+

WO2016195363A1 - Joint simulator operable within medical imaging equipment - Google Patents

Joint simulator operable within medical imaging equipment Download PDF

Info

Publication number
WO2016195363A1
WO2016195363A1 PCT/KR2016/005767 KR2016005767W WO2016195363A1 WO 2016195363 A1 WO2016195363 A1 WO 2016195363A1 KR 2016005767 W KR2016005767 W KR 2016005767W WO 2016195363 A1 WO2016195363 A1 WO 2016195363A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
support
base
medical imaging
sample
Prior art date
Application number
PCT/KR2016/005767
Other languages
French (fr)
Korean (ko)
Inventor
송용남
김윤진
박세희
이도관
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150131542A external-priority patent/KR101780552B1/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016195363A1 publication Critical patent/WO2016195363A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts

Definitions

  • the present invention relates to a joint simulator capable of simulating the movement of a human joint, and more particularly, to a joint simulator that can be driven in a medical imaging apparatus capable of recording the internal tissue of the joint according to the joint movement through the medical imaging equipment. It is about.
  • Biomechanics is a discipline that uses mechanical principles to understand biological systems. It mainly uses the principles and methods of mechanical, material and fluid mechanics. Especially in the study of musculoskeletal biomechanics, kinematics and kinetics dealing with joint motion and the forces and moments acting on the joints are the main research topics.
  • Joint movement occurs as a result of the contraction of several muscles surrounding the joint and is the result of the coordination of the antagonist muscles that contribute to the main and reverse directions, which contribute to the forward direction of the joint motion. Since the result of this combined force is apparent in motion, the actual combination of individual muscle forces can vary widely, and direct measurement of individual muscle forces is not possible with current technology.
  • Predicting the load on the joints and muscles during everyday or sporting activities is very important for understanding musculoskeletal disorders.
  • the role of musculoskeletal biomechanics is very important for understanding diseases such as osteoarthritis, which have high incidence and high contribution to epidemiology, mechanism, treatment, and prevention.
  • Analyzing the joint behavior of the human body has several advantages in the medical field. The first is to measure how well the artificial joint design works. Second, the interpretation can predict how well the joint operation and the outcome of the joint will be performed. Third, by understanding the effect of the load on the degenerative disease of the joint can be prevented.
  • the present invention is to solve the problems of the prior art as described above, is installed in a medical imaging equipment such as MRI or CT to simulate the movement of the joints by taking a picture of the tissue inside the joint according to the joint movement through the medical imaging equipment
  • An object of the present invention is to provide a joint simulator that can be driven within the medical imaging equipment.
  • the joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a moving stage installed on the base to support the support housing so that the support housing can be moved in a horizontal state with respect to the base.
  • the moving stage may include a first slider installed on the base to support the support housing so as to move horizontally in one direction with respect to the base, and horizontally move in a direction crossing the movement direction of the first slider with respect to the base. And a second slider disposed vertically with the first slider to support the support housing.
  • the moving stage may further include a rotating plate disposed vertically with the first slider to rotate about an axis perpendicular to the base as a rotation center axis to rotatably support the support housing relative to the base. have.
  • the joint simulator which can be driven in the medical imaging apparatus of the present invention further includes a moving member installed to be movable in a mounting hole provided in the inner side of the support block so as to be in contact with the upper end of the joint sample. A load may be applied to the joint sample through the moving member.
  • the joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a guide roll interposed between the support block and the movable member to guide the movement of the movable member in contact with the outer surface of the movable member. have.
  • the joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a return mechanism for applying a force in a direction of rising relative to the movable member so that a load other than the pressing force by the pressing mechanism is not applied to the joint sample. have.
  • the return mechanism includes a wire having one end connected to the moving member and the other end extending outward of the support block, and being disposed outside the support block so as to be suspended from the other end of the wire, thereby raising the moving member by its own weight. It may be provided with a weight pulling in the direction.
  • the joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a support fixed to the base to support the support block so as to be movable in position.
  • the joint simulator which can be driven in the medical imaging apparatus of the present invention includes a plurality of insertion holes provided in the support block, a plurality of coupling holes provided in the support so as to correspond to the plurality of insertion holes of the support block, and the support stand. It may further include a fixing member for fixing the support block to the support by being coupled to the insertion hole of the support block in a state coupled to the coupling hole of the.
  • the support housing may include a storage compartment for storing a lower end of the joint sample and a lubricating liquid surrounding the joint sample.
  • the pressurizing mechanism may include a stretchable expansion member that expands by fluid inflow and pressurizes the joint sample.
  • all the components such as a pressurizing mechanism for applying a load to the joint sample, are made of a non-metallic material, thereby simulating joint motion in the medical imaging apparatus.
  • medical imaging equipment can take a picture of the tissue inside the joint according to the joint movement. Therefore, it is possible to detect the deformation of the internal tissues of the joint sample according to the joint motion.
  • FIG. 1 illustrates a state in which a joint simulator that can be driven in a medical imaging apparatus according to an embodiment of the present invention is installed in a medical imaging apparatus.
  • FIG. 2 is a perspective view showing a joint simulator that can be driven in the medical imaging apparatus according to an embodiment of the present invention.
  • Figure 3 is an exploded perspective view showing the main configuration of the joint simulator that can be driven in the medical imaging apparatus according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing the main configuration of the joint simulator that can be driven in the medical imaging apparatus according to an embodiment of the present invention.
  • FIG 5 is for explaining the operation of the joint simulator can be driven in the medical imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 illustrates a state in which a joint simulator that can be driven in a medical imaging apparatus according to an embodiment of the present invention is installed in a medical imaging apparatus
  • FIG. 2 illustrates a joint that can be driven in a medical imaging apparatus according to an embodiment of the present invention
  • Figure 3 is a perspective view of the simulator
  • Figure 3 is an exploded perspective view showing the main configuration of the joint simulator that can be driven in the medical imaging equipment according to an embodiment of the present invention
  • Figure 4 is a medical imaging device in accordance with an embodiment of the present invention
  • Figure 5 is a cross-sectional view showing the main configuration of the driveable joint simulator
  • Figure 5 is for explaining the operation of the driveable joint simulator in the medical imaging apparatus according to an embodiment of the present invention.
  • the joint simulator 100 that can be driven in the medical imaging apparatus is the base 110, the support housing 120, the moving stage 130 and And a pressurizing unit 140 and a return mechanism 170.
  • the joint simulator 100 which can be driven in the medical imaging equipment may be installed in the medical imaging equipment 20 such as MRI or CT in a state where the joint sample 10 is mounted to simulate the movement of the joint.
  • the joint simulator 100 according to the present embodiment, the base 110, the support housing 120 so that the medical imaging equipment 20, such as MRI or CT, to photograph the internal structure of the joint sample 10 to simulate the joint motion ),
  • the moving stage 130, the pressing unit 140, the return mechanism 170, and all the components are made of a non-metallic material that does not interfere with the imaging of the medical imaging equipment (20). Therefore, while simulating the movement of the joint in the state in which the joint simulator 100 according to the present embodiment is installed in the medical imaging equipment 20, the internal structure of the joint according to the movement of the joint can be photographed through the medical imaging equipment 20. Therefore, the deformation of the tissues inside the joint according to the movement of the joint can be confirmed.
  • the joint sample 10 as shown in Figure 5, the sample joint 11, the upper joint support member 12 coupled to the upper end of the sample joint 11, and the lower end of the sample joint 11 It includes a lower joint support member 13 to be coupled.
  • Sample joint 11 may be a variety of human joints need to check the deformation of the tissue inside the joint according to the joint motion, such as the hip joint.
  • the upper joint support member 12 may be formed to be firmly coupled to the sample joint 11 by putting an upper end of the sample joint 11 into a frame of a predetermined shape and pouring and curing a liquid polymer such as urethane.
  • the lower joint support member 13 may be formed to be firmly coupled to the sample joint 11 by putting the lower end of the sample joint 11 in a predetermined shape and pouring and curing a liquid polymer such as urethane.
  • the upper joint support member 12 and the lower joint support member 13 constituting the joint sample 10 may be made of various non-metallic materials other than urethane, and each of the upper and lower ends of the sample joint 11 in various ways. Can be combined.
  • the base 110 has a flat lower surface so that it can be stably placed inside the medical imaging apparatus 20.
  • a pair of supports 115 is fixed to the base 110.
  • the pair of supports 115 are coupled to both sides of the base 110 so as to face each other and are disposed perpendicular to the base 110.
  • the pair of supports 115 support the pressing unit 140 to be movable, and each support 115 is provided with a plurality of coupling holes 116 for coupling the pressing unit 140.
  • the support housing 120 is installed on the base 110 to support the lower end of the joint sample 10.
  • the support housing 120 includes a storage chamber 121 in which a lubricating liquid 125 such as saline solution can be stored.
  • the upper side of the support housing 120 is open, and the joint sample 10 and the lubricating liquid 125 may flow into the storage chamber 121 above the support housing 120.
  • the lubricant 125, the lower joint support member 13, and the sample joint 11 of the joint sample 10 may be accommodated in the storage chamber 121 of the support housing 120.
  • the lubricant 125 surrounds the sample joint 11 of the joint sample 10 to prevent the sample joint 11 from drying out.
  • the lubricating fluid 125 serves as a cartilage of the sample joint 11, thereby allowing the joint sample 10 to perform joint motion like an actual joint.
  • the support housing 120 is supported by the moving stage 130.
  • the moving stage 130 is installed on the base 110 to support the support housing 120 so as to move in a horizontal state with respect to the base 110.
  • the moving stage 130 includes a first slider 131, a second slider 134, and a rotating plate 137.
  • the first slider 131 is installed on the base 110 to horizontally move in one direction with respect to the base 110 to support the support housing 120. Side slits of the first slider 131 are provided with slits 132 extending in a moving direction of the first slider 131. As shown in FIGS. 3 and 4, a guide 133 protruding toward the first slider 131 is inserted into the slit 132 of the first slider 131 inside the base 110. When the first slider 131 receives an external force in the arrangement direction of the slit 132, the guide 133 of the base 110 is guided to linearly move by relatively moving in the slit 132.
  • the second slider 134 is installed on the upper side of the first slider 131 so as to horizontally move in a direction crossing the moving direction of the first slider 131 to support the support housing 120.
  • the slit 135 extending in the moving direction of the second slider 134 is provided at the side end of the second slider 134.
  • the guide 136 protruding toward the second slider 134 is inserted into the slit 135 of the second slider 134 inside the first slider 131.
  • the guide 136 of the first slider 131 is guided so as to linearly move by relatively moving in the slit 135.
  • the rotating plate 137 is disposed above the second slider 134 so that the rotating plate 137 rotates with an axis perpendicular to the base 110 as the rotation center axis.
  • the rotating plate 137 rotatably supports the support housing 120 with respect to the base 110 above the second slider 134.
  • a plurality of sliding members 138 are interposed between the second slider 134 and the rotating plate 137 to support the rotating plate 137 so as to slide with respect to the second slider 134.
  • the rotating plate 137 may rotate stably with respect to the second slider 134 by the action of the plurality of sliding members 138.
  • the support housing 120 may move in a horizontal state with respect to the base 110.
  • the support housing 120 moves with respect to the base 110 so that the load of the pressure unit 140 is applied.
  • the location and the center of the joint sample 10 can be aligned. That is, even if the position where the load of the pressing unit 140 is applied and the center of the joint sample 10 do not match, when the joint sample 10 receives the load, the supporting housing 120 is moved by the moving stage 130 to pressurize it.
  • the position where the load of the unit 140 is applied coincides with the center of the joint sample 10.
  • the connecting structure between the first slider 131, the second slider 134, and the rotating plate 137, or the arrangement structure or the moving structure of the moving stage 130 are not limited to those illustrated, but may be variously changed. Can be.
  • the pressurizing unit 140 includes a support block 141, a moving member 148, a pressurizing mechanism 154, and a cover 160.
  • the pressurizing unit 140 applies a load capable of simulating joint motion, such as a repeated load of a predetermined size, to the joint sample 10 supported by the support housing 120.
  • the support block 141 is supported by the pair of supports 115 and is disposed above the support housing 120.
  • the support block 141 is composed of a plurality of side wall members 142 and 143.
  • the plurality of side wall members 142 and 143 are coupled to face each other in the front, rear, left and right directions to form a support block 141 in the form of a rectangular hollow box provided with mounting holes 144 therein.
  • the two side wall members 142 facing the pair of the support bases 115 of the plurality of side wall members 142 and 143 constituting the support block 141 are respectively provided in the coupling holes 116 of the support base 115.
  • a corresponding plurality of insertion holes 145 are provided.
  • the support block 141 is a pair of supports 115 by a plurality of fixing member 166 is fitted into the insertion hole 145 of the support block 141 through the coupling hole 116 of the support 115. Is coupled to. Therefore, the distance between the support housing 120 and the support block 141 is appropriately adjusted by changing the engagement position of the support block 141 on the support 115 according to the size of the joint sample 10 used in the experiment. Can be.
  • a passage 146 is provided in one sidewall member 143 among the plurality of sidewall members 142 and 143.
  • the passage 146 is for insertion of a hose (not shown) connected to the elastic expansion member 155 of the pressurizing mechanism 154 which will be described later.
  • the movable member 148 is movably installed in the mounting hole 144 of the support block 141 to be in contact with the upper end of the joint sample 10 placed on the support housing 120. do.
  • the pressing force of the pressing mechanism 154 is transmitted to the joint sample 10 supported by the support housing 120 through the moving member 148.
  • An accommodating groove 149 may be provided inside the movable member 148 to accommodate the upper joint support member 12 of the joint sample 10, and a flange 150 may be provided at the lower end of the movable member 148. do.
  • the moving member 148 is guided by the plurality of guide rolls 152.
  • the plurality of guide rolls 152 are interposed between the support block 141 and the moving member 148 to contact the outer surface of the moving member 148 to guide the vertical movement of the moving member 148.
  • the plurality of guide rolls 152 are in contact with the inner surface of the support block 141 and the outer surface of the movable member 148. Rolling motion to enable the mobile member 148 to stably move straight without distortion.
  • the guide function of the guide rolls 152 is the same when the pressing force of the pressing mechanism 154 is released and the moving member 148 is raised to its original position.
  • the guide roll 152 disposed at the lowermost side of the plurality of guide rolls 152 is supported by the flange portion 150 of the moving member 148 so that the plurality of guide rolls 152 do not fall below the moving member 148. Without moving with the moving member 148 can be moved in the vertical direction.
  • the plurality of guide rolls 152 are disposed on the front, rear, left, and right sides of the moving member 148 to be in contact with the four side surfaces of the moving member 148.
  • the present invention is not limited to the illustrated example, and may be variously changed.
  • the guide structure of the moving member 148 may be changed to various other structures such as a structure using a rail or a lubricating material, in addition to the structure using a plurality of guide rolls 152 as shown.
  • the pressurizing mechanism 154 applies a pressing force toward the support housing 120 against the joint sample 10 supported by the support housing 120, and has a stretchable expansion member 155 that can expand by fluid inflow.
  • the elastic expansion member 155 is made of a material that can expand when fluid, such as air, flows in and then contract in its original state when fluid is discharged.
  • the elastic expansion member 155 is installed in a space between the pressing member 157 disposed inside the support block 141 and the cover 160 covering the upper portion of the support block 141.
  • the pressing member 157 is installed above the moving member 148 to move upward and downward from the mounting hole 144 of the support block 141.
  • the flexible expansion member 155 is connected to a hose connected to a fluid injection device (not shown) for fluid injection such as a compressor.
  • the elastic expansion member 155 presses the moving member 148 downward through the pressure member 157 by expanding and receiving fluid from the fluid injection device.
  • the pressing member 157 pushes the movable member 148 downward while moving downward when the elastic
  • the cover 160 includes an outer cover part 161 coupled to an upper surface of the support block 141, and an inner cover part 162 positioned inside the outer cover part 161.
  • the inner cover part 162 is firmly coupled to the outer cover part 161 to support the upper side of the elastic expansion member 155 so that the expansion force of the elastic expansion member 155 can be stably applied to the pressing member 157.
  • the inner cover portion 162 guides the movement of the pressing member 157 by taking a structure that is partially inserted into the pressing member 157 as shown.
  • Each of the outer cover part 161 and the inner cover part 162 is provided with a pair of through holes 163 and 164, respectively. These through holes 163 and 164 are for connection of the wire 172 to be described later.
  • the structure of the cover 160 is not limited to the illustrated structure and may be variously changed. That is, in addition to the structure having the outer cover portion 161 and the inner cover portion 162 as shown, the cover is fixed to the support block 141 and various other that can support the upper side of the elastic expansion member 155 The structure can be taken.
  • the return mechanism 170 applies a force in a direction rising relative to the moving member 148, that is, in a direction opposite to the direction in which the pressing force is applied by the pressure mechanism 154.
  • a load other than the pressing force by the pressing mechanism 154 such as the weight of the moving member 148 and the pressing member 157 is applied to the joint sample 10 supported by the support housing 120.
  • an unintended external force such as the weight of the moving member 148 and the pressing member 157 is applied to the joint sample 10
  • by using the return mechanism 170 to cancel the load other than the pressing force by the pressing mechanism 154 it is possible to accurately apply the load of a certain size required for the joint motion simulation through the pressing mechanism 154 to the joint sample 10 accurately. Can be.
  • the return mechanism 170 includes a weight 171 and a wire 172.
  • the weight 171 is disposed outside the support 115 to be connected to the moving member 148 through the wire 172.
  • One end of the wire 172 is connected to the moving member 148 and extends to the outside of the support block 141 through the through holes 163 and 164 of the outer cover part 161 and the inner cover part 162. .
  • the other end of the wire 172 disposed outside the support block 141 is coupled to the weight 171.
  • the wire 172 is supported by a plurality of wire guides 173 installed on the outside of the support block 141 to maintain a constant curved shape so that the weight 171 can pull the movable member 148 upwards. .
  • the weight 171 is disposed on the outside of the support block 141 to hang on the other end of the wire 172 to apply a load in the direction of rising relative to the moving member 148 to its own weight.
  • the weight of the moving member 148 and the pressing member 157 is canceled by applying a load in a direction in which the weight 171 rises with respect to the moving member 148, and the joint sample 10 is driven by the pressing mechanism 154. No load other than the pressing force is applied.
  • the joint simulator 100 which can be driven in the medical imaging apparatus according to the present embodiment has the joint sample 10 surrounded by the lower joint support member 13 and the sample joint 11 by the lubricant 125. It is inserted into the support housing 120 so that the upper joint support member 12 is disposed in the medical imaging equipment 20 in a state mounted in such a way that is inserted into the moving member 148.
  • the joint sample 10 by applying a load to the joint sample 10 with the pressure mechanism 154 in the medical imaging equipment 20, it is possible to simulate the joint motion using the joint sample 10.
  • deformation of the internal tissues of the joint sample 10 may be detected by photographing the tissue inside the joint sample 10 according to the joint motion with the medical imaging device 20.
  • the joint simulator which can be driven in the medical imaging apparatus according to the present invention includes all components such as a pressurizing mechanism for applying a load to a joint sample made of non-metallic material, and thus the inside of the joint according to the joint movement through the medical imaging equipment.
  • a pressurizing mechanism for applying a load to a joint sample made of non-metallic material, and thus the inside of the joint according to the joint movement through the medical imaging equipment.
  • Various configurations are possible in the range which forms the structure which photographs a tissue.
  • the pressing mechanism 154 is shown to have a structure having a flexible expansion member 155 to expand by the inflow of fluid to press the joint sample 10, the pressing mechanism is made of a non-metal material It can be modified into various other structures that can apply a load to a joint sample such as a cylinder.
  • the pressing member 157 and the moving member 148 are disposed between the pressing mechanism 154 and the joint sample 10 supported by the support housing 120 such that the pressing force of the pressing mechanism 154 is applied to the pressing member ( It is shown that the transfer to the joint sample 10 through the 157 and the moving member 148, the load transmission structure of the pressing mechanism 154 for the joint sample 10 may be variously changed. As another example, only one of the pressing member and the moving member may be disposed between the pressing mechanism and the joint sample, or the pressing mechanism may be in direct contact with the joint sample to apply a load to the joint sample.
  • the drawing shows that the moving stage 130 holding the support housing 120 includes a first slider 131, a second slider 134, and a rotating plate 137, but the moving stage includes a support housing ( It can be modified to a variety of other structures that can support 120 to move relative to the base (110).
  • the support block 141 is formed by using a plurality of coupling holes 116 provided in the support base 115, a plurality of insertion holes 145 provided in the support block 141, and a plurality of fixing members 166. ) Is shown as possible to change the position to the support 115, the coupling structure of the support 115 and the support block 141 is not limited to the illustrated and can be variously changed.
  • the return mechanism 170 shows that the pair of weights 171 are connected to the moving member 148 through the pair of wires 172, respectively, the weight constituting the return mechanism 170 (
  • the installation number or arrangement structure of the 171, the wire 172, and the wire guide 173 may be variously changed.
  • the return mechanism may apply a force to the moving member 148 in the opposite direction to the pressing force applying direction by the pressing mechanism 154, such as a structure having a spring. It can be changed to various other structures.
  • the articulated simulator that can be driven in the medical imaging apparatus of the present invention has been described as the center of the hip joint, but in the range of constructing the articulated simulator that can be driven in the medical imaging equipment, the simulation target can be variously modified in addition to the hip joint. Do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computational Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The present invention relates to a joint simulator operable within a medical imaging equipment which, through the medical imaging equipment, is capable of photographing internal tissues of a joint according to joint movement. The joint simulator operable within a medical imaging equipment according to the present invention comprises: a base; a support housing which is installed on the base so as to be able to support the lower end of a joint sample; a support block which is installed on the upper side of the support housing; and a pressurization mechanism which is arranged on the upper side of the support housing and is supported by the support block so as to pressurize the upper end of the joint sample, wherein all components are made of a non-metallic material. Since all components of the joint simulator operable within a medical imaging equipment according to the present invention are made of a non-metallic material, the internal tissues of a joint can be photographed through the medical imaging equipment according to joint movement while simulating the joint movement within the medical imaging equipment.

Description

의료영상장비 내에서 구동 가능한 관절 시뮬레이터Joint simulator that can be operated in medical imaging equipment
본 발명은 인체 관절의 움직임을 모사할 수 있는 관절 시뮬레이터에 관한 것으로, 더욱 상세하게는 의료영상장비를 통해 관절 운동에 따른 관절의 내부 조직에 대한 촬영이 가능한 의료영상장비 내에서 구동 가능한 관절 시뮬레이터에 관한 것이다.The present invention relates to a joint simulator capable of simulating the movement of a human joint, and more particularly, to a joint simulator that can be driven in a medical imaging apparatus capable of recording the internal tissue of the joint according to the joint movement through the medical imaging equipment. It is about.
인체 관절의 다양한 관절 병증 치료를 위해서는 다양한 상황에서의 관절 거동 연구가 필요하다. 이러한 관절 거동 연구에 생체역학이 이용될 수 있다.In order to treat various arthrosis of human joints, research on joint behavior in various situations is required. Biomechanics can be used to study these joint behaviors.
생체역학은 생체시스템을 이해하기 위해 역학적 원리를 이용하는 학문 분야로서 기계공학의 재료역학, 동역학, 유체역학의 원리와 방법을 주로 사용한다. 특히 근골격계 생체역학 연구에 있어서 관절의 운동과 관절에 작용하는 힘·모멘트를 다루는 운동학(kinematics)과 운동역학(kinetics)은 주요한 연구주제이다.Biomechanics is a discipline that uses mechanical principles to understand biological systems. It mainly uses the principles and methods of mechanical, material and fluid mechanics. Especially in the study of musculoskeletal biomechanics, kinematics and kinetics dealing with joint motion and the forces and moments acting on the joints are the main research topics.
관절의 운동은 관절을 둘러싼 여러 근육들의 수축작용으로 발생하며, 관절운동의 순방향에 기여하는 주동근과 역방향에 기여하는 길항근 작용의 합력의 결과이다. 이 합력의 결과가 외관상 운동으로 나타나기 때문에 실제 개별 근육의 힘 조합은 매우 다양할 수 있으며, 개별 근육의 힘을 직접 측정하는 것도 현재 기술로는 불가능하다.Joint movement occurs as a result of the contraction of several muscles surrounding the joint and is the result of the coordination of the antagonist muscles that contribute to the main and reverse directions, which contribute to the forward direction of the joint motion. Since the result of this combined force is apparent in motion, the actual combination of individual muscle forces can vary widely, and direct measurement of individual muscle forces is not possible with current technology.
근골격계 생체역학에서는 이러한 개별 근육의 힘을 계산하기 위해 다양한 방법이 연구되고 있으며, 또한 직접 측정이 불가능한 생체 내 관절의 접촉력과 연골의 응력 등을 연구하기 위한 연구도 진행되고 있다.In musculoskeletal system biomechanics, various methods have been studied to calculate the strength of these individual muscles, and research has been conducted to study the contact force of joints and the stress of cartilage, which cannot be measured directly.
일상 생활 혹은 스포츠 활동 중에 관절과 근육에 작용하는 부하를 예측하는 것은 근골격계 질환을 이해하기 위해서 매우 중요하다. 특히 퇴행성관절염(osteoarthritis)과 같이 발병률도 높고 기전, 치료, 예방 등에 역학의 기여도가 높은 질병의 이해에는 근골격계 생체 역학의 역할이 매우 중요하다.Predicting the load on the joints and muscles during everyday or sporting activities is very important for understanding musculoskeletal disorders. In particular, the role of musculoskeletal biomechanics is very important for understanding diseases such as osteoarthritis, which have high incidence and high contribution to epidemiology, mechanism, treatment, and prevention.
최근에 의료영상 기술의 발전으로 정확한 관절 운동 측정방법들이 제안된 바 있으며, 비침습적으로 생체 내 조직의 특성들을 측정할 수 있는 방법 등도 계속 발전하고 있다. 하지만 관절의 동역학적 파라미터나 응력 등을 예측하기에는 한계가 있으며, 3차원 근골격 공학모델을 이용한 융합적 연구 방법이 필요하다. 또한 질병에 따른 생체역학적 변화나 인체의 운동, 스포츠부상에 대한 연구를 진행할 경우 인체의 복잡성을 반영한 근골격계 모델을 이용하는 것이 유용하다.Recently, accurate joint motion measurement methods have been proposed due to the development of medical imaging technology, and methods for measuring non-invasive characteristics of tissues in vivo have been continuously developed. However, there are limitations in predicting the dynamic parameters and stresses of joints, and there is a need for convergent research method using 3D musculoskeletal engineering model. In addition, it is useful to use musculoskeletal models that reflect the complexity of the human body when studying biomechanical changes, human body movements, and sports injuries.
인체의 관절 거동을 분석하는 것은 의료 분야에서 여러 가지 장점이 있다. 첫째는 제작한 인공 관절 디자인이 얼마나 실제로 잘 작동하는지 측정할 수 있게 한다. 둘째는 해석을 통하여 관절의 수술과정과 수술결과가 얼마나 잘 될지 예측 할 수 있다. 셋째는 관절의 퇴행성 질환에 작용하는 하중의 작용을 이해하여 이를 예방할 수 있다.Analyzing the joint behavior of the human body has several advantages in the medical field. The first is to measure how well the artificial joint design works. Second, the interpretation can predict how well the joint operation and the outcome of the joint will be performed. Third, by understanding the effect of the load on the degenerative disease of the joint can be prevented.
그런데 종래의 관절 거동 분석을 위한 장비들은 관절의 움직임만 모사할 수 있었고, 정작 중요한 관절 내부의 조직들의 변형 양상에 대한 관찰이 불가능한 문제점이 있다.However, the conventional equipment for analyzing the behavior of the joint could only simulate the movement of the joint, there is a problem that it is impossible to observe the deformation of the tissue inside the important joint.
대한민국 공개특허공보 제2004-0084243호 (2004. 10. 06)Republic of Korea Patent Publication No. 2004-0084243 (October 06, 2004)
대한민국 공개특허공보 제2012-0099068호 (2012. 09. 06)Republic of Korea Patent Publication No. 2012-0099068 (2012. 09. 06)
본 발명은 상술한 것과 같은 종래 기술의 문제점을 해결하기 위한 것으로, MRI나 CT와 같은 의료영상장비 내에 설치되어 관절의 움직임을 모사함으로써 의료영상장비를 통해 관절 운동에 따른 관절 내부의 조직에 대한 촬영이 가능한 의료영상장비 내에서 구동 가능한 관절 시뮬레이터를 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, is installed in a medical imaging equipment such as MRI or CT to simulate the movement of the joints by taking a picture of the tissue inside the joint according to the joint movement through the medical imaging equipment An object of the present invention is to provide a joint simulator that can be driven within the medical imaging equipment.
상술한 바와 같은 목적을 해결하기 위하여 본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 베이스와, 관절 시료의 하단을 지지할 수 있도록 상기 베이스 상에 설치되는 지지 하우징과, 상기 지지 하우징의 상측에 설치되는 지지 블록과, 상기 지지 하우징의 상측에 배치되어 상기 관절 시료의 상단을 가압할 수 있도록 상기 지지 블록에 지지되는 가압기구를 포함하고, 모든 구성 부품이 비금속 소재로 이루어진다.In order to solve the above object, the joint simulator which can be driven in the medical imaging apparatus of the present invention includes a base, a support housing installed on the base so as to support a lower end of the joint sample, and an upper side of the support housing. And a support block installed in the support block, and a pressing mechanism disposed on the support housing so as to press the upper end of the joint sample to be supported by the support block, and all components are made of nonmetallic material.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 상기 지지 하우징을 상기 베이스에 대해 수평을 유지한 상태로 움직일 수 있도록 떠받치기 위해 상기 베이스에 설치되는 무빙 스테이지를 더 포함할 수 있다.The joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a moving stage installed on the base to support the support housing so that the support housing can be moved in a horizontal state with respect to the base.
상기 무빙 스테이지는, 상기 베이스에 대해 일측 방향으로 수평 이동할 수 있도록 상기 베이스에 설치되어 상기 지지 하우징을 지지하는 제 1 슬라이더와, 상기 베이스에 대해 상기 제 1 슬라이더의 이동 방향과 교차하는 방향으로 수평 이동할 수 있도록 상기 제 1 슬라이더와 상하 방향으로 배치되어 상기 지지 하우징을 떠받치는 제 2 슬라이더를 구비할 수 있다.The moving stage may include a first slider installed on the base to support the support housing so as to move horizontally in one direction with respect to the base, and horizontally move in a direction crossing the movement direction of the first slider with respect to the base. And a second slider disposed vertically with the first slider to support the support housing.
상기 무빙 스테이지는, 상기 베이스에 대해 수직인 축을 회전 중심축으로 하여 회전할 수 있도록 상기 제 1 슬라이더와 상하 방향으로 배치되어 상기 지지 하우징을 상기 베이스에 대해 회전 가능하게 지지하는 회전판을 더 구비할 수 있다.The moving stage may further include a rotating plate disposed vertically with the first slider to rotate about an axis perpendicular to the base as a rotation center axis to rotatably support the support housing relative to the base. have.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 상기 관절 시료의 상단과 접할 수 있도록 상기 지지 블록의 내측에 마련되는 장착구멍에 이동 가능하게 설치되는 이동부재를 더 포함하고, 상기 가압기구는 상기 이동부재를 통해 상기 관절 시료에 하중을 가할 수 있다.The joint simulator which can be driven in the medical imaging apparatus of the present invention further includes a moving member installed to be movable in a mounting hole provided in the inner side of the support block so as to be in contact with the upper end of the joint sample. A load may be applied to the joint sample through the moving member.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 상기 이동부재의 외면에 접하여 상기 이동부재의 움직임을 가이드할 수 있도록 상기 지지 블록과 상기 이동부재의 사이에 개재되는 가이드 롤을 더 포함할 수 있다.The joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a guide roll interposed between the support block and the movable member to guide the movement of the movable member in contact with the outer surface of the movable member. have.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 상기 가압기구에 의한 가압력 이외의 하중이 상기 관절 시료에 가해지지 않도록 상기 이동부재에 대해 상승하는 방향으로 힘을 가하는 복귀기구를 더 포함할 수 있다.The joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a return mechanism for applying a force in a direction of rising relative to the movable member so that a load other than the pressing force by the pressing mechanism is not applied to the joint sample. have.
상기 복귀기구는, 일단이 상기 이동부재에 연결되고 타단이 상기 지지 블록의 외측으로 연장되는 와이어와, 상기 와이어의 타단에 매달리도록 상기 지지 블록의 외측에 배치됨으로써 자중에 의해 상기 이동부재를 상승하는 방향으로 당기는 웨이트를 구비할 수 있다.The return mechanism includes a wire having one end connected to the moving member and the other end extending outward of the support block, and being disposed outside the support block so as to be suspended from the other end of the wire, thereby raising the moving member by its own weight. It may be provided with a weight pulling in the direction.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 상기 베이스에 고정되어 상기 지지 블록을 위치 이동 가능하게 지지하는 지지대를 더 포함할 수 있다.The joint simulator which can be driven in the medical imaging apparatus of the present invention may further include a support fixed to the base to support the support block so as to be movable in position.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 상기 지지 블록에 마련되는 복수의 삽입구멍과, 상기 지지 블록의 복수의 삽입구멍에 대응하도록 상기 지지대에 구비되는 복수의 결합구멍과, 상기 지지대의 결합구멍에 결합된 상태로 상기 지지 블록의 삽입구멍에 끼움 결합됨으로써 상기 지지 블록을 상기 지지대에 고정하는 고정부재를 더 포함할 수 있다.The joint simulator which can be driven in the medical imaging apparatus of the present invention includes a plurality of insertion holes provided in the support block, a plurality of coupling holes provided in the support so as to correspond to the plurality of insertion holes of the support block, and the support stand. It may further include a fixing member for fixing the support block to the support by being coupled to the insertion hole of the support block in a state coupled to the coupling hole of the.
상기 지지 하우징은 상기 관절 시료의 하단과 상기 관절 시료를 둘러싸는 윤활액을 수용하는 저장실을 구비할 수 있다.The support housing may include a storage compartment for storing a lower end of the joint sample and a lubricating liquid surrounding the joint sample.
상기 가압기구는 유체 유입에 의해 팽창하여 상기 관절 시료를 가압하는 신축성 팽창부재를 구비할 수 있다.The pressurizing mechanism may include a stretchable expansion member that expands by fluid inflow and pressurizes the joint sample.
상기한 바와 같은 구성을 갖는 본 발명에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는 관절 시료에 대해 하중을 가하는 가압기구 등 모든 구성 부품이 비금속 소재로 이루어짐으로써, 의료영상장비 내에서 관절 운동을 모사하면서 의료영상장비를 통해 관절 운동에 따른 관절 내부의 조직을 촬영할 수 있다. 따라서 관절 운동에 따른 관절 시료의 내부 조직들의 변형 양상을 검출하는 것이 가능하다.In the joint simulator that can be driven in the medical imaging apparatus according to the present invention having the above-described configuration, all the components, such as a pressurizing mechanism for applying a load to the joint sample, are made of a non-metallic material, thereby simulating joint motion in the medical imaging apparatus. While medical imaging equipment can take a picture of the tissue inside the joint according to the joint movement. Therefore, it is possible to detect the deformation of the internal tissues of the joint sample according to the joint motion.
도 1은 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터가 의료영상장비 내에 설치된 상태를 나타낸 것이다.1 illustrates a state in which a joint simulator that can be driven in a medical imaging apparatus according to an embodiment of the present invention is installed in a medical imaging apparatus.
도 2는 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터를 나타낸 사시도이다.2 is a perspective view showing a joint simulator that can be driven in the medical imaging apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터의 주요 구성을 나타낸 분해 사시도이다.Figure 3 is an exploded perspective view showing the main configuration of the joint simulator that can be driven in the medical imaging apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터의 주요 구성을 나타낸 단면도이다.Figure 4 is a cross-sectional view showing the main configuration of the joint simulator that can be driven in the medical imaging apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터의 작용을 설명하기 위한 것이다.5 is for explaining the operation of the joint simulator can be driven in the medical imaging apparatus according to an embodiment of the present invention.
이하에서는 본 발명에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터에 대하여 도면을 참조하여 설명하기로 한다.Hereinafter, a joint simulator that can be driven in a medical imaging apparatus according to the present invention will be described with reference to the drawings.
도 1은 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터가 의료영상장비 내에 설치된 상태를 나타낸 것이고, 도 2는 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터를 나타낸 사시도이고, 도 3은 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터의 주요 구성을 나타낸 분해 사시도이고, 도 4는 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터의 주요 구성을 나타낸 단면도이며, 도 5는 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터의 작용을 설명하기 위한 것이다.1 illustrates a state in which a joint simulator that can be driven in a medical imaging apparatus according to an embodiment of the present invention is installed in a medical imaging apparatus, and FIG. 2 illustrates a joint that can be driven in a medical imaging apparatus according to an embodiment of the present invention. Figure 3 is a perspective view of the simulator, Figure 3 is an exploded perspective view showing the main configuration of the joint simulator that can be driven in the medical imaging equipment according to an embodiment of the present invention, Figure 4 is a medical imaging device in accordance with an embodiment of the present invention Figure 5 is a cross-sectional view showing the main configuration of the driveable joint simulator, Figure 5 is for explaining the operation of the driveable joint simulator in the medical imaging apparatus according to an embodiment of the present invention.
도 1 내지 도 5에 나타낸 것과 같이, 본 발명의 일실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터(100)는 베이스(110)와, 지지 하우징(120)과, 무빙 스테이지(130)와, 가압유닛(140)과, 복귀기구(170)를 포함한다. 이러한 의료영상장비 내에서 구동 가능한 관절 시뮬레이터(100)는 관절 시료(10)가 장착된 상태에서 MRI나 CT와 같은 의료영상장비(20) 내에 설치되어 관절의 움직임을 모사할 수 있다.1 to 5, the joint simulator 100 that can be driven in the medical imaging apparatus according to an embodiment of the present invention is the base 110, the support housing 120, the moving stage 130 and And a pressurizing unit 140 and a return mechanism 170. The joint simulator 100 which can be driven in the medical imaging equipment may be installed in the medical imaging equipment 20 such as MRI or CT in a state where the joint sample 10 is mounted to simulate the movement of the joint.
또한 본 실시예에 따른 관절 시뮬레이터(100)는 MRI나 CT와 같은 의료영상장비(20)가 관절 운동을 모사하는 관절 시료(10)의 내부 구조를 촬영할 수 있도록 베이스(110), 지지 하우징(120), 무빙 스테이지(130), 가압유닛(140), 복귀기구(170) 등 모든 구성 부품이 의료영상장비(20)의 영상 촬영을 방해하지 않는 비금속 소재로 이루어진다. 따라서 본 실시예에 따른 관절 시뮬레이터(100)를 의료영상장비(20) 내에 설치한 상태에서 관절의 움직임을 모사하면서 의료영상장비(20)를 통해 관절의 운동에 따른 관절의 내부 구조를 촬영할 수 있고, 이에 의해 관절의 운동에 따른 관절 내부의 조직들의 변형 양상을 확인할 수 있다.In addition, the joint simulator 100 according to the present embodiment, the base 110, the support housing 120 so that the medical imaging equipment 20, such as MRI or CT, to photograph the internal structure of the joint sample 10 to simulate the joint motion ), The moving stage 130, the pressing unit 140, the return mechanism 170, and all the components are made of a non-metallic material that does not interfere with the imaging of the medical imaging equipment (20). Therefore, while simulating the movement of the joint in the state in which the joint simulator 100 according to the present embodiment is installed in the medical imaging equipment 20, the internal structure of the joint according to the movement of the joint can be photographed through the medical imaging equipment 20. Therefore, the deformation of the tissues inside the joint according to the movement of the joint can be confirmed.
여기에서, 관절 시료(10)는 도 5에 나타낸 것과 같이, 샘플 관절(11)과, 샘플 관절(11)의 상단에 결합되는 상부 관절 지지부재(12)와, 샘플 관절(11)의 하단에 결합되는 하부 관절 지지부재(13)를 포함한다. 샘플 관절(11)로는 고관절 등 관절 운동에 따른 관절 내부의 조직들의 변형 양상 확인이 필요한 다양한 인체 관절이 될 수 있다. 상부 관절 지지부재(12)는 일정 형상의 틀에 샘플 관절(11)의 상단을 넣고 이에 우레탄과 같은 액상의 폴리머를 붓고 경화시킴으로써 샘플 관절(11)과 단단히 결합되도록 형성할 수 있다. 마찬가지로, 하부 관절 지지부재(13)도 일정 형상의 틀에 샘플 관절(11)의 하단을 넣고 이에 우레탄과 같은 액상의 폴리머를 붓고 경화시킴으로써 샘플 관절(11)과 단단히 결합되도록 형성할 수 있다. 관절 시료(10)를 구성하는 상부 관절 지지부재(12)와 하부 관절 지지부재(13)는 우레탄 이외의 다양한 비금속 소재로 만들어질 수 있으며, 다양한 방법으로 샘플 관절(11)의 상단 및 하단에 각각 결합될 수 있다.Here, the joint sample 10, as shown in Figure 5, the sample joint 11, the upper joint support member 12 coupled to the upper end of the sample joint 11, and the lower end of the sample joint 11 It includes a lower joint support member 13 to be coupled. Sample joint 11 may be a variety of human joints need to check the deformation of the tissue inside the joint according to the joint motion, such as the hip joint. The upper joint support member 12 may be formed to be firmly coupled to the sample joint 11 by putting an upper end of the sample joint 11 into a frame of a predetermined shape and pouring and curing a liquid polymer such as urethane. Similarly, the lower joint support member 13 may be formed to be firmly coupled to the sample joint 11 by putting the lower end of the sample joint 11 in a predetermined shape and pouring and curing a liquid polymer such as urethane. The upper joint support member 12 and the lower joint support member 13 constituting the joint sample 10 may be made of various non-metallic materials other than urethane, and each of the upper and lower ends of the sample joint 11 in various ways. Can be combined.
베이스(110)는 의료영상장비(20)의 내측에 안정적으로 놓일 수 있도록 평평한 하면을 갖는다. 베이스(110)에는 한 쌍의 지지대(115)가 고정된다. 한 쌍의 지지대(115)는 서로 마주하도록 베이스(110)의 양쪽 측부에 각각 결합되어 베이스(110)에 대해 수직으로 배치된다. 한 쌍의 지지대(115)는 가압유닛(140)을 이동 가능하게 지지하는 것으로, 각각의 지지대(115)에는 가압유닛(140)의 결합을 위한 복수의 결합구멍(116)이 구비된다.The base 110 has a flat lower surface so that it can be stably placed inside the medical imaging apparatus 20. A pair of supports 115 is fixed to the base 110. The pair of supports 115 are coupled to both sides of the base 110 so as to face each other and are disposed perpendicular to the base 110. The pair of supports 115 support the pressing unit 140 to be movable, and each support 115 is provided with a plurality of coupling holes 116 for coupling the pressing unit 140.
지지 하우징(120)은 관절 시료(10)의 하단을 지지할 수 있도록 베이스(110) 상에 설치된다. 지지 하우징(120)은 그 내측에 식염수와 같은 윤활액(125)을 저장할 수 있는 저장실(121)을 구비한다. 지지 하우징(120)의 상측은 개방되며, 지지 하우징(120)의 상측으로 관절 시료(10)와 윤활액(125)이 저장실(121)로 유입될 수 있다. 도 5에 나타낸 것과 같이, 지지 하우징(120)의 저장실(121)에 윤활액(125)과 관절 시료(10)의 하부 관절 지지부재(13) 및 샘플 관절(11)이 수용될 수 있다. 이때, 윤활액(125)이 관절 시료(10)의 샘플 관절(11)을 둘러싸서 샘플 관절(11)이 마르는 것을 방지한다. 또한 윤활액(125)은 샘플 관절(11)의 연골 역할을 함으로써 관절 시료(10)가 실제 관절과 같은 관절 운동을 할 수 있게 해준다.The support housing 120 is installed on the base 110 to support the lower end of the joint sample 10. The support housing 120 includes a storage chamber 121 in which a lubricating liquid 125 such as saline solution can be stored. The upper side of the support housing 120 is open, and the joint sample 10 and the lubricating liquid 125 may flow into the storage chamber 121 above the support housing 120. As illustrated in FIG. 5, the lubricant 125, the lower joint support member 13, and the sample joint 11 of the joint sample 10 may be accommodated in the storage chamber 121 of the support housing 120. At this time, the lubricant 125 surrounds the sample joint 11 of the joint sample 10 to prevent the sample joint 11 from drying out. In addition, the lubricating fluid 125 serves as a cartilage of the sample joint 11, thereby allowing the joint sample 10 to perform joint motion like an actual joint.
지지 하우징(120)은 무빙 스테이지(130)에 의해 지지된다. 무빙 스테이지(130)는 베이스(110) 상에 설치되어 지지 하우징(120)을 베이스(110)에 대해 수평을 유지한 상태로 움직일 수 있도록 떠받친다. 무빙 스테이지(130)는 제 1 슬라이더(131)와, 제 2 슬라이더(134)와, 회전판(137)을 포함한다.The support housing 120 is supported by the moving stage 130. The moving stage 130 is installed on the base 110 to support the support housing 120 so as to move in a horizontal state with respect to the base 110. The moving stage 130 includes a first slider 131, a second slider 134, and a rotating plate 137.
제 1 슬라이더(131)는 베이스(110)에 대해 일측 방향으로 수평 이동할 수 있도록 베이스(110)에 설치되어 지지 하우징(120)을 지지한다. 제 1 슬라이더(131)의 측단부에는 제 1 슬라이더(131)의 이동 방향으로 연장된 슬릿(132)이 마련된다. 도 3 및 도 4에 나타낸 것과 같이, 제 1 슬라이더(131)의 슬릿(132)에는 베이스(110)의 내측에 제 1 슬라이더(131)를 향해 돌출 구비되는 가이드(133)가 삽입된다. 제 1 슬라이더(131)는 슬릿(132)의 배치 방향으로 외력을 받을 때, 베이스(110)의 가이드(133)가 슬릿(132) 속에서 상대 이동하는 것에 의해 직선 운동하도록 가이드된다.The first slider 131 is installed on the base 110 to horizontally move in one direction with respect to the base 110 to support the support housing 120. Side slits of the first slider 131 are provided with slits 132 extending in a moving direction of the first slider 131. As shown in FIGS. 3 and 4, a guide 133 protruding toward the first slider 131 is inserted into the slit 132 of the first slider 131 inside the base 110. When the first slider 131 receives an external force in the arrangement direction of the slit 132, the guide 133 of the base 110 is guided to linearly move by relatively moving in the slit 132.
제 2 슬라이더(134)는 제 1 슬라이더(131)의 이동 방향과 교차하는 방향으로 수평 이동할 수 있도록 제 1 슬라이더(131)의 상측에 설치되어 지지 하우징(120)을 떠받친다. 제 2 슬라이더(134)의 측단부에는 제 2 슬라이더(134)의 이동 방향으로 연장된 슬릿(135)이 마련된다. 도 3 및 도 4에 나타낸 것과 같이, 제 2 슬라이더(134)의 슬릿(135)에는 제 1 슬라이더(131)의 내측에 제 2 슬라이더(134)를 향해 돌출 구비되는 가이드(136)가 삽입된다. 제 2 슬라이더(134)는 슬릿(135)의 배치 방향으로 외력을 받을 때, 제 1 슬라이더(131)의 가이드(136)가 슬릿(135) 속에서 상대 이동하는 것에 의해 직선 운동하도록 가이드된다.The second slider 134 is installed on the upper side of the first slider 131 so as to horizontally move in a direction crossing the moving direction of the first slider 131 to support the support housing 120. The slit 135 extending in the moving direction of the second slider 134 is provided at the side end of the second slider 134. As shown in FIGS. 3 and 4, the guide 136 protruding toward the second slider 134 is inserted into the slit 135 of the second slider 134 inside the first slider 131. When the second slider 134 receives an external force in the arrangement direction of the slit 135, the guide 136 of the first slider 131 is guided so as to linearly move by relatively moving in the slit 135.
회전판(137)은 베이스(110)에 대해 수직인 축을 회전 중심축으로 하여 회전할 수 있도록 제 2 슬라이더(134)의 상측에 배치된다. 회전판(137)은 제 2 슬라이더(134)의 상측에서 지지 하우징(120)을 베이스(110)에 대해 회전 가능하게 지지한다. 도 4에 나타낸 것과 같이, 제 2 슬라이더(134)와 회전판(137)의 사이에는 복수의 미끄럼부재(138)가 개재되어 회전판(137)을 제 2 슬라이더(134)에 대해 미끄러질 수 있도록 지지한다. 복수의 미끄럼부재(138)의 작용으로 회전판(137)은 제 2 슬라이더(134)에 대해 안정적으로 회전할 수 있다.The rotating plate 137 is disposed above the second slider 134 so that the rotating plate 137 rotates with an axis perpendicular to the base 110 as the rotation center axis. The rotating plate 137 rotatably supports the support housing 120 with respect to the base 110 above the second slider 134. As shown in FIG. 4, a plurality of sliding members 138 are interposed between the second slider 134 and the rotating plate 137 to support the rotating plate 137 so as to slide with respect to the second slider 134. The rotating plate 137 may rotate stably with respect to the second slider 134 by the action of the plurality of sliding members 138.
이러한 무빙 스테이지(130)의 작용으로 지지 하우징(120)은 베이스(110)에 대해 수평을 유지한 상태로 움직일 수 있다. 지지 하우징(120)에 지지된 관절 시료(10)가 가압유닛(140)에 의해 하중을 받을 때, 지지 하우징(120)이 베이스(110)에 대해 움직임으로써 가압유닛(140)의 하중이 가해지는 위치와 관절 시료(10)의 센터가 맞춰질 수 있다. 즉, 가압유닛(140)의 하중이 가해지는 위치와 관절 시료(10)의 센터가 불일치하더라도, 관절 시료(10)가 하중을 받으면 무빙 스테이지(130)에 의해 지지 하우징(120)이 움직임으로써 가압유닛(140)의 하중이 가해지는 위치와 관절 시료(10)의 센터가 일치하게 된다.By the action of the moving stage 130, the support housing 120 may move in a horizontal state with respect to the base 110. When the joint sample 10 supported by the support housing 120 is loaded by the pressure unit 140, the support housing 120 moves with respect to the base 110 so that the load of the pressure unit 140 is applied. The location and the center of the joint sample 10 can be aligned. That is, even if the position where the load of the pressing unit 140 is applied and the center of the joint sample 10 do not match, when the joint sample 10 receives the load, the supporting housing 120 is moved by the moving stage 130 to pressurize it. The position where the load of the unit 140 is applied coincides with the center of the joint sample 10.
무빙 스테이지(130)를 구성하는 제 1 슬라이더(131), 제 2 슬라이더(134) 및 회전판(137) 간의 연결 구조나, 이들 각각의 배치 구조나 이동 구조는 도시된 것으로 한정되지 않고 다양하게 변경될 수 있다.The connecting structure between the first slider 131, the second slider 134, and the rotating plate 137, or the arrangement structure or the moving structure of the moving stage 130 are not limited to those illustrated, but may be variously changed. Can be.
가압유닛(140)은 지지 블록(141)과, 이동부재(148)와, 가압기구(154)와, 커버(160)를 포함한다. 가압유닛(140)은 지지 하우징(120)에 지지되는 관절 시료(10)에 대해 일정한 크기의 반복 하중 등 관절 운동을 모사할 수 있는 하중을 가한다.The pressurizing unit 140 includes a support block 141, a moving member 148, a pressurizing mechanism 154, and a cover 160. The pressurizing unit 140 applies a load capable of simulating joint motion, such as a repeated load of a predetermined size, to the joint sample 10 supported by the support housing 120.
지지 블록(141)은 한 쌍의 지지대(115)에 지지되어 지지 하우징(120)의 상측에 배치된다. 지지 블록(141)은 복수의 측벽부재(142)(143)로 구성된다. 복수의 측벽부재(142)(143)는 전후좌우 방향으로 한 쌍씩 마주하도록 결합되어 내측에 장착구멍(144)이 마련된 사각 중공 박스 형태의 지지 블록(141)을 형성한다.The support block 141 is supported by the pair of supports 115 and is disposed above the support housing 120. The support block 141 is composed of a plurality of side wall members 142 and 143. The plurality of side wall members 142 and 143 are coupled to face each other in the front, rear, left and right directions to form a support block 141 in the form of a rectangular hollow box provided with mounting holes 144 therein.
지지 블록(141)을 구성하는 복수의 측벽부재(142)(143) 중에서 한 쌍의 지지대(115)와 각각 마주하는 두 개의 측벽부재(142)에는 각각 지지대(115)의 결합구멍(116)에 대응하는 복수의 삽입구멍(145)이 마련된다. 지지 블록(141)은 복수의 고정부재(166)가 지지대(115)의 결합구멍(116)을 통해 지지 블록(141)의 삽입구멍(145)에 끼움 결합되는 것에 의해 한 쌍의 지지대(115)에 결합된다. 따라서 실험에 사용되는 관절 시료(10)의 크기 등에 맞춰 지지대(115) 상에서 지지 블록(141)의 결합 위치를 변경하는 방법으로 지지 하우징(120)과 지지 블록(141) 사이의 간격을 적절하게 조절할 수 있다. 또한 복수의 측벽부재(142)(143) 중에서 하나의 측벽부재(143)에는 통로(146)가 구비된다. 통로(146)는 후술할 가압기구(154)의 신축성 팽창부재(155)와 연결되는 호스(미도시)의 삽입을 위한 것이다.The two side wall members 142 facing the pair of the support bases 115 of the plurality of side wall members 142 and 143 constituting the support block 141 are respectively provided in the coupling holes 116 of the support base 115. A corresponding plurality of insertion holes 145 are provided. The support block 141 is a pair of supports 115 by a plurality of fixing member 166 is fitted into the insertion hole 145 of the support block 141 through the coupling hole 116 of the support 115. Is coupled to. Therefore, the distance between the support housing 120 and the support block 141 is appropriately adjusted by changing the engagement position of the support block 141 on the support 115 according to the size of the joint sample 10 used in the experiment. Can be. In addition, a passage 146 is provided in one sidewall member 143 among the plurality of sidewall members 142 and 143. The passage 146 is for insertion of a hose (not shown) connected to the elastic expansion member 155 of the pressurizing mechanism 154 which will be described later.
도 3 내지 도 5에 나타낸 것과 같이, 이동부재(148)는 지지 하우징(120)에 놓이는 관절 시료(10)의 상단과 접할 수 있도록 지지 블록(141)의 장착구멍(144)에 이동 가능하게 설치된다. 가압기구(154)의 가압력은 이동부재(148)를 통해 지지 하우징(120)에 지지되는 관절 시료(10)에 전달된다. 이동부재(148)의 내측에는 관절 시료(10)의 상부 관절 지지부재(12)를 수용할 수 있는 수용홈(149)이 마련되고, 이동부재(148)의 하단에는 플랜지부(150)가 구비된다.As shown in FIGS. 3 to 5, the movable member 148 is movably installed in the mounting hole 144 of the support block 141 to be in contact with the upper end of the joint sample 10 placed on the support housing 120. do. The pressing force of the pressing mechanism 154 is transmitted to the joint sample 10 supported by the support housing 120 through the moving member 148. An accommodating groove 149 may be provided inside the movable member 148 to accommodate the upper joint support member 12 of the joint sample 10, and a flange 150 may be provided at the lower end of the movable member 148. do.
이동부재(148)는 복수의 가이드 롤(152)에 의해 가이드된다. 복수의 가이드 롤(152)은 이동부재(148)의 외면에 접하여 이동부재(148)의 상하 움직임을 가이드할 수 있도록 지지 블록(141)과 이동부재(148)의 사이에 개재된다. 이동부재(148)가 가압기구(154)의 가압력을 받아 지지 하우징(120) 쪽으로 움직일 때, 복수의 가이드 롤(152)이 지지 블록(141)의 내면 및 이동부재(148)의 외면에 접한 상태로 구름 운동함으로써 이동부재(148)가 틀어짐 없이 안정적으로 직선 이동할 수 있게 해준다. 이러한 가이드 롤들(152)의 가이드 기능은 가압기구(154)의 가압력이 해제되어 이동부재(148)가 원래 위치로 상승할 때도 동일하게 작용된다. 복수의 가이드 롤(152) 중에서 최하측에 배치되는 가이드 롤(152)은 이동부재(148)의 플랜지부(150)에 지지됨으로써 복수의 가이드 롤(152)은 이동부재(148)의 하측으로 떨어지지 않고 이동부재(148)와 함께 상하 방향으로 움직일 수 있다.The moving member 148 is guided by the plurality of guide rolls 152. The plurality of guide rolls 152 are interposed between the support block 141 and the moving member 148 to contact the outer surface of the moving member 148 to guide the vertical movement of the moving member 148. When the movable member 148 moves toward the support housing 120 under the pressing force of the pressure mechanism 154, the plurality of guide rolls 152 are in contact with the inner surface of the support block 141 and the outer surface of the movable member 148. Rolling motion to enable the mobile member 148 to stably move straight without distortion. The guide function of the guide rolls 152 is the same when the pressing force of the pressing mechanism 154 is released and the moving member 148 is raised to its original position. The guide roll 152 disposed at the lowermost side of the plurality of guide rolls 152 is supported by the flange portion 150 of the moving member 148 so that the plurality of guide rolls 152 do not fall below the moving member 148. Without moving with the moving member 148 can be moved in the vertical direction.
도면에는 복수의 가이드 롤(152)이 이동부재(148)의 네 개의 측면에 접하도록 이동부재(148)의 전후좌우에 배치된 것으로 나타냈으나, 이동부재(148)의 설치 개수나 배치 구조는 도시된 것으로 한정되지 않고 다양하게 변경될 수 있다. 또한 이동부재(148)의 가이드 구조는 도시된 것과 같은 복수의 가이드 롤(152)을 이용하는 구조 이외에, 레일 또는 윤활물질을 이용하는 구조 등 다양한 다른 구조로 변경될 수 있다.In the drawings, the plurality of guide rolls 152 are disposed on the front, rear, left, and right sides of the moving member 148 to be in contact with the four side surfaces of the moving member 148. The present invention is not limited to the illustrated example, and may be variously changed. In addition, the guide structure of the moving member 148 may be changed to various other structures such as a structure using a rail or a lubricating material, in addition to the structure using a plurality of guide rolls 152 as shown.
가압기구(154)는 지지 하우징(120)에 지지되는 관절 시료(10)에 대해 지지 하우징(120) 쪽으로 가압력을 가하는 것으로, 유체 유입에 의해 팽창할 수 있는 신축성 팽창부재(155)를 구비한다. 신축성 팽창부재(155)는 공기 등의 유체가 유입되면 팽창하였다가 유체가 배출되면 원래 상태로 수축할 수 있는 소재로 이루어진다. 신축성 팽창부재(155)는 지지 블록(141)의 내측에 배치되는 가압부재(157)와 지지 블록(141)의 상부를 덮는 커버(160) 사이의 공간에 설치된다. 가압부재(157)는 지지 블록(141)의 장착구멍(144)에서 상하 방향으로 이동할 수 있도록 이동부재(148)의 상측에 설치된다. 신축성 팽창부재(155)에는 콤프레셔 등 유체 주입을 위한 유체주입장치(미도시)에 연결되는 호스가 연결된다. 신축성 팽창부재(155)는 유체주입장치로부터 유체를 공급받아 팽창함으로써 가압부재(157)를 통해 이동부재(148)를 하측으로 가압하게 된다. 가압부재(157)는 신축성 팽창부재(155)가 팽창할 때 하측으로 움직이면서 이동부재(148)를 하측으로 밀어낸다.The pressurizing mechanism 154 applies a pressing force toward the support housing 120 against the joint sample 10 supported by the support housing 120, and has a stretchable expansion member 155 that can expand by fluid inflow. The elastic expansion member 155 is made of a material that can expand when fluid, such as air, flows in and then contract in its original state when fluid is discharged. The elastic expansion member 155 is installed in a space between the pressing member 157 disposed inside the support block 141 and the cover 160 covering the upper portion of the support block 141. The pressing member 157 is installed above the moving member 148 to move upward and downward from the mounting hole 144 of the support block 141. The flexible expansion member 155 is connected to a hose connected to a fluid injection device (not shown) for fluid injection such as a compressor. The elastic expansion member 155 presses the moving member 148 downward through the pressure member 157 by expanding and receiving fluid from the fluid injection device. The pressing member 157 pushes the movable member 148 downward while moving downward when the elastic expansion member 155 expands.
커버(160)는 지지 블록(141)의 상면에 결합되는 외측 커버부(161)와, 외측 커버부(161)의 내측에 위치하는 내측 커버부(162)를 구비한다. 내측 커버부(162)는 외측 커버부(161)에 단단히 결합되어 신축성 팽창부재(155)의 팽창력이 가압부재(157)에 안정적으로 가해질 수 있도록 신축성 팽창부재(155)의 상측을 지지한다. 또한 내측 커버부(162)는 도시된 것과 같이 가압부재(157)와 부분적으로 삽입되는 구조를 취함으로써 가압부재(157)의 움직임을 가이드한다. 외측 커버부(161)와 내측 커버부(162)에는 각각 한 쌍씩의 관통구멍(163)(164)이 각각 마련된다. 이들 관통구멍(163)(164)은 후술할 와이어(172)의 연결을 위한 것이다.The cover 160 includes an outer cover part 161 coupled to an upper surface of the support block 141, and an inner cover part 162 positioned inside the outer cover part 161. The inner cover part 162 is firmly coupled to the outer cover part 161 to support the upper side of the elastic expansion member 155 so that the expansion force of the elastic expansion member 155 can be stably applied to the pressing member 157. In addition, the inner cover portion 162 guides the movement of the pressing member 157 by taking a structure that is partially inserted into the pressing member 157 as shown. Each of the outer cover part 161 and the inner cover part 162 is provided with a pair of through holes 163 and 164, respectively. These through holes 163 and 164 are for connection of the wire 172 to be described later.
커버(160)의 구조는 도시된 구조로 한정되지 않고 다양하게 변경될 수 있다. 즉, 커버는 도시된 것과 같은 외측 커버부(161)와 내측 커버부(162)를 구비하는 구조 이외에, 지지 블록(141)에 고정되어 신축성 팽창부재(155)의 상측을 지지할 수 있는 다양한 다른 구조를 취할 수 있다.The structure of the cover 160 is not limited to the illustrated structure and may be variously changed. That is, in addition to the structure having the outer cover portion 161 and the inner cover portion 162 as shown, the cover is fixed to the support block 141 and various other that can support the upper side of the elastic expansion member 155 The structure can be taken.
복귀기구(170)는 이동부재(148)에 대해 상승하는 방향, 즉 가압기구(154)에 의한 가압력 인가 방향과 반대 방향으로 힘을 가한다. 이러한 복귀기구(170)의 작용으로 이동부재(148) 및 가압부재(157)의 자중 등 가압기구(154)에 의한 가압력 이외의 하중이 지지 하우징(120)에 지지되는 관절 시료(10)에는 가해지는 것을 방지할 수 있다. 이동부재(148) 및 가압부재(157)의 자중 등 의도하지 않은 외력이 관절 시료(10)에 가해지면 가압기구(154)를 통해 일정한 크기의 하중을 관절 시료(10)에 정확하게 가하기 어렵다. 이 경우, 가압기구(154)의 제어를 통해 원하는 형태의 관절 운동을 모사하기 어렵다. 이러한 이유로 복귀기구(170)를 이용하여 가압기구(154)에 의한 가압력 이외의 하중을 상쇄시킴으로써, 가압기구(154)를 통해 관절 운동 모사에 필요한 일정한 크기의 하중을 관절 시료(10)에 정확하게 가할 수 있다.The return mechanism 170 applies a force in a direction rising relative to the moving member 148, that is, in a direction opposite to the direction in which the pressing force is applied by the pressure mechanism 154. By the action of the return mechanism 170, a load other than the pressing force by the pressing mechanism 154 such as the weight of the moving member 148 and the pressing member 157 is applied to the joint sample 10 supported by the support housing 120. Can prevent losing. When an unintended external force such as the weight of the moving member 148 and the pressing member 157 is applied to the joint sample 10, it is difficult to accurately apply a load of a certain magnitude to the joint sample 10 through the pressing mechanism 154. In this case, it is difficult to simulate the desired motion of the joint through the control of the pressing mechanism 154. For this reason, by using the return mechanism 170 to cancel the load other than the pressing force by the pressing mechanism 154, it is possible to accurately apply the load of a certain size required for the joint motion simulation through the pressing mechanism 154 to the joint sample 10 accurately. Can be.
복귀기구(170)는 웨이트(171)와 와이어(172)를 구비한다. 웨이트(171)는 와이어(172)를 통해 이동부재(148)와 연결되도록 지지대(115)의 외측에 배치된다. 와이어(172)는 그 일단이 이동부재(148)에 연결되어 외측 커버부(161) 및 내측 커버부(162)의 관통구멍(163)(164)을 통해 지지 블록(141)의 외측으로 연장된다. 지지 블록(141)의 외측에 배치되는 와이어(172)의 타단은 웨이트(171)에 결합된다. 와이어(172)는 지지 블록(141)의 외측에 설치되는 복수의 와이어 가이드(173)에 의해 지지되어 웨이트(171)가 이동부재(148)를 상측으로 당길 수 있도록 일정하게 굽은 형태를 유지하게 된다. 웨이트(171)는 지지 블록(141)의 외측에 배치되어 와이어(172)의 타단에 매달림으로써 그 자중으로 이동부재(148)에 대해 상승하는 방향으로 하중을 가하게 된다. 웨이트(171)가 이동부재(148)에 대해 상승하는 방향으로 하중을 가하는 것으로 이동부재(148) 및 가압부재(157)의 자중이 상쇄되고, 관절 시료(10)에는 가압기구(154)에 의한 가압력 이외의 하중이 가해지지 않는다.The return mechanism 170 includes a weight 171 and a wire 172. The weight 171 is disposed outside the support 115 to be connected to the moving member 148 through the wire 172. One end of the wire 172 is connected to the moving member 148 and extends to the outside of the support block 141 through the through holes 163 and 164 of the outer cover part 161 and the inner cover part 162. . The other end of the wire 172 disposed outside the support block 141 is coupled to the weight 171. The wire 172 is supported by a plurality of wire guides 173 installed on the outside of the support block 141 to maintain a constant curved shape so that the weight 171 can pull the movable member 148 upwards. . The weight 171 is disposed on the outside of the support block 141 to hang on the other end of the wire 172 to apply a load in the direction of rising relative to the moving member 148 to its own weight. The weight of the moving member 148 and the pressing member 157 is canceled by applying a load in a direction in which the weight 171 rises with respect to the moving member 148, and the joint sample 10 is driven by the pressing mechanism 154. No load other than the pressing force is applied.
상술한 것과 같이, 본 실시예에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터(100)는 관절 시료(10)가 그 하부 관절 지지부재(13) 및 샘플 관절(11)이 윤활액(125)으로 둘러싸이도록 지지 하우징(120) 속에 삽입되고 상부 관절 지지부재(12)가 이동부재(148) 속에 삽입되는 방법으로 장착된 상태에서 의료영상장비(20) 속에 배치된다. 그리고 의료영상장비(20) 속에서 가압기구(154)로 관절 시료(10)에 하중을 가하여 관절 시료(10)를 이용한 관절 운동을 모사할 수 있다. 그리고 의료영상장비(20)로 관절 운동에 따른 관절 시료(10) 내부의 조직을 촬영함으로써 관절 시료(10)의 내부 조직들의 변형 양상을 검출할 수 있다.As described above, the joint simulator 100 which can be driven in the medical imaging apparatus according to the present embodiment has the joint sample 10 surrounded by the lower joint support member 13 and the sample joint 11 by the lubricant 125. It is inserted into the support housing 120 so that the upper joint support member 12 is disposed in the medical imaging equipment 20 in a state mounted in such a way that is inserted into the moving member 148. In addition, by applying a load to the joint sample 10 with the pressure mechanism 154 in the medical imaging equipment 20, it is possible to simulate the joint motion using the joint sample 10. In addition, deformation of the internal tissues of the joint sample 10 may be detected by photographing the tissue inside the joint sample 10 according to the joint motion with the medical imaging device 20.
상기한 바와 같이, 본 발명에 따른 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는, 관절 시료에 대해 하중을 가하는 가압기구 등 모든 구성 부품이 비금속 소재로 이루어져 의료영상장비를 통해 관절 운동에 따른 관절 내부의 조직을 촬영하는 구조를 이루는 범위에서 다양한 구성이 가능하다.As described above, the joint simulator which can be driven in the medical imaging apparatus according to the present invention includes all components such as a pressurizing mechanism for applying a load to a joint sample made of non-metallic material, and thus the inside of the joint according to the joint movement through the medical imaging equipment. Various configurations are possible in the range which forms the structure which photographs a tissue.
예를 들어, 도면에는 가압기구(154)가 유체의 유입에 의해 팽창하여 관절 시료(10)를 가압하는 신축성 팽창부재(155)를 구비하는 구조인 것으로 나타냈으나, 가압기구는 비금속 소재로 이루어진 실린더 등 관절 시료에 하중을 가할 수 있는 다양한 다른 구조로 변경될 수 있다.For example, in the drawings, the pressing mechanism 154 is shown to have a structure having a flexible expansion member 155 to expand by the inflow of fluid to press the joint sample 10, the pressing mechanism is made of a non-metal material It can be modified into various other structures that can apply a load to a joint sample such as a cylinder.
또한 도면에는 가압기구(154)와 지지 하우징(120)에 지지되는 관절 시료(10)의 사이에 가압부재(157)와 이동부재(148)가 배치되어 가압기구(154)의 가압력이 가압부재(157)와 이동부재(148)를 통해 관절 시료(10)에 전달되는 것으로 나타냈으나, 관절 시료(10)에 대한 가압기구(154)의 하중 전달 구조는 다양하게 변경될 수 있다. 다른 예로, 가압기구와 관절 시료 사이에 가압부재나 이동부재 중 어느 하나만 배치되거나, 가압기구가 관절 시료에 직접 접하여 관절 시료에 하중을 가하는 구조를 취할 수도 있다.In addition, in the drawing, the pressing member 157 and the moving member 148 are disposed between the pressing mechanism 154 and the joint sample 10 supported by the support housing 120 such that the pressing force of the pressing mechanism 154 is applied to the pressing member ( It is shown that the transfer to the joint sample 10 through the 157 and the moving member 148, the load transmission structure of the pressing mechanism 154 for the joint sample 10 may be variously changed. As another example, only one of the pressing member and the moving member may be disposed between the pressing mechanism and the joint sample, or the pressing mechanism may be in direct contact with the joint sample to apply a load to the joint sample.
또한 도면에는 지지 하우징(120)을 떠받치는 무빙 스테이지(130)가 제 1 슬라이더(131)와, 제 2 슬라이더(134) 및 회전판(137)을 구비하는 것으로 나타냈으나, 무빙 스테이지는 지지 하우징(120)을 베이스(110)에 대해 움직일 수 있게 지지할 수 있는 다양한 다른 구조로 변경될 수 있다.In addition, the drawing shows that the moving stage 130 holding the support housing 120 includes a first slider 131, a second slider 134, and a rotating plate 137, but the moving stage includes a support housing ( It can be modified to a variety of other structures that can support 120 to move relative to the base (110).
또한 도면에는 지지대(115)에 마련되는 복수의 결합구멍(116)과, 지지 블록(141)에 구비되는 복수의 삽입구멍(145)과, 복수의 고정부재(166)를 이용하여 지지 블록(141)을 지지대(115)에 위치 변경이 가능하게 결합하는 것으로 나타냈으나, 지지대(115)와 지지 블록(141)의 결합 구조는 도시된 것으로 한정되지 않고 다양하게 변경될 수 있다.In addition, in the drawing, the support block 141 is formed by using a plurality of coupling holes 116 provided in the support base 115, a plurality of insertion holes 145 provided in the support block 141, and a plurality of fixing members 166. ) Is shown as possible to change the position to the support 115, the coupling structure of the support 115 and the support block 141 is not limited to the illustrated and can be variously changed.
또한 도면에는 복귀기구(170)가 한 쌍의 웨이트(171)가 한 쌍의 와이어(172)를 통해 각각 이동부재(148)와 연결되는 것으로 나타냈으나, 복귀기구(170)를 구성하는 웨이트(171), 와이어(172) 및 와이어 가이드(173)의 설치 개수나 배치 구조는 다양하게 변경될 수 있다. 또한 복귀기구는 웨이트(171) 및 와이어(172)를 포함하는 구조 이외에, 스프링을 구비하는 구조 등 이동부재(148)에 대해 가압기구(154)에 의한 가압력 인가 방향과 반대 방향으로 힘을 가할 수 있는 다양한 다른 구조로 변경될 수 있다.In addition, although the return mechanism 170 shows that the pair of weights 171 are connected to the moving member 148 through the pair of wires 172, respectively, the weight constituting the return mechanism 170 ( The installation number or arrangement structure of the 171, the wire 172, and the wire guide 173 may be variously changed. In addition to the structure including the weight 171 and the wire 172, the return mechanism may apply a force to the moving member 148 in the opposite direction to the pressing force applying direction by the pressing mechanism 154, such as a structure having a spring. It can be changed to various other structures.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
본 발명의 의료영상장비 내에서 구동 가능한 관절 시뮬레이터는 고관절 중심으로 기술되었으나, 의료영상장비 내에서 구동 가능한 관절 시뮬레이터를 구성하는 범위에서 시뮬레이팅 대상은 고관절 이외에도 다양한 관절이 될 수도 있는 등 다양한 변형이 가능하다.The articulated simulator that can be driven in the medical imaging apparatus of the present invention has been described as the center of the hip joint, but in the range of constructing the articulated simulator that can be driven in the medical imaging equipment, the simulation target can be variously modified in addition to the hip joint. Do.

Claims (12)

  1. 베이스;Base;
    관절 시료의 하단을 지지할 수 있도록 상기 베이스 상에 설치되는 지지 하우징;A support housing installed on the base to support a lower end of the joint sample;
    상기 지지 하우징의 상측에 설치되는 지지 블록; 및A support block installed on an upper side of the support housing; And
    상기 지지 하우징의 상측에 배치되어 상기 관절 시료의 상단을 가압할 수 있도록 상기 지지 블록에 지지되는 가압기구;를 포함하고,And a pressurizing mechanism disposed above the support housing and supported by the support block to press the upper end of the joint sample.
    모든 구성 부품이 비금속 소재로 이루어지는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.Joint simulator that can be driven in a medical imaging device, characterized in that all the components are made of a non-metal material.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 지지 하우징을 상기 베이스에 대해 수평을 유지한 상태로 움직일 수 있도록 떠받치기 위해 상기 베이스에 설치되는 무빙 스테이지;를 더 포함하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a moving stage mounted to the base to support the support housing so as to be movable in a horizontal state with respect to the base.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 무빙 스테이지는,The moving stage,
    상기 베이스에 대해 일측 방향으로 수평 이동할 수 있도록 상기 베이스에 설치되어 상기 지지 하우징을 지지하는 제 1 슬라이더와,A first slider mounted to the base to support the support housing so as to move horizontally in one direction with respect to the base;
    상기 베이스에 대해 상기 제 1 슬라이더의 이동 방향과 교차하는 방향으로 수평 이동할 수 있도록 상기 제 1 슬라이더와 상하 방향으로 배치되어 상기 지지 하우징을 떠받치는 제 2 슬라이더를 구비하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a second slider disposed vertically with the first slider to support the support housing so as to horizontally move in a direction intersecting with a movement direction of the first slider with respect to the base. Articulated simulator in the car.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 무빙 스테이지는,The moving stage,
    상기 베이스에 대해 수직인 축을 회전 중심축으로 하여 회전할 수 있도록 상기 제 1 슬라이더와 상하 방향으로 배치되어 상기 지지 하우징을 상기 베이스에 대해 회전 가능하게 지지하는 회전판을 더 구비하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.The medical image further comprises a rotating plate disposed in the vertical direction with the first slider so as to rotate the axis perpendicular to the base as the rotation center axis to support the support housing to be rotatable relative to the base. Joint simulator that can be driven within the machine.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 관절 시료의 상단과 접할 수 있도록 상기 지지 블록의 내측에 마련되는 장착구멍에 이동 가능하게 설치되는 이동부재;를 더 포함하고,And a movable member movably installed in a mounting hole provided inside the support block so as to be in contact with the upper end of the joint sample.
    상기 가압기구는 상기 이동부재를 통해 상기 관절 시료에 하중을 가하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.The pressurization mechanism is driven within the medical imaging device, characterized in that for applying a load to the joint sample through the moving member.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 이동부재의 외면에 접하여 상기 이동부재의 움직임을 가이드할 수 있도록 상기 지지 블록과 상기 이동부재의 사이에 개재되는 가이드 롤;을 더 포함하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a guide roll interposed between the support block and the movable member so as to contact the outer surface of the movable member so as to guide the movement of the movable member.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 가압기구에 의한 가압력 이외의 하중이 상기 관절 시료에 가해지지 않도록 상기 이동부재에 대해 상승하는 방향으로 힘을 가하는 복귀기구;를 더 포함하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a return mechanism for applying a force in a direction ascending with respect to the movable member so that a load other than the pressing force by the pressing mechanism is not applied to the joint sample.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 복귀기구는,The return mechanism,
    일단이 상기 이동부재에 연결되고 타단이 상기 지지 블록의 외측으로 연장되는 와이어와,A wire having one end connected to the movable member and the other end extending outward of the support block;
    상기 와이어의 타단에 매달리도록 상기 지지 블록의 외측에 배치됨으로써 자중에 의해 상기 이동부재를 상승하는 방향으로 당기는 웨이트를 구비하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a weight that is disposed outside the support block to suspend at the other end of the wire and pulls the moving member in a rising direction by its own weight.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 베이스에 고정되어 상기 지지 블록을 위치 이동 가능하게 지지하는 지지대;를 더 포함하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a supporter fixed to the base to support the support block so as to be movable in position.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 지지 블록에 마련되는 복수의 삽입구멍;A plurality of insertion holes provided in the support block;
    상기 지지 블록의 복수의 삽입구멍에 대응하도록 상기 지지대에 구비되는 복수의 결합구멍; 및A plurality of coupling holes provided in the support so as to correspond to the plurality of insertion holes of the support block; And
    상기 지지대의 결합구멍에 결합된 상태로 상기 지지 블록의 삽입구멍에 끼움 결합됨으로써 상기 지지 블록을 상기 지지대에 고정하는 고정부재;를 더 포함하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.And a fixing member configured to fix the support block to the support by being fitted into the insertion hole of the support block while being coupled to the coupling hole of the support.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 지지 하우징은 상기 관절 시료의 하단과 상기 관절 시료를 둘러싸는 윤활액을 수용하는 저장실을 구비하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.The support housing is a joint simulator that can be driven in the medical imaging device, characterized in that it comprises a storage chamber for receiving the lubricating fluid surrounding the lower end of the joint sample and the joint sample.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 가압기구는 유체 유입에 의해 팽창하여 상기 관절 시료를 가압하는 신축성 팽창부재를 구비하는 것을 특징으로 하는 의료영상장비 내에서 구동 가능한 관절 시뮬레이터.The pressurization mechanism is operable in the medical imaging equipment, characterized in that it comprises a flexible expansion member for expanding the fluid sample by the inflow of the fluid sample.
PCT/KR2016/005767 2015-06-01 2016-05-31 Joint simulator operable within medical imaging equipment WO2016195363A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150077228 2015-06-01
KR10-2015-0077228 2015-06-01
KR1020150131542A KR101780552B1 (en) 2015-06-01 2015-09-17 Joint simulator for medical imaging devices
KR10-2015-0131542 2015-09-17

Publications (1)

Publication Number Publication Date
WO2016195363A1 true WO2016195363A1 (en) 2016-12-08

Family

ID=57441132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005767 WO2016195363A1 (en) 2015-06-01 2016-05-31 Joint simulator operable within medical imaging equipment

Country Status (1)

Country Link
WO (1) WO2016195363A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040177701A1 (en) * 2003-03-10 2004-09-16 Rafail Zubok Joint simulator testing machine
KR20040084243A (en) * 2003-03-27 2004-10-06 학교법인 경희대학교 Virtual surgical simulation system for total hip arthroplasty
US7654150B2 (en) * 2006-01-20 2010-02-02 Mts Systems Corporation Specimen containment module for orthopedic simulator
US20120123592A1 (en) * 2010-11-15 2012-05-17 Advanced Mechanical Technology Method and apparatus for joint motion simulation
KR20120099068A (en) * 2009-11-09 2012-09-06 어드벤스드 메커니컬 테크놀로지, 인코. System and method for joint motion simulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040177701A1 (en) * 2003-03-10 2004-09-16 Rafail Zubok Joint simulator testing machine
KR20040084243A (en) * 2003-03-27 2004-10-06 학교법인 경희대학교 Virtual surgical simulation system for total hip arthroplasty
US7654150B2 (en) * 2006-01-20 2010-02-02 Mts Systems Corporation Specimen containment module for orthopedic simulator
KR20120099068A (en) * 2009-11-09 2012-09-06 어드벤스드 메커니컬 테크놀로지, 인코. System and method for joint motion simulation
US20120123592A1 (en) * 2010-11-15 2012-05-17 Advanced Mechanical Technology Method and apparatus for joint motion simulation

Similar Documents

Publication Publication Date Title
Goertzen et al. Neutral zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocol. An in vitro porcine investigation
US9091617B2 (en) Mechanical testing system and method
KR102353841B1 (en) System and method for measuring dynamic postural balance
US9351857B2 (en) Method and apparatus for joint motion simulation
WO2011062360A2 (en) Gap-measuring apparatus for an artificial knee joint
WO2014014214A1 (en) Pulse measuring device and method of pulse measurement therewith
MX2013007965A (en) Posturographic system using a balance board.
WO2021002663A1 (en) Robot system for walking automation
CN210228998U (en) Active Balance Training Evaluation Device
Senteler et al. Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
WO2016195363A1 (en) Joint simulator operable within medical imaging equipment
Sun et al. Mechanophysiological analysis of anorectal function using simulated feces in human subjects
US11709105B2 (en) Fiber optic system for detecting forces on and measuring deformation of an anthropomorphic test device
Gédet et al. Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement
WO2016122241A1 (en) Core stability exercise management system
US8767049B2 (en) Membrane-deformation mapping technique
KR101780552B1 (en) Joint simulator for medical imaging devices
CN100360082C (en) Magnetic resonance tomography apparatus and device for generating passive motion of object therein
Klasson et al. Test apparatus for the measurement of the flexibility of ankle-foot orthoses in planes other than the loaded plane
WO2021112387A1 (en) Lung phantom unit for radiotherapy
WO2019146835A1 (en) Apparatus for measuring 1 repetition maximum
WO2017135733A1 (en) Medical table and medical imaging apparatus including same
CN203849098U (en) Angle-adjustable in-vitro joint fixing clamp
WO2013069864A1 (en) Computed tomography device
WO2013069842A1 (en) Computed tomography device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803718

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载