 트리메틸올프로판 트리아크릴레이트 (TMPTA) , 핵산디을디아크릴레이트, 및 트리에틸렌글리콜 디아크릴레이트로 이루어진 군에서 선택된 1종 이상을 들 수 있다. In addition, as the internal crosslinking agent for introducing the basic crosslinking structure into the crosslinked polymer and the base resin powder, any internal crosslinking agent having a crosslinkable functional group, which has been conventionally used for the production of superabsorbent polymers, can be used without particular limitation. However, in order to introduce an appropriate crosslinked structure into the crosslinked polymer and the base resin powder to further improve the physical properties of the super absorbent polymer, a plurality of ethylene oxide groups may be used. The polyfunctional acrylate compound having can be used as the internal crosslinking agent. More specific examples of such internal crosslinking agents include polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, glycerin triacrylate, unmodified or ethylated trimethylolpropane triacrylate (TMPTA), nucleic acid didi diacrylate, And triethyleneglycol diacrylate.
또, 상술한 일 구현예의 고흡수성 수지에서, 상기 베이스 수지 분말 상에 형성된 표면 가교층을 형성하기 위한 표면 개질된 무기물 입자로는 상술한 가교 가능한 작용기로 표면 개질된 무기물 입자를 사용할 수 있다.  In addition, in the superabsorbent polymer of the above-described embodiment, the surface-modified inorganic particles for forming the surface crosslinked layer formed on the base resin powder may use inorganic particles surface-modified with the above-mentioned crosslinkable functional groups.
상기 무기물 입자는 5 내지 600m2/g 또는 100 내지 300m2/g의 비표면적을 가질 수 있다. 이러한 범위 내에서 상기 무기물 입자는 적절한 수의 가교 가능한 작용기로 표면 개질될 수 있다. 그리고, 상기 무기물 입자는 5 내지 500nm의 직경을 가져, 동일 중량 대비 적절한 입자 수의 무기물 입자가 표면 가교층 내에 잘 분산될 수 있어 경제적이다. The inorganic particles may have a specific surface area of 5 to 600 m 2 / g or 100 to 300 m 2 / g. Within this range the inorganic particles may be surface modified with an appropriate number of crosslinkable functional groups. And, the inorganic particles have a diameter of 5 to 500nm, it is economical because the inorganic particles of the appropriate number of particles compared to the same weight can be well dispersed in the surface crosslinking layer.
보다 구체적으로, 이러한 무기물 입자로는 실리카 입자 또는 알루미나 입자 등을 사용할 수 있다.  More specifically, such inorganic particles may be used, such as silica particles or alumina particles.
또한, 상술한 무기물 입자는 상기 고흡수성 수지 100 중량부에 대해 약 0.01 내지 2 중량부로 결합되어 있을 수 있다. 이로써, 표면 가교층에 적절한 함량의 무기물 입자를 포함하는 가교 구조가 도입되어, 일 구현예의 고흡수성 수지가 보다 향상된 물성, 예를 들어, 보수능 및 가압하 흡수능을 가질 수 있다. 한편, 상기 표면 개질된 무기물 입자의 보다 구체적인 종류 및 이의 제조 방법 등에 관해서는 후술하는 제조 방법에 기재된 내용을 참조할 수 있다.  In addition, the above-described inorganic particles may be bonded to about 0.01 to 2 parts by weight based on 100 parts by weight of the super absorbent polymer. As a result, a crosslinked structure including an appropriate amount of inorganic particles may be introduced into the surface crosslinking layer, so that the superabsorbent polymer of one embodiment may have more improved physical properties, for example, water retention and absorption under pressure. On the other hand, regarding the more specific kind of the above-mentioned surface-modified inorganic particles, a manufacturing method thereof, and the like, reference may be made to the contents described in the manufacturing method described later.
상기 일 구현예의 고흡수성 수지에서, 베이스 수지 분말 상에 형성된 표면 가교층은 상기 표면 개질된 무기물 입자와 함께 기존부터 고흡수성 수지의 제조에 사용되던 표면 가교제를 사용하여 형성할 수 있다. 상기 표면 가교제로는 본 발명이 속하는 기술 분야에 알려진 것을 별다른 제한 없이 모두 사용할 수 있다. 이의 보다 구체적인 예로는, 에틸렌글리콜, 1 , 4—부탄디올, 1 , 6-핵산디을, 프로필렌 글리콜, 1 , 2-핵산디올, 1,3-핵산디을, 2-메틸ᅳ 1 , 3-프로판디올, 2,5- 핵산디올, 2ᅳ메틸 -1 , 3-펜탄디올, 2-메틸 -2,4-펜탄디을, 트리프로필렌 글리콜, 글리세를, 에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1종 이상을 들 수 있다. In the superabsorbent polymer of the above embodiment, the surface crosslinked layer formed on the base resin powder may be formed using a surface crosslinking agent that has been used in the conventional production of superabsorbent polymer together with the surface modified inorganic particles. As the surface crosslinking agent, all known in the art may be used without any particular limitation. More specific examples thereof include ethylene glycol, 1,4-butanediol, 1,6-nucleic acid dipropylene, propylene glycol, 1,2-nucleic acid diol, 1,3-nucleic acid diol, 2-methyl ᅳ 1, 3-propanediol, 2,5-nucleic acid diol, 2 핵산 methyl-1, 3-pentanediol, 2-methyl-2,4-pentanedi, tripropylene glycol, glycerol, ethylene carbonate and propylene carbonate 1 or more types are mentioned.
그리고, 상술한 일 구현예의 고흡수성 수지는, 생리 식염수에 대한 원심분리 보수능 (CRC)이 약 30 내지 40 g/g이고, 생리 식염수에 대한 0.7 psi의 가압 흡수능 (AUP)이 약 10 내지 26 g/g 혹은 약 20 내지 26 g/g 이고, 자유 팽윤 겔 베트 투과율 (GBP ; gel bed permeabi 1 ity)이 약 5 내지 120 darcy 혹은 약 9 내지 120 darcy인 특성을 나타낼 수 있다.  In addition, the superabsorbent polymer of the above-described embodiment has a centrifugal water retention capacity (CRC) of about 30 to 40 g / g for physiological saline, and a pressure absorption capacity (AUP) of 0.7 psi to physiological saline about 10 to 26. g / g or about 20 to 26 g / g, and a free swelling gel bet permeability (GBP; gel bed permeabi 1ity) may be about 5 to 120 darcy or about 9 to 120 darcy.
상술한 일 구현예의 고흡수성 수지는 표면 가교충에 무기물 입자를 포함하는 표면 가교 구조가 도입됨에 따라, 보다 향상된 침투도 및 가압 흡수능과 함께, 우수한 보수능을 나타낼 수 있다. 따라서, 이러한 고흡수성 수지는 기저귀 등 각종 위생 용품에 바람직하게 적용되어 전체적으로 매우 우수한 물성을 나타낼 수 있다.  As the superabsorbent polymer of the above-described embodiment is introduced with a surface crosslinked structure including inorganic particles in the surface crosslinked worm, the superabsorbent polymer may exhibit excellent water-retaining ability with improved penetration and pressure-absorbing ability. Therefore, such a super absorbent polymer may be preferably applied to various sanitary articles such as diapers, and may exhibit very excellent physical properties as a whole.
한편, 상기 생리 식염수에 대한 원심분리 보수능 (CRC)은 EDANA 법 WSP 241.2의 방법에 따라 측정될 수 있다. 보다 구체적으로, 상기 보수능은 고흡수성 수지를 30분에 걸쳐 생리 식염수에 흡수시킨 후, 다음과 같은 계산식 1에 의해 산출될 수 있다:  On the other hand, the centrifugal water retention capacity (CRC) for the physiological saline can be measured according to the method of the EDANA method WSP 241.2. More specifically, the water retention capacity can be calculated by the following formula 1 after absorbing the super absorbent polymer in physiological saline over 30 minutes:
[계산식 1]  [Calculation 1]
CRC (g/g) = { [W2(g) ― Wl(g) ] /W0(g) } - 1  CRC (g / g) = {[W2 (g) ― Wl (g)] / W0 (g)}-1
상기 계산식 1에서,  In the above formula 1,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, Wl(g)는 상온에서 빈 봉투를 생리 식염수에 30 분간 침수시킨 다음 원심분리기를 사용하여 250 G로 3 분간 탈수한 후에 측정한 봉투의 무게이고, W2(g)는 상온에서 고흡수성 수지가 담긴 봉투를 생리 식염수에 30 분간 침수시킨 다음 원심분리기를 사용하여 250 G로 3 분간 탈수한 후에 측정한 고흡수성 수지를 포함한 봉투의 무게이다.  W0 (g) is the initial weight (g) of the superabsorbent polymer, and Wl (g) is the bag measured after immersing an empty bag in physiological saline for 30 minutes at room temperature and then dehydrating it at 250 G for 3 minutes using a centrifuge. W2 (g) is the weight of the bag containing the superabsorbent polymer, measured after immersing the bag containing superabsorbent polymer at room temperature in physiological saline for 30 minutes and then dehydrating it for 3 minutes at 250 G using a centrifuge. .
또한, 상기 0.7 psi의 가압 흡수능 (AUP)은 EDANA 법 WSP 242.2의 방법에 따라 측정될 수 있다. 보다 구체적으로, 상기 가압 흡수능은 고흡수성 수지를 1 시간에 걸쳐 약 0.7 ps i의 가압 하에 생리 식염수에 흡수시킨 후, 하기 계산식 2에 따라 산출될 수 있다:  In addition, the pressure absorption capacity (AUP) of 0.7 psi can be measured according to the method of the EDANA method WSP 242.2. More specifically, the pressure-absorbing capacity may be calculated according to the following formula 2 after absorbing the superabsorbent polymer in physiological saline under a pressure of about 0.7 ps i over 1 hour:
[계산식 2]  [Calculation 2]
AUP (g/g) = [W4(g) - W3(g) ] / W0(g)  AUP (g / g) = [W4 (g)-W3 (g)] / W0 (g)
상기 계산식 2에서, W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중 (0.7 psi ) 하에 1 시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다. In the formula 2, W0 ( g ) is the initial weight (g) of the superabsorbent polymer, W3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device that can be applied to the superabsorbent polymer, and W4 (g) is the load After absorbing physiological saline to the superabsorbent resin for 1 hour under (0.7 psi), the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin.
상기 계산식 1 내지 2에 기재된 W0(g)는 고흡수성 수지를 생리 식염수에 흡수시키기 전의 초기 무게 (g)에 해당하는 것으로, 각각 동일하거나 상이할 수 있다.  W0 (g) described in Formulas 1 to 2 corresponds to an initial weight (g) before the superabsorbent polymer is absorbed into physiological saline, and may be the same or different.
그리고, 상기 생리 식염수에 대한 겔 베드 투과율 (GBP)은 특허 출원 제 2014-7018005호에 기재된 이하의 방법에 따라 다르시 (Darcy) 또는 cm2의 단위로 측정될 수 있다. ldarcy는 1cm 당 1기압의 압력 구배 하에서 lcP의 점성도를 가진 액체가 icm 2을 통하여 1초당 1匪를 유동하는 것을 의미한다. 겔 베드 투과율은 면적과 동일한 단위를 가지며 ldarcy는 0.98692 x 10~12 m2 또는 0.98692 X 10— 8 cm2과 같다. The gel bed permeability (GBP) for physiological saline can be measured in units of Darcy or cm 2 according to the following method described in Patent Application No. 2014-7018005. Ldarcy means that a liquid with a viscosity of lcP flows through 1 cm 2 per second under a pressure gradient of 1 atmosphere per cm . Gel bed permeability has the same units as area ldarcy are as 0.98692 x 10 ~ 12 m 2 or 0.98692 X 10- 8 cm 2.
보다 구체적으로, 본 명세서에서 GBP는 0 ps i의 자유 팽윤 상태라 불리는 상태하에서 팽윤된 겔 층 (또는 베드)에 대한 침투도 (또는 투과율) (Gel Bed Permeabi l i ty(GBP) Under Opsi Swel l Pressure Test )를 의미하며, 상기 GBP는 도 1 내지 도 3에 나타낸 장치를 이용하여 측정할 수 있다.  More specifically, GBP herein refers to the penetration (or permeability) of the gel layer (or bed) swelled under a condition called free swelling of 0 ps i (Gel Bed Permeabi li ty (GBP) Under Opsi Swel l Pressure Test), and the GBP may be measured using the apparatus shown in FIGS. 1 to 3.
도 1 내지 도 3을 참조하면, GBP를 측정하기 위한 장치 (500)에서 시험 장치 조립체 (528)는 샘플 용기 (530) 및 플런저 (536)를 포함한다. 플런저는 종축 아래로 뚫린 실린더 홀을 갖는 샤프트 (538) 및 샤프트의 바닥에 위치된 헤드 (550)를 포함한다. 샤프트 홀 (562)의 직경은 약 16mm이다. 플런저 헤드는, 예를 들면, 접착제에 의해 샤프트에 부착되어 있다. 12개의 구멍 (544)이 샤프트의 방사축으로 뚫려 있으며, 90° 마다 위치한 3개의 구멍의 직경은 약 6.4mm이다. 샤프트 (538)는 LEXAN 막대 또는 동등한 재료로부터 기계 가공되며, 외경이 약 2.2cm이고 내경이 약 16麵이다. 플런저 헤드 (550)는 7개의 내측 구멍 (560)와 14개의 외측 구멍 (554)을 가지며, 모든 구멍의 직경은 약 8.8瞧아다. 또한 약 16瞧의 구멍이 샤프트와 일직선으로 되어 있다. 플런저 헤드 (550)는 LEXAN 막대 또는 균등한 재료로부터 기계 가공되며, 높이가 약 16mm이고, 직경은 최소한의 벽 간격 (wal l c learance)을 갖고 실린더 (534) 내부에 꼭 맞지만 여전히 자유롭게 움직일 정도의 크기로 만들어져 있다. 플런저 헤드 (550)와 샤프트 (538)의 총 길이는 약 8.25cm이지만, 샤프트의 상부에서 기계 가공되어 플런저 (536)의 원하는 크기를 획득할 수 있다. 플런저 (536)는 2축으로 신장되어 팽팽하고, 플런저 (536)의 하단에 부착된 100 mesh의 스테인리스 강 클로스 스크린 (564)을 포함한다. 스크린을 플런저 헤드 (550)에 확실히 접착시키는 적절한 용매를 사용하여 플런저 헤드 (550)에 부착시킨다. 과잉의 용매가 스크린의 개구부로 이동하여, 액체 유동을 위한 구멍 면적을 감소시키는 것을 피하도록 주의해야 한다. IPS Corporat ion (사업장 소재지: 미국 캘리포니아주 가데나)의 아크릴 용매 Weld-on 4가 적합하게 이용될 수 있다. 샘플 용기 (530)는 실린더 (534) 및 2축으로 신장되어 팽팽하고 실린더 (534)의 하단에 부착된 400 mesh 스테인리스 강 클로스 스크린 (566)을 포함한다. 스크린을 실린더에 확실히 접착시키는 적절한 용매를 사용하여 실린더에 부착시킨다. 과잉의 용매가 스크린의 개구부로 이동하여, 액체 유동을 위한 구멍 면적을 감소시키는 것을 피하도록 주의해야 한다. IPS Corporat ion (사업장 소재지: 미국 캘리포니아주 가데나)의 아크릴 용매 Weld-on 4가 적합하게 이용될 수 있다. 도 2에 568로 표시된 겔 입자 샘플 (팽윤된 고흡수성 수지 )은, 시험하는 동안에 실린더 (534) 내부의 스크린 (566) 위에 받쳐져 있다. 1-3, the test device assembly 528 in the apparatus 500 for measuring GBP includes a sample container 530 and a plunger 536. The plunger includes a shaft 538 having a cylinder hole drilled down the longitudinal axis and a head 550 located at the bottom of the shaft. The diameter of the shaft hole 562 is about 16 mm. The plunger head is attached to the shaft by an adhesive, for example. Twelve holes 544 are drilled in the radial axis of the shaft, and the diameter of three holes located every 90 ° is about 6.4 mm. The shaft 538 is machined from a LEXAN rod or equivalent material and has an outer diameter of about 2.2 cm and an inner diameter of about 16 mm 3. Plunger head 550 has seven inner holes 560 and fourteen outer holes 554, all of which are about 8.8 mm in diameter. In addition, a hole of about 16 mm is aligned with the shaft. The plunger head 550 is machined from a LEXAN rod or equivalent material, is about 16 mm high, and has a diameter that fits inside the cylinder 534 with a minimum wall gap (wal lc learance) but still It's sized to move freely. The total length of the plunger head 550 and shaft 538 is about 8.25 cm, but can be machined at the top of the shaft to obtain the desired size of the plunger 536. The plunger 536 is biaxially stretched and includes a 100 mesh stainless steel cloth screen 564 attached to the bottom of the plunger 536. Attach the screen to the plunger head 550 using a suitable solvent that will securely attach the screen to the plunger head 550. Care must be taken to avoid excess solvent moving into the openings of the screen, reducing the pore area for liquid flow. Acrylic solvent Weld-on 4 from IPS Corporat ion (place of business, Gardena, California, USA) may suitably be used. The sample vessel 530 includes a cylinder 534 and a 400 mesh stainless steel cloth screen 566 which is biaxially stretched and taut and attached to the bottom of the cylinder 534. The screen is attached to the cylinder using a suitable solvent to securely adhere to the cylinder. Care must be taken to avoid excess solvent moving into the openings of the screen, reducing the pore area for liquid flow. Acrylic solvent Weld-on 4 from IPS Corporat ion (place of business, Gardena, California, USA) may suitably be used. The gel particle sample (swelled superabsorbent resin), indicated at 568 in FIG. 2, was supported on the screen 566 inside the cylinder 534 during the test.
실린더 (534)는 투명한 LEXAN 막대 또는 균등한 재료에 구멍을 뚫거나, LEXAN 관 (tubing) 또는 균등한 재료를 절단하여, 내경이 약 6cm (예를 들면, 단면적이 약 28.27cm2) , 벽 두께가 약 0.5cm , 높이가 약 7.95cm로 제조될 수 있다. 스텝은 외경 66匪를 갖는 부위 (534a)가 실린더 (534)의 바닥 31腿에 존재하도록 실린더 (534)의 외경을 기계 가공하여 형성할 수 있다. 부위 (534a)의 직경을 맞게 하는 오-링 (540)을 스텝의 상부에 둘 수 있다. The cylinder 534 may be drilled in a transparent LEXAN rod or even material, or cut into a LEXAN tubing or even material, having an inner diameter of about 6 cm (e.g., about 28.27 cm 2 in cross-section) and a wall thickness. About 0.5 cm, about 7.95 cm high. The step may be formed by machining the outer diameter of the cylinder 534 such that the portion 534a having an outer diameter of 66 mm is present at the bottom 31 mm of the cylinder 534. An o-ring 540 may be placed at the top of the step to match the diameter of the region 534a.
환형 추 (annul ar weight ) (548)는 직경 약 2.2cm 깊이 1.3cm의 반대로 뚫어진 (counter-bored) 홀을 갖고, 따라서 이것은 샤프트 (538) 상으로 자유롭게 미끄러진다. 환형 추는 또한 약 16隱의 스루 -보어 (thru-bore) (548a)를 갖는다. 환형 추 (548)는 스테인리스강 또는 0.9 중량 %의 생리 식염수 (염화나트륨 수용액)에 의한 부식에 저항할 수 있는 다른 적합한 재료로 만들어질 수 있다. 플런저 (536)와 환형 추 (548)의 조합 증량은 약 596g과 같으며, 이것은, 샘플 (568)에 가해지는 압력이 약 28.27cm2의 샘플 면적에 걸쳐 약 0.3psi 또는 약 20.7dyne/cm2 (2.07kPa)인 것에 상응한다. The annul ar weight 548 has counter-bored holes of about 2.2 cm in diameter and 1.3 cm in depth, so it freely slides onto the shaft 538. The annular weight also has a thru-bore 548a of about 16 mm 3. The annular weight 548 can be made of stainless steel or other suitable material that can resist corrosion by 0.9 weight percent physiological saline (aqueous sodium chloride solution). The combined increase of the plunger 536 and the annular weight 548 is equal to about 596 g, which means that the pressure applied to the sample 568 is about 0.3 psi or over a sample area of about 28.27 cm 2 . Corresponds to about 20.7 dyne / cm 2 (2.07 kPa).
GBP를 시험하는 동안에 시험 용액이 시험 장치를 통과하여 유동할 때, 샘플 용기 (530)는 일반적으로 웨어 (wei r ) (600) 상에 놓인다. 웨어의 목적은 샘플 용기 (530)의 상부에서 오버플로우하는 액체를 우회시키는 것이며, 오버폴로우 액체는 별도의 수집 장치 (601)로 우회시킨다. 웨어는 비커 (603)가 놓여 있는 저울 (602) 위에 위치시켜, 팽윤된 샘플 (568)을 통과하는 생리 식염수를 수집할 수 있다.  As the test solution flows through the test apparatus during testing of the GBP, the sample vessel 530 is generally placed on a weir 600. The purpose of the weir is to divert the overflowing liquid at the top of the sample vessel 530, and the overflow liquid is diverted to a separate collection device 601. The weir may be placed on the balance 602 in which the beaker 603 is placed to collect physiological saline passing through the swollen sample 568.
"자유 팽윤" 조건하에 겔 베드 투과율 시험을 수행하기 위해, 추 (548)가 장치된 플런저 (536)를 빈 샘플 용기 (530) 안에 위치시키고, 적합한 게이지를 사용하여 정확도 0.01mm까지, 추 (548)의 상부로부터 샘플 용기 (530)의 바닥까지의 높이를 측정한다. 측정하는 동안에 두께 게이지가 인가하는 힘은 가능한 작아야 하며, 바람직하게는 약 0.74N 미만이다. 다증 시험 장치를 사용하는 경우, 각각의 비어 있는 샘플 용기 (530) , 플런저 (536) 및 추 (548)와 이들이 사용된 트랙을 유지하는 것이 중요하다.  In order to perform the gel bed permeability test under “free swelling” conditions, a plunger 536 equipped with a weight 548 is placed in an empty sample vessel 530 and a weight of 548 up to 0.01 mm with a suitable gauge. The height from the top of the c) to the bottom of the sample vessel 530 is measured. The force exerted by the thickness gauge during the measurement should be as small as possible, preferably less than about 0.74 N. When using a multiple test apparatus, it is important to maintain each empty sample container 530, plunger 536 and weight 548 and the tracks in which they are used.
또한, 샘플 용기 (530)가 놓여 있는 받침대 (base)는 편평하고, 추 (548)의 표면은 샘플 용기 (530)의 바닥 표면과 평행한 것이 바람직하다. 그리고, GBP를 측정할 고흡수성 수지로부터 시험할 샘플을 준비한다. 일 예로, 미국 표준 30 mesh 스크린은 통과하고, 미국 표준 50 mesh 스크린 위에는 유지되는 약 300 내지 약 600 m의 입경을 갖는 고흡수성 수지로 시험 샘플을 준비한다. 약 2.0g의 샘플을 샘폴 용기 (530) 안에 넣고, 샘플 용기의 바닥 위에 골고루 펼친다. 이어서, 풀런저 (536)와 추 (548)는 들어 있지 않고 2.0g의 샘플이 담긴 이 용기를 0.9 중량 %의 생리 식염수 속에 약 60분 동안 담가서 무가압 하에서 샘플이 팽윤되도록 한다. 이때, 샘플 용기 (530)가 액체 저장소의 바닥보다 약간 올라오도록 샘플 용기 (530)를 액체 저장소 내에 위치된 mesh 위에 올려 놓는다. 상기 mesh로는 샘플 용기 (530)로의 생리 식염수의 이동에 영향을 미치지 않는 것을 사용할 수 있다. 이러한 mesh로는 Eagle Supply and Pl ast i c (사업장 소재지: 미국 위스콘신주 애플톤)의 부품 번호 7308이 사용될 수 있다. 포화되는 동안 생리 식염수의 높이는 샘플 용기 내의 표면이 생리 식염수가 아니라 샘플에 의해 규정되도록 조절될 수 있다. Also, the base on which the sample container 530 is placed is flat, and the surface of the weight 548 is preferably parallel to the bottom surface of the sample container 530. Then, prepare a sample to be tested from the super absorbent polymer to measure GBP. In one example, a test sample is prepared from a superabsorbent resin having a particle size of about 300 to about 600 m that passes through a US standard 30 mesh screen and is maintained on a US standard 50 mesh screen. About 2.0 g of sample is placed in sample vessel 530 and evenly spread over the bottom of the sample vessel. Subsequently, the vessel containing 2.0 g of sample without the puller 536 and weight 548 was immersed in 0.9 weight percent physiological saline for about 60 minutes to allow the sample to swell under pressure. At this time, the sample vessel 530 is placed on a mesh located in the liquid reservoir so that the sample vessel 530 is slightly above the bottom of the liquid reservoir. The mesh may be one that does not affect the movement of physiological saline to the sample container 530. Such mesh may be part number 7308 from Eagle Supply and Pl ast ic, Appleton, Wisconsin, USA. The height of physiological saline during saturation can be adjusted such that the surface in the sample container is defined by the sample, not physiological saline.
이 기간의 종료시에, 플런저 (536)와 추 (548)의 조립체를 샘플 용기 (530) 내의 포화된 샘플 (568) 위에 을려놓은 다음, 샘플 용기 (530) , 플런저 (536) , 추 (548) 및 샘플 (568)을 용액으로부터 꺼낸다. 이후, GBP 측정 전에, 샘플 용기 (530) , 플런저 (536), 추 (548) 및 샘플 (568)을 편평하고 큰 그리드의 균일한 두께의 비-변형성 플레이트 상에 약 30초 동안 그대로 둔다. 상기 플레이트는 샘플 용기 내의 액체가 표면 장력으로 인해 편평한 표면 상으로 방출되는 것을 방지할 것이다. 이 플레이트는 전체 치수가 7.6cm X 7.6cm이며, 각각의 그리드 치수는 길이 1.59cm X 폭 1.59cm x 깊이 1. 12cm일 수 있다. 적합한 플레이트 재료는 McMaster Carr Sup ly Company (사업장 소재지: 미국 일리노이즈주 시카고)로부터 입수 가능한 포물선형 확산판, 카탈로그 번호 1624K27이며, 이것은 적절한 치수로 절단되어 사용될 수 있다. At the end of this period, the assembly of the plunger 536 and the weight 548 is removed from the sample container 530. The sample container 530, the plunger 536, the weight 548 and the sample 568 are removed from the solution after resting on the saturated sample 568 in the chamber. The sample vessel 530, plunger 536, weight 548 and sample 568 are then left on a flat, large grid, uniform thickness, non-deformation plate for about 30 seconds, prior to GBP measurements. The plate will prevent liquid in the sample vessel from releasing onto a flat surface due to surface tension. This plate has a total dimension of 7.6 cm x 7.6 cm and each grid dimension may be 1.59 cm long by 1.59 cm wide by 1.12 cm deep. A suitable plate material is a parabolic diffuser, catalog number 1624K27, available from McMaster Carr Sup ly Company (place of business, Chicago, Illinois, USA), which can be cut to suitable dimensions and used.
그리고, 초기 높이 측정으로부터 제로 지점이 변하지 않았다면, 앞서 사용한 것과 동일한 두께 게이지를 사용하여, 추 (548)의 상부로부터 샘플 용기 (530)의 바닥까지의 높이를 다시 측정한다. 높이 측정은 두께 게이지를 장치한 후 가능한 한 빨리 이루어져야 한다. 빈 샘플 용기 (530) 안에 플런저 (536) 및 추 (548)가 위치된 빈 조립체의 높이 측정값을 샘플 (568)을 포화시킨 후에 획득된 높이 측정값에서 빼야 한다. 그 결과 수득된 값이 포화된 샘플 (568)의 두께 또는 높이 'Ή"이다. 또한, 포화된 샘플 (568)을 포함하는 조립체에 플레이트가 포함되어 있다면, 빈 조립체의 높이 측정 시에도 플레이트를 포함하여 높이를 측정하여야 한다.  Then, if the zero point has not changed from the initial height measurement, the height from the top of the weight 548 to the bottom of the sample vessel 530 is measured again using the same thickness gauge as previously used. Height measurements should be made as soon as possible after the thickness gauge is fitted. The height measurement of the empty assembly with the plunger 536 and weight 548 positioned in the empty sample container 530 should be subtracted from the height measurement obtained after saturating the sample 568. The resulting value is the thickness or height 'Ή' of the saturated sample 568. Also, if a plate is included in the assembly comprising the saturated sample 568, the plate is also included in the height measurement of the empty assembly. The height shall be measured.
GBP 측정은 포화된 샘플 (568), 플런저 (536) 및 추 (548)가 들어 .있는 샘플 용기 (530) 안으로 0.9% 생리 식염수를 전달하는 것으로 시작된다. 생리 식염수가 실린더 (534)의 상부로 오버플로우되도록 용기 안으로의 생리 식염수의 유량 ( f low rate)을 조정하고, 이에 의해 샘플 용기 (530)의 높이와 동등한 일관된 헤드 압력이 나타나도록 한다. 계기 펌프 (604) 등이 구비된 실린더의 상부로부터 소량이지만 일관된 양의 오버플로우를 확보하기에 층분한 임의의 수단에 의해 생리 식염수를 첨가할 수 있다. 오버플로우 액체는 별도의 수집 장치 (601) 안으로 우회시킨다. 저울 (602) 및 비커 (603)를 사용하여, 샘플 (568)을 통과하는 용액의 양 대 시간을 중량측정법으로 측정한다. 일단 오버플로우가 시작되면, 60초 이상 동안 매초마다 저울 (602)로부터 데이터 포인트들을 수집한다. 데이터 수집은 수동으로 또는 데이터 수집 소프트웨어를 사용하여 획득할 수 있다. 팽윤된 샘플 (568)을 통과하는 유량 (Q)은, 샘플 (568)을 통과하는 액체 (g) 대 시간 (sec)의 선형 최소제곱 적합 ( l inear least-square f i t )에 의해 g/sec 단위로 결정한다. The GBP measurement begins with delivering 0.9% physiological saline into the sample vessel 530 containing the saturated sample 568, plunger 536 and weight 548. Adjust the f low rate of physiological saline into the vessel so that the physiological saline overflows to the top of the cylinder 534, thereby resulting in a consistent head pressure equivalent to the height of the sample vessel 530. Physiological saline can be added by any means sufficient to ensure a small but consistent amount of overflow from the top of the cylinder with instrument pump 604 or the like. The overflow liquid is diverted into a separate collection device 601. Using a balance 602 and beaker 603, the amount versus time of solution passing through sample 568 is measured gravimetrically. Once the overflow begins, data points are collected from the balance 602 every second for at least 60 seconds. Data collection can be obtained manually or using data collection software. The flow rate Q through the swollen sample 568 is in g / sec by the linear least-square fit of liquid (g) versus time (sec) passing through the sample 568. Decide on
이렇게 얻어진 데이터를 이용하여 다음의 계산식 3에 따라 상기 GBP(cm2)를 산출하여 겔 베드 투과율을 확인할 수 있다. Using the data thus obtained, the GBP (cm 2 ) can be calculated according to the following Equation 3 to confirm the gel bed transmittance.
[계산식 3]  [Calculation 3]
K = [Q * H * μ ] / [Α * ρ * Ρ]  K = [Q * H * μ] / [Α * ρ * Ρ]
상기 계산식 3에서,  In the above formula 3,
Κ는 겔 베드 투과율 (cm2)이고, Κ is the gel bed transmission (cm 2 ) ,
Q는 유량 (g/sec)이고,  Q is the flow rate (g / sec),
H는 팽윤된 샘플의 높이 (cm)이고,  H is the height (cm) of the swollen sample,
y는 액체 점도 (P) (이번 시험에 사용하는 시험 용액의 점도는 약 lcP)이고,  y is the liquid viscosity (P) (the viscosity of the test solution used in this test is about lcP),
A는 액체 유동에 대한 단면적 (이번 시험에 사용하는 샘플 용기에 대해서는 28.27ciif)이고,  A is the cross-sectional area for the liquid flow (28.27 ciif for the sample vessel used in this test),
p는 액체 밀도 (g/cm3) (이번 시험에 사용하는 시험 용액에 대해서는 약 1 g/cm3)이고, p is the liquid density (g / cm 3 ) (about 1 g / cm 3 for the test solution used in this test),
P는 정수압 (dyne/cm2) (정상적으로는 약 7 ,797dyne/cm2)이다. P is the hydrostatic pressure (dyne / cm 2) (normally approximately 7, 797dyne / cm 2).
정수압은 식 P = p * g * h로부터 계산되며 , 여기서 p는 액체 밀도 (g/cm3)이고, g는 중력 가속도 (공칭적으로는 981cm/sec2)이고, h는 액체 높이 (예를 들면, 본 명세서에 기재된 GBP 시험에 대해서는 7.95cm)이다. The hydrostatic pressure is calculated from the equation P = p * g * h, where p is the liquid density (g / cm 3 ), g is the acceleration of gravity (nominally 981 cm / sec 2 ), and h is the liquid height (e.g. For example, for the GBP test described herein, 7.95 cm).
상술한 일 구현예의 고흡수성 수지는 약 150 내지 850 의 입경을 갖는 구형 또는 무정형 등의 입자 형태를 가질 수 있다.  The superabsorbent polymer of the above-described embodiment may have a particle shape such as spherical or amorphous having a particle diameter of about 150 to 850.
한편, 발명의 다른 구현예에 따르면, 상술한 고흡수성 수지의 제조 방법이 제공된다. 이러한 고흡수성 수지의 제조 방법은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 내부 가교제의 존재 하에 가교 중합하여 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및 에폭시기, 히드록시기, 이소시아네이트기 및 아민기로 이루어진 군에서 선택된 적어도 1종 이상의 작용기로 표면 개질된 무기물 입자의 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함할 수 있다. On the other hand, according to another embodiment of the invention, there is provided a manufacturing method of the super absorbent polymer described above. A method for preparing such a super absorbent polymer may include crosslinking and polymerizing a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups in the presence of an internal crosslinking agent to form a hydrogel polymer; Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And in the presence of inorganic particles surface-modified with at least one functional group selected from the group consisting of an epoxy group, a hydroxyl group, an isocyanate group and an amine group, Further crosslinking the surface to form a surface crosslinking layer.
이러한 다른 구현예의 제조 방법에서는, 고흡수성 수지의 일반적인 제조 방법에 따라, 내부 가교제의 존재 하에 수용성 에틸렌계 불포화 단량체의 가교 중합을 진행하고, 이를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성한 후, 기존과는 달리 에폭시기 히드록시기, 이소시아네이트기 또는 아민기와 같은 가교 가능한 작용기로 표면 개질된 무기물 입자를 사용하여 상기 베이스 수지 분말의 표면을 추가 가교하여 고흡수성 수지를 제조할 수 있다.  In the manufacturing method of this other embodiment, according to the general manufacturing method of the super absorbent polymer, the crosslinking polymerization of the water-soluble ethylenically unsaturated monomer in the presence of an internal crosslinking agent, and dried, pulverized and classified to form a base resin powder, Unlike the conventional, the superabsorbent polymer may be prepared by further crosslinking the surface of the base resin powder using inorganic particles that are surface-modified with a crosslinkable functional group such as an epoxy group, a hydroxyl group, an isocyanate group, or an amine group.
즉, 이러한 다른 구현예의 제조 방법에서는, 상기 표면 개질된 무기물 입자를 표면 가교 시에 사용하는 것을 제외하고는, 통상적인 고흡수성 수지의 제조 방법을 따를 수 있으므로, 이하에서는 먼저 상기 표면 개질된 무기물 입자 및 이의 제조 방법에 대해 구체적으로 살핀 후, 이를 사용한 고흡수성 수지의 제조 방법에 대해 각 단계별로 간략히 살피기로 한다.  That is, in the manufacturing method of this other embodiment, except that the surface-modified inorganic particles are used in the surface crosslinking, it is possible to follow the conventional manufacturing method of the superabsorbent polymer, hereinafter the surface-modified inorganic particles first And after specifically salping about the manufacturing method thereof, it will be briefly examined for each step for the manufacturing method of the super absorbent polymer using the same.
상기 표면 개질된 무기물 입자는 상기 가교 가능한 작용기를 갖는 표면 개질제와, 실리카 입자 또는 알루미나 입자 등의 무기물 입자와 반응시켜 제조될 수 있다. 이때, 상기 표면 개질제의 구체적인 예로는, 하기 화학식 1로 표시되는 화합물올 들 수 있다.  The surface modified inorganic particles may be prepared by reacting a surface modifier having the crosslinkable functional group with inorganic particles such as silica particles or alumina particles. In this case, specific examples of the surface modifier may include a compound represented by Formula 1 below.
[화학식 1]
Figure imgf000015_0001
상기 화학식 1에서, Ri 내지 은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기 또는 할로겐으로서, 이들 중 적어도 하나는 알킬기가 아니며, 4는 에폭시기, 히드록시기, 이소시아네이트기 및 아민기로 이루어진 군에서 선택된 적어도 1종 이상의 작용기를 갖는 탄소수 2 내지 10의 치환기이다.
[Formula 1]
Figure imgf000015_0001
In Formula 1, R i to are each independently an alkyl group of 1 to 10 carbon atoms, an alkoxy group or halogen of 1 to 10 carbon atoms, at least one of which is not an alkyl group, 4 is an epoxy group, a hydroxyl group, an isocyanate group and an amine group And a substituent having 2 to 10 carbon atoms having at least one functional group selected from the group consisting of.
상기 표면 개질된 무기물 입자에서는, 상기 무기물 입자의 1개를 기준으로 약 2 내지 200개, 혹은 약 10 내지 150개, 혹은 약 20 내지 100개의 가교 가능한 작용기가 도입되어 표면 개질된 것이 적절하고, 이로써 위 제조 방법에 의해 최종 제조된 고흡수성 수지에 적절한 가교 구조가 도입될 수 있다. 이러한 각 무기물 입자당 도입되는 적절한 가교 가능한 작용기의 개수를 고려하여, 무기물 입자와, 표면 개질제를 적절한 함량비로 반웅시켜 표면 개질된 무기물 입자를 제조할 수 있다. In the surface-modified inorganic particles, about 2 to 200, or about 10 to 150, or about 20 to 100 crosslinkable functional groups are introduced based on one of the inorganic particles, and thus surface modified. An appropriate crosslinked structure may be introduced into the super absorbent polymer finally prepared by the above manufacturing method. In consideration of the appropriate number of crosslinkable functional groups introduced per each inorganic particle, the surface-modified inorganic particles may be prepared by reacting the inorganic particles and the surface modifier with an appropriate content ratio.
보다 구체적인 예에서, 상기 무기물 입자로는 훔드 실리카 ( fumed si l ica) 또는 콜로이달 실리카와 같은 실리카 입자를 대표적으로 사용할 수 있다. 이중, 상기 훔드 실리카의 경우에는 실리카 입자의 표면적 1 m2을 기준으로 약 0.008 내지 0.8 umol /m2 , 혹은 약 0.04 내지 0.4 umol /m2의 비율로 상기 가교 가능한 작용기로 인해 표면이 개질될 수 있도록 상기 무기물 입자와 표면 개질제를 반웅시킬 수 있다. 한편, 상기 콜로이달 실리카의 경우에는, 실리카 입자의 표면적 1 m2을 기준으로 약 0.014 내지 1.4 umol /m2 , 혹은 약 0.07 내지 0.7 umol /m2의 비율로 상기 가교 가능한 작용기로 인해 표면 개질될 수 있도록 상기 무기물 입자와 표면 개질제를 반웅시킬 수 있다. In a more specific example, as the inorganic particles, silica particles such as fumed silica or colloidal silica may be representatively used. In the case of the humed silica, the surface may be modified due to the crosslinkable functional groups at a ratio of about 0.008 to 0.8 umol / m 2 , or about 0.04 to 0.4 umol / m 2 , based on 1 m 2 of the surface area of the silica particles. The inorganic particles and the surface modifiers can be reacted to make them. On the other hand, in the case of the colloidal silica, the surface-modified due to the crosslinkable functional group at a ratio of about 0.014 to 1.4 umol / m 2 , or about 0.07 to 0.7 umol / m 2 based on the surface area of the silica particles 1 m 2 The inorganic particles and the surface modifier may be reacted to make it possible.
한편, 다른 구현예의 고흡수성 수지 제조 방법에서는, 먼저, 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔 중합체를 형성할 수 있다.  On the other hand, in the method of preparing a super absorbent polymer of another embodiment, first, in the presence of an internal crosslinking agent, at least part of the water-soluble ethylenically unsaturated monomer having a neutralized acidic group may be cross-polymerized to form a hydrogel polymer.
°1때, 내부 가교제 그리고 상기 수용성 에틸렌계 불포화 단량체의 종류 및 구조 등에 관해서는, 이미 상술한 바와 같으므로, 이에 관한 추가적인 설명은 생략하기로 한다.  At 1 °, since the internal crosslinking agent and the type and structure of the water-soluble ethylenically unsaturated monomer are as described above, further description thereof will be omitted.
또, 상기 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함한 단량체 조성물 중에서, 상기 수용성 에틸렌계 불포화 단량체의 농도는, 상술한 각 원료 물질 및 용매를 포함하는 전체 단량체 조성물에 대해 약 20 내지 약 60 중량 %, 흑은 약 40 내지 약 50 중량 %로 될 수 있으며, 중합 시간 및 반응 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.  In addition, in the monomer composition including the water-soluble ethylenically unsaturated monomer and the internal crosslinking agent, the concentration of the water-soluble ethylenically unsaturated monomer is about 20 to about 60% by weight relative to the total monomer composition including each of the above-described raw materials and solvents, The black may be about 40 to about 50% by weight, and may be in an appropriate concentration in consideration of polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
또한, 상기 단량체 조성물은 고흡수성 수지의 제조에 일반적으로 사용되던 중합 개시제를 더 포함할 수 있다.  In addition, the monomer composition may further include a polymerization initiator generally used in the preparation of a super absorbent polymer.
구체적으로, 상기 중합 개시제는 증합 방법에 따라 열중합 개시제 또는 uv 조사에 따른 광중합 개시제를 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다. Specifically, the polymerization initiator may be a thermal polymerization initiator or The photoinitiator according to uv irradiation can be used. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation of ultraviolet radiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone) , 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 ( α- aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 이중, 상기 광증합 개시제로는 아실포스핀을 사용할 수 있으며, 아실포스핀으로는 디페닐 (2,4,6_트리메틸벤조일)포스핀 옥사이드, 페닐비스 (2,4,6- 트리메틸벤조일)포스핀 옥사이드, 에틸 (2,4, 6-트리메틸벤조일)페닐포스핀에이트 등을 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwa lm 저서인. "UV Coatings'- Basics , Recent Developments and New Application(Elsevier 2007년)" pll5에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone can be used at least one selected from the group consisting of. Among these, acylphosphine may be used as the photopolymerization initiator, and diphenyl (2,4,6_trimethylbenzoyl) phosphine oxide and phenylbis (2,4,6-trimethylbenzoyl) force may be used as the acylphosphine. Fin oxide, ethyl (2,4, 6-trimethylbenzoyl) phenylphosphineate and the like can be used. For more photoinitiators, see Reinhold Schwalm, author . "UV Coatings' - Basics, Recent Developments and New Application (Elsevier 2007 years)" are well stated in the pll5, but are not limited to the above example.
상기 광중합 개시제는 상기 단량체 조성물에 대하여 약 0.001 내지 약 1.0 중량 %의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 블균일해질 수 있다.  The photopolymerization initiator may be included in a concentration of about 0.001 to about 1.0 wt% based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2¾08), 과황산칼륨 (Potassium persulfate; 2S208), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2 ,2-아조비스 -(2-아미디노프로판) 이염산염(2,2-320^3(2- amidinopropane) di hydrochloride) , 2,2一아조비스—(1시 디메틸렌)이소부티라마이딘 디하이드로클로라이드 In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 ¾0 8 ), potassium persulfate ( 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ), and examples of azo initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-320 ^ 3 (2-amidinopropane) di hydrochloride), 2 , 2-1-azobis- (1 dimethylene) isobutyramidine dihydrochloride
lS dimethylene)isobutyramidine dihydrochlor ide) , 2-lS dimethylene) isobutyramidine dihydrochlor ide), 2-
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2, 2-azobis [2-(2- imidazolin-2-yl )propane] dihydrochlor ide), 4,4— ό1·조비스一 (4—시0 ]·노발레릭 산)(4,4ᅳ&20 3-(4-0 3!10 3161"^ acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wi ley, 1981)' , p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. (Carbamoylazo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2- azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2-azobis [ 2- (2-imidazolin-2-yl) propane] dihydrochlor ide), 4,4— ό 1 · zobis一 (4—shi 0 ], novaleric acid) (4,4 ᅳ & 20 3- (4- 0 3! 10 3161 " ^ acid)), etc. For more various thermal polymerization initiators, the Odian book 'Principle of Polymerization (Wi ley, 1981)', p203, is well defined and is not limited to the above examples. .
상기 열중합 개시제는 상기 단량체 조성물에 대하여 약 0.001 내지 약 0.5 중량 %의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고, 수가용 성분의 비율이 높아져 최종 고흡수성 수지 제품의 가압 흡수능이 저하될 수 있다.  The thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition. When the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant. When the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer is low, and The higher the ratio, the lower the pressure-absorbing capacity of the final superabsorbent polymer product.
그리고, 상기 단량체 조성물에 함께 포함되는 내부 가교제의 종류에 대해서는 이미 상술한 바와 같으며, 이러한 내부 가교제는 상기 단량체 조성물에 대하여 약 0.01 내지 약 0.5 증량 %의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. 특히, 이러한 내부 가교제가 상술한 단량체, 예를 들어, 미중화 상태의 아크릴산의 100 중량부 대비 약 0.3 증량부 이상, 흑은 약 0.3 내지 0.6 중량부로 사용됨에 따라, 이미 상술한 일 구현예의 물성을 보다 적절히 충족하는 고흡수성 수지가 제조될 수 있다.  In addition, the type of the internal crosslinking agent included in the monomer composition is the same as described above, and the internal crosslinking agent is included at a concentration of about 0.01 to about 0.5% by weight relative to the monomer composition to crosslink the polymerized polymer. Can be. In particular, since such an internal crosslinking agent is used in an amount of about 0.3 parts by weight or more, and about 0.3 to 0.6 parts by weight with respect to 100 parts by weight of the aforementioned monomer, for example, unneutralized acrylic acid, the physical properties of the above-described embodiments are Superabsorbent resins that more suitably meet can be produced.
또, 상기 단량체 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.  In addition, the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄을, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디을, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다. The solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-mentioned components, for example, water, ethane, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butane Diul, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, 1 type selected from cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene xylene, butyrolactone, carbyl, methyl cellosolve acetate, and Ν, Ν-dimethylacetamide The above can be used in combination.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  On the other hand, if the method of forming a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is also the polymerization method normally used, there will be no restriction | limiting in particular in a structure.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader )와 같은 교반축을 가진 반웅기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the photopolymerization, Although it can be carried out in a semi-unggi equipped with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader )와 같은 반웅기에 열풍을 공급하거나 반웅기를 가열하여 단량체 조성물을 열중합할 수 있다. 이렇게 열중합을 하여 얻어진 함수겔 중합체는 반웅기의 배출구로 배출되며, 반웅기에 구비된 교반축의 형태에 따라, 수 센티미터 내지 수 밀리미터의 크기를 가질 수 있다. 구체적으로, 얻어지는 함수겔 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균.입경이 약 2 내지 50 mm 인 함수겔 중합체가 얻어질 수 있다. For example, as described above, the monomer composition may be thermally polymerized by supplying hot air to a reaction device such as a kneader having a stirring shaft or by heating the reaction device. Thus, the hydrogel polymer obtained by thermal polymerization is discharged to the outlet of the reaction vessel, and may have a size of several centimeters to several millimeters depending on the shape of the stirring shaft provided in the reaction vessel. Specifically, the size of the hydrous gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, it is usually the weight average . A hydrogel polymer having a particle diameter of about 2 to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔 중합체일 수 있다. 이때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5 cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반웅이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다. In addition, when the photopolymerization is carried out in a semi-unggi equipped with a movable conveyor belt as described above, the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on a sheet having a width of the belt. In this case, the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained. In the case of supplying the monomer composition to such an extent that the thickness of the polymer on the sheet is too thin, the production efficiency is low, which is not preferable, and when the thickness of the polymer on the sheet exceeds 5 cm, due to the excessively thick thickness, The polymerization reaction may not occur evenly over the entire thickness.
상기 광중합 방법에서 사용할 수 있는 광원은 특별히 한정되지는 않으며, 비제한적인 예로, Xe 램프, 수은램프 또는 메탈할라이드 램프 등의 광원이 사용될 수 있다.  The light source that can be used in the photopolymerization method is not particularly limited, and as a non-limiting example, a light source such as an Xe lamp, a mercury lamp, or a metal halide lamp may be used.
한편, 상기 단량체 조성물은 광중합 후 열중합될 수 있다. 이 경우, 이동 가능한 컨베이어 벨트, 자외선 광원 및 열풍을 공급할 수 있는 반웅기가 이용될 수 있으며, 광중합 및 열중합 방법이 순차적으로 진행될 수 있다.  On the other hand, the monomer composition may be thermally polymerized after photopolymerization. In this case, a movable conveyor belt, an ultraviolet light source, and a semi-unggi capable of supplying hot air may be used, and the photopolymerization and thermal polymerization methods may be sequentially performed.
이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 약 40 내지 약 80 중량 ¾>일 수 있다. 한편, 본 명세서 전체에서 "함수율' '은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 을려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 은도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. Typical water content of the hydrogel polymer obtained in this manner may be about 40 to about 80 weight ¾>. On the other hand, throughout the present specification "water content"'is the amount of water to the total weight of the hydrogel gel polymer means the weight of the hydrogel polymer minus the weight of the dry polymer. It is defined as a value calculated by measuring the weight loss according to the water evaporation in the polymer during drying by drying the temperature of the polymer, wherein the drying condition is raised to about 180 ° C at room temperature and then maintained at 180 ° C. In this way, the total drying time is set to 20 minutes, including 5 minutes of silver rising step, and the moisture content is measured.
그리고, 상기 단량체를 가교 중합시킨 후에는, 건조, 분쇄 및 분급 등의 공정을 거쳐 베이스 수지 분말을 얻을 수 있는데, 이러한 분쇄 및 분급 등의 공정을 통해, 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지는 약 150 내지 850 의 입경을 갖도톡 제조 및 제공됨이 적절하다. 보다 구체적으로, 상기 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수지의 적어도 약 95 증량 % 이상이 약 150 내지 850/ΛΠ의 입경을 가지며, 약 150 미만의 입경을 갖는 미분이 약 3 중량 ¾ 미만으로 될 수 있다.  After the crosslinking polymerization of the monomer, it is possible to obtain a base resin powder through a process such as drying, pulverization and classification. Through such a process as pulverization and classification, the base resin powder and the super absorbent polymer obtained therefrom Suitably manufactured and provided with a particle size of about 150 to 850. More specifically, at least about 95% by weight or more of the base resin powder and the superabsorbent polymer obtained therefrom will have a particle size of about 150 to 850 / ΛΠ, and the fine powder having a particle size of less than about 150 will be less than about 3 weight ¾. Can be.
이와 같이 상기 베이스 수지 분말 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 최종 제조된 고흡수성 수지가 이미 상술한 물성 및 보다 우수한 투수성을 나타낼 수 있다.  As the particle size distribution of the base resin powder and the super absorbent polymer is adjusted to a preferred range, the superabsorbent resin thus prepared may exhibit the above-described physical properties and better water permeability.
한편, 상기 건조, 분쇄 및 분급의 진행 방법에 대해 보다 구체적으로 설명하면 다음과 같다.  On the other hand, it will be described in more detail with respect to the progress of the drying, grinding and classification as follows.
먼저, 함수겔상 중합체를 건조함에 있어서는, 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.  First, in drying the hydrogel polymer, coarsely pulverizing before drying to increase the efficiency of the drying step, if necessary.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher) , 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. At this time, the grinder used is not limited in configuration, specifically, the vertical type Vertical pulverizer, Turbo cutter, Turbo grinder, Rotary cutter mill, Cutter mill, Disc mill, Piece shredder ( It may include any one selected from the group of crushing devices consisting of a shred crusher, a crusher, a chopper, and a disc cutter, but is not limited thereto.
이때 조분쇄 단계는 함수겔 중합체의 입경이 약 2 내지 약 10麵로 되도록 분쇄할 수 있다.  At this time, the coarse grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10 내지.
입경이 2 隱 미만으로 분쇄하는 것은 함수겔 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 웅집되는 현상이 나타날 수도 있다. 한편, 입경이 10 腿 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.  Grinding to a particle diameter of less than 2 GPa is technically not easy due to the high water content of the hydrogel polymer, and may also cause a phenomenon in which the milled particles cross each other. On the other hand, when the particle size is more than 10 mm pulverization, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 100 내지 약 250°C일 수 있다. As described above, drying is performed on the hydrogel polymer immediately after polymerization which is coarsely pulverized or not subjected to the coarsely pulverized step. At this time, the drying temperature of the drying step may be about 100 to about 250 ° C.
건조 온도가 약 100 °C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 약 250 'C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. If the drying temperature is less than about 100 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds about 250 ' C, only the polymer surface may be excessively dried. Fine powder may generate | occur | produce in a subsequent grinding | pulverization process, and there exists a possibility that the physical property of the superabsorbent polymer formed finally may fall.
상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 증합체의 함수율은 약 If the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The moisture content of the polymer after such a drying step is about
0.1 내지 약 10 중량 ¾>일 수 있다. 0.1 to about 10 weight ¾>.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.  Next, a step of pulverizing the dried polymer obtained through such a drying step is performed.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850卿 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다. The polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850 mm 3. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. A jog mill or the like may be used. It is not limited to the example.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반웅 단계를 거쳐 제품화할 수 있다. 이러한 과정을 통해 얻어진 베이스 수지 분말의 입경 분포에 관해서는 이미 상술한 바도 있으므로, 이에 관한 더 이상의 구체적인 설명은 생략하기로 한다.  Then, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, it may be subjected to a separate process of classifying the polymer powder obtained after the grinding according to the particle size. Preferably, a polymer having a particle size of about 150 to about 850 may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step. Since the particle size distribution of the base resin powder obtained through the above process has already been described above, further detailed description thereof will be omitted.
한편, 상술한 베이스 수지 분말의 형성 공정을 진행한 후에는, 상술한 표면 개질된 무기물 입자의 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성할 수 있으며, 이로써 고흡수성 수지를 제조할 수 있다.  On the other hand, after the above-described process of forming the base resin powder, in the presence of the surface-modified inorganic particles described above, the surface of the base resin powder can be further crosslinked to form a surface crosslinking layer, thereby superabsorbent resin Can be prepared.
이때, 표면 개질된 무기물 입자의 종류 및 구조 등에 관해서는, 이미 상술한 바와 같으므로, 이에 관한 추가적인 설명은 생략하기로 한다.  At this time, the type and structure of the surface-modified inorganic particles, as described above, as described above, further description thereof will be omitted.
상기 표면 개질된 무기물 입자는 상기 베이스 수지 분말 100 중량부에 대하여 0.01 내지 10 중량부, 0.01 내지 5 중량부 혹은 0.01 내지 3 중량부로 사용될 수 있다. 이러한 범위 내에서 뛰어난 보수능 및 가압 흡수능을 가지고, 향상된 투과도를 가지는 고흡수성 수지를 제조할 수 있다.  The surface-modified inorganic particles may be used in an amount of 0.01 to 10 parts by weight, 0.01 to 5 parts by weight, or 0.01 to 3 parts by weight based on 100 parts by weight of the base resin powder. Within this range, it is possible to produce a super absorbent polymer having excellent water holding capacity and pressure absorbing ability, and having improved permeability.
또, 상기 표면 가교층의 적절한 표면 가교 밀도를 위해, 표면 개질된 무기물 입자와 함께 기존에 고흡수성 수지의 표면 가교에 사용되던 표면 가교제를 사용할 수 있다. 상기 표면 가교제의 종류에 관해서는, 이미 상술한 바 있으므로, 추가적인 설명은 생략하기로 한다.  In addition, for proper surface crosslinking density of the surface crosslinking layer, it is possible to use a surface crosslinking agent that has been used for surface crosslinking of superabsorbent polymers with surface-modified inorganic particles. The type of the surface crosslinking agent has already been described above, and thus, further description thereof will be omitted.
그리고, 상기 표면 가교 공정에서는, 상기 표면 개질된 무기물 입자와 함께, 다가의 금속 양이온을 첨가하여 표면 가교를 진행함에 따라, 고흡수성 수지의 표면 가교 구조를 더욱 최적화할 수 있다. 이는 이러한 금속 양이온이 고흡수성 수지의 카르복시기 (C00H)와 킬레이트를 형성함으로써 가교 거리를 더욱 줄일 수 있기 때문으로 예측된다.  In addition, in the surface crosslinking process, as the surface crosslinking is performed by adding a polyvalent metal cation together with the surface modified inorganic particles, the surface crosslinking structure of the superabsorbent polymer may be further optimized. This is expected because this metal cation can further reduce the crosslinking distance by forming a chelate with the carboxyl group (C00H) of the superabsorbent resin.
또, 상기 표면 개질된 무기물 입자를 베이스 수지 분말에 첨가하는 방법에 대해서는 그 구성의 한정은 없다. 예를 들어, 표면 개질된 무기물 입자와 베이스 수지 분말을 반웅조에 넣고 흔합하거나, 베이스 수지 분말에 표면 개질된 무기물 입자를 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 개질된 무기물 입자를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다. Moreover, the structure is not limited about the method of adding the said surface modified inorganic particle to a base resin powder. For example, the surface-modified inorganic particles and the base resin powder may be mixed in a semi-aperture, or may be surface-modified on the base resin powder. A method of spraying inorganic particles, a method of continuously supplying and mixing a base resin powder and surface modified inorganic particles to a mixer that is continuously operated, and the like can be used.
상기 표면 개질된 무기물 입자의 첨가시, 추가로 물 및 메탄올을 함께 흔합하여 첨가할 수 있다. 물 및 메탄올을 첨가하는 경우 표면 개질된 무기물 입자가 베이스 수지 분말에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물 및 메탄을의 함량은 표면 개질된 무기물 입자의 고른 분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 무기물 입자의 표면 침투 깊이를 최적화하기 위해 적절하게 조절될 수 있다.  Upon addition of the surface modified inorganic particles, water and methanol may be additionally mixed together. The addition of water and methanol has the advantage that the surface modified inorganic particles can be evenly dispersed in the base resin powder. In this case, the added water and the content of methane may be appropriately adjusted to induce even dispersion of the surface-modified inorganic particles and to prevent aggregation of the base resin powder and to optimize the surface penetration depth of the inorganic particles.
상기 베이스 수지 분말에 표면 개질된 무기물 입자가 첨가되면, 이들을 약 100°C 내지 200°C에서 약 1 분 내지 120 분 정도 가열하여 표면 가교 결합 반웅을 진행할 수 있다. 보다 구체적으로, 상기 표면 가교 결합 반웅은 상기 반웅을 위한 목표 온도에 도달한 후, 약 1 분 내지 120 분, 약 5 분 내지 100 분 혹은 약 10 분 내지 80 분 동안 진행할 수 있다. 만일 가교 반웅 시간이 상술한 범위 보다 지나치게 짧을 경우 층분한 정도의 가교 반웅이 일어나지 않을 수 있고, 가교 반웅 시간이 지나치게 길 경우 과도한 표면 가교 반웅으로 고흡수성 수지의 물성이 오히려 저하될 수 있으며 고흡수성 수지가 반웅기에 장기 체류하여 중합체 파쇄가 일어날 수 있다. When the surface-modified inorganic particles are added to the base resin powder, they may be heated at about 100 ° C. to 200 ° C. for about 1 minute to 120 minutes to perform surface crosslinking reaction. More specifically, the surface crosslinking reaction may be performed for about 1 minute to 120 minutes, about 5 minutes to 100 minutes, or about 10 minutes to 80 minutes after reaching the target temperature for the reaction. If the crosslinking reaction time is too short than the above-mentioned range, a sufficient degree of crosslinking reaction may not occur. If the crosslinking reaction time is too long, the physical properties of the superabsorbent polymer may be deteriorated due to excessive surface crosslinking reaction. Prolonged residence in the reaction period can lead to polymer crushing.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.  The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. In this case, as the type of heat medium that can be used, a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied may be a means of heating medium, a rate of temperature increase, and a target temperature for heating. Consideration can be made as appropriate. On the other hand, the heat source directly supplied may be a heating method through electricity, a gas heating method, but is not limited to the above examples.
상술한 제조방법에 따라 수득된 고흡수성 수지는 보수능과 가압 흡수능 등의 제반 물성이 함께 향상된 매우 우수한 특성올 나타낼 수 있고, 기저귀 등 위생 용품에 적절하게 사용 가능한 우수한 제반 물성을 나타낼 수 있다 .  The superabsorbent polymer obtained according to the above-described manufacturing method may exhibit very excellent properties with improved physical properties such as water retention capacity and pressure absorption capacity, and may exhibit excellent general properties that can be suitably used for hygiene products such as diapers.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 보수능 및 가압 흡수능이 서로 반비례 관계에 있다는 기존의 상식과는 달리, 보수능 및 가압 흡수능 등의 제반 물성이 함께 향상되어 모두 우수한 특성을 나타내는 고흡수성 수지 및 이의 제조 방법이 제공될 수 있다. According to the present invention, the water holding capacity and the pressure absorbing capacity are inversely related to each other. Unlike conventional common sense, a super absorbent polymer and a method for producing the same may be provided in which all physical properties such as water-retaining capacity and pressure-absorbing capacity are improved together to exhibit excellent properties.
이러한 본 발명의 고흡수성 수지는 기존의 고흡수성 수지가 갖던 문제점과 당업계의 기술적 요구를 근본적으로 해결하고, 보다 뛰어난 제반 물성을 나타낼 수 있으며, 각종 위생용품 등에 매우 바람직하게 적용될 수 있다. 【도면의 간단한 설명】  The superabsorbent polymer of the present invention fundamentally solves the problems of the existing superabsorbent polymers and the technical demands of the art, and may exhibit more excellent physical properties, and can be very preferably applied to various sanitary products. [Brief Description of Drawings]
도 1 내지 도 ' 3은 겔 층 침투도를 측정하기 위한 예시적인 장치와 상기 장치에 구비된 부품의 모식도이다. Figure 1 to Figure '3 is a schematic view of the components included in the exemplary device and the device for measuring the gel layer chimtudo.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 제조예 1: 표면 개질된 무기물 입자의 제조 (에폭시기 도입)  Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples. Preparation Example 1 Preparation of Surface-Modified Inorganic Particles (Epoxy Group Introduction)
물에 Aerosil 200 (Evonik사)을 5 중량 %로 분산시켜 100g의 용액을 준비하였다. 이어서, 상기 용액에 acetic acid lmL를 투입하여 pH를 3으로 조절한 후, (3-(glycidyloxy)propyl)trimethoxysilane 2g을 투입하였다. 그리고, 얻어지는 용액에 1腿 bead (Zr02 ) 70g을 투입하고, 약 24 시간 동안 흔합하여 무기물 입자의 표면을 개질하였다. 이 후, 얻어지는 생성물을 n-butyl acetate로 세척하여 표면 개질된 무기물 입자를 얻었다. 제조예 2: 표면 개질된 무기물 입자의 제조 (에폭시기 도입) 100 g of solution was prepared by dispersing Aerosil 200 (Evonik) in water at 5% by weight. Subsequently, 1 mL of acetic acid was added to the solution to adjust the pH to 3, followed by 2 g of (3- (glycidyloxy) propyl) trimethoxysilane. Then, 70 g of 1 腿 bead (Zr0 2 ) was added to the resulting solution, followed by mixing for about 24 hours to modify the surface of the inorganic particles. Thereafter, the obtained product was washed with n-butyl acetate to obtain surface-modified inorganic particles. Preparation Example 2 Preparation of Surface-Modified Inorganic Particles (Epoxy Group Introduction)
Ludox HSA (silica 함유량 30 중량 %) 100g에 IPA(iso-propyl alcohol) 200g과 (3-(glycidyloxy)propyl)trimethoxysilane 12g을 투입하였다. 그리고, 얻어지는 용액에 1醒 bead (Zr02 ) 70g을 투입하고, 약 24 시간 동안 흔합하여 무기물 입자의 표면을 개질하였다. 이 후, 얻어지는 생성물을 n-butyl acetate로 세척하여 표면 개질된 무기물 입자를 얻었다. 200 g of IPA (iso-propyl alcohol) and 12 g of (3- (glycidyloxy) propyl) trimethoxysilane were added to 100 g of Ludox HSA (silica content 30 wt%). Then, 70 g of 1 醒 bead (Zr0 2 ) was added to the resulting solution, followed by mixing for about 24 hours to modify the surface of the inorganic particles. Thereafter, the obtained product was washed with n-butyl acetate to obtain surface-modified inorganic particles.
(Ludox HSA는 입자 입경이 12nm인 Colloidal Silica로 215 m2/g의 비표면적을 가지고 있다.) 실시예 1 : 고흡수성 수지의 제조 (Ludox HSA is a Colloidal Silica with a particle size of 12 nm and has a specific surface area of 215 m 2 / g.) Example 1 Preparation of Super Absorbent Polymer
아크릴산 100 g , 가성소다 (NaOH) 38.9 g , 물 103.9 g을 흔합하고, 상기 흔합물에 광중합 개시제인 디페닐 (2,4,6-트리메틸벤조일)포스핀 옥사이드 0.01 g 열중합 개시제인 과황산나트륨 0. 18 g 및 내부 가교제인 폴리에틸렌글리콜 디아크릴레이트 0.35 g을 첨가하여 단량체 조성물을 준비하였다. 상기 단량체 조성물의 온도는 항온조를 이용하여 40°C로 유지되었다. 100 g of acrylic acid, 38.9 g of caustic soda (NaOH), and 103.9 g of water are mixed, and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide 0.01 g sodium persulfate, which is a thermal polymerization initiator, is mixed with the mixture. The monomer composition was prepared by adding 18 g and 0.35 g of polyethyleneglycol diacrylate as an internal crosslinking agent. The temperature of the monomer composition was maintained at 40 ° C. using a thermostat.
한편, 상기 단량체 조성물을 광중합 및 열중합시키기 위해, 2축의 회전식 실리콘 벨트와 상기 벨트 상에 위치한 수은 램프가 구비되어 있고, 자외선 조사 후 단열된 공간에 열풍을 공급할 수 있는 장치를 이용하였다. On the other hand, the monomer composition to photopolymerization and thermal polymerization, and is provided with a mercury lamp, located on a second rotary axis silicone belt and the belt, and then ultraviolet radiation was used as an apparatus which can supply hot air to the heat-insulating space.
상기 항온조에서 온도가 조절된 단량체 조성물을 상기 장치의 벨트에 주입하고, 벨트 상부에 위치한 수은 램프를 통해 벨트 상에 놓인 단량체 조성물에 10 mW의 세기로 60 초 동안 자외선을 조사하였다. 자외선 조사 후, 광중합된 중합체에 열풍을 공급하여 온도를 90°C로 유지하여 열중합 반웅을 진행하였다. 이후, 절단기를 통해 토출된 함수겔 중합체를 180°C의 열풍 건조기에서 1 시간 동안 건조하였다. The temperature-controlled monomer composition in the thermostat was injected into the belt of the device, and the monomer composition placed on the belt was irradiated with ultraviolet light for 60 seconds at an intensity of 10 mW through a mercury lamp located above the belt. After ultraviolet irradiation, hot air was supplied to the photopolymerized polymer to maintain the temperature at 90 ° C. to conduct a thermal polymerization reaction. Then, the hydrogel polymer discharged through the cutter was dried in a hot air dryer at 180 ° C for 1 hour.
이렇게 건조된 함수겔 중합체를 핀밀 분쇄기로 분쇄하였다. 그런 다음, 시브 (s ieve)를 이용하여 입경이 약 150 rn 미만인 중합체와, 입경 약 150 내지 850 卿인 중합체를 분급하였다.  The dried hydrogel polymer was pulverized with a pin mill grinder. Then, sieve was used to classify the polymer having a particle size of less than about 150 rn and the polymer having a particle size of about 150 to 850 mm 3.
이후, 제조된 베이스 수지 분말 100 중량부에 대해 1, 3-프로판디을 1.0 중량부, 물 1 중량부 및 제조예 1에서 제조한 표면 개질된 무기물 입자 0. 1 중량부를 포함하는 표면 처리 용액을 분사하고 상온에서 교반하여 베이스 수지 분말에 표면 가교제 및 표면 처리 용액이 고르게 분포하도록 흔합하였다.  Thereafter, the surface treatment solution was sprayed containing 1.0 part by weight of 1, 3-propanedi, 1 part by weight of water and 0.01 part by weight of the surface-modified inorganic particles prepared in Preparation Example 1, based on 100 parts by weight of the prepared base resin powder. The mixture was stirred at room temperature and mixed to uniformly distribute the surface crosslinking agent and the surface treatment solution in the base resin powder.
이후, 이러한 혼합물을 약 180 °C로 셋팅된 표면 가교 반웅기에 넣고 표면 가교 반웅을 진행하였다. 이러한 표면 가교 반웅기 내에서, 베이스 수지 분말은 약 160°C 근방의 초기 온도에서 점진적으로 승온되는 것으로 확인되었고, 약 30분 경과 후에 약 180 °C의 최대 반웅 온도에 도달하는 것으로 확인되었다. 이러한 최대 반웅 온도에 도달한 이후에, 약 20분 동안 추가 반웅시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 상기 표면 가교 공정 후, 시브 (si eve)를 이용하여 입경이 약 150 내지 850 / m인 표면 가교된 고흡수성 수지를 얻었다. 상기 고흡수성 수지에 포함된 약 150 μα 이하의 입경을 갖는 미분의 함량은 약 2 증량 ¾ 미만이었다. 실시예 2: 고흡수성 수지의 제조 Subsequently, the mixture was placed in a surface crosslinking reactor set at about 180 ° C., and the surface crosslinking reaction was performed. Within this surface crosslinking reaction vessel, the base resin powder was found to gradually increase in temperature at an initial temperature near about 160 ° C., and after about 30 minutes, the maximum reaction temperature of about 180 ° C. was reached. After reaching this maximum reaction temperature, a further reaction was performed for about 20 minutes before the final prepared superabsorbent polymer sample was taken. After the surface crosslinking process, a surface crosslinked superabsorbent polymer having a particle size of about 150 to 850 / m was obtained using sieve. The content of fine powder having a particle diameter of about 150 μα or less contained in the superabsorbent polymer was less than about 2 wt% ¾. Example 2: Preparation of Super Absorbent Polymer
실시예 1에서 베이스 수지 분말 100 중량부에 대해 표면 개질된 무기물 입자의 함량을 0.3 중량부로 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 상기 고흡수성 수지에 포함된 약 150 m 이하의 입경을 갖는 미분의 함량은 약 2 증량 % 미만이었다. 비교예 1: 고흡수성 수지의 제조 A superabsorbent polymer was prepared in the same manner as in Example 1, except that the content of the surface-modified inorganic particles was adjusted to 0.3 parts by weight based on 100 parts by weight of the base resin powder. The content of fine powder having a particle diameter of about 150 m or less contained in the superabsorbent polymer was less than about 2% by weight. Comparative Example 1: Preparation of Super Absorbent Polymer
실시예 1에서 표면 개질된 무기물 입자를 사용하지 않은 것을 제외하고 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 2: 고흡수성 수지의 제조  Superabsorbent polymer was prepared in the same manner as in Example 1, except that the surface-modified inorganic particles were not used in Example 1. Comparative Example 2: Preparation of Super Absorbent Polymer
비교예 1에서 제조한 고흡수성 수지 100 중량부에 Aerosil 200 Aerosil 200 to 100 parts by weight of the super absorbent polymer prepared in Comparative Example 1
(Evonik사) 0.1 중량부를 첨가하여 흔합하였다. 비교예 3: 고흡수성 수지의 제조 0.1 parts by weight of Evonik was added and mixed. Comparative Example 3: Preparation of Super Absorbent Polymer
비교예 1에서 제조한 고흡수성 수지 100 중량부에 Aerosil 200 (Evonik사) 0.3 중량부를 첨가하여 흔합하였다. 시험예: 고흡수성 수지의 물성 평가  0.3 parts by weight of Aerosil 200 (Evonik) was added to 100 parts by weight of the super absorbent polymer prepared in Comparative Example 1, and mixed. Test example: Evaluation of physical properties of super absorbent polymer
상기 실시예 1, 실시예 2, 비교예 2 및 비교예 3에서 제조한 고흡수성 수지 중 일부를 채취하여 mesh size #100의 testing sieve를 사용하여 10 분간 분급함으로써 고흡수성 수지로부터 분진을 제거하였다 (Dedusting 공정).  Part of the superabsorbent polymers prepared in Examples 1, 2, Comparative Example 2, and Comparative Example 3 were collected and classified for 10 minutes using a testing sieve of mesh size # 100 to remove dust from the superabsorbent polymer ( Dedusting process).
그리고, Dedusting 공정 전 후의 고흡수성 수지의 물성을 하기 기재된 방법으로 측정하여 표 1에 나타내었다.  In addition, the physical properties of the superabsorbent polymer before and after the dedusting process were measured by the method described below and shown in Table 1.
(1) 원심분리 보수능 (Centrifuge Retention Capacity, CRC) (1) Centrifuge Retention Capacity (CRC)
유럽부직포산업.협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.2에 따라 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다. European Disposables and Nonwovens Association, EDANA) According to the EDANA WSP 241.2 standard, centrifugal water-retaining capacity (CRC) was measured for the superabsorbent polymer with no-load absorption ratio.
즉, 수지 WO(g , 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal )한 후에, 상온에서 0.9 중량 %의 염화나트륨 수용액인 생리 식염수에 침수시켰다. 30 분 후에 봉투를 원심 분리기를 이용하여 250 G로 3 분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Wl(g)을 측정했다.  That is, the resin WO (g, about 0.2 g) was uniformly placed in a non-woven bag and sealed, and then immersed in physiological saline, which is a 0.9 wt% aqueous sodium chloride solution at room temperature. After 30 minutes, the bag was drained at 250 G for 3 minutes using a centrifugal separator, and then the mass W2 (g) of the bag was measured. Moreover, after carrying out the same operation without using resin, the mass W1 (g) at that time was measured.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 대입하여 보수능 (CRC (g/g) )을 계산하였다.  The water retention capacity (CRC (g / g)) was calculated by substituting the following formula 1 using each mass thus obtained.
[계산식 1]  [Calculation 1]
CRC (g/g) = { [W2(g) - Wl(g) ] /W0(g) } - 1  CRC (g / g) = {[W2 (g)-Wl (g)] / W0 (g)}-1
상기 계산식 1에서,  In the above formula 1,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, .  W0 (g) is the initial weight (g) of the superabsorbent polymer,.
Wl(g)는 상온에서 빈 봉투를 생리 식염수에 30 분간 침수시킨 다음 원심분리기를 사용하여 250 G로 3 분간 탈수한 후에 측정한 봉투의 무게이고, Wl (g) is the weight of the bag measured after immersing an empty bag in physiological saline for 30 minutes at room temperature and then dehydrating it at 250 G for 3 minutes using a centrifuge.
W2(g)는 상온에서 고흡수성 수지가 담긴 봉투를 생리 식염수에 30 분간 침수시킨 다음 원심분리기를 사용하여 250 G로 3 분간 탈수한 후에 측정한 고흡수성 수지를 포함한 봉투의 무게이다. (2) 가압 흡수능 (Absorbing under Pressure , AUP) W2 ( g ) is the weight of the bag containing the superabsorbent polymer, measured after immersing the bag containing the superabsorbent polymer at room temperature in physiological saline for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge. (2) Absorbing under Pressure (AUP)
고흡수성 수지에 대하여, 유럽부직포산업협회 (European Di sposables and Nonwovens Associ at ion) 규격 EDANA WSP 242.2의 방법에 따라 가압 흡수능 (AUP : Absorbency under Pressure)을 즉정하였다.  For the super absorbent polymer, Absorbency under Pressure (AUP) was immediately determined according to the method of the European Di sposables and Nonwovens Associ at ion standard EDANA WSP 242.2.
먼저, 내경 60 誦의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상은 및 5OT의 습도 하에서 상기 철망 상에 가압 흡수능을 측정하고자 하는 고흡수성 수지 W0(g , 0.90g)를 균일하게 살포하였다. 이어서, 상기 고흡수성 수지 위에 4.83 kPa(0.7 psi )의 하중을 균일하게 부여할 수 있는 피스톤 (pi ston)을 부가하였다. 이때, 피스톤으로는 외경이 60麵보다 약간 작아 원통의 내벽과 틈이 없으며, 상하로 자유롭게 움직일 수 있도록 제작된 것을 사용하였다. 그리고, 이렇게 준비된 장치의 무게 W3(g)를 측정하였다. 이서서, 직경 150 mm의 페트로 접시의 내측에 직경 90 mm , 두께 5 mm의 유리 필터를 넣고, 상기 페트로 접시에 생리 식염수 (0.9 중량 %의 염화나트륨 수용액)를 부었다. 이때, 생리 식염수의 수면이 유리 필터의 윗면과 수평이 될 때까지 생리 식염수를 부었다. 그리고, 유리 필터 위에 직경 90 mm의 여과지 1장을 놓았다. First, a stainless steel 400 mesh wire mesh was mounted on the bottom of a 60 mm diameter plastic cylinder. The phase was evenly sprayed with a superabsorbent resin W0 (g, 0.90 g) to measure the pressure absorbency on the wire mesh under a humidity of 5OT. Subsequently, a piston was added to the superabsorbent polymer to uniformly impart a load of 4.83 kPa (0.7 psi). At this time, the outer diameter of the piston is slightly smaller than 60 麵, there is no gap with the inner wall of the cylinder, was used to be able to move freely up and down. Then, the weight W3 (g) of the device thus prepared was measured. Then, a glass filter of 90 mm in diameter and 5 mm in thickness was placed inside a 150 mm diameter petri dish, and physiological saline (0.9 wt% aqueous sodium chloride solution) was poured into the petri dish. At this time, physiological saline was poured until the surface of physiological saline became horizontal with the upper surface of the glass filter. Then, one sheet of filter paper having a diameter of 90 mm was placed on the glass filter.
이어서, 여과지 위에 준비된 장치를 얹어 장치 내의 고흡수성 수지가 하중 하에서 생리 식염수에 의해 팽윤되도록 하였다. 1 시간 후, 팽윤된 고흡수성 수지가 담긴 장치의 무게 W4(g)를 측정하였다.  Then, the prepared device was placed on the filter paper so that the superabsorbent resin in the device was swollen by physiological saline under load. After 1 hour, the weight W 4 (g) of the device containing the swollen superabsorbent polymer was measured.
이렇게 측정된 무게를 이용하여 다음의 계산식 2에 따라 가압 흡수능을 산출하였다.  Using the weight thus measured, the pressure absorption capacity was calculated according to the following equation (2).
[계산식 2]  [Calculation 2]
AUP (g/g) = [W4(g) - W3(g) ] / W0(g)  AUP (g / g) = [W4 (g)-W3 (g)] / W0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고,  W0 (g) is the initial weight (g) of the superabsorbent polymer,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,  W3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer,
W4(g)는 하중 (0.7 psi ) 하에 1 시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.  W4 (g) is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing physiological saline to the superabsorbent resin for one hour under a load (0.7 psi).
(3) 겔 베드 투과율 (GBP , Gel Bed Permeabi l i ty) (3) Gel Bed Permeabi l i ty
고흡수성 수지의 생리 식염수에 대한 자유 팽윤 겔 베드 투과율 (GBP)은 톡허 출원 제 2014-7018005호에 기재된 이하의 방법에 따라 측정되었다.  The free swelling gel bed permeability (GBP) of the superabsorbent resin to physiological saline was measured according to the following method described in Tokken application 2014-7018005.
구체적으로, 자유 팽윤 GBP를 측정하기 위해 도 1 내지 도 3에 도시한 장치를 이용하였다. 우선, 추 (548)가 장치된 플런저 (536)를 빈 샘플 용기 (530) 안에 위치시키고, 적합한 게이지를 사용하여 정확도 0.01mm까지, 추 (548)의 상부로부터 샘플 용기 (530)의 바닥까지의 높이를 측정하였다. 측정하는 동안, 두께 게이지가 인가하는 힘은 약 0.74N 미만으로 조절되었다.  Specifically, the apparatus shown in Figs. 1 to 3 was used to measure the free swelling GBP. Firstly, a plunger 536 equipped with a weight 548 is placed in an empty sample container 530, and with a suitable gauge to an accuracy of 0.01 mm, from the top of the weight 548 to the bottom of the sample container 530. The height was measured. During the measurement, the force applied by the thickness gauge was adjusted to less than about 0.74 N.
한편, GBP를 측정하고자 하는 고흡수성 수지 중 미국 표준 30 mesh 스크린은 통과하고, 미국 표준 50 mesh 스크린 위에는 유지되는 고흡수성 수지를 선별하여 입경이 300 내지 600/ m인 고흡수성 수지를 얻었다. On the other hand, among the super absorbent polymers for which GBP is to be measured, the super absorbent polymer passed through the US standard 30 mesh screen and maintained on the US standard 50 mesh screen Screening was carried out to obtain a super absorbent polymer having a particle diameter of 300 to 600 / m.
이렇게 분급된 약 2.0g의 고흡수성 수지를 샘플 용기 (530) 안에 넣고, 샘플 용기의 바닥 위에 골고루 펼쳤다. 이어서, 플런저 (536)와 추 (548)가 포함되지 않은 상태의 이 용기를 0.9 중량 %의 염화나트륨 수용액인 생리 식염수 속에 약 60 분간 담가 무가압 하에서 고흡수성 수지를 팽윤시켰다. 이때, 샘플 용기 (530)가 액체 저장소의 바닥보다 약간 올라오도록 샘플 용기 (530)를 액체 저장소 내에 위치된 mesh 위에 을려 놓았으며, 상기 mesh로는 샘플 용기 (530)로의 생리 식염수의 이동에 영향을 미치지 않는 것을 사용하였다. 포화되는 동안 생리 식염수의 높이를 샘플 용기 내의 표면이 생리 식염수가 아니라 팽윤된 고흡수성 수지에 의해 규정되도록 조절하였다. About 2.0 g of the super absorbent polymer thus classified was placed in the sample container 530 and evenly spread on the bottom of the sample container. Subsequently, the vessel without the plunger 536 and the weight 548 was immersed in 0.9 wt% aqueous sodium chloride solution for about 60 minutes to swell the superabsorbent polymer under no pressure. At this time, the sample vessel 530 was overlaid on a mesh positioned in the liquid reservoir so that the sample vessel 530 was slightly above the bottom of the liquid reservoir, and the mesh did not affect the movement of physiological saline to the sample vessel 530. Not used. During saturation the height of the physiological saline was adjusted so that the surface in the sample vessel was defined by the swollen superabsorbent resin, not physiological saline.
이 기간의 ^료시에, 플런저 (536)와 추 ( 8)의 조립체를 샘플 용기 (530) 내의 팽윤된 고흡수성 수지 (568) 위에 을려놓은 다음, 샘플 용기 (530), 플런저 (536), 추 (548) 및 팽윤된 고흡수성 수지 (568)를 용액으로부터 꺼냈다. 이후, GBP 측정하기 전에, 샘플 용기 (530), 플런저 (536) , 추 (548) 및 팽윤된 고흡수성 수지 (568)를 편평하고 큰 그리드의 균일한 두께의 비-변형성 플레이트 상에 약 30초 동안 그대로 두었다. 그리고, 앞서 사용한 것과 동일한 두께 게이지를 사용하여, 추 (548)의 상부로부터 샘플 용기 (530)의 바닥까지의 높이를 다시 측정하였다. 그리고, 앞서 추 (548)가 장치된 플런저 (536)를 빈 샘플 용기 (530) 안에 위치시킨 장치의 높이 측정값을 팽윤된 고흡수성 수지 (568)가 포함된 장치의 높이 측정값에서 제하여 팽윤된 고흡수성 수지의 두께 혹은 높이 'Ή"를 구하였다.  At the end of this period, the assembly of the plunger 536 and the weight 8 is laid down on the swollen superabsorbent resin 568 in the sample container 530, and then the sample container 530, plunger 536, weight 548 and the swollen superabsorbent resin 568 were removed from the solution. The sample vessel 530, plunger 536, weight 548 and swollen superabsorbent resin 568 were then placed on a flat, large grid, uniform thickness, non-deformable plate, prior to GBP measurements. Leave it on for a while. Then, using the same thickness gauge as previously used, the height from the top of the weight 548 to the bottom of the sample container 530 was measured again. Then, the height measurement of the device in which the plunger 536 equipped with the weight 548 is placed in the empty sample container 530 is subtracted from the height measurement of the device containing the swollen superabsorbent resin 568. The thickness or height 'Ή' of the superabsorbent polymer was obtained.
GBP 측정을 위해, 팽윤된 고흡수성 수지 (568), 플런저 (536) 및 추 (548)가 들어 있는 샘플 용기 (530) 안으로 0.9 중량 >의 염화나트륨 수용액인 생리 식염수를 유동시켰다. 생리 식염수가 실린더 (534)의 상부로 오버플로우되도록 샘플 용기 (530) 안으로의 생리 식염수의 유량 ( f low rate)을 조정하여 샘플 용기 (530)의 높이와 동등한 일관된 헤드 압력이 나타나도록 하였다. 그리고, 저울 (602) 및 비커 (603)를 사용하여 , 팽윤된 고흡수성 수지 (568)를 통과하는 용액의 양 대 시간을 중량측정법으로 측정하였다ᅳ 일단 오버플로우가 시작되면, For GBP measurements, a 0.9 weight> aqueous sodium chloride solution of physiological saline was flowed into the sample vessel 530 containing the swollen superabsorbent resin 568, plunger 536 and weight 548. The f low rate of physiological saline into the sample vessel 530 was adjusted so that the physiological saline overflowed to the top of the cylinder 534 so that a consistent head pressure equal to the height of the sample vessel 530 was shown. Then, using the balance 602 and the beaker 603, the amount versus time of the solution passing through the swollen superabsorbent resin 568 was measured gravimetrically once the overflow began,
60초 이상 동안 매초마다 저울 (602)로부터 데이터 포인트들을 수집하였다. 팽윤된 고흡수성 수지 (568)를 통과하는 유량 (Q)은, 팽윤된 고흡수성 수지 (568)를 통과하는 유체 (g) 대 시간 (sec)의 선형 최소제곱 적합 (linear least-square fit)에 의해 g/sec 단위로 결정하였다. Data points were collected from the balance 602 every second for at least 60 seconds. The flow rate Q through the swollen superabsorbent resin 568 causes the swollen superabsorbent resin 568 to Determined in g / sec by linear least-square fit of fluid (g) versus time (sec) passing.
이렇게 얻어진 데이터 값을 이용하여 다음의 계산식 3에 따라 상기 GBP(cm2)를 산출하였다. The GBP (cm 2 ) was calculated according to the following equation 3 using the data values thus obtained.
[계산식 3]  [Calculation 3]
K = [Q * H * μ ]/[Α * ρ * Ρ]  K = [Q * H * μ] / [Α * ρ * Ρ]
상기 계산식 3에서,  In the above formula 3,
Κ는 겔 베드 투과율 (cm2)이고, Κ is the gel bed transmission (cm 2 ) ,
Q는 유량 (g/sec)이고,  Q is the flow rate (g / sec),
H는 팽윤된 고흡수성 수지의 높이 (cm)이고,  H is the height (cm) of the swollen superabsorbent resin,
μ는 액체 점도 (Ρ) (이번 시험에 : 사용한 생리 식염수의 점도는 약 lcP)이고, μ is the liquid viscosity (Ρ) (in this test : the viscosity of the saline solution used is about lcP),
A는 액체 유동에 대한 단면적 (이번 시험에 사용한 샘플 용기에 대해서는 28.27cuf)이고,  A is the cross-sectional area for the liquid flow (28.27cuf for the sample vessel used in this test)
p는 액체 밀도 (g/cm3) (이번 시험에 사용한 생리 식염수에 대해서는 약 1 g/cm3)이고, p is the liquid density (g / cm 3 ) (about 1 g / cm 3 for the saline solution used in this test),
P는 정수압 (dyne/cm2) (정상적으로는 약 7,797dyne/cm2)이다. P is the hydrostatic pressure (dyne / cm 2) (normally approximately 7,797dyne / cm 2).
정수압은 식 P = p * g * h로부터 계산되며, 여기서 p는 액체 밀도 (g/cm3)이고, g는 중력 가속도 (공칭적으로는 981cm/sec2)이고, h는 유체 높이 (예를 들면, 본 명세서에 기재된 GBP 시험에 대해서는 7.95cm)이다. The hydrostatic pressure is calculated from the equation P = p * g * h, where p is the liquid density (g / cm 3 ), g is the acceleration of gravity (nominally 981 cm / sec 2 ), and h is the fluid height (e.g. For example, for the GBP test described herein, 7.95 cm).
최소 2개의 샘플을 시험하고, 그 결과를 평균하여 고흡수성 수지의 자유 팽윤 GBP를 결정하고, 단위를 darcy로 변환 (Idarcy = 0.98692 x 10'8 cm2)하여 표Test at least two samples, average the results to determine the free swelling GBP of the superabsorbent polymer, convert the units to darcy (Idarcy = 0.98692 x 10 '8 cm 2 )
1에 나타내었다. 1 is shown.
【표 1]  [Table 1]
무기물 입자 종류 Dedusting 공정 전 Dedusting 공정 후  Mineral Particle Type Before Dedusting Process After Dedusting Process
(함량) ' (표면 가교 후) (Content) '' (After surface crosslinking)
CRC AUP GBP CRC AUP GBP CRC AUP GBP CRC AUP GBP
(g/g) (g/g) (darcy) (g/g) (g/g) (darcy) 실시예 제조예 1의 표면 34.6 23.3 11 34.3 23.5 9(g / g) (g / g) (darcy) (g / g) (g / g) (darcy) EXAMPLES Surface of Preparation Example 34.6 23.3 11 34.3 23.5 9
1 개질된 무기물 입 1 modified mineral mouth
 character
(베이스 수지 분  (Base resin minutes
말 100 중량부 기  100 parts by weight
준 0.1 중량부)  0.1 parts by weight)
실시예 제조예 1의 표면 32.6 21.6 41 32.4 22.2 45EXAMPLES Surface of Preparation Example 32.6 21.6 41 32.4 22.2 45
2 개질된 무기물 입 2 modified mineral mouths
 character
(베이스 수지 분  (Base resin minutes
말 100 중량부 기  100 parts by weight
준 0.3 중량부)  0.3 parts by weight)
비교예 - 34.5 22.7 3 - -Comparative Example-34.5 22.7 3--
1 One
비교예 Aerosi l 200 35.1 21.0 8 34.1 21.6 ;Comparative Example Aerosi l 200 35.1 21.0 8 34.1 21.6;
2 (고흡수성 수지 2 (super absorbent resin
100 중량부 기준  Based on 100 parts by weight
0.1 중량부)  0.1 parts by weight)
비교예 Aerosi l 200 34.6 16.7 48 33.4 17.6 31 3 (고흡수성 수지 100 중량부 기준 0.3 중량부) Comparative Example Aerosi l 200 34.6 16.7 48 33.4 17.6 31 3 (0.3 parts by weight based on 100 parts by weight of superabsorbent polymer)
상기 표 1을 참고하면, 본 발명의 일 구현예에 따른 고흡수성 수지는 우수한 보수능, 가압 흡수능 및 투수성을 가지는 것이 확인된다. 반면, 비교예 1 내지 3의 고흡수성 수지는 보수능, 가압 흡수능 및 투수성 중 어느 하나의 물성이 우수하면 적어도 다른 하나의 물성은 열악한 것이 확인된다. Referring to Table 1, it is confirmed that the super absorbent polymer according to the embodiment of the present invention has excellent water retention, pressure absorption and water permeability. On the other hand, if the superabsorbent polymers of Comparative Examples 1 to 3 are excellent in any one of water-retaining ability, pressure-absorbing ability, and water permeability, at least the other physical property is poor.
또한, 실시예 1 및 2의 고흡수성 수지는 Dedust ing 공정 후에도 무기물 입자가 이탈되지 않아 우수한 물성을 유지하는 것에 반해, 비교예 2 및 3의 고흡수성 수지는 물성 저하가 나타나는 것이 확인된다.  In addition, the superabsorbent polymers of Examples 1 and 2 do not release inorganic particles even after the dedusting process to maintain excellent physical properties, whereas the superabsorbent resins of Comparative Examples 2 and 3 exhibit physical property degradation.
이로써, 본 발명의 일 구현예에 따른 고흡수성 수지는 표면 개질된 무기물 입자로 표면 가교된 구조를 가져 우수한 제반 물성은 물론 고흡수성 수지의 제조 및 이송 공정에서 물성 저하를 최소화할 수 있음이 확인된다.  Thus, it is confirmed that the superabsorbent polymer according to the embodiment of the present invention has a surface crosslinked structure with surface-modified inorganic particles, thereby minimizing physical property deterioration in the manufacturing and transporting process of the superabsorbent polymer as well as excellent physical properties. .
【부호의 설명】 [Explanation of code]
500 GBP 측정 장치  500 GBP measuring device
528 시험 장치 조립체  528 test device assembly
530 샘플 용기  530 sample containers
534 실린더  534 cylinder
534a : 외경 66mm를 갖는 부위  534a: a part having an outer diameter of 66 mm
536 플런저  536 plunger
538 시프트  538 shift
540 오-링  540 O-Ring
544 554, 560: 구멍  544 554 , 560 : Hole
548 환형 추  548 annular weight
548a : 스루 -보어  548a: through-bore
550: 플런저 헤드 562: 샤프트 홀 550 : Plunger Head 562 : Shaft Hole
564: 100 메쉬의 스테인리스 강 클로스 스크린 566: 400 메쉬 스테인리스 강 클로스 스크린 568: 샘플  564 : 100 mesh stainless steel cloth screen 566 : 400 mesh stainless steel cloth screen 568 : Sample
600: 웨어 600 : Wear
601: 수집 장치 601 : collection device
602: 저울 602 : Scale
603: 비커 603 : Beaker
604: 계기 펌프 604 : Instrument pump

Claims

【청구범위】 【Claims】
【청구항 1】 【Claim 1】
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체가 내부 가교제의 존재 하에 중합된 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 가교 중합체가 표면 개질된 무기물 입자의 존재 하에 추가 가교되어 있고, 상기 베이스 수지 분말 상에 형성되어 있는 표면 가교충을 포함하고, A base resin powder comprising a crosslinked polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer having at least a partially neutralized acidic group in the presence of an internal crosslinking agent; And the cross-linked polymer is further cross-linked in the presence of surface-modified inorganic particles, and includes surface cross-linkers formed on the base resin powder,
상기 표면 가교층에 포함된 가교 중합체에는, 산소 함유 결합 또는 질소 함유 결합을 매개로 무기물 입자가 화학적으로 결합되어 있는 고흡수성 수지. A superabsorbent polymer in which inorganic particles are chemically bonded to the crosslinked polymer included in the surface crosslinked layer through oxygen-containing bonds or nitrogen-containing bonds.
【청구항 2】 【Claim 2】
제 1 항에 있어서, 상기 수용성 에틸렌계 불포화 단량체는 The method of claim 1, wherein the water-soluble ethylenically unsaturated monomer is
아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2- 아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2- Acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethane sulfonic acid, 2-
(메트)아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염 ; Anionic monomers of (meth)acryloylpropanesulfonic acid or 2-(meth)acrylamide-2-methylpropanesulfonic acid and salts thereof;
(메트)아크릴아미드, N-치환 (메트)아크릴아미드, 2- 히드록시에틸 (메트)아크릴레이트, 2ᅳ히드록시프로필 (메트)아크릴레이트 , 메톡시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (meth)acrylamide, N-substituted (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate or polyethylene glycol ( A nonionic hydrophilic-containing monomer of meth)acrylate; and
(Ν,Ν)-디메틸아미노에틸 (메트)아크릴레이트 ' 또는 (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지. (Ν,Ν)-dimethylaminoethyl (meth)acrylate' or (Ν,Ν)-dimethylaminopropyl (meth)acrylamide, an amino group-containing unsaturated monomer and its quaternary product; at least one selected from the group consisting of Containing a super absorbent polymer.
【청구항 3] [Claim 3]
제 1 항에 있어서, 상기 가교 중합체는 상기 수용성 에틸렌계 불포화 단량체가 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물을 포함한 내부 가교제의 존재 하에 중합된 가교 중합체를 포함하는 고흡수성 수지 . The superabsorbent resin of claim 1, wherein the cross-linked polymer comprises a cross-linked polymer in which the water-soluble ethylenically unsaturated monomer is polymerized in the presence of an internal cross-linking agent containing a multifunctional acrylate-based compound having a plurality of ethylene oxide groups.
【청구항 4】 【Claim 4】
제 1 항에 있어서, 상기 내부 가교제는 폴리에틸렌글리콜 디아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 비개질 또는 에록실화된 트리메틸을프로판 트리아크릴레이트 (TMPTA) , 핵산디올디아크릴레이트, 및 트리에틸렌글리콜 디아크릴레이트로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지 . The method of claim 1, wherein the internal crosslinking agent is polyethylene glycol diacrylate, Containing at least one selected from the group consisting of glycerin diacrylate, glycerin triacrylate, unmodified or eroxylated trimethylpropane triacrylate (TMPTA), nucleic acid diol diacrylate, and triethylene glycol diacrylate. Super absorbent resin.
【청구항 5】 【Claim 5】
제 1 항에 있어서, 상기 무기물 입자는 5 내지 600m2/g의 비표면적 및 5 내지 500nm의 직경을 갖는 고흡수성 수지의 제조 방법. The method of claim 1, wherein the inorganic particles have a specific surface area of 5 to 600 m 2 /g and a diameter of 5 to 500 nm.
【청구항 6】 【Claim 6】
제 1 항에 있어서, 상기 무기물 입자는 실리카 입자 또는 알루미나 입자인 고흡수성 수지 . The superabsorbent polymer of claim 1, wherein the inorganic particles are silica particles or alumina particles.
【청구항 7] [Claim 7]
제 1 항에 있어서, 상기 무기물 입자는 상기 고흡수성 수지의 100 중량부에 대해 0.01 내지 2 중량부로 결합되어 있는 고흡수성 수지. The superabsorbent polymer of claim 1, wherein the inorganic particles are combined in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the superabsorbent polymer.
【청구항 8】 【Claim 8】
제 1 항에 있어서, 상기 표면 가교층은 표면 개질된 무기물 입자 및 표면 가교제의 존재 하에 가교 중합체가추가 가교되어 형성되는 것인 고흡수성 수지. The superabsorbent polymer according to claim 1, wherein the surface cross-linking layer is formed by additional cross-linking of a cross-linking polymer in the presence of surface-modified inorganic particles and a surface cross-linking agent.
【청구항 9】 【Claim 9】
제 8 항에 있어서, 상기 표면 가교제는 에틸렌글리콜, 1,4-부탄디올, 1 , 6-핵산디올, 프로필렌 글리콜, 1,2-핵산디을, 1 , 3-핵산디을, 2-메틸 -1,3- 프로판디을, 2 , 5-핵산디을, 2-메틸ᅳ1,3-펜탄디을, 2-메틸 -2,4-펜탄디올, 트리프로필렌 글리콜, 글리세를, 에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지. The method of claim 8, wherein the surface cross-linking agent is ethylene glycol, 1,4-butanediol, 1,6-hexanediol, propylene glycol, 1,2-hexanediol, 1,3-hexanediol, 2-methyl-1,3 - Selected from the group consisting of propanediol, 2, 5-hexanediyl, 2-methyl-1, 3-pentanediol, 2-methyl-2,4-pentanediol, tripropylene glycol, glycerol, ethylene carbonate and propylene carbonate A super absorbent resin containing one or more types.
【청구항 10】 【Claim 10】
제 1 항에 있어서, 생리 식염수에 대한 원심분리 보수능이 30 내지 40 g/g 이고, 생리 식염수에 대한 0.7 psi의 가압 흡수능이 10 내지 26 g/g이고, 자유 팽윤 겔 베드 투과율이 5 내지 120 darcy인 고흡수성 수지 . The method of claim 1, wherein the centrifugation retention capacity for physiological saline is 30 to 40 g/g. A superabsorbent polymer having a pressure absorption capacity of 0.7 psi for physiological saline solution of 10 to 26 g/g and a free-swelling gel bed permeability of 5 to 120 darcy.
【청구항 11】 【Claim 11】
제 1 항에 있어서, 150 내지 850/ΛΠ의 입경을 갖는 고흡수성 수지. The superabsorbent polymer according to claim 1, having a particle size of 150 to 850/ΛΠ.
【청구항 12】 【Claim 12】
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 내부 가교제의 존재 하에 가교 중합하여 함수겔 중합체를 형성하는 단계; Cross-polymerizing a water-soluble ethylenically unsaturated monomer having at least a partially neutralized acidic group in the presence of an internal cross-linking agent to form a water-containing gel polymer;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및 Forming a base resin powder by drying, pulverizing and classifying the water-containing gel polymer; and
에폭시기, 히드록시기, 이소시아네이트기 및 아민기로 이루어진 군에서 선택된 적어도 1종 이상의 작용기로 표면 개질된 무기물 입자의 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하는 제 1 항의 고흡수성 수지의 제조 방법 . A first step comprising the step of additionally crosslinking the surface of the base resin powder to form a surface crosslinking layer in the presence of inorganic particles surface modified with at least one functional group selected from the group consisting of an epoxy group, a hydroxy group, an isocyanate group, and an amine group. Method for manufacturing superabsorbent polymer.
【청구항 13】 【Claim 13】
제 12 항에 있어서, 하기 화학식 1로 표시'되는 개질제로 무기물 입자의 표면을 개질하여 표면 개질된 무기물 입자를 제조하는 단계를 추가로 포함하는 고흡수성 수지의 제조 방법 : The method of claim 12, further comprising the step of producing surface - modified inorganic particles by modifying the surface of the inorganic particles with a modifier represented by the following formula (1):
[화학식 1]
Figure imgf000036_0001
[Formula 1]
Figure imgf000036_0001
R暴 상기 화학식 1에서, 내지 R3은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기 또는 할로겐으로서, 이들 중 적어도 하나는 알킬기가 아니며, R4는 에폭시기, 히드록시기, 이소시아네이트기 및 아민기로 이루어진 군에서 선택된 적어도 1종 이상의 작용기를 갖는 탄소수 2 내지 10의 치환기이다. R In Formula 1, to R 3 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen, at least one of which is not an alkyl group, and R 4 is an epoxy group, a hydroxy group, an isocyanate group, and It is a substituent having 2 to 10 carbon atoms and having at least one functional group selected from the group consisting of amine groups.
【청구항 14] [Claim 14]
제 12 항에 있어서, 상기 표면 개질된 무기물 입자는 베이스 수지 분말 100 중량부에 대하여 0.01 내지 10 중량부로 사용되는 고흡수성 수지의 제조 방법. The method of claim 12, wherein the surface-modified inorganic particles are used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the base resin powder.
【청구항 15] [Claim 15]
제 12 항에 있어서, 상기 표면 개질된 무기물 입자와 표면 가교제의 존재 하에 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 고흡습성 수지의 제조 방법 . The method of claim 12, wherein a surface cross-linked layer is formed by additional cross-linking the surface of the base resin powder in the presence of the surface-modified inorganic particles and a surface cross-linking agent.
PCT/KR2015/014428 2015-01-23 2015-12-29 Super-absorbent polymer and method for preparing same WO2016117842A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580061336.1A CN107108904B (en) 2015-01-23 2015-12-29 Super absorbent polymer and preparation method thereof
US15/524,697 US10981146B2 (en) 2015-01-23 2015-12-29 Super-absorbent polymer and method for preparing same
EP15879096.4A EP3196231B1 (en) 2015-01-23 2015-12-29 Super-absorbent polymer and method for preparing same
US17/193,601 US11654416B2 (en) 2015-01-23 2021-03-05 Method for preparing super-absorbent polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0011037 2015-01-23
KR20150011037 2015-01-23
KR10-2015-0187758 2015-12-28
KR1020150187758A KR101799091B1 (en) 2015-01-23 2015-12-28 Super absorbent polymer and preparation method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/524,697 A-371-Of-International US10981146B2 (en) 2015-01-23 2015-12-29 Super-absorbent polymer and method for preparing same
US17/193,601 Division US11654416B2 (en) 2015-01-23 2021-03-05 Method for preparing super-absorbent polymer

Publications (1)

Publication Number Publication Date
WO2016117842A1 true WO2016117842A1 (en) 2016-07-28

Family

ID=56417328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014428 WO2016117842A1 (en) 2015-01-23 2015-12-29 Super-absorbent polymer and method for preparing same

Country Status (1)

Country Link
WO (1) WO2016117842A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910008293B1 (en) * 1988-05-13 1991-10-12 주식회사 럭키 High absorptive resin
KR20070083761A (en) * 2004-09-24 2007-08-24 니폰 쇼쿠바이 컴파니 리미티드 Particulate water absorbent containing water absorbent resin as a main component
JP2012509377A (en) * 2008-11-21 2012-04-19 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing permeable water-absorbing polymer particles by polymerizing droplets of a monomer solution
KR20140102264A (en) * 2011-12-30 2014-08-21 에보닉 코포레이션 Superabsorbent polymer with crosslinker
KR20140126821A (en) * 2013-04-22 2014-11-03 주식회사 엘지화학 Preparation method for super absorbent polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910008293B1 (en) * 1988-05-13 1991-10-12 주식회사 럭키 High absorptive resin
KR20070083761A (en) * 2004-09-24 2007-08-24 니폰 쇼쿠바이 컴파니 리미티드 Particulate water absorbent containing water absorbent resin as a main component
JP2012509377A (en) * 2008-11-21 2012-04-19 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing permeable water-absorbing polymer particles by polymerizing droplets of a monomer solution
KR20140102264A (en) * 2011-12-30 2014-08-21 에보닉 코포레이션 Superabsorbent polymer with crosslinker
KR20140126821A (en) * 2013-04-22 2014-11-03 주식회사 엘지화학 Preparation method for super absorbent polymer

Similar Documents

Publication Publication Date Title
US11654416B2 (en) Method for preparing super-absorbent polymer
JP6321805B2 (en) Method for producing superabsorbent resin
JP6443998B2 (en) Super absorbent polymer
KR101959547B1 (en) Preparation method for super absorbent polymer
KR101871968B1 (en) Super absorbent polymer
KR101949454B1 (en) Super absorbent polymer
KR102011926B1 (en) Super absorbent polymer and preparation method thereof
KR102077816B1 (en) Super absorbent polymer and preparation method thereof
KR102069312B1 (en) Preparation method of super absorbent polymer, and super absorbent polymer
WO2017007115A1 (en) Method for preparing superabsorbent polymer, and superabsorbent polymer prepared thereby
WO2017026623A1 (en) Method for preparing superabsorbent polymer
CN105392805A (en) Super absorbent polymer
KR101960042B1 (en) Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
US10843169B2 (en) Super absorbent polymer and preparation method thereof
JP6277282B2 (en) Method for producing superabsorbent resin
WO2018110760A1 (en) Superabsorbent polymer and manufacturing method therefor
KR20170057705A (en) Super absorbent polymer and preparation method thereof
KR101953764B1 (en) Super absorbent polymer and preparation method thereof
KR102069313B1 (en) Preparation method of super absorbent polymer, and super absorbent polymer
WO2016117842A1 (en) Super-absorbent polymer and method for preparing same
WO2016195376A1 (en) Super absorbent resin
WO2015016643A1 (en) Super absorbent polymer
WO2016104962A1 (en) Superabsorbent polymer and preparation method therefor
WO2017171208A1 (en) Superabsorbent resin and method for producing same
WO2017164462A1 (en) Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879096

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015879096

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015879096

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15524697

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载