WO2016111696A1 - Système de détection physiologique à base de ppg utilisant une approche d'échantillonnage spatio-temporelle en vue de l'identification et l'élimination d'artefacts de mouvement à partir de signaux optiques - Google Patents
Système de détection physiologique à base de ppg utilisant une approche d'échantillonnage spatio-temporelle en vue de l'identification et l'élimination d'artefacts de mouvement à partir de signaux optiques Download PDFInfo
- Publication number
- WO2016111696A1 WO2016111696A1 PCT/US2015/010792 US2015010792W WO2016111696A1 WO 2016111696 A1 WO2016111696 A1 WO 2016111696A1 US 2015010792 W US2015010792 W US 2015010792W WO 2016111696 A1 WO2016111696 A1 WO 2016111696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- user
- emitting module
- calculating
- oxygen uptake
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 83
- 238000005070 sampling Methods 0.000 title claims abstract description 73
- 230000033001 locomotion Effects 0.000 title claims abstract description 25
- 238000013459 approach Methods 0.000 title claims description 10
- 230000002123 temporal effect Effects 0.000 claims abstract description 22
- 239000008280 blood Substances 0.000 claims abstract description 15
- 210000004369 blood Anatomy 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 230000036284 oxygen consumption Effects 0.000 claims description 15
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims description 4
- 230000031700 light absorption Effects 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 claims 1
- 108010064719 Oxyhemoglobins Proteins 0.000 claims 1
- 108010002255 deoxyhemoglobin Proteins 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 24
- 230000001902 propagating effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 230000000747 cardiac effect Effects 0.000 abstract description 5
- 210000004204 blood vessel Anatomy 0.000 abstract description 4
- 230000008602 contraction Effects 0.000 abstract description 4
- 238000013186 photoplethysmography Methods 0.000 description 18
- 238000002835 absorbance Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 6
- 230000037081 physical activity Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 230000036564 melanin content Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002746 orthostatic effect Effects 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012880 independent component analysis Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02416—Measuring pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4866—Evaluating metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0285—Measuring or recording phase velocity of blood waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
Definitions
- the present invention pertains mainly to the fields of fitness and/or sport performance - in particular by enabling robust and accurate determination of physiological parameters, including but not limited to heart rate and breathing rate as indicator of physical exertion or intensity during exercise, and for the subsequent determination, but not limited to, excess post-exercise oxygen consumption (EPOC, informally referred to as afterburn).
- physiological parameters including but not limited to heart rate and breathing rate as indicator of physical exertion or intensity during exercise, and for the subsequent determination, but not limited to, excess post-exercise oxygen consumption (EPOC, informally referred to as afterburn).
- EOC excess post-exercise oxygen consumption
- Pulse rate is the rate at which the heart beats measured in beats per minute (bpm).
- Heart rate measured during physical activity e.g. exercise
- heart rate is generally higher than when measured at rest, and serves as a measure of the efficiency with which the heart responds to the increased demand in blood supply during physical activity. Therefore, heart rate is often used to monitor and regulate the level of intensity or exertion during exercise.
- PPG photoplethysmography
- a light source e.g., light-emitting diode, LED
- a light detector e.g., photodiode
- Absoiption of light by the interrogated sample may be the result of absorption by the skin (melanin content), tissue, blood (water/fluid and different hemoglobin species), as well as blood volume, i.e., the level of tissue perfusion as a result of expansion and contraction of the small blood vessels during the cardiac cycle.
- PPG signals representative of changes in blood volume during the cardiac cycle may be used to determine heart rate by examining the time intervals between successive peaks (or troughs) in the PPG signal or volume pulse wave.
- hemodynamic properties such as beat-to-beat blood pressure and pulse wave velocity (as indicator of arterial stiffness) may be extracted from the waveform characteristics of the PPG signal, while the unique light absorption properties of different hemoglobin (Hb) species at distinct wavelengths can be used to determine blood oxygen status i.e. oxygen saturation.
- Hb hemoglobin
- Physiological sensing devices based on PPG technology are well known in the art and exist in two configurations: i) reflectance, and ii) transmission type sensing devices.
- Reflectance type PPG-based sensing devices contain the light source and light detector on the same side of the sample being interrogated, while transmission type PPG-based sensing devices contain the light source and light detector on opposite sides of the sample being interrogated.
- a major advantage of reflectance type PPG-based sensing devices is their adaptability to various locations on the human body (e.g. a user's arm, leg, torso, etc.) whereas transmission type PPG-based sensing devices are limited to locations on the body that allow light to be readily transmitted (e.g. a user's fingertip, earlobe, or another relatively thin well-perfused tissue or body part).
- the present invention discloses a reflectance type PPG-based physiological sensing system with a spatio-temporal sampling approach towards identifying and removing motion artifacts from optical signals received from a wearable optical sensing device to enable accurate and robust determination of physiological parameters including but not limited to heart rate during various states of physical activity.
- the PPG-based physiological sensing system comprises a wearable optical sensing device preferably worn on, but not limited to, a user's upper arm, in communication with a remote electronic device such as a smartphone (e.g., an iPhoneTM) containing a specialized developed software application.
- the wearable optical sensing device comprises an optical sensing unit with a light-emitting and light-detecting module for measuring blood volume changes caused by expansion and contraction of the small blood vessels in the skin and underlying tissue during the cardiac cycle.
- the physical design of the optical sensing unit allows rapid sequential, i.e., near instantaneous sampling at different positions on the propagating volume pulse wave.
- the spatial arrangement and temporal sampling configuration (sequence) of the system subsequently allows for a common absorption point to be determined mathematically for each multichannel sampling period, thereby obtaining an instantaneous optical measurement at different positions on the propagating pulse wave.
- the raw optical signals representative of blood volume change are transmitted to a remote electronic device executing a specialized developed software application configured to i) receive and process raw optical signals and ii) obtain, store and display accurate and robust physiological outputs, including but not limited to heart rate and breathing rate, to the user via a user interface.
- the processed optical signals are used to determine, but are not limited to the determination of, real time oxygen consumption (V0 2 ) and metrics gauging strenuousness of exercise such as, but not limited to, excess post-exercise oxygen consumption (EPOC, informally referred to as afterburn).
- Figure 1 is a conceptual illustration of the exemplary embodiment of the PPG-based physiological sensing system comprising a wearable optical sensing device in communication with a remote electronic device containing and executing a specialized developed software application configured to process optical signals and display physiological outputs to the user via the user interface.
- Figure 2 is a conceptual illustration of the electronic components comprising the wearable optical sensing device preferably worn but not limited to a user's upper arm.
- FIG 3 is a conceptual illustration of the electronic components comprising the remote electronic device such as a smartphone (e.g. an iPhoneTM).
- a smartphone e.g. an iPhoneTM
- Figure 4 is a conceptual illustration of the optical sensing unit comprising a light-emitting and light-detecting module, and the arrangement thereof within the scope of the exemplary embodiment.
- Figure 5 is a series of conceptual illustrations of the spatio-temporal sampling approach, employed towards identifying and removing motion artifacts from optical signals, described by way of an exemplary spatial arrangement and temporal sampling configuration (sequence) in which:
- FIG. 5A illustrates the multi-channel sampling approach and accompanying nomenclature
- Figure 5B summarizes the spatial arrangement and temporal sampling configuration (sequence) used as example throughout the disclosure
- Figure 5C illustrates a complete sampling sequence including a sampling period comprising multiple sampling steps, and a non-sampling period
- Figure 5D illustrates mathematical determination of a common absoiption point for each multi-channel sampling period.
- FIG. 1 is a conceptual illustration of the exemplary embodiment of the PPG-based physiological sensing system 1 comprising a wearable optical sensing device 2 preferably worn on, but not limited to, a user's 3 upper-arm, in communication with a remote electronic device 4 such as a smartphone (e.g. iPhoneTM) or equivalent device capable of receiving and processing optical signals transmitted from the wearable optical sensing device 2 and displaying outputs to the user via a user interface.
- a remote electronic device 4 such as a smartphone (e.g. iPhoneTM) or equivalent device capable of receiving and processing optical signals transmitted from the wearable optical sensing device 2 and displaying outputs to the user via a user interface.
- An exemplary method of data transmission may be BluetoothTM, although other protocols may be employed.
- the remote electronic device 4 contains and executes a specialized developed software application configured to i) receive and process raw optical signals from the wearable optical sensing device 2 and ii) obtain, store and display robust and accurate physiological outputs, including, but not limited to, heart rate, to the user via a user interface.
- Optical signals received from the wearable optical sensing device 2 may also be used to obtain other physiological parameters including but not limited to breathing rate.
- processing of raw optical signals may take place on the wearable optical sensing device 2, the final physiological outputs being transmitted to a remote electronic device 4 containing the appropriate software application to display physiological outputs to the user via the user interface.
- partial processing of raw optical signals may take place on the wearable optical sensing device 2, the partially processed signals being transmitted to a remote electronic device 4 containing the appropriate software application for final processing and display of physiological outputs to the user via the user interface.
- both processing of raw signals as well as display of physiological outputs to the user may take place on the wearable optical sensing device 2, in this processing configuration the wearable optical sensing device 2 comprising a suitable user interface.
- FIG. 2 is a conceptual illustration of the electronic components comprising the wearable optical sensing device 2 including but not limited to a microprocessor 9 coupled to a sensing unit 5, signal amplifier 6, low pass filter 7, analog-to-digital converter (ADC) 8, memory component 13, and transceiver 10.
- Communication i.e., data transfer between the optical sensing device 2 and a remote electronic device 4, is supported by an antenna 11 coupled to the transceiver 10.
- the antenna 11 may be a wireless (e.g. BluetoothTM or the like) connection or may be representative of a wired connection to the remote electronic device 4. All electronic components are coupled to and powered by a rechargeable battery 12 and housed in a waterproof casing (not shown).
- the optical sensing unit 5 under control of the microprocessor 9 generates an analog signal representative of the light intensity measured by the light detection module (described in Figure 4) which passes through a signal amplifier 6 and low pass filter 7.
- the conditioned analog signal is converted to a digital signal by an ADC 8 and prepared for transmission by a microprocessor 9.
- the raw optical signal is transmitted via the transceiver 10 and antenna 11 to a suitable remote electronic device (e.g. an iPhoneTM) for processing and output display.
- a suitable remote electronic device e.g. an iPhoneTM
- Other functions of the microprocessor 9 may include determining whether the PPG signal peak values are too large, i.e., saturating, or too weak, i.e., resulting in poor signal-to-noise ratios. This level of gain control is achieved by the microprocessor 9 providing feedback to the optical sensing unit 5 via a digital-to-analog converter (DAC) (not shown). If the detected pulse peak values are too weak, the microprocessor 9 provides feedback to the optical sensing unit 5 via the DAC to increase in the intensity of the LEDs by increasing the electric current, or reducing the current if the signal is saturating.
- DAC digital-to-analog converter
- Adjusting the brightness of the LEDs to obtain a suitable signal is especially important since the normative values between user's may vary significantly based on skin color (melanin content), blood pressure, pulse strength and/or other changes that may occur during the course of a variable exercise regimen (e.g. change in ambient or body temperature). Furthermore, gain control contributes valuably to conserving battery power within the system.
- Another function of the microprocessor 9 may include capturing the battery power level of the wearable optical sensing device 2, and if not displayed locally (e.g. via voice prompts, vibration alerts, other) transmitting the information to a remote electronic device 4 for display to the user via the user interface.
- a memory component 13 depends on the preferred processing configuration for the system, i.e., whether complete processing, partial processing or no processing whatsoever of raw optical signals takes place on the wearable optical sensing device 2. In the exemplary embodiment, all signal processing takes place on a remote electronic device 4 and therefore a memory component 13 is not a constraint to the design of the wearable optical sensing device 2. However, in an alternative embodiment with a processing configuration where any level of signal processing takes place on the wearable optical sensing device 2, a memory component 13 is essential to the design of the wearable optical sensing device 2.
- FIG 3 is a conceptual illustration of the electronic components comprising the remote electronic device 4, including but not limited to a processor 16 coupled to a memory component 18, user interface 19 and a transceiver 14.
- Communication i.e., data transfer between the remote electronic device 4 and the wearable optical sensing device 2 is supported by an antenna 22 coupled to the transceiver 14.
- the antenna 22 may be a wireless (e.g. BluetoothTM or the like) connection or may be representative of a wired connection to the wearable optical sensing device 2. All electronic components are coupled to and powered by a rechargeable battery 17 and housed in a suitable casing as determined by the manufacturer.
- the remote electronic device 4 may comprise, for example, a smartphone such as an iPhoneTM or equivalent device capable of receiving optical signals from the wearable optical sensing device 2 by executing a specialized developed software application (App) 15.
- the remote electronic device 4 is executing a heart rate monitoring application configured to i) receive and process raw optical signals representative of blood volume change, i.e., pulse waves from the wearable optical sensing device 2, and ii) to obtain, store and display accurate and robust heart rate outputs to the user via the user interface 19.
- Heart rate outputs displayed to the user via the user interface 19 of the remote electronic device 4 may be used, for example, to create an exercise schedule based on an individual's specific abilities and/or fitness goals. For example, to start a maximum estimated heart rate may be calculated based on factors including a user's age and fitness level, or determined empirically. The notion is to determine an ideal heart rate range for a specific fitness or performance goal. A maximum estimated heart rate may correspond to an extreme level of exertion, while different levels of exercise intensity may correspond to different ranges of heart rate spanning from the maximum estimated heart rate down to a range corresponding to a resting heart rate.
- a heart rate range may be established for different exercise intensities allowing a user to control and/or monitor his/her level of activity, track his/her progress, and reach his/her fitness goals more efficiently.
- heart rate and other physiological outputs determined in this way are intended to serve as guidelines only, and are subject to appropriate modification and/or interpretation.
- the wearable optical sensing device 2 contains an optical sensing unit 5 with a light-emitting and light-detecting module for measuring blood volume changes caused by expansion and contraction of the small blood vessels in the skin and underlying tissue during the cardiac cycle.
- Figure 4 illustrates the exemplary arrangement of the light-emitting and light-detecting modules comprising the optical sensing unit 5.
- the light-emitting module consists of a set of four identical wavelength LEDs 20 arranged around a light-detecting module comprising a single photodiode 21 with a spectral sensitivity spanning that of light-emitting module.
- the light-emitting module may comprise two or more distinct wavelengths and/or a higher plurality of light sources.
- the light-detecting module may comprise a higher plurality of light sensors with a spectral sensitivity spanning that of the light-emitting module.
- the light-emitting and light-detecting modules are positioned in close enough proximity to each other and to the user's skin surface to allow accurate measurement of changes in blood volume at a single location on the user's body.
- the spatial arrangement and temporal sampling configuration (sequence) of the optical sensing unit 5 under control of the microprocessor 9 allows for a common absorption point to be determined mathematically for each multi-channel sampling step (described in Figure 5 below).
- a light-emitting module comprising four identical LEDs with a wavelength in the visible green spectrum (e.g., 525 nm) is described.
- a higher plurality of LEDs, and/or incorporating two or more distinct wavelengths in the measurement may contribute additional information for subsequent analysis.
- Multi-channel sampling by the optical sensing unit 5 comprising multiple LEDs 20 and a single common photodiode 21 is achieved by alternating sequential sampling of the LEDs under control of the microprocessor 9.
- An exemplary six-channel sampling configuration is illustrated in Figure 5A.
- the sampling period includes blanking periods at the onset (Blcl) and end (Blc2) of sampling.
- the exemplary temporal sampling configuration follows a 'diagonally-across' pattern starting at the top left (TL) position, and continuing to the bottom right (BR), bottom left (BL), and top right (TR) position.
- the sampling period is concluded with a blanking period (Blc2).
- This exemplary temporal sampling configuration (sequence) used as example throughout this disclosure is summarized in Figure 5B. Seven additional (eight in total) sampling configurations for which a common absorption point (see Figure 5D) can be determined exist within the scope of the exemplary embodiment and sampling sequence by simply rotating the 'diagonally-across' sampling sequence to different starting positions.
- sampling configurations may be applied to alternative embodiments of the invention with a higher plurality of two or more distinct wavelength light sources towards achieving spatio-temporal sampling.
- Figure 5C serves to illustrate the complete sampling sequence of the exemplary sampling configuration including a sampling period comprising multiple sampling steps, and a non-sampling step designated for data preparation and transmission.
- the physical design of the optical sensing unit 5 allows for near-instantaneous absorption measurement at different positions on the propagating pulse wave through rapid sequential sampling.
- the spatial arrangement together with the temporal sampling configuration (sequence) of the system allows for a common absorption point to be determined mathematically for each multichannel sampling period as illustrated in Figure 5D.
- the aim of the spatio-temporal sampling approach is to obtain an optical measurement at different positions of the propagating pulse wave at the same time, i.e., instantaneously.
- an alternative approach to achieve the same goal would be to include a photodiode for each LED in the system, thereby permitting all LEDs to be fired and measured instantaneously.
- unexpected behavior i.e., unexpected based on known and/or deduced physiological constraints such as pulse wave velocity, heart rate acceleration and deceleration, etc. - such as motion artifacts corrupting the optical single, may be identified and removed more readily.
- Spatio-temporal sampling is achieved by first assigning a common absorption point around which the optical measurements obtained at each sampling position on the propagating pulse wave is to be aligned.
- the common absorption point is assigned in such a way that it falls within the range spanned by the paired sampling points, e.g., TL-BL (top-bottom); TL-TR (left-right); BR-BL (right- left); BR-TR (bottom-top); Blcl -Blc2 (background).
- the common absorption point is assigned to the middle of the sampling period comprising multiple sampling steps, however this need not always be case.
- a known sampling time (t) and sampling point (0.5t) is further assigned to each sampling step.
- the sampling point in assigned to the middle of the sampling step, however this need not always be the case.
- the chosen temporal sampling configuration allows for temporal alignment of absorbance values measured sequentially at different positions on the propagating pulse wave at the common absorption point. In this way, a temporally dependent estimate of the light absorbance values measured at different positions on the pulse wave, as well as the measurements obtained during the blanking periods, can be estimated at the same temporal point.
- TL and TR are temporally aligned with respect to the common absorption point such that the sampling time before and the sampling time following the common absorption point is the same, and equal to 1.5t respectively.
- the 'top' temporally aligned absorption estimate may be obtained by averaging the absorption values obtained for the TL and TR positions respectively, i.e., the temporal coefficient for the temporally aligned 'top' absorbance estimate (a) is 0.5:
- the temporal coefficient is calculated by dividing the sampling time taken from the sampling point of the first relevant measurement position to the assigned common absorption point, by the total sampling time taken between the selected paired points. For example, for the temporal alignment of the measured absorbance values obtained at the TL and TR positions, the temporal coefficient is calculated as follows:
- the 'bottom' and 'blanking' temporally aligned absorbance estimates may be obtained by averaging (temporal coefficient of 0.5) the absorption values obtained at the bottom- right (BR) and bottom-left (BL) positions (b), and the blanking periods at the onset (Blcl) and end (Blc2) of sampling (c) respectively:
- TL and BL are temporally aligned relative to the common absorption point such that the sampling time before and the sampling time following the absorption estimation point is 1.5t and 0.5t respectively. From this it follows that the 'left' temporally aligned absorbance estimate (d) can be obtained with a temporal coefficient of 0. 75:
- the 'right' temporally aligned absorbance estimate can be obtained from the absorption values measured at the bottom-right (BR) and top-right (TR) positions (e) with a temporal coefficient of 0.25:
- the temporally aligned absorption estimates may subsequently be incorporated in one or a combination of digital signal processing techniques (e.g. Kalman filter, Fourier analysis, peak identification, independent component analysis, other) towards identifying and removing motion artifacts from optical signals to obtain robust and accurate determination of physiological parameters.
- digital signal processing techniques e.g. Kalman filter, Fourier analysis, peak identification, independent component analysis, other
- the temporally aligned 'top' (a), 'bottom' (b), 'left' (d) and 'right' (e) absorbance estimates may be applied separately, or averaged to obtain a spatially aligned absorbance estimate.
- the temporally aligned 'blanking' (c) absorbance estimate is applied to compensate the effect of ambient light, either during the individual sampling steps, or the overall sampling period.
- the processed optical signals can be used to determine, but are not limited to the determination of, real time oxygen consumption (V0 2 ) and metrics gauging strenuousness of exercise such as, but not limited to, excess post-exercise oxygen consumption (EPOC, informally referred to as afterburn).
- V0 2 real time oxygen consumption
- EPOC excess post-exercise oxygen consumption
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Obesity (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
La présente invention concerne l'aptitude physique et/ou la performance sportive, par détermination de paramètres physiologiques, du rythme cardiaque et du rythme respiratoire en tant qu'indicateurs de l'effort physique/l'intensité pendant un exercice. Dans un mode de réalisation, l'invention porte sur un système de détection physiologique à base de PPG utilisant l'échantillonnage spatio-temporel en vue d'identifier et d'éliminer des artefacts de mouvement reçus en provenance d'un dispositif de détection optique portable en temps réel et pendant divers états d'activité. L'invention a également trait à un dispositif apte à détecter et transmettre des signaux représentatifs de paramètres physiologiques à un dispositif électronique distant. Le dispositif comprend une unité de détection optique avec un module d'émission de lumière et de détection de lumière pour mesurer des changements de volume sanguin provoqués par la dilatation et la contraction des petits vaisseaux sanguins dans la peau et le tissu sous-jacent pendant le cycle cardiaque. L'agencement spatial et la configuration d'échantillonnage temporel (séquence) permet de déterminer mathématiquement un point commun d'absorption pour chaque période d'échantillonnage multi-canal, ce qui permet ainsi d'obtenir une mesure optique instantanée au niveau de différentes positions sur l'onde d'impulsion de propagation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/010792 WO2016111696A1 (fr) | 2015-01-09 | 2015-01-09 | Système de détection physiologique à base de ppg utilisant une approche d'échantillonnage spatio-temporelle en vue de l'identification et l'élimination d'artefacts de mouvement à partir de signaux optiques |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/010792 WO2016111696A1 (fr) | 2015-01-09 | 2015-01-09 | Système de détection physiologique à base de ppg utilisant une approche d'échantillonnage spatio-temporelle en vue de l'identification et l'élimination d'artefacts de mouvement à partir de signaux optiques |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016111696A1 true WO2016111696A1 (fr) | 2016-07-14 |
Family
ID=56356256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/010792 WO2016111696A1 (fr) | 2015-01-09 | 2015-01-09 | Système de détection physiologique à base de ppg utilisant une approche d'échantillonnage spatio-temporelle en vue de l'identification et l'élimination d'artefacts de mouvement à partir de signaux optiques |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016111696A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016109694A1 (de) * | 2016-05-25 | 2017-11-30 | Osram Opto Semiconductors Gmbh | Sensorvorrichtung |
US10585739B2 (en) | 2017-04-28 | 2020-03-10 | International Business Machines Corporation | Input data correction |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030236647A1 (en) * | 2002-03-16 | 2003-12-25 | Yoon Gil-Won | Diagnostic method and apparatus using light |
US20040193063A1 (en) * | 2003-02-28 | 2004-09-30 | Teiyuu Kimura | Method and apparatus for measuring biological condition |
US20070185393A1 (en) * | 2006-02-03 | 2007-08-09 | Triage Wireless, Inc. | System for measuring vital signs using an optical module featuring a green light source |
US20090018453A1 (en) * | 2007-06-12 | 2009-01-15 | Triage Wireless, Inc. | Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms |
US20130018233A1 (en) * | 2007-02-28 | 2013-01-17 | Medtronic, Inc. | Implantable tissue perfusion sensing system and method |
US20140221847A1 (en) * | 2013-02-05 | 2014-08-07 | Koninklijke Philips N. V. | System and method for determining vital sign information of a subject |
-
2015
- 2015-01-09 WO PCT/US2015/010792 patent/WO2016111696A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030236647A1 (en) * | 2002-03-16 | 2003-12-25 | Yoon Gil-Won | Diagnostic method and apparatus using light |
US20040193063A1 (en) * | 2003-02-28 | 2004-09-30 | Teiyuu Kimura | Method and apparatus for measuring biological condition |
US20070185393A1 (en) * | 2006-02-03 | 2007-08-09 | Triage Wireless, Inc. | System for measuring vital signs using an optical module featuring a green light source |
US20130018233A1 (en) * | 2007-02-28 | 2013-01-17 | Medtronic, Inc. | Implantable tissue perfusion sensing system and method |
US20090018453A1 (en) * | 2007-06-12 | 2009-01-15 | Triage Wireless, Inc. | Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms |
US20140221847A1 (en) * | 2013-02-05 | 2014-08-07 | Koninklijke Philips N. V. | System and method for determining vital sign information of a subject |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016109694A1 (de) * | 2016-05-25 | 2017-11-30 | Osram Opto Semiconductors Gmbh | Sensorvorrichtung |
US11185243B2 (en) | 2016-05-25 | 2021-11-30 | Osram Oled Gmbh | Sensor device |
US10585739B2 (en) | 2017-04-28 | 2020-03-10 | International Business Machines Corporation | Input data correction |
US11119842B2 (en) | 2017-04-28 | 2021-09-14 | International Business Machines Corporation | Input data correction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111629666B (zh) | 用于感测生理参数的系统和方法 | |
CN104055499B (zh) | 连续监控人体生理体征的可穿戴式智能手环及方法 | |
CN104968259B (zh) | 用于确定对象的生命体征信息的系统和方法 | |
US10314500B2 (en) | Transcutaneous photoplethysmography | |
JP6501760B2 (ja) | 携帯脈拍測定装置 | |
JP6548639B2 (ja) | 光生理センサ及び組み立て方法 | |
KR101225849B1 (ko) | 2개의 파장을 갖는 광파를 이용하는 맥박 측정 방법 및 장치 | |
US20150087928A1 (en) | Measuring tissue volume with dynamic autoreconfiguration | |
CN108024713A (zh) | 用于确定组织中的生物指标水平的设备和方法 | |
CN108937957B (zh) | 检测方法、装置及检测设备 | |
US20170281027A1 (en) | Optical Arrangement For Power-Efficient, Low Noise Photoplethysmographic Sensor Module | |
US20060224073A1 (en) | Integrated physiological signal assessing device | |
KR20150068279A (ko) | 자기 정렬 센서 어레이 및 그것의 자기 정렬하기 위한 방법 | |
US20180235489A1 (en) | Photoplethysmographic wearable blood pressure monitoring system and methods | |
Ženko et al. | Pulse rate variability and blood oxidation content identification using miniature wearable wrist device | |
US10165969B2 (en) | Positioning a medical device based on oxygen saturation measurements | |
US20230210390A1 (en) | Sensor device to mitigate the effects of unwanted signals made in optical measurements of biological properties | |
US12290358B2 (en) | Pulse oximetry methods, devices and systems | |
US11025843B2 (en) | Device and method for the continuous and non-invasive determination of physiological parameters of a test subject | |
CN115500800A (zh) | 一种穿戴式生理参数检测系统 | |
KR20190105421A (ko) | 광혈류 측정기 기반의 인체착용형 혈압 측정장치 및 혈압 측정방법 | |
WO2016108056A1 (fr) | Système de détection physiologique à base de ppg avec une approche d'échantillonnage spatio-temporelle pour l'identification et l'élimination d'artefacts de mouvement dans des signaux optiques | |
WO2016111696A1 (fr) | Système de détection physiologique à base de ppg utilisant une approche d'échantillonnage spatio-temporelle en vue de l'identification et l'élimination d'artefacts de mouvement à partir de signaux optiques | |
CN119097310A (zh) | 一种能实时检测脉率血氧的健康监测手环检测方法及系统 | |
CN209932708U (zh) | 一种用于测量心率和血氧的阵列排布电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15877256 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15877256 Country of ref document: EP Kind code of ref document: A1 |