WO2016107663A1 - Formulations et dispositifs électroniques - Google Patents
Formulations et dispositifs électroniques Download PDFInfo
- Publication number
- WO2016107663A1 WO2016107663A1 PCT/EP2015/002422 EP2015002422W WO2016107663A1 WO 2016107663 A1 WO2016107663 A1 WO 2016107663A1 EP 2015002422 W EP2015002422 W EP 2015002422W WO 2016107663 A1 WO2016107663 A1 WO 2016107663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- materials
- compounds
- derivatives
- formulation
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to formulations for the manufacture of electronic devices. Furthermore, the present invention relates to electronic devices and methods for their preparation.
- Performance can be used in many commercial products. Examples include organic-based charge transport materials (e.g., triarylamine-based hole transporters) in copiers, organic or polymeric light emitting diodes (OLEDs or PLEDs), and display and display devices or organic photoreceptors in copiers.
- organic solar cells O-SC
- organic field effect transistors O-FET
- organic thin-film transistors O-TFT
- organic switching elements O-IC
- O-lasers organic laser diodes
- charge injection layer for example, to compensate for unevenness of the electrode (“planarization layer”), often of a conductive, doped polymer,
- a "small molecule OLED” often comprises one or more organic hole injection layers, hole transport layers, emission layers, electron transport layers and / or electron injection layers as well as an anode and a cathode, the whole system usually being located on a glass substrate the different
- small molecules which is based on non-polymeric compounds, is the production of these compounds
- WO 2011/076314 A1 discloses aqueous formulations which contain nanoparticles. These formulations already show a good property profile. However, it is stated in this application that preferably high levels of surfactants are used to prepare the formulations disclosed therein. These surfactants can have detrimental effects on the life and performance of the electronic devices obtainable from these formulations. Therefore, it is stated that the surfactants which can be used to prepare the formulation should be separated to improve performance. However, the production of preferred formulations by this step considerably more expensive.
- the process should be inexpensive to carry out.
- the method should be suitable for making very small structures so that high resolution screens can be obtained by the method.
- the method should be able to be carried out using standard printing methods.
- an essential aspect here is that the electronic devices obtainable by the process should have excellent properties. These characteristics include, in particular, the lifetime of the electronic devices. Another problem is in particular the energy efficiency with which an electronic device the
- the luminous efficacy should be high, so that as little electrical power as possible has to be applied in order to achieve a specific light flux. Furthermore, the lowest possible voltage should be necessary to achieve a given luminance. Accordingly, these properties should be met by the
- the electronic devices should be used or adapted for many purposes.
- a formulation containing at least one solvent and nanoparticles comprising at least one surface-active polymer and at least an organically functional material which is used to produce
- a formulation according to the invention comprises at least one
- the solvent may dissolve the surfactant polymer comprised by the nanoparticles and constitutes the continuous phase of an emulsion or dispersion, depending on whether the nanoparticles are in the liquid or solid phases.
- the solvents contained in the continuous phase can be referred to as dispersants.
- the solvent is a polar solvent, the solvent preferably having an ET (30) value of at least
- the solvent which is contained in the continuous phase of the formulation comprises water and / or an alcohol having at most 6 carbon atoms.
- formulations are preferred which as solvent preferably at least 60 wt .-%, more preferably at least 80 wt .-% and most preferably at least 95 wt .-% water and / or an alcohol having at most 6 carbon atoms.
- Alcohols containing at most 6 carbon atoms include, but are not limited to, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, 1-pentanol, 2- Methyl-1-butanol, 3-methyl-1-butanol, n-butanol, isobutanol, 1-pentanol, 2-methyl-1-butanol, neopentyl alcohol, 3-pentanol, 2-pentanol, 3-methyl-2- butanol and 2-methyl-2-butanol.
- Water is preferred over methanol and / or ethanol as solvent.
- Water is particularly preferred as the solvent, so that preferred formulations preferably comprise at least 60% by weight, more preferably at least 80% by weight and most preferably at least 95% by weight of water as the solvent.
- the surfactant polymer may preferably have a solubility in the solvent of the continuous phase, preferably in water at 25 ° C of at least 1 g / L, preferably at least 10 g / L and more preferably at least 20 g / L.
- the solubility can be measured by known methods such as dynamic light scattering (DLS), turbidimetric measurements and viscometry (BA Wolf., Pure & Appl. Chem., Vol. 57, No. 2, pp. 323-336, 1985).
- the present formulation provides
- the formulation may contain both solid and liquid particles. Therefore, the particles of the discontinuous phase become independent of
- the nanoparticles are in solid form and accordingly preferably comprise only a small proportion of organic solvent.
- the nanoparticles are in solid form and accordingly preferably comprise only a small proportion of organic solvent.
- Formulation having a discontinuous phase whose nanoparticles are in the liquid state also referred to herein as nanodroplets, with a mean diameter in the range of 1 to 7000 nm, preferably in the range of 1 to 3000 nm, more preferably in the range of 5 to 2000 nm and in total particularly preferably in the range of 5 to 1000 nm.
- the formulation may have a discontinuous phase whose nanoparticles are in the solid phase, these solid nanoparticles preferably having an average diameter in the range from 1 to 5000 nm, preferably in the range from 10 to 2000 nm, more preferably in Range of 10 to 500 nm and most preferably in the range of 0 to 300 nm and particularly preferably in the range of 20 to 100 nm.
- the formulation is characterized in that more than 75% of the
- Nanoparticles preferably more than 80%, more preferably more than 90% and most preferably more than 98% have a diameter of 55% or less, preferably 50% or less, more preferably 20% or less, and most especially
- the aforementioned mean values of the particle diameter relate to the number average.
- the size and size distribution of nanodroplets and nanoparticles in emulsions and dispersions can be determined using
- the diameters and the size distribution can be measured by dynamic light scattering (Chu, B., Laser Light
- the nanoparticles whether liquid or solid, comprise at least one organically functional material and at least one surfactant polymer.
- the weight ratio of organically functional material to surfactant polymer is the weight ratio of organically functional material to be selected from
- surfactant polymer is preferably in the range of 1: 1 to 50: 1, more preferably in the range of 4: 1 to 12: 1 and most preferably in the range of 6: 1 to 8: 1.
- this figure refers to the total weight of functional material and surfactant polymer used to prepare the formulation.
- the surface-active polymer has a weight-average molecular weight Mw in the range from 5000 to 1,000,000 g / mol, preferably 10,000 to 500,000 g / mol, more preferably 15,000 to 100,000 g / mol and very particularly preferably 20,000 to 80,000 g / mol having.
- the weight average molecular weight Mw can be measured by gel permeation chromatography (GPC) against conventional standards, preferably polymers having identical or similar repeating units at 25 ° C.
- the surfactant is preferably in the range of 1: 1 to 50: 1, more preferably in the range of 4: 1 to 12: 1 and most preferably in the range of 6: 1 to 8: 1.
- Polymer have a surface tension in the range of 30 to 70 mN / m, more preferably in the range of 40 to 60 mN / m, measured according to heatentensiometrie (ring method).
- Preferred surface-active polymers have substantially no carboxyl groups (-CO2).
- the weight fraction of carboxyl groups in the surface-active polymer is preferably at most 5%, preferably at most 1%, and very particularly preferably at most 0.5%.
- Preferred surface-active polymers have essentially no anionic groups, for example carboxyl and / or sulfate groups.
- the weight fraction of anionic groups in the surface-active polymer is preferably at most 5%, preferably at most 1% and particularly preferably at most 0.5%.
- the anionicity of the anionic groups refers to a pH of 6.0, so that the acid groups underlying the anionic groups have a pKa of less than 6.0.
- the persistence length of the surfactant polymer may be the persistence length of polyethylene glycol or polyvinyl alcohol.
- the persistence length of the surface-active polymer is at least 20% greater than the persistence length of polyethylene glycol or polyvinyl alcohol.
- the persistence length can be determined from the hydrodynamic volume according to, inter alia, the light scattering method outlined above.
- the surface-active polymer is a polysaccharide or a polypeptide, with polysaccharides being particularly preferred. Polysaccharides are well known, by which is meant polymeric compounds in which a large number of monomeric
- Polysaccharides can in this case in addition to repeat units which are based on sugar further groups or substituents.
- the polysaccharides can be modified by hydroxyethyl groups or similar substituents.
- the polysaccharide may be modified by, for example, protein groups.
- Preferred polysaccharides are characterized in that preferably at least 50% by weight, particularly preferably at least 80% by weight and very particularly preferably at least 95% by weight of the polysaccharide are built up from monomeric sugar units, preferably the pentoses and hexoses set forth below are.
- Preferred memory polysaccharides include, but are not limited to, dextrans and starch, for example, amylose, amylopectin, and glycogen. Further preferred are hemicelluloses and galactomannans, which are preferably soluble in water. Preferred hemicelluloses include xyloglucans.
- Preferred sugars based on polysaccharides include pentoses, preferably xylose and arabinose; and hexoses, preferably fructose, glucose, mannose and galactose.
- the preferred polysaccharides include in particular
- a polysaccharide which have high solubility in water.
- a polysaccharide can be used as the surface-active polymer, which is based on glucose, mannose, fructose, galactose and / or xylose.
- Especially preferred polysaccharides which can be used as a surface-active polymer are preferably selected from glucans, particularly preferably xyloglucans and / or mannans, particularly preferably galactomannans.
- polypeptides are among the preferred surfactant polymers.
- Polypeptides are well known in the art, which polymers are based on monomers having at least one amino group and at least one carboxyl group linked via amide bonds.
- Preferred polypeptides have similar properties to the polysaccharides set forth above. This is especially true for properties such as the stiffness of the polymers (persistence length), the solubility and the interfacial activity.
- Preferred polypeptides are characterized in that preferably at least 50% by weight, particularly preferably at least 80% by weight and very particularly preferably at least 95% by weight of the polypeptide are composed of monomeric peptide units, preferably of natural amino acid units , In general, polysaccharides are preferred over polypeptides.
- the surface-active polymer preferably the polysaccharide
- the degree of branching may preferably be in the range from 0 (linear) to 0.6 (hyperbranched), particularly preferably in the range from 0.3 to 0.55, this size being able to be determined by methods known to the person skilled in the art, for example by a combination of Light scattering at small angles (LALLS) - Gel permeation chromatography (GPC) of
- HPLC / MS-MS is an analytical system in which two mass spectrometers are coupled with separation of the substances by HPLC (JP Benskin, MG Ikonomou, Woudneh, B. Million;
- Branching degree can be determined by LALLS-GPC.
- a preferred surfactant polymer preferably a
- Polysaccharide may have side chains having an average chain length in the range of 1 to 100, preferably 1 to 10 and particularly preferably 1 to 5 repeat units, measured by means of a
- a preferred surfactant polymer preferably a
- Polysaccharide can be a main chain with an average
- Chain length of at least 30, preferably at least 40 and more preferably at least 60 repeating units, said size can be determined by the skilled person known methods, for example by a combination of LS-DLS / SLS and / or GPC / LS / viscosity coupling and a combination of
- the repeating units are based on sugar molecules having 5 or 6 carbon atoms which most preferably form a ring with 6 ring atoms.
- average chain length refers to the number average.
- the surface-active polymer preferably the polysaccharide and / or the polypeptide, is predominantly arranged on the surface of the nanoparticles.
- the nanoparticles contained in the formulation of the invention comprise at least one organically functional material.
- Functional materials are generally the organic or inorganic materials incorporated between the anode and cathode of an electronic device.
- organically functional material denotes, inter alia, organic conductors, organic semiconductors, organic colorants,
- organic dyes organic fluorescent
- organically functional material further includes organometallic complexes of
- Transition metals rare earths, lanthanides and actinides.
- the organically functional material is selected from the group consisting of fluorescent emitters, phosphorescent emitters, host materials, matrix materials, exciton blocking materials, electron transport materials, electron injection materials, hole conductor materials, hole injection materials, n-dopants, wide band gap materials, electron blocking materials .
- the organically functional material is selected from the group consisting of fluorescent emitters,
- phosphorescent emitters host materials, matrix materials, exciton-blocking materials, electron-transport materials,
- Electron injection materials hole conductor materials
- Hole injection materials, n-dopants, wide band gap materials, electron blocking materials, and hole blocking materials are used.
- the organically functional material may be a low molecular weight compound, a polymer, an oligomer, or a dendrimer, wherein the organically functional material may also be present as a mixture.
- the nanoparticles mentioned two may be a low molecular weight compound, a polymer, an oligomer, or a dendrimer, wherein the organically functional material may also be present as a mixture.
- the organically functional material is insoluble in the continuous phase.
- a material or compound is insoluble in a solvent if its solubility at 25 ° C is less than 0.4 g / 100 ml, preferably less than 0.1 g / 100 ml, more preferably less than 0.001 g / 100 ml.
- Soluble is a material or compound if the solubility of the material is greater than that of an insoluble material or an insoluble compound.
- Organically functional materials are often described by the properties of the frontier orbitals, which are described in more detail below.
- Molecular orbitals in particular the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), their energy levels and the energy of the lowest triplet state Ti or the lowest excited singlet state Si of the materials are determined by quantum chemical calculations.
- HOMO highest occupied molecular orbital
- LUMO lowest unoccupied molecular orbital
- the lowest triplet state Ti is defined as the energy of the triplet state with the lowest energy, which results from the described quantum chemical calculation.
- the lowest excited singlet state Si is defined as the energy of the excited singlet state with the lowest energy which results from the described quantum chemical calculation.
- a hole injection material has a HOMO level that is in the range of or above the level of the anode, i. generally at least -5.3 eV.
- Called hole transport materials are capable of holes, i. positive charges, which are generally injected from the anode or an adjacent layer, such as a hole injection layer.
- a hole transport material generally has a high HOMO level of preferably at least -5.4 eV.
- a hole transport material as well, a hole transport material as well
- Hole injection material can be used.
- Include hole transport properties include, for example
- Polyarylalkane derivatives (US 3615402), fluorenone derivatives (JP-A-54-110837), hydrazone derivatives (US 3717462), acylhydrazones, stilbene derivatives (JP-A-61-210363), silazane derivatives (US 4950950 ), Polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263), thiophene oligomers (JP Heisei 1 (1989) 211399), polythiophenes, poly (N-vinylcarbazole) (PVK) , Polypyrroles, polyanilines and other electroconductive macromolecules, porphyrin compounds (JP-A-63-2956965, US 4720432), aromatic dimethylidene-type compounds, carbazole compounds such as CDBP, CBP, mCP, aromatic tertiary amine and styrylamine compounds (US 4,127,412), e.g.
- Benzidine-type phenylamines styrylamine-type phenylamines and diamine-type phenylamines.
- Arylamine dendrimers may also be used (JP Heisei 8 (1996) 193191), monomeric triarylamines (US 3180730), triarylamines having one or more vinyl radicals and / or at least one active hydrogen functional group (US Pat. Nos. 3,567,450 and 3,365,820) or US Pat
- Tetraaryldiamines (the two tertiary amino units are linked by an aryl group). There may also be more triarylamino groups in the molecule. Also phthalocyanine derivatives, naphthalocyanine derivatives, butadiene derivatives and quinoline derivatives such as e.g. Dipyrazino [2,3-f: 2'3'-hjquinoxaline-hexacarbonitrile are suitable. Preference is given to aromatic tertiary amines having at least two
- TBDB N, N, N ', N'-tetra (4-biphenyl) diaminobiphenylene
- TAPC 1, 1-bis (4-di-p-tolylaminophenyl) -cyclohexane
- TAPPP 1, 1-bis (4-di
- Vacuum level more preferably more than -5.5 eV.
- Compounds having electron injection and / or electron transport properties are, for example, pyridine, pyrimidine,
- Particularly suitable compounds for electron transporting and electron injecting layers are metal chelates of 8-hydroxyquinoline (for example LiQ, AlQ.sub.3, GaCte, MgQ2, ZnQ2, LNQ 3, Zrq 4), BAlq, Ga-Oxinoid- complexes, 4-Azaphenanthren-5-ol-Be Complexes (US 5529853 A, see formula ET-1), butadiene derivatives (US 4356429), heterocyclic optical brighteners (US 4539507), benzimidazole derivatives (US 2007/0273272 A1), such as TPBI (US 5766779, see formula ET-2), 1, 3,5-triazines, eg
- Spirobifluorene-triazine derivatives eg according to DE 102008064200
- pyrenes anthracenes
- tetracenes fluorenes
- spirofluorenes dendrimers
- tetracenes eg rubrene derivatives
- 1, 10-phenanthroline derivatives JP 2003-115387, JP 2004-311184 , JP-2001 -267080, WO 2002/043449
- silacyclopentadiene derivatives EP 1480280, EP 1478032, EP 1469533
- borane derivatives such as Triarylborane derivatives with Si (US 2007/0087219 A1, see formula ET-3
- pyridine derivatives JP 2004-200162
- phenanthrolines especially 1, 0-phenanthroline derivatives, such as e.g. BCP and Bphen, also several linked via biphenyl or other aromatic groups
- Phenanthrolines (US 2007-0252517 A1) or anthracene-linked phenanthrolines (US 2007-0122656 A1, see Formulas ET-4 and ET-5).
- heterocyclic organic compounds e.g. Thiopyrandioxides, oxazoles, triazolines, imidazoles or oxadiazoles.
- heterocyclic organic compounds e.g. Thiopyrandioxides, oxazoles, triazolines, imidazoles or oxadiazoles.
- five-membered rings with N e.g. Oxazoles, preferably 1, 3,4-oxadiazoles, for example, compounds according to formulas ET-6, ET-7, ET-8 and ET-9, which are set forth, inter alia, in US 2007/0273272 A1; Thiazoles, oxadiazoles, thiadiazoles, triazoin, and others. see US 2008/0102311 A1 and Y.A. Levin, M. S. Skorobogatova, Khimiya
- Preferred compounds are the following according to the formulas (ET-6) to (ET-10):
- organic compounds such as derivatives of fluorenone, Fluorenyliden- methane, Perylenetetrakohlenklare, anthraquinone, diphenoquinone, anthrone and Anthrachinondiethylendiamin can be used.
- the compounds that can produce the electron injection and / or electron transport properties result in a LUMO of less than -2.5 eV (vs. vacuum level), more preferably less than -2.7 eV.
- the nanoparticles of the present formulation may comprise emitters.
- emitter refers to a material which, after excitation, which can be done by transmission of any kind of energy, forms a radiation-transient junction with emission of light into one
- fluorescent emitter refers to materials or compounds, in which a radiation-dependent transition from an excited singlet state to the ground state takes place.
- phosphorescent emitter preferably refers to luminescent materials or compounds comprising transition metals.
- Emitters are often referred to as dopants if the dopants cause the properties outlined above in a system.
- a dopant is understood to mean the component whose proportion in the mixture is the smaller.
- a matrix material in a system containing a matrix material and a dopant is understood to mean the component whose proportion in the mixture is the larger.
- the term phosphorescent emitter can accordingly be understood as meaning, for example, also phosphorescent dopants.
- Compounds which can emit light include, among others, fluorescent emitters and phosphorescent emitters. These include, but are not limited to, stilbene, stilbenamine, styrylamine, coumarin, rubrene, rhodamine, thiazole, thiadiazole, cyanine, thiophene, paraphenylene, perylene, phatolocyanine, porphyrin, ketone, and the like. , Quinoline, imine, anthracene and / or pyrene structures. Particular preference is given to compounds which, even at room temperature, can emit light from the triplet state with high efficiency, ie exhibit electrophosphorescence instead of electrofluorescence, which frequently causes an increase in energy efficiency. Compounds which contain heavy atoms with an atomic number of more than 36 are suitable for this purpose. Preferred are
- Preferred fluorescent emitters are selected from the class of monostyrylamines, the
- Distyrylamines tristyrylamines, tetrastyrylamines, styrylphosphines, styryl ethers and arylamines.
- a monostyrylamine is meant a compound containing a substituted or unsubstituted styryl group and at least one, preferably aromatic, amine.
- a distyrylamine is understood as meaning a compound which contains two substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
- a tristyrylamine is understood as meaning a compound which contains three substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
- Under a tetrastyrylamine is a
- Styryl tendency and at least one, preferably aromatic, amine.
- the styryl groups are particularly preferred stilbenes, which may also be further substituted.
- Corresponding phosphines and ethers are defined in analogy to the amines. Under an aryl amine or an aromatic amine in the context of the present invention is a
- At least one of these aromatic or heteroaromatic ring systems is preferably a fused ring system, preferably having at least 14 aromatic ring atoms.
- Preferred examples of these are aromatic anthraceneamines, aromatic
- aromatic anthracenamines aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysendiamines.
- aromatic anthracenamine is meant a compound in a diarylamino group is bonded directly to an anthracene group, preferably in the 9-position.
- aromatic anthracenediamine is meant a compound in which two diaryl-amino groups are bonded directly to an anthracene group, preferably in the 2,6- or 9,10-position.
- Chrysendiamines are defined analogously thereto, the diarylannino groups on the pyrene preferably being bonded in the 1-position or in the 1, 6-position.
- fluorescent emitters are selected from indeno-fluorenamines or -diamines, which are set out inter alia in WO 06/122630; Benzoindenofluorenaminen or diamines, which are set out inter alia in WO 2008/006449; and dibenzoindeno-fluorenamines or -diamines, which are set out inter alia in WO 2007/140847.
- Examples of compounds that can be used as fluorescent emitters, from the class of styrylamines are substituted or unsubstituted tristilbeneamines or the dopants described in WO
- Distyrylbiphenyl derivatives are described in US 5121029. Further styrylamines can be found in US 2007/0122656 A1.
- triarylamine compounds are those in the CN
- Further preferred compounds which can be used as fluorescent emitters are selected from derivatives of naphthalene, anthracene, tetracene, benzanthracene, benzphenanthrene (DE 10 2009
- fluorene fluoranthene, periflanthene, indenoperylene, phenanthrene, perylene (US 2007/0252517 A1), pyrene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, fluorene,
- anthracene compounds more preferably substituted in the 9,10-position are substituted anthracenes such as e.g. 9,10-diphenylanthracene and 9,10-
- DMQA ⁇ , ⁇ '-dimethylquinacridone
- DCM 4- (dicyanoethylene) -6- (4-dimethylamino-styryl-2-methyl) -4H-pyran
- thiopyran polymethine, pyrylium and
- Blue fluorescence emitters are preferably polyaromatics such as 9,10-di (2-naphthylanthracene) and other anthracene derivatives, derivatives of tetracene, xanthene, perylene such as 2,5,8,1-tetra-f-butyl-perylene, Phenylene, eg 4,4 '- (bis (9-ethyl-3-carbazovinylene) -1, 1'-biphenyl, fluorene, fluoranthene, arylpyrene (US 2006/0222886 A1), arylenevinylenes (US 5121029, US 5130603), bis (azinyl) imine-boron compounds (US
- phosphorescent emitters can be found in WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614 and WO 05/033244.
- all phosphorescent complexes which are used according to the prior art for phosphorescent OLEDs and as known to the person skilled in the art in the field of organic electroluminescence are suitable, and the person skilled in the art can use further phosphorescent complexes without inventive step.
- Phosphorescent metal complexes preferably contain Ir, Ru, Pd, Pt, Os or Re.
- Preferred ligands are 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 1- Phenylisoquinoline derivatives, 3-phenylisoquinoline derivatives or 2-phenylquinoline derivatives. All of these compounds may be substituted, eg blue with fluoro, cyano and / or trifluoromethyl substituents.
- Auxiliary ligands are preferably acetylacetonate or picolinic acid.
- complexes of Pt or Pd with tetradentate ligands according to formula EM-16 are suitable as emitters.
- enlarged-ring Pt-porphyrin complexes (US 2009/0061681 A1) and Ir complexes are suitable, for example 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin-Pt (II) , Tetraphenyl Pt (II) tetrabenzoporphyrin (US 2009/0061681 A1), c / ' s Bis (2-phenylpyridinato-N, C 2 ') Pt (II), c / ' s Bis (2- (2 , -thienyl) pyridinato-N, C 3 ') Pt (II), c / s-bis (2- (2'-thienyl) quinolinato-N, C 5 ') Pt (
- tridentate ligand phosphorescent emitters are described in US 6824895 and US 10/729238. Red-emitting phosphorescent complexes can be found in US 6835469 and US 6830828.
- Formula EM-20 Formula E -21 Quantum dots can also be used as emitters, these materials being disclosed in detail in WO 2011/076314 A1.
- Compounds used as host materials, especially together with emissive compounds, include materials of various classes.
- Host materials generally have larger band gaps between HOMO and LUMO than the emitter materials used.
- preferred host materials exhibit either properties of a hole or electron transport material.
- host materials can have both electron and hole transport properties.
- Host materials are sometimes referred to as matrix material, especially if the host material in combination with a
- Phosphorescent emitter is used in an OLED.
- Preferred host materials or co-host materials which are used in particular together with fluorescent dopants are selected from the classes of the oligoarylenes (for example 2,2 ', 7,7'-tetraphenyl-spirobifluorene according to EP 676461 or dinaphthylanthracene), in particular the oligoarylenes containing condensed aromatic groups, such as Anthracene, benzanthracene, benzphenanthrene (DE 10 2009 005746, WO 09/069566), phenanthrene, tetracene, coronene, chrysene, fluorene,
- the oligoarylenes for example 2,2 ', 7,7'-tetraphenyl-spirobifluorene according to EP 676461 or dinaphthylanthracene
- the oligoarylenes containing condensed aromatic groups such as Anthracene, benzanthracene, benzphenant
- Benzanthracenes (e.g., according to WO 08/145239).
- Particularly preferred compounds which can serve as host materials or co-host materials are selected from the classes of oligoarylenes containing anthracene, benzanthracene and / or pyrene or atropisomers of these compounds.
- an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
- Preferred host materials are very particularly preferably selected from compounds of the formula (H-1):
- the group Ar 4 is anthracene and the groups Ar 3 and Ar 5 are bonded in positions 9 and 10, these groups being optionally substituted.
- at least one of the groups Ar 3 and / or Ar 5 is a fused aryl group selected from 1- or 2-naphthyl, 2-, 3- or 9-phenanthrenyl or 2-, 3-, 4-, 5-, 6- or 7- Benzanthracenyl.
- Anthracene-based compounds are described in US 2007/0092753 A1 and US 2007/0252517 A1, for example 2- (4-methylphenyl) -9,10-di- (2-naphthyl) anthracene, 9- (2-naphthyl) -10- (1,1'-biphenyl) anthracene and 9,10-bis [4- (2,2-diphenylethenyl) phenyl] anthracene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene and 1, 4-bis (9'-ethynylanthracenyl) benzene.
- Further preferred compounds are derivatives of arylamine, styrylamine, fluorescein, diphenylbutadiene, tetraphenylbutadiene, cyclopentadienes, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, coumarin, oxadiazole, bisbenzoxazoline, oxazole, pyridine, pyrazine, imine, benzothiazole, benzoxazole, benzimidazole (US 2007/0092753 A1), e.g.
- Metal oxinoid complexes such as LiQ or AlQ3 can be used as co-hosts.
- Preferred compounds with oligoarylene as matrix are described in US Pat
- compounds that can be used as host or matrix materials include materials that are used with phosphorescent emitters. These compounds, which can also be used as structural elements in polymers include CBP ( ⁇ , ⁇ -biscarbazolylbiphenyl), carbazole derivatives (eg according to WO 05/039246, US 2005/0069729, JP 2004/288381, EP 1205527 or WO 08/086851), azacarbazoles (eg according to the
- WO 06/117052 triazine derivatives (for example according to DE 102008036982), indolocarbazole derivatives (for example according to WO 07/063754 or WO 08/056746), indenocarbazole derivatives (for example according to DE 102009023155 and DE 102009031021), diazaphosphole derivatives (eg according to DE 102009022858), triazole derivatives, oxazoles and oxazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, distyrylpyrazine derivatives, thiopyrandioxide derivatives, phenylenediamine derivatives, tertiary aromatic amines, styrylamines, Amino-substituted chalcone derivatives, indoles, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic dimethylidene compounds, carbodiimide derivative
- Si tetraaryls are disclosed, for example, in US 2004/0209115, US 2004/0209116, US 2007/0087219 A1 and H. Gilman, EA Zuech, Chemistry & Industry (London, United Kingdom), 1960, 120. Particularly preferred Si-tetraaryls are described by the formulas H-14 to H-21.
- Formula H-20 Formula H-21 Particularly preferred compounds for preparing the matrix for phosphorescent dopants are inter alia in the
- Compounds which can serve as host material are in particular preferred substances which has at least one nitrogen atom. These include preferably aromatic amines, triazine and carbazole derivatives. In particular, carbazole derivatives show a surprisingly high efficiency. Triazine derivatives unexpectedly lead to high lifetimes of electronic devices with said compounds. It may also be preferred to use a plurality of different matrix materials as a mixture, in particular at least one electron-conducting matrix material and at least one hole-conducting matrix material. Likewise preferred is the use of a mixture of a charge-transporting matrix material and an electrically inert matrix material, which does not or does not contribute significantly to the charge transport, as described, for example, in WO 2010/108579.
- carbazole and bridged carbazole dimer units are suitable for this purpose, as described, for example, in WO 04/070772 A2 and WO 04/113468 A1.
- ketones, phosphine oxides, sulfoxides, sulfones, silane derivatives and similar compounds are also suitable for this purpose.
- ketones, phosphine oxides, sulfoxides, sulfones, silane derivatives and similar compounds as described, for example, in WO 05/040302 A1.
- n-dopants herein are reducing agents, ie
- the nanoparticles may contain as functional material a wide band gap material. Wide-band gap material is understood to mean a material in the sense of the disclosure of US Pat. No. 7,294,849.
- the used as a wide-band gap material is a wide-band gap material
- the band gap can be calculated among other things by the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
- nanoparticles can function as a functional material
- HBM Hole blocking material
- Lochblockiermaterial refers to a material which in a
- Multi-layer composite prevents or minimizes the passage of holes (positive charges), in particular if this material is arranged in the form of a layer adjacent to an emission layer or a hole-conducting layer.
- a hole blocking material has a lower HOMO level than the hole transport material in the
- Hole blocking layers are often placed between the light emitting layer and the electron transport layer in OLEDs.
- any known hole blocking material can be used.
- any known hole blocking material can be used.
- other hole blocking materials set forth elsewhere in the present application there are
- suitable hole blocking materials are metal complexes (US 2003/0068528), e.g. Bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (BAIQ). Fac-tris (1-phenylpyrazolato-N, C2) iridium (III) (Ir (ppz) 3) is also used for this purpose (US 2003/0 75553 A1).
- Phenanthroline derivatives such as BCP or phthalimides such as TMPP can also be used. Furthermore, suitable hole blocking materials in WO
- nanoparticles can be used as a functional material
- Electron blocking material include.
- An electron-blocking material refers to a material which in a multi-layer composite prevents or minimizes the transmission of electrons, in particular if this material is arranged in the form of a layer adjacent to an emission layer or an electron-conducting layer. In general, one electron blocking material has a higher LUMO level than the electron transport material in the adjacent layer.
- any known electron-blocking material can be used.
- useful electron-blocking materials are transition-metal complexes such as Ir (ppz) 3 (US 2003/0175553).
- the electron blocking material can be selected from amines, triarylamines and their derivatives.
- nanoparticles can be used as a functional material
- Exciton blocking material refers to a material which is in a
- Multi-layer composite prevents or minimizes the passage of excitons, especially if this material is arranged in the form of a layer adjacent to an emission layer.
- the exciton-blocking material should preferably have a higher triplet or singlet level than the emission layer or other adjacent layer.
- the selection of suitable compounds is well known, with the suitability of compounds as exciton-blocking material dependent on the energy gap of the adjacent layer.
- a convenient exciton-blocking material has a larger energy gap - singlet or triplet energy gap - than the functional material of the adjacent layer, preferably the emitter layer.
- other exciton blocking materials set forth elsewhere in the present application, among others
- substituted triarylamines substituted substituted triarylamines are set forth in detail. Examples include MTDATA or 4,4 ', 4 "-tris (N, N-diphenylamino) triphenylamine (TDATA), these being
- Electron blocking material can be used.
- N-substituted carbazole compounds e.g. TCTA
- heterocycles such as e.g. BCP
- a colorant is according to DIN 55943 the collective name for all coloring substances.
- the colorants include, but are not limited to, soluble dyes and inorganic or organic pigments. These colorants may be used singly or as a mixture of two or more. Thus, in particular mixtures of organic color pigments with soluble organic dyes can be used. Furthermore, it is possible to use mixtures which comprise inorganic and organic color pigments. In addition, mixtures can which contain soluble organic dyes in addition to the inorganic color pigments. Furthermore, mixtures comprising soluble dyes and inorganic and organic pigments are useful.
- the light energy absorbed by the colorants can be transferred to other materials in the form of light or any other form of energy.
- colorants used in conjunction with organic solar cells (O SCs), organic optical detectors, organic photoreceptors, organic electrical sensors, or other electronic devices that absorb light are used.
- the present application includes suitable colorants phthalocyanines, azo dyes, perylene diimides, porphyrins, squaraine as well as isomers and derivatives of these compounds.
- the colorant may be selected from the group of perylenes, ruthenium dyes, phthalocyanines, azo dyes, perylene diimides, porphyrins and squaraine.
- Yu Bai et. al. in Nature Materials, Vol. 7, 626 (2008) and by B. O'Regan et. al., Nature 353, 737 (1991), and Bessho et al., Chem. Commun. 3717 (2008), presented complexes based on copper.
- colorants come from the group of acridines, anthraquinones, aarylmethanes, diarylmethanes, triarylmethane, azo dyes, cyanine, diazonium dyes, nitro dyes, nitroso dyes, quinoneimines, azine dyes, eurhodines, safranines, Induline, Indamines, indophenols, oxazines, oxazones, thiazines, thiazoles, xanthenes, fluorenes, pyronines, fluorones and rhodamines.
- the nanoparticles may contain charge generating materials that have a similar function as the colorants.
- Charge generating materials are used, for example, for electrophotographic devices.
- charge-generating materials are from Paul
- organic compounds comprising a fused ring system, such as anthracene, naphthalene, pentacene and tetracene derivatives, are suitable colorants.
- preferred functional compounds which can be used in the nanoparticles as organically functional material have a molecular weight of at most 10,000 g / mol, more preferably of at most 5000 g / mol and most preferably of at most 3000 g / mol.
- further functional compounds that are characterized by a high glass transition temperature.
- functional compounds which can be used in the nanoparticles as organically functional material preferably having a glass transition temperature of at least 70 ° C, more preferably of at least 00 ° C, most preferably of at least 125 ° C and particularly preferred of at least 150 ° C, determined according to DIN 51005.
- the nanoparticles can also be considered as organically functional materials
- polymer To incorporate polymer. This is particularly possible with compounds which are substituted with reactive leaving groups, such as bromine, iodine, chlorine, boronic acid or boronic acid esters, or with reactive, polymerizable groups, such as olefins or oxetanes. These can be used as monomers for the production of corresponding oligomers, dendrimers or polymers.
- the oligomerization or polymerization is preferably carried out via the halogen functionality or the boronic acid functionality or via the polymerizable group. It is still possible, the
- the compounds of the invention and polymers can be used as a crosslinked or uncrosslinked layer.
- Polymers that can be used as organic functional materials often include units or structural elements that are known in the art
- Group 1 Structural elements, the Lochinjetechnischs- and / or
- Group 2 structural elements, the electron injection and / or
- Group 3 structural elements that combine the characteristics set out in relation to Groups 1 and 2;
- Group 4 structural elements which have light-emitting properties, in particular phosphorescent groups
- Group 5 structural elements, which are the transition from the so-called
- Group 6 Structural elements that have the morphology or the
- Group 7 Structural elements, typically as a backbone
- Group 8 Structural elements which show the absorption properties of the
- Polymers influence so that they can be regarded as a colorant.
- the structural elements can in this case also have different functions, so that an unambiguous assignment does not have to be expedient.
- a structure element of group 1 can also serve as a backbone.
- the polymer used as organic functional material with hole transport or hole injection properties comprising structural elements according to group 1, units comprising the
- group 1 is, for example, triarylamine, benzidine, tetraaryl-para-phenylene-diamine, carbazole, azulene, thiophene, pyrrole and furan derivatives and further O, S or N-containing heterocycles with a high HOMO , These arylamines and heterocycles preferably have a HOMO of greater than -5.8 eV (vs. vacuum level), more preferably greater than -5.5 eV.
- Hole injection properties comprising at least one of the following repeat units according to formula HTP-1
- Ar 11 is the same or different for each repeating unit, a single bond, or a mononuclear or polynuclear aryl group which may be optionally substituted;
- Ar 12 is the same or different for each repeating unit, a mononuclear or polynuclear aryl group which may be optionally substituted;
- Ar 13 is the same or different for different repeat units, a mononuclear or polynuclear aryl group which may optionally be substituted; is 1, 2 or 3. Particular preference is given to repeat units of the formula HTP-1 which are selected from the group consisting of units of the formulas HTP-1 A to HTP-1 C:
- HTP-1 C in which the symbols have the following meaning: is identical or different at each occurrence H, a substituted or unsubstituted aromatic or heteroaromatic group, an alkyl, cycloalkyl, alkoxy, aralkyl, aryloxy, arylthio, Alkoxycarbonyl, silyl, carboxy, halogen, cyano, nitro, or hydroxy; r is 0, 1, 2, 3 or 4 and
- s 0, 1, 2, 3, 4 or 5.
- Hole injection properties comprising at least one of the following repeat units of the formula HTP-2 wherein the symbols have the following meaning:
- T 1 and T 2 are independently selected from thiophene, selenophene, thieno [2,3b] thiophene, thieno [3,2b] thiophene, dithienothiophene, pyrrole, aniline, which groups may be substituted by one or more R b radicals;
- Carbon atoms which may be optionally substituted and may optionally comprise one or more heteroatoms;
- R ° and R 00 are each independently H or an optionally substituted carbyl or hydrocarbyl group of 1 to 40 carbon atoms, which
- Ar " 7" and Ar “ 8 " independently represent a mononuclear or polynuclear aryl or heteroaryl group which may be optionally substituted and may optionally be attached to the 2,3-position of one or both adjacent thiophene or selenophene groups; c and e are independently 0, 1, 2, 3 or 4, where 1 ⁇ c + e ⁇ 6, d and f are independently 0, 1, 2, 3 or 4.
- the polymer used as the organic functional material having electron injection and / or electron transport properties comprising structural elements according to group 2 may comprise units corresponding to the electron injection and / or electron transport materials set forth above.
- Group 2 structural elements which include electron injection and / or electron transport properties are e.g. of pyridine, pyrimidine, pyridazine, pyrazine, oxadiazole, quinoline,
- the organically functional material may be a polymer comprising structural elements according to group 3, wherein
- Structural elements that improve hole and electron mobility are directly connected to each other. Some of these structural elements can serve as emitters, whereby the emission colors can be shifted, for example, into green, red or yellow. Their use is therefore
- the polymer having light-emitting properties used as organic functional material comprising Group 4 structural elements may have units corresponding to the emitter materials set forth above.
- polymers with phosphorescent groups are preferred, in particular the emissive metal complexes set out above, which correspond to these
- the polymer used as organic functional material with group 5 moieties which enhance the so-called singlet to triplet state transition may be used to support phosphorescent compounds, preferably the polymers having Group 4 structural elements set forth above.
- a polymeric triplet matrix can be used.
- carbazole and associated carbazole dimer units as described in DE 10304819 A1 and DE 10328627 A1.
- ketone also suitable for this purpose are ketone,
- Phosphine oxide Phosphine oxide, sulfoxide, sulfone, silane derivatives and the like
- the further organic functional material is a polymer comprising Group 6 units having the morphology and / or
- Such structural units may have the morphology and / or
- Structural elements having 6 to 40 carbon atoms or tolan, stilbene or Bisstyrylarylenderivat units, each of which may be substituted with one or more radicals. Particularly preferred is the
- the polymer used as organically functional material preferably comprises group 7 units, which preferably contain aromatic structures having 6 to 40 carbon atoms, which are widely used as backbones.
- 4,5-dihydropyrene derivatives 4,5,9,10-tetrahydropyrene derivatives, fluorene derivatives, for example, in US 5962631, the WO 2006/052457 A2 and WO 2006/118345 A1, 9,9-spirobifluorene derivatives, which are disclosed, for example, in WO 2003/020790 A1, 9,10-phenanthrene derivatives, which are described, for example, in WO 2005/104264 A1, 9,10-dihydrophenanthrene derivatives, which are disclosed, for example, in WO 2005/014689 A2, 5,7-dihydrodibenzooxepin derivatives and cis- and trans-indenofluorene derivatives which are described, for example, in WO 2004/041901 A1 and WO 2004/113412 A2, and binaphthylene derivatives which are disclosed, for example, in WO 2006/063852 A1, and further units which are described, for example, for example, in
- Group 7 structural units selected from fluorene derivatives, e.g. in US 5962631, the
- WO 2006/052457 A2 and WO 2006/118345 A1 are set forth;
- Spirobifluorene derivatives e.g. are disclosed in WO 2003/020790 A1; Benzofluorene, dibenzofluorene, benzothiophene, dibenzofluorene groups and their derivatives, e.g. in WO 2005/056633 A1, EP 1344788 A1 and WO 2007/043495 A1 are disclosed.
- R c and R d are each independently selected from H,
- Groups R c and R d may optionally form a spiro group with a fluorene radical to which they are attached; X is halogen;
- R ° and R 00 are each independently H or an optionally substituted carbyl or hydrocarbyl group of 1 to 40 carbon atoms which may be optionally substituted and may optionally comprise one or more heteroatoms; each g is independently 0 or 1 and each h is independently 0 or 1, wherein in one subunit the sum of g and h is preferably 1; m is an integer>1;
- Ar 1 and Ar 2 independently represent a mononuclear or polynuclear aryl or heteroaryl group, which may optionally be substituted and may optionally be attached to the 7,8-position or the 8,9-position of an indenofluorene group; a and b are independently 0 or 1. If the groups R c and R d form a spiro group with the fluorene group to which these groups are bonded, this group is preferably a spirobifluorene.
- repeat units of the formula PB-1 which are selected from the group consisting of units of the formulas PB-1 A to PB-1E:
- Alkoxycarbonyloxy group having 1 to 20, preferably 1 to 12 C atoms, wherein one or more hydrogen atoms may be optionally substituted by F or Cl, and the groups R °, R 00 and X have the meaning previously given for the formula PB-1 ,
- repeat units of the formula PB-1 which are selected from the group consisting of units of the formulas PB-1 F to PB-11:
- L is H, halogen or an optionally fluorinated, linear or
- L ' is an optionally fluorinated, linear or branched alkyl or alkoxy group having 1 to 12 C atoms and is preferably n-octyl or n-octyloxy.
- polymers which have more than one of the structural elements of groups 1 to 7 set out above.
- the polymers preferably have more than one of the structural elements set out above from a group, ie mixtures of structural elements selected from a group.
- polymers which, in addition to at least one structural element which has light-emitting properties (group 4), preferably at least one phosphorescent group, additionally comprise at least one further structural element of groups 1 to 3, 5 or 6 set out above, these being preferably selected from groups 1 to 3.
- the proportion of the different classes of groups, if present in the polymer can be within wide limits, these being known to the person skilled in the art. Surprising advantages can be achieved in that the proportion of a class present in a polymer, which is selected in each case from the structural elements of groups 1 to 7 set forth above, is preferably at least 5 mol%, particularly preferably at least 10 mol%.
- the preparation of white-emitting copolymers is described in detail, inter alia, in DE 10343606 A1.
- the polymers may have corresponding groups.
- the polymers may have corresponding groups.
- repeat unit at least 2 non-aromatic carbon atoms, more preferably at least 4 and most preferably at least 8 non-aromatic carbon atoms are included, wherein the average refers to the number average.
- individual carbon atoms may e.g. be replaced by O or S.
- Short chain substituents are preferred because long chain substituents may have adverse effects on layers that can be obtained using the organically functional materials.
- the substituents have at most 12
- Carbon atoms preferably at most 8 carbon atoms and more preferably at most 6 carbon atoms in a linear chain.
- the polymer used as organically functional material according to the invention can be a random, alternating or regioregular
- Copolymer a block copolymer or a combination of these
- the polymer used as the organic functional material may include a non-conjugated polymer
- phosphorescent polymers can be obtained by radical copolymerization of vinyl compounds, these vinyl compounds at least one unit with a contain phosphorescent emitter and / or at least one charge transport unit, as disclosed inter alia in US 7250226 B2. Further phosphorescent polymers are described, inter alia, in JP 2007/211243 A2, JP 2007/197574 A2, US Pat. No. 7,250,226 B2 and JP 2007/059939 A.
- non-conjugated polymers based on backbone units comprising
- Spacer units are interconnected.
- the non-conjugated polymer can be designed as a fluorescent emitter.
- Side chains include anthracene, benzanthracene groups or derivatives of these groups in the side chain, these polymers being e.g. in JP 2005/08556, JP 2005/285661 and JP 2003/338375.
- the nanoparticles contained in the formulations according to the invention may contain all the organically functional materials which are necessary for the production of the respective functional layer of the electronic device.
- organically functional materials which are necessary for the production of the respective functional layer of the electronic device.
- a hole transport, Hole injection, electron transport, electron injection layer constructed exactly from a functional compound include the
- Nanoparticles of the formulation used for the preparation of this functional layer as an organic functional material exactly this compound. If an emissive layer has, for example, an emitter in combination with a matrix or host material, the nanoparticles of the formulation used to produce this functional layer comprise as organic-functional material exactly the mixture of emitter and matrix or host material, as elsewhere in this application is explained in more detail.
- the nanoparticles may have different amounts of liquids, in particular solvents, preferably organic solvents, which are removed after application of the formulation to a substrate or one of the layers subsequently applied to the substrate.
- These preferred organic solvents can be used to prepare the nanoparticles and / or serve a purpose
- Suitable organic solvents include ketones, esters, amides, sulfur compounds, nitro compounds, halogenated
- Hydrocarbons and hydrocarbons are Hydrocarbons and hydrocarbons.
- Aromatic and heteroaromatic hydrocarbons and chlorinated hydrocarbons are preferred organic solvents.
- Particularly preferred organic solvents are, for example, dichloromethane, trichloromethane, monochlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, chloroform, o-xylene, m-xylene, p-xylene, 1,4-dioxane, Acetone, methyl ethyl ketone, 1, 2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, dimethylformamide,
- Dimethylacetamide, dimethyl sulfoxide, tetralin, decalin, indane and / or mixtures of these compounds Dimethylacetamide, dimethyl sulfoxide, tetralin, decalin, indane and / or mixtures of these compounds.
- the solvents may be used singly or as a mixture of two, three or more compounds.
- the nanoparticles comprise small amounts
- the formulation used for the application preferably has at most 50% by weight, particularly preferably at most 30% by weight, very particularly preferably at most 20% by weight, particularly preferably at most 10% by weight and very particularly preferably at most 5% by weight. % of solvents that are sparingly soluble or insoluble in the continuous phase, based on the weight of the in the
- Formulation contained solids.
- the solids are the substances that remain in the respective layer of the organic device after the preparation thereof.
- the proportion of organically functional material which can be used to produce functional layers of electronic devices is in the formulation preferably in the range from 1 to 10%, particularly preferably in the range from 2 to 8%, very particularly preferably in the range from 2.5 to 6 %, and more preferably in the range of 3 to 5%, based on the total weight of the formulation.
- the proportion of surface-active polymer in the formulation is preferably in the range of 0.1 to 5%, more preferably in the range of 0.1 to 4%, most preferably in the range of 0.2 to 2%, and most preferably in the range of 0.1 to 0.8%, based on the total weight of the formulation.
- Formulation is in the formulation preferably in the range of 80 to 99.9%, more preferably in the range of 85 to 99%, most preferably in the range of 90 to 98% and particularly preferably in the range of 95 to 97%, based on the total weight of the formulation.
- Formulation include further additives and processing aids.
- surfactants include, but are not limited to, surfactants, surfactants, lubricants and lubricants, conductivity enhancing additives, dispersants, hydrophobizing agents, coupling agents, flow improvers, defoamers, deaerators, diluents that may be reactive or unreactive, fillers, auxiliaries, processing aids, dyes, Pigments, stabilizers, sensitizers, nanoparticles and inhibitors.
- a formulation according to a preferred aspect of the present invention preferably comprises at most 30% by weight, more preferably at most 15% by weight, most preferably at most 5% by weight, especially preferably at most 1% by weight, and most preferably at most 0.5 wt .-% of additives, for example
- the continuous phase may be in addition to those set forth above
- Solvents and surfactant polymers other additives contain, as set forth above, wherein preferably low levels of additives are included. It can preferably be provided that the continuous phase comprises at least 80% by weight, particularly preferably at least 90% by weight, very particularly preferably at least 95% by weight and especially preferably at least 97% by weight of solvent, based on the Weight of the continuous phase.
- the preparation of the formulation can be carried out by methods disclosed inter alia in US 2009/081357 A1 and in WO 2011/076314 A1.
- Another object of the present invention is a process for the preparation of a formulation according to the invention comprising
- Preparation of a second composition comprising a second solvent, wherein the second composition comprises at least one organically functional material which is used to prepare
- the formulation obtained by this method may be called an emulsion if the second solvent is sparingly soluble or insoluble in the first solvent.
- a dispersion can be obtained from the emulsion obtained from the formulation.
- Carbon atoms are preferred first solvents for the first
- the second solvent generally constitutes an organic one
- the mixing ratio of the first and second compositions in step c) is not particularly limited. Preferably, it can be provided that the weight ratio of the first
- Composition to the second composition in the range of 1: 1 to 50: 1, more preferably in the range of 3: 1 to 15: 1 and most preferably in the range of 5: 1 to 10: 1.
- the preparation of a dispersion and / or an emulsion according to step d) can be carried out by known means. These include, in particular, mechanical processes, such as high-pressure homogenization or nozzle dispersers, and the use of ultrasound, with the use of ultrasound being preferred.
- a surfactant may be added.
- the content of surfactants can be kept very low, more preferably no surfactant is added.
- the proportion of surfactants is preferably at most 20 wt .-%, more preferably at most 10 wt .-%, most preferably at most 5 wt .-% and particularly preferably at most 1 wt .-%, based on the weight of the respective composition.
- compositions and / or the formulation do not comprise any substantial amounts of surfactants, this proportion preferably being at most 0.5% by weight, particularly preferably at most 0.1% by weight, very particularly preferably at most 0.05 wt .-% and particularly preferably at most 0.01 wt .-%, based on the weight of the respective composition or formulation.
- Surfactants here are surfactants with a low
- Suitable surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, or mixtures of these surfactants.
- Preferred classes of nonionic surfactants are:
- Polyethylene oxide condensates of alkylphenols e.g. the
- coconut alcohol wherein the coconut alcohol fraction comprises from about 10 to about 14 carbon atoms; 4) long-chain tertiary amine oxides;
- Hydroxyalkyl having from about 1 to about 3 carbon atoms
- alkyl (usually methyl) and a long hydrophobic chain which may be formed by alkyl, alkenyl, hydroxyalkyl or ketoalkyl radicals having from about 8 to about 20 carbon atoms which may contain from 0 to about 10 ethylene oxide groups and from 0 to about 1 glyceryl radical;
- Alkyl polysaccharide (APS) surfactants such as the alkylpolyglyco pages, as described in US 4,565,647, having a hydrophobic group of from about 6 to about 30 carbon atoms and a polysaccharide moiety (e.g., polyglycoside) as the hydrophilic group, and optionally a polyalkyleneoxide group, wherein the alkyl group (ie, the hydrophobic moiety) may be saturated or unsaturated, branched or unbranched, and unsubstituted or substituted (eg, with hydroxy or cyclic rings); and 8) polyethylene glycol (PEG) glyceryl fatty acid esters, such as those of the formula R (O) OCH 2 CH (OH) CH 2 (OCH 2 CH 2 ) n OH, wherein n is about 5 to about 200, preferably about 20 to about 100, and R is aliphatic
- Colloid mills are produced.
- a formulation according to the present invention can be used to make a layer or multilayer structure in which the organic functional materials are present in layers as needed for the production of preferred electronic or optoelectronic devices such as OLEDs.
- the second solvent optionally in admixture, of one or more
- discontinuous phases of the formulation prior to application of the formulation Preferably, accordingly, it may be provided to convert an initially obtained emulsion into a dispersion.
- the nanoparticles of the emulsion according to the present invention can be converted by removal of the second organic solvent into solid nanoparticles dispersed in the continuous phase (s) of the formulation.
- dispersion herein refers to a system comprising
- liquid medium preferably an aqueous and / or alcoholic phase
- organic phase formed by suspended solid particles, preferably as nanoparticles.
- the formulation of the present invention may preferably be used for
- Formation of functional layers on a substrate or one of the layers applied to the substrate can be used.
- a method for producing an electronic device in which a formulation of the invention is applied to a substrate and dried, is also an object of the present invention.
- the functional layers can be produced, for example, by flood coating, dip coating, spray coating, spin coating, screen printing, high pressure, gravure printing, rotary printing, roll coating, flexographic printing, offset printing or nozzle printing, preferably inkjet printing on a substrate or one of the substrates applied to the substrate Layers take place.
- the drying may be carried out at a relatively low temperature and over a relatively long period of time to avoid blistering and to obtain a uniform coating.
- the drying at a temperature in the range of 10 to 60 ° C, more preferably in the range of 15 to 55 ° C and most preferably in the range of 20 to 30 ° C are performed.
- the drying may preferably be at a pressure in the range of 10 "3 mbar to 2 bar, particularly preferably in the range of 10" 2 mbar to 1 bar and especially preferably in the range of 10 "1 mbar to 100 mbar carried out.
- the duration of the Drying depends on the degree of drying to be achieved, it being possible for small amounts of water to be removed, if appropriate, at a higher temperature and in connection with sintering, which is preferably to be carried out
- Substrate applied layer which has the organic functional material contained in the nanoparticle, a sintering step is performed.
- the sintering step may be carried out at a temperature in the range of 75 to 220 ° C, more preferably in the range of 100 to 150 ° C, and most preferably in the range of 125 to 150 ° C.
- the sintering may preferably be for a period in the range of 1 minute to 10 hours, more preferably in the range of 10 minutes to 4 hours, most preferably in the range of 20 minutes to 3 hours and more preferably in the range of 30 minutes to 1 hour.
- the method is repeated several times, wherein different or identical functional layers are formed.
- the subject of the present invention is also an electronic
- Device obtainable by a method for producing an electronic device.
- Another object of the present invention is an electronic device having at least one functional layer comprising at least one organically functional material and at least one surface-active polymer, preferably selected from polysaccharides and / or polypeptides.
- An electronic device is understood to mean a device which comprises anode, cathode and at least one intermediate one
- Functional layer contains, wherein this functional layer contains at least one organic or organometallic compound.
- the organic electronic device is preferably an organic electroluminescent device (OLED), a polymeric electroluminescent device (PLED), an organic integrated circuit (O-IC), an organic field effect transistor (O-FET), an organic one Thin film transistor (O-TFT), an organic light emitting transistor (O-LET), an organic solar cell (O-SC), an organic optical detector, an organic photoreceptor, an organic field quench device (O-FQD), an organic electrical sensor, a light emitting electrochemical cell (LEC) or an organic laser diode (O-laser).
- Active components are generally the organic or inorganic materials interposed between anode and cathode, these active components having the properties of electronic
- a preferred embodiment of the invention are organic electroluminescent devices.
- the organic electroluminescent device includes cathode, anode and at least one emitting layer.
- triplet emitter with the shorter-wave emission spectrum serves as a co-matrix for the triplet emitter with the longer-wave emission spectrum.
- the proportion of the matrix material in the emitting layer in this case is between 50.0 and 99.9% by volume, preferably between 80.0 and 99.5% by volume and particularly preferred for fluorescent emitting layers between 92.0 and 99.5 vol .-% and for phosphorescent emitting layers between 85.0 and 97.0 vol .-%.
- the proportion of the dopant is between 0.1 and
- An emitting layer of an organic electroluminescent device may also contain systems comprising a plurality of matrix materials (mixed-matrix systems) and / or multiple dopants. Also in this case, the dopants are generally those materials whose proportion in the
- the proportion of a single matrix material in the system may be smaller than the proportion of a single dopant.
- the mixed-matrix systems preferably comprise two or three
- the two materials constitutes a material with hole-transporting properties and the other material a material with electron-transporting properties.
- the desired electron-transporting and hole-transporting properties of the mixed-matrix components can also be mainly or completely combined in a single mixed-matrix component be, with the other and the other mixed-matrix components fulfill other functions.
- the two different matrix materials may be present in a ratio of 1:50 to 1: 1, preferably 1:20 to 1: 1, more preferably 1:10 to 1: 1 and most preferably 1: 4 to 1: 1.
- Preference is given to using mixed-matrix systems in phosphorescent organic electroluminescent devices. More detailed information on mixed-matrix systems is contained inter alia in WO 2010/108579.
- an organic electroluminescent device may also contain further layers, for example in each case one or more hole injection layers, hole transport layers,
- Metal oxides such as M0O3 or WO3 or with (per) fluorinated electron-poor aromatics, and / or that one or more electron transport layers are n-doped.
- interlayer may be introduced between two emitting layers which, for example, a
- the present invention thus also provides a layer, in particular an organic layer, containing one or more surface-active polymers, as defined above.
- the device comprises a plurality of layers.
- the formulation according to the invention can preferably be used for producing a hole transport, hole injection, electron transport, electron injection and / or emission layer.
- the present invention accordingly also relates to an electronic device which comprises at least three, but in a preferred embodiment, all of the mentioned layers of hole injection,
- the thickness of the layers, for example the hole transport and / or hole injection layer may preferably be in
- the device may further contain layers which are composed of other low molecular weight compounds or polymers not by the use of formulations according to the invention
- the compounds to be used not as a pure substance, but as a mixture (blend) together with any other polymeric, oligomeric, dendritic or low molecular weight
- the formulations according to the invention comprise organically functional materials which are used as host materials or matrix materials in an emitting layer.
- the formulation may include the emitters set forth above.
- the organic electroluminescent device can comprise one or more emitting layers, wherein at least one emitting layer contains at least one compound according to the invention as defined above. If several emission layers are present, they preferably have a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results, ie in the emitting layers different emitting compounds are used, which can fluoresce or phosphoresce.
- the organic electroluminescent device may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers and / or charge generation layers
- interlayer may be introduced between two emitting layers which, for example, have an exciton-blocking function. It should be noted, however, that not necessarily each of these layers must be present. These layers can also be obtained using the formulations of the invention as defined above. It is also possible that several OLEDs are arranged one above the other, whereby a further increase in efficiency can be achieved with respect to the light output. To improve the light extraction, the last organic layer on the
- Light exit side in OLEDs for example, be designed as nanofoam, whereby the proportion of total reflection is reduced.
- an organic electroluminescent device wherein one or more layers are coated by a sublimation method.
- the materials are vacuum deposited in vacuum sublimation at a pressure less than 10 "5 mbar, preferably less than 10 6 mbar, more preferably less than 10 7 mbar.
- Carrier gas sublimation are coated.
- the materials are applied at a pressure between 10 " 5 mbar and 1 bar.
- the device usually includes a cathode and an anode
- the electrodes are selected so that their band energies match those of the adjacent, organic layers as well as possible in order to ensure the most efficient electron or hole injection possible.
- cathode metal complexes low work function metals, metal alloys or multilayer structures of various metals are preferred, such as alkaline earth metals, alkali metals,
- Main group metals or lanthanides e.g., Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.
- other metals having a relatively high work function can also be used, e.g. Ag, which then usually combinations of metals, such as Ca / Ag or Ba / Ag
- Intermediate layer of a material with a high dielectric constant to bring Suitable examples include, for example, alkali metal or alkaline earth metal fluorides, but also the corresponding oxides (for example LiF, U 2 O, BaF 2, MgO, NaF, etc.).
- the layer thickness of this layer is preferably between 0.1 and 10 nm, more preferably between 0.2 and 8 nm and most preferably between 0.5 and 5 nm.
- the anode high workfunction materials are preferred.
- the anode has a potential greater than 4.5 eV. Vacuum up.
- metals with a high redox potential are suitable, such as Ag, Pt or Au.
- metal / metal oxide electrodes eg Al / Ni / NiOx, Al / PtOx may also be preferred.
- At least one of the electrodes must be transparent to allow either the irradiation of the organic material (O-SC) or the extraction of light (OLED / PLED, O-LASER).
- O-SC organic material
- O-LASER extraction of light
- a preferred construction uses a transparent anode.
- Preferred anode materials here are conductive, mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO).
- conductive, doped organic materials in particular conductive doped polymers, such as e.g. Poly (ethylenedioxythiophene) (PEDOT) and polyaniline (PANI) or derivatives of these polymers. It is also preferred if a p-doped to the anode
- Hole transport material is applied as Lochinjetechnischstik, wherein suitable as p-dopants metal oxides, for example M0O3 or WO3, or (per) fluorinated electron-poor aromatics.
- suitable p-dopants are HAT-CN (hexacyano-hexaazatriphenylen) or the
- the device is structured, contacted and finally hermetically sealed in a manner known per se, since the service life of such devices is drastically shortened in the presence of water and / or air.
- Another object of the present invention is the use of polysaccharides and / or polypeptides for the preparation of
- Electronic devices in particular organic electroluminescent devices, are distinguished by one or more of the following surprising advantages over the prior art: 1.
- the formulations according to the invention can be applied already
- formulations according to the invention can also be applied.
- the electronic devices obtainable with the formulations according to the invention show a very high stability and a very long service life compared to electronic devices
- Sublimation methods are carried out at relatively high temperatures, so that a, albeit slight decomposition of functional materials enters.
- the use of high levels of surfactants can lead to a reduction in the performance of the functional materials.
- the use of orthogonal solvents restricts the choice of functional materials, so that optimal electronic devices can be relatively difficult to obtain in this way. Furthermore, can be networking
- the formulations according to the invention can be produced and processed cost-effectively, since water and / or harmless alcohols can be used as solvents and / or dispersants. A complex workup of large quantities
- formulations of the invention can be processed by conventional methods, so that cost advantages can also be achieved thereby.
- organically functional materials are not particularly limited, so that the method of the present invention can be widely used.
- Example 1 For the disperse phase of the low molecular weight hybrid particles, a total of 50 mg of material consisting of a mixture of host and guest molecules was taken up in 3 g of toluene.
- Solution 1 contains 40 mg of a matrix material M1 and 10 mg of an E1 emitter in 3 ml of toluene.
- Solution 2 contains 20 mg of a matrix material M2, 20 mg of one
- Matrix material M3 and 10 mg of an emitter E2 in 3 ml of toluene The structural formulas of the matrix materials and emitters used are shown below:
- Dispersions The disperse phase and the surfactant solution were combined and the mixture pre-emulsified for at least 1 hour at 1200 rpm at room temperature. A miniemulsion was then prepared directly from the preemulsion by means of homogenization on an ultrasound tip (Branson Sonifier W450, 1 / inch peak, 70% amplitude, 180 s sound time, always 10 s pulse and 10 s pause). The sample vessel was cooled during the sound in the ice bath. Thereafter, the miniemulsion was stirred open at 65 ° C and 700 rpm in an oil bath to evaporate organic solvents. After 12 to 15 hours were still about 5 ml of pure aqueous dispersion left over and the sample volume was further narrowed as needed, so that a certain
- Solid content (usually 1 to 3%) was obtained.
- the cooled finished dispersion was dialyzed in 2 l MilliQ water in a dialysis tubing (Visking tubes, MWCO 14000 g / mol, Carl Roth) as needed.
- the dialysis duration was dependent on the type and amount of the surfactant and there were with dispersions different dialysis grades used for OLED production. A complete dialysis of a standard approach took about 12 hours.
- nanoparticles were coated with polysaccharide by stirring for 12 hours in an aqueous 0.02 to 0.1% solution of xyloglucan (from tamarind resin, molecular weight about 50 KDa). An excess of ⁇ Q polysaccharide was removed by centrifugation and decantation.
- the nanoparticles were coated with polysaccharide by stirring for 12 hours in an aqueous 0.02 to 0.1% solution of gaiactomannan (from g guar resin, molecular weight about 25 KDa). Excess polysaccharide was removed by centrifugation and decanting.
- gaiactomannan from g guar resin, molecular weight about 25 KDa.
- the obtained dispersion was spin-coated on a HIL-coated glass substrate to obtain an emission layer having a layer thickness of 80 to 140 nm.
- the layer was dried at 150 ° C for 60 minutes and then sintered for 60 minutes at 180 ° C.
- a layer with a surface energy of 16 mN / was obtained (the contact angles of the layer were 81.6 (L), 83.2 ()) - 0
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
L'invention concerne une formulation contenant au moins un solvant et des nanoparticules comprenant au moins un polymère tensioactif et au moins un matériau organique fonctionnel qui peut être utilisé pour la fabrication de couches fonctionnelles de dispositifs électroniques. En outre, la présente invention concerne des dispositifs électroniques qui peuvent être obtenus à partir de ces formulations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15804072.5A EP3241248A1 (fr) | 2014-12-30 | 2015-12-02 | Formulations et dispositifs électroniques |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14004452 | 2014-12-30 | ||
EP14004452.0 | 2014-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016107663A1 true WO2016107663A1 (fr) | 2016-07-07 |
Family
ID=52302039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/002422 WO2016107663A1 (fr) | 2014-12-30 | 2015-12-02 | Formulations et dispositifs électroniques |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3241248A1 (fr) |
WO (1) | WO2016107663A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019002183A1 (fr) | 2017-06-26 | 2019-01-03 | Merck Patent Gmbh | Procédés de préparation d'hétérocycles substitués contenant de l'azote |
CN111418081A (zh) * | 2017-12-15 | 2020-07-14 | 默克专利有限公司 | 有机功能材料的制剂 |
Citations (198)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180730A (en) | 1959-04-09 | 1965-04-27 | Azoplate Corp | Material for electrophotographic purposes |
US3526501A (en) | 1967-02-03 | 1970-09-01 | Eastman Kodak Co | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography |
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3615404A (en) | 1968-04-25 | 1971-10-26 | Scott Paper Co | 1 3-phenylenediamine containing photoconductive materials |
US3615402A (en) | 1969-10-01 | 1971-10-26 | Eastman Kodak Co | Tetra-substituted methanes as organic photoconductors |
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
US3717462A (en) | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
US4127412A (en) | 1975-12-09 | 1978-11-28 | Eastman Kodak Company | Photoconductive compositions and elements |
JPS54110837A (en) | 1978-02-17 | 1979-08-30 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5646234A (en) | 1979-09-21 | 1981-04-27 | Ricoh Co Ltd | Electrophotographic receptor |
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
US4565647A (en) | 1982-04-26 | 1986-01-21 | The Procter & Gamble Company | Foaming surfactant compositions |
JPS61210363A (ja) | 1985-03-15 | 1986-09-18 | Canon Inc | 電子写真感光体 |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
JPH01211399A (ja) | 1988-02-19 | 1989-08-24 | Toshiba Corp | スキャン機能付きダイナミックシフトレジスタ |
JPH02204996A (ja) | 1989-02-01 | 1990-08-14 | Nec Corp | 有機薄膜el素子 |
US4950950A (en) | 1989-05-18 | 1990-08-21 | Eastman Kodak Company | Electroluminescent device with silazane-containing luminescent zone |
WO1990013148A1 (fr) | 1989-04-20 | 1990-11-01 | Cambridge Research And Innovation Limited | Dispositifs electroluminescents |
JPH02282263A (ja) | 1988-12-09 | 1990-11-19 | Nippon Oil Co Ltd | ホール輸送材料 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5077142A (en) | 1989-04-20 | 1991-12-31 | Ricoh Company, Ltd. | Electroluminescent devices |
US5121029A (en) | 1987-12-11 | 1992-06-09 | Idemitsu Kosan Co., Ltd. | Electroluminescence device having an organic electroluminescent element |
US5130603A (en) | 1989-03-20 | 1992-07-14 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JPH04308688A (ja) | 1991-04-08 | 1992-10-30 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
EP0637899A1 (fr) | 1993-08-02 | 1995-02-08 | BASF Aktiengesellschaft | Arrangement électroluminescent |
EP0676461A2 (fr) | 1994-04-07 | 1995-10-11 | Hoechst Aktiengesellschaft | Composés spiro et leur application comme matières électroluminescentes |
JPH0853397A (ja) | 1994-08-12 | 1996-02-27 | Toyo Ink Mfg Co Ltd | ジアリールアミン誘導体、その製造方法及び用途 |
US5529853A (en) | 1993-03-17 | 1996-06-25 | Sanyo Electric Co., Ltd. | Organic electroluminescent element |
JPH08193191A (ja) | 1995-01-19 | 1996-07-30 | Idemitsu Kosan Co Ltd | 有機電界発光素子及び有機薄膜 |
JPH08292586A (ja) | 1995-04-21 | 1996-11-05 | Hodogaya Chem Co Ltd | 電子写真用感光体 |
EP0652273B1 (fr) | 1993-11-09 | 1998-02-11 | Shinko Electric Industries Co. Ltd. | Matériau organique pour dispositif électroluminescent et dispositif électroluminescent |
DE19646119A1 (de) | 1996-11-08 | 1998-05-14 | Hoechst Ag | Elektrolumineszenzvorrichtung |
US5766779A (en) | 1996-08-20 | 1998-06-16 | Eastman Kodak Company | Electron transporting materials for organic electroluminescent devices |
EP0650955B1 (fr) | 1993-11-01 | 1998-08-19 | Hodogaya Chemical Co., Ltd. | Composé aminé et dispositif électroluminescent le contenant |
EP0891121A1 (fr) | 1996-12-28 | 1999-01-13 | TDK Corporation | Elements electroluminescents organiques |
EP0681019B1 (fr) | 1994-04-26 | 1999-09-01 | TDK Corporation | Dérivé de phenylanthracène et élément organique électroluminescent |
US5962631A (en) | 1995-07-28 | 1999-10-05 | The Dow Chemical Company | 2, 7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
US6020078A (en) | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
EP1009044A2 (fr) | 1998-12-09 | 2000-06-14 | Eastman Kodak Company | Dispositif électroluminescent comprenant des dérivés d'anthracène dans une couche transportant des trous de charge |
EP1009041A2 (fr) | 1998-12-09 | 2000-06-14 | Eastman Kodak Company | Dispositif électroluminescent comprenant une couche transportant des trous de charge améliorée |
EP1029909A1 (fr) | 1998-09-09 | 2000-08-23 | Idemitsu Kosan Co., Ltd. | Dispositif organique electroluminescent et derive de phenylenediamine |
WO2000070655A2 (fr) | 1999-05-13 | 2000-11-23 | The Trustees Of Princeton University | Dispositifs electroluminescents organiques a tres haute performance utilisant l'electrophosphorescence |
JP3148176B2 (ja) | 1998-04-15 | 2001-03-19 | 日本電気株式会社 | 有機エレクトロルミネッセンス素子 |
WO2001041512A1 (fr) | 1999-12-01 | 2001-06-07 | The Trustees Of Princeton University | Complexes de forme l2mx en tant que dopants phosphorescents pour del organiques |
US6251531B1 (en) | 1995-02-25 | 2001-06-26 | Toyo Ink Manufacturing Co., Ltd. | Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted |
JP2001267080A (ja) | 2000-01-14 | 2001-09-28 | Toray Ind Inc | 発光素子 |
WO2001093642A1 (fr) | 2000-05-30 | 2001-12-06 | The Trustees Of Princeton University | Diodes organiques electroluminescentes phosphorescentes |
US20010053462A1 (en) | 2000-05-02 | 2001-12-20 | Masayuki Mishima | Light-emitting device |
WO2002002714A2 (fr) | 2000-06-30 | 2002-01-10 | E.I. Du Pont De Nemours And Company | Composes d'iridium electroluminescents contenant des phenylpyridines fluores, des phenylpyrimidines et des phenylquinolines, et dispositifs fabriques avec ces composes |
WO2002015645A1 (fr) | 2000-08-11 | 2002-02-21 | The Trustees Of Princeton University | Composes organometalliques et electrophosphorescence organique presentant un deplacement d'emission |
EP1191614A2 (fr) | 2000-09-26 | 2002-03-27 | Canon Kabushiki Kaisha | Dispositif luminescent et composé complexe d'un métal utilisé pour ce dispositif |
EP1191612A2 (fr) | 2000-09-26 | 2002-03-27 | Canon Kabushiki Kaisha | Dispositif luminescent, dispositif d'affichage et composé complexe d'un métal |
EP1191613A2 (fr) | 2000-09-26 | 2002-03-27 | Canon Kabushiki Kaisha | Dispositif luminescent, dispositif d'affichage et composé complexe d'un métal |
EP1205527A1 (fr) | 2000-03-27 | 2002-05-15 | Idemitsu Kosan Co., Ltd. | Dispositif a electroluminescence organique |
WO2002043449A1 (fr) | 2000-11-24 | 2002-05-30 | Toray Industries, Inc. | Materiau luminescent et element luminescent contenant celui-ci |
WO2002068435A1 (fr) | 2001-02-24 | 2002-09-06 | Covion Organic Semiconductors Gmbh | Complexes de rhodium et d'iridium |
EP1239526A2 (fr) | 2001-03-08 | 2002-09-11 | Canon Kabushiki Kaisha | Complexes métalliques, dispositif luminescent, et dispositif d'affichage |
WO2002077060A1 (fr) | 2001-03-24 | 2002-10-03 | Covion Organic Semiconductors Gmbh | Polymeres conjugues contenant des unites spirobifluorene et des unites fluorene et leur utilisation |
WO2002081488A1 (fr) | 2001-04-05 | 2002-10-17 | Covion Organic Semiconductors Gmbh | Complexes de rhodium et d'iridium |
US20030027016A1 (en) | 2000-04-21 | 2003-02-06 | Tdk Corporation | Organic EL device |
WO2003020790A2 (fr) | 2001-09-04 | 2003-03-13 | Covion Organic Semiconductors Gmbh | Polymeres conjugues contenant des unites spirobifluorene et leur utilisation |
US20030068528A1 (en) | 2001-08-29 | 2003-04-10 | Thompson Mark E. | Organic light emitting devices having carrier blocking layers comprising metal complexes |
JP2003115387A (ja) | 2001-10-04 | 2003-04-18 | Junji Kido | 有機発光素子及びその製造方法 |
EP1162193B1 (fr) | 1993-09-29 | 2003-05-14 | Idemitsu Kosan Company Limited | Dérivés d'acrylènediamine et élément électroluminescent organique le contenant |
US20030144465A1 (en) * | 2000-06-28 | 2003-07-31 | Agfa-Gevaert | Flexographic ink containing a polymer or copolymer of a 3, 4-dialkoxythiophene |
JP2003253145A (ja) | 2002-02-28 | 2003-09-10 | Jsr Corp | 発光性組成物 |
EP1344788A1 (fr) | 2002-03-15 | 2003-09-17 | Sumitomo Chemical Company, Limited | Polymères conjuguées contenant unités de dibenzothiophene ou de dibenzofuran et utilisation en PLEDs |
US20030175553A1 (en) | 2001-12-28 | 2003-09-18 | Thompson Mark E. | White light emitting oleds from combined monomer and aggregate emission |
EP1348711A1 (fr) | 2000-11-30 | 2003-10-01 | Canon Kabushiki Kaisha | Element luminescent et afficheur |
JP2003338375A (ja) | 2002-03-14 | 2003-11-28 | Tdk Corp | 有機el素子 |
WO2003099901A1 (fr) | 2002-05-28 | 2003-12-04 | Sumitomo Chemical Company, Limited | Polymere et element luminescent polymere contenant ce polymere |
US20040018383A1 (en) | 2002-07-26 | 2004-01-29 | Xerox Corporation | Display device with anthracene and triazine derivatives |
WO2004013073A1 (fr) | 2002-08-02 | 2004-02-12 | Idemitsu Kosan Co., Ltd. | Derives d'anthracene et dispositifs electroluminescents organiques fabriques au moyen de ces derives |
WO2004026886A2 (fr) | 2002-08-24 | 2004-04-01 | Covion Organic Semiconductors Gmbh | Complexes rhodium et iridium |
WO2004041901A1 (fr) | 2002-11-08 | 2004-05-21 | Covion Organic Semiconductors Gmbh | Polyindenofluorenes aryl-substitues destines a des dispositifs electroluminescents organiques |
WO2004058911A2 (fr) | 2002-12-23 | 2004-07-15 | Covion Organic Semiconductors Gmbh | Element electroluminescent organique |
JP2004200162A (ja) | 2002-12-05 | 2004-07-15 | Toray Ind Inc | 発光素子 |
WO2004070772A2 (fr) | 2003-02-06 | 2004-08-19 | Covion Organic Semiconductors Gmbh | Polymeres conjugues contenant du carbazole et melanges, preparation et utilisation desdits polymeres et melanges |
US20040174116A1 (en) | 2001-08-20 | 2004-09-09 | Lu Min-Hao Michael | Transparent electrodes |
WO2004081017A1 (fr) | 2003-03-11 | 2004-09-23 | Covion Organic Semiconductors Gmbh | Complexes metalliques |
JP2004288381A (ja) | 2003-03-19 | 2004-10-14 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子 |
EP1469533A2 (fr) | 2003-04-14 | 2004-10-20 | Kabushiki Kaisha Toyota Jidoshokki | Dispositif électroluminescent organique supprimant la génération de la lumière ultraviolette et système d'éclairage utilisant un élément électroluminescent organique |
US20040209115A1 (en) | 2003-04-21 | 2004-10-21 | Thompson Mark E. | Organic light emitting devices with wide gap host materials |
US20040209116A1 (en) | 2003-04-21 | 2004-10-21 | Xiaofan Ren | Organic light emitting devices with wide gap host materials |
WO2004093207A2 (fr) | 2003-04-15 | 2004-10-28 | Covion Organic Semiconductors Gmbh | Melanges de semi-conducteurs organiques aptes a l'emission et de matieres matricielles, leur utilisation et composants electroniques contenant ces melanges |
JP2004311184A (ja) | 2003-04-04 | 2004-11-04 | Junji Kido | 多核型フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子 |
EP1478032A2 (fr) | 2003-05-16 | 2004-11-17 | Kabushiki Kaisha Toyota Jidoshokki | Diode électroluminescente et procédé de fabrication |
EP1480280A2 (fr) | 2003-05-23 | 2004-11-24 | Kabushiki Kaisha Toyota Jidoshokki | Dispositif organique électroluminescent et sa méthode de fabrication |
US6824895B1 (en) | 2003-12-05 | 2004-11-30 | Eastman Kodak Company | Electroluminescent device containing organometallic compound with tridentate ligand |
US6830828B2 (en) | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6835469B2 (en) | 2001-10-17 | 2004-12-28 | The University Of Southern California | Phosphorescent compounds and devices comprising the same |
WO2004113468A1 (fr) | 2003-06-26 | 2004-12-29 | Covion Organic Semiconductors Gmbh | Nouveaux materiaux utilises en electroluminescence |
WO2004113412A2 (fr) | 2003-06-23 | 2004-12-29 | Covion Organic Semiconductors Gmbh | Polymeres |
WO2005003253A2 (fr) | 2003-07-07 | 2005-01-13 | Covion Organic Semiconductors Gmbh | Melanges de semi-conducteurs organiques aptes a l'emission et de materiaux matriciels, leur utilisation et composants electroniques contenant ces melanges |
WO2005011013A1 (fr) | 2003-07-21 | 2005-02-03 | Covion Organic Semiconductors Gmbh | Element electroluminescent organique |
WO2005014689A2 (fr) | 2003-08-12 | 2005-02-17 | Covion Organic Semiconductors Gmbh | Polymeres conjugues renfermant des motifs dihydrophenanthrene, et leur utilisation |
CN1583691A (zh) | 2004-06-04 | 2005-02-23 | 友达光电股份有限公司 | 蒽化合物以及包括此蒽化合物的有机电致发光装置 |
US20050069729A1 (en) | 2003-09-30 | 2005-03-31 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator, display and compound |
WO2005033174A1 (fr) | 2003-10-01 | 2005-04-14 | Sumitomo Chemical Company, Limited | Matiere electroluminescente polymere et dispositif electroluminescent polymere |
DE10343606A1 (de) | 2003-09-20 | 2005-04-14 | Covion Organic Semiconductors Gmbh | Weiß emittierende Copolymere, deren Darstellung und Verwendung |
WO2005033244A1 (fr) | 2003-09-29 | 2005-04-14 | Covion Organic Semiconductors Gmbh | Complexes metalliques |
JP2005108556A (ja) | 2003-09-29 | 2005-04-21 | Tdk Corp | 有機el素子及び有機elディスプレイ |
WO2005040302A1 (fr) | 2003-10-22 | 2005-05-06 | Merck Patent Gmbh | Nouveaux materiaux pour l'electroluminescence et leur utilisation |
DE10349033A1 (de) | 2003-10-22 | 2005-05-25 | Covion Organic Semiconductors Gmbh | Neue Materialien für die Elektrolumineszenz und deren Verwendung |
WO2005056633A1 (fr) | 2003-12-12 | 2005-06-23 | Sumitomo Chemical Company, Limited | Compose polymere et dispositif polymere luminescent utilisant ce compose |
EP1551206A1 (fr) | 2002-10-09 | 2005-07-06 | Idemitsu Kosan Co., Ltd. | Dispositif electroluminescent organique |
WO2005061656A1 (fr) | 2003-12-19 | 2005-07-07 | Idemitsu Kosan Co., Ltd. | Materiau electroluminescent pour dispositif organique electroluminescent et dispositif organique electroluminescent utilisant ledit materiau |
WO2005084081A1 (fr) | 2004-02-20 | 2005-09-09 | Merck Patent Gmbh | Dispositifs electroniques organiques |
WO2005086251A2 (fr) | 2004-03-03 | 2005-09-15 | Novaled Gmbh | Utilisation d'un complexe metallique comme dopant n d'un materiau matrice semi-conducteur organique et composant electronique, ainsi que dopant et ligand, et son procede de production |
US20050221124A1 (en) | 2004-04-02 | 2005-10-06 | Seok-Hwan Hwang | Fluorene-based compound and organic electroluminescent display device using the same |
JP2005285661A (ja) | 2004-03-30 | 2005-10-13 | Tdk Corp | 有機el素子及び有機elディスプレイ |
WO2005104264A1 (fr) | 2004-04-26 | 2005-11-03 | Merck Patent Gmbh | Polymeres electroluminescents et leur utilisation |
US20050249976A1 (en) | 2002-03-22 | 2005-11-10 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescence devices and organic electroluminescence device using the material |
WO2005111172A2 (fr) | 2004-05-11 | 2005-11-24 | Merck Patent Gmbh | Nouveaux melanges de materiaux pour applications electroluminescentes |
JP2005347160A (ja) | 2004-06-04 | 2005-12-15 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
WO2006000389A1 (fr) | 2004-06-26 | 2006-01-05 | Merck Patent Gmbh | Composes pour dispositifs electroniques organiques |
WO2006000388A1 (fr) | 2004-06-26 | 2006-01-05 | Merck Patent Gmbh | Dispositif electroluminescent organique |
EP1617710A1 (fr) | 2003-04-23 | 2006-01-18 | Konica Minolta Holdings, Inc. | Materiau pour dispositif electroluminescent organique, dispositif electroluminescent organique, dispositif d'eclairage et affichage |
US20060043858A1 (en) | 2002-08-23 | 2006-03-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and anthracene derivative |
US20060061265A1 (en) | 2002-11-06 | 2006-03-23 | Hisayuki Kawamura | Aromatic amine derivative and organic electroluminescent element employing the same |
WO2006048268A1 (fr) | 2004-11-06 | 2006-05-11 | Merck Patent Gmbh | Dispositif electroluminescent organique |
WO2006052457A2 (fr) | 2004-11-03 | 2006-05-18 | Sumation Co.Ltd. | Nouvelle classe de polymeres de biphenylene ponte |
EP1661888A1 (fr) | 2004-11-29 | 2006-05-31 | Samsung SDI Co., Ltd. | Composé contenant un phenylcarbazole et dispositif organiques électroluminiscent l'utilisant |
WO2006058737A1 (fr) | 2004-12-01 | 2006-06-08 | Merck Patent Gmbh | Composes de dispositifs electroniques organiques |
WO2006063852A1 (fr) | 2004-12-18 | 2006-06-22 | Merck Patent Gmbh | Polymeres electroluminescents et leur utilisation |
US20060147747A1 (en) | 2003-03-13 | 2006-07-06 | Hiroshi Yamamoto | Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same |
US20060210830A1 (en) | 2005-03-15 | 2006-09-21 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescence device using the same |
US20060222886A1 (en) | 2005-04-04 | 2006-10-05 | Raymond Kwong | Arylpyrene compounds |
WO2006118345A1 (fr) | 2005-04-28 | 2006-11-09 | Sumitomo Chemical Company, Limited | Composes a masse moleculaire elevee et leur utilisation dans des dispositifs luminescents a masse moleculaire elevee les utilisant |
WO2006117052A1 (fr) | 2005-05-03 | 2006-11-09 | Merck Patent Gmbh | Dispositif electroluminescent organique, et derives d'acide boronique et d'acide borinique utilises pour produire ce dispositif electroluminescent organique |
WO2006122630A1 (fr) | 2005-05-20 | 2006-11-23 | Merck Patent Gmbh | Composes pour dispositifs electroniques organiques |
EP1731584A1 (fr) | 2004-03-31 | 2006-12-13 | Konica Minolta Holdings, Inc. | Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, écran et dispositif d'éclairage |
JP2007059939A (ja) | 2001-08-31 | 2007-03-08 | Nippon Hoso Kyokai <Nhk> | 有機発光素子及び表示装置 |
WO2007043495A1 (fr) | 2005-10-07 | 2007-04-19 | Sumitomo Chemical Company, Limited | Dispositifs électroluminescents à base de copolymères et de polymères fabriqués en utilisant ces derniers |
US20070087219A1 (en) | 2005-10-19 | 2007-04-19 | Eastman Kodak Company | Electroluminescent device |
US20070092753A1 (en) | 2005-10-26 | 2007-04-26 | Eastman Kodak Company | Organic element for low voltage electroluminescent devices |
US20070092755A1 (en) | 2005-10-26 | 2007-04-26 | Eastman Kodak Company | Organic element for low voltage electroluminescent devices |
US20070122656A1 (en) | 2005-11-30 | 2007-05-31 | Eastman Kodak Company | Electroluminescent device containing an anthracene derivative |
WO2007063754A1 (fr) | 2005-12-01 | 2007-06-07 | Nippon Steel Chemical Co., Ltd. | Compose pour element electroluminescent organique et element electroluminescent organique |
US20070128467A1 (en) | 2003-12-26 | 2007-06-07 | Idemitsu Kosan C., Ltd. | Material for organic electroluminescent device and organic electroluminescent device using same |
WO2007065678A1 (fr) | 2005-12-08 | 2007-06-14 | Merck Patent Gmbh | Nouvelles matieres pour dispositifs electroluminescents organiques |
US20070134514A1 (en) | 2005-12-14 | 2007-06-14 | Eastman Kodak Company | Electroluminescent host material |
WO2007065549A1 (fr) | 2005-12-08 | 2007-06-14 | Merck Patent Gmbh | Dispositifs electroluminescents organiques |
US20070145355A1 (en) | 2005-12-22 | 2007-06-28 | Ansgar Werner | Doped organic semiconductor material |
US7238437B2 (en) | 1999-12-27 | 2007-07-03 | Fujifilm Corporation | Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex |
US7250226B2 (en) | 2001-08-31 | 2007-07-31 | Nippon Hoso Kyokai | Phosphorescent compound, a phosphorescent composition and an organic light-emitting device |
US7250532B2 (en) | 2001-03-16 | 2007-07-31 | Idemitsu Kosan Co., Ltd. | Method for producing aromatic amino compound |
DE102006003710A1 (de) | 2006-01-26 | 2007-08-02 | Merck Patent Gmbh | Elektrolumineszierende Materialien und deren Verwendung |
JP2007197574A (ja) | 2006-01-26 | 2007-08-09 | Showa Denko Kk | 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置 |
JP2007211243A (ja) | 2007-02-07 | 2007-08-23 | Showa Denko Kk | 重合性化合物の重合体 |
EP1834945A1 (fr) | 2005-01-05 | 2007-09-19 | Idemitsu Kosan Co., Ltd. | Derive d'amine aromatique et dispositif electroluminescent organique l'utilisant |
EP1837926A1 (fr) | 2006-03-21 | 2007-09-26 | Novaled AG | Radicaux ou diradicaux hétérocycliques, leur dimères, oligomères, polymères, composés spiro et polycycliques. Leur usage dans des semi-conducteurs organiques et dispositifs électroniques. |
WO2007107306A1 (fr) | 2006-03-22 | 2007-09-27 | Novaled Ag | Utilisation de radicaux heterocycliques pour le dopage de semi-conducteurs organiques |
WO2007114358A1 (fr) | 2006-04-03 | 2007-10-11 | Idemitsu Kosan Co., Ltd. | Derive benzanthracene et dispositif electroluminescent organique l'utilisant |
WO2007115610A1 (fr) | 2006-04-01 | 2007-10-18 | Merck Patent Gmbh | Matériaux pour dispositifs électroluminescents organiques |
US20070252517A1 (en) | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
US7294849B2 (en) | 2001-03-14 | 2007-11-13 | The Trustees Of Princeton University | Materials and devices for blue phosphorescence based organic light emitting diodes |
WO2007131582A1 (fr) | 2006-05-12 | 2007-11-22 | Merck Patent Gmbh | Matériaux semi-conducteurs organiques à base de polymères indénofluorènes |
EP1860097A1 (fr) | 2005-03-18 | 2007-11-28 | Idemitsu Kosan Co., Ltd. | Derive d'amine aromatique et dispositif electroluminescent organique l'utilisant |
WO2007137725A1 (fr) | 2006-05-31 | 2007-12-06 | Merck Patent Gmbh | Nouveaux matériaux pour dispositifs électroluminescents organiques |
WO2007140847A1 (fr) | 2006-06-02 | 2007-12-13 | Merck Patent Gmbh | Matériaux pour dispositifs électroluminescents organiques |
WO2008006449A1 (fr) | 2006-07-11 | 2008-01-17 | Merck Patent Gmbh | Nouveaux matériaux destinés à des dispositifs électroluminescents organiques |
WO2008009343A1 (fr) | 2006-07-21 | 2008-01-24 | Merck Patent Gmbh | Copolymères d'indénofluorène et de thiophène |
US7326371B2 (en) | 2004-03-25 | 2008-02-05 | Eastman Kodak Company | Electroluminescent device with anthracene derivative host |
US20080102311A1 (en) | 2006-08-04 | 2008-05-01 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent element and organic electroluminescent element employing the same |
WO2008056746A1 (fr) | 2006-11-09 | 2008-05-15 | Nippon Steel Chemical Co., Ltd. | Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique |
US20080113101A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic-electroluminescence-material-containing solution, method for forming thin film of organic electroluminescence material, thin film of organic electroluminescence material and organic electroluminescence device |
US7378162B2 (en) | 2005-03-08 | 2008-05-27 | Lg Electronics Inc. | Organic electroluminescence devices using red phosphorescence compounds |
WO2008086851A1 (fr) | 2007-01-18 | 2008-07-24 | Merck Patent Gmbh | Dérivés de carbazole pour des dispositifs électroluminescents organiques |
US20080193796A1 (en) | 2006-11-20 | 2008-08-14 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2008145239A2 (fr) | 2007-05-29 | 2008-12-04 | Merck Patent Gmbh | Nouveaux matériaux destinés à des dispositifs électroluminescents organiques |
WO2009000237A1 (fr) | 2007-06-22 | 2008-12-31 | Novaled Ag | Utilisation du précurseur d'un dopant n pour le dopage d'un matériau semi-conducteur, précurseur et composant électronique ou optoélectronique |
US20090008607A1 (en) | 2007-07-07 | 2009-01-08 | Idemitsu Kosan Co., Ltd. | Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same |
US20090061681A1 (en) | 2007-09-05 | 2009-03-05 | Mcmunigal Tom | Electrical receptacle assembly |
US20090081357A1 (en) | 2005-04-27 | 2009-03-26 | Konica Minolta Holdings, Inc. | Method for manufacturing organic electroluminescent device |
WO2009041635A1 (fr) | 2007-09-28 | 2009-04-02 | Idemitsu Kosan Co., Ltd. | Dispositif électroluminescent organique |
WO2009069566A1 (fr) | 2007-11-29 | 2009-06-04 | Idemitsu Kosan Co., Ltd. | Dérivé de benzophénanthrène et dispositif électroluminescent utilisant celui-ci |
DE102008017591A1 (de) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008033943A1 (de) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008035413A1 (de) | 2008-07-29 | 2010-02-04 | Merck Patent Gmbh | Verbindungen für organische elektronische Vorrichtungen |
DE102008036982A1 (de) | 2008-08-08 | 2010-02-11 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102008064200A1 (de) | 2008-12-22 | 2010-07-01 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102009005746A1 (de) | 2009-01-23 | 2010-07-29 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
WO2010108579A1 (fr) | 2009-03-23 | 2010-09-30 | Merck Patent Gmbh | Dispositif électroluminescent organique |
DE102009023155A1 (de) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009031021A1 (de) | 2009-06-30 | 2011-01-05 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009023154A1 (de) | 2009-05-29 | 2011-06-16 | Merck Patent Gmbh | Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten |
WO2011076314A1 (fr) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations électroluminescentes |
WO2011076323A1 (fr) * | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprenant des matériaux fonctionnels à phases séparées |
DE102009022858A1 (de) | 2009-05-27 | 2011-12-15 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtungen |
WO2012031735A1 (fr) | 2010-09-10 | 2012-03-15 | Novaled Ag | Composés pour dispositifs photovoltaïques organiques |
EP2452946A1 (fr) | 2010-11-16 | 2012-05-16 | Novaled AG | Oxides de pyridylphosphine pour dispositif électronique organique et dispositif électronique organique |
EP2463927A1 (fr) | 2010-12-08 | 2012-06-13 | Novaled AG | Matériau pour dispositif électronique organique et dispositif électronique organique |
WO2012168358A1 (fr) | 2011-06-09 | 2012-12-13 | Novaled Ag | Composé destiné à un dispositif électronique organique |
WO2012175219A1 (fr) | 2011-06-22 | 2012-12-27 | Novaled Ag | Dispositif électronique et composé |
WO2012175535A1 (fr) | 2011-06-22 | 2012-12-27 | Novaled Ag | Composant electronique organique |
-
2015
- 2015-12-02 EP EP15804072.5A patent/EP3241248A1/fr not_active Ceased
- 2015-12-02 WO PCT/EP2015/002422 patent/WO2016107663A1/fr active Application Filing
Patent Citations (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180730A (en) | 1959-04-09 | 1965-04-27 | Azoplate Corp | Material for electrophotographic purposes |
US3526501A (en) | 1967-02-03 | 1970-09-01 | Eastman Kodak Co | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography |
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
US3615404A (en) | 1968-04-25 | 1971-10-26 | Scott Paper Co | 1 3-phenylenediamine containing photoconductive materials |
US3717462A (en) | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
US3615402A (en) | 1969-10-01 | 1971-10-26 | Eastman Kodak Co | Tetra-substituted methanes as organic photoconductors |
US4127412A (en) | 1975-12-09 | 1978-11-28 | Eastman Kodak Company | Photoconductive compositions and elements |
JPS54110837A (en) | 1978-02-17 | 1979-08-30 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5646234A (en) | 1979-09-21 | 1981-04-27 | Ricoh Co Ltd | Electrophotographic receptor |
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4565647A (en) | 1982-04-26 | 1986-01-21 | The Procter & Gamble Company | Foaming surfactant compositions |
US4565647B1 (en) | 1982-04-26 | 1994-04-05 | Procter & Gamble | Foaming surfactant compositions |
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
JPS61210363A (ja) | 1985-03-15 | 1986-09-18 | Canon Inc | 電子写真感光体 |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5121029A (en) | 1987-12-11 | 1992-06-09 | Idemitsu Kosan Co., Ltd. | Electroluminescence device having an organic electroluminescent element |
JPH01211399A (ja) | 1988-02-19 | 1989-08-24 | Toshiba Corp | スキャン機能付きダイナミックシフトレジスタ |
JPH02282263A (ja) | 1988-12-09 | 1990-11-19 | Nippon Oil Co Ltd | ホール輸送材料 |
JPH02204996A (ja) | 1989-02-01 | 1990-08-14 | Nec Corp | 有機薄膜el素子 |
US5130603A (en) | 1989-03-20 | 1992-07-14 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US5077142A (en) | 1989-04-20 | 1991-12-31 | Ricoh Company, Ltd. | Electroluminescent devices |
WO1990013148A1 (fr) | 1989-04-20 | 1990-11-01 | Cambridge Research And Innovation Limited | Dispositifs electroluminescents |
US4950950A (en) | 1989-05-18 | 1990-08-21 | Eastman Kodak Company | Electroluminescent device with silazane-containing luminescent zone |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH04308688A (ja) | 1991-04-08 | 1992-10-30 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
US5529853A (en) | 1993-03-17 | 1996-06-25 | Sanyo Electric Co., Ltd. | Organic electroluminescent element |
EP0637899A1 (fr) | 1993-08-02 | 1995-02-08 | BASF Aktiengesellschaft | Arrangement électroluminescent |
EP1162193B1 (fr) | 1993-09-29 | 2003-05-14 | Idemitsu Kosan Company Limited | Dérivés d'acrylènediamine et élément électroluminescent organique le contenant |
EP0650955B1 (fr) | 1993-11-01 | 1998-08-19 | Hodogaya Chemical Co., Ltd. | Composé aminé et dispositif électroluminescent le contenant |
EP0652273B1 (fr) | 1993-11-09 | 1998-02-11 | Shinko Electric Industries Co. Ltd. | Matériau organique pour dispositif électroluminescent et dispositif électroluminescent |
EP0676461A2 (fr) | 1994-04-07 | 1995-10-11 | Hoechst Aktiengesellschaft | Composés spiro et leur application comme matières électroluminescentes |
EP0681019B1 (fr) | 1994-04-26 | 1999-09-01 | TDK Corporation | Dérivé de phenylanthracène et élément organique électroluminescent |
JPH0853397A (ja) | 1994-08-12 | 1996-02-27 | Toyo Ink Mfg Co Ltd | ジアリールアミン誘導体、その製造方法及び用途 |
JPH08193191A (ja) | 1995-01-19 | 1996-07-30 | Idemitsu Kosan Co Ltd | 有機電界発光素子及び有機薄膜 |
US6251531B1 (en) | 1995-02-25 | 2001-06-26 | Toyo Ink Manufacturing Co., Ltd. | Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted |
JPH08292586A (ja) | 1995-04-21 | 1996-11-05 | Hodogaya Chem Co Ltd | 電子写真用感光体 |
US5962631A (en) | 1995-07-28 | 1999-10-05 | The Dow Chemical Company | 2, 7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
US5766779A (en) | 1996-08-20 | 1998-06-16 | Eastman Kodak Company | Electron transporting materials for organic electroluminescent devices |
DE19646119A1 (de) | 1996-11-08 | 1998-05-14 | Hoechst Ag | Elektrolumineszenzvorrichtung |
EP0891121A1 (fr) | 1996-12-28 | 1999-01-13 | TDK Corporation | Elements electroluminescents organiques |
JP3148176B2 (ja) | 1998-04-15 | 2001-03-19 | 日本電気株式会社 | 有機エレクトロルミネッセンス素子 |
US7399537B2 (en) | 1998-09-09 | 2008-07-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and phenylenediamine derivative |
EP1029909A1 (fr) | 1998-09-09 | 2000-08-23 | Idemitsu Kosan Co., Ltd. | Dispositif organique electroluminescent et derive de phenylenediamine |
US6830828B2 (en) | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
EP1009044A2 (fr) | 1998-12-09 | 2000-06-14 | Eastman Kodak Company | Dispositif électroluminescent comprenant des dérivés d'anthracène dans une couche transportant des trous de charge |
EP1009041A2 (fr) | 1998-12-09 | 2000-06-14 | Eastman Kodak Company | Dispositif électroluminescent comprenant une couche transportant des trous de charge améliorée |
US6020078A (en) | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
WO2000070655A2 (fr) | 1999-05-13 | 2000-11-23 | The Trustees Of Princeton University | Dispositifs electroluminescents organiques a tres haute performance utilisant l'electrophosphorescence |
WO2001041512A1 (fr) | 1999-12-01 | 2001-06-07 | The Trustees Of Princeton University | Complexes de forme l2mx en tant que dopants phosphorescents pour del organiques |
US7238437B2 (en) | 1999-12-27 | 2007-07-03 | Fujifilm Corporation | Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex |
JP2001267080A (ja) | 2000-01-14 | 2001-09-28 | Toray Ind Inc | 発光素子 |
EP1205527A1 (fr) | 2000-03-27 | 2002-05-15 | Idemitsu Kosan Co., Ltd. | Dispositif a electroluminescence organique |
US20030027016A1 (en) | 2000-04-21 | 2003-02-06 | Tdk Corporation | Organic EL device |
US20010053462A1 (en) | 2000-05-02 | 2001-12-20 | Masayuki Mishima | Light-emitting device |
WO2001093642A1 (fr) | 2000-05-30 | 2001-12-06 | The Trustees Of Princeton University | Diodes organiques electroluminescentes phosphorescentes |
US20030144465A1 (en) * | 2000-06-28 | 2003-07-31 | Agfa-Gevaert | Flexographic ink containing a polymer or copolymer of a 3, 4-dialkoxythiophene |
WO2002002714A2 (fr) | 2000-06-30 | 2002-01-10 | E.I. Du Pont De Nemours And Company | Composes d'iridium electroluminescents contenant des phenylpyridines fluores, des phenylpyrimidines et des phenylquinolines, et dispositifs fabriques avec ces composes |
WO2002015645A1 (fr) | 2000-08-11 | 2002-02-21 | The Trustees Of Princeton University | Composes organometalliques et electrophosphorescence organique presentant un deplacement d'emission |
EP1191613A2 (fr) | 2000-09-26 | 2002-03-27 | Canon Kabushiki Kaisha | Dispositif luminescent, dispositif d'affichage et composé complexe d'un métal |
EP1191614A2 (fr) | 2000-09-26 | 2002-03-27 | Canon Kabushiki Kaisha | Dispositif luminescent et composé complexe d'un métal utilisé pour ce dispositif |
EP1191612A2 (fr) | 2000-09-26 | 2002-03-27 | Canon Kabushiki Kaisha | Dispositif luminescent, dispositif d'affichage et composé complexe d'un métal |
WO2002043449A1 (fr) | 2000-11-24 | 2002-05-30 | Toray Industries, Inc. | Materiau luminescent et element luminescent contenant celui-ci |
EP1348711A1 (fr) | 2000-11-30 | 2003-10-01 | Canon Kabushiki Kaisha | Element luminescent et afficheur |
WO2002068435A1 (fr) | 2001-02-24 | 2002-09-06 | Covion Organic Semiconductors Gmbh | Complexes de rhodium et d'iridium |
EP1239526A2 (fr) | 2001-03-08 | 2002-09-11 | Canon Kabushiki Kaisha | Complexes métalliques, dispositif luminescent, et dispositif d'affichage |
US7294849B2 (en) | 2001-03-14 | 2007-11-13 | The Trustees Of Princeton University | Materials and devices for blue phosphorescence based organic light emitting diodes |
US7250532B2 (en) | 2001-03-16 | 2007-07-31 | Idemitsu Kosan Co., Ltd. | Method for producing aromatic amino compound |
WO2002077060A1 (fr) | 2001-03-24 | 2002-10-03 | Covion Organic Semiconductors Gmbh | Polymeres conjugues contenant des unites spirobifluorene et des unites fluorene et leur utilisation |
WO2002081488A1 (fr) | 2001-04-05 | 2002-10-17 | Covion Organic Semiconductors Gmbh | Complexes de rhodium et d'iridium |
US20040174116A1 (en) | 2001-08-20 | 2004-09-09 | Lu Min-Hao Michael | Transparent electrodes |
US20030068528A1 (en) | 2001-08-29 | 2003-04-10 | Thompson Mark E. | Organic light emitting devices having carrier blocking layers comprising metal complexes |
US7250226B2 (en) | 2001-08-31 | 2007-07-31 | Nippon Hoso Kyokai | Phosphorescent compound, a phosphorescent composition and an organic light-emitting device |
JP2007059939A (ja) | 2001-08-31 | 2007-03-08 | Nippon Hoso Kyokai <Nhk> | 有機発光素子及び表示装置 |
WO2003020790A2 (fr) | 2001-09-04 | 2003-03-13 | Covion Organic Semiconductors Gmbh | Polymeres conjugues contenant des unites spirobifluorene et leur utilisation |
JP2003115387A (ja) | 2001-10-04 | 2003-04-18 | Junji Kido | 有機発光素子及びその製造方法 |
US6835469B2 (en) | 2001-10-17 | 2004-12-28 | The University Of Southern California | Phosphorescent compounds and devices comprising the same |
US20030175553A1 (en) | 2001-12-28 | 2003-09-18 | Thompson Mark E. | White light emitting oleds from combined monomer and aggregate emission |
JP2003253145A (ja) | 2002-02-28 | 2003-09-10 | Jsr Corp | 発光性組成物 |
JP2003338375A (ja) | 2002-03-14 | 2003-11-28 | Tdk Corp | 有機el素子 |
EP1344788A1 (fr) | 2002-03-15 | 2003-09-17 | Sumitomo Chemical Company, Limited | Polymères conjuguées contenant unités de dibenzothiophene ou de dibenzofuran et utilisation en PLEDs |
US20050249976A1 (en) | 2002-03-22 | 2005-11-10 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescence devices and organic electroluminescence device using the material |
WO2003099901A1 (fr) | 2002-05-28 | 2003-12-04 | Sumitomo Chemical Company, Limited | Polymere et element luminescent polymere contenant ce polymere |
US20040018383A1 (en) | 2002-07-26 | 2004-01-29 | Xerox Corporation | Display device with anthracene and triazine derivatives |
WO2004013073A1 (fr) | 2002-08-02 | 2004-02-12 | Idemitsu Kosan Co., Ltd. | Derives d'anthracene et dispositifs electroluminescents organiques fabriques au moyen de ces derives |
US20060043858A1 (en) | 2002-08-23 | 2006-03-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and anthracene derivative |
WO2004026886A2 (fr) | 2002-08-24 | 2004-04-01 | Covion Organic Semiconductors Gmbh | Complexes rhodium et iridium |
EP1551206A1 (fr) | 2002-10-09 | 2005-07-06 | Idemitsu Kosan Co., Ltd. | Dispositif electroluminescent organique |
US20060061265A1 (en) | 2002-11-06 | 2006-03-23 | Hisayuki Kawamura | Aromatic amine derivative and organic electroluminescent element employing the same |
WO2004041901A1 (fr) | 2002-11-08 | 2004-05-21 | Covion Organic Semiconductors Gmbh | Polyindenofluorenes aryl-substitues destines a des dispositifs electroluminescents organiques |
JP2004200162A (ja) | 2002-12-05 | 2004-07-15 | Toray Ind Inc | 発光素子 |
WO2004058911A2 (fr) | 2002-12-23 | 2004-07-15 | Covion Organic Semiconductors Gmbh | Element electroluminescent organique |
DE10304819A1 (de) | 2003-02-06 | 2004-08-19 | Covion Organic Semiconductors Gmbh | Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung |
WO2004070772A2 (fr) | 2003-02-06 | 2004-08-19 | Covion Organic Semiconductors Gmbh | Polymeres conjugues contenant du carbazole et melanges, preparation et utilisation desdits polymeres et melanges |
WO2004081017A1 (fr) | 2003-03-11 | 2004-09-23 | Covion Organic Semiconductors Gmbh | Complexes metalliques |
US20060147747A1 (en) | 2003-03-13 | 2006-07-06 | Hiroshi Yamamoto | Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same |
JP2004288381A (ja) | 2003-03-19 | 2004-10-14 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子 |
JP2004311184A (ja) | 2003-04-04 | 2004-11-04 | Junji Kido | 多核型フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子 |
EP1469533A2 (fr) | 2003-04-14 | 2004-10-20 | Kabushiki Kaisha Toyota Jidoshokki | Dispositif électroluminescent organique supprimant la génération de la lumière ultraviolette et système d'éclairage utilisant un élément électroluminescent organique |
WO2004093207A2 (fr) | 2003-04-15 | 2004-10-28 | Covion Organic Semiconductors Gmbh | Melanges de semi-conducteurs organiques aptes a l'emission et de matieres matricielles, leur utilisation et composants electroniques contenant ces melanges |
US20040209115A1 (en) | 2003-04-21 | 2004-10-21 | Thompson Mark E. | Organic light emitting devices with wide gap host materials |
US20040209116A1 (en) | 2003-04-21 | 2004-10-21 | Xiaofan Ren | Organic light emitting devices with wide gap host materials |
EP1617711A1 (fr) | 2003-04-23 | 2006-01-18 | Konica Minolta Holdings, Inc. | Dispositif organique electroluminescent et affichage |
EP1617710A1 (fr) | 2003-04-23 | 2006-01-18 | Konica Minolta Holdings, Inc. | Materiau pour dispositif electroluminescent organique, dispositif electroluminescent organique, dispositif d'eclairage et affichage |
EP1478032A2 (fr) | 2003-05-16 | 2004-11-17 | Kabushiki Kaisha Toyota Jidoshokki | Diode électroluminescente et procédé de fabrication |
EP1480280A2 (fr) | 2003-05-23 | 2004-11-24 | Kabushiki Kaisha Toyota Jidoshokki | Dispositif organique électroluminescent et sa méthode de fabrication |
WO2004113412A2 (fr) | 2003-06-23 | 2004-12-29 | Covion Organic Semiconductors Gmbh | Polymeres |
DE10328627A1 (de) | 2003-06-26 | 2005-02-17 | Covion Organic Semiconductors Gmbh | Neue Materialien für die Elektrolumineszenz |
WO2004113468A1 (fr) | 2003-06-26 | 2004-12-29 | Covion Organic Semiconductors Gmbh | Nouveaux materiaux utilises en electroluminescence |
WO2005003253A2 (fr) | 2003-07-07 | 2005-01-13 | Covion Organic Semiconductors Gmbh | Melanges de semi-conducteurs organiques aptes a l'emission et de materiaux matriciels, leur utilisation et composants electroniques contenant ces melanges |
WO2005011013A1 (fr) | 2003-07-21 | 2005-02-03 | Covion Organic Semiconductors Gmbh | Element electroluminescent organique |
WO2005014689A2 (fr) | 2003-08-12 | 2005-02-17 | Covion Organic Semiconductors Gmbh | Polymeres conjugues renfermant des motifs dihydrophenanthrene, et leur utilisation |
DE10343606A1 (de) | 2003-09-20 | 2005-04-14 | Covion Organic Semiconductors Gmbh | Weiß emittierende Copolymere, deren Darstellung und Verwendung |
WO2005033244A1 (fr) | 2003-09-29 | 2005-04-14 | Covion Organic Semiconductors Gmbh | Complexes metalliques |
JP2005108556A (ja) | 2003-09-29 | 2005-04-21 | Tdk Corp | 有機el素子及び有機elディスプレイ |
WO2005039246A1 (fr) | 2003-09-30 | 2005-04-28 | Konica Minolta Holdings, Inc. | Dispositif electroluminescent organique, dispositif d'eclairage et afficheur |
US20050069729A1 (en) | 2003-09-30 | 2005-03-31 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator, display and compound |
WO2005033174A1 (fr) | 2003-10-01 | 2005-04-14 | Sumitomo Chemical Company, Limited | Matiere electroluminescente polymere et dispositif electroluminescent polymere |
WO2005040302A1 (fr) | 2003-10-22 | 2005-05-06 | Merck Patent Gmbh | Nouveaux materiaux pour l'electroluminescence et leur utilisation |
DE10349033A1 (de) | 2003-10-22 | 2005-05-25 | Covion Organic Semiconductors Gmbh | Neue Materialien für die Elektrolumineszenz und deren Verwendung |
US6824895B1 (en) | 2003-12-05 | 2004-11-30 | Eastman Kodak Company | Electroluminescent device containing organometallic compound with tridentate ligand |
WO2005056633A1 (fr) | 2003-12-12 | 2005-06-23 | Sumitomo Chemical Company, Limited | Compose polymere et dispositif polymere luminescent utilisant ce compose |
WO2005061656A1 (fr) | 2003-12-19 | 2005-07-07 | Idemitsu Kosan Co., Ltd. | Materiau electroluminescent pour dispositif organique electroluminescent et dispositif organique electroluminescent utilisant ledit materiau |
US20070128467A1 (en) | 2003-12-26 | 2007-06-07 | Idemitsu Kosan C., Ltd. | Material for organic electroluminescent device and organic electroluminescent device using same |
WO2005084081A1 (fr) | 2004-02-20 | 2005-09-09 | Merck Patent Gmbh | Dispositifs electroniques organiques |
WO2005084082A1 (fr) | 2004-02-20 | 2005-09-09 | Merck Patent Gmbh | Dispositifs electroniques organiques |
WO2005086251A2 (fr) | 2004-03-03 | 2005-09-15 | Novaled Gmbh | Utilisation d'un complexe metallique comme dopant n d'un materiau matrice semi-conducteur organique et composant electronique, ainsi que dopant et ligand, et son procede de production |
US7326371B2 (en) | 2004-03-25 | 2008-02-05 | Eastman Kodak Company | Electroluminescent device with anthracene derivative host |
JP2005285661A (ja) | 2004-03-30 | 2005-10-13 | Tdk Corp | 有機el素子及び有機elディスプレイ |
EP1731584A1 (fr) | 2004-03-31 | 2006-12-13 | Konica Minolta Holdings, Inc. | Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, écran et dispositif d'éclairage |
US20050221124A1 (en) | 2004-04-02 | 2005-10-06 | Seok-Hwan Hwang | Fluorene-based compound and organic electroluminescent display device using the same |
WO2005104264A1 (fr) | 2004-04-26 | 2005-11-03 | Merck Patent Gmbh | Polymeres electroluminescents et leur utilisation |
WO2005111172A2 (fr) | 2004-05-11 | 2005-11-24 | Merck Patent Gmbh | Nouveaux melanges de materiaux pour applications electroluminescentes |
JP2005347160A (ja) | 2004-06-04 | 2005-12-15 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
CN1583691A (zh) | 2004-06-04 | 2005-02-23 | 友达光电股份有限公司 | 蒽化合物以及包括此蒽化合物的有机电致发光装置 |
WO2006000389A1 (fr) | 2004-06-26 | 2006-01-05 | Merck Patent Gmbh | Composes pour dispositifs electroniques organiques |
WO2006000388A1 (fr) | 2004-06-26 | 2006-01-05 | Merck Patent Gmbh | Dispositif electroluminescent organique |
WO2006052457A2 (fr) | 2004-11-03 | 2006-05-18 | Sumation Co.Ltd. | Nouvelle classe de polymeres de biphenylene ponte |
WO2006048268A1 (fr) | 2004-11-06 | 2006-05-11 | Merck Patent Gmbh | Dispositif electroluminescent organique |
EP1661888A1 (fr) | 2004-11-29 | 2006-05-31 | Samsung SDI Co., Ltd. | Composé contenant un phenylcarbazole et dispositif organiques électroluminiscent l'utilisant |
WO2006058737A1 (fr) | 2004-12-01 | 2006-06-08 | Merck Patent Gmbh | Composes de dispositifs electroniques organiques |
WO2006063852A1 (fr) | 2004-12-18 | 2006-06-22 | Merck Patent Gmbh | Polymeres electroluminescents et leur utilisation |
EP1834945A1 (fr) | 2005-01-05 | 2007-09-19 | Idemitsu Kosan Co., Ltd. | Derive d'amine aromatique et dispositif electroluminescent organique l'utilisant |
US7378162B2 (en) | 2005-03-08 | 2008-05-27 | Lg Electronics Inc. | Organic electroluminescence devices using red phosphorescence compounds |
US20060210830A1 (en) | 2005-03-15 | 2006-09-21 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescence device using the same |
EP1860097A1 (fr) | 2005-03-18 | 2007-11-28 | Idemitsu Kosan Co., Ltd. | Derive d'amine aromatique et dispositif electroluminescent organique l'utilisant |
US20060222886A1 (en) | 2005-04-04 | 2006-10-05 | Raymond Kwong | Arylpyrene compounds |
US20090081357A1 (en) | 2005-04-27 | 2009-03-26 | Konica Minolta Holdings, Inc. | Method for manufacturing organic electroluminescent device |
WO2006118345A1 (fr) | 2005-04-28 | 2006-11-09 | Sumitomo Chemical Company, Limited | Composes a masse moleculaire elevee et leur utilisation dans des dispositifs luminescents a masse moleculaire elevee les utilisant |
WO2006117052A1 (fr) | 2005-05-03 | 2006-11-09 | Merck Patent Gmbh | Dispositif electroluminescent organique, et derives d'acide boronique et d'acide borinique utilises pour produire ce dispositif electroluminescent organique |
WO2006122630A1 (fr) | 2005-05-20 | 2006-11-23 | Merck Patent Gmbh | Composes pour dispositifs electroniques organiques |
WO2007043495A1 (fr) | 2005-10-07 | 2007-04-19 | Sumitomo Chemical Company, Limited | Dispositifs électroluminescents à base de copolymères et de polymères fabriqués en utilisant ces derniers |
US20070087219A1 (en) | 2005-10-19 | 2007-04-19 | Eastman Kodak Company | Electroluminescent device |
US20070092755A1 (en) | 2005-10-26 | 2007-04-26 | Eastman Kodak Company | Organic element for low voltage electroluminescent devices |
US20070092753A1 (en) | 2005-10-26 | 2007-04-26 | Eastman Kodak Company | Organic element for low voltage electroluminescent devices |
US20070122656A1 (en) | 2005-11-30 | 2007-05-31 | Eastman Kodak Company | Electroluminescent device containing an anthracene derivative |
WO2007063754A1 (fr) | 2005-12-01 | 2007-06-07 | Nippon Steel Chemical Co., Ltd. | Compose pour element electroluminescent organique et element electroluminescent organique |
EP1957606A1 (fr) | 2005-12-08 | 2008-08-20 | Merck Patent GmbH | Nouvelles matieres pour dispositifs electroluminescents organiques |
WO2007065549A1 (fr) | 2005-12-08 | 2007-06-14 | Merck Patent Gmbh | Dispositifs electroluminescents organiques |
DE102005058557A1 (de) | 2005-12-08 | 2007-06-14 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
WO2007065678A1 (fr) | 2005-12-08 | 2007-06-14 | Merck Patent Gmbh | Nouvelles matieres pour dispositifs electroluminescents organiques |
US20070134514A1 (en) | 2005-12-14 | 2007-06-14 | Eastman Kodak Company | Electroluminescent host material |
US20070145355A1 (en) | 2005-12-22 | 2007-06-28 | Ansgar Werner | Doped organic semiconductor material |
JP2007197574A (ja) | 2006-01-26 | 2007-08-09 | Showa Denko Kk | 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置 |
DE102006003710A1 (de) | 2006-01-26 | 2007-08-02 | Merck Patent Gmbh | Elektrolumineszierende Materialien und deren Verwendung |
EP1837926A1 (fr) | 2006-03-21 | 2007-09-26 | Novaled AG | Radicaux ou diradicaux hétérocycliques, leur dimères, oligomères, polymères, composés spiro et polycycliques. Leur usage dans des semi-conducteurs organiques et dispositifs électroniques. |
WO2007107306A1 (fr) | 2006-03-22 | 2007-09-27 | Novaled Ag | Utilisation de radicaux heterocycliques pour le dopage de semi-conducteurs organiques |
WO2007115610A1 (fr) | 2006-04-01 | 2007-10-18 | Merck Patent Gmbh | Matériaux pour dispositifs électroluminescents organiques |
US20070273272A1 (en) | 2006-04-03 | 2007-11-29 | Idemitsu Kosan Co., Ltd. | Benzanthracene derivative and electroluminescence device using the same |
WO2007114358A1 (fr) | 2006-04-03 | 2007-10-11 | Idemitsu Kosan Co., Ltd. | Derive benzanthracene et dispositif electroluminescent organique l'utilisant |
US20070252517A1 (en) | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
WO2007131582A1 (fr) | 2006-05-12 | 2007-11-22 | Merck Patent Gmbh | Matériaux semi-conducteurs organiques à base de polymères indénofluorènes |
WO2007137725A1 (fr) | 2006-05-31 | 2007-12-06 | Merck Patent Gmbh | Nouveaux matériaux pour dispositifs électroluminescents organiques |
WO2007140847A1 (fr) | 2006-06-02 | 2007-12-13 | Merck Patent Gmbh | Matériaux pour dispositifs électroluminescents organiques |
WO2008006449A1 (fr) | 2006-07-11 | 2008-01-17 | Merck Patent Gmbh | Nouveaux matériaux destinés à des dispositifs électroluminescents organiques |
WO2008009343A1 (fr) | 2006-07-21 | 2008-01-24 | Merck Patent Gmbh | Copolymères d'indénofluorène et de thiophène |
US20080102311A1 (en) | 2006-08-04 | 2008-05-01 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent element and organic electroluminescent element employing the same |
WO2008056746A1 (fr) | 2006-11-09 | 2008-05-15 | Nippon Steel Chemical Co., Ltd. | Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique |
US20080113101A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic-electroluminescence-material-containing solution, method for forming thin film of organic electroluminescence material, thin film of organic electroluminescence material and organic electroluminescence device |
US20080193796A1 (en) | 2006-11-20 | 2008-08-14 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2008086851A1 (fr) | 2007-01-18 | 2008-07-24 | Merck Patent Gmbh | Dérivés de carbazole pour des dispositifs électroluminescents organiques |
JP2007211243A (ja) | 2007-02-07 | 2007-08-23 | Showa Denko Kk | 重合性化合物の重合体 |
WO2008145239A2 (fr) | 2007-05-29 | 2008-12-04 | Merck Patent Gmbh | Nouveaux matériaux destinés à des dispositifs électroluminescents organiques |
WO2009000237A1 (fr) | 2007-06-22 | 2008-12-31 | Novaled Ag | Utilisation du précurseur d'un dopant n pour le dopage d'un matériau semi-conducteur, précurseur et composant électronique ou optoélectronique |
US20090008607A1 (en) | 2007-07-07 | 2009-01-08 | Idemitsu Kosan Co., Ltd. | Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same |
US20090061681A1 (en) | 2007-09-05 | 2009-03-05 | Mcmunigal Tom | Electrical receptacle assembly |
WO2009041635A1 (fr) | 2007-09-28 | 2009-04-02 | Idemitsu Kosan Co., Ltd. | Dispositif électroluminescent organique |
WO2009069566A1 (fr) | 2007-11-29 | 2009-06-04 | Idemitsu Kosan Co., Ltd. | Dérivé de benzophénanthrène et dispositif électroluminescent utilisant celui-ci |
DE102008017591A1 (de) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008033943A1 (de) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008035413A1 (de) | 2008-07-29 | 2010-02-04 | Merck Patent Gmbh | Verbindungen für organische elektronische Vorrichtungen |
DE102008036982A1 (de) | 2008-08-08 | 2010-02-11 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102008064200A1 (de) | 2008-12-22 | 2010-07-01 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102009005746A1 (de) | 2009-01-23 | 2010-07-29 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
WO2010108579A1 (fr) | 2009-03-23 | 2010-09-30 | Merck Patent Gmbh | Dispositif électroluminescent organique |
DE102009022858A1 (de) | 2009-05-27 | 2011-12-15 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtungen |
DE102009023154A1 (de) | 2009-05-29 | 2011-06-16 | Merck Patent Gmbh | Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten |
DE102009023155A1 (de) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009031021A1 (de) | 2009-06-30 | 2011-01-05 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
WO2011076314A1 (fr) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations électroluminescentes |
WO2011076323A1 (fr) * | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprenant des matériaux fonctionnels à phases séparées |
WO2012031735A1 (fr) | 2010-09-10 | 2012-03-15 | Novaled Ag | Composés pour dispositifs photovoltaïques organiques |
EP2452946A1 (fr) | 2010-11-16 | 2012-05-16 | Novaled AG | Oxides de pyridylphosphine pour dispositif électronique organique et dispositif électronique organique |
EP2463927A1 (fr) | 2010-12-08 | 2012-06-13 | Novaled AG | Matériau pour dispositif électronique organique et dispositif électronique organique |
WO2012168358A1 (fr) | 2011-06-09 | 2012-12-13 | Novaled Ag | Composé destiné à un dispositif électronique organique |
WO2012175219A1 (fr) | 2011-06-22 | 2012-12-27 | Novaled Ag | Dispositif électronique et composé |
WO2012175535A1 (fr) | 2011-06-22 | 2012-12-27 | Novaled Ag | Composant electronique organique |
Non-Patent Citations (26)
Title |
---|
"Recent progress of molecular organic electroluminescent materials and devices", MAT. SCI. AND ENG. R, vol. 39, 2002, pages 143 - 222 |
ADACHI ET AL., APPL. PHYS. LETT., vol. 78, 2001, pages 1622 - 1624 |
B.A. WOLF., PURE & APPL. CHEM., vol. 57, no. 2, 1985, pages 323 - 336 |
BALDO, THOMPSON ET AL., NATURE, vol. 403, 2000, pages 750 - 753 |
C. REICHARDT, ANGEW. CHEM., vol. 91, 1979, pages 119 |
C.H.CHEN ET AL.: "Recent developments in organic electroluminescent materials", MACROMOL. SYMP., vol. 125, 1997, pages 1 - 48 |
CHU, B.: "Laser Light Scattering: Basic Principles and Practice, 2nd Edition.", 1992, ACADEMIC PRESS |
D. HOLTEL; A. BURGATH; H. FREY, ACTA POLYMER., vol. 48, 1997, pages 30 - 35 |
H. GILMAN; E.A. ZUECH, CHEMISTRY & INDUSTRY, 1960, pages 120 |
INORG. CHEM., vol. 40, no. 7, 2001, pages 1704 - 1711 |
J.KIDO ET AL., APPL. PHYS. LETT., vol. 65, 1994, pages 2124 |
J.P. BENSKIN; M.G. IKONOMOU; WOUDNEH, B. MILLION, J. CHROMATOGRAPHY A, vol. 1247, 2012, pages 165 - 170 |
JACS, vol. 123, no. 18, 2001, pages 4304 - 4312 |
JOHNSON ET AL., JACS, vol. 105, 1983, pages 1795 |
K. Y. LAW, CHEM. REV., vol. 93, 1993, pages 449 - 486 |
KIDO ET AL., CHEM. LETT., 1990, pages 657 |
LI-PING YU; J. E. ROLLINGS, J. APPL. POLYM. SCI., vol. 33, no. 5, pages 1909 - 1921 |
MA ET AL., SYNTH. METALS, vol. 94, 1998, pages 245 |
PAUL M.BORSENBERGER; DAVID S.WEISS: "Organic Photoreceptors for Xerography", 1998, MARCEL DEKKER, INC., article "Chapter 6," |
SYNTH. METALS, vol. 91, no. 1-3, 1997, pages 209 |
T. MATSUMOTO; T. NAKADA; J. ENDO; K. MORI; N. KAWAMURA; A. YOKOI; J. KIDO: "Multiphoton Organic EL Device Having Charge Generation Layer", CHARGE-GENERATION LAYERS, IDMC 2003, 2003 |
VON B. O'REGAN, NATURE, vol. 353, 1991, pages 737 |
VON BESSHO ET AL., CHEM. COMMUN., 2008, pages 3717 |
WRIGHTON, JACS, vol. 96, 1974, pages 998 |
Y.A. LEVIN; M.S. SKOROBOGATOVA, KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII, 1967, pages 339 - 341 |
YU BAI, NATURE MATERIALS, vol. 7, 2008, pages 626 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019002183A1 (fr) | 2017-06-26 | 2019-01-03 | Merck Patent Gmbh | Procédés de préparation d'hétérocycles substitués contenant de l'azote |
CN111418081A (zh) * | 2017-12-15 | 2020-07-14 | 默克专利有限公司 | 有机功能材料的制剂 |
Also Published As
Publication number | Publication date |
---|---|
EP3241248A1 (fr) | 2017-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3189551B1 (fr) | Formulations et procédé de fabrication d'un dispositif électroluminescent organique | |
EP3532566B1 (fr) | Formulation d'une matière organique fonctionnelle | |
EP2771386B1 (fr) | Polymères hyperramifiés, leurs procédés de préparation et leur utilisation dans des dispositifs électroniques | |
KR102654992B1 (ko) | Oled 제제에 대한 용매로서 비-방향족 사이클을 함유하는 에스테르 | |
WO2017102048A1 (fr) | Esters contenant des groupes aromatiques comme solvants pour formulations électroniques organiques | |
WO2011032686A1 (fr) | Formulations pour la fabrication de dispositifs électroniques | |
EP3390550A1 (fr) | Formulations contenant un mélange d'au moins deux solvants différents | |
DE102010055901A1 (de) | Organische Elektrolumineszenzvorrichtung | |
WO2017140404A1 (fr) | Formulation de substance fonctionnelle organique | |
DE102010009193B4 (de) | Zusammensetzung enthaltend Fluor-Fluor Assoziate, Verfahren zu deren Herstellung, deren Verwendung sowie organische elektronische Vorrichtung diese enthaltend | |
WO2015014429A1 (fr) | Dispositif électroluminescent | |
EP3278377B1 (fr) | Formulation de materiau fonctionnel organique comprenant un solvant siloxane | |
WO2018114883A1 (fr) | Mélanges comprenant au moins deux composés organo-fonctionnels | |
EP3429859B1 (fr) | Cartouche pour une imprimante comprenant une formulation contenant au moins un semiconducteur organique | |
EP3390549B1 (fr) | Formulations contenant un solvant solide | |
EP3241248A1 (fr) | Formulations et dispositifs électroniques | |
WO2015014427A1 (fr) | Dispositif électro-optique et son utilisation | |
WO2015014437A1 (fr) | Dispositif électro-optique et son utilisation | |
EP4340969A1 (fr) | Procédé de purification continue d'au moins un matériau fonctionnel et dispositif de purification continue d'au moins un matériau fonctionnel | |
WO2020064582A1 (fr) | Procédé de production de granulat | |
WO2023057327A1 (fr) | Procédé de formation d'un élément organique d'un dispositif électronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15804072 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015804072 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |