+

WO2016167494A1 - Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby - Google Patents

Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby Download PDF

Info

Publication number
WO2016167494A1
WO2016167494A1 PCT/KR2016/003152 KR2016003152W WO2016167494A1 WO 2016167494 A1 WO2016167494 A1 WO 2016167494A1 KR 2016003152 W KR2016003152 W KR 2016003152W WO 2016167494 A1 WO2016167494 A1 WO 2016167494A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
blanket
airgel
silica airgel
alcohol
Prior art date
Application number
PCT/KR2016/003152
Other languages
French (fr)
Korean (ko)
Inventor
오경실
김미리
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160035850A external-priority patent/KR101748527B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680016784.4A priority Critical patent/CN107406327B/en
Priority to EP16780217.2A priority patent/EP3284719B1/en
Priority to US15/554,383 priority patent/US10882750B2/en
Publication of WO2016167494A1 publication Critical patent/WO2016167494A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium

Definitions

  • the present invention forms a silica airgel with excellent physical properties, in particular high porosity, with high hydrophobicity, using a minimum surface modifier without a separate surface modification step, so that the blanket with silica airgel having low thermal conductivity and excellent mechanical flexibility
  • the present invention relates to a method for preparing a blanket containing silica airgel, and a blanket prepared according to the present invention.
  • aerogels having excellent thermal insulation properties.
  • the aerogels developed so far include organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2). Or inorganic aerogels containing metal oxides such as carbon (C) aerogels.
  • organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2).
  • inorganic aerogels containing metal oxides such as carbon (C) aerogels.
  • silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and is expected to be applied in various fields such as insulation, catalyst, sound absorbing material, and interlayer insulating material of semiconductor circuits. have.
  • the speed of commercialization is very slow due to complex manufacturing processes and low mechanical strength, continuous research has resulted in the early application of products and the rapid expansion of the market including insulation materials.
  • silica airgel Since silica airgel has a low mechanical strength due to its porous structure, the silica airgel is usually combined with a substrate such as glass fiber, ceramic fiber, or polymer fiber to produce a product such as an airgel blanket or airgel sheet.
  • a substrate such as glass fiber, ceramic fiber, or polymer fiber
  • a silica sol is prepared through a manufacturing step, a gelling step, an aging step, and a surface modification step.
  • the conventional method for preparing a blanket containing silica airgel as described above is complicated in process and uneconomical in time and cost.
  • a surface modification step for silica airgel is essential, and a large amount of organic solvent and expensive hydrophobicizing agent are used for this purpose.
  • the recovery and separation of by-products generated in the surface modification step is essential, there are many difficulties in commercializing a blanket containing silica airgel.
  • silica aerogels with excellent physical properties, in particular high porosity, with high hydrophobicity, using minimal surface modifiers, without the need for a separate surface modification step, thereby providing silica aerogels with low thermal conductivity and excellent mechanical flexibility. It is to provide a method for producing a blanket containing silica airgel capable of producing a blanket containing.
  • Another object of the present invention is to provide a blanket containing silica airgel prepared using the above production method.
  • Still another object of the present invention is to provide a heat insulating material comprising a blanket containing silica airgel prepared using the above production method.
  • preparing a reaction solution by reacting a silazane-based surface modifier and an alcohol compound Preparing a silica sol by adding a silica precursor, water, and a polar organic solvent to the reaction solution, and then immersing and gelling the blanket substrate in the prepared silica sol to prepare a silica gel-based composite; And it provides a method for producing a blanket containing silica airgel comprising the step of drying the silica gel-based composite.
  • a blanket containing silica airgel prepared using the manufacturing method.
  • a heat insulating material comprising a blanket containing silica airgel prepared using the manufacturing method.
  • the manufacturing method can reduce the amount of surface modifiers used because of the hydrophobization treatment of silica aerogels by using a minimum amount of surface modifiers, and can reduce the amount of organic solvents and by-products that can occur in the conventional surface modification step. .
  • the blanket produced by the manufacturing method includes a silica airgel having excellent physical properties, particularly high porosity, with high hydrophobicity, and thus has low thermal conductivity and excellent mechanical flexibility, thereby making various industries such as heat insulating material, heat insulating material, or non-combustible material. Applicable to the field.
  • FIG. 1 is a graph showing infrared spectroscopic analysis (IR) results of a reaction solution of hexamethyldisilazane and ethanol prepared in Examples 1 and 7 in Experimental Example 1.
  • IR infrared spectroscopic analysis
  • FIGS. 2a and 2b are photographs showing the results of evaluating the hydrophobicity of the silica airgel-containing blanket prepared in Example 1 and Comparative Example 1 in Experimental Example 3, respectively.
  • an alkoxysilane-based compound is prepared by decomposing a silazane-based surface modifier having excellent hydrophobic modification effect into alcohol in advance, and using the co-precusor as a co-precusor to gel the silica.
  • a minimum amount of surface modifier thereby forming a silica airgel with high hydrophobicity and excellent physical properties, especially high porosity, thereby facilitating a blanket containing an aerogel with low thermal conductivity and excellent mechanical flexibility. Can be manufactured.
  • the method for preparing a blanket containing silica airgel comprises the steps of preparing a reaction solution by reacting a silazane-based surface modifier and an alcohol-based compound (step 1); Preparing a silica gel-based composite by adding a silica precursor, water, and a polar organic solvent to the reaction solution to prepare a silica sol, and immersing and gelling the blanket substrate in the prepared silica sol (step 2); And drying the silica gel-based composite (step 3).
  • step 1 Preparing a silica gel-based composite by adding a silica precursor, water, and a polar organic solvent to the reaction solution to prepare a silica sol, and immersing and gelling the blanket substrate in the prepared silica sol
  • step 2 Preparing a silica gel-based composite by adding a silica precursor, water, and a polar organic solvent to the reaction solution to prepare a silica sol, and immersing and gelling the blanket substrate in the prepared silica sol
  • step 1 is a step of preparing a reaction solution by reacting a silazane-based surface modifier with an alcohol compound.
  • the silazane-based surface modifier that can be used to prepare the reaction solution may be a silazane-based compound including two or more alkyl groups in one molecule, and more specifically, may be a compound of Formula 1 below:
  • R 11 to R 13 , and R 21 to R 23 may each independently be a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are each hydrogen at the same time. It is not an atom, More specifically, at least 2 of said R ⁇ 11> -R ⁇ 13> and R ⁇ 21> -R ⁇ 23> is an alkyl group.
  • silazane-based compound examples include 1,2-diethyldisilazane (1,2-diethyldisilazane), 1,1,2,2-tetramethyldisilazane (1,1,2,2-tetramethyldisilazane), 1,1,3,3-tetramethyldisilazane (1,1,3,3-tetramethyl disilazane), 1,1,1,2,2,2-hexamethyldisilazane (1,1,1, 2,2,2-hexamethyldisilazane), 1,1,2,2-tetraethyldisilazane (1,1,2,2-tetraethyldisilazane) or 1,2-diisopropyldisilazane ), And one kind alone or a mixture of two or more kinds thereof may be used.
  • the silazane-based surface modifier may further increase the hydrophobicity of the silica airgel.
  • tetraalkyldisilazane including four alkyl groups having 1 to 4 carbon atoms together with two hydrogen atoms may be used.
  • HMDS hexamethyldisilazane
  • the alcohol compound that can react with the silazane-based surface modifier may be used an alcohol having 1 to 8 carbon atoms. More specifically, in consideration of the effect of increasing the decomposition reaction efficiency of the silazane-based surface modifier and the subsequent reforming reaction on the silica surface, the alcohol-based compound has 1 to 4 carbon atoms such as methanol, ethanol, propanol, or n-butanol. It may be a straight alcohol, and may be used singly or in mixture of two or more. More specifically, the alcohol-based compound may be ethanol.
  • the silazane-based surface modifier and the alcohol-based compound may be added in a stoichiometric amount in consideration of the reaction of the silazane-based surface modifier and the alcohol-based compound.
  • an acid catalyst may be further used as the reaction catalyst when the silazane-based surface modifier and the alcohol-based compound are mixed to prepare the reaction solution.
  • the acid catalyst may not only promote decomposition of the surface modifier, but also promote gelation of the silica sol.
  • the acid catalyst may specifically include one or more inorganic acids such as nitric acid, hydrochloric acid, acetic acid, sulfuric acid, hydrofluoric acid, and the like, may not inhibit the reaction of the silazane-based surface modifier with the alcohol-based compound, and may promote gelation of the silica sol. It may be used in an amount to make it.
  • the reaction solution prepared according to the above method includes an alkoxysilane-based compound produced by the decomposition reaction of the silazane-based surface modifier and the alcohol-based compound.
  • the alkoxysilane-based compound then acts as a co-precursor upon gelation to hydrophobize the silica. Accordingly, the hydrophobization surface modification step for the silica airgel may be omitted in the manufacture of the blanket including the silica airgel.
  • the amount of solvent and surface modifier used can be reduced, and process time and manufacturing cost can be reduced.
  • the alkoxysilane-based compound produced in the reaction solution is a trialkylalkoxysilane-based compound (wherein the alkyl is a functional group derived from a silazane-based surface modifier, specifically an alkyl group having 1 to 8 carbon atoms, and the alkoxy is polar As a functional group derived from the alcohol type compound which is an organic solvent, it may specifically be a C1-C8 alkoxy group.
  • an alkoxysilane-based compound such as trimethylalkoxysilane may be formed when trimethyldisilazane is decomposed by alcohol as in Scheme 1 below.
  • R may be an alcohol-based functional group, specifically, an alkyl group, more specifically, an alkyl group having 1 to 8 carbon atoms, and more particularly, a linear alkyl group having 1 to 4 carbon atoms.
  • Silazane-based surface modifiers including trimethyldisilazane, are generally used as surface modifiers or hydrophobicizing agents for silica aerogels because of the high hydrophobicity, i.e., alkyl group content, in the molecule, which can increase the degree of hydrophobicity during surface modification to silica. .
  • the silazane-based compound can react with two hydrophilic groups (-OH) on the silica surface per molecule, a large amount is required for the surface modification of the silica.
  • two-molecule alkoxysilane-based compound may be generated from one-molecular silazane-based compound.
  • the resulting alkoxysilane-based compound may contain up to three alkyl groups in one molecule, thereby further increasing the degree of hydrophobicity during surface modification of the silica aerogel.
  • the alkoxysilane-based compound may act as a co-precursor to participate in the gelation and to minimize the amount of surface modifier used for hydrophobization of the silica airgel.
  • ammonia is generated in the reaction solution as a result of the decomposition reaction of the silazane-based surface modifier.
  • the ammonia can be dissolved in the reaction solution to increase the pH of the solution, thereby reducing the amount of base used for gelling the silica sol.
  • the ammonia produced as a result of the decomposition reaction of the surface modifier exhibits a multi-step addition reaction with the base added afterwards, thereby facilitating control of the gelation rate and efficiency.
  • step 2 is to prepare a silica sol using the reaction solution prepared in step 1, and to immerse and gelate the substrate for the blanket on the silica gel -Preparing a substrate composite.
  • the silica sol may be prepared by mixing a silica precursor, water and a polar organic solvent, and optionally a base, to the reaction solution prepared in step 1.
  • the silica precursor usable in the production of the silica sol can be used without particular limitation as long as it is usually used in the production of the silica aerogel.
  • the silica precursor may be a silicon-containing alkoxide compound, more specifically tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), methyltriethyl orthosilicate (methyl triethyl orthosilicate), dimethyl diethyl orthosilicate, tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetrabutyl orthosilicate Secondary secondary butyl orthosilicate, tetra tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate, tetratetrabutylhexyl orthosilicate Alkyls may be a
  • the alkyl group may be an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
  • the silica precursor may be tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS) or mixtures thereof.
  • silica precursor is hydrolyzed by the water and the polar organic solvent to be added later, and as a result generates silica (SiO 2 ).
  • the silica precursor pre-hydrolysis of the above compounds may be used.
  • a hydrolyzate it may be prepared and used directly, or may be obtained commercially.
  • direct preparation for example, after the addition of TEOS to a mixture of water and alcohol, a hydrolyzate which is hydrolyzed by adding an acid catalyst to a pH of 2.5 to 2.9 can be used.
  • the silica precursor may be a hydrolyzate having a degree of hydration of 50% or more, more specifically 50% to 90%, more specifically 70% to 80%.
  • an acid for hydrolysis of the silica precursor is added in the preparation of the silica sol.
  • the addition of acid is unnecessary, and the hydrolysis process of the silica precursor can be shortened or omitted, and then the surface modification reaction can be promoted.
  • the degree of hydrolysis can be calculated from the equivalent of water reacted with one equivalent of the silica precursor material during the hydrolysis reaction according to Scheme 2 below.
  • TEOS tetraethyl orthosilicate
  • X degree of hydrolysis
  • the silica precursor may be used in an amount such that the content of silica (SiO 2 ) included in the silica sol is 0.1% by weight to 30% by weight, wherein the silica sol is as defined above. If the content of silica is less than 0.1% by weight, the content of silica airgel in the finished blanket is low. If the content of silica is more than 30% by weight, excessive silica airgel is formed, which may lower the mechanical properties of the blanket, particularly flexibility. have.
  • the water used to prepare the composition for forming the silica airgel may be used in a ratio of 0.1 mol to 16 mol with respect to 1 mol of silica (SiO 2 ) contained in the silica sol.
  • the amount of water used is less than 0.1 mole, the surface modification reaction rate may be lowered.
  • the amount of water is used more than 16 mole, there is a fear that the shrinkage during drying, in particular during supercritical drying, may lower the thermal conductivity. More specifically, the water may be used in 4 to 10 moles per 1 mole of silica.
  • the polar organic solvent used to prepare the silica airgel forming composition may be an alcohol solvent.
  • the alcohol solvent is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol and the like; Or polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, sorbitol, and the like, and any one or a mixture of two or more thereof may be used.
  • the polar organic solvent may be a monohydric alcohol solvent having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, etc. in consideration of miscibility with water and airgel.
  • the polar organic solvent as described above may be used in an appropriate amount in consideration of the degree of hydrophobicity in the final silica silica gel to promote the surface modification reaction.
  • the silazane-based surface modifier in step 1 is an alkoxysilane produced by decomposition by alcohol
  • the condensation reaction for gel formation does not easily occur because it contains a methyl group that does not participate in the condensation reaction. Accordingly, by selectively adding more base, the condensation reaction can be promoted to form a stable gel.
  • the base examples include inorganic bases such as sodium hydroxide and potassium hydroxide; Or an organic base such as ammonium hydroxide, but, in the case of the inorganic base, since the metal ion contained in the compound may be coordinated (Siord OH) compound (Siord OH compound), the organic base may be preferable.
  • the organic base is ammonium hydroxide (NH 4 OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), methylamine, ethylamine, isopropylamine, monoisopropylamine, diethylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, choline, Monoethanolamine, diethanol amine, 2-aminoethanol, 2- (ethyl amino) ethanol, 2- (methyl amino) ethanol, N-methyl diethanolamine, dimethylaminoethanol, diethylaminoethanol, nitrilotriethanol, 2 -(2-aminoethoxy) ethanol, 1-amino-2-propanol, triethanol
  • the base may be included in an amount such that the pH of the silica sol is 4 to 8. If the pH of the silica sol is out of the above range gelation is not easy, or the gelation rate is too slow, there is a fear that the processability is lowered. In addition, since the base may be precipitated when it is added to the solid phase, it may be preferable to be added in a solution phase diluted with the polar organic solvent.
  • the blanket substrate is immersed in the silica sol produced as a result of the mixing of the above components.
  • the blanket base material may be a film, a sheet, a net, a fiber, a porous body, a foam, a nonwoven fabric, or a laminate of two or more thereof.
  • the surface roughness may be formed or patterned.
  • the blanket base material may be a fiber that can further improve the thermal insulation performance by including a space or a space for easy insertion of an airgel into the blanket base material.
  • the blanket substrate may have a low thermal conductivity.
  • the blanket base material may be polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (for example, polyethylene, polypropylene, or copolymers thereof). Etc.), cellulose, carbon, cotton, wool, hemp, nonwoven fabric, glass fiber or ceramic wool, and the like, but are not limited thereto. More specifically, the substrate may include glass fiber or polyethylene.
  • the blanket substrate may be hydrophobic treatment.
  • Hydrophobic treatment of the substrate for the blanket may be carried out according to a conventional method, specifically, a linear aliphatic hydrocarbon group (alkyl group having 1 to 20 carbon atoms, alkylene group having 2 to 20 carbon atoms) unsubstituted or substituted with halogen.
  • an aromatic hydrocarbon group (aryl group having 6 to 20 carbon atoms), an organosilicon group, or a combination thereof, and more specifically, a halogenated alkyl group, a silyl group, an aminosilyl group, an alkyl group, a vinyl group, an allyl group, an aryl
  • a compound containing a hydrophobic functional group such as a group, an arylalkyl group, an alkylaryl group.
  • the compound for hydrophobic treatment may be a silane or siloxane compound including the hydrophobic functional group described above. More specifically, HMDS (hexamethyldisilazane), TMSCL (trimethyl chlorosilane), silicone oil (silicone oil), amino silane (amino silane), alkyl silane (alkyl silane), polydimethyl siloxane (PDMS), or dimethyl dichlorosilane (DDS) And any one or a mixture of two or more thereof may be used.
  • HMDS hexamethyldisilazane
  • TMSCL trimethyl chlorosilane
  • silicone oil silicone oil
  • amino silane amino silane
  • alkyl silane alkyl silane
  • PDMS polydimethyl siloxane
  • DDS dimethyl dichlorosilane
  • the surface treatment method is not particularly limited, the hydrophobic material may be coated on the surface of the carbon coating layer by chemical vapor deposition (CVD, Chemical vapor deposition) or physical vapor deposition (PVD, Physical vapor deposition), such chemical vapor deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the fluidized-bed chemical vapor deposition method rotary three-dimensional chemical vapor deposition method, vibration chemical vapor deposition method and the like can be used, as the physical vapor deposition method, sputtering, vacuum annual method, plasma coating method and the like can be used.
  • hydrophobic functional groups exist on the surface of the blanket substrate, and as a result, the adhesion with the hydrophobic airgel can be further improved.
  • the blanket substrate is preferably low density, specifically, when the substrate is a fiber, the fibers constituting the fiber may have an average diameter of 0.1 ⁇ m to 30 ⁇ m.
  • the blanket substrate may be further formed of a functional layer, such as a surface protective layer that can improve the life characteristics through a heat reflection layer or surface protection for improving the thermal insulation performance in part or as a whole.
  • a functional layer such as a surface protective layer that can improve the life characteristics through a heat reflection layer or surface protection for improving the thermal insulation performance in part or as a whole.
  • the heat reflection layer includes a compound capable of reflecting or blocking infrared radiation, and specifically, carbon black, carbon fiber, titanium dioxide, metal (aluminum, stainless steel, copper / zinc alloy, copper / chromium alloy) Etc.), nonmetals, fibers, pigments, and the like.
  • the surface protective layer may include a high heat-resistant moisture-permeable waterproof material such as polytetrafluoroethylene.
  • the stacking of the functional layer may be performed by directly forming the functional layer on at least one surface of the insulating blanket, or laminating the functional layer after placing the functional layer.
  • the laminating process may be performed according to conventional methods such as heat treatment or hot rolling treatment.
  • the gelation time is long for about 1 to 2 hours, resulting in a weak aerogel structure resulting in shrinkage during drying, resulting in a lower thermal conductivity.
  • the surface modifier is decomposed and used in advance, so that the condensation reaction between the aerogel precursor and the trimethylalkoxysilane produced by the decomposition reaction of HMDS is sufficient even if the gelation time is shortened within 10 minutes. There is no fear of lowering the thermal conductivity since the gel structure becomes hard.
  • the method for preparing a blanket containing silica airgel according to an embodiment of the present invention may further include any one or both of a stabilization process, a preaging process, and an aging process performed after the silica gel-based composite is manufactured. Can be.
  • the stabilization process may be performed by maintaining the prepared silica gel-based composite at 18 ° C to 25 ° C for 10 to 30 minutes after gelation is completed.
  • the preaging process may be carried out by maintaining the silica gel-based composite after the gelation or after the stabilization process at a temperature of 50 °C to 70 °C 30 minutes to 50 minutes.
  • the aging process is a process for leaving the silica gel-based composite at a suitable temperature so that the chemical change is completely made, and the network structure inside the silica gel may be strengthened by an aging process for the silica gel-based composite.
  • the moisture inside the silica gel may be replaced with a polar organic solvent, and as a result, it is possible to prevent the pore structure deformation and reduction of the silica gel due to evaporation of the moisture inside the silica gel in a subsequent drying process.
  • the aging process may be performed by maintaining the silica gel-based composite at a temperature of 50 °C to 80 °C.
  • the aging process may be performed until the chemical change in the silica gel-based composite is completed, specifically, may be performed for 1 hour to 6 hours, or 3 hours to 4 hours.
  • step 3 is a step of preparing a blanket containing silica airgel by drying the silica gel-based composite prepared in step 2.
  • the drying process may be specifically performed by a supercritical drying process using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called the supercritical point, the evaporation process does not occur, so it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide.
  • Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
  • the supercritical drying process may be performed according to a conventional method except for using the silica gel-based composite prepared in Step 2. Specifically, in the supercritical drying process, the aged silica gel-based composite is placed in a supercritical drying reactor, and then a solvent replacement process is performed in which a liquid CO 2 is filled and the alcohol solvent inside the silica airgel is replaced with CO 2 . Thereafter, after raising the temperature to 40 ° C. to 50 ° C. at a constant temperature increase rate, specifically 0.1 ° C./min to 1 ° C./min, the pressure or more at which carbon dioxide becomes a supercritical state, specifically, 100 bar to 150 The pressure of bar is maintained for a certain time, specifically 20 minutes to 1 hour, in the supercritical state of carbon dioxide.
  • carbon dioxide is supercritical at a temperature of 31 ° C. and a pressure of 73.8 bar.
  • the carbon dioxide may be maintained at a constant temperature and a constant pressure for 2 hours to 12 hours, more specifically, 2 hours to 6 hours at which the carbon dioxide becomes a supercritical state, and then the pressure may be gradually removed to complete the supercritical drying process.
  • a blanket comprising a porous silica airgel having nano-sized pores can be prepared.
  • the silica airgel has excellent hydrophobicity and excellent physical properties, in particular, high porosity, and the silica airgel-containing blanket including the same has excellent mechanical flexibility with low thermal conductivity.
  • the method of manufacturing a blanket for silica airgel Preparing a reaction solution comprising an alkoxysilane-based compound produced by the decomposition reaction of the silazane-based surface modifier and the alcohol-based compound by reacting the silazane-based surface modifier and the alcohol-based compound;
  • Silica sol was prepared by adding a silica precursor, water, a linear alcohol having 1 to 4 carbon atoms and a base as a polar organic solvent, and then immersing the blanket substrate in the prepared silica sol for 10 minutes or less.
  • R 11 to R 13 , and R 21 to R 23 may be each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are simultaneously Is not a hydrogen atom, more specifically, at least two of R 11 to R 13 , and R 21 to R 23 are alkyl groups)
  • a blanket and heat insulating material comprising a silica airgel prepared by the manufacturing method.
  • the blanket includes silica airgel on at least one side and inside of the blanket substrate.
  • Silica airgel manufactured by the manufacturing method as described above and included in the blanket is a particulate porous structure including a plurality of micropores, and nanoparticles of primary particles, specifically, an average particle diameter (D 50 ).
  • the primary particles of 100 nm or less, specifically 1 nm to 50 nm, include a microstructure, that is, a three-dimensional network structure, which combines to form a network-shaped cluster.
  • the porosity, specific surface area, or average particle diameter of the silica airgel can be controlled by controlling the manufacturing process during the production of the silica airgel, and as a result, the thermal conductivity and the thermal insulation of the blanket can be controlled.
  • the silica airgel prepared by the above production method may have a thermal conductivity of 20 mW / mK or less, more specifically 16 mW / mK or less.
  • the thermal conductivity of the airgel can be measured using a thermal conductivity measuring instrument.
  • the silica airgel may be hydrophobic or may be hydrophobic surface treatment by itself.
  • the silica airgel that can be used in the preparation of the airgel-containing composition according to an embodiment of the present invention is at least 5% by weight, more specifically at least 6% by weight, even more specifically at 6% by weight, based on the total weight of the silica airgel. It may have a carbon content of 9% by weight.
  • the carbon content contained in the silica airgel can be measured using a carbon analyzer.
  • the content of the silica airgel included in the blanket may be appropriately considered in consideration of the use of the blanket. It may be desirable to adjust. Specifically, the silica airgel may be included in 20% by weight to 80% by weight relative to the total weight of the blanket.
  • Such a blanket includes silica airgel having excellent physical properties, particularly high porosity, with high hydrophobicity, and thus has low thermal conductivity and excellent mechanical flexibility at low density. Accordingly, it is useful not only for thermal insulation thermal insulation plant facilities such as piping for various industrial facilities and industrial furnaces, but also as insulation, insulation, or non-combustible materials for aircraft, ships, automobiles, and building structures.
  • HMDS 1.67 g and 43.945 g of ethanol were added to a 500 ml round bottom flask to obtain a reaction solution.
  • 28.92 g of prehydrolyzed TEOS silica concentration 19.5%, hydration degree 77%) was added and mixed, followed by addition of water (amount of 1 mole to 1 mole of silica (SiO 2 )).
  • Silica sol 100 ml was prepared by adding 11 g of ethanol and 0.67 ml of NH 4 OH (30%) to the resulting reaction mixture. Polyester fibers were deposited on the silica sol and gelation was performed. At this time, it took about 10 minutes to complete the gelation.
  • a blanket containing silica airgel was prepared in the same manner as in Example 1 except that water was used in Example 1 in a ratio of 3 mol to 1 mol of silica.
  • a blanket containing silica airgel was prepared in the same manner as in Example 1 except for using 3.33 g of HMDS in Example 1.
  • a silica airgel-containing blanket was prepared in the same manner as in Example 1 except that water was used in a ratio of 3 mol to 1 mol of silica and 3.33 g of HMDS.
  • a blanket containing silica airgel was prepared in the same manner as in Example 1 except for using 4.98 g of HMDS in Example 1.
  • Silica aerogel-containing blanket was prepared in the same manner as in Example 1 except that water was used in a ratio of 3 mol to 1 mol of silica and 4.98 g of HMDS.
  • Example 1 nitric acid (HNO 3 ) was added as an acid catalyst during the reaction of ethanol and HMDS, and except that water was used in a ratio of 2 moles to 1 mole of silica and 3.66 g of HMDS was used.
  • a blanket containing silica airgel was prepared in the same manner as in Example 1.
  • a silica airgel-containing blanket was prepared in the same manner as in Comparative Example 2, except that water was used at a molar ratio of 1 mole of silica when preparing the sol in Comparative Example 2.
  • Silica aerogel was carried out in the same manner as in Example 1, except that HMDS was added to a silica sol and gelling was performed by depositing polyester fibers without reacting HMDS with ethanol in Example 1. Including blankets were prepared. At this time it took 2 hours to complete the gelation.
  • Example 1 1.67 One - X 14.7
  • Example 2 1.67 3 - X 14.8
  • Example 3 3.33 One - X 14.0
  • Example 4 3.33 3 - X 13.6
  • Example 5 4.98 One - X 14.2
  • Example 6 4.98 3 - X 13.6
  • Example 7 3.66 2 1.48 X 15.3 Comparative Example 1 - - - X 18.0 Comparative Example 2 - - - ⁇ (13.68) 14.0 Comparative Example 3 - 2 - ⁇ (13.68) 14.1 Comparative Example 4 1.67 One - X 17.8
  • the thermal conductivity was significantly lower than that of the thermal conductivity, ie, low thermal conductivity. It was.
  • Figure 2a is a photograph observing the results of the hydrophobicity evaluation experiment for the blanket with silica airgel of Example 1
  • Figure 2b is a photograph observing the results of the hydrophobicity evaluation experiment for the blanket with silica airgel of Comparative Example 1.
  • Example 1 Carbon content (% by weight) Example 1 6.1 Example 2 6.3 Example 3 7.0 Example 4 7.2 Example 5 8.0 Example 6 8.2 Example 7 7.2 Comparative Example 1 - Comparative Example 2 8.5 Comparative Example 3 8.5 Comparative Example 4 3.5
  • Example 1 the carbon content increased due to the increase in hydrophobicity as the amount of HMDS increased.
  • the degree of hydrophobicity was increased in comparison with Comparative Example 4 that was immediately added without decomposing HMDS.
  • the carbon content was increased by 2.6% by weight compared with Comparative Example 4.
  • HMDS has a very low decomposition rate when decomposed in ethanol.
  • Comparative Example 4 HMDS was not sufficiently decomposed by directly adding HMDS without prior decomposition, thereby showing a significantly low degree of hydrophobicity despite the use of the same amount as Example 1. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention provides a method for manufacturing a silica aerogel-containing blanket, and a silica aerogel-containing blanket manufactured thereby, the method comprising the steps of: preparing a reaction solution by reacting a silazane-based surface modifier and an alcohol-based compound; preparing a silica gel-substrate composite by adding a silica precursor, water and a polar organic solvent to the reaction solution so as to prepare a silica sol, and then dipping a substrate for a blanket into the same so as to gellify the same; and drying the silica gel-substrate composite. The silica aerogel-containing blanket, which has low thermal conductivity and excellent mechanical flexibility by comprising a silica aerogel having high hydrophobicity and excellent physical properties, and particularly, high porosity, can be manufactured by using a minimum amount of a surface modifier without an additional surface modification step through the manufacturing method.

Description

실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓Method for preparing a blanket containing silica airgel and a blanket containing silica airgel prepared accordingly
관련출원과의 상호인용Citation with Related Applications
본 출원은 2015년 4월 14일자 한국특허출원 제2015-0052537호 및 2016년 3월 25일자 한국특허출원 제2016-0035850호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2015-0052537 dated April 14, 2015 and Korean Patent Application No. 2016-0035850 dated March 25, 2016. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 별도의 표면개질 단계 없이 최소한의 표면개질제 사용으로, 높은 소수화도화 함께 우수한 물성적 특성, 특히 높은 기공율을 갖는 실리카 에어로겔을 형성하여, 낮은 열전도도 및 우수한 기계적 유연성을 갖는 실리카 에어로겔 포함 블랑켓의 제조가 가능한 실리카 에어로겔 포함 블랑켓의 제조방법, 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓에 관한 것이다.The present invention forms a silica airgel with excellent physical properties, in particular high porosity, with high hydrophobicity, using a minimum surface modifier without a separate surface modification step, so that the blanket with silica airgel having low thermal conductivity and excellent mechanical flexibility The present invention relates to a method for preparing a blanket containing silica airgel, and a blanket prepared according to the present invention.
최근들어 산업기술이 첨단화되면서 단열특성이 뛰어난 에어로겔(aerogel)에 대한 관심이 증대되고 있다. 지금까지 개발된 에어로겔로는 레졸시놀-포름알데하이드 또는 멜라민-포름알데하이드 에어로겔 입자 등의 유기 에어로겔과, 실리카(Silica, SiO2), 알루미나(Alumina, Al2O3), 티타니아(Titania, TiO2) 또는 탄소(Carbon, C) 에어로겔 등의 금속 산화물을 포함하는 무기 에어로겔이 있다.Recently, as industrial technologies are advanced, interest in aerogels having excellent thermal insulation properties is increasing. The aerogels developed so far include organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2). Or inorganic aerogels containing metal oxides such as carbon (C) aerogels.
이중에서도 실리카 에어로겔은 고다공성 물질로서, 높은 기공률(porosity)과 비표면적, 그리고 낮은 열전도도(thermal conductivity)를 가져 단열재, 촉매, 흡음재, 반도체 회로의 층간 절연물질 등 다양한 분야에서의 응용이 기대되고 있다. 비록 복잡한 제조공정과 낮은 기계적 강도 등으로 인해 상업화 속도는 매우 느리지만, 꾸준한 연구결과로 초기적인 응용상품들이 출시되고 있으며, 단열재를 비롯하여 시장 확대 속도가 점점 빨라지고 있다. Among these, silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and is expected to be applied in various fields such as insulation, catalyst, sound absorbing material, and interlayer insulating material of semiconductor circuits. have. Although the speed of commercialization is very slow due to complex manufacturing processes and low mechanical strength, continuous research has resulted in the early application of products and the rapid expansion of the market including insulation materials.
실리카 에어로겔은 다공성 구조로 인해 낮은 기계적 강도를 갖기 때문에, 통상 유리섬유, 세라믹 섬유, 또는 고분자 섬유 등의 기재와 함께 복합화하여 에어로겔 블랑켓 또는 에어로겔 시트 등과 같은 형태로 제품화되고 있다. Since silica airgel has a low mechanical strength due to its porous structure, the silica airgel is usually combined with a substrate such as glass fiber, ceramic fiber, or polymer fiber to produce a product such as an airgel blanket or airgel sheet.
일례로, 실리카 에어로겔을 이용한 실리카 에어로겔 포함 블랑켓의 경우, 실리카졸의 제조 단계, 겔화 단계, 에이징 단계 및 표면개질 단계를 통해 제조된다. 그러나 상기와 같은 종래의 실리카 에어로겔 포함 블랑켓의 제조방법은 공정이 복잡하고, 시간 및 비용면에서 비경제적이다. 또, 실리카 에어로겔에 대한 표면개질 단계가 필수적이고, 이를 위해 다량의 유기용매와 고가의 소수화제가 사용된다. 또한, 표면개질 단계에서 발생되는 부산물의 회수 및 분리 공정이 필수적이기 때문에 실리카 에어로겔 포함 블랑켓의 상업화에 많은 어려움이 있다.For example, in the case of a blanket containing silica aerogel using a silica aerogel, a silica sol is prepared through a manufacturing step, a gelling step, an aging step, and a surface modification step. However, the conventional method for preparing a blanket containing silica airgel as described above is complicated in process and uneconomical in time and cost. In addition, a surface modification step for silica airgel is essential, and a large amount of organic solvent and expensive hydrophobicizing agent are used for this purpose. In addition, since the recovery and separation of by-products generated in the surface modification step is essential, there are many difficulties in commercializing a blanket containing silica airgel.
이에 따라 실리카 에어로겔을 이용한 블랑켓의 제조시 표면개질 단계를 생략하거나, 표면개질제의 사용량을 감소시킬 수 있는 방법의 개발이 요구된다. Accordingly, there is a need to develop a method for omitting the surface modification step or reducing the amount of surface modifier used in the manufacture of a blanket using silica airgel.
본 발명의 목적은, 별도의 표면개질 단계 없이 최소한의 표면개질제 사용으로, 높은 소수화도화 함께 우수한 물성적 특성, 특히 높은 기공율을 갖는 실리카 에어로겔을 형성하여, 낮은 열전도도 및 우수한 기계적 유연성을 갖는 실리카 에어로겔 포함 블랑켓의 제조가 가능한 실리카 에어로겔 포함 블랑켓의 제조방법을 제공하는 것이다. It is an object of the present invention to form silica aerogels with excellent physical properties, in particular high porosity, with high hydrophobicity, using minimal surface modifiers, without the need for a separate surface modification step, thereby providing silica aerogels with low thermal conductivity and excellent mechanical flexibility. It is to provide a method for producing a blanket containing silica airgel capable of producing a blanket containing.
본 발명의 다른 목적은, 상기 제조방법을 이용하여 제조된 실리카 에어로겔 포함 블랑켓을 제공하는 것이다.Another object of the present invention is to provide a blanket containing silica airgel prepared using the above production method.
본 발명의 또 다른 목적은, 상기 제조방법을 이용하여 제조된 실리카 에어로겔 포함 블랑켓을 포함하는 단열재를 제공하는 것이다.Still another object of the present invention is to provide a heat insulating material comprising a blanket containing silica airgel prepared using the above production method.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 실라잔계 표면개질제와 알코올계 화합물을 반응시켜 반응용액을 준비하는 단계; 상기 반응용액에 실리카 전구체, 물 및 극성 유기용매를 첨가하여 실리카졸을 제조한 후, 제조한 실리카졸에 블랑켓용 기재를 침지하고 겔화시켜 실리카겔-기재 복합체를 준비하는 단계; 및 상기 실리카겔-기재 복합체를 건조하는 단계를 포함하는 실리카 에어로겔 포함 블랑켓의 제조방법을 제공한다. In order to solve the above problems, according to an embodiment of the present invention, preparing a reaction solution by reacting a silazane-based surface modifier and an alcohol compound; Preparing a silica sol by adding a silica precursor, water, and a polar organic solvent to the reaction solution, and then immersing and gelling the blanket substrate in the prepared silica sol to prepare a silica gel-based composite; And it provides a method for producing a blanket containing silica airgel comprising the step of drying the silica gel-based composite.
본 발명의 다른 일 실시예에 따르면, 상기 제조방법을 이용하여 제조된 실리카 에어로겔 포함 블랑켓을 제공한다.According to another embodiment of the present invention, there is provided a blanket containing silica airgel prepared using the manufacturing method.
본 발명의 또 다른 일 실시예에 따르면, 상기 제조방법을 이용하여 제조된 실리카 에어로겔 포함 블랑켓을 포함하는 단열재를 제공한다.According to another embodiment of the present invention, there is provided a heat insulating material comprising a blanket containing silica airgel prepared using the manufacturing method.
본 발명에 따른 제조방법에 의해 별도의 용매치환 및 표면개질 단계 없이, 간단하게 실리카 에어로겔 포함 블랑켓을 제조할 수 있다. By the production method according to the invention it is possible to simply prepare a blanket containing silica airgel, without a separate solvent replacement and surface modification step.
또 상기 제조방법은 최소량의 표면개질제의 사용으로 실리카 에어로겔에 대한 소수화 처리가 가능하기 때문에 표면개질제 사용량을 감소시킬 수 있으며, 종래 표면개질 단계에서 발생할 수 있는 유기용매 및 부산물의 발생량을 감소시킬 수 있다.In addition, the manufacturing method can reduce the amount of surface modifiers used because of the hydrophobization treatment of silica aerogels by using a minimum amount of surface modifiers, and can reduce the amount of organic solvents and by-products that can occur in the conventional surface modification step. .
또, 상기 제조방법에 의해 제조된 블랑켓은 높은 소수화도화 함께 우수한 물성적 특성, 특히 높은 기공율을 갖는 실리카 에어로겔을 포함함으로써, 낮은 열전도도 및 우수한 기계적 유연성을 가져 단열재, 보온재 또는 불연재 등의 다양한 산업 분야에 적용가능하다.In addition, the blanket produced by the manufacturing method includes a silica airgel having excellent physical properties, particularly high porosity, with high hydrophobicity, and thus has low thermal conductivity and excellent mechanical flexibility, thereby making various industries such as heat insulating material, heat insulating material, or non-combustible material. Applicable to the field.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 실험예 1에서 실시예 1 및 7에서 제조한 헥사메틸디실라잔과 에탄올의 반응용액에 대한 적외선 분광 분석(infrared specectroscopic analysis; IR) 결과를 나타낸 그래프이다.1 is a graph showing infrared spectroscopic analysis (IR) results of a reaction solution of hexamethyldisilazane and ethanol prepared in Examples 1 and 7 in Experimental Example 1. FIG.
도 2a 및 2b는 각각 실험예 3에 있어서 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓의 소수성을 평가한 결과를 각각 나타낸 사진이다. 2a and 2b are photographs showing the results of evaluating the hydrophobicity of the silica airgel-containing blanket prepared in Example 1 and Comparative Example 1 in Experimental Example 3, respectively.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 실리카 에어로겔 포함 블랑켓의 제조시, 소수성 개질 효과가 우수한 실라잔계 표면개질제를 알코올에 미리 분해시켜 알콕시실란계 화합물을 제조하고, 이를 공동 전구체(co-precusor)로 하여 실리카졸과 함께 겔화시킴으로써 별도의 표면개질 단계 없이, 최소량의 표면개질제의 사용으로 높은 소수화도화 함께 우수한 물성적 특성, 특히 높은 기공율을 갖는 실리카 에어로겔을 형성함으로써, 낮은 열전도도 및 우수한 기계적 유연성을 갖는 에어로겔 포함 블랑켓을 용이하게 제조할 수 있다. In the preparation of the blanket containing silica airgel, an alkoxysilane-based compound is prepared by decomposing a silazane-based surface modifier having excellent hydrophobic modification effect into alcohol in advance, and using the co-precusor as a co-precusor to gel the silica. By using a minimum amount of surface modifier, thereby forming a silica airgel with high hydrophobicity and excellent physical properties, especially high porosity, thereby facilitating a blanket containing an aerogel with low thermal conductivity and excellent mechanical flexibility. Can be manufactured.
구체적으로, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조방법은, 실라잔계 표면개질제와 알코올계 화합물을 반응시켜 반응용액을 준비하는 단계(단계 1); 상기 반응용액에 실리카 전구체, 물 및 극성 유기용매를 첨가하여 실리카졸을 제조하고, 제조한 실리카졸에 블랑켓용 기재를 침지하여 겔화시킴으로써 실리카겔-기재 복합체를 준비하는 단계(단계 2); 및 상기 실리카겔-기재 복합체를 건조하는 단계(단계 3)를 포함한다. 이하 각 단계별로 상세히 설명한다.Specifically, the method for preparing a blanket containing silica airgel according to an embodiment of the present invention comprises the steps of preparing a reaction solution by reacting a silazane-based surface modifier and an alcohol-based compound (step 1); Preparing a silica gel-based composite by adding a silica precursor, water, and a polar organic solvent to the reaction solution to prepare a silica sol, and immersing and gelling the blanket substrate in the prepared silica sol (step 2); And drying the silica gel-based composite (step 3). Hereinafter, each step will be described in detail.
단계 1Step 1
본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조방법에 있어서, 단계 1은 실라잔계 표면개질제와 알코올계 화합물을 반응시켜 반응용액을 준비하는 단계이다.In the method for preparing a blanket containing silica airgel according to an embodiment of the present invention, step 1 is a step of preparing a reaction solution by reacting a silazane-based surface modifier with an alcohol compound.
구체적으로, 상기 반응용액의 제조에 사용가능한 실라잔계 표면개질제는, 1분자 내에 알킬기를 2개 이상 포함하는 실라잔계 화합물일 수 있으며, 보다 구체적으로는 하기 화학식 1의 화합물일 수 있다:Specifically, the silazane-based surface modifier that can be used to prepare the reaction solution may be a silazane-based compound including two or more alkyl groups in one molecule, and more specifically, may be a compound of Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2016003152-appb-I000001
Figure PCTKR2016003152-appb-I000001
상기 화학식 1에서, R11 내지 R13, 및 R21 내지 R23는 각각 독립적으로 수소원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, 단 R11 내지 R13, 및 R21 내지 R23가 동시에 수소원자는 아니며, 보다 구체적으로는 상기 R11 내지 R13, 및 R21 내지 R23 중 적어도 2개는 알킬기이다.In Formula 1, R 11 to R 13 , and R 21 to R 23 may each independently be a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are each hydrogen at the same time. It is not an atom, More specifically, at least 2 of said R <11> -R <13> and R <21> -R <23> is an alkyl group.
상기 실라잔계 화합물의 구체적인 예로는 1,2-디에틸디실라잔(1,2-diethyldisilazane), 1,1,2,2-테트라메틸디실라잔(1,1,2,2-tetramethyldisilazane), 1,1,3,3-테트라메틸디실라잔(1,1,3,3-tetramethyl disilazane), 1,1,1,2,2,2-헥사메틸디실라잔(1,1,1,2,2,2-hexamethyldisilazane), 1,1,2,2-테트라에틸디실라잔(1,1,2,2-tetraethyldisilazane) 또는 1,2-디이소프로필디실라잔(1,2-diisopropyldisilazane) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.Specific examples of the silazane-based compound include 1,2-diethyldisilazane (1,2-diethyldisilazane), 1,1,2,2-tetramethyldisilazane (1,1,2,2-tetramethyldisilazane), 1,1,3,3-tetramethyldisilazane (1,1,3,3-tetramethyl disilazane), 1,1,1,2,2,2-hexamethyldisilazane (1,1,1, 2,2,2-hexamethyldisilazane), 1,1,2,2-tetraethyldisilazane (1,1,2,2-tetraethyldisilazane) or 1,2-diisopropyldisilazane ), And one kind alone or a mixture of two or more kinds thereof may be used.
이중에서도 상기 실라잔계 표면개질제는 실리카 에어로겔의 소수성을 더욱 증가시킬 수 있도록, 상기 화학식 1의 실라잔계 화합물에 있어서 두개의 수소원자와 함께 탄소수 1 내지 4의 알킬기를 4개 포함하는 테트라알킬디실라잔, 또는 탄소수 1 내지 4의 알킬기를 6개 포함하는 헥사알킬디실라잔일 수 있으며, 보다 구체적으로는 헥사메틸디실라잔(HMDS) 또는 1,1,3,3-테트라메틸디실라잔일 수 있다. Among these, the silazane-based surface modifier may further increase the hydrophobicity of the silica airgel. In the silazane-based compound of Formula 1, tetraalkyldisilazane including four alkyl groups having 1 to 4 carbon atoms together with two hydrogen atoms may be used. Or hexaalkyldisilazane containing six alkyl groups having 1 to 4 carbon atoms, and more specifically, hexamethyldisilazane (HMDS) or 1,1,3,3-tetramethyldisilazane.
한편, 상기 실라잔계 표면개질제와 반응가능한 알코올계 화합물로서는 탄소수 1 내지 8의 알코올이 사용될 수 있다. 보다 구체적으로 실라잔계 표면개질제에 대한 분해 반응 효율 및 이후 실리카 표면에 대한 개질 반응의 효율 증가 효과를 고려할 때, 상기 알코올계 화합물은 메탄올, 에탄올, 프로판올, 또는 n-부탄올과 같은 탄소수 1 내지 4의 직쇄상 알코올일 수 있으며, 1종 단독으로 또는 2종 이상의 혼합물이 사용될 수 있다. 보다 더 구체적으로 상기 알코올계 화합물은 에탄올일 수 있다. On the other hand, as the alcohol compound that can react with the silazane-based surface modifier may be used an alcohol having 1 to 8 carbon atoms. More specifically, in consideration of the effect of increasing the decomposition reaction efficiency of the silazane-based surface modifier and the subsequent reforming reaction on the silica surface, the alcohol-based compound has 1 to 4 carbon atoms such as methanol, ethanol, propanol, or n-butanol. It may be a straight alcohol, and may be used singly or in mixture of two or more. More specifically, the alcohol-based compound may be ethanol.
상기한 실라잔계 표면개질제와 알코올계 화합물은 실라잔계 표면개질제와 알코올계 화합물의 반응을 고려하여 화학양론적인 양으로 첨가되는 것이 바람직할 수 있다. The silazane-based surface modifier and the alcohol-based compound may be added in a stoichiometric amount in consideration of the reaction of the silazane-based surface modifier and the alcohol-based compound.
또, 상기 반응용액의 제조를 위해 실라잔계 표면개질제와 알코올계 화합물의 혼합시, 반응 촉매로서 산 촉매가 더 사용될 수도 있다. 상기 산촉매는 상기 표면개질제의 분해를 촉진시킬 뿐만 아니라, 이후 실리카졸의 겔화를 촉진시킬 수 있다. 상기 산 촉매는 구체적으로 질산, 염산, 아세트산, 황산, 불산 등과 같은 1종 이상의 무기산을 포함할 수 있으며, 실라잔계 표면개질제와 알코올계 화합물의 반응을 저해하지 않으며, 실리카졸의 겔화를 촉진시킬 수 있도록 하는 함량으로 사용될 수 있다. In addition, an acid catalyst may be further used as the reaction catalyst when the silazane-based surface modifier and the alcohol-based compound are mixed to prepare the reaction solution. The acid catalyst may not only promote decomposition of the surface modifier, but also promote gelation of the silica sol. The acid catalyst may specifically include one or more inorganic acids such as nitric acid, hydrochloric acid, acetic acid, sulfuric acid, hydrofluoric acid, and the like, may not inhibit the reaction of the silazane-based surface modifier with the alcohol-based compound, and may promote gelation of the silica sol. It may be used in an amount to make it.
상기와 같은 방법에 따라 제조되는 반응용액에는 상기 실라잔계 표면개질제와 알코올계 화합물의 분해반응으로 생성된 알콕시실란계 화합물이 포함되어 있다. 상기 알콕시실란계 화합물은 이후 겔화시 공동 전구체(co-precursor)로서 작용하여, 실리카를 소수화시킨다. 이에 따라 실리카 에어로겔 포함 블랑켓의 제조시 실리카 에어로겔에 대한 소수화 표면개질 단계를 생략할 수 있다. 그 결과로서 용매 및 표면개질제의 사용량을 감소시킬 수 있고, 또 공정 시간 및 제조비용을 줄일 수 있다. The reaction solution prepared according to the above method includes an alkoxysilane-based compound produced by the decomposition reaction of the silazane-based surface modifier and the alcohol-based compound. The alkoxysilane-based compound then acts as a co-precursor upon gelation to hydrophobize the silica. Accordingly, the hydrophobization surface modification step for the silica airgel may be omitted in the manufacture of the blanket including the silica airgel. As a result, the amount of solvent and surface modifier used can be reduced, and process time and manufacturing cost can be reduced.
구체적으로, 상기 반응용액내 생성되는 상기 알콕시실란계 화합물은 트리알킬알콕시실란계 화합물(이때 상기 알킬은 실라잔계 표면개질제로부터 유래된 작용기로서, 구체적으로 탄소수 1 내지 8의 알킬기이고, 상기 알콕시는 극성 유기용매인 알코올계 화합물로부터 유래된 작용기로서, 구체적으로 탄소수 1 내지 8의 알콕시기일 수 있다.Specifically, the alkoxysilane-based compound produced in the reaction solution is a trialkylalkoxysilane-based compound (wherein the alkyl is a functional group derived from a silazane-based surface modifier, specifically an alkyl group having 1 to 8 carbon atoms, and the alkoxy is polar As a functional group derived from the alcohol type compound which is an organic solvent, it may specifically be a C1-C8 alkoxy group.
일례로, 상기 실라잔계 표면개질제가 트리메틸디실라잔인 경우, 하기 반응식 1에서와 같이 알코올에 의해 트리메틸디실라잔이 분해되면 트리메틸알콕시실란과 같은 알콕시실란계 화합물이 형성될 수 있다.For example, when the silazane-based surface modifier is trimethyldisilazane, an alkoxysilane-based compound such as trimethylalkoxysilane may be formed when trimethyldisilazane is decomposed by alcohol as in Scheme 1 below.
[반응식 1]Scheme 1
(CH3)3Si-NH-Si(CH3)3 + 2ROH -> 2((CH3)3Si-OR) + NH3 (CH 3 ) 3 Si-NH-Si (CH 3 ) 3 + 2ROH-> 2 ((CH 3 ) 3 Si-OR) + NH 3
상기 반응식 1에서 R은 알코올계 화합물 유래 작용기로서, 구체적으로는 알킬기일 수 있으며, 보다 구체적으로는 탄소수 1 내지 8의 알킬기, 보다 더 구체적으로는은 탄소수 1 내지 4의 직쇄상 알킬기일 수 있다.In Scheme 1, R may be an alcohol-based functional group, specifically, an alkyl group, more specifically, an alkyl group having 1 to 8 carbon atoms, and more particularly, a linear alkyl group having 1 to 4 carbon atoms.
통상 트리메틸디실라잔을 비롯한 실라잔계 표면개질제는 분자내 포함된 소수성기, 즉 알킬기의 함량이 높아 실리카에 대한 표면개질시 소수화도를 높일 수 있기 때문에, 실리카 에어로겔에 대한 표면개질제 또는 소수화제로서 사용되고 있다. 그러나, 실라잔계 화합물은 1분자당 실리카 표면의 친수성기(-OH) 2개와 반응할 수 있기 때문에 실리카의 표면개질을 위해서는 많은 양이 필요한 단점이 있었다. 이에 대해 상기 반응식 1에서와 같이 실라잔계 화합물을 알코올에 의해 분해반응시킬 경우, 1분자의 실라잔계 화합물로부터 2분자의 알콕시실란계 화합물이 생성될 수 있다. 또 생성된 알콕시실란계 화합물은 1분자내 최대 3개의 알킬기를 포함함으로써, 실리카 에어로겔의 표면개질시 소수화도를 더욱 증가시킬 수 있다. 또, 알콕시실란계 화합물은 공동 전구체로서 작용하여 겔화에 참여할 수 있으며, 또 실리카 에어로겔의 소수화를 위해 사용되는 표면개질제의 양을 최소화할 수 있다.Silazane-based surface modifiers, including trimethyldisilazane, are generally used as surface modifiers or hydrophobicizing agents for silica aerogels because of the high hydrophobicity, i.e., alkyl group content, in the molecule, which can increase the degree of hydrophobicity during surface modification to silica. . However, since the silazane-based compound can react with two hydrophilic groups (-OH) on the silica surface per molecule, a large amount is required for the surface modification of the silica. On the other hand, when the silazane-based compound is decomposed by alcohol as in Scheme 1, two-molecule alkoxysilane-based compound may be generated from one-molecular silazane-based compound. In addition, the resulting alkoxysilane-based compound may contain up to three alkyl groups in one molecule, thereby further increasing the degree of hydrophobicity during surface modification of the silica aerogel. In addition, the alkoxysilane-based compound may act as a co-precursor to participate in the gelation and to minimize the amount of surface modifier used for hydrophobization of the silica airgel.
또한, 상기 실라잔계 표면개질제의 분해반응의 결과로 반응용액 중에 암모니아가 생성된다. 상기 암모니아는 반응용액 중에 용해되어 용액의 pH를 증가시킴으로써, 이후 실리카졸의 겔화를 위해 사용되는 염기의 양을 감소시킬 수 있다. 또, 상기 표면개질제의 분해반응 결과로 생성되는 암모니아는 이후 첨가되는 염기와 함께 다단계 투입 반응 효과를 나타내어, 겔화 속도 및 효율의 제어가 용이하도록 한다. In addition, ammonia is generated in the reaction solution as a result of the decomposition reaction of the silazane-based surface modifier. The ammonia can be dissolved in the reaction solution to increase the pH of the solution, thereby reducing the amount of base used for gelling the silica sol. In addition, the ammonia produced as a result of the decomposition reaction of the surface modifier exhibits a multi-step addition reaction with the base added afterwards, thereby facilitating control of the gelation rate and efficiency.
단계 2Step 2
본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조한 반응용액을 이용하여 실리카졸을 제조하고, 여기에 블랑켓용 기재를 침지하여 겔화시킴으로써 실리카겔-기재 복합체를 제조하는 단계이다.In the method for preparing a blanket containing silica airgel according to an embodiment of the present invention, step 2 is to prepare a silica sol using the reaction solution prepared in step 1, and to immerse and gelate the substrate for the blanket on the silica gel -Preparing a substrate composite.
구체적으로 상기 실리카졸은 상기 단계 1에서 제조한 반응용액에 실리카 전구체, 물 및 극성 유기용매, 그리고 선택적으로 염기를 혼합함으로써 제조될 수 있다.Specifically, the silica sol may be prepared by mixing a silica precursor, water and a polar organic solvent, and optionally a base, to the reaction solution prepared in step 1.
상기 실리카졸의 제조에 사용가능한 실리카 전구체는, 통상 실리카 에어로겔의 제조에 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로, 상기 실리카 전구체는 실리콘 함유 알콕사이드계 화합물일 수 있으며, 보다 구체적으로는 테트라메틸 오르소실리케이트(tetramethyl orthosilicate; TMOS), 테트라에틸 오르소실리케이트(tetraethyl orthosilicate; TEOS), 메틸트리에틸 오르소실리케이트(methyl triethyl orthosilicate), 디메틸디에틸 오르소실리케이트(dimethyl diethyl orthosilicate), 테트라프로필 오르소실리케이트(tetrapropyl orthosilicate), 테트라이소프로필 오르소실리케이트(tetraisopropyl orthosilicate), 테트라부틸 오르소실리케이트 (tetrabutyl orthosilicate), 테트라 세컨드리부틸 오르소실리케이트(tetra secondary butyl orthosilicate), 테트라 터셔리부틸 오르소실리케이트 (tetra tertiary butyl orthosilicate), 테트라헥실 오르소실리케이트(tetrahexyl orthosilicate), 테트라시클로헥실 오르소실리케이트(tetracyclohexyl orthosilicate), 테트라도데실 오르소실리케이트(tetradodecyl orthosilicate) 등과 같은 테트라알킬 실리케이트일 수 있다. 이때 상기 알킬기는 탄소수 1 내지 20의 알킬기 또는 탄소수 3 내지 20의 시클로알킬기일 수 있다. 이중에서도 상기 실리카 전구체는 테트라메틸 오르소실리케이트(TMOS), 테트라에틸 오르소실리케이트(TEOS) 또는 이들의 혼합물일 수 있다.The silica precursor usable in the production of the silica sol can be used without particular limitation as long as it is usually used in the production of the silica aerogel. Specifically, the silica precursor may be a silicon-containing alkoxide compound, more specifically tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), methyltriethyl orthosilicate (methyl triethyl orthosilicate), dimethyl diethyl orthosilicate, tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetrabutyl orthosilicate Secondary secondary butyl orthosilicate, tetra tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate, tetratetrabutylhexyl orthosilicate Alkyls may be a tetraalkyl orthosilicate such as room ortho silicate (tetradodecyl orthosilicate). In this case, the alkyl group may be an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. Among these, the silica precursor may be tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS) or mixtures thereof.
또, 상기 실리카 전구체는 이후 첨가되는 물 및 극성 유기용매에 의해 가수분해되며, 그 결과로 실리카(SiO2)를 생성한다. In addition, the silica precursor is hydrolyzed by the water and the polar organic solvent to be added later, and as a result generates silica (SiO 2 ).
이에 따라 상기 실리카 전구체로서, 상기한 화합물들의 전가수분해물(pre-hydrolysis)이 사용될 수도 있다. 이 같은 전가수분해물의 경우, 직접 제조하여 사용할 수도 있고, 상업적으로 입수하여 사용할 수도 있다. 직접 제조할 경우, 일례로 TEOS를 물과 알코올의 혼합물에 첨가한 후, pH 2.5 내지 2.9의 범위가 되도록 산촉매를 첨가하여 가수분해시킨 전가수분해물이 사용될 수 있다.Accordingly, as the silica precursor, pre-hydrolysis of the above compounds may be used. In the case of such a hydrolyzate, it may be prepared and used directly, or may be obtained commercially. In the case of direct preparation, for example, after the addition of TEOS to a mixture of water and alcohol, a hydrolyzate which is hydrolyzed by adding an acid catalyst to a pH of 2.5 to 2.9 can be used.
보다 구체적으로, 상기 실리카 전구체는 수화도가 50% 이상, 보다 구체적으로는 50% 내지 90%, 보다 구체적으로는 70% 내지 80%인 전가수분해물일 수 있다. 통상 실리카 졸의 제조시 실리카 전구체의 가수분해를 위하여 산을 첨가하게 된다. 그러나,상기한 범위의 수화도를 갖는 전가수분해물을 사용할 경우, 산의 첨가가 불필요하며, 실리카 전구체의 가수분해 공정을 단축 또는 생략할 수 있고, 또 이후 표면개질 반응을 촉진시킬 수 있다. More specifically, the silica precursor may be a hydrolyzate having a degree of hydration of 50% or more, more specifically 50% to 90%, more specifically 70% to 80%. Usually in the preparation of the silica sol is added an acid for hydrolysis of the silica precursor. However, in the case of using the total hydrolyzate having the above-described degree of hydration, the addition of acid is unnecessary, and the hydrolysis process of the silica precursor can be shortened or omitted, and then the surface modification reaction can be promoted.
본 발명에 있어서, 가수분해도는 하기 반응식 2에 따른 가수분해 반응시 실리카 전구체 물질 1당량과 반응한 물의 당량으로 부터 계산할 수 있다.In the present invention, the degree of hydrolysis can be calculated from the equivalent of water reacted with one equivalent of the silica precursor material during the hydrolysis reaction according to Scheme 2 below.
[반응식 2]Scheme 2
Si(OR)4 + 2X H2O -> (Si(OR)4)(1-x)(O)2x + 4X(ROH) Si (OR) 4 + 2X H 2 O-> (Si (OR) 4 ) (1-x) (O) 2x + 4X (ROH)
상기 반응식 1에서 X=가수분해도(%)/100In Scheme 1, X = hydrolysis degree (%) / 100
일례로서, 테트라에틸 오르소실리케이트(TEOS)의 경우 1당량의 TEOS을 물 1.54 당량과 반응시킬 경우, 하기 반응식 3에 따른 가수분해 반응에 따라 TEOS의 가수분해도(X)는 77%가 된다. As an example, in the case of tetraethyl orthosilicate (TEOS), when one equivalent of TEOS is reacted with 1.54 equivalents of water, the degree of hydrolysis (X) of TEOS is 77% according to the hydrolysis reaction according to Scheme 3 below.
[반응식 3]Scheme 3
Si(OC2H5)4 + 1.54 H2O → [(Si(OC2H5)4)0.23(O)1.54] + 3.08C2H5OHSi (OC 2 H 5 ) 4 + 1.54 H 2 O → [(Si (OC 2 H 5 ) 4 ) 0.23 (O) 1.54 ] + 3.08C 2 H 5 OH
상기 실리카 전구체는 실리카졸 내 포함되는 실리카(SiO2)의 함량이 0.1중량% 내지 30중량%가 되도록 하는 양으로 사용될 수 있으며, 이때 실리카졸은 앞서 정의한 바와 같다. 실리카의 함량이 0.1중량% 미만이면 최종 제조되는 블랑켓에서의 실리카 에어로겔의 함량이 낮고, 또 30중량%를 초과할 경우 과도한 실리카 에어로겔의 형성으로 블랑켓의 기계적 물성, 특히 유연성이 저하될 우려가 있다. The silica precursor may be used in an amount such that the content of silica (SiO 2 ) included in the silica sol is 0.1% by weight to 30% by weight, wherein the silica sol is as defined above. If the content of silica is less than 0.1% by weight, the content of silica airgel in the finished blanket is low. If the content of silica is more than 30% by weight, excessive silica airgel is formed, which may lower the mechanical properties of the blanket, particularly flexibility. have.
또, 상기 실리카 에어로겔 형성용 조성물의 제조에 사용되는 물은, 실리카졸 내 포함되는 실리카(SiO2) 1몰에 대하여 0.1몰 내지 16몰의 비율로 사용될 수 있다. 물의 사용량이 0.1몰 미만이면 표면개질 반응율이 낮아질 우려가 있고, 16몰을 초과하면 건조시, 특히 초임계 건조시 수축되어 열전도도가 낮아질 우려가 있다. 보다 구체적으로, 상기 물은 실리카 1몰에 대하여 4몰 내지 10몰로 사용될 수 있다. In addition, the water used to prepare the composition for forming the silica airgel may be used in a ratio of 0.1 mol to 16 mol with respect to 1 mol of silica (SiO 2 ) contained in the silica sol. When the amount of water used is less than 0.1 mole, the surface modification reaction rate may be lowered. When the amount of water is used more than 16 mole, there is a fear that the shrinkage during drying, in particular during supercritical drying, may lower the thermal conductivity. More specifically, the water may be used in 4 to 10 moles per 1 mole of silica.
또, 상기 실리카 에어로겔 형성용 조성물의 제조에 사용되는 극성 유기용매는 알코올계 용매일 수 있다. 상기 알코올계 용매는 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 물 및 에어로겔과의 혼화성을 고려할 때 상기 극성 유기용매는 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 탄소수 1 내지 6의 1가 알코올계 용매일 수 있다.In addition, the polar organic solvent used to prepare the silica airgel forming composition may be an alcohol solvent. The alcohol solvent is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol and the like; Or polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, sorbitol, and the like, and any one or a mixture of two or more thereof may be used. Among these, the polar organic solvent may be a monohydric alcohol solvent having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, etc. in consideration of miscibility with water and airgel.
상기와 같은 극성 유기용매는 표면개질 반응을 촉진시키는 동시에 최종 제조되는 실리카 에어로겔에서의 소수화도를 고려하여 적절한 함량으로 사용될 수 있다.The polar organic solvent as described above may be used in an appropriate amount in consideration of the degree of hydrophobicity in the final silica silica gel to promote the surface modification reaction.
또, 단계 1에서 실라잔계 표면개질제가 알코올에 의해 분해되어 생성되는 알콕시실란일 경우, 축합반응에 참여하지 않는 메틸기를 포함하고 있기 때문에 겔 형성을 위한 축합반응이 쉽게 일어나지 않는다. 이에 따라 선택적으로 염기를 더 첨가함으로써, 축합반응을 촉진시켜 안정적인 겔을 형성할 수 있다.In addition, when the silazane-based surface modifier in step 1 is an alkoxysilane produced by decomposition by alcohol, the condensation reaction for gel formation does not easily occur because it contains a methyl group that does not participate in the condensation reaction. Accordingly, by selectively adding more base, the condensation reaction can be promoted to form a stable gel.
상기 염기로는 수산화나트륨, 수산화칼륨 등의 무기염기; 또는 수산화암모늄과 같은 유기염기를 들 수 있으나, 무기 염기의 경우 화합물내 포함된 금속이온이 Si-OH 화합물에 배위(coordination)될 우려가 있으므로, 유기염기가 바람직할 수 있다. 구체적으로 상기 유기 염기는 수산화암모늄(NH4OH), 테트라메틸암모늄 히드록시드(TMAH), 테트라에틸암모늄 히드록시드(TEAH), 테트라프로필암모늄 히드록시드(TPAH), 테트라부틸암모늄 히드록시드(TBAH), 메틸아민, 에틸아민, 이소프로필아민, 모노이소프로필아민, 디에틸아민, 디이소프로필아민, 디부틸아민, 트리메틸아민, 트리에틸아민, 트리이소프로필아민, 트리부틸아민, 콜린, 모노에탄올아민, 디에탄올 아민, 2-아미노에탄올, 2-(에틸 아미노)에탄올, 2-(메틸 아미노)에탄올, N-메틸 디에탄올아민, 디메틸아미노에탄올, 디에틸아미노에탄올, 니트릴로트리에탄올, 2-(2-아미노에톡시)에탄올, 1-아미노-2-프로판올, 트리에탄올아민, 모노프로판올아민, 또는 디부탄올아민 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 염기는 수산화암모늄(NH4OH)일 수 있다. Examples of the base include inorganic bases such as sodium hydroxide and potassium hydroxide; Or an organic base such as ammonium hydroxide, but, in the case of the inorganic base, since the metal ion contained in the compound may be coordinated (Siord OH) compound (Siord OH compound), the organic base may be preferable. Specifically, the organic base is ammonium hydroxide (NH 4 OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), methylamine, ethylamine, isopropylamine, monoisopropylamine, diethylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, choline, Monoethanolamine, diethanol amine, 2-aminoethanol, 2- (ethyl amino) ethanol, 2- (methyl amino) ethanol, N-methyl diethanolamine, dimethylaminoethanol, diethylaminoethanol, nitrilotriethanol, 2 -(2-aminoethoxy) ethanol, 1-amino-2-propanol, triethanolamine, monopropanolamine, or dibutanolamine, and the like, and any one or a mixture of two or more thereof may be used. More specifically, the base may be ammonium hydroxide (NH 4 OH).
상기 염기는 실리카졸의 pH가 4 내지 8이 되도록 하는 양으로 포함될 수 있다. 상기 실리카졸의 pH가 상기 범위를 벗어날 경우 겔화가 용이하지 않거나, 겔화 속도가 지나치게 느려져 공정성이 저하될 우려가 있다. 또, 상기 염기는 고체상으로 투입시 석출될 우려가 있으므로, 상기한 극성 유기 용매에 의해 희석된 용액상으로 첨가되는 것이 바람직할 수 있다.The base may be included in an amount such that the pH of the silica sol is 4 to 8. If the pH of the silica sol is out of the above range gelation is not easy, or the gelation rate is too slow, there is a fear that the processability is lowered. In addition, since the base may be precipitated when it is added to the solid phase, it may be preferable to be added in a solution phase diluted with the polar organic solvent.
이어서 상기와 같은 구성성분들의 혼합의 결과로 생성된 실리카졸에 블랑켓용 기재를 침지시킨다. Subsequently, the blanket substrate is immersed in the silica sol produced as a result of the mixing of the above components.
상기 블랑켓용 기재로는 필름, 시트, 네트, 섬유, 다공질체, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있다. 또 용도에 따라 그 표면에 표면조도가 형성되거나 패턴화된 것일 수도 있다. 보다 구체적으로는 상기 블랑켓용 기재는 블랑켓용 기재 내로 에어로겔의 삽입이 용이한 공간 또는 공극을 포함함으로써 단열 성능을 보다 향상시킬 수 있는 섬유일 수 있다. 또, 상기 블랑켓용 기재는 낮은 열전도도를 갖는 것이 바람직할 수 있다.The blanket base material may be a film, a sheet, a net, a fiber, a porous body, a foam, a nonwoven fabric, or a laminate of two or more thereof. In addition, depending on the application, the surface roughness may be formed or patterned. More specifically, the blanket base material may be a fiber that can further improve the thermal insulation performance by including a space or a space for easy insertion of an airgel into the blanket base material. In addition, the blanket substrate may have a low thermal conductivity.
구체적으로 상기 블랑켓용 기재는 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 또는 이들의 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리섬유 또는 세라믹울 등일 수 있으며, 이들에 한정되는 것은 아니다. 보다 구체적으로 상기 기재는 유리섬유 또는 폴리에틸렌을 포함하는 것일 수 있다. Specifically, the blanket base material may be polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (for example, polyethylene, polypropylene, or copolymers thereof). Etc.), cellulose, carbon, cotton, wool, hemp, nonwoven fabric, glass fiber or ceramic wool, and the like, but are not limited thereto. More specifically, the substrate may include glass fiber or polyethylene.
또, 상기 블랑켓용 기재는 소수성 처리된 것일 수 있다. 상기 블랑켓용 기재에 대한 소수성 처리는 통상의 방법에 따라 실시될 수 있으며, 구체적으로는 할로겐으로 치환 또는 비치환된, 직쇄형 지방족 탄화수소기(탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알킬렌기 등), 방향족탄화수소기(탄소수 6 내지 20의 아릴기), 유기규소기 또는 이들의 조합기 등일 수 있으며, 보다 구체적으로는 할로겐화알킬기, 실릴기, 아미노실릴기,알킬기, 비닐기, 알릴기, 아릴기, 아릴알킬기, 알킬아릴기 등의 소수성 작용기를 포함하는 화합물을 이용하여 블랑켓용 기재를 표면처리함으로서 수행될 수 있다.In addition, the blanket substrate may be hydrophobic treatment. Hydrophobic treatment of the substrate for the blanket may be carried out according to a conventional method, specifically, a linear aliphatic hydrocarbon group (alkyl group having 1 to 20 carbon atoms, alkylene group having 2 to 20 carbon atoms) unsubstituted or substituted with halogen. Etc.), an aromatic hydrocarbon group (aryl group having 6 to 20 carbon atoms), an organosilicon group, or a combination thereof, and more specifically, a halogenated alkyl group, a silyl group, an aminosilyl group, an alkyl group, a vinyl group, an allyl group, an aryl It can be carried out by surface treating the substrate for the blanket using a compound containing a hydrophobic functional group such as a group, an arylalkyl group, an alkylaryl group.
보다 구체적으로 상기 소수성 처리를 위한 화합물은 상기한 소수성 작용기를 포함하는 실란계 또는 실록산계 화합물일 수 있다. 보다 구체적으로는 HMDS(hexamethyldisilazane), TMSCL(trimethyl chlorosilane), 실리콘 오일(silicone oil), 아미노 실란(amino silane), 알킬 실란(alkyl silane), PDMS(polydimethyl siloxane), 또는 DDS(dimethyl dichlorosilane) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.More specifically, the compound for hydrophobic treatment may be a silane or siloxane compound including the hydrophobic functional group described above. More specifically, HMDS (hexamethyldisilazane), TMSCL (trimethyl chlorosilane), silicone oil (silicone oil), amino silane (amino silane), alkyl silane (alkyl silane), polydimethyl siloxane (PDMS), or dimethyl dichlorosilane (DDS) And any one or a mixture of two or more thereof may be used.
또, 상기 표면처리 방법은 특별히 한정되지 않으나, 화학 증착법(CVD, Chemical vapor deposition) 또는 물리 증착법(PVD, Physical vapor deposition)에 의해 카본 코팅 층의 표면에 소수성 물질을 코팅할 수 있으며, 이러한 화학 증착법으로는 유동상 화학 증착법, 회전 입체상 화학 증착법, 진동 화학 증착법 등이 사용될 수 있고, 물리 증착법으로는 스퍼터링, 진공 연차법, 플라즈마 코팅법 등이 사용될 수 있다. 상기와 같은 소수성 처리의 결과, 블랑켓용 기재의 표면에는 소수성 작용기가 존재하며, 그 결과로서 소수성 에어로겔과의 접착력을 더욱 향상시킬 수 있다.In addition, the surface treatment method is not particularly limited, the hydrophobic material may be coated on the surface of the carbon coating layer by chemical vapor deposition (CVD, Chemical vapor deposition) or physical vapor deposition (PVD, Physical vapor deposition), such chemical vapor deposition As the fluidized-bed chemical vapor deposition method, rotary three-dimensional chemical vapor deposition method, vibration chemical vapor deposition method and the like can be used, as the physical vapor deposition method, sputtering, vacuum annual method, plasma coating method and the like can be used. As a result of the hydrophobic treatment as described above, hydrophobic functional groups exist on the surface of the blanket substrate, and as a result, the adhesion with the hydrophobic airgel can be further improved.
또, 상기 블랑켓용 기재는 저밀도인 것이 바람직하며, 구체적으로 상기 기재가 섬유일 경우, 섬유를 구성하는 파이버가 0.1㎛ 내지 30㎛의 평균직경을 갖는 것일 수 있다.In addition, the blanket substrate is preferably low density, specifically, when the substrate is a fiber, the fibers constituting the fiber may have an average diameter of 0.1 ㎛ to 30 ㎛.
또, 상기 블랑켓용 기재는 부분 또는 전체로 단열 성능 향상을 위한 열반사층 또는 표면보호를 통해 수명특성을 향상시킬 수 있는 표면보호층 등의 기능성 층이 더 형성될 수 있다. In addition, the blanket substrate may be further formed of a functional layer, such as a surface protective layer that can improve the life characteristics through a heat reflection layer or surface protection for improving the thermal insulation performance in part or as a whole.
일례로, 상기 열반사층의 경우, 적외선 복사를 반사하거나 차단할 수 있는 화합물을 포함하며, 구체적으로는 카본 블랙, 탄소 파이버, 이산화티타늄, 금속(알루미늄, 스테인리스 강, 동/아연 합금, 동/크롬 합금 등), 비금속, 파이버, 안료 등이 포함될 수 있다. 또, 상기 표면보호층의 경우 폴리테트라플루오로에틸렌과 같은 고내열성 투습 방수 물질을 포함할 수 있다.For example, the heat reflection layer includes a compound capable of reflecting or blocking infrared radiation, and specifically, carbon black, carbon fiber, titanium dioxide, metal (aluminum, stainless steel, copper / zinc alloy, copper / chromium alloy) Etc.), nonmetals, fibers, pigments, and the like. In addition, the surface protective layer may include a high heat-resistant moisture-permeable waterproof material such as polytetrafluoroethylene.
상기 기능성층의 적층은 단열 블랑켓의 적어도 일면에 상기 기능성층을 직접 형성하거나, 또는 상기 기능성층을 위치시킨 후 라미네이팅함으로써 수행될 수 있다. 상기 라미네이팅 공정은 열처리 또는 열간압연 처리 등 통상의 방법에 따라 수행될 수 있다.The stacking of the functional layer may be performed by directly forming the functional layer on at least one surface of the insulating blanket, or laminating the functional layer after placing the functional layer. The laminating process may be performed according to conventional methods such as heat treatment or hot rolling treatment.
상기 블랑켓용 기재의 침지 후, 실리카졸의 겔화가 일어나 실리카겔-기재 복합체가 제조되게 된다.After immersion of the blanket substrate, gelling of the silica sol occurs to prepare a silica gel-based composite.
종래 실리카 에어로겔의 소수화시 표면개질제의 분해 반응과 함께 겔화가 일어나기 때문에 1시간 내지 2시간 정도로 겔화 시간이 길며, 이로 인해 에어로겔의 구조가 약하여 건조시 수축이 발생하고, 그 결과 열전도도가 저하되는 문제가 있었다. 이에 대해 본 발명의 일 실시예에 따른 제조방법은 표면개질제를 미리 분해시켜 사용함으로써, 겔화 시간을 10분 이내로 단축시켜도 에어로겔 전구체와, HMDS의 분해반응으로 생성된 트리메틸알콕시실란과의 축합반응이 충분히 일어나 겔 구조가 단단해지기 때문에 열전도도 저하의 우려가 없다.When gelation occurs with hydrolysis of surface modifiers during hydrophobization of conventional silica aerogels, the gelation time is long for about 1 to 2 hours, resulting in a weak aerogel structure resulting in shrinkage during drying, resulting in a lower thermal conductivity. There was. On the other hand, in the preparation method according to an embodiment of the present invention, the surface modifier is decomposed and used in advance, so that the condensation reaction between the aerogel precursor and the trimethylalkoxysilane produced by the decomposition reaction of HMDS is sufficient even if the gelation time is shortened within 10 minutes. There is no fear of lowering the thermal conductivity since the gel structure becomes hard.
상기 실리카겔-기재 복합체의 제조 후, 후속의 건조 공정에 앞서, 상기 제조된 실리카겔-기재 복합체에 대한 안정화 공정, 프리에이징(pre-aging) 공정 및 에이징(aging) 공정 중 적어도 하나의 공정이 선택적으로 더 수행될 수도 있다. 이에 따라 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조방법은 상기 실리카겔-기재 복합체의 제조 후 수행되는 안정화 공정, 프리에이징 공정 및 에이징 공정 중 어느 하나 또는 둘 공정을 모두를 더 포함할 수 있다.After the silica gel-based composite is prepared, at least one of a stabilization process, a pre-aging process, and an aging process may be optionally performed on the silica gel-based composite prepared before the subsequent drying process. May be further performed. Accordingly, the method for preparing a blanket containing silica airgel according to an embodiment of the present invention may further include any one or both of a stabilization process, a preaging process, and an aging process performed after the silica gel-based composite is manufactured. Can be.
상기 안정화 공정은 겔화 완료 후, 제조된 실리카겔-기재 복합체를 18℃ 내지 25℃에서 10분 내지 30분간 유지함으로써 수행될 수 있다. The stabilization process may be performed by maintaining the prepared silica gel-based composite at 18 ° C to 25 ° C for 10 to 30 minutes after gelation is completed.
또, 상기 프리에이징 공정은 겔화 완료 후, 또는 상기 안정화 공정 후의 실리카겔-기재 복합체를 50℃ 내지 70℃의 온도에서 30분 내지 50분간 유지함으로써 수행될 수 있다.In addition, the preaging process may be carried out by maintaining the silica gel-based composite after the gelation or after the stabilization process at a temperature of 50 ℃ to 70 ℃ 30 minutes to 50 minutes.
또, 상기 에이징 공정은, 상기 실리카겔-기재 복합체를 적당한 온도에서 방치하여 화학적 변화가 완전히 이루어지도록 하기 위한 공정으로서, 실리카겔-기재 복합체에 대한 에이징 공정에 의해, 실리카겔 내부의 망목구조를 강화시킬 수 있다. 또, 에이징 동안에 실리카겔 내부의 수분이 극성 유기용매로 치환될 수 있으며, 그 결과 후속의 건조 공정에서 실리카겔 내부의 수분 증발에 따른 실리카겔의 기공 구조 변형 및 감소를 방지할 수 있다. In addition, the aging process is a process for leaving the silica gel-based composite at a suitable temperature so that the chemical change is completely made, and the network structure inside the silica gel may be strengthened by an aging process for the silica gel-based composite. . In addition, during aging, the moisture inside the silica gel may be replaced with a polar organic solvent, and as a result, it is possible to prevent the pore structure deformation and reduction of the silica gel due to evaporation of the moisture inside the silica gel in a subsequent drying process.
구체적으로, 상기 에이징 공정은 상기 실리카겔-기재 복합체를 50℃ 내지 80℃의 온도 하에 유지함으로써 수행될 수 있다 Specifically, the aging process may be performed by maintaining the silica gel-based composite at a temperature of 50 ℃ to 80 ℃.
또, 상기 에이징 공정은 상기 실리카겔-기재 복합체 내 화학적 변화가 완료될 때까지 수행될 수 있으며, 구체적으로는 1시간 내지 6시간, 혹은 3시간 내지 4시간 동안 수행될 수 있다.In addition, the aging process may be performed until the chemical change in the silica gel-based composite is completed, specifically, may be performed for 1 hour to 6 hours, or 3 hours to 4 hours.
단계 3Step 3
본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조방법에 있어서, 단계 3은 상기 단계 2에서 제조한 실리카겔-기재 복합체를 건조하여 실리카 에어로겔 포함 블랑켓을 제조하는 단계이다. In the method for preparing a blanket containing silica airgel according to an embodiment of the present invention, step 3 is a step of preparing a blanket containing silica airgel by drying the silica gel-based composite prepared in step 2.
상기 건조 공정은 구체적으로 초임계 이산화탄소를 이용한 초임계 건조 공정에 의해 수행될 수 있다. The drying process may be specifically performed by a supercritical drying process using supercritical carbon dioxide.
이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다. 초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called the supercritical point, the evaporation process does not occur, so it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide. Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
상기 초임계 건조 공정은 단계 2에서 제조한 실리카겔-기재 복합체를 사용하는 것을 제외하고는 통상의 방법에 따라 수행될 수 있다. 구체적으로는 상기 초임계 건조 공정은 초임계 건조 반응기 안에 에이징된 실리카겔-기재 복합체를 넣은 다음, 액체 상태의 CO2를 채우고 실리카 에어로겔 내부의 알코올 용매를 CO2로 치환하는 용매치환 공정을 수행한다. 그 후에 일정 승온 속도, 구체적으로는 0.1 ℃/min 내지 1 ℃/min의 속도로, 40℃ 내지 50℃로 승온 시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 bar 내지 150 bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20분 내지 1시간 동안 유지한다. 일반적으로 이산화탄소는 31℃의 온도, 73.8bar의 압력에서 초임계 상태가 된다. 이산화탄소가 초임계 상태가 되는 일정 온도 및 일정 압력에서 2시간 내지 12시간, 보다 구체적으로는 2시간 내지 6시간 동안 유지한 다음, 서서히 압력을 제거하여 초임계 건조 공정을 완료할 수 있다. The supercritical drying process may be performed according to a conventional method except for using the silica gel-based composite prepared in Step 2. Specifically, in the supercritical drying process, the aged silica gel-based composite is placed in a supercritical drying reactor, and then a solvent replacement process is performed in which a liquid CO 2 is filled and the alcohol solvent inside the silica airgel is replaced with CO 2 . Thereafter, after raising the temperature to 40 ° C. to 50 ° C. at a constant temperature increase rate, specifically 0.1 ° C./min to 1 ° C./min, the pressure or more at which carbon dioxide becomes a supercritical state, specifically, 100 bar to 150 The pressure of bar is maintained for a certain time, specifically 20 minutes to 1 hour, in the supercritical state of carbon dioxide. In general, carbon dioxide is supercritical at a temperature of 31 ° C. and a pressure of 73.8 bar. The carbon dioxide may be maintained at a constant temperature and a constant pressure for 2 hours to 12 hours, more specifically, 2 hours to 6 hours at which the carbon dioxide becomes a supercritical state, and then the pressure may be gradually removed to complete the supercritical drying process.
상기와 같은 건조 공정의 결과로, 나노크기의 기공을 갖는 다공성 실리카 에어로겔을 포함하는 블랑켓이 제조될 수 있다. 상기 실리카 에어로겔은 높은 소수화도화 함께 우수한 물성적 특성, 특히 높은 기공율을 가지며, 이를 포함하는 실리카 에어로겔 포함 블랑켓은 낮은 열전도도와 함께 우수한 기계적 유연성을 갖는다.As a result of the drying process as described above, a blanket comprising a porous silica airgel having nano-sized pores can be prepared. The silica airgel has excellent hydrophobicity and excellent physical properties, in particular, high porosity, and the silica airgel-containing blanket including the same has excellent mechanical flexibility with low thermal conductivity.
각 제조 단계에서의 제조 조건의 최적 조합 및 그에 따라 제조된 실리카 에어오겔 함유 블랑켓의 물성 개선 효과의 현저함을 고려할 때, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조방법은, 하기 화학식 1의 실라잔계 표면개질제와 알코올계 화합물을 반응시켜, 상기 실라잔계 표면개질제와 알코올계 화합물의 분해반응에 의해 생성된 알콕시실란계 화합물을 포함하는 반응용액을 준비하는 단계; 상기 반응용액에 실리카 전구체, 물, 극성 유기용매로서 탄소수 1 내지 4의 직쇄상 알코올 및 염기를 첨가하여 실리카졸을 제조한 후, 제조한 실리카졸에 블랑켓용 기재를 침지하여 10분 이하의 시간 동안 겔화시켜 실리카겔-기재 복합체를 준비하는 단계; 상기 실리카겔-기재 복합체에 대해 50℃ 내지 80℃의 온도 하에 유지하는 에이징 공정을 수행하는 단계; 및 상기 에이징된 실리카겔-기재 복합체를 초임계 건조하는 단계를 포함하는 것일 수 있다. 이때 각 단계 별 사용물질의 종류 및 함량, 그리고 제조 조건은 앞서 설명한 바와 동일하다.In consideration of the optimum combination of the production conditions in each manufacturing step and the remarkable properties of the silica air-gel-containing blanket prepared accordingly, the method of manufacturing a blanket for silica airgel according to an embodiment of the present invention, Preparing a reaction solution comprising an alkoxysilane-based compound produced by the decomposition reaction of the silazane-based surface modifier and the alcohol-based compound by reacting the silazane-based surface modifier and the alcohol-based compound; Silica sol was prepared by adding a silica precursor, water, a linear alcohol having 1 to 4 carbon atoms and a base as a polar organic solvent, and then immersing the blanket substrate in the prepared silica sol for 10 minutes or less. Gelling to prepare a silica gel-based composite; Performing an aging process maintained at a temperature of 50 ° C. to 80 ° C. for the silica gel-based composite; And supercritical drying the aged silica gel-based composite. At this time, the type and content of the material used in each step, and the manufacturing conditions are the same as described above.
[화학식 1][Formula 1]
Figure PCTKR2016003152-appb-I000002
Figure PCTKR2016003152-appb-I000002
(상기 화학식 1에서, R11 내지 R13, 및 R21 내지 R23는 각각 독립적으로 수소원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, 단 R11 내지 R13, 및 R21 내지 R23가 동시에 수소원자는 아니며, 보다 구체적으로는 상기 R11 내지 R13, 및 R21 내지 R23 중 적어도 2개는 알킬기이다)In Formula 1, R 11 to R 13 , and R 21 to R 23 may be each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are simultaneously Is not a hydrogen atom, more specifically, at least two of R 11 to R 13 , and R 21 to R 23 are alkyl groups)
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기 제조방법에 의해 제조된 실리카 에어로겔 포함 블랑켓 및 단열재가 제공된다.Accordingly, according to another embodiment of the present invention there is provided a blanket and heat insulating material comprising a silica airgel prepared by the manufacturing method.
구체적으로, 상기 블랑켓은 블랑켓용 기재의 적어도 일면 및 내부에 실리카 에어로겔을 포함한다. Specifically, the blanket includes silica airgel on at least one side and inside of the blanket substrate.
앞서 설명한 바와 같은 제조방법에 의해 제조되어 블랑켓 내 포함되는 실리카 에어로겔은, 복수개의 미세기공을 포함하는 입자상의 다공성 구조체로서, 나노사이즈의 1차 입자들, 구체적으로는 평균입자직경(D50)이 100nm 이하, 구체적으로는 1nm 내지 50nm의 1차 입자들이 결합되어 그물망 형태의 클러스터(cluster)를 형성하는 미세구조, 즉 3차원 망목 구조를 포함한다. Silica airgel manufactured by the manufacturing method as described above and included in the blanket is a particulate porous structure including a plurality of micropores, and nanoparticles of primary particles, specifically, an average particle diameter (D 50 ). The primary particles of 100 nm or less, specifically 1 nm to 50 nm, include a microstructure, that is, a three-dimensional network structure, which combines to form a network-shaped cluster.
이에 따라 실리카 에어로겔의 제조시 제조 공정의 제어를 통해 실리카 에어로겔의 기공률, 비표면적 또는 평균입경을 조절할 수 있으며, 그 결과 블랑켓의 열전도도 및 단열성을 제어할 수도 있다.Accordingly, the porosity, specific surface area, or average particle diameter of the silica airgel can be controlled by controlling the manufacturing process during the production of the silica airgel, and as a result, the thermal conductivity and the thermal insulation of the blanket can be controlled.
구체적으로, 상기한 제조방법에 의해 제조된 상기 실리카 에어로겔은 열전도도가 20mW/mK 이하, 보다 구체적으로는 16mW/mK 이하인 것일 수 있다. 본 발명에 있어서, 에어로겔의 열전도도는 열전도도 측정기를 이용하여 측정할 수 있다.Specifically, the silica airgel prepared by the above production method may have a thermal conductivity of 20 mW / mK or less, more specifically 16 mW / mK or less. In the present invention, the thermal conductivity of the airgel can be measured using a thermal conductivity measuring instrument.
또, 상기 실리카 에어로겔은 그 자체로 소수성을 나타내거나 또는 소수성 표면처리된 것일 수 있다.In addition, the silica airgel may be hydrophobic or may be hydrophobic surface treatment by itself.
통상 실리카 에어로겔에 있어서, 소수화도 또는 소수성 정도는 실리카 에어로겔에 포함된 탄소함량으로 확인할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 에어로겔 함유 조성물의 제조시 사용가능한 실리카 에어로겔은 실리카 에어로겔 총 중량에 대하여 5중량% 이상, 보다 구체적으로는 6중량% 이상, 보다 더 구체적으로는 6중량% 내지 9중량%의 탄소함량을 갖는 것일 수 있다. In the normal silica airgel, the degree of hydrophobicity or degree of hydrophobicity can be confirmed by the carbon content contained in the silica airgel. Accordingly, the silica airgel that can be used in the preparation of the airgel-containing composition according to an embodiment of the present invention is at least 5% by weight, more specifically at least 6% by weight, even more specifically at 6% by weight, based on the total weight of the silica airgel. It may have a carbon content of 9% by weight.
본 발명에 있어서, 실리카 에어로겔에 포함된 탄소함량은 탄소분석기를 이용하여 측정할 수 있다. In the present invention, the carbon content contained in the silica airgel can be measured using a carbon analyzer.
상기 블랑켓내 실리카 에어로겔의 함량이 높을수록 단열성이 증가한다. 그러나. 그 함량이 지나치게 높을 경우 오히려 실리카 에어로겔 자체의 낮은 강도 및 부착력으로 인해 이후 블랑켓 제조시 강도 및 부착력이 저하될 우려가 있으므로, 블랑켓의 용도 등을 고려하여 블랑켓내 포함되는 실리카 에어로겔의 함량을 적절히 조절하는 것이 바람직할 수 있다. 구체적으로, 상기 실리카 에어로겔은 블랑켓 총 중량에 대하여 20중량% 내지 80중량%로 포함될 수 있다.The higher the content of the silica airgel in the blanket, the higher the thermal insulation. But. If the content is too high, the strength and adhesion of the silica airgel itself may decrease due to the low strength and adhesion of the silica airgel itself. Therefore, the content of the silica airgel included in the blanket may be appropriately considered in consideration of the use of the blanket. It may be desirable to adjust. Specifically, the silica airgel may be included in 20% by weight to 80% by weight relative to the total weight of the blanket.
상기와 같은 블랑켓은 높은 소수화도화 함께 우수한 물성적 특성, 특히 높은 기공율을 갖는 실리카 에어로겔을 포함함으로써, 낮은 열전도도와 함께 저밀도의 우수한 기계적 유연성을 갖는다. 이에 따라, 각종 산업용 설비의 배관이나 공업용 로와 같은 보온보냉용 플랜트 시설은 물론, 항공기, 선박, 자동차, 건축 구조물 등의 단열재, 보온재, 또는 불연재로서 유용하다. Such a blanket includes silica airgel having excellent physical properties, particularly high porosity, with high hydrophobicity, and thus has low thermal conductivity and excellent mechanical flexibility at low density. Accordingly, it is useful not only for thermal insulation thermal insulation plant facilities such as piping for various industrial facilities and industrial furnaces, but also as insulation, insulation, or non-combustible materials for aircraft, ships, automobiles, and building structures.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 보다 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. However, the following Examples and Experimental Examples are for illustrating the present invention and the scope of the present invention is not limited by these Examples and Experimental Examples.
실시예 1Example 1
500ml의 둥근바닥 플라스크에 HMDS 1.67g과 에탄올 43.945g을 첨가하여 반응시켜 반응용액을 수득하였다. 결과의 반응용액에 전가수분해된 TEOS(실리카 농도 19.5%, 수화도 77%) 28.92g을 첨가하여 혼합하고, 여기에 다시 물(실리카(SiO2) 1몰에 대비 1몰의 양)을 첨가하여 혼합하였다. 결과의 반응혼합물에 에탄올 11g 및 NH4OH(30%) 0.67ml를 첨가하여 실리카졸(100ml)을 제조하였다. 상기 실리카졸에 폴리에스테르 섬유를 침적시키고 겔화를 수행하였다. 이때 겔화 완료시까지 10분 정도 소요되었다. 이후 70℃ 오븐에서 4시간 에이징을 수행하였다. 에이징 완료 후 7.2L 초임계 추출기(extractor)에 실리카겔-섬유 복합체를 넣고 CO2를 주입하였다. 이후 추출기 내의 온도를 1시간 20분에 걸쳐 50℃로 승온하고, 50℃, 100bar 도달시 150분간 0.7L/min의 속도로 연속해서 CO2를 주입하였다. 이때 분리기 하단을 통해 에탄올을 회수하였다. 이후 2시간 동안에 걸쳐 CO2 를 배출(venting) 하고, 실리카 에어로겔 포함 블랑켓을 제조하였다.HMDS 1.67 g and 43.945 g of ethanol were added to a 500 ml round bottom flask to obtain a reaction solution. To the resulting reaction solution, 28.92 g of prehydrolyzed TEOS (silica concentration 19.5%, hydration degree 77%) was added and mixed, followed by addition of water (amount of 1 mole to 1 mole of silica (SiO 2 )). And mixed. Silica sol (100 ml) was prepared by adding 11 g of ethanol and 0.67 ml of NH 4 OH (30%) to the resulting reaction mixture. Polyester fibers were deposited on the silica sol and gelation was performed. At this time, it took about 10 minutes to complete the gelation. Aging was then carried out in an oven at 70 ° C. for 4 hours. After completion of aging, the silica gel-fiber composite was put into a 7.2 L supercritical extractor and CO 2 was injected. Then, the temperature in the extractor was heated to 50 ° C. over 1 hour 20 minutes, and CO 2 was continuously injected at a rate of 0.7 L / min for 150 minutes when reaching 50 ° C. and 100 bar. At this time, ethanol was recovered through the bottom of the separator. CO 2 was then vented over 2 hours and a blanket containing silica airgel was prepared.
실시예Example 2 2
상기 실시예 1에서 물을 실리카 1몰에 대해 3몰의 비로 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.A blanket containing silica airgel was prepared in the same manner as in Example 1 except that water was used in Example 1 in a ratio of 3 mol to 1 mol of silica.
실시예 3Example 3
상기 실시예 1에서 HMDS를 3.33g으로 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.A blanket containing silica airgel was prepared in the same manner as in Example 1 except for using 3.33 g of HMDS in Example 1.
실시예 4Example 4
상기 실시예 1에서 물을 실리카 1몰에 대해 3몰의 비로 사용하고, 또 HMDS를 3.33g으로 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.A silica airgel-containing blanket was prepared in the same manner as in Example 1 except that water was used in a ratio of 3 mol to 1 mol of silica and 3.33 g of HMDS.
실시예 5Example 5
상기 실시예 1에서 HMDS를 4.98g으로 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.A blanket containing silica airgel was prepared in the same manner as in Example 1 except for using 4.98 g of HMDS in Example 1.
실시예 6Example 6
상기 실시예 1에서 물을 실리카 1몰에 대해 3몰의 비로 사용하고, 또 HMDS를 4.98g으로 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.Silica aerogel-containing blanket was prepared in the same manner as in Example 1 except that water was used in a ratio of 3 mol to 1 mol of silica and 4.98 g of HMDS.
실시예 7Example 7
상기 실시예 1에서 에탄올과 HMDS의 반응시 산촉매로서 질산(HNO3)을 추가하고, 또, 물을 실리카 1몰에 대해 2몰의 비로 사용하고, HMDS를 3.66g으로 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.In Example 1, nitric acid (HNO 3 ) was added as an acid catalyst during the reaction of ethanol and HMDS, and except that water was used in a ratio of 2 moles to 1 mole of silica and 3.66 g of HMDS was used. A blanket containing silica airgel was prepared in the same manner as in Example 1.
비교예Comparative example 1 One
실리카 전구체로서 전가수분해된 TEOS(실리카 농도=19.5중량%, 수화도 77%) 28.90g을 에탄올 43.95g과 혼합하여 실리카졸 100ml(Target density(TD) 56kg/m3)을 제조하였다.As a silica precursor, 28.90 g of prehydrolyzed TEOS (silica concentration = 19.5 wt%, hydration degree 77%) was mixed with 43.95 g of ethanol to prepare 100 ml of silica sol (Target density (TD) 56 kg / m 3 ).
이와 별도로 에탄올 11g 및 NH4OH(30%) 0.67ml 용액을 제조한 후, 상기 실리카졸과 혼합하였다. 결과의 혼합물을 밀폐용기에 도입한 후, 여기에 폴리에스테르 섬유를 침적시키고 10분 동안 겔화를 수행하였다. 이후 70℃ 오븐에서 4시간 에이징을 수행하였다. 에이징 완료 후 7.2L 초임계 추출기에 실리카겔-섬유 복합체를 넣고 CO2를 주입하였다. 이후 추출기 내의 온도를 1시간 20분에 걸쳐 50℃로 승온하고, 50℃, 100bar 도달시 150분간 0.7L/min의 속도로 연속해서 CO2를 주입하였다. 이때 분리기 하단을 통해 에탄올을 회수하였다. 이후 2시간 동안에 걸쳐 CO2 를 배출(venting) 하고, 실리카 에어로겔 포함 블랑켓을 제조하였다.Separately, 11g of ethanol and 0.67ml of NH 4 OH (30%) were prepared, and then mixed with the silica sol. After the resulting mixture was introduced into an airtight container, polyester fibers were deposited thereon and gelation was performed for 10 minutes. Aging was then carried out in an oven at 70 ° C. for 4 hours. After completion of aging, the silica gel-fiber composite was put into a 7.2 L supercritical extractor and CO 2 was injected. Then, the temperature in the extractor was heated to 50 ° C. over 1 hour 20 minutes, and CO 2 was continuously injected at a rate of 0.7 L / min for 150 minutes when reaching 50 ° C. and 100 bar. At this time, ethanol was recovered through the bottom of the separator. CO 2 was then vented over 2 hours and a blanket containing silica airgel was prepared.
비교예Comparative example 2 2
상기 비교예 1에서 에이징 후, 결과의 실리카겔-섬유 복합체에 대해 에탄올과 HMDS의 혼합물(90:10의 부피비)을 사용하여 70℃에서 2.5시간 내지 4시간 동안 표면개질을 수행하는 단계를 더 수행하는 것을 제외하고는, 상기 비교예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.After aging in Comparative Example 1, performing the surface modification for 2.5 to 4 hours at 70 ℃ using a mixture of ethanol and HMDS (volume ratio of 90:10) for the resulting silica gel-fiber composite Except that, a blanket containing silica airgel was prepared in the same manner as in Comparative Example 1 above.
비교예 3Comparative Example 3
상기 비교예 2에서 졸의 제조시 물을 실리카 1몰에 대해 2몰비로 사용하는 것을 제외하고는 비교예 2에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다.A silica airgel-containing blanket was prepared in the same manner as in Comparative Example 2, except that water was used at a molar ratio of 1 mole of silica when preparing the sol in Comparative Example 2.
비교예 4Comparative Example 4
상기 실시예 1에서 HMDS를 에탄올과 반응시키는 단계 없이, 실리카 졸에 HMDS를 투입하고, 폴리에스테르 섬유를 침적하여 겔화를 수행하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 실리카 에어로겔 포함 블랑켓을 제조하였다. 이때 겔화 완료시까지 2시간이 소요되었다.Silica aerogel was carried out in the same manner as in Example 1, except that HMDS was added to a silica sol and gelling was performed by depositing polyester fibers without reacting HMDS with ethanol in Example 1. Including blankets were prepared. At this time it took 2 hours to complete the gelation.
실험예 1Experimental Example 1
실시예 1 및 7에서의 실리카 에어로겔 포함 블랑켓의 제조시, HMDS를 알코올과 분해반응시켜 제조한 반응용액에 대해 적외선 분광분석을 실시하고, HMDS의 분해 및 알콕시실란의 생성여부를 확인하였다. 그 결과를 도 1에 나타내었다. In the preparation of the blanket containing silica airgel in Examples 1 and 7, the reaction solution prepared by decomposing HMDS with alcohol was subjected to infrared spectroscopy, and the decomposition of HMDS and the formation of alkoxysilane were confirmed. The results are shown in FIG.
도 1에 나타난 바와 같이, 실시예 1 및 7에서 제조한 반응용액 내 알콕시실란 화합물의 생성을 확인할 수 있으며, 실시예 7에서와 같이 분해반응시 산촉매를 더 사용한 경우 분해반응이 더욱 촉진됨을 확인할 수 있다.As shown in Figure 1, it can be confirmed that the production of the alkoxysilane compound in the reaction solution prepared in Examples 1 and 7, the decomposition reaction is further promoted when more acid catalyst is used in the decomposition reaction as in Example 7 have.
실험예 2Experimental Example 2
상기 실시예 1 내지 7, 및 비교예 1 내지 4에서 제조한 실리카 에어로겔 포함 블랑켓에 대해 열전도도 측정기를 이용하여 열전도도 평가를 수행하였다. 그 결과를 하기 표 1에 나타내었다. The thermal conductivity of the blanket prepared in the silica airgel prepared in Examples 1 to 7, and Comparative Examples 1 to 4 was performed using a thermal conductivity meter. The results are shown in Table 1 below.
HMDS(g/100ml sol)HMDS (g / 100ml sol) 물(mol/SiO2 mol)Water (mol / SiO 2 mol) 산 촉매(g/100ml sol)Acid catalyst (g / 100ml sol) 표면개질단계 유무 및 HMDS사용량(g/100ml sol)Surface modification step and HMDS usage (g / 100ml sol) 열전도도(mW/mK)Thermal Conductivity (mW / mK)
실시예 1Example 1 1.671.67 1One -- XX 14.714.7
실시예 2Example 2 1.671.67 33 -- XX 14.814.8
실시예 3Example 3 3.333.33 1One -- XX 14.014.0
실시예 4Example 4 3.333.33 33 -- XX 13.613.6
실시예 5Example 5 4.984.98 1One -- XX 14.214.2
실시예 6Example 6 4.984.98 33 -- XX 13.613.6
실시예 7Example 7 3.663.66 22 1.481.48 XX 15.315.3
비교예 1Comparative Example 1 -- -- -- XX 18.018.0
비교예 2Comparative Example 2 -- -- -- ○(13.68)○ (13.68) 14.014.0
비교예 3Comparative Example 3 -- 22 -- ○(13.68)○ (13.68) 14.114.1
비교예 4Comparative Example 4 1.671.67 1One -- XX 17.817.8
상기 표 1에 나타난 바와 같이, 공동 전구체 방법을 이용한 본 발명의 제조방법에 따라 제조된 실시예 1 내지 7의 실리카 에어로겔 포함 블랑켓은, 표면개질 없이 제조된 비교예 1의 실리카 에어로겔 포함 블랑켓과 비교하여 현저히 낮은 열전도도를 나타내었고, 별도의 표면개질 단계를 추가 수행하여 제조된 비교예 2 및 3의 실리카 에어로겔 포함 블랑켓과 비교하여 동등 수준 이상의 개선된 열 전도도 특성, 즉 낮은 열전도도를 나타내었다. 특히 실시예 1 내지 7에서 사용된 HMDS 표면개질제의 함량이 비교예 2 및 3에 비해 50% 이상, 최대 80%까지 감소된 양임을 고려할 때, 본 발명에 따른 제조방법에 의해 제조시 별도의 표면개질 공정 없이, 그리고 최소한의 표면개질제의 사용으로도 낮은 열전도도를 갖는 실리카 에어로겔 포함 블랑켓의 제조가 가능함을 알 수 있다.As shown in Table 1, the silica airgel-containing blanket of Examples 1 to 7 prepared according to the preparation method of the present invention using the co-precursor method, and the silica airgel-containing blanket of Comparative Example 1 prepared without surface modification Compared with the silica aerogel-containing blankets of Comparative Examples 2 and 3 prepared by the addition of a separate surface modification step, the thermal conductivity was significantly lower than that of the thermal conductivity, ie, low thermal conductivity. It was. In particular, considering that the content of the HMDS surface modifier used in Examples 1 to 7 is reduced by at least 50% and up to 80% compared to Comparative Examples 2 and 3, a separate surface when prepared by the manufacturing method according to the present invention It can be seen that the preparation of blankets with silica airgel with low thermal conductivity is possible without the modification process and with the use of minimal surface modifiers.
또, HMDS를 미리 분해하지 않고 바로 투입한 비교예 4의 경우 겔화시간이 길어짐에 따라 에어로겔의 열전도도가 크게 저하되었다. In Comparative Example 4, in which HMDS was added directly without decomposing in advance, the thermal conductivity of the aerogel was greatly decreased as the gelation time became longer.
실험예 3Experimental Example 3
상기 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓에 대해 소수성 평가를 수행하였다. Hydrophobicity evaluation was performed on the blanket prepared in the silica airgel prepared in Example 1 and Comparative Example 1.
구체적으로 상기 소수성 평가는 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓에 대해 물방울을 떨어뜨린 후, 물방울이 블랑켓 내로 흡수되는지 여부를 관찰하였다. 그 결과를 도 2a 및 2b에 각각 나타내었다.Specifically, the hydrophobicity evaluation was performed after dropping the water droplets on the blanket prepared in Example 1 and Comparative Example 1 silica gel, it was observed whether the water droplets are absorbed into the blanket. The results are shown in FIGS. 2A and 2B, respectively.
도 2a는 실시예 1의 실리카 에어로겔 포함 블랑켓에 대한 소수성 평가 실험 결과를 관찰한 사진이고, 도 2b는 비교예 1의 실리카 에어로겔 포함 블랑켓에 대한 소수성 평가 실험 결과를 관찰한 사진이다.Figure 2a is a photograph observing the results of the hydrophobicity evaluation experiment for the blanket with silica airgel of Example 1, Figure 2b is a photograph observing the results of the hydrophobicity evaluation experiment for the blanket with silica airgel of Comparative Example 1.
도 2a 및 도 2b에 나타난 바와 같이, 실시예 1의 실리카 에어로겔 포함 블랑켓에서는 물방울이 스며들지 않고 유지되었다. 이로부터 실시예 1의 실리카 에어로겔 포함 블랑켓은 소수성을 가짐을 확인할 수 있으며, 이 같은 결과는 공동 전구체로서 사용된 HMDS가 실리카 에어로겔의 표면을 소수성으로 개질하였기 때문임을 알 수 있다. 한편, HMDS를 사용하지 않은 비교예 1의 실리카 에어로겔 포함 블랑켓에서는 물방울이 스며들어 소수성을 가지지 않음을 확인할 수 있다. 또, 이 같은 결과로부터 비교예 1의 실리카 에어로겔 포함 블랑켓의 경우, 이후 실리카 표면에 존재하는 친수성의 실라놀기(Si-OH)가 공기 중의 물을 흡수함으로써 열전도율이 더욱 증가될 우려가 있음을 예상할 수 있다.As shown in Figure 2a and 2b, in the blanket containing silica airgel of Example 1 was kept without water droplets. From this, it can be seen that the blanket containing silica airgel of Example 1 has hydrophobicity, and this result can be seen that the HMDS used as the co-precursor modified the surface of the silica airgel hydrophobicly. On the other hand, in the blanket containing silica airgel of Comparative Example 1 without using HMDS it can be confirmed that the water droplets do not have a hydrophobicity. In addition, from the above results, in the blanket containing silica airgel of Comparative Example 1, the hydrophilic silanol group (Si-OH) present on the silica surface may absorb water in the air, thereby increasing the thermal conductivity. can do.
실험예 4Experimental Example 4
소수성 평가를 위하여 에어로겔 블랑켓을 털어서, 에어로겔만을 회수한 후 탄소분석기를 이용하여 탄소 함량을 분석하였다. 그 결과를 하기 표 2에 나타내었다.For the hydrophobicity evaluation, the airgel blanket was shaken, and only the airgel was recovered, and the carbon content was analyzed using a carbon analyzer. The results are shown in Table 2 below.
탄소함량(중량%)Carbon content (% by weight)
실시예 1Example 1 6.16.1
실시예 2Example 2 6.36.3
실시예 3Example 3 7.07.0
실시예 4Example 4 7.27.2
실시예 5Example 5 8.08.0
실시예 6Example 6 8.28.2
실시예 7Example 7 7.27.2
비교예 1Comparative Example 1 --
비교예 2Comparative Example 2 8.58.5
비교예 3Comparative Example 3 8.58.5
비교예 4Comparative Example 4 3.53.5
실험결과, 실시예 1 내지 7의 경우 HMDS의 양이 증가함에 따라 소수화의 증가로 탄소함량이 증가하였다. 또, HMDS를 미리 분해하지 않고 바로 투입한 비교예 4와 비교하여 보다 증가된 소수화도를 나타내었으며, 구체적으로 실시예 1의 경우 비교예 4와 비교하여 탄소함량이 2.6중량%나 증가하였다. 통상 HMDS는 에탄올 중에서 분해시 분해속도가 매우 느린데, 비교예 4의 경우 HMDS를 미리 분해하지 않고 바로 투입함으로써 HMDS가 충분히 분해되지 않아 실시예1과 동량의 사용에도 불구하고 현저히 낮은 소수화도를 나타내었다. As a result, in Examples 1 to 7, the carbon content increased due to the increase in hydrophobicity as the amount of HMDS increased. In addition, the degree of hydrophobicity was increased in comparison with Comparative Example 4 that was immediately added without decomposing HMDS. Specifically, in Example 1, the carbon content was increased by 2.6% by weight compared with Comparative Example 4. In general, HMDS has a very low decomposition rate when decomposed in ethanol. In the case of Comparative Example 4, HMDS was not sufficiently decomposed by directly adding HMDS without prior decomposition, thereby showing a significantly low degree of hydrophobicity despite the use of the same amount as Example 1. .

Claims (20)

  1. 실라잔계 표면개질제와 알코올계 화합물을 반응시켜 반응용액을 준비하는 단계; Preparing a reaction solution by reacting a silazane-based surface modifier with an alcohol compound;
    상기 반응용액에 실리카 전구체, 물 및 극성 유기용매를 첨가하여 실리카졸을 제조한 후, 제조한 실리카졸에 블랑켓용 기재를 침지하고 겔화시켜 실리카겔-기재 복합체를 준비하는 단계; 및Preparing a silica sol by adding a silica precursor, water, and a polar organic solvent to the reaction solution, and then immersing and gelling the blanket substrate in the prepared silica sol to prepare a silica gel-based composite; And
    상기 실리카겔-기재 복합체를 건조하는 단계Drying the silica gel-based composite
    를 포함하는 실리카 에어로겔 포함 블랑켓의 제조방법.Method for producing a blanket containing silica airgel comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 실라잔계 표면개질제는 하기 화학식 1의 화합물을 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The silazane-based surface modifier is a method for producing a blanket containing silica airgel containing a compound of formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2016003152-appb-I000003
    Figure PCTKR2016003152-appb-I000003
    (상기 화학식 1에서, R11 내지 R13, 및 R21 내지 R23는 각각 독립적으로 수소원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, 단 R11 내지 R13, 및 R21 내지 R23가 동시에 수소원자는 아니다)In Formula 1, R 11 to R 13 , and R 21 to R 23 may be each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are simultaneously Not hydrogen atoms)
  3. 제1항에 있어서, The method of claim 1,
    상기 실라잔계 표면개질제는 테트라알킬디실라잔 및 헥사알킬디실라잔으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하고, 상기 알킬은 탄소수 1 내지 4의 알킬인 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The silazane-based surface modifier includes any one or a mixture of two or more selected from the group consisting of tetraalkyldisilazane and hexaalkyldisilazane, wherein the alkyl is an alkyl having 1 to 4 carbon atoms. Manufacturing method.
  4. 제1항에 있어서, The method of claim 1,
    상기 알코올계 화합물은 탄소수 1 내지 8의 알코올인 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The alcohol compound is a method for producing a blanket containing silica airgel that is an alcohol having 1 to 8 carbon atoms.
  5. 제1항에 있어서, The method of claim 1,
    상기 반응용액의 준비시 산 촉매가 더 첨가되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The preparation method of the blanket containing silica airgel that the acid catalyst is further added when preparing the reaction solution.
  6. 제1항에 있어서, The method of claim 1,
    상기 반응용액은 실라잔계 표면개질제의 분해로 생성되는 알콕시실란계 화합물을 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The reaction solution is a silica airgel-containing blanket manufacturing method comprising alkoxysilane-based compound produced by decomposition of the silazane-based surface modifier.
  7. 제1항에 있어서, The method of claim 1,
    상기 실리카 전구체는 실리콘 알콕사이드계 화합물 및 이의 전가수분해물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The silica precursor is a silicon alkoxide-based compound and a method for producing a blanket containing silica airgel containing any one or a mixture of two or more selected from the group consisting of a hydrolyzate thereof.
  8. 제1항에 있어서, The method of claim 1,
    상기 실리카 전구체는 수화도가 50% 내지 90%인 테트라알킬 실리케이트의 전가수분해물을 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The silica precursor is a method for producing a blanket of silica airgel containing a hydrolyzate of tetraalkyl silicate having a degree of hydration 50% to 90%.
  9. 제1항에 있어서, The method of claim 1,
    상기 실리카 전구체는 실리카졸 내 포함되는 실리카의 함량이 0.1중량% 내지 30중량%가 되도록 하는 양으로 사용되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The silica precursor is used in the amount of the silica contained in the silica sol is 0.1 wt% to 30 wt% so that the amount of the silica airgel-containing blanket manufacturing method.
  10. 제1항에 있어서, The method of claim 1,
    상기 물은 실리카졸 내 포함되는 실리카 1몰에 대하여 0.1몰 내지 16몰의 비로 사용되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The water is used in the production of a blanket for silica aerogel blanket which is used in a ratio of 0.1 to 16 moles with respect to 1 mole of silica contained in the silica sol.
  11. 제1항에 있어서, The method of claim 1,
    상기 극성 유기용매는 알코올계 용매를 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The polar organic solvent is a method for producing a blanket containing silica airgel containing an alcohol solvent.
  12. 제1항에 있어서, The method of claim 1,
    상기 실리카졸의 제조시 염기가 더 첨가되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.A method for preparing a blanket containing silica airgel that the base is further added in the preparation of the silica sol.
  13. 제1항에 있어서, The method of claim 1,
    상기 실리카겔-기재 복합체의 건조 전에, 상기 실리카겔-기재 복합체에 대한 안정화 공정, 프리에이징 공정 및 에이징 공정으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 공정을 수행하는 단계를 더 포함하는 실리카 에어로겔 포함 블랑켓의 제조방법.Before drying the silica gel-based composite, a blanket containing silica airgel further comprising the step of performing any one or two or more processes selected from the group consisting of a stabilization process, a pre-aging process and an aging process for the silica gel-based composite Manufacturing method.
  14. 제1항에 있어서, The method of claim 1,
    상기 실리카겔-기재 복합체의 건조 전에, 상기 실리카겔-기재 복합체에 대해 50℃ 내지 80℃의 온도하에 에이징 하는 공정을 더 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.Before drying the silica gel-based composite, further comprising the step of aging at a temperature of 50 ℃ to 80 ℃ with respect to the silica gel-based composite.
  15. 제1항에 있어서, The method of claim 1,
    상기 건조는 초임계 건조 공정에 의해 수행되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법. The drying is a method for producing a blanket containing silica airgel that is carried out by a supercritical drying process.
  16. 제1항에 있어서,The method of claim 1,
    하기 화학식 1의 실라잔계 표면개질제와 알코올계 화합물을 반응시켜, 상기 실라잔계 표면개질제와 알코올계 화합물의 분해반응에 의해 생성된 알콕시실란계 화합물을 포함하는 반응용액을 준비하는 단계; Preparing a reaction solution comprising an alkoxysilane-based compound produced by the decomposition reaction of the silazane-based surface modifier and the alcohol-based compound by reacting the silazane-based surface modifier and the alcohol-based compound;
    상기 반응용액에 실리카 전구체, 물, 극성 유기용매로서 탄소수 1 내지 4의 직쇄상 알코올 및 염기를 첨가하여 실리카졸을 제조한 후, 제조한 실리카졸에 블랑켓용 기재를 침지하여 겔화시켜 실리카겔-기재 복합체를 준비하는 단계; Silica sol was prepared by adding silica precursor, water and linear alcohol and base having 1 to 4 carbon atoms as a polar organic solvent to the reaction solution. Preparing a;
    상기 실리카겔-기재 복합체에 대해 50℃ 내지 80℃의 온도 하에 유지하는 에이징 공정을 수행하는 단계; 및 Performing an aging process maintained at a temperature of 50 ° C. to 80 ° C. for the silica gel-based composite; And
    상기 에이징된 실리카겔-기재 복합체를 초임계 건조하는 단계를 포함하는 실리카 에어로겔 포함 블랑켓의 제조방법.Method for producing a blanket containing silica airgel comprising the step of supercritical drying the aged silica gel-based composite.
    [화학식 1][Formula 1]
    Figure PCTKR2016003152-appb-I000004
    Figure PCTKR2016003152-appb-I000004
    (상기 화학식 1에서, R11 내지 R13, 및 R21 내지 R23는 각각 독립적으로 수소원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, 단 R11 내지 R13, 및 R21 내지 R23가 동시에 수소원자는 아니다)In Formula 1, R 11 to R 13 , and R 21 to R 23 may be each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are simultaneously Not hydrogen atoms)
  17. 제1항에 따른 제조방법에 의해 제조된 실리카 에어로겔 포함 블랑켓.A blanket containing silica airgel prepared by the method according to claim 1.
  18. 제17항에 있어서,The method of claim 17,
    블랑켓용 기재 및Blanket base material and
    상기 블랑켓용 기재의 표면 및 내부 중 적어도 하나에 위치하는 실리카 에어로겔을, 실리카 에어로겔 포함 블랑켓 총 중량에 대하여 20중량% 내지 80중량%로 포함하는 것인 실리카 에어로겔 포함 블랑켓.The silica airgel blanket comprising a silica airgel located on at least one of the surface and the inside of the blanket substrate, 20% by weight to 80% by weight relative to the total weight of the blanket containing silica airgel.
  19. 제17항에 있어서,The method of claim 17,
    상기 실리카 에어로겔은 실리카 에어로겔 총 중량에 대하여 탄소함량이 5중량% 이상인 것인 실리카 에어로겔 포함 블랑켓.The silica airgel is a blanket of silica airgel containing a carbon content of 5% by weight or more based on the total weight of silica airgel.
  20. 제17항에 따른 실리카 에어로겔 포함 블랑켓을 포함하는 단열재.An insulating material comprising a blanket comprising silica airgel according to claim 17.
PCT/KR2016/003152 2015-04-14 2016-03-28 Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby WO2016167494A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680016784.4A CN107406327B (en) 2015-04-14 2016-03-28 The preparation method of felt containing aerosil and the felt containing aerosil prepared using the preparation method
EP16780217.2A EP3284719B1 (en) 2015-04-14 2016-03-28 Method for manufacturing silica aerogel-containing blanket
US15/554,383 US10882750B2 (en) 2015-04-14 2016-03-28 Method for preparing silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0052537 2015-04-14
KR20150052537 2015-04-14
KR1020160035850A KR101748527B1 (en) 2015-04-14 2016-03-25 Method for preparing silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
KR10-2016-0035850 2016-03-25

Publications (1)

Publication Number Publication Date
WO2016167494A1 true WO2016167494A1 (en) 2016-10-20

Family

ID=57125948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003152 WO2016167494A1 (en) 2015-04-14 2016-03-28 Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby

Country Status (1)

Country Link
WO (1) WO2016167494A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453676A4 (en) * 2017-05-12 2019-03-27 LG Chem, Ltd. Production method for silica aerogel blanket and silica aerogel blanket produced thereby
CN111212813A (en) * 2017-11-17 2020-05-29 株式会社Lg化学 Method for producing silica aerogel felt by reusing supercritical waste liquid
CN111592329A (en) * 2020-05-25 2020-08-28 福建拓烯新材料科技有限公司 Preparation method of modified silica aerogel and modified silica aerogel
CN111925186A (en) * 2020-07-11 2020-11-13 巩义市泛锐熠辉复合材料有限公司 Preparation method of aluminum silicate fiber reinforced aerogel felt and impregnation reaction kettle
CN112119036A (en) * 2018-11-27 2020-12-22 株式会社Lg化学 Aerogel blanket manufacturing process
CN113396134A (en) * 2019-09-30 2021-09-14 株式会社Lg化学 Aerogel felt
KR20220015983A (en) * 2020-07-31 2022-02-08 주식회사 엘지화학 Preparation method for alkoxysilane compound
CN116209666A (en) * 2020-07-31 2023-06-02 株式会社Lg化学 Method for producing alkoxysilane compound
EP4190793A4 (en) * 2020-07-31 2024-01-17 Lg Chem, Ltd. PROCESS FOR PREPARING AN ALKOXYSILANE COMPOUND

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093772A (en) * 2007-04-18 2008-10-22 한국생산기술연구원 Airgel powder production method having increased particle size and density and permanent hydrophobicity and airgel powder prepared therefrom
KR20100010350A (en) * 2008-07-22 2010-02-01 한국에너지기술연구원 Preparation method of silica aerogel powders
US20110240907A1 (en) * 2008-12-18 2011-10-06 Neeraj Sharma Hydropohobic aerogels
KR20110125773A (en) * 2010-05-14 2011-11-22 주식회사 화인텍 Method for preparing hydrophobic silica airgel and hydrophobic silica airgel manufactured by the method
KR20110126381A (en) * 2010-05-17 2011-11-23 주식회사 화인텍 Method for preparing hydrophobic silica airgel composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093772A (en) * 2007-04-18 2008-10-22 한국생산기술연구원 Airgel powder production method having increased particle size and density and permanent hydrophobicity and airgel powder prepared therefrom
KR20100010350A (en) * 2008-07-22 2010-02-01 한국에너지기술연구원 Preparation method of silica aerogel powders
US20110240907A1 (en) * 2008-12-18 2011-10-06 Neeraj Sharma Hydropohobic aerogels
KR20110125773A (en) * 2010-05-14 2011-11-22 주식회사 화인텍 Method for preparing hydrophobic silica airgel and hydrophobic silica airgel manufactured by the method
KR20110126381A (en) * 2010-05-17 2011-11-23 주식회사 화인텍 Method for preparing hydrophobic silica airgel composite

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142463B2 (en) 2017-05-12 2021-10-12 Lg Chem, Ltd. Method for producing silica aerogel blanket and silica aerogel blanket produced thereby
EP3453676A4 (en) * 2017-05-12 2019-03-27 LG Chem, Ltd. Production method for silica aerogel blanket and silica aerogel blanket produced thereby
CN111212813A (en) * 2017-11-17 2020-05-29 株式会社Lg化学 Method for producing silica aerogel felt by reusing supercritical waste liquid
US11891306B2 (en) 2017-11-17 2024-02-06 Lg Chem, Ltd. Method for producing silica aerogel blanket by reusing supercritical waste liquid
US11866324B2 (en) 2018-11-27 2024-01-09 Lg Chem, Ltd. Method for manufacturing aerogel blanket
CN112119036A (en) * 2018-11-27 2020-12-22 株式会社Lg化学 Aerogel blanket manufacturing process
CN113396134B (en) * 2019-09-30 2022-11-11 株式会社Lg化学 Aerogel felt
CN113396134A (en) * 2019-09-30 2021-09-14 株式会社Lg化学 Aerogel felt
CN111592329A (en) * 2020-05-25 2020-08-28 福建拓烯新材料科技有限公司 Preparation method of modified silica aerogel and modified silica aerogel
CN111925186A (en) * 2020-07-11 2020-11-13 巩义市泛锐熠辉复合材料有限公司 Preparation method of aluminum silicate fiber reinforced aerogel felt and impregnation reaction kettle
KR20220015983A (en) * 2020-07-31 2022-02-08 주식회사 엘지화학 Preparation method for alkoxysilane compound
CN116209666A (en) * 2020-07-31 2023-06-02 株式会社Lg化学 Method for producing alkoxysilane compound
EP4190793A4 (en) * 2020-07-31 2024-01-17 Lg Chem, Ltd. PROCESS FOR PREPARING AN ALKOXYSILANE COMPOUND
EP4190794A4 (en) * 2020-07-31 2024-01-17 Lg Chem, Ltd. Alkoxysilane compound preparation method
JP7488957B2 (en) 2020-07-31 2024-05-22 エルジー・ケム・リミテッド Method for producing alkoxysilane compound
JP7488958B2 (en) 2020-07-31 2024-05-22 エルジー・ケム・リミテッド Method for producing alkoxysilane compound
KR102763693B1 (en) 2020-07-31 2025-02-07 주식회사 엘지화학 Preparation method for alkoxysilane compound

Similar Documents

Publication Publication Date Title
WO2016167494A1 (en) Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby
WO2016129874A1 (en) Method for preparing blanket containing silica aerogel, and blanket prepared thereby and containing silica aerogel
US10882750B2 (en) Method for preparing silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
KR0176259B1 (en) Low Temperature Conversion of Silica Precursor to Silica
WO2020122683A1 (en) Aerogel blanket manufacturing method
US5547703A (en) Method of forming si-o containing coatings
WO2015119430A1 (en) Production method for hydrophobic silica aerogel
KR100333989B1 (en) Method of forming Si-O containing coatings
WO2018070752A1 (en) Aerogel blanket for ultra-high temperatures, method for manufacturing same and construction method thereof
WO2018070755A1 (en) Low-dust high-thermal insulation aerogel blanket and method for manufacturing same
KR20000047675A (en) A method of forming coatings
WO2017090912A1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom
WO2017078293A1 (en) Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
WO2022080721A1 (en) Method for manufacturing aerogel blanket and aerogel blanket prepared therefrom
WO2018208005A1 (en) Production method for silica aerogel blanket and silica aerogel blanket produced thereby
JPH04227980A (en) Method for converting silica precursor into silica at low temperature
WO2021066492A1 (en) Aerogel blanket
WO2015126216A1 (en) Composite ceramic prepared by using sol-gel method, thin film coating material with ultra-high temperature heat resistance and high corrosion resistance, containing same, and preparation method therefor
JPS63155624A (en) Method of forming multilayer ceramic coating
WO2016163670A1 (en) Aerogel-containing composition and heat insulation blanket prepared by using same
JPH0559154B2 (en)
WO2017090911A1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom
WO2020130353A1 (en) Supercritical drying method for silica wet gel blanket
WO2017171217A1 (en) Method for manufacturing low-dust high-insulation aerogel blanket
WO2020111765A1 (en) Method for synthesizing prehydrolyzed polysilicate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780217

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016780217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15554383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载