WO2016113993A1 - Refrigeration device and sealed electric compressor - Google Patents
Refrigeration device and sealed electric compressor Download PDFInfo
- Publication number
- WO2016113993A1 WO2016113993A1 PCT/JP2015/081868 JP2015081868W WO2016113993A1 WO 2016113993 A1 WO2016113993 A1 WO 2016113993A1 JP 2015081868 W JP2015081868 W JP 2015081868W WO 2016113993 A1 WO2016113993 A1 WO 2016113993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- compressor
- oil
- scroll member
- refrigeration
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/30—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/32—Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
- C10M107/34—Polyoxyalkylenes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
Definitions
- the present invention relates to a refrigeration apparatus using a heat pump cycle and a hermetic electric compressor.
- R410A HFC (Hydrofluorocarbons) 32 / HFC125 (50/50 wt%)
- difluoromethane HFC32
- HFC32 difluoromethane
- Examples include refrigerants mixed with HFC32, HFC125, HFC134a, etc., hydrocarbons such as propane and propylene, and low GWP hydrofluorocarbons such as fluoroethane (HFC161) and difluoroethane (HFC152a).
- Difluoromethane (HFC32) was selected from the viewpoints of flammability, air conditioning capacity, equipment efficiency decline due to temperature gradient of non-azeotropic refrigerant, ease of handling, equipment configuration change (development), etc.
- Refrigeration oil for refrigeration air conditioners is used in hermetic electric compressors and plays a role of lubrication, sealing, cooling, etc. of the sliding parts.
- the most important characteristic of refrigerating machine oil for refrigerating and air-conditioning is compatibility with refrigerant.
- compatibility When two-layer separation of liquid refrigerant and refrigerating machine oil occurs in a compressor installed in an outdoor unit, the liquid separated into each sliding part There is a concern that the refrigerant will be supplied, resulting in poor lubrication.
- refrigeration oil is mist-like due to mechanical action during compressor operation, and is discharged to the cycle side. However, if the compatibility is inferior, the refrigeration oil stays at the low temperature part of the cycle, and the compressor oil enters the compressor.
- the two-layer separation characteristics of the refrigerant and the oil can be evaluated by a two-layer separation temperature curve with respect to the oil concentration.
- the two-layer separation characteristic on the low temperature side is an upwardly convex curve, with the upper side of the curve being compatible and the lower side representing the two-layer separation state.
- the maximum value of this curve is called the low temperature side two-layer separation temperature, and the lower the temperature, the better the compatibility.
- this low temperature side critical melting temperature needs to be ⁇ 30 ° C. or lower.
- Patent Document 1 As a refrigerating and air-conditioning apparatus using a refrigerating machine oil for refrigerating and air conditioning that is compatible with difluoromethane, there is a refrigerating apparatus that uses polyvinyl ether oil with respect to difluoromethane described in Patent Document 1.
- polyvinyl ether oil does not have a low-temperature critical solution temperature of ⁇ 30 ° C. or lower with difluoromethane, and has insufficient compatibility.
- Patent Documents 2 and 3 disclose compositions using difluoromethane and polyol ester oil, but chemically stable extreme pressure additives such as tricresyl phosphate do not work effectively. For this reason, it is difficult to suppress wear of the sliding portion of the compressor.
- the fatigue life of the rolling bearing is reduced because the pressure viscosity coefficient of the polyol ester oil is small.
- the scroll wrap is made of an aluminum alloy for the purpose of reducing the weight of the scroll compressor, there is a problem that the space between the wraps is significantly worn by a tribochemical reaction.
- the pipes that make up the cycle are long and the operating environment is low, resulting in two-layer separation in the current combination of difluoromethane and refrigeration oil. It stays and the amount of oil return to the compressor decreases. Also, the two-layer separation of the difluoromethane liquid and the refrigeration oil occurs in the compressor, and the oil-rich phase with low density is in the upper layer and the liquid refrigerant-rich phase with high density is in the lower layer, so it exists in the lower part of the compressor There is a concern that a liquid refrigerant rich phase with poor lubricity is supplied from the fuel filler opening to each compressor sliding portion, resulting in poor lubrication. Furthermore, in a structure having a rolling bearing on the compressor rotating shaft, a refrigeration oil having a low pressure-viscosity coefficient causes a problem of reducing the rolling fatigue life.
- An object of the present invention is to suppress the wear of a compressor sliding member and improve the fatigue life of a rolling bearing in a refrigeration air conditioner and a hermetic electric compressor using difluoromethane.
- the hermetic electric compressor used in the above-described refrigerating and air-conditioning apparatus includes a refrigerant compression section having a sliding section, and encloses difluoromethane and refrigerating machine oil.
- the compressor include a scroll compressor, a rotary compressor, a twin rotary compressor, a two-stage compression rotary compressor, and a swing compressor in which a roller and a vane are integrated.
- the refrigerant of the example is difluoromethane having a global warming potential (GWP) of 677, and the refrigerating machine oil has a terminal-modified polyalkylene glycol represented by the following chemical formula (1) having a pressure viscosity coefficient of 10 GPa ⁇ 1 or more (formula R 1 and R 3 are each an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 5 carbon atoms, and one of them includes an acyl group, and R 2 is an alkyl group having 2 to 4 carbon atoms. Refrigerating machine oil having a low-temperature critical solution temperature with difluoromethane of ⁇ 30 ° C. or lower was enclosed.
- GWP global warming potential
- the terminal-modified polyalkylene glycol of the refrigerating machine oil used in the air conditioner and refrigerator of the examples has a high viscosity index, so the viscosity grade to be used varies depending on the type of the compressor, but in the scroll compressor, the viscosity at 40 ° C. Is preferably in the range of 32 to 68 mm 2 / s. In the rotary compressor, the viscosity at 40 ° C. is preferably in the range of 15 to 56 mm 2 / s.
- a lubricity improver an antioxidant, an acid scavenger, an antifoaming agent, a metal deactivator, etc.
- a lubricity improver extreme pressure additives are effective, and thermochemically stable tertiary phosphates (such as tricresyl phosphate) should be blended to 2.0% by weight or less with respect to the base oil.
- thermochemically stable tertiary phosphates such as tricresyl phosphate
- DBPC 2,6-di-t-butyl-p-cresol
- the acid scavenger an aliphatic epoxy compound or a carbodiimide compound, which is a compound having an epoxy ring, is generally used.
- FIG. 1 shows an outline of the air conditioner used in this embodiment.
- the air conditioner includes an outdoor unit 1 and an indoor unit 2.
- the outdoor unit 1 includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, expansion means 6 (expansion part), and an accumulator 8.
- the compressor 3 includes a refrigerant compression unit having a built-in motor and a sliding portion.
- the indoor unit 2 includes an indoor heat exchanger 7.
- the high-temperature and high-pressure refrigerant gas compressed adiabatically by the compressor 3 is cooled by the outdoor heat exchanger 5 (used as a condensing means) through the discharge pipe and the four-way valve 4, It becomes a high-pressure liquid refrigerant.
- This refrigerant expands in the expansion means 6 (for example, a temperature type expansion valve), becomes a low-temperature low-pressure liquid containing a slight amount of gas, reaches the indoor heat exchanger 7 (used as an evaporation means), and indoor air The heat is obtained from the gas and then passes through the four-way valve 4 again in the state of low-temperature gas before entering the accumulator 8.
- the low-temperature and low-pressure liquid refrigerant that could not be evaporated by the indoor heat exchanger is separated in the accumulator 8, and the low-temperature and low-pressure gas reaches the compressor 3.
- the flow of the refrigerant is changed in the reverse direction by the four-way valve 4, and the reverse action occurs.
- FIG. 2 shows an outline of the refrigerator used in this example.
- the refrigerator is composed of an outdoor unit 9 and a cooler unit 10 such as a showcase.
- the outdoor unit 9 includes a compressor 11, a condenser 12, a supercooler 13, expansion means 14 and 17 (expansion unit), and an accumulator 16.
- the compressor 11 includes a refrigerant compression unit having a built-in motor and a sliding portion.
- the cooler unit 10 includes an evaporator 15.
- the high-temperature and high-pressure refrigerant gas compressed adiabatically by the compressor 11 is cooled by the condenser 12 through the discharge pipe, becomes a high-pressure liquid refrigerant and is supercooled by the subcooler 13, and then the expansion means 14. It expands by (for example, a temperature type expansion valve etc.), becomes a low-temperature / low-pressure liquid slightly containing gas, and is sent into the cooler unit 10.
- the evaporator 15 obtains heat from the air, passes through the accumulator 16 in the state of low-temperature gas, and returns to the compressor 11.
- the compressor for a refrigerator has a high refrigerant compression ratio of about 10 to 20, and the refrigerant gas tends to become high temperature.
- the liquid refrigerant exiting the condenser 12 is branched, a low-temperature and low-pressure liquid containing gas is obtained by the expansion means 17 (for example, a capillary tube), and the high-pressure liquid refrigerant in the main system is further cooled by the subcooler 13. After that, the discharge temperature is lowered by returning to the compressor 11.
- the expansion means 17 for example, a capillary tube
- FIG. 3 shows a schematic structure of a scroll type hermetic compressor.
- the compressors 3 and 11 include a fixed scroll member 19 having a spiral wrap 18 provided perpendicular to an end plate, a revolving scroll member 21 having a wrap 20 having substantially the same shape as the fixed scroll member 19, and a revolving A frame 22 that supports the scroll member 21, a crankshaft 23 that pivots the orbiting scroll member 21, an electric motor 24, and a pressure vessel 25 that incorporates these are included.
- the spiral wrap 18 and the wrap 20 are engaged with each other so as to form a compression mechanism.
- the orbiting scroll member 21 is revolved by the crankshaft 23, the outermost compression chamber 26 among the compression chambers 26 formed between the fixed scroll member 19 and the orbiting scroll member 21 revolves.
- the fixed scroll member 19 and the orbiting scroll member 21 move toward the center.
- the compression chamber 26 communicates with the discharge port 27, and the compressed gas discharged into the pressure vessel 25 is discharged from the discharge pipe 28 to the compressor. 3 and 11 are discharged to the outside.
- the crankshaft 23 rotates at a constant speed or a rotation speed corresponding to a voltage controlled by an inverter (not shown) to perform a compression operation.
- An oil sump 29 is provided below the electric motor 24, and the oil in the oil sump 29 passes through the oil hole 30 provided in the crankshaft 23 due to a pressure difference, and the orbiting scroll member 21. It is supplied to the lubrication of the sliding part with the crankshaft 23, the rolling bearings of the main bearing 31 and the auxiliary bearing 32, and the like.
- Examples of the present invention and comparative examples will be described below.
- Examples 1 and 2 The refrigerating machine oils of Examples 1 and 2 are as follows.
- A Polyalkylene glycol oil (PAG) (Polypropylene glycol oil with ethanoyl groups at both ends)
- B Polyalkylene glycol oil (PAG) (Polypropylene glycol oil with ethanoyl group and methyloxy group at both ends)
- Comparative Examples 1 to 7 (C) Polyalkylene glycol oil (PAG) (Polypropylene glycol oil with hydroxyl groups at both ends)
- D Polyalkylene glycol oil (PAG) (Polypropylene glycol oil with methyloxy groups at both ends)
- E Polyalkylene glycol oil (PAG) (Polypropylene glycol oil with methyloxy and hydroxyl groups at both ends)
- F Polyalkylene glycol oil (PAG) (Polyethylene glycol and polypropylene glycol copolymer oils with
- the compatibility between the refrigerant and the refrigeration oil guarantees the reliability of the compressor and the heat exchange efficiency, such as oil return from the refrigeration cycle to the compressor (to ensure the amount of oil inside the compressor) or lubrication. This is one of the important characteristics.
- the compatibility evaluation of difluoromethane and refrigerating machine oil was measured according to JIS K 2211.
- the refrigerant was sealed in a pressure-resistant glass container at an arbitrary oil concentration, and the contents were observed while the temperature was changed. When the content was cloudy, it was judged as two-layer separation, and when it was transparent, it was judged as dissolved.
- the oil concentration dependency of the temperature at which the two layers are separated is generally a curve having a maximum value. This maximum value was taken as the low temperature side critical dissolution temperature.
- Viscosity pressure coefficient (Viscosity pressure coefficient) Using a falling body type high-pressure viscometer, the high-pressure viscosity at 20 ° C. to 160 ° C. and 1 to 130 MPa was measured, and the viscosity pressure coefficient at 60 ° C. was calculated according to the following literature.
- Table 1 shows the low-temperature critical solution temperature, the viscosity pressure coefficient, and the fatigue average life results of rolling bearings for each refrigeration oil.
- the viscosity pressure coefficient was 13 MPa ⁇ 1 or more, and it was found that the rolling bearing fatigue average life exceeded 150 hours.
- the low-temperature critical solution temperature is -30 ° C, which is necessary to prevent deterioration of lubricity due to oil return from the refrigeration cycle to the compressor or supply of high-concentration refrigerant, and to prevent reduction in heat exchange efficiency of the refrigeration cycle.
- the refrigeration oils of Examples 1 and 2 are necessary to satisfy the refrigeration air conditioner and the compressor reliability in the overall view.
- Comparative Examples 1 to 7 one of the characteristics was inferior, and it was found that the refrigerant oil was insufficient as a refrigerating machine oil for a hermetic compressor using difluoromethane.
- Example 3 In this example, a 3000-hour endurance test under high speed and high load conditions was performed using a packaged air conditioner 14.0 kW model equipped with the scroll type hermetic compressor described above. The compressor was operated at a rotational speed of 6000 min ⁇ 1 . A 250 ⁇ m heat-resistant PET film (Type B 130 ° C.) was used for the insulation between the motor core and the coil, and a double coated copper wire coated with a polyesterimide-amideimide double coat was used for the main insulation of the coil. . Difluoromethane was used as the refrigerant, and 4000 g was sealed in the cycle.
- the refrigerating machine oil 1000 ml of the polyalkylene glycol oil having a kinematic viscosity of 46 mm 2 / s at 40 ° C. used in Example 1 was sealed in advance in the compressor.
- This refrigerating machine oil contains 0.5% by weight of an epoxy acid scavenger as an additive, 0.25% by weight of DBPC (2,6-di-t-butyl-p-cresol) as an acid scavenger, extreme pressure
- DBPC 2,6-di-t-butyl-p-cresol
- extreme pressure 1.0% by weight of tricresyl phosphate was blended.
- the mounted scroll-type hermetic compressor was disassembled, and the state of wear and the occurrence of flaking on the rolling bearing were examined.
- This refrigerating machine oil additive includes 0.5% by weight of an epoxy acid scavenger, 0.25% by weight of DBPC (2,6-di-t-butyl-p-cresol) as an acid scavenger, extreme pressure As an additive, 1.0% by weight of tricresyl phosphate was blended.
- Example 4 This embodiment is a scroll using a fixed scroll member, an orbiting scroll member, and an aluminum-silicon eutectic alloy containing 10 to 12% of silicon having high strength and excellent wear resistance in the frame and containing aluminum as a main component. In the closed type compressor, the same test as in Example 3 was performed for 500 hours. This aluminum silicon alloy member is not subjected to surface treatment.
- the refrigeration oil of this example described above suppresses the wear of the compressor sliding member and improves the fatigue life of the rolling bearing when difluoromethane having a small environmental load is used. Further, it has been found that when an aluminum alloy is used for a sliding member such as a scroll or a frame, the tribochemical reaction hardly occurs due to friction between members, and wear of the member can be suppressed. In the scroll, if at least one of the fixed scroll member and the orbiting scroll member is an aluminum alloy, both wear can be suppressed. Similar effects were obtained not only in the air conditioner but also in the refrigerator shown in FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Lubricants (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
The objective is to reduce abrasion of a compressor sliding member and improve the fatigue life of a roller bearing in a refrigeration device using difluoromethane. This refrigeration and air-conditioning device is equipped with: a sealed electric compressor which draws in and compresses a difluoromethane refrigerant, has a sliding part, and in which a refrigerator oil is sealed; a heat exchanger that dissipates heat from the refrigerant discharged from the compressor; a decompression device that decompresses the refrigerant flowing from the heat exchanger; and a refrigeration cycle that circulates the refrigerant decompressed by the decompression device via the heat exchanger, which absorbs the heat of the refrigerant. This refrigeration and air-conditioning device is characterized in that the refrigerator oil is a modified terminal polyalkylene glycol having a viscosity-pressure coefficient of 11 GPa-1 or greater and expressed by the chemical formula (1) (where R1 and R3 represent a C1-4 alkyl group, or a C2-5 acyl group, with one of these including an acyl group, and R2 represents a C2-4 alkylene group), and the low-temperature-side critical solution temperature of the refrigerant and the refrigerator oil is −30°C or less.
Formula 1: R1-(O-R2)n-OR3 . . . (1)
Description
本発明は、ヒートポンプサイクルを用いた冷凍装置及び密閉型電動圧縮機に関する。
The present invention relates to a refrigeration apparatus using a heat pump cycle and a hermetic electric compressor.
冷凍空調装置に使用される冷媒のR410A[HFC(Hydrofluorocarbons)32/HFC125(50/50重量%)]やR404A[HFC125/HFC143a/HFC134a(44/52/4重量%)]は、GWP(Global Warming Potential)がR410A=1924、R404A=3940と高いため、GWPが低い代替冷媒を用いた冷凍空調装置の開発が急務である。
R410A [HFC (Hydrofluorocarbons) 32 / HFC125 (50/50 wt%)] and R404A [HFC125 / HFC143a / HFC134a (44/52/4 wt%)] refrigerants used in refrigeration and air conditioners are GWP (Global Warming Since (Potential) is high at R410A = 1924 and R404A = 3940, it is an urgent need to develop a refrigeration air conditioner using an alternative refrigerant with a low GWP.
この代替冷媒としては、熱物性、低GWP、低毒性、低可燃性などの理由から、ジフルオロメタン(HFC32)が候補とされている。その他の冷媒としては、2,3,3,3-テトラフルオロプロペン(HFO1234yf(Hydrofluoroolefin)(GWP=0)、1,3,3,3-テトラフルオロプロペン(HFO1234ze)(GWP=1)もしくはHFOとHFC32、HFC125、HFC134aなどとの混合冷媒やプロパン、プロピレンなどのハイドロカーボン、及びフルオロエタン(HFC161)、ジフルオロエタン(HFC152a)などの低GWPのハイドロフルオロカーボンが挙げられている。これらの冷媒候補の中で、可燃性、冷暖房能力、非共沸冷媒の温度勾配による機器効率低下、取り扱い易さ、機器構成の変更(開発)などの観点から、ジフルオロメタン(HFC32)が選ばれ、いくつかの空調装置が製品化されている。
As a substitute refrigerant, difluoromethane (HFC32) is a candidate for reasons such as thermophysical properties, low GWP, low toxicity, and low flammability. Other refrigerants include 2,3,3,3-tetrafluoropropene (HFO1234yf (Hydrofluoroolefin) (GWP = 0), 1,3,3,3-tetrafluoropropene (HFO1234ze) (GWP = 1) or HFO. Examples include refrigerants mixed with HFC32, HFC125, HFC134a, etc., hydrocarbons such as propane and propylene, and low GWP hydrofluorocarbons such as fluoroethane (HFC161) and difluoroethane (HFC152a). Difluoromethane (HFC32) was selected from the viewpoints of flammability, air conditioning capacity, equipment efficiency decline due to temperature gradient of non-azeotropic refrigerant, ease of handling, equipment configuration change (development), etc. Commercialized
冷凍空調装置用の冷凍機油は、密閉型電動圧縮機に使用され、その摺動部の潤滑、密封、冷却等の役割を果たすものである。冷凍空調用冷凍機油で最も重要な特性は、冷媒との相溶性であり、室外機に配置される圧縮機内で液冷媒と冷凍機油の二層分離が発生すると、各摺動部に分離した液冷媒が供給されてしまい、潤滑不良を起こす懸念がある。さらに、圧縮機運転中に機械的な作用により冷凍機油がミスト状となってサイクル側に吐出されるが、相溶性が劣ると、サイクルの低温部で冷凍機油が滞留してしまい、圧縮機への油戻り量が減少する。特に、パッケージエアコンや冷凍機では、サイクルを構成する配管が長いため、冷媒との相溶性に優れる冷凍機油を用いる必要がある。冷媒及び油の二層分離特性は、油濃度に対する二層分離温度曲線で評価できる。低温側の二層分離特性は、上に凸の曲線となり、曲線の上側が相溶、下側で二層分離状態を表している。この曲線の極大値を低温側二層分離温度と呼び、この温度が低いほど相溶性が良いことを示す。ジフルオロメタンを冷媒に用いたパッケージエアコンや冷凍機では、この低温側臨界溶解温度が-30℃以下である必要がある。
Refrigeration oil for refrigeration air conditioners is used in hermetic electric compressors and plays a role of lubrication, sealing, cooling, etc. of the sliding parts. The most important characteristic of refrigerating machine oil for refrigerating and air-conditioning is compatibility with refrigerant. When two-layer separation of liquid refrigerant and refrigerating machine oil occurs in a compressor installed in an outdoor unit, the liquid separated into each sliding part There is a concern that the refrigerant will be supplied, resulting in poor lubrication. Furthermore, refrigeration oil is mist-like due to mechanical action during compressor operation, and is discharged to the cycle side. However, if the compatibility is inferior, the refrigeration oil stays at the low temperature part of the cycle, and the compressor oil enters the compressor. The amount of oil return decreases. Particularly in packaged air conditioners and refrigerators, since the pipes constituting the cycle are long, it is necessary to use refrigerator oil having excellent compatibility with the refrigerant. The two-layer separation characteristics of the refrigerant and the oil can be evaluated by a two-layer separation temperature curve with respect to the oil concentration. The two-layer separation characteristic on the low temperature side is an upwardly convex curve, with the upper side of the curve being compatible and the lower side representing the two-layer separation state. The maximum value of this curve is called the low temperature side two-layer separation temperature, and the lower the temperature, the better the compatibility. In packaged air conditioners and refrigerators using difluoromethane as a refrigerant, this low temperature side critical melting temperature needs to be −30 ° C. or lower.
ジフルオロメタンと適合する冷凍空調用冷凍機油を用いた冷凍空調装置としては、特許文献1に記載されたジフルオロメタンに対してポリビニルエーテル油を用いた冷凍装置がある。しかし、ポリビニルエーテル油は、ジフルオロメタンとの低温側臨界溶解温度が-30℃以下にならず、相溶性が不十分である。また、特許文献2と特許文献3には、ジフルオロメタンとポリオールエステル油を用いた組成物が開示されているが、トリクレジルホスフェートなどの化学的に安定な極圧添加剤が有効に作用しないために圧縮機摺動部の摩耗抑制が難しい。さらに、圧縮機の高効率化を目的とした転がり軸受を有する圧縮機においては、ポリオールエステル油の圧力粘度係数が小さいために転がり軸受の疲労寿命が低下してしまう。また、スクロール式圧縮機の軽量化を目的としたスクロールラップのアルミニウム合金化では、ラップ間がトライボケミカル反応によって大幅に摩耗する問題があった。
As a refrigerating and air-conditioning apparatus using a refrigerating machine oil for refrigerating and air conditioning that is compatible with difluoromethane, there is a refrigerating apparatus that uses polyvinyl ether oil with respect to difluoromethane described in Patent Document 1. However, polyvinyl ether oil does not have a low-temperature critical solution temperature of −30 ° C. or lower with difluoromethane, and has insufficient compatibility. Patent Documents 2 and 3 disclose compositions using difluoromethane and polyol ester oil, but chemically stable extreme pressure additives such as tricresyl phosphate do not work effectively. For this reason, it is difficult to suppress wear of the sliding portion of the compressor. Furthermore, in a compressor having a rolling bearing for the purpose of increasing the efficiency of the compressor, the fatigue life of the rolling bearing is reduced because the pressure viscosity coefficient of the polyol ester oil is small. In addition, when the scroll wrap is made of an aluminum alloy for the purpose of reducing the weight of the scroll compressor, there is a problem that the space between the wraps is significantly worn by a tribochemical reaction.
パッケージエアコンや冷凍機では、サイクルを構成する配管が長く、動作環境が低温になるために、現状のジフルオロメタンと冷凍機油との組合せにおいて二層分離を起こしてしまい、サイクルの低温部で油が滞留して、圧縮機への油戻り量が減少してしまう。また、圧縮機内でもジフルオロメタン液と冷凍機油の二層分離が発生し、密度が低い油リッチ相が上層に、密度が高い液冷媒リッチ相が下層になるために、圧縮機の下部に存在する給油口から潤滑性の劣る液冷媒リッチ相が各圧縮機摺動部に供給されてしまい、潤滑不良を起こす懸念がある。さらに、圧縮機回転軸に転がり軸受を持つ構造において、圧力粘度係数の低い冷凍機油では転がり疲労寿命を低下させてしまう問題を生じる。
In packaged air conditioners and refrigerators, the pipes that make up the cycle are long and the operating environment is low, resulting in two-layer separation in the current combination of difluoromethane and refrigeration oil. It stays and the amount of oil return to the compressor decreases. Also, the two-layer separation of the difluoromethane liquid and the refrigeration oil occurs in the compressor, and the oil-rich phase with low density is in the upper layer and the liquid refrigerant-rich phase with high density is in the lower layer, so it exists in the lower part of the compressor There is a concern that a liquid refrigerant rich phase with poor lubricity is supplied from the fuel filler opening to each compressor sliding portion, resulting in poor lubrication. Furthermore, in a structure having a rolling bearing on the compressor rotating shaft, a refrigeration oil having a low pressure-viscosity coefficient causes a problem of reducing the rolling fatigue life.
本発明の目的は、ジフルオロメタンを使用した冷凍空調装置及び密閉型電動圧縮機において、圧縮機摺動部材の摩耗を抑制し、転がり軸受の疲労寿命を向上させることにある。
An object of the present invention is to suppress the wear of a compressor sliding member and improve the fatigue life of a rolling bearing in a refrigeration air conditioner and a hermetic electric compressor using difluoromethane.
上記目的を達成するために、例えば特許請求の範囲に記載の構成を採用する。
In order to achieve the above object, for example, the configuration described in the claims is adopted.
本発明によれば、ジフルオロメタンを使用した冷凍空調装置及び密閉型電動圧縮機において、圧縮機摺動部材の摩耗を抑制し、転がり軸受の疲労寿命を向上させることができる。
According to the present invention, in a refrigerating and air-conditioning apparatus and a hermetic electric compressor using difluoromethane, wear of the compressor sliding member can be suppressed and the fatigue life of the rolling bearing can be improved.
以下、本発明の一実施形態に係る冷凍空調装置及び密閉型電動圧縮機について説明する。
Hereinafter, a refrigerating and air-conditioning apparatus and a hermetic electric compressor according to an embodiment of the present invention will be described.
前記した冷凍空調装置に用いる密閉型電動圧縮機は、摺動部を有する冷媒圧縮部を備え、ジフルオロメタンと、冷凍機油とを封入したものである。圧縮機としては、スクロール式圧縮機の他、ロータリー式圧縮機、ツインロータリー式圧縮機、2段圧縮ロータリー式圧縮機、及びローラとベーンが一体化されたスイング式圧縮機などがあげられる。実施例の冷媒は地球温暖化係数(GWP)が677のジフルオロメタンであり、前記冷凍機油は圧力粘度係数が、10GPa-1以上である下記化学式(1)で表わされる末端変性ポリアルキレングリコール(式中、R1およびR3は、炭素数1から4のアルキル基、または、炭素数2~5のアシル基であり、どちらか一方にアシル基を含み、R2は、炭素数2から4のアルキレン基を示す)であり、ジフルオロメタンとの低温側臨界溶解温度が-30℃以下である冷凍機油を封入した。
The hermetic electric compressor used in the above-described refrigerating and air-conditioning apparatus includes a refrigerant compression section having a sliding section, and encloses difluoromethane and refrigerating machine oil. Examples of the compressor include a scroll compressor, a rotary compressor, a twin rotary compressor, a two-stage compression rotary compressor, and a swing compressor in which a roller and a vane are integrated. The refrigerant of the example is difluoromethane having a global warming potential (GWP) of 677, and the refrigerating machine oil has a terminal-modified polyalkylene glycol represented by the following chemical formula (1) having a pressure viscosity coefficient of 10 GPa −1 or more (formula R 1 and R 3 are each an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 5 carbon atoms, and one of them includes an acyl group, and R 2 is an alkyl group having 2 to 4 carbon atoms. Refrigerating machine oil having a low-temperature critical solution temperature with difluoromethane of −30 ° C. or lower was enclosed.
〔化1〕 R1-(O-R2)n-OR3 ・・・・・・・・・・・(1)
実施例の空調装置、冷凍機に用いる冷凍機油の末端変性ポリアルキレングリコールは、粘度指数が高いために、使用する粘度グレードが圧縮機の種類により異なるが、スクロール式圧縮機では、40℃における粘度が32~68mm2/sの範囲が好ましい。また、ロータリー式圧縮機では、40℃における粘度が15~56mm2/sの範囲が好ましい。 [Chemical formula 1] R 1- (O-R 2 ) n -OR 3 (1)
The terminal-modified polyalkylene glycol of the refrigerating machine oil used in the air conditioner and refrigerator of the examples has a high viscosity index, so the viscosity grade to be used varies depending on the type of the compressor, but in the scroll compressor, the viscosity at 40 ° C. Is preferably in the range of 32 to 68 mm 2 / s. In the rotary compressor, the viscosity at 40 ° C. is preferably in the range of 15 to 56 mm 2 / s.
実施例の空調装置、冷凍機に用いる冷凍機油の末端変性ポリアルキレングリコールは、粘度指数が高いために、使用する粘度グレードが圧縮機の種類により異なるが、スクロール式圧縮機では、40℃における粘度が32~68mm2/sの範囲が好ましい。また、ロータリー式圧縮機では、40℃における粘度が15~56mm2/sの範囲が好ましい。 [Chemical formula 1] R 1- (O-R 2 ) n -OR 3 (1)
The terminal-modified polyalkylene glycol of the refrigerating machine oil used in the air conditioner and refrigerator of the examples has a high viscosity index, so the viscosity grade to be used varies depending on the type of the compressor, but in the scroll compressor, the viscosity at 40 ° C. Is preferably in the range of 32 to 68 mm 2 / s. In the rotary compressor, the viscosity at 40 ° C. is preferably in the range of 15 to 56 mm 2 / s.
前記した冷凍機油に潤滑性向上剤、酸化防止剤、酸捕捉剤、消泡剤、金属不活性剤等を添加しても全く問題はない。潤滑性向上剤としては、極圧添加剤が有効であり、熱化学的に安定な第三級ホスフェート類(トリクレジルホスフェートなど)を基油に対して2.0重量%以下配合することが好ましい。酸化防止剤としては、フェノール系であるDBPC(2,6-ジ-t-ブチル-p-クレゾール)が好ましい。酸捕捉剤としては、一般に、エポキシ環を有する化合物である脂肪族のエポキシ系化合物やカルボジイミド系化合物が使用される。
There is no problem at all even if a lubricity improver, an antioxidant, an acid scavenger, an antifoaming agent, a metal deactivator, etc. are added to the refrigerating machine oil. As the lubricity improver, extreme pressure additives are effective, and thermochemically stable tertiary phosphates (such as tricresyl phosphate) should be blended to 2.0% by weight or less with respect to the base oil. preferable. As the antioxidant, DBPC (2,6-di-t-butyl-p-cresol) which is a phenol type is preferable. As the acid scavenger, an aliphatic epoxy compound or a carbodiimide compound, which is a compound having an epoxy ring, is generally used.
図1は、本実施例で用いた空調装置の概略を示したものである。空調装置は、室外機1と室内機2とで構成されている。
FIG. 1 shows an outline of the air conditioner used in this embodiment. The air conditioner includes an outdoor unit 1 and an indoor unit 2.
室外機1には、圧縮機3、四方弁4、室外熱交換器5、膨張手段6(膨張部)及びアキュムレータ8が内蔵されている。圧縮機3は、モータが内蔵され摺動部を有する冷媒圧縮部を備えたものである。また、室内機2には、室内熱交換器7が内蔵されている。
The outdoor unit 1 includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, expansion means 6 (expansion part), and an accumulator 8. The compressor 3 includes a refrigerant compression unit having a built-in motor and a sliding portion. The indoor unit 2 includes an indoor heat exchanger 7.
室内を冷房する場合、圧縮機3にて断熱的に圧縮された高温高圧の冷媒ガスは、吐出パイプ及び四方弁4を通って室外熱交換器5(凝縮手段として使用される)で冷却され、高圧の液冷媒となる。この冷媒は、膨張手段6(例えば、温度式膨張弁など)で膨張し、僅かにガスを含む低温低圧液となって室内熱交換器7(蒸発手段として使用される)に至り、室内の空気から熱を得て低温ガスの状態で再び四方弁4を通ってからアキュレータ8に入る。室内熱交換器で蒸発できなかった低温低圧の液冷媒はアキュムレータ8において分離され、低温低圧ガスが圧縮機3に至る。室内を暖房する場合は、四方弁4によって冷媒の流れが逆方向に変えられ、逆作用となる。
When the room is cooled, the high-temperature and high-pressure refrigerant gas compressed adiabatically by the compressor 3 is cooled by the outdoor heat exchanger 5 (used as a condensing means) through the discharge pipe and the four-way valve 4, It becomes a high-pressure liquid refrigerant. This refrigerant expands in the expansion means 6 (for example, a temperature type expansion valve), becomes a low-temperature low-pressure liquid containing a slight amount of gas, reaches the indoor heat exchanger 7 (used as an evaporation means), and indoor air The heat is obtained from the gas and then passes through the four-way valve 4 again in the state of low-temperature gas before entering the accumulator 8. The low-temperature and low-pressure liquid refrigerant that could not be evaporated by the indoor heat exchanger is separated in the accumulator 8, and the low-temperature and low-pressure gas reaches the compressor 3. When the room is heated, the flow of the refrigerant is changed in the reverse direction by the four-way valve 4, and the reverse action occurs.
図2は、本実施例で用いた冷凍機の概略を示したものである。冷凍機は、室外機9とショーケースなどのクーラーユニット10とで構成されている。
FIG. 2 shows an outline of the refrigerator used in this example. The refrigerator is composed of an outdoor unit 9 and a cooler unit 10 such as a showcase.
室外機9には、圧縮機11、凝縮器12、過冷却器13、膨張手段14,17(膨張部)及びアキュムレータ16が内蔵されている。圧縮機11は、モータが内蔵され摺動部を有する冷媒圧縮部を備えたものである。また、クーラーユニット10には、蒸発器15が内蔵されている。
The outdoor unit 9 includes a compressor 11, a condenser 12, a supercooler 13, expansion means 14 and 17 (expansion unit), and an accumulator 16. The compressor 11 includes a refrigerant compression unit having a built-in motor and a sliding portion. The cooler unit 10 includes an evaporator 15.
圧縮機11で断熱的に圧縮された高温高圧の冷媒ガスは、吐出パイプを通って凝縮器12で冷却され、高圧の液冷媒となって過冷却器13にて過冷却されてから膨張手段14(例えば、温度式膨張弁など)で膨張し、僅かにガスを含む低温低圧液となってクーラーユニット10内に送られる。次いで、蒸発器15で空気から熱を得て低温ガスの状態でアキュレータ16を通り、圧縮機11に戻る。冷凍機用圧縮機は冷媒圧縮比が10~20程度と高く、冷媒ガスが高温になりやすい。このため凝縮器12を出た液冷媒を分岐させ、膨張手段17(例えば、キャピラリーチューブなど)によってガスを含む低温低圧液を得て主系統にある高圧の液冷媒を過冷却器13でさらに冷却した後に、圧縮機11に戻して吐出温度を低くさせている。
The high-temperature and high-pressure refrigerant gas compressed adiabatically by the compressor 11 is cooled by the condenser 12 through the discharge pipe, becomes a high-pressure liquid refrigerant and is supercooled by the subcooler 13, and then the expansion means 14. It expands by (for example, a temperature type expansion valve etc.), becomes a low-temperature / low-pressure liquid slightly containing gas, and is sent into the cooler unit 10. Next, the evaporator 15 obtains heat from the air, passes through the accumulator 16 in the state of low-temperature gas, and returns to the compressor 11. The compressor for a refrigerator has a high refrigerant compression ratio of about 10 to 20, and the refrigerant gas tends to become high temperature. Therefore, the liquid refrigerant exiting the condenser 12 is branched, a low-temperature and low-pressure liquid containing gas is obtained by the expansion means 17 (for example, a capillary tube), and the high-pressure liquid refrigerant in the main system is further cooled by the subcooler 13. After that, the discharge temperature is lowered by returning to the compressor 11.
圧縮機3,11としては、スクロール式密閉型圧縮機を用いた。図3は、スクロール式密閉型圧縮機の概略構造を示したものである。
As the compressors 3 and 11, scroll type hermetic compressors were used. FIG. 3 shows a schematic structure of a scroll type hermetic compressor.
圧縮機3,11は、端板に垂直に設けられた渦巻状ラップ18を有する固定スクロール部材19と、この固定スクロール部材19と実質的に同一形状のラップ20を有する旋回スクロール部材21と、旋回スクロール部材21を支持するフレーム22と、旋回スクロール部材21を旋回運動させるクランクシャフト23と、電動モータ24と、これらを内蔵する圧力容器25とを含む。渦巻状ラップ18とラップ20とは、互いに向い合わせにして噛み合わせ、圧縮機構部を形成してある。旋回スクロール部材21は、クランクシャフト23によって旋回運動させると、固定スクロール部材19と旋回スクロール部材21との間に形成される圧縮室26のうち、最も外側に位置している圧縮室26が旋回運動に伴って容積を次第に縮小しながら、固定スクロール部材19及び旋回スクロール部材21の中心部に向かって移動していく。圧縮室26が固定スクロール部材19及び旋回スクロール部材21の中心部近傍に達すると、圧縮室26が吐出口27と連通し、圧力容器25の内部に吐出された圧縮ガスが吐出パイプ28から圧縮機3,11の外部に吐出される。
The compressors 3 and 11 include a fixed scroll member 19 having a spiral wrap 18 provided perpendicular to an end plate, a revolving scroll member 21 having a wrap 20 having substantially the same shape as the fixed scroll member 19, and a revolving A frame 22 that supports the scroll member 21, a crankshaft 23 that pivots the orbiting scroll member 21, an electric motor 24, and a pressure vessel 25 that incorporates these are included. The spiral wrap 18 and the wrap 20 are engaged with each other so as to form a compression mechanism. When the orbiting scroll member 21 is revolved by the crankshaft 23, the outermost compression chamber 26 among the compression chambers 26 formed between the fixed scroll member 19 and the orbiting scroll member 21 revolves. As the volume is gradually reduced, the fixed scroll member 19 and the orbiting scroll member 21 move toward the center. When the compression chamber 26 reaches the vicinity of the center of the fixed scroll member 19 and the orbiting scroll member 21, the compression chamber 26 communicates with the discharge port 27, and the compressed gas discharged into the pressure vessel 25 is discharged from the discharge pipe 28 to the compressor. 3 and 11 are discharged to the outside.
圧縮機3,11においては、一定速あるいは図示していないインバータによって制御された電圧に応じた回転速度でクランクシャフト23が回転し、圧縮動作を行う。また、電動モータ24の下方には、油溜め部29が設けられており、油溜め部29の油は、圧力差によってクランクシャフト23に設けられた油孔30を通って、旋回スクロール部材21とクランクシャフト23との摺動部、主軸受31や副軸受32の転がり軸受等の潤滑に供給される。
In the compressors 3 and 11, the crankshaft 23 rotates at a constant speed or a rotation speed corresponding to a voltage controlled by an inverter (not shown) to perform a compression operation. An oil sump 29 is provided below the electric motor 24, and the oil in the oil sump 29 passes through the oil hole 30 provided in the crankshaft 23 due to a pressure difference, and the orbiting scroll member 21. It is supplied to the lubrication of the sliding part with the crankshaft 23, the rolling bearings of the main bearing 31 and the auxiliary bearing 32, and the like.
以下、本発明の実施例と比較例について説明する。
〔実施例1,2〕
実施例1,2の冷凍機油はそれぞれ以下のとおりである。
(A)ポリアルキレングリコール油(PAG)
(両末端がエタノイル基のポリプロピレングリコール油)
(B)ポリアルキレングリコール油(PAG)
(両末端がエタノイル基とメチルオキシ基のポリプロピレングリコール油)
(比較例1~7)
(C)ポリアルキレングリコール油(PAG)
(両末端がヒドロキシル基のポリプロピレングリコール油)
(D)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基のポリプロピレングリコール油)
(E)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基とヒドロキシル基のポリプロピレングリコール油)
(F)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基のポリエチレングリコールとポリプロピレングリコール共重合油)
(G)ポリビニルエーテル油(PVE)
(アルコキシビニルの重合体であり、アルコキシ基がエチルオキシ基のエーテル油)
(H)ヒンダードタイプポリオールエステル油(H-POE)
(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油)
(I)ヒンダードタイプポリオールエステル油(H-POE)
(ジペンタエリスリトール系のペンタン酸/2-メチルブタン酸の混合脂肪酸エステル油)
(低温側臨界溶解温度)
冷凍空調用圧縮機では冷媒と冷凍機油とが封入される。冷媒と冷凍機油との相溶性は、前述したように冷凍サイクルから圧縮機への油戻り(圧縮機内部の油量を確保)あるいは潤滑性等圧縮機の信頼性やさらには熱交換効率を保証する面で重要な特性の一つである。 Examples of the present invention and comparative examples will be described below.
Examples 1 and 2
The refrigerating machine oils of Examples 1 and 2 are as follows.
(A) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with ethanoyl groups at both ends)
(B) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with ethanoyl group and methyloxy group at both ends)
(Comparative Examples 1 to 7)
(C) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with hydroxyl groups at both ends)
(D) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with methyloxy groups at both ends)
(E) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with methyloxy and hydroxyl groups at both ends)
(F) Polyalkylene glycol oil (PAG)
(Polyethylene glycol and polypropylene glycol copolymer oils with methyloxy groups at both ends)
(G) Polyvinyl ether oil (PVE)
(Alkoxy vinyl polymer, ether oil whose alkoxy group is ethyloxy group)
(H) Hindered type polyol ester oil (H-POE)
(Pentaerythritol / dipentaerythritol 2-methylbutanoic acid / 2-ethylhexanoic acid mixed fatty acid ester oil)
(I) Hindered type polyol ester oil (H-POE)
(Dipentaerythritol-based pentanoic acid / 2-methylbutanoic acid mixed fatty acid ester oil)
(Low temperature critical solution temperature)
In the compressor for refrigerating and air-conditioning, refrigerant and refrigerating machine oil are enclosed. As described above, the compatibility between the refrigerant and the refrigeration oil guarantees the reliability of the compressor and the heat exchange efficiency, such as oil return from the refrigeration cycle to the compressor (to ensure the amount of oil inside the compressor) or lubrication. This is one of the important characteristics.
〔実施例1,2〕
実施例1,2の冷凍機油はそれぞれ以下のとおりである。
(A)ポリアルキレングリコール油(PAG)
(両末端がエタノイル基のポリプロピレングリコール油)
(B)ポリアルキレングリコール油(PAG)
(両末端がエタノイル基とメチルオキシ基のポリプロピレングリコール油)
(比較例1~7)
(C)ポリアルキレングリコール油(PAG)
(両末端がヒドロキシル基のポリプロピレングリコール油)
(D)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基のポリプロピレングリコール油)
(E)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基とヒドロキシル基のポリプロピレングリコール油)
(F)ポリアルキレングリコール油(PAG)
(両末端がメチルオキシ基のポリエチレングリコールとポリプロピレングリコール共重合油)
(G)ポリビニルエーテル油(PVE)
(アルコキシビニルの重合体であり、アルコキシ基がエチルオキシ基のエーテル油)
(H)ヒンダードタイプポリオールエステル油(H-POE)
(ペンタエリスリトール/ジペンタエリスリトール系の2-メチルブタン酸/2-エチルヘキサン酸の混合脂肪酸エステル油)
(I)ヒンダードタイプポリオールエステル油(H-POE)
(ジペンタエリスリトール系のペンタン酸/2-メチルブタン酸の混合脂肪酸エステル油)
(低温側臨界溶解温度)
冷凍空調用圧縮機では冷媒と冷凍機油とが封入される。冷媒と冷凍機油との相溶性は、前述したように冷凍サイクルから圧縮機への油戻り(圧縮機内部の油量を確保)あるいは潤滑性等圧縮機の信頼性やさらには熱交換効率を保証する面で重要な特性の一つである。 Examples of the present invention and comparative examples will be described below.
Examples 1 and 2
The refrigerating machine oils of Examples 1 and 2 are as follows.
(A) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with ethanoyl groups at both ends)
(B) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with ethanoyl group and methyloxy group at both ends)
(Comparative Examples 1 to 7)
(C) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with hydroxyl groups at both ends)
(D) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with methyloxy groups at both ends)
(E) Polyalkylene glycol oil (PAG)
(Polypropylene glycol oil with methyloxy and hydroxyl groups at both ends)
(F) Polyalkylene glycol oil (PAG)
(Polyethylene glycol and polypropylene glycol copolymer oils with methyloxy groups at both ends)
(G) Polyvinyl ether oil (PVE)
(Alkoxy vinyl polymer, ether oil whose alkoxy group is ethyloxy group)
(H) Hindered type polyol ester oil (H-POE)
(Pentaerythritol / dipentaerythritol 2-methylbutanoic acid / 2-ethylhexanoic acid mixed fatty acid ester oil)
(I) Hindered type polyol ester oil (H-POE)
(Dipentaerythritol-based pentanoic acid / 2-methylbutanoic acid mixed fatty acid ester oil)
(Low temperature critical solution temperature)
In the compressor for refrigerating and air-conditioning, refrigerant and refrigerating machine oil are enclosed. As described above, the compatibility between the refrigerant and the refrigeration oil guarantees the reliability of the compressor and the heat exchange efficiency, such as oil return from the refrigeration cycle to the compressor (to ensure the amount of oil inside the compressor) or lubrication. This is one of the important characteristics.
ジフルオロメタンと冷凍機油との相溶性評価はJIS K 2211に準じて測定した。耐圧ガラス容器に任意の油濃度において冷媒を封入し、温度を変化させた状態での内容物の観察を行った。内容物が白濁していれば二層分離、透明であれば溶解と判定した。この二層に分離する温度の油濃度依存性は一般に極大値を有する曲線となる。この極大値を低温側臨界溶解温度とした。
The compatibility evaluation of difluoromethane and refrigerating machine oil was measured according to JIS K 2211. The refrigerant was sealed in a pressure-resistant glass container at an arbitrary oil concentration, and the contents were observed while the temperature was changed. When the content was cloudy, it was judged as two-layer separation, and when it was transparent, it was judged as dissolved. The oil concentration dependency of the temperature at which the two layers are separated is generally a curve having a maximum value. This maximum value was taken as the low temperature side critical dissolution temperature.
(粘度圧力係数)
落体式高圧粘度計を用いて20℃~160℃、1~130MPaにおける高圧粘度を測定し、以下の文献に従い60℃における粘度圧力係数を算出した。 (Viscosity pressure coefficient)
Using a falling body type high-pressure viscometer, the high-pressure viscosity at 20 ° C. to 160 ° C. and 1 to 130 MPa was measured, and the viscosity pressure coefficient at 60 ° C. was calculated according to the following literature.
落体式高圧粘度計を用いて20℃~160℃、1~130MPaにおける高圧粘度を測定し、以下の文献に従い60℃における粘度圧力係数を算出した。 (Viscosity pressure coefficient)
Using a falling body type high-pressure viscometer, the high-pressure viscosity at 20 ° C. to 160 ° C. and 1 to 130 MPa was measured, and the viscosity pressure coefficient at 60 ° C. was calculated according to the following literature.
参考文献:畑ら,トライボロジスト,55(9),635(2010).
(転がり軸受疲労寿命)
転がり軸受の疲労寿命は、IP305/79(The Institute of Petroleum)におけるユニスチール試験により評価した。回転速度1500/min,荷重4800N,軸受No.51110,油量150ml,油温120℃において11件試験を実施し、ワイブル分布により転がり軸受の疲労寿命を平均寿命時間として算出した。 Reference: Hata et al., Tribologist, 55 (9), 635 (2010).
(Rolling bearing fatigue life)
The fatigue life of the rolling bearing was evaluated by a unisteel test in IP305 / 79 (The Institute of Petroleum). Rotation speed 1500 / min, load 4800N, bearing no. Eleven tests were conducted at 51110, an oil amount of 150 ml, and an oil temperature of 120 ° C., and the fatigue life of the rolling bearing was calculated as an average life time based on the Weibull distribution.
(転がり軸受疲労寿命)
転がり軸受の疲労寿命は、IP305/79(The Institute of Petroleum)におけるユニスチール試験により評価した。回転速度1500/min,荷重4800N,軸受No.51110,油量150ml,油温120℃において11件試験を実施し、ワイブル分布により転がり軸受の疲労寿命を平均寿命時間として算出した。 Reference: Hata et al., Tribologist, 55 (9), 635 (2010).
(Rolling bearing fatigue life)
The fatigue life of the rolling bearing was evaluated by a unisteel test in IP305 / 79 (The Institute of Petroleum). Rotation speed 1500 / min, load 4800N, bearing no. Eleven tests were conducted at 51110, an oil amount of 150 ml, and an oil temperature of 120 ° C., and the fatigue life of the rolling bearing was calculated as an average life time based on the Weibull distribution.
各冷凍機油の低温側臨界溶解温度、粘度圧力係数、転がり軸受の疲労平均寿命結果を表1に示す。実施例1,2は、粘度圧力係数が13MPa-1以上で転がり軸受疲労平均寿命が150時間を超えることがわかった。冷凍空調装置において冷凍サイクルから圧縮機への油戻りあるいは冷媒高濃度液の供給による潤滑性の低下防止、さらに冷凍サイクルの熱交換効率低下防止のために必要な低温側臨界溶解温度を-30℃以下にしなくてはならない。以上のような総合的にみて冷凍空調装置並びに圧縮機信頼性を満たすには実施例1,2の冷凍機油が必要である。これに対して、比較例1~7では、いずれかの特性が劣る結果となっており、ジフルオロメタンを用いた密閉型圧縮機用の冷凍機油としては、不十分であることがわかった。
Table 1 shows the low-temperature critical solution temperature, the viscosity pressure coefficient, and the fatigue average life results of rolling bearings for each refrigeration oil. In Examples 1 and 2, the viscosity pressure coefficient was 13 MPa −1 or more, and it was found that the rolling bearing fatigue average life exceeded 150 hours. In the refrigeration air conditioner, the low-temperature critical solution temperature is -30 ° C, which is necessary to prevent deterioration of lubricity due to oil return from the refrigeration cycle to the compressor or supply of high-concentration refrigerant, and to prevent reduction in heat exchange efficiency of the refrigeration cycle. Must be: The refrigeration oils of Examples 1 and 2 are necessary to satisfy the refrigeration air conditioner and the compressor reliability in the overall view. On the other hand, in Comparative Examples 1 to 7, one of the characteristics was inferior, and it was found that the refrigerant oil was insufficient as a refrigerating machine oil for a hermetic compressor using difluoromethane.
〔実施例3〕
本実施例は、前記したスクロール式密閉型圧縮機を搭載したパッケージエアコン14.0kW機種を用いて、高速高負荷条件における3000時間耐久試験を実施したものである。圧縮機の回転速度は、6000min-1で運転を行った。モータの鉄心とコイルとの絶縁には、250μmの耐熱PETフィルム(B種130℃)を用い、コイルの主絶縁には、ポリエステルイミド-アミドイミドのダブルコートを施した二重被覆銅線を用いた。冷媒には、ジフルオロメタンを用い、サイクルに4000g封止した。冷凍機油には、実施例1で用いた40℃における動粘度が46mm2/sのポリアルキレングリコール油を予め圧縮機内に1000ml封入した。この冷凍機油には、添加剤としてエポキシ系酸捕捉剤を0.5重量%、酸捕捉剤としてDBPC(2,6-ジ-t-ブチル-p-クレゾール)を0.25重量%、極圧添加剤としてトリクレジルホスフェートを1.0重量%配合した。この実施形態におけるパッケージエアコンを3000時間運転後において、搭載したスクロール式密閉型圧縮機を解体し、摩耗の状態や転がり軸受のフレーキング発生状態について調べた。 Example 3
In this example, a 3000-hour endurance test under high speed and high load conditions was performed using a packaged air conditioner 14.0 kW model equipped with the scroll type hermetic compressor described above. The compressor was operated at a rotational speed of 6000 min −1 . A 250 μm heat-resistant PET film (Type B 130 ° C.) was used for the insulation between the motor core and the coil, and a double coated copper wire coated with a polyesterimide-amideimide double coat was used for the main insulation of the coil. . Difluoromethane was used as the refrigerant, and 4000 g was sealed in the cycle. In the refrigerating machine oil, 1000 ml of the polyalkylene glycol oil having a kinematic viscosity of 46 mm 2 / s at 40 ° C. used in Example 1 was sealed in advance in the compressor. This refrigerating machine oil contains 0.5% by weight of an epoxy acid scavenger as an additive, 0.25% by weight of DBPC (2,6-di-t-butyl-p-cresol) as an acid scavenger, extreme pressure As an additive, 1.0% by weight of tricresyl phosphate was blended. After operating the packaged air conditioner in this embodiment for 3000 hours, the mounted scroll-type hermetic compressor was disassembled, and the state of wear and the occurrence of flaking on the rolling bearing were examined.
本実施例は、前記したスクロール式密閉型圧縮機を搭載したパッケージエアコン14.0kW機種を用いて、高速高負荷条件における3000時間耐久試験を実施したものである。圧縮機の回転速度は、6000min-1で運転を行った。モータの鉄心とコイルとの絶縁には、250μmの耐熱PETフィルム(B種130℃)を用い、コイルの主絶縁には、ポリエステルイミド-アミドイミドのダブルコートを施した二重被覆銅線を用いた。冷媒には、ジフルオロメタンを用い、サイクルに4000g封止した。冷凍機油には、実施例1で用いた40℃における動粘度が46mm2/sのポリアルキレングリコール油を予め圧縮機内に1000ml封入した。この冷凍機油には、添加剤としてエポキシ系酸捕捉剤を0.5重量%、酸捕捉剤としてDBPC(2,6-ジ-t-ブチル-p-クレゾール)を0.25重量%、極圧添加剤としてトリクレジルホスフェートを1.0重量%配合した。この実施形態におけるパッケージエアコンを3000時間運転後において、搭載したスクロール式密閉型圧縮機を解体し、摩耗の状態や転がり軸受のフレーキング発生状態について調べた。 Example 3
In this example, a 3000-hour endurance test under high speed and high load conditions was performed using a packaged air conditioner 14.0 kW model equipped with the scroll type hermetic compressor described above. The compressor was operated at a rotational speed of 6000 min −1 . A 250 μm heat-resistant PET film (Type B 130 ° C.) was used for the insulation between the motor core and the coil, and a double coated copper wire coated with a polyesterimide-amideimide double coat was used for the main insulation of the coil. . Difluoromethane was used as the refrigerant, and 4000 g was sealed in the cycle. In the refrigerating machine oil, 1000 ml of the polyalkylene glycol oil having a kinematic viscosity of 46 mm 2 / s at 40 ° C. used in Example 1 was sealed in advance in the compressor. This refrigerating machine oil contains 0.5% by weight of an epoxy acid scavenger as an additive, 0.25% by weight of DBPC (2,6-di-t-butyl-p-cresol) as an acid scavenger, extreme pressure As an additive, 1.0% by weight of tricresyl phosphate was blended. After operating the packaged air conditioner in this embodiment for 3000 hours, the mounted scroll-type hermetic compressor was disassembled, and the state of wear and the occurrence of flaking on the rolling bearing were examined.
実機を用いた耐久試験の結果は次のようであった。スクロール式密閉型圧縮機の主軸受、副軸受の転がり軸受の転動体や内輪外輪の軌道面にフレーキングが見られず、旋回と固定スクロールの歯先やオルダムリングなどの摺動部の摩耗が非常に少ないことがわかった。また、ジフルオロメタンとの低温相溶性が優れているために、解体後の圧縮機内部には十分な油量が残されており、ジフルオロメタンとの低温相溶性が優れていたためと推定する。また、冷凍機油の劣化判断として、全酸価を滴定法、添加剤残存量をガスクロマトグラフィーにおいて測定した。試験後の全酸価は、0.01mgKOH/gであり、新油と同じ値を示した。酸捕捉剤の残存量が50%以上で、酸化防止剤と極圧添加剤に関しては約90%残存しており、問題がないことを確認した。
(比較例8)
また、比較として実施例3と同条件において、冷凍機油のみ比較例6で用いたポリオールエステル油を用いて試験を実施した。この冷凍機油の添加剤には、エポキシ系酸捕捉剤を0.5重量%、酸捕捉剤としてDBPC(2,6-ジ-t-ブチル-p-クレゾール)を0.25重量%、極圧添加剤としてトリクレジルホスフェートを1.0重量%配合した。 The results of the durability test using the actual machine were as follows. There is no flaking on the rolling elements of the main bearing and auxiliary bearing of the scroll type hermetic compressor and the raceway surface of the inner and outer rings, and wear of sliding parts such as the tip of the turning and fixed scroll and the Oldham ring It turns out that it is very few. In addition, since the low-temperature compatibility with difluoromethane is excellent, a sufficient amount of oil remains in the compressor after dismantling, and it is estimated that the low-temperature compatibility with difluoromethane was excellent. Further, as a judgment on the deterioration of refrigerating machine oil, the total acid value was measured by a titration method, and the residual amount of additive was measured by gas chromatography. The total acid value after the test was 0.01 mg KOH / g, which was the same value as the new oil. It was confirmed that the remaining amount of the acid scavenger was 50% or more, and about 90% of the antioxidant and the extreme pressure additive remained, and there was no problem.
(Comparative Example 8)
For comparison, a test was conducted using the polyol ester oil used in Comparative Example 6 only for the refrigerating machine oil under the same conditions as in Example 3. This refrigerating machine oil additive includes 0.5% by weight of an epoxy acid scavenger, 0.25% by weight of DBPC (2,6-di-t-butyl-p-cresol) as an acid scavenger, extreme pressure As an additive, 1.0% by weight of tricresyl phosphate was blended.
(比較例8)
また、比較として実施例3と同条件において、冷凍機油のみ比較例6で用いたポリオールエステル油を用いて試験を実施した。この冷凍機油の添加剤には、エポキシ系酸捕捉剤を0.5重量%、酸捕捉剤としてDBPC(2,6-ジ-t-ブチル-p-クレゾール)を0.25重量%、極圧添加剤としてトリクレジルホスフェートを1.0重量%配合した。 The results of the durability test using the actual machine were as follows. There is no flaking on the rolling elements of the main bearing and auxiliary bearing of the scroll type hermetic compressor and the raceway surface of the inner and outer rings, and wear of sliding parts such as the tip of the turning and fixed scroll and the Oldham ring It turns out that it is very few. In addition, since the low-temperature compatibility with difluoromethane is excellent, a sufficient amount of oil remains in the compressor after dismantling, and it is estimated that the low-temperature compatibility with difluoromethane was excellent. Further, as a judgment on the deterioration of refrigerating machine oil, the total acid value was measured by a titration method, and the residual amount of additive was measured by gas chromatography. The total acid value after the test was 0.01 mg KOH / g, which was the same value as the new oil. It was confirmed that the remaining amount of the acid scavenger was 50% or more, and about 90% of the antioxidant and the extreme pressure additive remained, and there was no problem.
(Comparative Example 8)
For comparison, a test was conducted using the polyol ester oil used in Comparative Example 6 only for the refrigerating machine oil under the same conditions as in Example 3. This refrigerating machine oil additive includes 0.5% by weight of an epoxy acid scavenger, 0.25% by weight of DBPC (2,6-di-t-butyl-p-cresol) as an acid scavenger, extreme pressure As an additive, 1.0% by weight of tricresyl phosphate was blended.
比較例8では、主軸受と副軸受の転がり軸受の内輪軌道面にフレーキング痕が見られ、さらにその他の摺動部の摩耗が増加していた。また、試験後の全酸価も0.08mgKOH/gと増加しており、酸捕捉剤の残存量が約20%まで減少した。
〔実施例4〕
本実施例は、固定スクロール部材と旋回スクロール部材、並びにフレームに高強度で耐摩耗性に優れた10~12%のシリコンを含有しアルミニウムが主成分のアルミニウム-シリコン共晶系合金を用いたスクロール式密閉型圧縮機において、500時間における実施例3と同様な試験を実施したものである。このアルミニウムシリコン合金部材には、表面処理を施していない。 In Comparative Example 8, flaking marks were seen on the inner ring raceway surfaces of the rolling bearings of the main bearing and the auxiliary bearing, and the wear of other sliding portions was increased. Further, the total acid value after the test increased to 0.08 mg KOH / g, and the residual amount of the acid scavenger decreased to about 20%.
Example 4
This embodiment is a scroll using a fixed scroll member, an orbiting scroll member, and an aluminum-silicon eutectic alloy containing 10 to 12% of silicon having high strength and excellent wear resistance in the frame and containing aluminum as a main component. In the closed type compressor, the same test as in Example 3 was performed for 500 hours. This aluminum silicon alloy member is not subjected to surface treatment.
〔実施例4〕
本実施例は、固定スクロール部材と旋回スクロール部材、並びにフレームに高強度で耐摩耗性に優れた10~12%のシリコンを含有しアルミニウムが主成分のアルミニウム-シリコン共晶系合金を用いたスクロール式密閉型圧縮機において、500時間における実施例3と同様な試験を実施したものである。このアルミニウムシリコン合金部材には、表面処理を施していない。 In Comparative Example 8, flaking marks were seen on the inner ring raceway surfaces of the rolling bearings of the main bearing and the auxiliary bearing, and the wear of other sliding portions was increased. Further, the total acid value after the test increased to 0.08 mg KOH / g, and the residual amount of the acid scavenger decreased to about 20%.
Example 4
This embodiment is a scroll using a fixed scroll member, an orbiting scroll member, and an aluminum-silicon eutectic alloy containing 10 to 12% of silicon having high strength and excellent wear resistance in the frame and containing aluminum as a main component. In the closed type compressor, the same test as in Example 3 was performed for 500 hours. This aluminum silicon alloy member is not subjected to surface treatment.
この試験の結果、本実施例では、表面処理を施していないにもかかわらず、アルミニウムシリコン合金部材において、トライボケミカル反応に起因する大きな摩耗は進行していなかった。また、冷凍機油の全酸価も0.01mgKOH/gと増加がなかった。
(比較例9)
また、実施例4のスクロール式密閉型圧縮機を用いて、比較例8と同じ冷凍機油を封入して実施例4と同様の試験を行った。 As a result of this test, in the present example, although the surface treatment was not performed, the large wear due to the tribochemical reaction did not progress in the aluminum silicon alloy member. Further, the total acid value of the refrigerating machine oil was not increased to 0.01 mgKOH / g.
(Comparative Example 9)
Further, using the scroll-type hermetic compressor of Example 4, the same refrigerating machine oil as that of Comparative Example 8 was enclosed, and the same test as in Example 4 was performed.
(比較例9)
また、実施例4のスクロール式密閉型圧縮機を用いて、比較例8と同じ冷凍機油を封入して実施例4と同様の試験を行った。 As a result of this test, in the present example, although the surface treatment was not performed, the large wear due to the tribochemical reaction did not progress in the aluminum silicon alloy member. Further, the total acid value of the refrigerating machine oil was not increased to 0.01 mgKOH / g.
(Comparative Example 9)
Further, using the scroll-type hermetic compressor of Example 4, the same refrigerating machine oil as that of Comparative Example 8 was enclosed, and the same test as in Example 4 was performed.
比較例9では、アルミニウムシリコン部材同士の摩擦により、トライボケミカル反応が促進され、摩耗が増加して、72時間で試験を中断した。冷凍機油の全酸価も0.53mgKOH/gと大幅に増加して劣化が進んでいた。
In Comparative Example 9, the tribochemical reaction was accelerated by friction between aluminum silicon members, the wear increased, and the test was interrupted in 72 hours. The total acid value of the refrigerating machine oil was greatly increased to 0.53 mgKOH / g, and deterioration was progressing.
以上の本実施例の冷凍機油であれば、環境負荷が小さいジフルオロメタンを用いた場合に、圧縮機摺動部材の摩耗を抑制し、転がり軸受の疲労寿命を向上させることがわかった。また、更にスクロールやフレーム等の摺動部材にアルミニウム合金を用いた場合に、部材同士の摩擦によってもトライボケミカル反応が生じにくく、部材の摩耗を抑制することができることがわかった。スクロールにおいては、固定スクロール部材と旋回スクロール部材の少なくとも一方がアルミニウム合金であれば、双方の摩耗を抑制することができる。空調装置のみではなく、図2に示す冷凍機においても同様の効果が得られた。
It was found that the refrigeration oil of this example described above suppresses the wear of the compressor sliding member and improves the fatigue life of the rolling bearing when difluoromethane having a small environmental load is used. Further, it has been found that when an aluminum alloy is used for a sliding member such as a scroll or a frame, the tribochemical reaction hardly occurs due to friction between members, and wear of the member can be suppressed. In the scroll, if at least one of the fixed scroll member and the orbiting scroll member is an aluminum alloy, both wear can be suppressed. Similar effects were obtained not only in the air conditioner but also in the refrigerator shown in FIG.
1:室外機
2:室内機
3:圧縮機
4:四方弁
5:室外熱交換器
6:膨張手段
7:室内熱交換器
8:アキュムレータ
9:室外機
10:クーラーユニット
11:圧縮機
12:凝縮器
13:過冷却器
14:膨張手段
15:蒸発器
16:アキュムレータ
17:膨張手段
18:渦巻状ラップ
19:固定スクロール部材
20:ラップ
21:旋回スクロール部材
22:フレーム
23:クランクシャフト
24:電動モータ
25:圧力容器
26:圧縮室
27:吐出口
28:吐出パイプ
29:油溜め部29
30:油孔
31:主軸受
32:副軸受 1: outdoor unit 2: indoor unit 3: compressor 4: four-way valve 5: outdoor heat exchanger 6: expansion means 7: indoor heat exchanger 8: accumulator 9: outdoor unit 10: cooler unit 11: compressor 12: condensation Unit 13: Supercooler 14: Expansion means 15: Evaporator 16: Accumulator 17: Expansion means 18: Spiral wrap 19: Fixed scroll member 20: Lap 21: Orbiting scroll member 22: Frame 23: Crankshaft 24: Electric motor 25: Pressure vessel 26: Compression chamber 27: Discharge port 28: Discharge pipe 29:Oil reservoir 29
30: Oil hole 31: Main bearing 32: Sub bearing
2:室内機
3:圧縮機
4:四方弁
5:室外熱交換器
6:膨張手段
7:室内熱交換器
8:アキュムレータ
9:室外機
10:クーラーユニット
11:圧縮機
12:凝縮器
13:過冷却器
14:膨張手段
15:蒸発器
16:アキュムレータ
17:膨張手段
18:渦巻状ラップ
19:固定スクロール部材
20:ラップ
21:旋回スクロール部材
22:フレーム
23:クランクシャフト
24:電動モータ
25:圧力容器
26:圧縮室
27:吐出口
28:吐出パイプ
29:油溜め部29
30:油孔
31:主軸受
32:副軸受 1: outdoor unit 2: indoor unit 3: compressor 4: four-way valve 5: outdoor heat exchanger 6: expansion means 7: indoor heat exchanger 8: accumulator 9: outdoor unit 10: cooler unit 11: compressor 12: condensation Unit 13: Supercooler 14: Expansion means 15: Evaporator 16: Accumulator 17: Expansion means 18: Spiral wrap 19: Fixed scroll member 20: Lap 21: Orbiting scroll member 22: Frame 23: Crankshaft 24: Electric motor 25: Pressure vessel 26: Compression chamber 27: Discharge port 28: Discharge pipe 29:
30: Oil hole 31: Main bearing 32: Sub bearing
Claims (4)
- ジフルオロメタン冷媒を吸入圧縮し、摺動部を有し、冷凍機油が封入された密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルを備えた冷凍装置において、前記冷凍機油は、粘度圧力係数が11GPa-1以上である下記化学式(1)で表わされる末端変性ポリアルキレングリコール(式中、R1およびR3は、炭素数1から4のアルキル基、または、炭素数2~5のアシル基であり、どちらか一方にアシル基を含み、R2は、炭素数2から4のアルキレン基を示す)であり、前記冷媒と前記冷凍機油との低温側臨界溶解温度が-30℃以下であることを特徴とする冷凍装置。
〔化1〕 R1-(O-R2)n-OR3 ・・・・・・・・・・・(1) A hermetic electric compressor that sucks and compresses difluoromethane refrigerant, has a sliding portion, and contains refrigeration oil, a heat exchanger that dissipates the refrigerant discharged from the compressor, and flows out of the heat exchanger In the refrigerating apparatus including a decompressor that decompresses the refrigerant to be cooled and a refrigeration cycle that circulates through a heat exchanger that absorbs the refrigerant decompressed by the decompressor, the refrigerating machine oil has a viscosity-pressure coefficient of 11 GPa −1 or more. A terminal-modified polyalkylene glycol represented by the following chemical formula (1), wherein R 1 and R 3 are an alkyl group having 1 to 4 carbon atoms or an acyl group having 2 to 5 carbon atoms, One side contains an acyl group, and R 2 represents an alkylene group having 2 to 4 carbon atoms), and the low-temperature critical solution temperature of the refrigerant and the refrigerating machine oil is −30 ° C. or lower. Refrigeration equipment.
[Chemical formula 1] R 1- (O-R 2 ) n -OR 3 (1) - 請求項1において、前記圧縮機が、渦巻状ラップを有する固定スクロール部材と、前記固定スクロール部材と同一形状のラップを有する旋回スクロール部材を有するスクロール式圧縮機であり、前記固定スクロール部材又は前記旋回スクロール部材の少なくとも一方がアルミニウム合金からなることを特徴とする冷凍装置。 2. The scroll compressor according to claim 1, wherein the compressor is a scroll type compressor having a fixed scroll member having a spiral wrap and a turning scroll member having a wrap having the same shape as the fixed scroll member. At least one of the scroll members is made of an aluminum alloy.
- 摺動部を有する冷媒圧縮部を備え、冷媒であるジフルオロメタンと、冷凍機油とを封入した密閉型電動圧縮機において、前記冷凍機油は、粘度圧力係数が11GPa-1以上である下記化学式(1)で表わされる末端変性ポリアルキレングリコール(式中、R1およびR3は、炭素数1から4のアルキル基、または、炭素数2~5のアシル基であり、どちらか一方にアシル基を含み、R2は、炭素数2から4のアルキレン基を示す)であり、前記冷媒と前記冷凍機油との低温側臨界溶解温度が-30℃以下であることを特徴とする密閉型電動圧縮機。
〔化1〕 R1-(O-R2)n-OR3 ・・・・・・・・・・・(1) In a hermetic electric compressor including a refrigerant compression part having a sliding part and enclosing difluoromethane as a refrigerant and refrigerating machine oil, the refrigerating machine oil has a viscosity pressure coefficient of 11 GPa −1 or more and the following chemical formula (1 (Wherein R 1 and R 3 are alkyl groups having 1 to 4 carbon atoms or acyl groups having 2 to 5 carbon atoms, either of which contains an acyl group) , R 2 represents an alkylene group having 2 to 4 carbon atoms), and the low-temperature critical solution temperature between the refrigerant and the refrigerating machine oil is −30 ° C. or lower, and the hermetic electric compressor is characterized in that
[Chemical formula 1] R 1- (O-R 2 ) n -OR 3 (1) - 請求項3において、渦巻状ラップを有する固定スクロール部材と、前記固定スクロール部材と同一形状のラップを有する旋回スクロール部材を有するスクロール式圧縮機であり、前記固定スクロール部材又は前記旋回スクロール部材の少なくとも一方がアルミニウム合金からなることを特徴とする冷凍空調用密閉型電動圧縮機。 4. The scroll compressor according to claim 3, comprising a fixed scroll member having a spiral wrap and a orbiting scroll member having a wrap having the same shape as the fixed scroll member, and at least one of the fixed scroll member or the orbiting scroll member. Is a hermetic electric compressor for refrigerating and air-conditioning, characterized in that is made of an aluminum alloy.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015003783A JP6522345B2 (en) | 2015-01-13 | 2015-01-13 | Refrigerating apparatus and sealed electric compressor |
JP2015-003783 | 2015-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016113993A1 true WO2016113993A1 (en) | 2016-07-21 |
Family
ID=56405550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081868 WO2016113993A1 (en) | 2015-01-13 | 2015-11-12 | Refrigeration device and sealed electric compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6522345B2 (en) |
WO (1) | WO2016113993A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020049844A1 (en) * | 2018-09-06 | 2020-03-12 | 日立ジョンソンコントロールズ空調株式会社 | Compressor and refrigeration cycle device provided with same |
JP2024052371A (en) * | 2022-09-30 | 2024-04-11 | ダイキン工業株式会社 | Compressor and refrigeration cycle device |
JP7570532B1 (en) | 2023-04-28 | 2024-10-21 | 三菱電機株式会社 | Compressor manufacturing method and compressor life prediction method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240351A (en) * | 1996-02-20 | 1996-09-17 | Hitachi Ltd | Freezing device |
JP2002130125A (en) * | 2000-10-18 | 2002-05-09 | Mitsubishi Electric Corp | Compressor and refrigerating cycle device |
JP2007046582A (en) * | 2005-08-12 | 2007-02-22 | Sanden Corp | Scroll fluid machinery and refrigerating cycle using the fluid machinery |
JP2013014673A (en) * | 2011-07-01 | 2013-01-24 | Idemitsu Kosan Co Ltd | Lubricant composition for compression type refrigerator |
WO2013129579A1 (en) * | 2012-03-02 | 2013-09-06 | Jx日鉱日石エネルギー株式会社 | Working fluid composition for refrigerator, refrigeration oil, and method for producing same |
JP2014037928A (en) * | 2012-08-17 | 2014-02-27 | Toshiba Carrier Corp | Refrigeration cycle device |
JP2015071742A (en) * | 2014-07-25 | 2015-04-16 | Jx日鉱日石エネルギー株式会社 | Refrigeration oil, hydraulic fluid composition for refrigerator |
-
2015
- 2015-01-13 JP JP2015003783A patent/JP6522345B2/en active Active
- 2015-11-12 WO PCT/JP2015/081868 patent/WO2016113993A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240351A (en) * | 1996-02-20 | 1996-09-17 | Hitachi Ltd | Freezing device |
JP2002130125A (en) * | 2000-10-18 | 2002-05-09 | Mitsubishi Electric Corp | Compressor and refrigerating cycle device |
JP2007046582A (en) * | 2005-08-12 | 2007-02-22 | Sanden Corp | Scroll fluid machinery and refrigerating cycle using the fluid machinery |
JP2013014673A (en) * | 2011-07-01 | 2013-01-24 | Idemitsu Kosan Co Ltd | Lubricant composition for compression type refrigerator |
WO2013129579A1 (en) * | 2012-03-02 | 2013-09-06 | Jx日鉱日石エネルギー株式会社 | Working fluid composition for refrigerator, refrigeration oil, and method for producing same |
JP2014037928A (en) * | 2012-08-17 | 2014-02-27 | Toshiba Carrier Corp | Refrigeration cycle device |
JP2015071742A (en) * | 2014-07-25 | 2015-04-16 | Jx日鉱日石エネルギー株式会社 | Refrigeration oil, hydraulic fluid composition for refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP6522345B2 (en) | 2019-05-29 |
JP2016130589A (en) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6545337B1 (en) | Refrigeration cycle device | |
WO2012086518A1 (en) | Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus | |
US20120024007A1 (en) | Compressor for refrigeration and air-conditioning and refrigerating and air-conditioning apparatus | |
CN109072895B (en) | Electric compressors and refrigeration and air-conditioning units | |
JP5339788B2 (en) | Compressor and refrigeration cycle equipment | |
JP6450896B1 (en) | Refrigerant composition and refrigeration cycle apparatus using the same | |
CN114659288B (en) | Refrigeration cycle device | |
CN104379713B (en) | Compressor and air-conditioning device | |
WO2016113993A1 (en) | Refrigeration device and sealed electric compressor | |
JP2015014395A (en) | Air conditioner | |
JP2015117923A (en) | Air conditioner | |
JP2000129275A (en) | Working medium composition for refrigeration / air conditioner and refrigeration / air conditioning apparatus using the composition | |
JP7618866B1 (en) | Refrigeration oil and refrigeration equipment | |
JP7053938B1 (en) | Refrigeration cycle device | |
JP2002194369A (en) | Working medium composition for air conditioning and air conditioner using the composition | |
JP2005248773A (en) | Refrigeration apparatus and refrigerant compressor | |
JP2002194375A (en) | Working medium composition for refrigeration / air conditioning and refrigeration / air conditioning apparatus using the composition | |
JP2015140994A (en) | Air conditioner, and refrigerator oil | |
JP2000044938A (en) | Working medium composition for air conditioner and air conditioner using the composition | |
CN118715408A (en) | Refrigeration cycle device | |
JPH09194829A (en) | Working medium for refrigerating apparatus and refrigerating apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15877945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15877945 Country of ref document: EP Kind code of ref document: A1 |